WO2012039132A1 - 含フッ素カルバマート基を有するアミノ酸アミド誘導体の製造方法、その製造中間体、及びエチレンジアミン誘導体の製造方法 - Google Patents

含フッ素カルバマート基を有するアミノ酸アミド誘導体の製造方法、その製造中間体、及びエチレンジアミン誘導体の製造方法 Download PDF

Info

Publication number
WO2012039132A1
WO2012039132A1 PCT/JP2011/005307 JP2011005307W WO2012039132A1 WO 2012039132 A1 WO2012039132 A1 WO 2012039132A1 JP 2011005307 W JP2011005307 W JP 2011005307W WO 2012039132 A1 WO2012039132 A1 WO 2012039132A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
carbon atoms
unsubstituted
general formula
Prior art date
Application number
PCT/JP2011/005307
Other languages
English (en)
French (fr)
Inventor
豪毅 梅谷
河野 敏之
尚登 亀川
Original Assignee
三井化学アグロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学アグロ株式会社 filed Critical 三井化学アグロ株式会社
Priority to CN201180044958.5A priority Critical patent/CN103124722B/zh
Priority to JP2012534932A priority patent/JP5568137B2/ja
Priority to KR1020137008216A priority patent/KR101492351B1/ko
Publication of WO2012039132A1 publication Critical patent/WO2012039132A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/22Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/16Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals

Definitions

  • the present invention relates to a method for producing an amino acid amide derivative having a fluorine-containing carbamate group, a production intermediate thereof, and a method for producing an ethylenediamine derivative.
  • An amino acid amide derivative having a fluorine-containing carbamate group is known to be useful as an intermediate of a bactericide as disclosed in Patent Document 1. In producing such a group of compounds, it is important to prepare efficiently from readily available amino acids.
  • examples of conventional production techniques include a method of reacting an amino acid amide and a fluorinated alkyl chloroformate as shown in Patent Document 1.
  • the fluorine-containing alkyl chloroformate can be produced by a method of reacting a fluorine-containing alcohol and phosgene as shown in Patent Document 2.
  • the above method uses an amino acid amide that is expensive and difficult to obtain in large quantities, which is economically disadvantageous.
  • the reaction for synthesizing amino acid amides from amino acids generally requires a long time and has a low yield. Therefore, it is necessary to develop an efficient production method from an amino acid without going through an amino acid amide.
  • An object of the present invention is to provide a method advantageous for industrial production of an amino acid amide derivative having a fluorine-containing carbamate group. Furthermore, an object of the present invention is to provide an advantageous method for industrial production of the ethylenediamine derivative having a fluorine-containing carbamate group and an acyl group, including the production process of the amino acid amide derivative.
  • the present inventors have a fluorine-containing carbamate group represented by the general formula (3) obtained by reacting an inexpensive and readily available amino acid with a fluorine-containing alkyl chloroformate in the presence of water.
  • the amino acid is converted into a compound represented by the general formula (1) by a chlorinating agent, and then reacted with ammonia, which is found to be an effective solution to the above-mentioned problem.
  • the present invention has been completed.
  • R 1 represents a C 1-6 alkyl group substituted with at least one fluorine atom, or a C 3-6 cycloalkyl group substituted with at least one fluorine atom
  • 2 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group
  • R 3 and R 4 are each Independently, hydrogen, substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 6 carbon atoms, substituted or unsubstituted aryl group, substituted or unsubstituted arylalkyl group, a substituted or an unsubstituted heteroaryl group or a substituted or unsubstituted heteroarylalkyl group, and, ring structure R 3
  • R 1 represents an alkyl group having 1 to 6 carbon atoms substituted with at least one fluorine atom
  • R 2 represents hydrogen or an alkyl having 1 to 6 carbon atoms
  • R 3 and R 4 each independently represent hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted arylalkyl group.
  • the production method according to [1] wherein one of R 3 and R 4 and R 2 may form a ring structure having 3 to 4 carbon atoms.
  • R 1 represents a C 1-6 alkyl group substituted with at least one fluorine atom, or a C 3-6 cycloalkyl group substituted with at least one fluorine atom
  • 2 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group
  • R 3 and R 4 are each Independently, hydrogen, substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 6 carbon atoms, substituted or unsubstituted aryl group, substituted or unsubstituted arylalkyl group, a substituted or an unsubstituted heteroaryl group or a substituted or unsubstituted heteroarylalkyl group, and, ring structure R 3
  • R 1 represents an alkyl group having 1 to 6 carbon atoms substituted with at least one fluorine atom
  • R 2 represents hydrogen or an alkyl having 1 to 6 carbon atoms
  • R 3 and R 4 each independently represent hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted arylalkyl group.
  • the production method according to [3], wherein one of R 3 and R 4 and R 2 may form a ring structure having 3 to 4 carbon atoms.
  • R 2 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group
  • R 3 And R 4 each independently represents hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aryl group, substituted or unsubstituted Represents an unsubstituted arylalkyl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted heteroarylalkyl group, and forms a ring structure in which R 3 and R 4 are bonded with 2 to 5 carbon atoms Or may form a ring structure in which either R 3 or R 4 and
  • R 1 represents an alkyl group having 1 to 6 carbon atoms substituted with at least one fluorine atom, or a cycloalkyl group having 3 to 6 carbon atoms substituted with at least one fluorine atom.
  • R 1 represents an alkyl group having 1 to 6 carbon atoms substituted with at least one fluorine atom
  • R 2 represents hydrogen or an alkyl having 1 to 6 carbon atoms
  • R 3 and R 4 each independently represent hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted arylalkyl group.
  • the production method according to [5], wherein either R 3 or R 4 and R 2 may form a ring structure having 3 to 4 carbon atoms.
  • R 1 represents a C 1-6 alkyl group substituted with at least one fluorine atom, or a C 3-6 cycloalkyl group substituted with at least one fluorine atom
  • 2 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group
  • R 3 and R 4 are each Independently, hydrogen, substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 6 carbon atoms, substituted or unsubstituted aryl group, substituted or unsubstituted arylalkyl group, a substituted or an unsubstituted heteroaryl group or a substituted or unsubstituted heteroarylalkyl group, and, ring structure R 3
  • R 1 represents an alkyl group having 1 to 6 carbon atoms substituted with at least one fluorine atom
  • R 2 represents hydrogen or an alkyl having 1 to 6 carbon atoms
  • R 3 and R 4 each independently represent hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted arylalkyl group.
  • the compound according to [7], wherein either R 3 or R 4 and R 2 may form a ring structure having 3 to 4 carbon atoms.
  • R 1 represents a C 1-6 alkyl group substituted with at least one fluorine atom, or a C 3-6 cycloalkyl group substituted with at least one fluorine atom
  • 2 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group
  • R 3 and R 4 are simultaneously Except in the case of hydrogen, each independently represents hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 6 carbon atoms, or a substituted or unsubstituted aryl group.
  • R 3 and R 4 are carbon It may be combined to form a ring structure by a child having 2-5, or R 3 or either the R 2 of R 4 may form a ring structure linked with 3-4 carbon atoms.
  • R 1 represents an alkyl group having 1 to 6 carbon atoms substituted with at least one fluorine atom
  • R 2 represents hydrogen or 1 to 6 carbon atoms.
  • R 3 and R 4 are independently hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted group, except when R 3 and R 4 are simultaneously hydrogen.
  • an unsubstituted arylalkyl group, and the compound according to [9] which may form a ring structure in which either R 3 or R 4 and R 2 are bonded with 3 to 4 carbon atoms .
  • R 1 represents a trifluoroethyl group
  • R 2 represents hydrogen or an alkyl group having 1 to 6 carbon atoms
  • R 3 and R 4 are simultaneously hydrogen.
  • each independently represents hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted arylalkyl group
  • R 3 Alternatively, the compound according to [9], wherein either one of R 4 and R 2 may form a ring structure bonded with 3 to 4 carbon atoms.
  • R 1 represents a C 1-6 alkyl group substituted with at least one fluorine atom, or a C 3-6 cycloalkyl group substituted with at least one fluorine atom
  • 2 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group
  • R 3 and R 4 are each Independently, hydrogen, substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 6 carbon atoms, substituted or unsubstituted aryl group, substituted or unsubstituted arylalkyl group, a substituted or an unsubstituted heteroaryl group or a substituted or unsubstituted heteroarylalkyl group, and, ring structure R 3
  • R 5 represents a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted aryl group.
  • R 1 represents an alkyl group having 1 to 6 carbon atoms substituted with at least one fluorine atom, or a cycloalkyl group having 3 to 6 carbon atoms substituted with at least one fluorine atom
  • R 2 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group
  • R 3 and R 4 is independently hydrogen, substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 6 carbon atoms, substituted or unsubstituted aryl group, substituted or unsubstituted.
  • R 3 and R 4 are bonded with 2 to 5 carbon atoms May form a structure, or R 3 or either of R 4 and R 2 chlorinating agent a compound represented by may.) Which also form a ring structure bonded with 3 to 4 carbon atoms
  • R 5 represents a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted aryl group.
  • R 2 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group
  • R 3 And R 4 each independently represents hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aryl group, substituted or unsubstituted Represents an unsubstituted arylalkyl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted heteroarylalkyl group, and forms a ring structure in which R 3 and R 4 are bonded with 2 to 5 carbon atoms Or may form a ring structure in which either R 3 or R 4 and
  • R 1 represents an alkyl group having 1 to 6 carbon atoms substituted with at least one fluorine atom, or a cycloalkyl group having 3 to 6 carbon atoms substituted with at least one fluorine atom.
  • R 5 represents a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted aryl group.
  • a novel method for producing an amino acid amide derivative having a fluorine-containing carbamate group, a novel production intermediate, and a novel method for producing the amino acid amide derivative of the present invention are included as part of the process.
  • a novel method for producing an ethylenediamine derivative having a group and an acyl group can be provided.
  • the present invention has advantages such as maintaining the three-dimensional structure of amino acids, reducing industrial waste, and producing in good yield. Therefore, the present invention is excellent in environmental adaptability, economy, safety, and productivity, and is useful as an industrial manufacturing method.
  • the method for producing an amino acid amide derivative having a fluorine-containing carbamate group (compound of general formula (2)) according to the present invention is a novel production intermediate represented by general formula (1) as shown in the following reaction formula (1). ) Is reacted with ammonia.
  • R 1 is an alkyl group having 1 to 6 carbon atoms substituted with at least one fluorine atom, or 3 to 6 carbon atoms substituted with at least one fluorine atom. Represents a cycloalkyl group.
  • R 1 is an alkyl group having 1 to 6 carbon atoms substituted with at least one fluorine atom.
  • alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, and butyl.
  • Linear groups such as a group, pentyl group, hexyl group, isopropyl group, isobutyl group, sec-butyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1,1-dimethylpropyl group, 2,2-dimethylpropyl group, 1,2-dimethylpropyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1-dimethylbutyl group, 1, It represents a branched group such as a 2-dimethylbutyl group, a 1,3-dimethylbutyl group, a 2,2-dimethylbutyl group, a 2,3-dimethylbutyl group, and a 3,3-dimethylbutyl group. It is sufficient that at least one hydrogen atom of these alkyl groups is substituted with a fluorine atom.
  • R 1 represents a cycloalkyl group having 3 to 6 carbon atoms in the cycloalkyl group having 3 to 6 carbon atoms substituted with at least one fluorine atom, which is a cyclopropyl group, a cyclobutyl group, or a cyclopentyl group. Group, cyclohexyl group and the like.
  • R 2 is hydrogen, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted group. Represents a heteroaryl group.
  • the alkyl group having 1 to 6 carbon atoms in R 2 in the general formula (1) has the same meaning as that described for R 1 in the general formula (1).
  • the cycloalkyl group having 3 to 6 carbon atoms in R 2 in the general formula (1) has the same meaning as that described for R 1 in the general formula (1).
  • the substituted or unsubstituted aryl group in R 2 in the general formula (1) or the substituent in the substituted or unsubstituted heteroaryl group is a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, or isobutyl.
  • alkyl group such as sec-butyl group, cycloalkyl group such as cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclohexyl group, fluorine such as trifluoromethyl group, difluoromethyl group, bromodifluoromethyl group and trifluoroethyl group
  • fluorine such as trifluoromethyl group, difluoromethyl group, bromodifluoromethyl group and trifluoroethyl group
  • alkyl groups methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, butoxy groups, isobutoxy groups, sec-butoxy groups and other alkoxy groups, trifluoromethoxy groups, difluoromethoxy groups, trifluoroethoxy groups and other fluorine-substituted alkoxy groups
  • Arylcarbonyl groups such as cycloalkylcarbonyl group, benzoyl group, methylcarbonyloxy group, ethylcarbonyloxy group, propylcarbonyloxy group, alkylcarbonyloxy group such as isopropylcarbonyloxy group, cyclopropylcarbonyloxy group, cyclobutylcarbonyloxy group And cycloalkylcarbonyloxy groups such as cyclopentylcarbonyloxy group and cyclohexylcarbonyloxy group, and arylcarbonyloxy groups such as benzoyloxy group.
  • the number of substituents on the aryl group or heteroaryl group is not limited. Further, when two or more aryl groups or heteroaryl groups are substituted, they may be composed of the same or two or more kinds of substituents, and are not limited.
  • the aryl group in R 2 in the general formula (1) represents a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, or the like.
  • the heteroaryl group in R 2 in the general formula (1) is nitrogen-containing such as pyridyl group, pyrimidyl group, pyrazolyl group, pyrazinyl group, pyridazinyl group, imidazolyl group, indolyl group, quinolyl group, quinoxalyl group, benzimidazolyl group, etc.
  • R 3 and R 4 are each independently hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted carbon group having 3 to 6 carbon atoms. It represents a cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted arylalkyl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted heteroarylalkyl group.
  • a ring structure in which R 3 and R 4 are bonded with 2 to 5 carbon atoms may be formed, or either R 3 or R 4 and R 2 are bonded with 3 to 4 carbon atoms.
  • a ring structure may be formed. The number of carbon atoms does not include the carbon atom to which R 3 and R 4 are bonded.
  • a substituted or unsubstituted arylalkyl group, a substituted or unsubstituted heteroaryl group, or a substituent in a substituted or unsubstituted heteroarylalkyl group is a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, Alkyl groups such as isobutyl group, sec-butyl group, cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, trifluoromethyl group, difluoromethyl group, bromodifluoro
  • Alkoxy groups such as butoxy group, isobutoxy group, sec-butoxycarbonyl group, phenoxycarbony
  • alkylsulfonyl groups such as alkylsulfonyl group, trifluoromethanesulfonyl group, difluoromethanesulfonyl group, trifluoroethanesulfonyl group, methylcarbonyl group, ethyl Alkylcarbonyl groups such as bonyl group, propylcarbonyl group and isopropylcarbonyl group, cycloalkylcarbonyl groups such as cyclopropylcarbonyl group, cyclobutylcarbonyl group, cyclopentylcarbonyl group and cyclohexylcarbonyl group, arylcarbonyl groups such as benzoyl group, methylcarbonyl Cycloalkylcarbonyl such as alkylcarbonyloxy group such as oxy group, ethylcarbonyloxy group, propylcarbonyloxy group, isopropylcarbonyloxy group, cycloprop
  • substituents for the alkyl group When there are two or more substituents for the alkyl group, cycloalkyl group, aryl group, arylalkyl group, heteroaryl group, or heteroarylalkyl group, they may be composed of the same or two or more kinds of substituents. There is no limit.
  • the alkyl group having 1 to 6 carbon atoms in R 3 or R 4 in the general formula (1) has the same meaning as that described for R 1 in the general formula (1).
  • the cycloalkyl group having 3 to 6 carbon atoms in R 3 or R 4 in the general formula (1) has the same meaning as that described for R 1 in the general formula (1).
  • the aryl group in R 3 or R 4 in the general formula (1) has the same meaning as that described for R 1 in the general formula (1).
  • the arylalkyl group in R 3 or R 4 in the general formula (1) has the same meaning as the aryl group described in R 2 in the general formula (1), and the alkyl moiety has 1 to 4 carbon atoms. Represents a thing.
  • the heteroaryl group in R 3 or R 4 in the general formula (1) has the same meaning as that described for R 2 in the general formula (1).
  • the heteroarylalkyl group in R 3 or R 4 in the general formula (1) is the same as the heteroaryl group described in R 2 in the general formula (1), and the alkyl moiety has 1 carbon atom. Represents ⁇ 4.
  • R 1 represents an alkyl group having 1 to 6 carbon atoms substituted with at least one fluorine atom
  • R 2 represents hydrogen or an alkyl group having 1 to 6 carbon atoms
  • R 3 And R 4 each independently represent hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted arylalkyl group.
  • a ring structure in which either R 3 or R 4 and R 2 are bonded with 3 to 4 carbon atoms may be formed.
  • R 1 , R 2 , R 3 and R 4 have the same meaning as described in the general formula (1).
  • the amount of ammonia used is not particularly limited as long as it is equal to or greater than the amount of the compound represented by the general formula (1), but preferably from 1 to 15 equivalents from an economic viewpoint.
  • a base When reacting the compound represented by the general formula (1) with ammonia, a base can be used.
  • Examples of the base to be used include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, pyridine, triethylamine, diisopropylethylamine, tributylamine, 1,8-diazabicyclo [5. , 4,0] -undec-7-ene, and organic bases such as 1,4-diazabicyclo [2,2,0] octane. It can also be used alone, or two or more types can be mixed in an arbitrary ratio.
  • inorganic bases such as sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, pyridine, triethylamine, diisopropylethylamine, tributylamine, 1,8-diazabicyclo [5. , 4,0] -undec-7-ene
  • organic bases such as 1,4-diazabicyclo [2,2,0]
  • the amount of the base used is not used at all, or can be used in an amount of 1 equivalent or more based on the compound represented by the general formula (1).
  • the upper limit is preferably 10 equivalents or less from the economical viewpoint.
  • the solvent used when reacting the compound represented by the general formula (1) and ammonia is not particularly limited as long as the compound represented by the general formula (2) is generated.
  • Specific examples of the solvent include halogen solvents such as dichloromethane and chloroform, aromatic solvents such as benzene, toluene and xylene, hydrocarbon solvents such as hexane and heptane, dimethylformamide, dimethylacetamide and 1-methyl-2-pyrrolidone.
  • Amide solvents such as 1,3-dimethyl-2-imidazolidinone, urea solvents such as 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, diethyl ether, diisopropyl
  • ether solvents such as ether, 1,2-dimethoxyethane, tetrahydrofuran and dioxane
  • ester solvents such as ethyl acetate, butyl acetate and isopropyl acetate, and water. These solvents can be used alone, or two or more kinds can be mixed in an arbitrary ratio.
  • the amount of the solvent used is not particularly limited, it is usually 2 to 40 times the weight of the compound represented by the general formula (1).
  • reaction temperature at the time of reacting the compound represented by the general formula (1) and ammonia it is particularly limited if the compound represented by the general formula (1) and (2) is set so as not to decompose. Usually, it is ⁇ 10 ° C. or higher and 80 ° C. or lower or the boiling point of the solvent or lower. However, when the compounds represented by the general formulas (1) and (2) have an asymmetric point, they are racemized when heated in the presence of excess ammonia, and therefore, 40 ° C. or lower is desirable.
  • the compound represented by the general formula (3) which is a novel production intermediate, is reacted with a chlorinating agent to give a general formula (1).
  • the compound represented by the general formula (2) can be produced by converting to a compound represented by the formula (2) and then reacting with ammonia.
  • R 1 , R 2 , R 3 and R 4 have the same meaning as described in the general formula (1).
  • the chlorinating agent to be used is not limited as long as it does not decompose the compound represented by the general formula (3) or the general formula (1).
  • thionyl chloride, base oxalyl, phosphorus oxychloride, phosphorus pentachloride, Phosgene, Vilsmeier reagent, etc. can be used.
  • the amount of the chlorinating agent used is not limited as long as the intended reaction proceeds, but is usually 1 equivalent or more and 20 equivalents or less with respect to the compound of the general formula (3).
  • the solvent used in the reaction for obtaining the compound represented by the general formula (1) is not particularly limited as long as the reaction proceeds.
  • Specific examples include aromatic solvents such as benzene, toluene and xylene, hydrocarbon solvents such as hexane and heptane, amide solvents such as dimethylformamide, dimethylacetamide and 1-methyl-2-pyrrolidone, diethyl ether and diisopropyl ether.
  • Examples include ether solvents such as 1,2-dimethoxyethane, tetrahydrofuran and dioxane, and ester solvents such as ethyl acetate, butyl acetate and isopropyl acetate. These solvents can be used alone, or two or more kinds can be mixed in an arbitrary ratio.
  • the amount of solvent used is not particularly limited, it is usually preferably 1 to 40 times the weight of the general formula (3).
  • the reaction form is not particularly limited, but it is preferable to add a chlorinating agent to the general formula (3) or the general formula (3) diluted with the above solvent.
  • the reaction temperature is not particularly limited as long as it is set so that the compound does not decompose, but is usually ⁇ 10 ° C. or higher and 100 ° C. or lower or the boiling point of the solvent or lower.
  • the usage form in the next step is not particularly limited.
  • the reaction solution containing the compound represented by the general formula (1) can be used in the next step without isolation and purification after performing a normal post-treatment operation such as solvent distillation, It can be used in the next process as it is.
  • the compound represented by the general formula (3) is obtained by reacting an amino acid with a fluorine-substituted alkyl chloroformate in the presence of water, as in Non-Patent Document 1.
  • a fluorine-substituted alkyl chloroformate a commercially available product or one synthesized by the method of Patent Document 2 can be used.
  • an amino acid is dissolved in water, and a fluorine-substituted alkyl chloroformate is dropped and reacted while maintaining the pH of the reaction solution at 11-13. , Can be obtained efficiently.
  • a compound represented by the general formula (3) As an example of a compound represented by the general formula (3), a compound represented by the general formula (3 ′) can be used.
  • R 1 represents a C 1-6 alkyl group substituted with at least one fluorine atom, or a C 3-6 cycloalkyl group substituted with at least one fluorine atom
  • 2 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group
  • R 3 and R 4 are simultaneously Except in the case of hydrogen, each independently represents hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 6 carbon atoms, or a substituted or unsubstituted aryl group.
  • R 3 and R 4 are carbon It may be combined to form a ring structure by a child having 2-5, or R 3 or either the R 2 of R 4 may form a ring structure linked with 3-4 carbon atoms.
  • R 1 represents an alkyl group having 1 to 6 carbon atoms substituted with at least one fluorine atom
  • R 2 represents hydrogen or an alkyl group having 1 to 6 carbon atoms
  • R 3 and R 4 are independently hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted group, except when they are simultaneously hydrogen.
  • R 1 represents a trifluoroethyl group
  • R 2 represents hydrogen or an alkyl group having 1 to 6 carbon atoms
  • R 3 and R 4 are simultaneously hydrogen.
  • Each independently represents hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted arylalkyl group
  • the compound represented by the general formula (2) that is the target compound can be produced.
  • a novel compound is obtained by reacting a compound represented by the general formula (4) with a fluorine-substituted alkyl chloroformate represented by the general formula (5).
  • a compound represented by the general formula (3) which is a production intermediate is obtained.
  • the compound represented by the general formula (3) is converted to the compound represented by the general formula (1) by reacting with the chlorinating agent, and then reacted with ammonia to represent the compound represented by the general formula (2). Can be produced.
  • R 2 , R 3 and R 4 in the compound represented by the general formula (4) are synonymous with those described in the general formula (1), and R 1 in the compound represented by the general formula (5) is represented by the general formula It is synonymous with what was described in (1).
  • the chlorinating agent those described above can be used.
  • the compound represented by the general formula (4) is dissolved in water, and the fluorine-substituted alkyl chloroformate represented by the general formula (5) is dropped and reacted while maintaining the pH of the reaction solution at 11 to 13. be able to. Moreover, it is also possible to manufacture without isolation and purification from the compound represented by the general formula (4) to the compound represented by the general formula (2).
  • the method for producing an ethylenediamine derivative having a fluorine-containing carbamate group and an acyl group (a compound of the general formula (9)) according to the present invention is represented by the above reaction formulas (1) to (The amino acid amide derivative having a fluorine-containing carbamate group (compound of general formula (2)) obtained by any one of methods 3) is converted to a compound represented by general formula (6) by reacting with an oxygen scavenger. . Next, the compound represented by the general formula (6) is converted into the compound represented by the general formula (7) by performing a catalytic hydrogenation reaction in the presence of an acid, and then the compound represented by the general formula (7). Can be reacted with a compound represented by the general formula (8) to produce a compound represented by the general formula (9).
  • the compound represented by the general formula (6) is prepared by reacting the compound represented by the general formula (2) with an oxygen scavenger.
  • R 1 , R 2 , R 3 and R 4 in the compound represented by the general formula (2) have the same meaning as described in the general formula (1).
  • An oxygen scavenger is a halogenating agent such as thionyl chloride, oxalyl chloride, phosgene, phosphorus oxychloride, phosphorus trichloride, phosphorus pentachloride, thionyl bromide, phosphorus tribromide, mesyl chloride, tosyl chloride, N, N Carbodiimide derivatives such as' -dicyclohexylcarbodiimide, N, N'-diisopropylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, anhydrides such as acetic anhydride, trifluoroacetic anhydride, Vilsmeier reagent, etc. It is.
  • Vilsmeier reagent is a general formula (10) prepared from a formamide derivative such as dimethylformamide and a halogenating agent.
  • the compound represented by the general formula (10) includes a salt derived from a halogenating agent.
  • the alkyl group having 1 to 3 carbon atoms in R 6 and R 7 in the general formula (10) represents a methyl group, an ethyl group, a propyl group, or the like.
  • the halogen atom for Y in the general formula (10) is fluorine, chlorine, bromine, iodine or the like.
  • the usage form of the oxygen scavenger is not particularly limited, and either a method of adding the oxygen scavenger to the substrate or a method of adding the oxygen scavenger to the substrate may be used.
  • the usage pattern when the oxygen scavenger is a Vilsmeier reagent is not particularly limited.
  • a method of adding a compound represented by general formula (2) after preparing a Vilsmeier reagent in a solvent in advance, or introducing a halogenating agent into a solvent containing a compound represented by general formula (2) and a formamide derivative Can be done in a way.
  • the amount of the oxygen scavenger used is not particularly limited as long as it is 1 equivalent or more with respect to the compound represented by the general formula (2), but is usually 1 equivalent or more and 10 equivalents or less.
  • the amount used when the oxygen scavenger is a Vilsmeier reagent is not particularly limited as long as the halogenating agent is 1 equivalent or more with respect to the compound represented by the general formula (2) and the formamide derivative is a catalyst amount or more. .
  • the halogenating agent is 1 equivalent or more and 10 equivalents or less
  • the formamide derivative is 0.1 equivalent or more and 10 equivalents or less with respect to the compound represented by the general formula (2).
  • the formamide derivative can be used as a solvent.
  • the solvent used when converting the compound represented by the general formula (2) to the compound represented by the general formula (6) is not particularly limited as long as it is an aprotic solvent. Specifically, halogen solvents such as dichloromethane and chloroform, aromatic solvents such as benzene, toluene and xylene, hydrocarbon solvents such as hexane and heptane, dimethylformamide, dimethylacetamide, 1-methyl-2-pyrrolidone, etc.
  • Amide solvents such as diethyl ether, diisopropyl ether, 1,2-dimethoxyethane, tetrahydrofuran, dioxane and the like, nitrile solvents such as acetonitrile and propionitrile, 1,3-dimethyl-2-imidazolidinone, And urea solvents such as 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -piperidinone, and ester solvents such as ethyl acetate, butyl acetate and isopropyl acetate. It is also possible to use it alone, and it is also possible to use a mixture of two or more solvents in an arbitrary ratio.
  • the Vilsmeier reagent is preferably applicable.
  • the amount of the solvent used is not particularly limited, it is usually preferably 3 to 40 times the weight of the compound represented by the general formula (2).
  • the reaction temperature for conversion from the compound represented by the general formula (2) to the compound represented by the general formula (6) is not particularly limited as long as the reaction proceeds, but it is ⁇ 10 ° C. or more and 150 It is not higher than ° C or the boiling point of the solvent.
  • the compound represented by the general formula (6) can be obtained in high yield. Therefore, it is useful as an industrial production method for the compound represented by the general formula (6).
  • the obtained compound represented by the general formula (6) can be converted into a compound represented by the general formula (7) by performing a catalytic hydrogenation reaction in the presence of an acid.
  • generation of a by-product is suppressed and the compound represented by General formula (7) can be obtained with a high yield.
  • R 1 , R 2 , R 3 and R 4 have the same meaning as described in the general formula (1).
  • the acid used is not limited as long as it does not decompose the compound represented by the general formula (6) or the general formula (7).
  • an organic acid or an inorganic acid can be used.
  • Examples of the organic acid include formic acid, acetic acid, methanesulfonic acid and the like, and examples of the inorganic acid include hydrochloric acid, sulfuric acid and phosphoric acid.
  • the amount of acid used is not limited as long as the intended reaction proceeds, but is usually 1 equivalent or more and 20 equivalents or less.
  • Examples of the catalytic hydrogenation method include a method using metals such as palladium, platinum, rhodium and ruthenium. These metals can also be used in the form of metal oxides, metal chlorides and the like.
  • the amount of metals used in the catalytic hydrogenation method is not particularly limited as long as the reaction proceeds, but is preferably equal to or less than the weight of the general formula (6) from the economical viewpoint.
  • the form of the metal to be used those supported by activated carbon, SiO 2 , Al 2 O 3 , BaSO 4 , TiO 2 , ZrO 2 , MgO, ThO 2 , diatomaceous earth, or the like can be used. Although the form is not ask
  • the solvent used for the catalytic hydrogenation method is not particularly limited as long as the reaction proceeds.
  • Specific examples include alcohol solvents such as methanol, ethanol and isopropanol, aromatic solvents such as benzene, toluene and xylene, hydrocarbon solvents such as hexane and heptane, dimethylformamide, dimethylacetamide and 1-methyl-2-pyrrolidone.
  • Amide solvents such as diethyl ether, diisopropyl ether, 1,2-dimethoxyethane, tetrahydrofuran, dioxane and the like, ester solvents such as ethyl acetate, butyl acetate and isopropyl acetate, and water. It can also be used alone, or two or more types can be mixed in an arbitrary ratio.
  • the amount of the solvent used is not particularly limited, it is usually preferably 3 to 40 times the weight of the general formula (6).
  • the reaction form is not particularly limited, but the general formula (6) or the general formula (6) diluted with the above solvent is preferably added dropwise to a solvent containing a metal and an acid in the presence of a hydrogen source.
  • the reaction temperature is not particularly limited as long as it is set so as not to decompose the compound, but it is usually ⁇ 10 ° C. or higher and 150 ° C. or lower or the boiling point of the solvent or lower.
  • the reaction pressure is not particularly limited and may be normal pressure or increased pressure.
  • the hydrogen source used for catalytic hydrogenation is not particularly limited as long as the reaction proceeds.
  • an internal hydrogen generation method using cyclohexene, formic acid, formate, or the like can be used. .
  • the cyclohexene, formic acid, and formate equivalents used for the reaction by the internal hydrogen generation method are not particularly limited as long as the amount of hydrogen to be generated is set to be 2 equivalents or more, but 2 equivalents from an economic viewpoint.
  • the amount is preferably 10 equivalents or less.
  • the usage form in the next step is not particularly limited.
  • the reaction solution containing the compound represented by the general formula (7) can be used in the next step without performing isolation and purification after performing usual post-treatment operations such as solvent distillation and liquid separation.
  • inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, and organic acids such as oxalic acid, fumaric acid, maleic acid, formic acid, acetic acid and methanesulfonic acid can be used in the next step. is there.
  • the compound represented by the general formula (7) includes salts formed with inorganic acids and organic acids.
  • the inorganic acid include hydrochloric acid, sulfuric acid, and phosphoric acid
  • examples of the organic acid include oxalic acid, fumaric acid, maleic acid, formic acid, acetic acid, methanesulfonic acid, and the like.
  • R 5 in the compound represented by the general formula (8) is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 6 carbon atoms, or substituted or unsubstituted aryl.
  • X represents a leaving group.
  • a substituted alkyl group having 1 to 6 carbon atoms, a substituted cycloalkyl group having 3 to 6 carbon atoms, a substituted aryl group, a substituted arylalkyl group, a substituted heteroaryl group, or Substituents in the substituted heteroarylalkyl group are methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group and other alkyl groups, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl Group such as cycloalkyl group, trifluoromethyl group, difluoromethyl group, bromodifluoromethyl group, trifluoroethyl group and other halogen-substituted alkyl groups, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, is
  • Halogen-substituted alkylthio groups such as alkylthio groups, trifluoromethylthio groups, difluoromethylthio groups, and trifluoroethylthio groups, alkylsulfinyl groups such as methanesulfinyl groups, ethanesulfinyl groups, propanesulfinyl groups, and butanesulfinyl groups, trifluoromethanesulfinyl groups, Halogen-substituted alkylsulfinyl groups such as difluoromethanesulfinyl group and trifluoroethanesulfinyl group, alkylsulfonyl groups such as methanesulfonyl group, ethanesulfonyl group, propanesulfonyl group and butanesulfonyl group, trifluoromethanesulfonyl group, difluoromethanesulfonyl group,
  • Alkylcarbonyloxy groups such as methylcarbonyloxy group, ethylcarbonyloxy group, propylcarbonyloxy group, isopropylcarbonyloxy group, cyclopropylcarbonyloxy group, cyclobutylcarbonyloxy group, cyclopentylcarbonyloxy group, cyclohexylcarbonyloxy group, etc.
  • Arylcarbonyloxy groups such as alkylcarbonyloxy groups and benzoyloxy groups, and halogen sources such as chlorine, fluorine, bromine and iodine A child is illustrated.
  • the number of substituents on the aryl group or heteroaryl group is not limited. Further, when two or more aryl groups or heteroaryl groups are substituted, they may be composed of the same or two or more kinds of substituents, and are not limited.
  • the alkyl group having 1 to 6 carbon atoms in R 5 in the general formula (8) has the same meaning as that described for R 1 in the general formula (1).
  • the cycloalkyl group having 3 to 6 carbon atoms in R 5 in the general formula (8) has the same meaning as that described for R 1 in the general formula (1).
  • the aryl group in R 5 in the general formula (8) has the same meaning as that described for R 2 in the general formula (1).
  • the aryl moiety has the same meaning as the aryl group described in R 2 in the general formula (1), and the alkyl moiety represents one having 1 to 4 carbon atoms.
  • the heteroaryl group in R 5 in the general formula (8) is nitrogen-containing such as pyridyl group, pyrimidyl group, pyrazolyl group, pyrazinyl group, pyridazinyl group, imidazolyl group, indolyl group, quinolyl group, quinoxalyl group, benzimidazolyl group, etc.
  • Sulfur-containing heterocycles such as heterocyclic groups, tetrahydrothienyl groups, thienyl groups, thiopyranyl groups, benzothienyl groups, tetrahydrofuranyl groups, furanyl groups, pyranyl groups, dioxanyl groups, 2,3-dihydrobenzo [1,4] dioxinyl groups
  • Two or more kinds of oxygen-containing heterocyclic groups such as benzofuranyl group, oxazolyl group, isoxazolyl group, thiazolyl group, isothiazolyl group, benzoxazolyl group, benzoisoxazolyl group, benzothiazolyl group, benzoisothiazolyl Examples include heterocyclic groups containing a hetero atom.
  • heteroarylalkyl group in R 5 in the general formula (8) heteroaryl moiety has the same meaning as the heteroaryl group for R 5 in the general formula (8), the alkyl moiety represents from 1 to 4 carbon atoms .
  • X represents a leaving group.
  • halogen atoms such as fluorine, chlorine, bromine and iodine
  • alkoxy groups such as methoxy group and ethoxy group
  • phenoxy group and 4-nitrophenyl group Acyloxy groups such as aryloxy group, acetyloxy group, benzoyloxy group, alkoxycarbonyloxy groups such as methoxycarbonyloxy group, ethoxycarbonyloxy group, isobutyloxycarbonyloxy group, arylcarbonyloxy groups such as phenylcarbonyloxy group, methylthio
  • alkylthio group such as a group, 2,5-dioxopyrrolidinyloxy group, benzotriazolyloxy group and imidazolyl group.
  • R 1 , R 2 , R 3 and R 4 have the same meaning as described in the general formula (1), and R 5 is described in the general formula (8). It is synonymous with.
  • Bases used include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, pyridine, collidine, picoline, 4-dimethylaminopyridine, lutidine, triethylamine, diisopropyl.
  • organic bases such as amine, diisopropylethylamine, tributylamine, 1,8-diazabicyclo [5,4,0] -undec-7-ene, 1,4-diazabicyclo [2,2,0] octane, imidazole, etc. . It can also be used alone, or two or more types can be mixed in an arbitrary ratio.
  • the base can be used in an amount of 1 equivalent or more with respect to the acid.
  • 1 equivalent or more can be used with respect to the generated acid.
  • the upper limit is preferably 10 equivalents or less from the economical viewpoint.
  • the solvent used when the compound represented by the general formula (7) and the compound represented by the general formula (8) are reacted is not particularly limited as long as the compound represented by the general formula (9) is generated. It will never be done.
  • Specific examples of the solvent include halogen solvents such as dichloromethane and chloroform, aromatic solvents such as benzene, toluene and xylene, hydrocarbon solvents such as hexane and heptane, dimethylformamide, dimethylacetamide and 1-methyl-2-pyrrolidone.
  • Amide solvents such as 1,3-dimethyl-2-imidazolidinone, urea solvents such as 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -piperidinone, ethyl acetate, acetic acid Ester solvents such as butyl and isopropyl acetate, ether solvents such as diethyl ether, diisopropyl ether, 1,2-dimethoxyethane, tetrahydrofuran and dioxane, nitrile solvents such as acetonitrile and propionitrile, isopropanol and t-butyl alcohol List alcoholic solvents and water You can. It can also be used alone, or two or more types can be mixed in an arbitrary ratio.
  • the amount of the solvent used is not particularly limited, but is usually 3 to 40 times the weight of the compound represented by the general formula (7).
  • the reaction temperature at the time of reacting the compound represented by the general formula (7) and the compound represented by the general formula (8) is not particularly limited as long as the compound is set so as not to be decomposed. -10 ° C to 150 ° C or the boiling point of the solvent.
  • a 1000 ml four-necked flask equipped with a stirrer was charged with 50.8 g of L-alanine and 100 g of water, cooled to 5 ° C., and adjusted to pH 12 with 32 wt% NaOH. While maintaining pH 12 ⁇ 0.5 and 10 ° C. or lower, a mixed solution of 93.5 g of 2,2,2-trifluoroethyl chloroformate and 200 g of toluene was added dropwise, and further the pH was maintained at pH 12 ⁇ 0.5. Stir for 1 hour. Hydrochloric acid was added dropwise to adjust the pH to 1.5, and the mixture was heated to 60 ° C. for liquid separation. The white solid compound obtained by concentrating the organic layer under reduced pressure was the title compound.
  • a 500 ml four-necked flask equipped with a stirrer was charged with 100 g of toluene, 19.3 g of N- (2,2,2-trifluoroethoxycarbonyl) -L-alanine and 0.4 g of DMF, and the temperature was raised to 55 ° C. After injecting 30 g of phosgene, the mixture was further stirred for 2 hours while maintaining 55 ° C. N 2 was blown to drive off excess phosgene, followed by concentration under reduced pressure to obtain 34 g of an oily residue.
  • IPA isopropyl alcohol
  • a 500 ml four-necked flask equipped with a stirrer was charged with 24.5 g of L-isoleucine, 50 g of water and 75 g of toluene, cooled to 5 ° C., and adjusted to pH 12 with 32 wt% NaOH. While maintaining pH 12 ⁇ 0.5 and 10 ° C. or lower, a mixed solution of 31.2 g of 2,2,2-trifluoroethyl chloroformate and 6 g of toluene was added dropwise, and further the pH was maintained at pH 12 ⁇ 0.5. Stir for 1 hour. Hydrochloric acid was added dropwise to adjust the pH to 1.5, and then the temperature was raised to 60 ° C. for liquid separation.
  • the organic layer was azeotropically dehydrated, transferred to a 500 ml four-necked flask equipped with a stirrer, charged with 0.6 g of DMF, cooled to 50 ° C., blown with 25 g of phosgene, and further maintained at 55 ° C. Stir for 2 hours. N 2 was blown to drive off excess phosgene, followed by concentration under reduced pressure to obtain 52 g of an oily residue.
  • a 1000 ml four-necked flask equipped with a stirrer was charged with 310 g of a 10 wt% NH 3 aqueous solution, cooled to 5 ° C., and the residue was added dropwise while maintaining the temperature at 15 ° C. or lower. After completion of dropping, the mixture was stirred at 10 ° C. for 3 hours, and then the precipitate was filtered and dried under reduced pressure. The resulting white solid compound was the title compound. Yield 41.2g (86% yield)
  • a 500 ml four-necked flask equipped with a stirrer was charged with 24.5 g of L-leucine, 50 g of water and 75 g of toluene, cooled to 5 ° C., and adjusted to pH 12 with 32 wt% NaOH. While maintaining pH 12 ⁇ 0.5 and 10 ° C. or lower, a mixed solution of 31.3 g of 2,2,2-trifluoroethyl chloroformate and 6 g of toluene was added dropwise, and further the pH was maintained at pH 12 ⁇ 0.5. Stir for 1 hour. Hydrochloric acid was added dropwise to adjust the pH to 1.5, and then the temperature was raised to 60 ° C. for liquid separation.
  • IR (ATR method) cm -1 3309, 3064, 3034, 2979, 2938, 1782, 1714, 1536, 1495, 1455, 1421, 1304, 1278, 1250, 1164, 1068, 1036, 958, 938, 881, 857, 768, 718, 661, 628, 565, 536, 524, 494.
  • a 500 ml four-necked flask equipped with a stirrer was charged with 16.5 g of L-phenylalanine, 35 g of water and 75 g of toluene, cooled to 5 ° C., and adjusted to pH 12 with 32 wt% NaOH. While maintaining pH 12 ⁇ 0.5 and 10 ° C. or lower, a mixed solution of 17 g of 2,2,2-trifluoroethyl chloroformate and 6 g of toluene was added dropwise, and further maintained for 1 hour while maintaining the pH at pH 12 ⁇ 0.5. Stir. Hydrochloric acid was added dropwise to adjust the pH to 1.5, and then the temperature was raised to 60 ° C. for liquid separation.
  • the organic layer was azeotropically dehydrated, transferred to a 500 ml four-necked flask equipped with a stirrer, charged with 0.4 g of DMF, cooled to 40 ° C., blown with 30 g of phosgene, and further maintained at 40 ° C. Stir for 2 hours. N 2 was blown to drive off excess phosgene, followed by concentration under reduced pressure to obtain 34 g of an oily residue.
  • a 1000 ml four-necked flask equipped with a stirrer was charged with 200 g of a 10 wt% NH 3 aqueous solution, cooled to 5 ° C., and the residue was added dropwise while maintaining the temperature at 15 ° C. or lower. After completion of dropping, the mixture was stirred at 10 ° C. for 3 hours, and then the precipitate was filtered and dried under reduced pressure. The resulting white solid compound was the title compound. Yield 24.9 g (86% yield)
  • IR (ATR method) cm -1 2979, 1787, 1720, 1421, 1385, 1276, 1160, 1124, 969, 874, 838, 761, 702, 648, 595, 531, 442.
  • a 500 ml four-necked flask equipped with a stirrer was charged with 11.5 g of L-proline, 30 g of water and 60 g of toluene, cooled to 5 ° C., and adjusted to pH 12 with 32 wt% NaOH. While maintaining pH 12 ⁇ 0.5 and 10 ° C. or lower, a mixed solution of 17 g of 2,2,2-trifluoroethyl chloroformate and 6 g of toluene was added dropwise, and further maintained for 1 hour while maintaining the pH at pH 12 ⁇ 0.5. Stir. Hydrochloric acid was added dropwise to adjust the pH to 1.5, and then the temperature was raised to 60 ° C. for liquid separation.
  • the organic layer was azeotropically dehydrated, transferred to a 500 ml four-necked flask equipped with a stirrer, charged with 0.4 g of DMF, cooled to 40 ° C., blown with 30 g of phosgene, and further maintained at 40 ° C. Stir for 2 hours. N 2 was blown to drive off excess phosgene, followed by concentration under reduced pressure to obtain 29 g of an oily residue.
  • a 1000 ml four-necked flask equipped with a stirrer was charged with 200 g of a 10 wt% NH 3 aqueous solution, cooled to 5 ° C., and the residue was added dropwise while maintaining the temperature at 15 ° C. or lower. After completion of dropping, the mixture was stirred at 10 ° C. for 3 hours, and then the precipitate was filtered and dried under reduced pressure. The resulting white solid compound was the title compound. Yield 20.6 g (86% yield)
  • a 1000 ml four-necked flask equipped with a stirrer was charged with 100 g of L-valine and 150 g of water, cooled to 5 ° C., and adjusted to pH 12 with 32 wt% NaOH. While maintaining the pH at 12 ⁇ 0.5 and 10 ° C. or less, a mixed solution of 140 g of 2,2,2-trifluoroethyl chloroformate and 400 g of toluene was added dropwise, and the pH was maintained at pH 12 ⁇ 0.5 for 1 hour. Stir. Hydrochloric acid was added dropwise to adjust the pH to 1.5, and the mixture was heated to 60 ° C. for liquid separation. The white solid compound obtained by concentrating the organic layer under reduced pressure was the title compound. Yield 203.4 g (98% yield)
  • a 1000 ml four-necked flask equipped with a stirrer was charged with 407 g of toluene, 196 g of N- (2,2,2-trifluoroethoxycarbonyl) -L-valine and 5.9 g of N, N-dimethylformamide (hereinafter DMF).
  • the temperature was raised to 55 ° C., 95.8 g of phosgene was blown in, and the mixture was further stirred for 2 hours while maintaining 55 ° C. N 2 was blown to drive off excess phosgene, followed by concentration under reduced pressure to obtain 223 g of an oily residue.
  • a 200 ml four-necked flask equipped with a stirrer was charged with 18 g of L-valine, 22 g of water and 52 g of toluene, cooled to 5 ° C., and adjusted to pH 12 with 32 wt% NaOH. While maintaining pH 12 ⁇ 0.5 and 10 ° C. or less, a mixed solution of 25.7 g of 2,2,2-trifluoroethyl chloroformate and 6.4 g of toluene was added dropwise, and the pH was further adjusted to pH 12 ⁇ 0.5. While maintaining, the mixture was stirred for 1 hour. Hydrochloric acid was added dropwise to adjust the pH to 1.5, and then the temperature was raised to 60 ° C. for liquid separation.
  • the organic layer was azeotropically dehydrated, transferred to a 200 ml four-necked flask equipped with a stirrer, charged with 0.5 g of DMF, cooled to 40 ° C., blown with 23.5 g of phosgene, and kept at 40 ° C. The mixture was further stirred for 2 hours. N 2 was blown to expel excess phosgene.
  • a 200 ml four-necked flask equipped with a stirrer was charged with 67.6 g of DMF and cooled to 5 ° C., and then the reaction solution was charged dropwise. While maintaining at 15 ° C.
  • a 500 ml four-necked flask equipped with a stirrer was charged with 181 g of toluene, 86.6 g of N- (2,2,2-trifluoroethoxycarbonyl) -D-valine and 1.3 g of DMF, and the temperature was raised to 50 ° C. After injecting 58.5 g of phosgene, the mixture was further stirred for 2 hours while maintaining 50 ° C. N 2 was blown to expel excess phosgene.
  • a 2000 ml four-necked flask equipped with a stirrer was charged with 161 g of DMF and cooled to 5 ° C., and then the reaction solution was charged dropwise. While maintaining at 15 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 一般式(1)で表される化合物を、アンモニアと反応させることにより一般式(2)で表される化合物を製造する方法。

Description

含フッ素カルバマート基を有するアミノ酸アミド誘導体の製造方法、その製造中間体、及びエチレンジアミン誘導体の製造方法
 本発明は、含フッ素カルバマート基を有するアミノ酸アミド誘導体の製造方法、その製造中間体、及びエチレンジアミン誘導体の製造方法に関するものである。
 含フッ素カルバマート基を有するアミノ酸アミド誘導体は、特許文献1に示されるように殺菌剤の中間体として有用であることが知られている。こうした化合物群を製造する際には、入手容易なアミノ酸から効率良く調製することが重要である。
 含フッ素カルバマート基を有するアミノ酸アミド誘導体に関して、従来の製造技術を例示すると、特許文献1に示されるような、アミノ酸アミドとクロロギ酸含フッ素アルキル類を反応させる方法が挙げられる。ここで、クロロギ酸含フッ素アルキル類は特許文献2に示されるような、含フッ素アルコールとホスゲンとを反応させる方法で製造できる。
 しかしながら、上記の方法は高価で大量に入手困難なアミノ酸アミドを使用するため、経済的に不利である。また、アミノ酸からアミノ酸アミドを合成する反応は一般的に長時間を要し、かつ低収率である。そのため、アミノ酸からアミノ酸アミドを経由しない効率のよい製造法の開発が必要である。
 こうした背景から、含フッ素カルバマート基を有するアミノ酸アミド誘導体を効率的に製造する方法が求められていた。
国際公開第2007/111024号パンフレット 米国特許第3742010号明細書
テトラヘドロン・レターズ(Tetrahedron Letters)No.20, pp2021-2024 (1972)
 本発明は、含フッ素カルバマート基を有するアミノ酸アミド誘導体に関して、その工業的生産に有利な方法を提供することを目的とする。さらに本発明は、含フッ素カルバマート基とアシル基を有するエチレンジアミン誘導体に関して、上記アミノ酸アミド誘導体の製造工程を含む、その工業的生産に有利な方法を提供することを目的とする。
 本発明者らは鋭意検討を行った結果、安価で大量に入手容易なアミノ酸とクロロギ酸含フッ素アルキルを水存在下反応させて得られる一般式(3)で表される含フッ素カルバマート基を有するアミノ酸を、塩素化剤により一般式(1)で表される化合物にし、次いでアンモニアと反応させることが、前記課題の有効な解決策であることを見出し、廃棄物が少なく、収率良く生産することができかつアミノ酸の立体構造が維持される等の利点を有することを確認し、本発明を完成するに至った。
 即ち、本発明は以下のとおりである。
〔1〕 一般式(1)
Figure JPOXMLDOC01-appb-C000001
(式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基、もしくは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基を表し、Rは水素、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表し、また、RとRが炭素原子数2~5で結合した環構造を形成してもよく、或いはR3またはR4のどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。)で表される化合物を、アンモニアと反応させることにより一般式(2)
Figure JPOXMLDOC01-appb-C000002
(式中、R、R、RおよびRは前記の通り。)で表される化合物を製造する方法。
〔2〕前記一般式(1)において式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基を表し、Rは水素、もしくは炭素数1~6のアルキル基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、もしくは置換または無置換のアリールアルキル基を表し、また、RとRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい、〔1〕に記載の製造方法。
〔3〕一般式(3)
Figure JPOXMLDOC01-appb-C000003
(式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基、もしくは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基を表し、Rは水素、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表し、また、RとRが炭素原子数2~5で結合した環構造を形成してもよく、或いはRまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。)で表される化合物を塩素化剤と反応させることにより、一般式(1)
Figure JPOXMLDOC01-appb-C000004
(式中、R、R、RおよびRは前記の通り。)で表される化合物に変換し、次いで、アンモニアと反応させることにより一般式(2)
Figure JPOXMLDOC01-appb-C000005
(式中、R、R、RおよびRは前記の通り。)で表される化合物を製造する方法。
〔4〕前記一般式(3)において式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基を表し、Rは水素、もしくは炭素数1~6のアルキル基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、もしくは置換または無置換のアリールアルキル基を表し、また、RとRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい、〔3〕に記載の製造方法。
〔5〕一般式(4)
Figure JPOXMLDOC01-appb-C000006
(式中、Rは水素、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表し、また、RとRが炭素原子数2~5で結合した環構造を形成してもよく、或いはRまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。)で表される化合物と
一般式(5)
Figure JPOXMLDOC01-appb-C000007
(式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基、もしくは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基を表す。)で表されるフッ素置換されたクロロギ酸アルキルを反応させることにより、一般式(3)
Figure JPOXMLDOC01-appb-C000008
(式中、R、R、RおよびRは前記の通り。)で表される化合物に変換し、次いで、塩素化剤と反応させることにより、一般式(1)
Figure JPOXMLDOC01-appb-C000009
(式中、R、R、RおよびRは前記の通り。)で表される化合物に変換し、次いで、アンモニアと反応させることにより一般式(2)
Figure JPOXMLDOC01-appb-C000010
(式中、R、R、RおよびRは前記の通り。)で表される化合物を製造する方法。
〔6〕前記一般式(3)において式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基を表し、Rは水素、もしくは炭素数1~6のアルキル基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、もしくは置換または無置換のアリールアルキル基を表し、また、RとRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい、〔5〕に記載の製造方法。
〔7〕一般式(1)
Figure JPOXMLDOC01-appb-C000011
(式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基、もしくは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基を表し、Rは水素、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表し、また、RとRが炭素原子数2~5で結合した環構造を形成してもよく、或いはRまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。)で表される化合物。
〔8〕前記一般式(1)において式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基を表し、Rは水素、もしくは炭素数1~6のアルキル基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、もしくは置換または無置換のアリールアルキル基を表し、また、RまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい、〔7〕に記載の化合物。
〔9〕一般式(3')
Figure JPOXMLDOC01-appb-C000012
(式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基、もしくは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基を表し、Rは水素、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基を表し、RとRは同時に水素である場合を除き、それぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表し、また、RとRが炭素原子数2~5で結合した環構造を形成してもよく、或いはRまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。)で表される化合物。
〔10〕前記一般式(3')において式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基を表し、Rは水素、もしくは炭素数1~6のアルキル基を表し、RとRは同時に水素である場合を除き、それぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、もしくは置換または無置換のアリールアルキル基を表し、また、RまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい、〔9〕に記載の化合物。
〔11〕前記一般式(3')において式中、Rはトリフルオロエチル基を表し、Rは水素、もしくは炭素数1~6のアルキル基を表し、RとRは同時に水素である場合を除き、それぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、もしくは置換または無置換のアリールアルキル基を表し、また、RまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい、〔9〕に記載の化合物。
〔12〕一般式(1)
Figure JPOXMLDOC01-appb-C000013
(式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基、もしくは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基を表し、Rは水素、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表し、また、RとRが炭素原子数2~5で結合した環構造を形成してもよく、或いはRまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。)で表される化合物を、アンモニアと反応させることにより一般式(2)
Figure JPOXMLDOC01-appb-C000014
(式中、R、R、RおよびRは前記の通り。)で表される化合物に変換し、
次いで、一般式(2)で表わされる化合物を脱酸素剤と反応させることにより一般式(6)
Figure JPOXMLDOC01-appb-C000015
(式中、R、R、RおよびRは前記の通り。)で表わされる化合物に変換し、
次いで、一般式(6)で表わされる化合物を酸の存在下で接触水素化反応を行うことにより、一般式(7)
Figure JPOXMLDOC01-appb-C000016
(式中、R、R、RおよびRは前記の通り。)で表わされる化合物に変換し、
次いで、一般式(7)で表わされる化合物を一般式(8)
Figure JPOXMLDOC01-appb-C000017
(式中、Rは置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表わし、Xは脱離基を表わす)で表わされる化合物と反応させることにより、一般式(9)
Figure JPOXMLDOC01-appb-C000018
(式中、R、R、R、RおよびRは前記の通り。)で表わされる化合物を製造する方法。
〔13〕一般式(3)
Figure JPOXMLDOC01-appb-C000019
(式中、式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基、もしくは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基を表し、Rは水素、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表し、また、RとRが炭素原子数2~5で結合した環構造を形成してもよく、或いはRまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。)で表される化合物を塩素化剤と反応させることにより、一般式(1)
Figure JPOXMLDOC01-appb-C000020
(式中、R、R、RおよびRは前記の通り。)で表される化合物に変換し、次いで、一般式(1)で表わされる化合物を、アンモニアと反応させることにより一般式(2)
(式中、R、R、RおよびRは前記の通り。)で表される化合物に変換し、
次いで、一般式(2)で表わされる化合物を脱酸素剤と反応させることにより一般式(6)
Figure JPOXMLDOC01-appb-C000022
(式中、R、R、RおよびRは前記の通り。)で表わされる化合物に変換し、
次いで、一般式(6)で表わされる化合物を酸の存在下で接触水素化反応を行うことにより、一般式(7)
Figure JPOXMLDOC01-appb-C000023
(式中、R、R、RおよびRは前記の通り。)で表わされる化合物に変換し、
次いで、一般式(7)で表わされる化合物を一般式(8)
Figure JPOXMLDOC01-appb-C000024
(式中、Rは置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表わし、Xは脱離基を表わす)で表わされる化合物と反応させることにより、一般式(9)
Figure JPOXMLDOC01-appb-C000025
(式中、R、R、R、RおよびRは前記の通り。)で表わされる化合物を製造する方法。
〔14〕一般式(4)
Figure JPOXMLDOC01-appb-C000026
(式中、Rは水素、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表し、また、RとRが炭素原子数2~5で結合した環構造を形成してもよく、或いはRまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。)で表される化合物と
一般式(5)
Figure JPOXMLDOC01-appb-C000027
(式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基、もしくは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基を表す。)で表されるフッ素置換されたクロロギ酸アルキルを反応させることにより、一般式(3)
Figure JPOXMLDOC01-appb-C000028
(式中、R、R、RおよびRは前記の通り。)で表される化合物に変換し、次いで、塩素化剤と反応させることにより、一般式(1)
Figure JPOXMLDOC01-appb-C000029
(式中、R、R、RおよびRは前記の通り。)で表される化合物に変換し、次いで、一般式(1)で表わされる化合物を、アンモニアと反応させることにより一般式(2)
Figure JPOXMLDOC01-appb-C000030
(式中、R、R、RおよびRは前記の通り。)で表される化合物に変換し、
次いで、一般式(2)で表わされる化合物を脱酸素剤と反応させることにより一般式(6)
Figure JPOXMLDOC01-appb-C000031
(式中、R、R、RおよびRは前記の通り。)で表わされる化合物に変換し、
次いで、一般式(6)で表わされる化合物を酸の存在下で接触水素化反応を行うことにより、一般式(7)
Figure JPOXMLDOC01-appb-C000032
(式中、R、R、RおよびRは前記の通り。)で表わされる化合物に変換し、
次いで、一般式(7)で表わされる化合物を一般式(8)
Figure JPOXMLDOC01-appb-C000033
(式中、Rは置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表わし、Xは脱離基を表わす)で表わされる化合物と反応させることにより、一般式(9)
Figure JPOXMLDOC01-appb-C000034
(式中、R、R、R、RおよびRは前記の通り。)で表わされる化合物を製造する方法。
 本発明によると、含フッ素カルバマート基を有するアミノ酸アミド誘導体の新規な製造方法、及び新規な製造中間体、さらに本発明のアミノ酸アミド誘導体の新規な製造方法を工程の一部として含む、含フッ素カルバマート基とアシル基を有するエチレンジアミン誘導体の新規な製造方法を提供することができる。さらに、本発明はアミノ酸の立体構造が維持されること、産業上の廃棄物が少ないこと、および収率良く生産することができる等の利点を有する。そのために、本発明は、環境適応性、経済性、安全性、及び生産性に優れたものであり、工業的製造方法として有用である。
 以下、本発明を詳細に説明する。
<アミノ酸アミド誘導体の製造方法>
 本発明に係る、含フッ素カルバマート基を有するアミノ酸アミド誘導体(一般式(2)の化合物)の製造方法は、下記反応式(1)に示すように、新規な製造中間体である一般式(1)で表される化合物を、アンモニアと反応させるものである。
Figure JPOXMLDOC01-appb-C000035
 一般式(1)で表される化合物において、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基、もしくは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基を表す。
 一般式(1)中のRは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基における炭素数1~6のアルキル基とは、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の直鎖状のものや、イソプロピル基、イソブチル基、sec-ブチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1,1-ジメチルプロピル基、2,2-ジメチルプロピル基、1,2-ジメチルプロピル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基等の分枝したものを表す。これらのアルキル基の水素原子の少なくとも1つがフッ素原子で置換されていればよい。
 一般式(1)中のRは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基における炭素数3~6のシクロアルキル基とは、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等を表す。
 一般式(1)で表される化合物において、Rは水素、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基を表す。
 一般式(1)中のRにおける炭素数1~6のアルキル基とは、一般式(1)中のRで記載したものと同義である。
 一般式(1)中のRにおける炭素数3~6のシクロアルキル基とは、一般式(1)中のRで記載したものと同義である。
 一般式(1)中のRにおける置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基中の置換基とは、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基等のアルキル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、トリフルオロメチル基、ジフルオロメチル基、ブロモジフルオロメチル基、トリフルオロエチル基等のフッ素置換アルキル基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基等のアルコキシ基、トリフルオロメトキシ基、ジフルオロメトキシ基、トリフルオロエトキシ基等のフッ素置換アルコキシ基、メトキシカルボニル基、エトキシカルボニル基、プロポシカルボニル基、イソプロポシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基等のアルコキシカルボニル基、フェノキシカルボニル基、アリールオキシカルボニル基、メタンスルホニル基、エタンスルホニル基、プロパンスルホニル基、ブタンスルホニル基等のアルキルスルホニル基、トリフルオロメタンスルホニル基、ジフルオロメタンスルホニル基、トリフルオロエタンスルホニル基等のフッ素置換アルキルスルホニル基、メチルカルボニル基、エチルカルボニル基、プロピルカルボニル基、イソプロピルカルボニル基等のアルキルカルボニル基、シクロプロピルカルボニル基、シクロブチルカルボニル基、シクロペンチルカルボニル基、シクロヘキシルカルボニル基等のシクロアルキルカルボニル基、ベンゾイル基等のアリールカルボニル基、メチルカルボニルオキシ基、エチルカルボニルオキシ基、プロピルカルボニルオキシ基、イソプロピルカルボニルオキシ基等のアルキルカルボニルオキシ基、シクロプロピルカルボニルオキシ基、シクロブチルカルボニルオキシ基、シクロペンチルカルボニルオキシ基、シクロヘキシルカルボニルオキシ基等のシクロアルキルカルボニルオキシ基、ベンゾイルオキシ基等のアリールカルボニルオキシ基が例示される。アリール基もしくはヘテロアリール基上の置換基数は限定されることはない。また、2箇所以上アリール基もしくはヘテロアリール基が置換される場合、同一もしくは2種類以上の置換基で構成されてよく、限定されることはない。
 一般式(1)中のRにおけるアリール基とは、フェニル基、ナフチル基、アントラニル基、フェナンスリル基等を表す。
 一般式(1)中のRにおけるヘテロアリール基とは、ピリジル基、ピリミジル基、ピラゾリル基、ピラジニル基、ピリダジニル基、イミダゾリル基、インドリル基、キノリル基、キノキサリル基、ベンズイミダゾリル基等の含窒素ヘテロ環基、テトラヒドロフラニル基、フラニル基、ピラニル基、ジオキサニル基、2,3-ジヒドロベンゾ[1,4]ジオキシニル基、ベンゾオキサゾリル基、ベンゾイソキサゾリル基等の2種以上のヘテロ原子を含むヘテロ環基が挙げられる。
 一般式(1)で表される化合物において、RおよびRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表す。また、RとRが炭素原子数2~5で結合した環構造を形成してもよく、或いは、RまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。なお、この炭素原子数には、RおよびRが結合している炭素原子を含まない。
 一般式(1)の中のRおよびRにおける置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基における置換基とは、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基等のアルキル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、トリフルオロメチル基、ジフルオロメチル基、ブロモジフルオロメチル基、トリフルオロエチル基等のフッ素置換アルキル基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基等のアルコキシ基、トリフルオロメトキシ基、ジフルオロメトキシ基、トリフルオロエトキシ基等のフッ素置換アルコキシ基、メトキシカルボニル基、エトキシカルボニル基、プロポシカルボニル基、イソプロポシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基等のアルコキシカルボニル基、フェノキシカルボニル基、アリールオキシカルボニル基、メタンスルホニル基、エタンスルホニル基、プロパンスルホニル基、ブタンスルホニル基等のアルキルスルホニル基、トリフルオロメタンスルホニル基、ジフルオロメタンスルホニル基、トリフルオロエタンスルホニル基等のフッ素置換アルキルスルホニル基、メチルカルボニル基、エチルカルボニル基、プロピルカルボニル基、イソプロピルカルボニル基等のアルキルカルボニル基、シクロプロピルカルボニル基、シクロブチルカルボニル基、シクロペンチルカルボニル基、シクロヘキシルカルボニル基等のシクロアルキルカルボニル基、ベンゾイル基等のアリールカルボニル基、メチルカルボニルオキシ基、エチルカルボニルオキシ基、プロピルカルボニルオキシ基、イソプロピルカルボニルオキシ基等のアルキルカルボニルオキシ基、シクロプロピルカルボニルオキシ基、シクロブチルカルボニルオキシ基、シクロペンチルカルボニルオキシ基、シクロヘキシルカルボニルオキシ基等のシクロアルキルカルボニルオキシ基、ベンゾイルオキシ基等のアリールカルボニルオキシ基、フッ素、塩素、臭素、ヨウ素等のハロゲン原子等が例示される。アルキル基、シクロアルキル基、アリール基、アリールアルキル基、ヘテロアリール基、もしくはヘテロアリールアルキル基に対して、置換基が2箇所以上ある場合、同一もしくは2種類以上の置換基で構成されてよく、限定されることはない。
 一般式(1)中のRもしくはRにおける炭素数1~6のアルキル基とは、一般式(1)中のRで記載したものと同義である。
 一般式(1)中のRもしくはRにおける炭素数3~6のシクロアルキル基とは、一般式(1)中のRで記載したものと同義である。
 一般式(1)中のRもしくはRにおけるアリール基とは、一般式(1)中のRで記載したものと同義である。
 一般式(1)中のRもしくはRにおけるアリールアルキル基に関しては、アリール部位は一般式(1)中のRで記載したアリール基と同義であり、アルキル部位は炭素数1~4のものを表す。
 一般式(1)中のRもしくはRにおけるヘテロアリール基とは、一般式(1)中のRで記載したものと同義である。
 一般式(1)中のRもしくはRにおけるヘテロアリールアルキル基とは、ヘテロアリール部位は一般式(1)中のRで記載したヘテロアリール基と同義であり、アルキル部位は炭素数1~4のものを表す。
 一般式(1)において、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基を表し、Rは水素、もしくは炭素数1~6のアルキル基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、もしくは置換または無置換のアリールアルキル基を表すことが好ましい。なお、RまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。
 一般式(1)で表される化合物が不斉点を有する場合には、光学活性体、またはラセミ体を使用することができる。
 一般式(2)で表される化合物における、R、R,RおよびRは一般式(1)で記載したものと同義である。
 上記のような一般式(1)で表される化合物とアンモニアを反応させることにより、一般式(2)で表される化合物に変換することができる。
 アンモニアの使用量は、一般式(1)で表される化合物に対し当量以上であれば特に限定されることはないが、経済的観点から1当量以上15当量以下が好ましい。
 一般式(1)で表される化合物とアンモニアを反応させる際には、塩基を使用することができる。
 使用する塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム等の無機塩基や、ピリジン、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン、1,8-ジアザビシクロ[5,4,0] -ウンデセ-7-エン、1,4-ジアザビシクロ[2,2,0]オクタン等の有機塩基が例示される。単独で使用することもできるし、2種類以上を任意の割合で混合することも可能である。
 塩基の使用量は、全く使用しないか、或いは一般式(1)で表される化合物に対して1当量以上使用することができる。その上限は、経済的観点から10当量以下が好ましい。
 一般式(1)で表される化合物とアンモニアを反応させる際に使用する溶媒は、一般式(2)表される化合物が生成するものであれば特に制限されることはない。溶媒の具体例として、ジクロロメタン、クロロホルム等のハロゲン系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒、ヘキサン、ヘプタン等の炭化水素系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、1-メチル-2-ピロリドン等のアミド系溶媒、1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン等のウレア系溶媒、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、酢酸エチル、酢酸ブチル、酢酸イソプロピル等のエステル系溶媒及び水が挙げられる。これらの溶媒は、単独で使用することも、2種類以上を任意の割合で混合することも可能である。
 溶媒の使用量は特に限定されることはないが、通常、一般式(1)で表される化合物に対して2倍重量以上40倍重量以下である。
 一般式(1)で表される化合物とアンモニアを反応させる際の反応温度に関しては、一般式(1)および(2)で表される化合物が分解しないように設定すれば特に限定されることはないが、通常、-10℃以上80℃以下もしくは溶媒の沸点以下である。ただし、一般式(1)および(2)で表される化合物が不斉点を有する場合には、過剰なアンモニア存在下で加熱するとラセミ化するため、40℃以下が望ましい。
 また、本発明においては、下記反応式(2)に示すように、新規な製造中間体である一般式(3)で表される化合物を、塩素化剤と反応させることにより一般式(1)で表される化合物に変換し、次いで、アンモニアと反応させることにより一般式(2)で表される化合物を製造することができる。
Figure JPOXMLDOC01-appb-C000036
 一般式(3)で表される化合物における、R、R,RおよびRは一般式(1)で記載したものと同義である。
 使用する塩素化剤は、一般式(3)もしくは一般式(1)で表される化合物を分解しないものであれば制限されないが、例えば、塩化チオニル、塩基オキサリル、オキシ塩化リン、五塩化リン、ホスゲン、ビルスマイヤー試薬等を使用することができる。
 塩素化剤の使用量は、目的とする反応が進行するように設定すれば制限されることはないが、一般式(3)の化合物に対し通常1当量以上20当量以下である。
 一般式(1)で表される化合物を得る反応を行う際に使用する溶媒は、反応が進行するものであれば特に限定されることはない。具体例として、ベンゼン、トルエン、キシレン等の芳香族系溶媒、ヘキサン、ヘプタン等の炭化水素系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、1-メチル-2-ピロリドン等のアミド系溶媒、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、酢酸エチル、酢酸ブチル、酢酸イソプロピル等のエステル系溶媒が挙げられる。これらの溶媒は、単独で使用することも、2種類以上を任意の割合で混合することも可能である。
 溶媒の使用量に関しては特に限定されることはないが、通常、一般式(3)の重量に対して1~40倍の重量が好ましい。
 反応形態は特に限定されることではないが、一般式(3)もしくは上記溶媒で希釈した一般式(3)に塩素化剤を添加することが好ましい。
 反応温度に関しては、化合物が分解しないように設定すれば特に限定されることはないが、通常、-10℃以上100℃以下もしくは溶媒の沸点以下である。
 上記反応にて得られた一般式(1)で表される化合物に関して、次工程における使用形態は特に制限されることはない。一般式(1)で表される化合物を含有する反応溶液に対して、溶媒留去等の通常の後処理操作を行った後に単離精製せずに次工程に使用することや、反応溶液のまま次工程に使用することが可能である。
 以下、一般式(3)で表される化合物の調製方法について述べる。
 一般式(3)で表される化合物は、非特許文献1同様に、アミノ酸とフッ素置換されたクロロギ酸アルキルとを水存在下に反応させて得られる。フッ素置換されたクロロギ酸アルキルは、市販品もしくは特許文献2の方法等で合成したものを用いることができる。
 一般式(3)で表される化合物の調製方法としては、アミノ酸を水に溶解させて、反応液のpHを11~13に保ちながらフッ素置換されたクロロギ酸アルキルを滴下させて反応させることにより、効率良く得ることができる。
 一般式(3)で表される化合物の一例として、一般式(3')で表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000037
(式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基、もしくは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基を表し、Rは水素、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基を表し、RとRは同時に水素である場合を除き、それぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表し、また、RとRが炭素原子数2~5で結合した環構造を形成してもよく、或いはRまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。)
 前記一般式(3')において式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基を表し、Rは水素、もしくは炭素数1~6のアルキル基を表し、RとRは同時に水素である場合を除き、それぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、もしくは置換または無置換のアリールアルキル基を表し、また、RまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい、化合物であることが好ましい。
 さらに、前記一般式(3')において式中、Rはトリフルオロエチル基を表し、Rは水素、もしくは炭素数1~6のアルキル基を表し、RとRは同時に水素である場合を除き、それぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、もしくは置換または無置換のアリールアルキル基を表し、また、RまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい、化合物であることがさらに好ましい。
 アミノ酸として一般式(4)で表される化合物を用いた場合、目的化合物である一般式(2)で表される化合物を製造することができる。具体的には、下記反応式(3)に示すように、一般式(4)で表される化合物と一般式(5)で表されるフッ素置換されたクロロギ酸アルキルを反応させることにより新規な製造中間体である一般式(3)で表される化合物を得る。そして、一般式(3)で表される化合物と塩素化剤と反応させることにより一般式(1)で表される化合物に変換し、次いで、アンモニアと反応させることにより一般式(2)で表される化合物を製造することができる。
Figure JPOXMLDOC01-appb-C000038
 一般式(4)で表される化合物におけるR,RおよびRは一般式(1)で記載したものと同義であり、一般式(5)で表される化合物におけるRは一般式(1)で記載したものと同義である。なお、塩素化剤は、前記のものを用いることができる。
 一般式(4)で表される化合物を水に溶解させて、反応液のpHを11~13に保ちながら一般式(5)で表されるフッ素置換されたクロロギ酸アルキルを滴下させて反応させることができる。また、一般式(4)で表される化合物から一般式(2)で表される化合物まで単離精製することなく製造することも可能である。
 以上のようにして、一般式(2)で表される化合物、即ち含フッ素カルバマート基を有するアミノ酸アミド誘導体を効率的に製造できることが可能になった。
<エチレンジアミン誘導体の新規な製造方法>
 本発明に係る、含フッ素カルバマート基とアシル基を有するエチレンジアミン誘導体(一般式(9)の化合物)の製造方法は、下記反応式(4)に示すように、上述の反応式(1)乃至(3)のいずれかの方法により得られた含フッ素カルバマート基を有するアミノ酸アミド誘導体(一般式(2)の化合物)を脱酸素剤と反応させることにより一般式(6)で表わされる化合物に変換する。次いで、一般式(6)で表わされる化合物を酸の存在下で接触水素化反応を行うことにより、一般式(7)で表わされる化合物に変換し、次いで、一般式(7)で表わされる化合物を一般式(8)で表わされる化合物と反応させることにより、一般式(9)で表わされる化合物を製造することができる。
Figure JPOXMLDOC01-appb-C000039
 まず、一般式(2)で表される化合物と脱酸素剤と反応させることにより、一般式(6)で表される化合物を調製する。
 以下、一般式(2)で表される化合物と脱酸素剤との反応を説明する。
 一般式(2)で表される化合物におけるR、R、RおよびRは一般式(1)で記載したものと同義である。
 脱酸素剤とは、塩化チオニル、オキザリルクロライド、ホスゲン、オキシ塩化リン、三塩化リン、五塩化リン、臭化チオニル、三臭化リン、塩化メシル、塩化トシル等のハロゲン化剤、N,N'-ジシクロヘキシルカルボジイミド、N,N'-ジイソプロピルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩等のカルボジイミド誘導体、無水酢酸、無水トリフルオロ酢酸等の無水物や、Vilsmeier試薬等である。
 Vilsmeier試薬とは、ジメチルホルムアミド等のホルムアミド誘導体とハロゲン化剤から調製される一般式(10)
Figure JPOXMLDOC01-appb-C000040
(式中、RとRはそれぞれ独立して、炭素数1~3のアルキル基を表し、Yはハロゲン原子を表す)で表される化合物である。
 一般式(10)で表される化合物はハロゲン化剤由来の塩も含む。
 一般式(10)中のRおよびRにおける炭素数1~3のアルキル基とは、メチル基、エチル基、プロピル基等を表す。
 一般式(10)中のYにおけるハロゲン原子とは、フッ素、塩素、臭素、ヨウ素等である。
 脱酸素剤の使用形態は特に制限されるものではなく、脱酸素剤を基質に加える方法や、基質に脱酸素剤を加える方法のいずれでもよい。
 脱酸素剤がVilsmeier試薬である場合の使用形態も、特に制限されるものでない。予め、溶媒中でVilsmeier試薬を調製した後に一般式(2)で表される化合物を加える方法や、一般式(2)で表される化合物とホルムアミド誘導体を含む溶媒中にハロゲン化剤を装入する方法で行うことができる。
 脱酸素剤の使用量は、一般式(2)で表される化合物に対して1当量以上あれば特に制限されることはないが、通常、1当量以上10当量以下である。
 脱酸素剤がVilsmeier試薬である場合の使用量は、ハロゲン化剤が一般式(2)で表される化合物に対して1当量以上、ホルムアミド誘導体は触媒量以上あれば特に制限されることはない。通常、ハロゲン化剤は1当量以上10当量以下であり、ホルムアミド誘導体は一般式(2)で表される化合物に対して0.1当量以上10当量以下である。また、ホルムアミド誘導体は溶媒として使用することも可能である。
 一般式(2)で表される化合物から一般式(6)で表される化合物に変換する際に使用する溶媒は、非プロトン性溶媒であれば特に限定されることはない。具体的には、ジクロロメタン、クロロホルム等のハロゲン系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒、ヘキサン、ヘプタン等の炭化水素系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、1-メチル-2-ピロリドン等のアミド系溶媒、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、アセトニトリル、プロピオニトリル等のニトリル系溶媒、1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピぺリジノン等のウレア系溶媒、酢酸エチル、酢酸ブチル、酢酸イソプロピル等のエステル系溶媒等である。単独で使用することも可能であり、2種類以上の溶媒を任意の割合で混合して使用することも可能である。
 本発明に用いられる脱酸素剤の中でも、Vilsmeier試薬は好ましく適用できる。
 溶媒の使用量に関しては特に限定されることはないが、通常、一般式(2)で表される化合物の重量に対して3~40倍の重量が好ましい。
 一般式(2)で表される化合物から一般式(6)で表される化合物に変換する際の反応温度は、反応が進行する限りにおいて特に限定されることはないが、-10℃以上150℃以下もしくは溶媒の沸点以下である。このような簡便な反応により、一般式(6)で表される化合物を高収率で得ることができる。そのため、一般式(6)で表される化合物の工業的な製造方法として有用である。
 次いで、得られた一般式(6)で表される化合物を酸存在下で接触水素化反応を行い、一般式(7)で表される化合物に変換することができる。
 これにより、副生成物の生成が抑制され、一般式(7)で表される化合物を高い収率で得ることができる。
 一般式(7)で表される化合物における、R、R、RおよびRは一般式(1)で記載したものと同義である。
 使用する酸は、一般式(6)もしくは一般式(7)で表される化合物を分解しないものであれば制限はないが、例えば、有機酸または無機酸を使用することができる。
 有機酸としては、蟻酸、酢酸、メタンスルホン酸等を、無機酸としては、塩酸、硫酸、リン酸等を例示することができる。
 酸の使用量は、目的とする反応が進行するように設定すれば制限されることはないが、通常1当量以上20当量以下である。
 接触水素化法に関しては、パラジウム、白金、ロジウム、ルテニウム等の金属類で行う方法が例示される。これらの金属は、金属酸化物、金属塩化物等の形態で用いることもできる。
 接触水素化法を行う際に使用する金属類の量は、反応が進行すれば特に限定されることはないが、経済的観点から一般式(6)の重量に対して同等以下が好ましい。
 使用する金属の形態は、活性炭、SiO、Al、BaSO、TiO、ZrO、MgO、ThO、ケイソウ土等で担持したものを使用することができる。その形態は問わないが、経済的観点から、再利用可能な担持体を使用することが好ましい。
 接触水素化法を行う際に使用する溶媒は、反応が進行するものであれば特に限定されることはない。具体例として、メタノール、エタノール、イソプロパノール等のアルコール系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒、ヘキサン、ヘプタン等の炭化水素系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、1-メチル-2-ピロリドン等のアミド系溶媒、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、酢酸エチル、酢酸ブチル、酢酸イソプロピル等のエステル系溶媒、水が挙げられる。単独で使用することもできるし、2種類以上を任意の割合で混合することも可能である。
 溶媒の使用量に関しては特に限定されることはないが、通常、一般式(6)の重量に対して3~40倍の重量が好ましい。
 反応形態は特に限定されることはないが、一般式(6)もしくは上記溶媒で希釈した一般式(6)を、水素源存在下で金属と酸を含む溶媒に滴下することが好ましい。
 反応温度に関しては、化合物が分解しないように設定すれば特に限定されることはないが、通常、-10℃以上150℃以下もしくは溶媒の沸点以下である。
 反応圧力に関しては、特に限定されることはなく、常圧でも加圧でもよい。
 接触水素化に使用する水素源は、反応が進行すれば特に制限されることはないが、水素ガスの他に、シクロヘキセン、蟻酸及び蟻酸塩等を使用した内部水素発生方法を使用することができる。
 内部水素発生方法で反応を行う際に使用するシクロヘキセン、蟻酸及び蟻酸塩当量は、発生させる水素量が2当量以上なるように設定すれば特に制限されることはないが、経済的観点から2当量以上10当量以下が好ましい。
 上記反応にて得られた一般式(7)で表される化合物に関して、次工程における使用形態は特に制限されることはない。一般式(7)で表される化合物を含有する反応溶液に対して、溶媒留去、分液等の通常の後処理操作を行った後に単離精製をせずに次工程に使用することや、塩酸、硫酸、リン酸等の無機酸や、シュウ酸、フマル酸、マレイン酸、蟻酸、酢酸、メタンスルホン酸等の有機酸で塩の形態にしたものを次工程に使用することが可能である。
 一般式(7)で表される化合物は、無機酸や有機酸で形成される塩も含む。無機酸としては、塩酸、硫酸、リン酸等を、有機酸としてはシュウ酸、フマル酸、マレイン酸、蟻酸、酢酸、メタンスルホン酸等が挙げられる。
 上記の工程によって得られた一般式(7)で表される化合物と、一般式(8)で表される化合物とを反応させることにより、一般式(9)で表される化合物に変換することができる。
 一般式(8)で表される化合物におけるRは、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表わし、Xは脱離基を表わす。
 R中、置換された炭素数1~6のアルキル基、置換された炭素数3~6のシクロアルキル基、置換されたアリール基、置換されたアリールアルキル基、置換されたヘテロアリール基、もしくは置換されたヘテロアリールアルキル基における置換基は、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基等のアルキル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、トリフルオロメチル基、ジフルオロメチル基、ブロモジフルオロメチル基、トリフルオロエチル基等のハロゲン置換アルキル基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基等のアルコキシ基、シクロプロポキシ基、シクロブトキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等のシクロアルコキシ基、トリフルオロメトキシ基、ジフルオロメトキシ基、トリフルオロエトキシ基等のハロゲン置換アルコキシ基、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基等のアルコキシカルボニル基、シクロプロポキシカルボニル基、シクロブトキシカルボニル基、シクロペンチルオキシカルボニル基、シクロヘキシルオキシカルボニル基等のシクロアルコキシカルボニル基、フェノキシカルボニル基等のアリールオキシカルボニル基、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基等のアルキルチオ基、トリフルオロメチルチオ基、ジフルオロメチルチオ基、トリフルオロエチルチオ基等のハロゲン置換アルキルチオ基、メタンスルフィニル基、エタンスルフィニル基、プロパンスルフィニル基、ブタンスルフィニル基等のアルキルスルフィニル基、トリフルオロメタンスルフィニル基、ジフルオロメタンスルフィニル基、トリフルオロエタンスルフィニル基等のハロゲン置換アルキルスルフィニル基、メタンスルホニル基、エタンスルホニル基、プロパンスルホニル基、ブタンスルホニル基等のアルキルスルホニル基、トリフルオロメタンスルホニル基、ジフルオロメタンスルホニル基、トリフルオロエタンスルホニル基等のハロゲン置換アルキルスルホニル基、メチルカルボニル基、エチルカルボニル、プロピルカルボニル基、イソプロピルカルボニル基等のアルキルカルボニル基、シクロプロピルカルボニル基、シクロブチルカルボニル基、シクロプロピルカルボニル基、シクロペンチルカルボニル基、シクロヘキシルカルボニル基等のシクロアルキルカルボニル基、ベンゾイル基等のアリールカルボニル基等、メチルカルボニルオキシ基、エチルカルボニルオキシ基、プロピルカルボニルオキシ基、イソプロピルカルボニルオキシ基等のアルキルカルボニルオキシ基、シクロプロピルカルボニルオキシ基、シクロブチルカルボニルオキシ基、シクロペンチルカルボニルオキシ基、シクロヘキシルカルボニルオキシ基等のシクロアルキルカルボニルオキシ基、ベンゾイルオキシ基等のアリールカルボニルオキシ基、塩素、フッ素、臭素、ヨウ素等のハロゲン原子が例示される。アリール基もしくはヘテロアリール基上の置換基数は限定されることはない。また、2箇所以上アリール基もしくはヘテロアリール基が置換される場合、同一もしくは2種類以上の置換基で構成されてよく、限定されることはない。
 一般式(8)中のRにおける炭素数1~6のアルキル基とは、一般式(1)中のRで記載したものと同義である。
 一般式(8)中のRにおける炭素数3~6のシクロアルキル基とは、一般式(1)中のRで記載したものと同義である。
 一般式(8)中のRにおけるアリール基とは、一般式(1)中のRで記載したものと同義である。
 一般式(8)中のRにおけるアリールアルキル基について、アリール部位は一般式(1)中のRで記載したアリール基と同義であり、アルキル部位は炭素数1~4のものを表す。
 一般式(8)中のRにおけるヘテロアリール基とは、ピリジル基、ピリミジル基、ピラゾリル基、ピラジニル基、ピリダジニル基、イミダゾリル基、インドリル基、キノリル基、キノキサリル基、ベンズイミダゾリル基等の含窒素ヘテロ環基、テトラヒドロチエニル基、チエニル基、チオピラニル基、ベンゾチエニル基等の含硫黄ヘテロ環、テトラヒドロフラニル基、フラニル基、ピラニル基、ジオキサニル基、2,3-ジヒドロベンゾ[1,4]ジオキシニル基、ベンゾフラニル基等の含酸素へテロ環基、オキサゾリル基、イソキサゾリル基、チアゾリル基、イソチアゾリル基、ベンゾオキサゾリル基、ベンゾイソキサゾリル基、ベンゾチアゾリル基、ベンゾイソチアゾリル等の2種以上のヘテロ原子を含むヘテロ環基が挙げられる。
 一般式(8)中のRにおけるヘテロアリールアルキル基について、ヘテロアリール部位は一般式(8)中のRのヘテロアリール基と同義であり、アルキル部位は炭素数1~4のものを表す。
 一般式(8)で表される化合物において、Xは脱離基を表す。
 一般式(8)中のXで表される脱離基に関しては、フッ素、塩素、臭素、ヨウ素等のハロゲン原子、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基、4-ニトロフェニル基等のアリールオキシ基、アセチルオキシ基、ベンゾイルオキシ基等のアシルオキシ基、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、イソブチルオキシカルボニルオキシ基等のアルコキシカルボニルオキシ基、フェニルカルボニルオキシ基等のアリールカルボニルオキシ基、メチルチオ基等のアルキルチオ基、2,5-ジオキソピロリジニルオキシ基、ベンゾトリアゾリルオキシ基ならびにイミダゾリル基等を例示することができる。
 一般式(9)で表される化合物において、R、R、R、Rは一般式(1)で記載したものと同義であり、Rは一般式(8)で記載したものと同義である。
 一般式(8)で表される化合物の使用量は、一般式(7)で表される化合物と同当量以上あれば特に限定されることがないが、経済的観点から1当量以上3当量以下が好ましい。
 一般式(7)で表される化合物が酸と塩を形成している場合や、一般式(7)で表される化合物と一般式(8)で表される化合物を反応させる際に酸が発生する場合には、塩基を使用することができる。
 使用する塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム等の無機塩基や、ピリジン、コリジン、ピコリン、4-ジメチルアミノピリジン、ルチジン、トリエチルアミン、ジイソプロピルアミン、ジイソプロピルエチルアミン、トリブチルアミン、1,8-ジアザビシクロ[5,4,0]-ウンデセ-7-エン、1,4-ジアザビシクロ[2,2,0]オクタン、イミダゾール等の有機塩基が例示される。単独で使用することもできるし、2種類以上を任意の割合で混合することも可能である。
 塩基の使用量は、一般式(7)で表される化合物が酸と塩を形成している場合には、その酸に対して1当量以上を使用することができ、また、反応中に酸が発生する場合には、発生する酸に対して1当量以上を使用することができる。その上限は、経済的観点から10当量以下が好ましい。
 一般式(7)で表される化合物と一般式(8)で表される化合物を反応させる際に使用する溶媒は、一般式(9)で表される化合物が生成するものであれば特に制限されることはない。溶媒の具体例として、ジクロロメタン、クロロホルム等のハロゲン系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒、ヘキサン、ヘプタン等の炭化水素系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、1-メチル-2-ピロリドン等のアミド系溶媒、1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピペリジノン等のウレア系溶媒、酢酸エチル、酢酸ブチル、酢酸イソプロピル等のエステル系溶媒、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、アセトニトリル、プロピオニトリル等のニトリル系溶媒、イソプロパノール、t-ブチルアルコール等のアルコール系溶媒、及び水を挙げることができる。単独で使用することもできるし、2種類以上を任意の割合で混合することも可能である。
 溶媒の使用量は特に限定されることはないが、通常、一般式(7)で表される化合物に対して3倍重量以上40倍重量以下である。
 一般式(7)で表される化合物と一般式(8)で表される化合物を反応させる際の反応温度に関しては、化合物が分解しないように設定すれば特に限定されることはないが、通常、-10℃以上150℃以下もしくは溶媒の沸点以下である。
 以上のようにして、一般式(9)で表される化合物、即ち含フッ素カルバマート基とアシル基を有するエチレンジアミン誘導体を効率的に製造できることが可能になった。
 以下に実施例により、本発明を更に詳細に示すが、本発明はこれらに限定されるものではない。
 化合物の純度分析はHPLCで行った。分離カラム:L-Columun ODS
φ4.6mm×250mm(化学物質評価研究機構)
 光学異性体の分離分析には、分離カラム:CHIRALPAK IA(250mm×
4.6mmI.D.)ダイセル化学工業製を用いた。
(実施例1)N-(2,2,2-トリフルオロエトキシカルボニル)―L―アラニンの合成
Figure JPOXMLDOC01-appb-C000041
 攪拌装置のついた1000ml4つ口フラスコに、L-アラニン50.8g、水100gを装入して5℃に冷却し、32wt%NaOHでpHを12に調整した。pH12±0.5および10℃以下を保ちながら、クロロギ酸2,2,2-トリフルオロエチル93.5gとトルエン200gの混合溶液を滴下装入し、さらにpHをpH12±0.5に保ちながら1時間撹拌した。塩酸を滴下装入してpHを1.5に調整後、60℃に昇温して分液した。有機層を減圧濃縮して得られた白色固体の化合物は、表題の化合物であった。
収量 24.5g(収率20%)
H NMR (CDCl3)δ1.51(3H,d,J=7.32Hz),4.40-4.53(3H, m),5.45(1H,d,J=8.79Hz).
LC-MS M+1(216)
(実施例2)N-(2,2,2-トリフルオロエトキシカルボニル)―L―アラニノクロリドの合成
Figure JPOXMLDOC01-appb-C000042
 攪拌装置のついた100ml4つ口フラスコに、塩化メチレン10g、N-(2,2,2-トリフルオロエトキシカルボニル)―L―アラニン1.0g、N,N-ジメチルホルムアミド(以下DMF)1滴を装入して5℃に冷却し、塩化オキサリルを0.90g滴下後、5℃を保ちながらさらに2時間撹拌した。減圧濃縮し、得られた油状の残渣に塩化メチレン10gを加えて10min攪拌後、減圧濃縮したところ、油状物質が得られた。得られた油状物質の化合物は、表題の化合物であった。
収量 1.08g(収率99.5%)
H NMR (CDCl3)δ1.59(3H,d,J=7.32Hz),4.40-4.65(3H, m),5.48(1H,br).
IR(ATR法)cm-13330,1779,1716,1525,1454,1413,1383,1285,1243,1162,1121, 1088,1049,985,897,839,774,739,637,554,524,415.
(実施例3)N-(2,2,2-トリフルオロエトキシカルボニル)-L-アラニンアミドの合成
Figure JPOXMLDOC01-appb-C000043
 攪拌装置のついた500ml4つ口フラスコに、トルエン100g、N-(2,2,2-トリフルオロエトキシカルボニル)―L―アラニン19.3g、DMF0.4gを装入して55℃に昇温し、ホスゲンを30g吹き込んだ後、55℃を保ちながらさらに2時間撹拌した。Nを吹き込んで、余剰ホスゲンを追い出した後、減圧濃縮して、油状の残渣34g得た。攪拌装置のついた1000ml4つ口フラスコに10wt%NH3水溶液200gを装入して5℃に冷却し、15℃以下を保ちながら上記残渣を滴下した。滴下終了後、10℃で3時間撹拌した後に、析出物を濾過し減圧乾燥した。得られた白色固体の化合物は、表題の化合物であった。
収量 17.5g(収率91%)
H NMR (DMSO-d6)δ1.21(3H,d,J=7.32Hz),3.96(1H,m),4.62(2H,m),6.98(1H,brs), 7.33(1h,brs), 7.76(1H,d,J=7.81Hz).
(実施例4)N-(2,2,2-トリフルオロエトキシカルボニル)-L-アラニノニトリルの合成
Figure JPOXMLDOC01-appb-C000044
 トルエン350mlにN-(2,2,2-トリフルオロエトキシカルボニル)-L-アラニンアミド31.0gとDMF35mlを加えて室温で攪拌し、オキサリルクロリド22.01gを含むトルエン35mlを注意深く滴下した。同温で2時間攪拌した後に、水350mlを加えて分液した。さらに、分離した有機層を水350mlで洗浄した後に、減圧下で溶媒留去した。次いで、カラムクロマトグラフィーによって精製を行った。得られた白色固体は、表題の化合物であった。
収量 25.83g(収率91%)
H NMR (CDCl3)δ1.61(3H,d,J=7.32Hz),4.47(1H,m),4.53(1H,m),4.67(1H,m), 5.38(1h,brd).
(実施例5)(2S)-N2-(2,2,2-トリフルオロエトキシカルボニル)-プロパン-1,2-ジアミン塩酸塩の合成
Figure JPOXMLDOC01-appb-C000045
 イソプロピルアルコール(以下IPA)40mlに酢酸6.0g、5%パラジウムカーボン(水分49.5%、N.E.Chem社製)0.5g、蟻酸アンモニウム3.2gを順次加えて十分攪拌した。これにN-(2,2,2-トリフルオロエトキシカルボニル)-L-アラニノニトリル2.0gを含むIPA8mlを室温で滴下した後に、同温で2.5時間攪拌した。触媒を濾去した後に減圧下で溶媒留去を行い、残渣に水、酢酸エチルを加えた。次いで、水層のpHが約10になるまで炭酸カリウムを加えて分液した。分離した有機層に硫酸ナトリウムを加えて乾燥し濾過した後に、4Nの塩化水素―酢酸エチル溶液を加えた。減圧下で濃縮すると白色の固体が析出し、これを濾取することにより表題の化合物を得た。
白色固体 収量2.05g(収率85%)
H NMR (DMSO-d6)δ1.12(3H,t,J=6.83Hz),2.81(2H,m),3.79(1H,m),4.60(1H,m),4.67(1H,m), 7.76(1H,d,J=8.29Hz),8.12 (3H,brs).
(実施例6)(2S)-N1-トルオイル-N2-(2,2,2-トリフルオロエトキシカルボニル)-プロパン-1,2-ジアミンの合成
Figure JPOXMLDOC01-appb-C000046
 炭酸水素ナトリウム0.45gを含む水7mlに、酢酸エチル5mlと(2S)-N1-トルオイル-N2-(2,2,2-トリフルオロエトキシカルボニル)-プロパン-1,2-ジアミン0.5gを加えて攪拌し、これにトルイル酸クロリド0.33gを滴下した。室温で2.5時間攪拌した後に、分液した。有機層に硫酸ナトリウムを加えて乾燥し濾過した後に、溶液を減圧下で濃縮した。さらにイソプロピルエーテル(以下IPE)8mlを加えて、析出物を十分に洗浄した後に濾取した。得られた白色固体は表題の化合物であった。
白色固体 収量0.56g(収率84%)
H NMR (CDCl3)δ1.26(3H,d,J=6.83Hz),2.39(3H,s),3.53(2H,m),3.95(1H,m),4.41(2H,m), 5.50(1H,brd,J=7.32Hz),6.74 (1H,brs),7.22(2H,d,J=7.81Hz),7.66(2H,d,J=7.81Hz).
(実施例7)N-(2,2,2-トリフルオロエトキシカルボニル)―L―イソロイシンの合成
Figure JPOXMLDOC01-appb-C000047
 攪拌装置のついた500ml4つ口フラスコに、L-イソロイシン24.5g、水50gを装入して5℃に冷却し、32wt%NaOHでpHを12に調整した。pH12±0.5および10℃以下を保ちながら、クロロギ酸2,2,2-トリフルオロエチル31.2gとトルエン100gの混合溶液を滴下装入し、さらにpHをpH12±0.5に保ちながら1時間撹拌した。塩酸を滴下装入してpHを1.5に調整後、60℃に昇温して分液した。有機層を減圧濃縮して得られた白色個体の化合物は、表題の化合物であった。
収量 46g(収率96%)
H NMR (CDCl3)δ0.95(3H,t,J=7.81Hz),0.99(3H, d,J=6.84Hz),1.20-1.30(1H,m), 1.42-1.55(1H,m), 1.92-2.05(1H,m), 4.37―4.55(3H,m),5.42(1H, d,J=8.79Hz).
LC-MS M+1(258)
(実施例8)N-(2,2,2-トリフルオロエトキシカルボニル)―L―イソロイシノクロリドの合成
Figure JPOXMLDOC01-appb-C000048
 攪拌装置のついた200ml4つ口フラスコに、塩化メチレン10g、N-(2,2,2-トリフルオロエトキシカルボニル)―L―イソロイシン1.0g、DMF1滴を装入して5℃に冷却し、塩化オキサリルを0.74g滴下後、5℃を保ちながらさらに2時間撹拌した。減圧濃縮し、得られた残渣にn-ヘキサン20gを装入し、5℃に冷却した。3時間撹拌した後に、析出物を窒素気流下で濾過し、n-ヘキサンで洗浄後、室温で減圧乾燥した。得られた白色固体の化合物は、表題の化合物であった。
収量 1.0g(収率93%)
H NMR (CDCl3)δ0.97(3H,t,J=7.33Hz),1.06(3H, d,J=6.84Hz),1.15-1.25(1H,m),1.42-1.52(1H,m),2.12-2.21(1H,m),4.43-4.55(3H,m),5.35(1H,br).
IR(ATR法)cm-13380,2974,2885,1802,1720,1517,1441,1402,1297,1283,1227, 1156,1111,1047,990,966,943,924,841,830,792,760,660,643,594,530,511,435.
(実施例9)N-(2,2,2-トリフルオロエトキシカルボニル)―L―イソロイシンアミドの合成
Figure JPOXMLDOC01-appb-C000049
 攪拌装置のついた500ml4つ口フラスコに、L-イソロイシン24.5g、水50gおよびトルエン75gを装入して5℃に冷却し、32wt%NaOHでpHを12に調整した。pH12±0.5および10℃以下を保ちながら、クロロギ酸2,2,2-トリフルオロエチル31.2gとトルエン6gの混合溶液を滴下装入し、さらにpHをpH12±0.5に保ちながら1時間撹拌した。塩酸を滴下装入してpHを1.5に調整後、60℃に昇温して分液した。有機層を共沸脱水した後、攪拌装置のついた500ml4つ口フラスコに移液し、DMF0.6gを装入して50℃に冷却し、ホスゲンを25g吹き込んだ後、55℃を保ちながらさらに2時間撹拌した。Nを吹き込んで、余剰ホスゲンを追い出した後、減圧濃縮して、油状の残渣52g得た。攪拌装置のついた1000ml4つ口フラスコに10wt%NH3水溶液310gを装入して5℃に冷却し、15℃以下を保ちながら上記残渣を滴下した。滴下終了後、10℃で3時間撹拌した後に、析出物を濾過し減圧乾燥した。得られた白色固体の化合物は、表題の化合物であった。
収量 41.2g(収率86%)
H NMR (DMSO-d6)δ0.82(6H,m),1.13(1H,m),1.41(1H,m),1.71(1H,m),3.81 (1H,t,J=8.29Hz),4.64(2H,q,J=9.27Hz),7.05(1H, s),7.39(1H,s), 7.65(1H,d,J=8.29Hz).
(実施例10)N-(2,2,2-トリフルオロエトキシカルボニル)-L-イソロイシノニトリルの合成
Figure JPOXMLDOC01-appb-C000050
 トルエン50mlにN-(2,2,2-トリフルオロエトキシカルボニル)-L-イソロイシンアミド5.0gとDMF5mlを加えて室温で攪拌し、オキサリルクロリド3.05gを含むトルエン5mlを注意深く滴下した。同温で2時間攪拌した後に、水50mlを加えて分液した。さらに、分離した有機層を水50mlで洗浄した後に、減圧下で溶媒留去した。次いで、カラムクロマトグラフィーによって精製を行った。得られた白色固体は、表題の化合物であった。
無色油状物質 収量 4.53g(収率97%)
H NMR (CDCl3)δ0.98(3H,t,J=7.32Hz),1.10(3H,d,J=6.83Hz),1.34(1H,m),1.59(1H,m), 1.83(1H,m),4.48(1H,m), 4.53(1H,m),4.59(1H,m),5.35(1H,brd).
(実施例11)(2S,3S)-3-メチル-N2-(2,2,2-トリフルオロエトキシカルボニル)-ペンタン-1,2-ジアミン塩酸塩の合成
Figure JPOXMLDOC01-appb-C000051
 IPA 40mlに酢酸6.0g、5%パラジウムカーボン(水分49.5%、N.E.Chem社製)0.5g、蟻酸アンモニウム3.2gを順次加えて十分攪拌した。これにN-(2,2,2-トリフルオロエトキシカルボニル)-L-イソロイシノニトリル2.5gを含むIPA10mlを室温で滴下した後に、同温で2.5時間攪拌した。触媒を濾去した後に減圧下で溶媒留去を行い、残渣に水、酢酸エチルを加えた。次いで、水層のpHが約10になるまで炭酸カリウムを加えて分液した。分離した有機層に硫酸ナトリウムを加えて乾燥し濾過した後に、4Nの塩化水素―酢酸エチル溶液を加えた。減圧下で濃縮すると白色の固体が析出し、これを濾取することにより表題の化合物を得た。
淡桃色固体 収量2.56g(収率92%)
H NMR (DMSO-d6)δ0.84(6H,m),1.11(1H,m),1.36(1H,m),1.53(1H,m),2.75(1H,dd,J=10.25, 12.69Hz),2.92(1H,dd,J=2.93,12.69Hz),3.60(1H,m),4.55(1H,m),4.72(1H,m),7.73(1H,d,J=8.78Hz),8.10 (3H,brs).
(実施例12)(2S,3S)-3-メチル-N1-トルオイル-N2-(2,2,2-トリフルオロエトキシカルボニル)-ペンタン-1,2-ジアミンの合成
Figure JPOXMLDOC01-appb-C000052
 炭酸水素ナトリウム0.45gを含む水7mlに、酢酸エチル5mlと(2S,3S)-3-メチル-N2-(2,2,2-トリフルオロエトキシカルボニル)-ペンタン-1,2-ジアミン塩酸塩0.5gを加えて攪拌し、これにトルイル酸クロリド0.33gを滴下した。室温で2.5時間攪拌した後に、分液した。有機層に硫酸ナトリウムを加えて乾燥し濾過した後に、溶液を減圧下で濃縮した。さらにIPE8mlを加えて、析出物を十分に洗浄した後に濾取した。得られた白色固体は表題の化合物であった。
白色固体 収量0.56g(収率87%)
H NMR (CDCl3)δ0.98(6H,m),1.21(1H,m),1.59(1H,m),2.40(3H,s),3.51(1H,m),3.68 (1H,m),3.79(1H,m),4.41(2H,m), 5.30(1H,brd,J=7.32Hz),6.65 (1H,brs),7.22(2H,d, J=7.81Hz),7.66(2H,d,J=7.81Hz).
(実施例13)N-(2,2,2-トリフルオロエトキシカルボニル)―L―ロイシンの合成
Figure JPOXMLDOC01-appb-C000053
 攪拌装置のついた500ml4つ口フラスコに、L-ロイシン25.2g、水50gを装入して5℃に冷却し、32wt%NaOHでpHを12に調整した。pH12±0.5および10℃以下を保ちながら、クロロギ酸2,2,2-トリフルオロエチル31.5gとトルエン100gの混合溶液を滴下装入し、さらにpHをpH12±0.5に保ちながら1時間撹拌した。塩酸を滴下装入してpHを1.5に調整後、60℃に昇温して分液した。有機層を減圧濃縮して得られた白色固体の化合物は、表題の化合物であった。
収量 47.4g(収率96%)
H NMR (CDCl3)δ0.97(6H,d,J=6.35Hz),1.58-1.62(1H, m),1.69-1.75(2H,m), 4.39-4.54(3H,m), 5.32(1H, br).
LC-MS M+1(258)
(実施例14)N-(2,2,2-トリフルオロエトキシカルボニル)―L―ロイシノクロリドの合成の合成
Figure JPOXMLDOC01-appb-C000054
 攪拌装置のついた100ml4つ口フラスコに、塩化メチレン10g、N-(2,2,2-トリフルオロエトキシカルボニル)―L―イソロイシン1.0g、DMF1滴を装入して5℃に冷却し、塩化オキサリルを0.74g滴下後、5℃を保ちながらさらに2時間撹拌した。減圧濃縮し、得られた油状の残渣に塩化メチレン10gを加えて10min攪拌後、減圧濃縮したところ、油状物質が得られた。得られた油状物質の化合物は、表題の化合物であった。
収量 1.07g(収率100%)
H NMR (CDCl3)δ0.97(3H,d,J=6.35Hz),1.00(3H, d,J=6.35Hz),1.60-1.66(1H,m),1.72-1.88(2H,m),4.45-4.60(3H,m),5.33(1H,br).
IR(ATR法)cm-13326,2964,1793,1716,1528,1414,1371,1285,1246,1163,1133, 1071,984,960,837,767,637,526.
(実施例15)N-(2,2,2-トリフルオロエトキシカルボニル)―L―ロイシンアミドの合成
Figure JPOXMLDOC01-appb-C000055
 攪拌装置のついた500ml4つ口フラスコに、L-ロイシン24.5g、水50gおよびトルエン75gを装入して5℃に冷却し、32wt%NaOHでpHを12に調整した。pH12±0.5および10℃以下を保ちながら、クロロギ酸2,2,2-トリフルオロエチル31.3gとトルエン6gの混合溶液を滴下装入し、さらにpHをpH12±0.5に保ちながら1時間撹拌した。塩酸を滴下装入してpHを1.5に調整後、60℃に昇温して分液した。有機層を共沸脱水した後、攪拌装置のついた500ml4つ口フラスコに移液し、DMF0.7gを装入して40℃に冷却し、ホスゲンを30g吹き込んだ後、40℃を保ちながらさらに2時間撹拌した。Nを吹き込んで、余剰ホスゲンを追い出した後、減圧濃縮して、油状の残渣54g得た。攪拌装置のついた1000ml4つ口フラスコに10wt%NH3水溶液310gを装入して5℃に冷却し、15℃以下を保ちながら上記残渣を滴下した。滴下終了後、10℃で3時間撹拌した後に、析出物を濾過し減圧乾燥した。得られた白色固体の化合物は、表題の化合物であった。
収量 41.2g(収率86%)
H NMR (DMSO-d6)δ0.85(3H,d,J=6.34Hz),0.87(3H, d,J=6.83Hz),1.47(2H,m), 1.59(1H,m), 3.96(1H,m), 4.69(2H,m),6.98(1H,s),7.36(1H,s),7.74(1H,d,J=8.29Hz).
(実施例16)N-(2,2,2-トリフルオロエトキシカルボニル)-L-ロイシノニトリルの合成
Figure JPOXMLDOC01-appb-C000056
 トルエン50mlにN-(2,2,2-トリフルオロエトキシカルボニル)-L-ロイシンアミド5.0gとDMF5mlを加えて室温で攪拌し、オキサリルクロリド3.05gを含むトルエン5mlを注意深く滴下した。同温で2時間攪拌した後に、水50mlを加えて分液した。さらに、分離した有機層を水50mlで洗浄した後に、減圧下で溶媒留去した。次いで、カラムクロマトグラフィーによって精製を行った。得られた白色固体は、表題の化合物であった。
黄色油状物質 収量 4.41g(収率95%)
H NMR (CDCl3)δ0.99(6H,d,J=6.34Hz),1.70-1.90(3H,m),4.47(1H,m),4.53(1H,m),4.62 (1H,m),5.31(1H,brd).
(実施例17)(2S)-4-メチル-N2-(2,2,2-トリフルオロエトキシカルボニル)-ペンタン-1,2-ジアミン塩酸塩の合成
Figure JPOXMLDOC01-appb-C000057
 IPA 40mlに酢酸6.0g、5%パラジウムカーボン(水分49.5%、N.E.Chem社製)0.5g、蟻酸アンモニウム3.2gを順次加えて十分攪拌した。これにN-(2,2,2-トリフルオロエトキシカルボニル)-L-イソロイシノニトリル2.5gを含むIPA10mlを室温で滴下した後に、同温で2.5時間攪拌した。触媒を濾去した後に減圧下で溶媒留去を行い、残渣に水、酢酸エチルを加えた。次いで、水層のpHが約10になるまで炭酸カリウムを加えて分液した。分離した有機層に硫酸ナトリウムを加えて乾燥し濾過した後に、4Nの塩化水素―酢酸エチル溶液を加えた。減圧下で濃縮すると白色の固体が析出し、これを濾取することにより表題の化合物を得た。
淡桃色固体 収量2.32g(収率79%)
H NMR (DMSO-d6)δ0.86(3H,d,J=6.34Hz),0.88(3H,d,J=6.34Hz),1.27(1H,m),1.36(1H,m),1.56(1H,m),2.73(1H,dd,J=8.78,12.69Hz),2.82(1H,dd,J=4.39,12.69Hz),3.76(1H,m),4.57(1H,m),4.69(1H,m),7.67(1H,d,J=8.78Hz),8.06 (3H,brs).
(実施例18)(2S)-4-メチル-N1-トルオイル-N2-(2,2,2-トリフルオロエトキシカルボニル)-ペンタン-1,2-ジアミンの合成
Figure JPOXMLDOC01-appb-C000058
 炭酸水素ナトリウム0.45gを含む水7mlに、酢酸エチル5mlと(2S)-4-メチル-N2-(2,2,2-トリフルオロエトキシカルボニル)-ペンタン-1,2-ジアミン塩酸塩0.5gを加えて攪拌し、これにトルイル酸クロリド0.33gを滴下した。室温で2.5時間攪拌した後に、分液した。有機層に硫酸ナトリウムを加えて乾燥し濾過した後に、溶液を減圧下で濃縮した。さらにIPE8mlを加えて、析出物を十分に洗浄した後に濾取した。得られた白色固体は表題の化合物であった。
白色固体 収量0.56g(収率87%)
H NMR (CDCl3)δ0.94(3H,d,J=6.34Hz),0.95(3H,d,J=6.34Hz),1.38(1H,m),1.43(1H,m), 1.70(1H,s),2.39(3H,s),3.49 (1H,m),3.53(1H,m),3.92(1H,m), 4.41(2H,m),5.19(1H, d,J=8.78Hz),6.71 (1H,brs),7.22(2H,d, J=7.81Hz),7.65(2H,d,J=7.81Hz).
(実施例19)N-(2,2,2-トリフルオロエトキシカルボニル)―L―フェニルアラニンの合成
Figure JPOXMLDOC01-appb-C000059
 攪拌装置のついた500ml4つ口フラスコに、L-フェニルアラニン25.6g、水40gを装入して5℃に冷却し、32wt%NaOHでpHを12に調整した。pH12±0.5および10℃以下を保ちながら、クロロギ酸2,2,2-トリフルオロエチル25.4gとトルエン200gの混合溶液を滴下装入し、さらにpHをpH12±0.5に保ちながら1時間撹拌した。塩酸を滴下装入してpHを1.5に調整後、60℃に昇温して分液した。有機層を減圧濃縮して得られた白色固体の化合物は、表題の化合物であった。
収量 43.3g(収率96%)
H NMR (CDCl3)δ3.11-3.16(1H,m),3.21-3.26(1H,m),4.40-4.52(2H,m),4.66-4.72(1H,m),5.36(1H,d,J=8.30Hz),7.17(2H,d,J=6.35Hz), 7.29-7.33(3H,m).
LC-MS M+1(292)
(実施例20)N-(2,2,2-トリフルオロエトキシカルボニル)―L―フェニルアラニノクロリドの合成の合成
Figure JPOXMLDOC01-appb-C000060
 攪拌装置のついた200ml4つ口フラスコに、塩化メチレン10g、N-(2,2,2-トリフルオロエトキシカルボニル)―L―フェニルアラニン1.0g、DMF1滴を装入して5℃に冷却し、塩化オキサリルを0.70g滴下後、5℃を保ちながらさらに2時間撹拌した。減圧濃縮し、得られた残渣にn-ヘキサン100gを装入し、5℃に冷却した。3時間撹拌した後に、析出物を窒素気流下で濾過し、n-ヘキサンで洗浄後、室温で減圧乾燥した。得られた白色固体の化合物は、表題の化合物であった。
収量 1.0g(収率94%)
H NMR (CDCl3)δ3.28(2H,d,J=5.86Hz), 4.35-4.55(2H,m),4.85-4.90(1H,m),5.32(1H,br),7.16-7.20(2H,m), 7.31-7.36(3H,m).
IR(ATR法)cm-13309,3064,3034,2979,2938,1782,1714,1536,1495,1455,1421, 1304,1278,1250,1164,1068,1036,958,938,881,857,768,718,661,628,565,536,524,494.
(実施例21)N-(2,2,2-トリフルオロエトキシカルボニル)―L―フェニルアラニンアミドの合成
Figure JPOXMLDOC01-appb-C000061
 攪拌装置のついた500ml4つ口フラスコに、L-フェニルアラニン16.5g、水35gおよびトルエン75gを装入して5℃に冷却し、32wt%NaOHでpHを12に調整した。pH12±0.5および10℃以下を保ちながら、クロロギ酸2,2,2-トリフルオロエチル17gとトルエン6gの混合溶液を滴下装入し、さらにpHをpH12±0.5に保ちながら1時間撹拌した。塩酸を滴下装入してpHを1.5に調整後、60℃に昇温して分液した。有機層を共沸脱水した後、攪拌装置のついた500ml4つ口フラスコに移液し、DMF0.4gを装入して40℃に冷却し、ホスゲンを30g吹き込んだ後、40℃を保ちながらさらに2時間撹拌した。Nを吹き込んで、余剰ホスゲンを追い出した後、減圧濃縮して、油状の残渣34g得た。攪拌装置のついた1000ml4つ口フラスコに10wt%NH3水溶液200gを装入して5℃に冷却し、15℃以下を保ちながら上記残渣を滴下した。滴下終了後、10℃で3時間撹拌した後に、析出物を濾過し減圧乾燥した。得られた白色固体の化合物は、表題の化合物であった。
収量 24.9g(収率86%)
H NMR (DMSO-d6)δ2.75(1H,m),2.99(1H,m),4.15(1H,m),4.57(2H,m),7.09(1H,brs),7.20(1H,m),7.24(1H,m),7.27(3H,m),7.51(1H,brs),7.85(1H,d,J=8.19Hz).
(実施例22)N-(2,2,2-トリフルオロエトキシカルボニル)―L―フェニルアラニノニトリルの合成
Figure JPOXMLDOC01-appb-C000062
 トルエン50mlにN-(2,2,2-トリフルオロエトキシカルボニル)―L―フェニルアラニンアミド5.0gとDMF5mlを加えて室温で攪拌し、オキサリルクロリド3.05gを含むトルエン5mlを注意深く滴下した。同温で2時間攪拌した後に、水50mlを加えて分液した。さらに、分離した有機層を水50mlで洗浄した後に、減圧下で溶媒留去した。次いで、カラムクロマトグラフィーによって精製を行った。得られた白色固体は、表題の化合物であった。
白色固体 収量 3.97g(収率85%)
H NMR (CDCl3)δ3.13(2H,m),4.49(2H,m),4.86(1H,m),5.29(1H,brd),7.28 (2H,m), 7.37 (3H,m).
(実施例23)(2S)-N2-(2,2,2-トリフルオロエトキシカルボニル)-3-フェニル-プロパン-1,2-ジアミン塩酸塩の合成
Figure JPOXMLDOC01-appb-C000063
 IPA 40mlに酢酸6.0g、5%パラジウムカーボン(水分49.5%、N.E.Chem社製)0.5g、蟻酸アンモニウム3.2gを順次加えて十分攪拌した。これにN-(2,2,2-トリフルオロエトキシカルボニル)―L―フェニルアラニノニトリル2.0gを含むIPA10mlを室温で滴下した後に、同温で2.5時間攪拌した。触媒を濾去した後に減圧下で溶媒留去を行い、残渣に水、酢酸エチルを加えた。次いで、水層のpHが約10になるまで炭酸カリウムを加えて分液した。分離した有機層に硫酸ナトリウムを加えて乾燥し濾過した後に、4Nの塩化水素―酢酸エチル溶液を加えた。減圧下で濃縮すると白色の固体が析出し、これを濾取することにより表題の化合物を得た。
白色固体 収量2.04g(収率88%)
H NMR (DMSO-d6)δ2.72(1H,m),2.85(3H,m),3.91(1H,m),4.56(2H,m),7.21(3H,m),7.30(2H,m),7.80(1H,d,J=8.78Hz),8.09 (3H,brs).
(実施例24)(2S)-N1-トルオイル-N2-(2,2,2-トリフルオロエトキシカルボニル)-3-フェニル-プロパン-1,2-ジアミンの合成
Figure JPOXMLDOC01-appb-C000064
 炭酸水素ナトリウム0.45gを含む水7mlに、酢酸エチル5mlと(2S)-N2-(2,2,2-トリフルオロエトキシカルボニル)-3-フェニル-プロパン-1,2-ジアミン塩酸塩0.3gを加えて攪拌し、これにトルイル酸クロリド0.18を滴下した。室温で2.5時間攪拌した後に、分液した。有機層に硫酸ナトリウムを加えて乾燥し濾過した後に、溶液を減圧下で濃縮した。さらにIPE8mlを加えて、析出物を十分に洗浄した後に濾取した。得られた白色固体は表題の化合物であった。
白色固体 収量0.35g(収率93%)
H NMR (CDCl3)δ2.39(3H,s),2.83(1H,dd,J=7.81,14.15Hz),3.00(1H,dd,J=6.83,14.15Hz), 3.53(1H,m),3.59(1H,m), 4.11(1H,m),4.40(2H,m),5.63(1H, d,J=7.81Hz),6.52 (1H,brs),7.24 (5H,m),7.33(2H,m),7.62(2H,d,J=7.81Hz).
(実施例25)N-(2,2,2-トリフルオロエトキシカルボニル)―L―プロリンの合成
Figure JPOXMLDOC01-appb-C000065
 攪拌装置のついた500ml4つ口フラスコに、L-プロリン25.4g、水50gを装入して5℃に冷却し、32wt%NaOHでpHを12に調整した。pH12±0.5および10℃以下を保ちながら、クロロギ酸2,2,2-トリフルオロエチル36.2gとトルエン100gの混合溶液を滴下装入し、さらにpHをpH12±0.5に保ちながら1時間撹拌した。塩酸を滴下装入してpHを1.5に調整後、60℃に昇温して分液した。有機層を減圧濃縮して得られた油状物質の化合物は、表題の化合物であった。
収量 51.1g(収率96%)
H NMR (CDCl3)δ1.92-2.03(2H,m),2.12-2.16(1H,m),2.23-2.38(1H,m),3.48-3.57(1H,m),3.59-3.67(1H,m),4.38-4.49(2H,m),4.51-4.61(1H,m).
LC-MS M+1(242)
(実施例26)N-(2,2,2-トリフルオロエトキシカルボニル)―L―プロリノクロリドの合成
Figure JPOXMLDOC01-appb-C000066
 攪拌装置のついた200ml4つ口フラスコに、塩化メチレン10g、N-(2,2,2-トリフルオロエトキシカルボニル)―L―プロリン1.0g、DMF1滴を装入して5℃に冷却し、塩化オキサリルを0.70g滴下後、5℃を保ちながらさらに2時間撹拌した。減圧濃縮し、得られた油状の残渣に塩化メチレン10gを加えて10min攪拌後、減圧濃縮したところ、油状物質が得られた。得られた油状物質の化合物は、表題の化合物であった。
収量 1.07g(収率99%)
H NMR (CDCl3)δ1.95-2.07(2H,m),2.22-2.45(2H,m),3.50-3.70(2H,m),4.40-4.60(2H,m),4.65-4.70(1H,m).
IR(ATR法)cm-12979,1787,1720,1421,1385,1276,1160,1124,969,874,838, 761,702,648,595,531,442.
(実施例27)N-(2,2,2-トリフルオロエトキシカルボニル)―L―プロリンアミドの合成
Figure JPOXMLDOC01-appb-C000067
 攪拌装置のついた500ml4つ口フラスコに、L-プロリン11.5g、水30gおよびトルエン60gを装入して5℃に冷却し、32wt%NaOHでpHを12に調整した。pH12±0.5および10℃以下を保ちながら、クロロギ酸2,2,2-トリフルオロエチル17gとトルエン6gの混合溶液を滴下装入し、さらにpHをpH12±0.5に保ちながら1時間撹拌した。塩酸を滴下装入してpHを1.5に調整後、60℃に昇温して分液した。有機層を共沸脱水した後、攪拌装置のついた500ml4つ口フラスコに移液し、DMF0.4gを装入して40℃に冷却し、ホスゲンを30g吹き込んだ後、40℃を保ちながらさらに2時間撹拌した。Nを吹き込んで、余剰ホスゲンを追い出した後、減圧濃縮して、油状の残渣29g得た。攪拌装置のついた1000ml4つ口フラスコに10wt%NH3水溶液200gを装入して5℃に冷却し、15℃以下を保ちながら上記残渣を滴下した。滴下終了後、10℃で3時間撹拌した後に、析出物を濾過し減圧乾燥した。得られた白色固体の化合物は、表題の化合物であった。
収量 20.6g(収率86%)
H NMR (DMSO-d6)δ1.82(3H,m),2.16(1H,m),3.38(1H,m),3.46(1H,m),4.13 (1H,m),4.6-4.7(2H,m),6.99(1H,s),7.41(1H,s).
(実施例28)N-(2,2,2-トリフルオロエトキシカルボニル)―L―プロリノニトリルの合成
Figure JPOXMLDOC01-appb-C000068
 トルエン50mlにN-(2,2,2-トリフルオロエトキシカルボニル)―L―プロリンアミド5.0gとDMF5mlを加えて室温で攪拌し、オキサリルクロリド3.05gを含むトルエン5mlを注意深く滴下した。同温で2時間攪拌した後に、水50mlを加えて分液した。さらに、分離した有機層を水50mlで洗浄した後に、減圧下で溶媒留去した。次いで、カラムクロマトグラフィーによって精製を行った。得られた白色固体は、表題の化合物であった。
黄色透明油状物質 収量 4.13g(収率89%)
H NMR (CDCl3)δ2.1-2.3(4H,m),3.46(1H,m),3.63(1H,m),4.49(1H,m),4.61 (2H,m).
(実施例29)(2S) -N-(2,2,2-トリフルオロエトキシカルボニル)-2-(アミノメチル)-ピロリジン塩酸塩の合成
Figure JPOXMLDOC01-appb-C000069
 IPA 40mlに酢酸6.0g、5%パラジウムカーボン(水分49.5%、N.E.Chem社製)0.5g、蟻酸アンモニウム3.2gを順次加えて十分攪拌した。これにN-(2,2,2-トリフルオロエトキシカルボニル)―L―プロリノニトリル2.0gを含むIPA10mlを室温で滴下した後に、同温で2.5時間攪拌した。触媒を濾去した後に減圧下で溶媒留去を行い、残渣に水、酢酸エチルを加えた。次いで、水層のpHが約10になるまで炭酸カリウムを加えて分液した。分離した有機層に硫酸ナトリウムを加えて乾燥し濾過した後に、4Nの塩化水素―酢酸エチル溶液を加えた。減圧下で濃縮すると白色の固体が析出し、これを濾取することにより表題の化合物を得た。
白色固体 収量1.67g(収率71%)
H NMR (DMSO-d6)δ1.8-2.0(4H,m),2.86(1H,m),2.96(1H,m),3.38(2H,m),4.03(1H,m),4.69 (2H,m),8.19(3H,brs).
(実施例30)(2S) -N-(2,2,2-トリフルオロエトキシカルボニル)-2-(N-トルオイル-アミノメチル)-ピロリジンの合成
Figure JPOXMLDOC01-appb-C000070
 炭酸水素ナトリウム0.45gを含む水7mlに、酢酸エチル5mlと((2S) -N-(2,2,2-トリフルオロエトキシカルボニル)-2-(アミノメチル)-ピロリジン塩酸塩0.5gを加えて攪拌し、これにトルイル酸クロリド0.33gを滴下した。室温で2.5時間攪拌した後に、分液した。有機層に硫酸ナトリウムを加えて乾燥し濾過した後に、溶液を減圧下で濃縮した。さらにIPE8mlを加えて、析出物を十分に洗浄した後に濾取した。得られた白色固体は表題の化合物であった。
白色固体 収量0.50g(収率80%)
H NMR (CDCl3)δ1.8-2.2(4H,m),2.39(3H,s), 3.4-3.5(3H,s),3.68(1H,m),4.19 (1H,m),4.52(2H,m),7.23(2H,d,J=8.29Hz), 7.72(2H,d,J=8.29Hz),7.79(1H,brs).
(実施例31)N-(2,2,2-トリフルオロエトキシカルボニル)―L―バリンの合成
Figure JPOXMLDOC01-appb-C000071
 攪拌装置のついた1000ml4つ口フラスコに、L-バリン100g、水150gを装入して5℃に冷却し、32wt%NaOHでpHを12に調整した。pH12±0.5および10℃以下を保ちながら、クロロギ酸2,2,2-トリフルオロエチル140gとトルエン400gの混合溶液を滴下装入し、さらにpHをpH12±0.5に保ちながら1時間撹拌した。塩酸を滴下装入してpHを1.5に調整後、60℃に昇温して分液した。有機層を減圧濃縮して得られた白色固体の化合物は、表題の化合物であった。
収量 203.4g(収率98%)
H NMR (CDCl3)δ0.96(3H,d,J=6.84Hz),1.03(3H, d,J=6.84Hz),2.20-2.30(1H,m),4.35(1H,dd, J=6.84,8.79Hz),4.42-4.55(2H,m),5.41(1H, d,J=8.79Hz).
LC-MS M+1(244)
(実施例32)N-(2,2,2-トリフルオロエトキシカルボニル)―L―バリルクロリドの合成
Figure JPOXMLDOC01-appb-C000072
 攪拌装置のついた200ml4つ口フラスコに、トルエン20.4g、N-(2,2,2-トリフルオロエトキシカルボニル)―L―バリン13.6g、N,N-ジメチルホルムアミド(以下DMF)0.17gを装入して40℃に昇温し、ホスゲンを9.4g吹き込んだ後、40℃を保ちながらさらに2時間撹拌した。Nを吹き込んで、余剰ホスゲンを追い出した後、減圧濃縮して、油状の残渣16g得た。攪拌装置のついた300ml4つ口フラスコにn-ヘキサン50gを装入し、上記油状残渣をゆっくり加えた後5℃に冷却した。3時間撹拌した後に、析出物を窒素気流下で濾過し、n-ヘキサンで洗浄後、室温で減圧乾燥した。得られた白色固体の化合物は、表題の化合物であった。
収量 13.6g(収率93%)
H NMR (CDCl3)δ0.97(3H,d,J=6.6Hz),1.08(3H, d,J=7.3Hz),2.45-2.49(1H,m),4.43-4.57(3H,m),5.36(1H,br).
IR(ATR法)cm-13330,2974,1797,1717,1519,1468,1413,1283,1231,1162,1116, 1036,980,961,927,838,797,768,639,549,493,450.
(実施例33)N-(2,2,2-トリフルオロエトキシカルボニル)―L―バリンアミドの合成
Figure JPOXMLDOC01-appb-C000073
 攪拌装置のついた1000ml4つ口フラスコに、トルエン407g、N-(2,2,2-トリフルオロエトキシカルボニル)―L―バリン196g、N,N-ジメチルホルムアミド(以下DMF)5.9gを装入して55℃に昇温し、ホスゲンを95.8g吹き込んだ後、55℃を保ちながらさらに2時間撹拌した。Nを吹き込んで、余剰ホスゲンを追い出した後、減圧濃縮して、油状の残渣223gを得た。攪拌装置のついた2000ml4つ口フラスコに10wt%NH3水溶液1390gを装入して5℃に冷却し、15℃以下を保ちながら上記残渣を滴下した。滴下終了後、10℃で3時間撹拌した後に、析出物を濾過し減圧乾燥した。得られた白色個体の化合物は、表題の化合物であった。キラルカラムを用いたHPLCで分析した結果、D体は検出されなかった(検出限界0.02%)。
収量 177.8g(収率91%)
H NMR (DMSO-d6)δ0.84(3H,d,J=6.83Hz),0.86(3H, d,J=6.83Hz),1.98(1H,m),3.78(1H,dd, J=6.83,8.78Hz),4.64(2H,m),7.05(1H,brs),7.37(1H,brs), 7.61(1H, d,J=8.78Hz).
(実施例34)N-(2,2,2-トリフルオロエトキシカルボニル)―L―バリンアミドの合成
Figure JPOXMLDOC01-appb-C000074
 攪拌装置のついた200ml4つ口フラスコに、L-バリン18g、水22gおよびトルエン52gを装入して5℃に冷却し、32wt%NaOHでpHを12に調整した。pH12±0.5および10℃以下を保ちながら、クロロギ酸2,2,2-トリフルオロエチル25.7gとトルエン6.4gの混合溶液を滴下装入し、さらにpHをpH12±0.5に保ちながら1時間撹拌した。塩酸を滴下装入してpHを1.5に調整後、60℃に昇温して分液した。有機層を共沸脱水した後、攪拌装置のついた200ml4つ口フラスコに移液し、DMF0.5gを装入して40℃に冷却し、ホスゲンを23.5g吹き込んだ後、40℃を保ちながらさらに2時間撹拌した。Nを吹き込んで、余剰ホスゲンを追い出した。攪拌装置のついた200ml4つ口フラスコにDMF67.6gを装入して5℃に冷却した後、上記反応溶液を滴下装入した。15℃以下を保ちながら、NH3ガス6.3gを吹き込み、さらに15℃以下を保ちながら1時間撹拌した。余剰NH3を減圧除去した後、水およびアセトニトリルを加えて均一溶液とし、HPLCで分析した結果、表記化合物が36.1g(収率97%)得られていた。
(実施例35)N-(2,2,2-トリフルオロエトキシカルボニル)―L―バリノニトリルの合成
Figure JPOXMLDOC01-appb-C000075
 トルエン350mlにN-(2,2,2-トリフルオロエトキシカルボニル)―L―バリンアミド35.0gとDMF35mlを加えて室温で攪拌し、オキサリルクロリド22.01gを含むトルエン35mlを注意深く滴下した。同温で2時間攪拌した後に、水350mlを加えて分液した。さらに分離した有機層を水350mlで洗浄した後に、減圧下で溶媒留去した。次いで、蒸留することによって、0.3mmHgにおける116-122℃の留分を分取した。得られた無色透明油状物質は表題の化合物であった。
収量 29.89g(収率92%)
H NMR (CDCl3)δ1.10(3H,d,J=6.83Hz),1.12(3H, d,J=6.83Hz),2.09(1H,sept, J=6.83Hz),4.4-4.6(3H,m),5.31(1H,brd).
(実施例36)予めVilsmeier試薬を調整する方法でのN-(2,2,2-トリフルオロエトキシカルボニル)―L―バリノニトリルの合成
 DMF1mlを含むトルエン5mlに、オキサリルクロリド433μlを含むトルエン5ml溶液を室温で滴下した。30分間攪拌した後に、N-(2,2,2-トリフルオロエトキシカルボニル)―L―バリンアミド1.0gを装入して3時間反応した。水で有機層を洗浄した後に、シリカゲルクロマトグラフィーにて精製することにより、N-(2,2,2-トリフルオロエトキシカルボニル)―L―バリノニトリルが得られた。
 収量 0.92g(収率>99%)
(実施例37)ホスゲンを使用して予めVilsmeier試薬を調整する方法でのN-(2,2,2-トリフルオロエトキシカルボニル)―L―バリノニトリルの合成
 DMF5.9mlを含むトルエン50mlに、ホスゲン6.7gを5℃下で吹き込んだ。30分間攪拌した後に、N-(2,2,2-トリフルオロエトキシカルボニル)―L―バリンアミド7.4gを装入して3時間反応した。水で有機層を洗浄した後に、シリカゲルクロマトグラフィーにて精製することにより、N-(2,2,2-トリフルオロエトキシカルボニル)―L―バリノニトリルが得られた。
 収量 6.80g(収率>99%)
(実施例38)(2S)-3-メチル-N2-(2,2,2-トリフルオロエトキシカルボニル)―ブタン―1,2-ジアミン塩酸塩の合成
Figure JPOXMLDOC01-appb-C000076
 IPA 180mlに酢酸26.8g、5%パラジウムカーボン(水分49.5%、N.E.Chem社製)2.0g、蟻酸アンモニウム14.1gを順次加えて十分攪拌した。これにN-(2,2,2-トリフルオロエトキシカルボニル)―L―バリノニトリル10.0gを含むIPA10mlを室温で滴下した後に、同温で2.5時間攪拌した。触媒を濾去した後に減圧下で溶媒留去を行い、残渣に水、酢酸エチルを加えた。次いで、水層のpHが約10になるまで炭酸カリウムを加えて分液した。分離した有機層に硫酸ナトリウムを加えて乾燥し濾過した後に、4Nの塩化水素―酢酸エチル溶液を加えた。減圧下で濃縮すると白色の固体が析出し、これを濾取することにより表題の化合物を得た。
白色固体 収量10.5g(収率89%)
H NMR (DMSO-d6)δ0.83(3H,d,J=6.83Hz),0.85(3H,d,J=6.83Hz),1.77(1H,sept,J=6.83Hz),2.74(1H,dd,J=9.76,13.17Hz),2.93(1H,dd,J=3.42,13.17Hz),3.54(1H,m),4.55(1H,m),4.73(1H,m),7.67(1H,d,J=9.27Hz),8.02 (3H,brs).
(実施例39)オートクレーブを使用し、原料をフィードする方法での(2S)-3-メチル-N2-(2,2,2-トリフルオロエトキシカルボニル)―ブタン―1,2-ジアミン塩酸塩の合成
 オートクレーブ中、酢酸47.8g、5%パラジウムカーボン(水分49.5%、N.E.Chem社製)4.0gを含むIPA50mlを水素ガスにて0.95MPaにした後に、N-(2,2,2-トリフルオロエトキシカルボニル)―L―バリノニトリル19.8gを含むIPA111mlを20℃下、6時間かけてフィードした。フィード終了後、30分間攪拌した後に、触媒を除去して減圧下で濃縮を行った。この時点で、高速液体クロマトグラフィーにて表題の化合物のフリー体を定量すると、反応収率99%であった。残渣に水と酢酸を加えて、次いで水層を8重量%水酸化ナトリウム水溶液でpH10.7にした後に分液した。有機層を硫酸ナトリウムで乾燥して濾過した後に4Nの塩化水素―酢酸エチル溶液20mlを加えた。減圧下で濃縮すると白色の固体が析出し、これを濾取することにより表題の化合物を得た。
収量 22.2g(95%)
(実施例40)(2S) -3-メチル-N1-トルオイル-N2-(2,2,2-トリフルオロエトキシカルボニル)―ブタン-1,2-ジアミンの合成(その1)
Figure JPOXMLDOC01-appb-C000077
 炭酸水素ナトリウム1.91gを含む水25mlに、酢酸エチル20mlと(2S)-3-メチル-N2-(2,2,2-トリフルオロエトキシカルボニル)―ブタン―1,2-ジアミン塩酸塩2.0gを加えて攪拌し、これにトルイル酸クロリド1.40gを滴下した。室温で2.5時間攪拌した後に、分液した。有機層に硫酸ナトリウムを加えて乾燥し濾過した後に、濾液を減圧下で濃縮した。さらにIPE30mlを加えて、析出物を十分に洗浄した後に濾取した。得られた白色固体は表題の化合物であった。
収量 2.33g(収率89%)
H NMR (CDCl3)δ0.96-1.03(6H,m),1.85-1.91(1H, m),2.39(3H,s),3.46-3.51(1H,m),3.61-3.72(2H,m),4.35-4.46(2H,m),5.26(1H,d,J=8.30Hz),6.62(1H,brs),7.21-7.23(2H,m),7.63-7.65(2H,m).
(実施例41)(2S) -3-メチル-N1-トルオイル-N2-(2,2,2-トリフルオロエトキシカルボニル)―ブタン-1,2-ジアミンの合成(その2)
 酢酸エチル20mlと水30mlの混合溶液に(2S)-3-メチル-N2-(2,2,2-トリフルオロエトキシカルボニル)―ブタン―1,2-ジアミン塩酸塩2.0gを加えた後に、8重量%水酸化ナトリウム溶液でpH8に調整した。次いで、トルイル酸クロリド1.4gを含む酢酸エチル溶液と8重量%水酸化ナトリウム溶液をpH7.5~8.5に維持しながら滴下した。反応終了後分液し、有機層を硫酸ナトリウムで乾燥した。硫酸ナトリウムを除去した後に減圧下で溶媒留去して、次いでIPEを加えて析出物を濾取した。得られた白色固体は表題の化合物であった。
収量2.19g(収率84%)
(実施例42)N-(2,2,2-トリフルオロエトキシカルボニル)―D―バリンの合成
Figure JPOXMLDOC01-appb-C000078
 攪拌装置のついた1000ml4つ口フラスコに、D-バリン50.7g、水76gを装入して5℃に冷却し、32wt%NaOHでpHを12に調整した。pH12±0.5および10℃以下を保ちながら、クロロギ酸2,2,2-トリフルオロエチル72.5gとトルエン222gの混合溶液を滴下装入し、さらにpHをpH12±0.5に保ちながら1時間撹拌した。塩酸を滴下装入してpHを1.5に調整後、60℃に昇温して分液した。有機層を減圧濃縮して得られた白色固体の化合物は、表題の化合物であった。
収量 102.4g(収率97.3%)
H NMR (CDCl3)δ0.96(3H,d,J=6.84Hz),1.03(3H, d,J=6.84Hz),2.20-2.30(1H,m),4.35(1H,dd, J=6.84,8.79Hz),4.42-4.55(2H,m),5.40(1H, d,J=8.79Hz).
(実施例43)N-(2,2,2-トリフルオロエトキシカルボニル)―D―バリンアミドの合成
Figure JPOXMLDOC01-appb-C000079
 攪拌装置のついた500ml4つ口フラスコに、トルエン181g、N-(2,2,2-トリフルオロエトキシカルボニル)―D―バリン86.6g、DMF1.3gを装入して50℃に昇温し、ホスゲンを58.5g吹き込んだ後、50℃を保ちながらさらに2時間撹拌した。Nを吹き込んで、余剰ホスゲンを追い出した。攪拌装置のついた2000ml4つ口フラスコにDMF161gを装入して5℃に冷却した後、上記反応溶液を滴下装入した。15℃以下を保ちながら、NH3ガス15.2gを吹き込み、さらに15℃以下を保ちながら1時間撹拌した。余剰NH3を減圧除去した後、水およびアセトニトリルを加えて均一溶液とし、HPLCで分析した結果、表記化合物が78.5g(収率91%)得られていた。キラルカラムを用いたHPLCで分析した結果、L体は検出されなかった(検出限界0.02%)。
H NMR (DMSO-d6)δ0.83(3H,d,J=6.84Hz),0.85(3H, d,J=6.84Hz),1.92-1.97(1H,m),3.77(1H,dd, J=6.84,8.79Hz),4.64(2H,m),7.04(1H,brs),7.37(1H,brs), 7.59(1H, d,J=8.79Hz).

Claims (14)

  1.  一般式(1)
    Figure JPOXMLDOC01-appb-C000080
    (式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基、もしくは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基を表し、Rは水素、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表し、また、RとRが炭素原子数2~5で結合した環構造を形成してもよく、或いはRまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。)で表される化合物を、アンモニアと反応させることにより一般式(2)
    Figure JPOXMLDOC01-appb-C000081
    (式中、R、R、RおよびRは前記の通り。)で表される化合物を製造する方法。
  2.  前記一般式(1)において式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基を表し、Rは水素、もしくは炭素数1~6のアルキル基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、もしくは置換または無置換のアリールアルキル基を表し、また、RとRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい、請求項1に記載の製造方法。
  3.  一般式(3)
    Figure JPOXMLDOC01-appb-C000082
    (式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基、もしくは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基を表し、Rは水素、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表し、また、RとRが炭素原子数2~5で結合した環構造を形成してもよく、或いはRまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。)で表される化合物を塩素化剤と反応させることにより、一般式(1)
    Figure JPOXMLDOC01-appb-C000083
    (式中、R、R、RおよびRは前記の通り。)で表される化合物に変換し、次いで、アンモニアと反応させることにより一般式(2)
    Figure JPOXMLDOC01-appb-C000084
    (式中、R、R、RおよびRは前記の通り。)で表される化合物を製造する方法。
  4.  前記一般式(3)において式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基を表し、Rは水素、もしくは炭素数1~6のアルキル基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、もしくは置換または無置換のアリールアルキル基を表し、また、RとRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい、請求項3に記載の製造方法。
  5.  一般式(4)
    Figure JPOXMLDOC01-appb-C000085
    (式中、Rは水素、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表し、また、RとRが炭素原子数2~5で結合した環構造を形成してもよく、或いはRまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。)で表される化合物と
    一般式(5)
    Figure JPOXMLDOC01-appb-C000086
    (式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基、もしくは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基を表す。)で表されるフッ素置換されたクロロギ酸アルキルを反応させることにより、一般式(3)
    Figure JPOXMLDOC01-appb-C000087
    (式中、R、R、RおよびRは前記の通り。)で表される化合物に変換し、次いで、塩素化剤と反応させることにより、一般式(1)
    Figure JPOXMLDOC01-appb-C000088
    (式中、R、R、RおよびRは前記の通り。)で表される化合物に変換し、次いで、アンモニアと反応させることにより一般式(2)
    Figure JPOXMLDOC01-appb-C000089
    (式中、R、R、RおよびRは前記の通り。)で表される化合物を製造する方法。
  6.  前記一般式(3)において式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基を表し、Rは水素、もしくは炭素数1~6のアルキル基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、もしくは置換または無置換のアリールアルキル基を表し、また、RとRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい、請求項5に記載の製造方法。
  7.  一般式(1)
    Figure JPOXMLDOC01-appb-C000090
    (式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基、もしくは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基を表し、Rは水素、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表し、また、RとRが炭素原子数2~5で結合した環構造を形成してもよく、或いはRまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。)で表される化合物。
  8.  前記一般式(1)において式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基を表し、Rは水素、もしくは炭素数1~6のアルキル基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、もしくは置換または無置換のアリールアルキル基を表し、また、RまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい、請求項7に記載の化合物。
  9.  一般式(3')
    Figure JPOXMLDOC01-appb-C000091
    (式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基、もしくは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基を表し、Rは水素、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基を表し、RとRは同時に水素である場合を除き、それぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表し、
    また、RとRが炭素原子数2~5で結合した環構造を形成してもよく、或いはRまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。)で表される化合物。
  10.  前記一般式(3')において式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基を表し、Rは水素、もしくは炭素数1~6のアルキル基を表し、RとRは同時に水素である場合を除き、それぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、もしくは置換または無置換のアリールアルキル基を表し、また、RまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい、請求項9に記載の化合物。
  11.  前記一般式(3')において式中、Rはトリフルオロエチル基を表し、Rは水素、もしくは炭素数1~6のアルキル基を表し、RとRは同時に水素である場合を除き、それぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、もしくは置換または無置換のアリールアルキル基を表し、また、RまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい、請求項9に記載の化合物。
  12.  一般式(1)
    Figure JPOXMLDOC01-appb-C000092
    (式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基、もしくは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基を表し、Rは水素、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表し、また、RとRが炭素原子数2~5で結合した環構造を形成してもよく、或いはRまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。)で表される化合物を、アンモニアと反応させることにより一般式(2)
    Figure JPOXMLDOC01-appb-C000093
    (式中、R、R、RおよびRは前記の通り。)で表される化合物に変換し、
    次いで、一般式(2)で表わされる化合物を脱酸素剤と反応させることにより一般式(6)
    Figure JPOXMLDOC01-appb-C000094
    (式中、R、R、RおよびRは前記の通り。)で表わされる化合物に変換し、
    次いで、一般式(6)で表わされる化合物を酸の存在下で接触水素化反応を行うことにより、一般式(7)
    Figure JPOXMLDOC01-appb-C000095
    (式中、R、R、RおよびRは前記の通り。)で表わされる化合物に変換し、
    次いで、一般式(7)で表わされる化合物を一般式(8)
    Figure JPOXMLDOC01-appb-C000096
    (式中、Rは置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表わし、Xは脱離基を表わす)で表わされる化合物と反応させることにより、一般式(9)
    Figure JPOXMLDOC01-appb-C000097
    (式中、R、R、R、RおよびRは前記の通り。)で表わされる化合物を製造する方法。
  13. 一般式(3)
    Figure JPOXMLDOC01-appb-C000098
    (式中、式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基、もしくは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基を表し、Rは水素、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表し、また、RとRが炭素原子数2~5で結合した環構造を形成してもよく、或いはRまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。)で表される化合物を塩素化剤と反応させることにより、一般式(1)
    Figure JPOXMLDOC01-appb-C000099
    (式中、R、R、RおよびRは前記の通り。)で表される化合物に変換し、次いで、一般式(1)で表わされる化合物を、アンモニアと反応させることにより一般式(2)
    Figure JPOXMLDOC01-appb-C000100
    (式中、R、R、RおよびRは前記の通り。)で表される化合物に変換し、
    次いで、一般式(2)で表わされる化合物を脱酸素剤と反応させることにより一般式(6)
    Figure JPOXMLDOC01-appb-C000101
    (式中、R、R、RおよびRは前記の通り。)で表わされる化合物に変換し、
    次いで、一般式(6)で表わされる化合物を酸の存在下で接触水素化反応を行うことにより、一般式(7)
    Figure JPOXMLDOC01-appb-C000102
    (式中、R、R、RおよびRは前記の通り。)で表わされる化合物に変換し、
    次いで、一般式(7)で表わされる化合物を一般式(8)
    Figure JPOXMLDOC01-appb-C000103
    (式中、Rは置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表わし、Xは脱離基を表わす)で表わされる化合物と反応させることにより、一般式(9)
    Figure JPOXMLDOC01-appb-C000104
    (式中、R、R、R、RおよびRは前記の通り。)で表わされる化合物を製造する方法。
  14.  一般式(4)
    Figure JPOXMLDOC01-appb-C000105
    (式中、Rは水素、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、置換または無置換のアリール基、もしくは置換または無置換のヘテロアリール基を表し、RとRはそれぞれ独立して、水素、置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表し、また、RとRが炭素原子数2~5で結合した環構造を形成してもよく、或いはRまたはRのどちらか一方とRが炭素原子数3~4で結合した環構造を形成してもよい。)で表される化合物と
    一般式(5)
    Figure JPOXMLDOC01-appb-C000106
    (式中、Rは少なくとも1つのフッ素原子で置換されている炭素数1~6のアルキル基、もしくは少なくとも1つのフッ素原子で置換されている炭素数3~6のシクロアルキル基を表す。)で表されるフッ素置換されたクロロギ酸アルキルを反応させることにより、一般式(3)
    Figure JPOXMLDOC01-appb-C000107
    (式中、R、R、RおよびRは前記の通り。)で表される化合物に変換し、次いで、塩素化剤と反応させることにより、一般式(1)
    Figure JPOXMLDOC01-appb-C000108
    (式中、R、R、RおよびRは前記の通り。)で表される化合物に変換し、次いで、一般式(1)で表わされる化合物を、アンモニアと反応させることにより一般式(2)
    Figure JPOXMLDOC01-appb-C000109
    (式中、R、R、RおよびRは前記の通り。)で表される化合物に変換し、
    次いで、一般式(2)で表わされる化合物を脱酸素剤と反応させることにより一般式(6)
    Figure JPOXMLDOC01-appb-C000110
    (式中、R、R、RおよびRは前記の通り。)で表わされる化合物に変換し、
    次いで、一般式(6)で表わされる化合物を酸の存在下で接触水素化反応を行うことにより、一般式(7)
    Figure JPOXMLDOC01-appb-C000111
    (式中、R、R、RおよびRは前記の通り。)で表わされる化合物に変換し、
    次いで、一般式(7)で表わされる化合物を一般式(8)
    Figure JPOXMLDOC01-appb-C000112
    (式中、Rは置換または無置換の炭素数1~6のアルキル基、置換または無置換の炭素数3~6のシクロアルキル基、置換または無置換のアリール基、置換または無置換のアリールアルキル基、置換または無置換のヘテロアリール基、もしくは置換または無置換のヘテロアリールアルキル基を表わし、Xは脱離基を表わす)で表わされる化合物と反応させることにより、一般式(9)
    Figure JPOXMLDOC01-appb-C000113
    (式中、R、R、R、RおよびRは前記の通り。)で表わされる化合物を製造する方法。
PCT/JP2011/005307 2010-09-22 2011-09-21 含フッ素カルバマート基を有するアミノ酸アミド誘導体の製造方法、その製造中間体、及びエチレンジアミン誘導体の製造方法 WO2012039132A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180044958.5A CN103124722B (zh) 2010-09-22 2011-09-21 具有含氟氨基甲酸酯基的氨基酸酰胺衍生物的制造方法、其制造中间体、及乙二胺衍生物的制造方法
JP2012534932A JP5568137B2 (ja) 2010-09-22 2011-09-21 含フッ素カルバマート基を有するアミノ酸アミド誘導体の製造方法、その製造中間体、及びエチレンジアミン誘導体の製造方法
KR1020137008216A KR101492351B1 (ko) 2010-09-22 2011-09-21 함불소 카바메이트기를 가지는 아미노산 아미드 유도체의 제조방법, 그 제조 중간체, 및 에틸렌디아민 유도체의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010212143 2010-09-22
JP2010-212143 2010-09-22

Publications (1)

Publication Number Publication Date
WO2012039132A1 true WO2012039132A1 (ja) 2012-03-29

Family

ID=45873631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005307 WO2012039132A1 (ja) 2010-09-22 2011-09-21 含フッ素カルバマート基を有するアミノ酸アミド誘導体の製造方法、その製造中間体、及びエチレンジアミン誘導体の製造方法

Country Status (4)

Country Link
JP (1) JP5568137B2 (ja)
KR (1) KR101492351B1 (ja)
CN (1) CN103124722B (ja)
WO (1) WO2012039132A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096046A (ja) * 2001-07-18 2003-04-03 Mitsui Chemicals Inc ジアミン誘導体、その製造方法およびそれらを有効成分とする殺菌剤
WO2005042474A1 (ja) * 2003-10-31 2005-05-12 Mitsui Chemicals, Inc. ジアミン誘導体、その製造方法およびそれらを有効成分とする植物病害防除剤
JP2006282508A (ja) * 2005-03-31 2006-10-19 Mitsui Chemicals Inc ジアミン誘導体、その製造方法およびそれらを有効成分とする植物病害防除剤
WO2007111024A1 (ja) * 2006-03-29 2007-10-04 Mitsui Chemicals, Inc. 含ハロゲンカルバマート基とアシル基を有するエチレンジアミン誘導体の製造方法、及びそれらの製造中間体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3560449D1 (en) * 1984-03-29 1987-09-17 Ciba Geigy Ag Substituted 1-propanoles, process for their production, chloroformic-acid esters ad their use
US4757151A (en) * 1985-11-14 1988-07-12 Warner-Lambert Company 2-substituted-[2-substituted-amino]-N-arylalkyl-3-[indol-3-yl]
ZA867951B (en) * 1985-11-14 1988-05-25 Warner Lambert Co 2-substituted-(2-substituted-amino)-n-arkylalkyl-3-(indol-3-yl)propanamides
DE19741235A1 (de) * 1997-09-18 1999-03-25 Hoechst Marion Roussel De Gmbh Neue Imidazolidinderivate, ihre Herstellung, ihre Verwendung und sie enthaltende pharmazeutische Präparate
BR0211291A (pt) * 2001-07-18 2004-08-03 Mitsui Chemicals Inc Derivados de diamina, processo para produção dos derivados de diamina e fungicidas contendo os derivados de diamina como ingrediente ativo
CN101652383B (zh) * 2006-11-16 2013-09-18 百时美施贵宝公司 丙型肝炎病毒抑制剂
US7888464B2 (en) * 2006-11-16 2011-02-15 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7741347B2 (en) * 2007-05-17 2010-06-22 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
CN101801925A (zh) * 2007-06-29 2010-08-11 吉里德科学公司 抗病毒组合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096046A (ja) * 2001-07-18 2003-04-03 Mitsui Chemicals Inc ジアミン誘導体、その製造方法およびそれらを有効成分とする殺菌剤
WO2005042474A1 (ja) * 2003-10-31 2005-05-12 Mitsui Chemicals, Inc. ジアミン誘導体、その製造方法およびそれらを有効成分とする植物病害防除剤
JP2006282508A (ja) * 2005-03-31 2006-10-19 Mitsui Chemicals Inc ジアミン誘導体、その製造方法およびそれらを有効成分とする植物病害防除剤
WO2007111024A1 (ja) * 2006-03-29 2007-10-04 Mitsui Chemicals, Inc. 含ハロゲンカルバマート基とアシル基を有するエチレンジアミン誘導体の製造方法、及びそれらの製造中間体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SYNTHETIC COMMUNICATIONS, vol. 24, no. 12, 1994, pages 1767 - 1772 *
TETRAHEDRON, vol. 46, no. 24, 1990, pages 8267 - 8290 *

Also Published As

Publication number Publication date
KR20130069781A (ko) 2013-06-26
JPWO2012039132A1 (ja) 2014-02-03
CN103124722B (zh) 2014-11-12
KR101492351B1 (ko) 2015-02-10
JP5568137B2 (ja) 2014-08-06
CN103124722A (zh) 2013-05-29

Similar Documents

Publication Publication Date Title
WO2010045900A1 (en) A method for the preparation of dabigatran and its intermediates
KR102384529B1 (ko) 4-알콕시-3-(아실 또는 알킬)옥시피콜린아미드의 제조 방법
ES2748324T3 (es) Método para producir un compuesto de indol
DK2958893T3 (en) Asymmetric synthesis of a substituted pyrrolidine-2-carboxamide
JP2006500407A (ja) チュブリン阻害剤の合成に有用な中間体の合成方法
JP5568137B2 (ja) 含フッ素カルバマート基を有するアミノ酸アミド誘導体の製造方法、その製造中間体、及びエチレンジアミン誘導体の製造方法
KR101327866B1 (ko) 미티글리나이드 칼슘염의 개선된 제조방법
JP5417384B2 (ja) 含ハロゲンカルバマート基とアシル基を有するエチレンジアミン誘導体の製造方法、及びそれらの製造中間体
JP5134834B2 (ja) 5,5−二置換−3−ピロリン−2−オン誘導体の製造方法
DE602005002738T2 (de) Syntheseverfahren und benzoxathiepinzwischenprodukte
JP2007070270A (ja) 3−アミノメチルオキセタン化合物の製法
CN110734430A (zh) 用于合成取代的γ内酰胺的方法
JP5003232B2 (ja) 新規光学活性環状アミノ酸およびその製造方法
JP3778843B2 (ja) 光学活性アミン誘導体および合成法
Liu et al. 4-(Nitro)-diphenylammonium triflate (NDPAT) catalysed esterification of carboxylic acids with alcohols
JP2002179665A (ja) 2(5h)−フラノン誘導体の製造方法
JPWO2005026108A1 (ja) N,n’−ジアルコキシ−n,n’−ジアルキルオキサミドの製法
JP2004026790A (ja) ピロリジン誘導体及びその製造方法
JP2002053536A (ja) スピロアミノピロリジン誘導体およびその製造法
JPH11279154A (ja) α、α’−ジアミノアルコール誘導体の製造法
KR20080086629A (ko) 광학적으로 순수한 옥소라이보스유도체의 제조방법
JP2006008639A (ja) (4r)又は(4s)−4−イソプロピル−5,5−ジアリール−2−オキサゾリジノンの製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044958.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826579

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012534932

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137008216

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11826579

Country of ref document: EP

Kind code of ref document: A1