WO2012038421A1 - Flammgeschützte schlagzähmodifizierte batteriegehäuse auf polycarbonatbasis i - Google Patents

Flammgeschützte schlagzähmodifizierte batteriegehäuse auf polycarbonatbasis i Download PDF

Info

Publication number
WO2012038421A1
WO2012038421A1 PCT/EP2011/066313 EP2011066313W WO2012038421A1 WO 2012038421 A1 WO2012038421 A1 WO 2012038421A1 EP 2011066313 W EP2011066313 W EP 2011066313W WO 2012038421 A1 WO2012038421 A1 WO 2012038421A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
weight
sum
components
component
Prior art date
Application number
PCT/EP2011/066313
Other languages
English (en)
French (fr)
Inventor
Thomas Eckel
Ulrich Grosser
Claus RÜDIGER
Achim Feldermann
Dieter Wittmann
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to KR1020137009759A priority Critical patent/KR101860359B1/ko
Priority to EP11760759.8A priority patent/EP2619264A1/de
Priority to CN201180056777.4A priority patent/CN103370369B/zh
Priority to MX2013003305A priority patent/MX2013003305A/es
Priority to BR112013006912A priority patent/BR112013006912A2/pt
Priority to CA2812292A priority patent/CA2812292A1/en
Publication of WO2012038421A1 publication Critical patent/WO2012038421A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • C08L69/005Polyester-carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/229Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to flame retardant impact-modified polycarbonate-based battery cases containing, as a graft polymer, a silicone-acrylate composite rubber and a phosphorus-containing flame retardant which have high low-temperature impact strength, good flame resistance with thin wall thickness, and excellent chemical resistance. Furthermore, the present invention relates to the use of the polycarbonate compositions according to the invention for the production of battery housings.
  • WO-A 2004/069914 discloses flame-retardant polycarbonate compositions containing polyalkyl (alkyl) acrylate and halogen-free oligophosphates which are free of polymers involved in the construction of butadiene, styrene or acrylonitrile.
  • compositions are characterized by good Bindenahtfestmaschine, chemical resistance, heat resistance, elongation at break and flowability.
  • the compositions of the present invention differ from the compositions according to WO-A 2004/069914 in that the compositions according to the invention contain no rubber-free polyalkyl (alkyl) acrylate.
  • WO-A 2002/046305 discloses impact-modified, flame-retardant polycarbonate compositions containing polycarbonate, impact modifier, phosphorus-containing flame retardants. The compositions are characterized by an improved impact strength in the low temperature range. However, WO-A 2002/046305 does not disclose any compositions containing a sliding impact modifier with a graft base of silicone-acrylate composite rubber.
  • EP-A 635547 discloses flame-retardant polycarbonate compositions containing polycarbonate, a copolymer gel, an acrylate or diene rubber based impact modifier, a flame retardant such as oligophosphate, and optionally an impact modifier having a diene rubber, acrylate rubber or EPDM rubber backbone. However, EP-A 635547 does not disclose any compositions containing a sliding impact modifier with a graft base of silicone-acrylate composite rubber.
  • No. 4,623,766 discloses flame-retardant polycarbonate compositions having an impact modifier with a graft base of silicone-acrylate composite rubber, wherein the weight ratio of impact modifier to phosphorus from the phosphoric acid ester is between 2 and 15.
  • the compositions have improved mechanical properties and Good Processing Behavior
  • the compositions of the present invention differ from the compositions of US 6423766 in that the compositions of the present invention have a higher weight ratio of toughening modifier to phosphorus from the phosphoric acid ester.
  • phosphorus compounds selected from the groups of mono- and oligomeric phosphoric and phosphonic acid esters, phosphonateamines, phosphazenes and phosphinates, wherein also Mixtures of several components selected from one or more of these groups can be used as flame retardants.
  • thermoplastic Vmyi (co) polymer E.I.
  • / or polyalkylene terephthalate E.2
  • the composition is free of thermoplastic vinyl (co) polymers (E.I.) and / or polyalkylene terephthalates (E.2), and
  • compositions are preferably free of non-rubbery polyalkyl (aikyl) acrylate, and wherein all parts by weight in the present application are normalized such that the amounts of the parts by weight of components A + B + C in composition 100 give the desired profile of properties.
  • Aromatic polycarbonates and / or aromatic polyester carbonates according to component A which are suitable according to the invention are known from the literature or can be prepared by literature processes (for example, see Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, 1964, and DE-AS 1 495 626, DE -A 2 232 877, DE-A 2 703 376, DE-A 2 714 544, DE-A 3 000 610, DE-A 3 832 396, for the preparation of aromatic polyester carbonates, z, B. DE-A 3 077 934) ,
  • Heteroatom-containing rings may be condensed
  • B is in each case C 1 to C 7 -alkyl, preferably methyl, halogen, preferably chlorine and / or bromine
  • x each independently 0, 1 or 2
  • p 1 or 0
  • R 7 and R 8 are individually selectable for each X 1 , independently of one another hydrogen or C 1 -C 4 -alkyl, preferably hydrogen, methyl or ethyl,
  • n is an integer from 4 to 7, preferably 4 or 5, with the proviso that on at least one atom X 1 , R 7 and R 8 are simultaneously aikyl.
  • Preferred diphenols are hydroquinone, resorcinol, dihydroxydiphenols, bis (hydroxyphenyl) C 1 -C 4 alkanes, bis (hydroxyphenyl) C 5 -C 6 cycloalkanes, bis (hydroxyphenyl) ethers, bis (hydroxyphenyl) sulfoxides, bis (hydroxyphenyl) ketones, bis (hydroxyphenyl) -sulfones and a, a-bis (hydroxyphenyl) -diisopropyl-benzenes and their comembromated and / or ring-chlorinated derivatives.
  • diphenols are 4,4'-dihydroxydiphenyl, bisphenol-A, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1,1-bis (4-hydroxyphenyl) -cyclohexane, 1, Bis (4-hydroxyphene) -3,3,5-trimethylcyclohexane, 4,4'-dihydroxydiphenylsulfide, 4,4'-dihydroxydiphenylsulfone and their di- and tetrabrominated or chlorinated derivatives such as, for example, 2,2-bis (3-chloro) 4-hydroxyphenyl) -propane, 2,2-bis (3,5-dichloro-4-hydrox'phenyl) -propane or 2,2-bis (3,5-dibromo-4-hydroxyphenyl) -propane.
  • 2,2-bis (4-hydroxyphenyl) propane bisphenol-A
  • the diphenols can be used individually or as any mixtures.
  • the diphenols are known
  • Suitable chain terminators for the preparation of the thermoplastic, aromatic polycarbonates are, for example, phenol, p-chlorophenol, p-tert-butylphenoi or 2,4,6-tribromophenol, but also long-chain alkylphenols, such as 4- [2- (2,4,4 -Trimethylpentyl)] - phenol, 4- (i, 3-tetramethyl-butyS) -phenol according to DE-A 2,842,005 or monoalkylphenol or dialkylphenols having a total of 8 to 20 carbon atoms in the alkyl substituents such as 3,5-di-tert.
  • the amount of chain terminators to be used is generally between 0.5 mol% mol% and 10 mol% mol%, based on the molar sum of the diphenols used in each case.
  • thermoplastic aromatic polycarbonates have weight average molecular weights (M w , measured, for example, by GPC, ultracentrifuge or scattered light measurement) of 10,000 to 200,000 g / mol, preferably 15,000 to 80,000 g / mol, more preferably 24,000 to 32,000 g / mol.
  • thermoplastic, aromatic polycarbonates may be branched in a known manner, preferably by incorporation of from 0.05 to 2.0 mol%, based on the sum of the diphenols used, of trifunctional or more than trifunctional compounds, for example those containing three and more phenolic groups.
  • both homopolycarbonates and copolycarbonates are suitable.
  • inventive copolycarbonates according to component A it is also possible to use from 1 to 25% by weight, preferably from 2.5 to 25% by weight, based on the total amount of diphenols to be used, of hydroxyaryloxy endblocked polydiorganosiloxanes. These are known (US Pat. No. 3,419,634) and can be prepared by literature methods. The preparation of polydiorganosiloxane-containing copolycarbonates is described in DE-A 3 334 782.
  • Preferred polycarbonates are, in addition to the bisphenol A homopolycarbonates, the copolycarbonates of bisphenol A with up to 15 mol%, based on the molar sums of diphenols, of other than preferred or particularly preferred diphenols, in particular 2,2-bis (3,5 dibromo-4-hydroxyphenyl) -propane.
  • Aromatic dicarboxylic acid dihalides for the preparation of aromatic polyester carbonates are preferably the diacid dichlorides of isophthalic acid, terephthalic acid, diphenyl ether-4,4'-dicarboxylic acid and naphthalene-2,6-dicarboxylic acid.
  • a carbonyl halide preferably phosgene, is additionally used as the bifunctional acid derivative.
  • the amount of chain terminators is in each case 0.1 to 10 mol%, based on moles of diphenol in the case of the phenolic chain terminators and on moles of dicarboxylic acid dichloride in the case of monocarboxylic acid chloride terminators.
  • the aromatic polyester carbonates may also contain aromatic flydroxycarboxylic acids incorporated.
  • the aromatic Polvestercarbonate can be both linear and branched in a known manner (see DE-A 2 940 024 and DE-A 3,007,934).
  • Suitable branching agents are, for example, trihydric or polyfunctional carboxylic acid chlorides, such as trimesic acid trichloride, cyanuric trichloride, 3,3 ', 4,4'-benzophenone tetracarboxylic acid tetrachloride, 1,4,5,8-naphthalene tetracarboxylic acid tetrachloride or pyromellitic acid tetrachloride, in amounts of 0.01 to 1.0 mol% (based on the dicarboxylic acid dichlorides used) or tri or more functional phenols, such as phloroglucinol, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -hept-2-one 4,6-dimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tri (4-hydroxyphenyl) benzene, 1,1,1-tri- (4 -hydroxyphenyl) ethane, tri
  • arom ates Po lye carbo onates can be varied as much as possible to carbonate structural units.
  • the proportion of carbonate groups is preferably up to 100 mol%, in particular up to 80 mol%, particularly preferably up to 50 mol%, based on the sum of ester groups and carbonate groups.
  • Both the ester and the carbonate content of the aromatic polyester carbonates may be in the form of blocks or randomly distributed in the. Polycondensate present.
  • the graft polymers B are prepared by free-radical polymerization, e.g. by emulsion, suspension, solution or bulk polymerization, preferably by emulsion polymerization.
  • Suitable monomers B 1 are vinyl monomers such as vinyl aromatics and / or ring-substituted vinylaromatics (such as styrene, ⁇ -methylstyrene, p-methylstyrene, p-chlorostyrene), methacrylic acid (C 1 -C 6) -alkyl esters (such as methyl methacrylate, ethyl methacrylate, 2-ethylhexyl methacrylate, Allyl methacrylate), acrylic acid (C] -Cg) alkyl esters (such as methyl acrylate, ethyl acrylate, n-butyl acrylate, t-butyl acrylate), organic acids (such as acrylic acid, methacrylic acid) and / or vinyl cyanides (such as acrylonitrile and methacrylonitrile) and / or derivatives (such as anhydrides and imides) of unsaturated carboxylic acids (for example, male
  • Preferred monomers B 1 are selected from at least one of the monomers styrene, ⁇ -methylstyrene, methyl methacrylate, n-butyl acrylate and acrylonitrile. Particular preference is given to using B.l. methyl methacrylate as the monomer.
  • the glass transition temperature of the graft B.2 is ⁇ 10 ° C, preferably ⁇ 0 ° C, more preferably ⁇ -20 ° C.
  • the graft base B.2 generally has an average particle size (d 5 o ⁇ value) of 0.05 to 10 ⁇ , preferably 0.06 to 5 ⁇ , particularly preferably 0.08 to 1 ⁇ .
  • the glass transition temperatures are determined by dynamic differential thermal analysis (DSC) according to the DIN EN 61006 standard at a heating rate of 10 K / min with definition of the T "as center temperature (tangent method).
  • the average particle size d 50 is the diameter, above and below which each 50 wt .-% of the particles are. It can be determined by ultracentrifuge measurement (W. Schortau, H. Lange, Kolloid-Z and Z. Polymere 250 (1972), 782-796).
  • silicone-acrylate composite rubber is used as Pfropfgrundiage B.2 according to the invention. These silicone acrylate composite rubbers are preferably composite rubbers having grafting sites containing 10 to 90% by weight, preferably 30 to 85% by weight, of silicone rubber content and 90 to 10% by weight, preferably 70 to 15% by weight. % Polyalkyl (meth) acrylate rubber content, wherein the two mentioned rubber components penetrate each other in the composite rubber so that they can not be substantially separated from one another.
  • the finished resin compositions have disadvantageous surface properties and degraded colorability.
  • the proportion of the polyalkyl (meth) acrylate rubber component in the composite rubber is too high, the impact resistance of the finished resin composition is adversely affected).
  • Silicone acrylate composite rubbers are known and described, for example, in US Pat. No. 5,807,914, EP 430134 and US Pat. No. 4,888,388.
  • Suitable silicone rubber components B.2.1 of the silicone-acrylate composite rubbers according to B.2 are silicone rubbers having graft-active sites whose preparation method is described, for example, in US Pat. No. 2,891,920, US Pat. No. 3,294,425, DE-OS 3 631 540, EP 249964, EP 430134 and US Pat ,
  • the silicone rubber according to B.2.1 is preferably prepared by emulsion polymerization, in which siloxane monomer building blocks, crosslinking or branching agents (IV) and optionally grafting agents (V) are used.
  • siloxane monomer building blocks are dimethylsiloxane or cyclic organosiloxanes having at least 3 ring members, preferably 3 to 6 ring members, such as, for example and preferably, hexamethylcyclo-trisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiioxane, dodecamethyicylohexasioxane, trimethyltriphenylcyclotetrasiloxane, tetramethyltetraphenylcyclotetrasiloxane, octaphenylcyclotetrasiloxane used.
  • the organosiloxane monomers may be used alone or in the form of mixtures with 2 or more monomers.
  • the silicone rubber preferably contains not less than 50% by weight and more preferably not less than 60% by weight of organosiloxane, based on the total weight of the silicone rubber component.
  • crosslinking or branching agent (IV) it is preferred to use silane-based crosslinking agents having a functionality of 3 or 4, more preferably 4. Examples which may be mentioned are: trimethoxymethylsilane, triethoxyphenylsilane, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane and tetrabutoxysilane.
  • the crosslinking agent may be used alone or in a mixture of two or more. Particularly preferred is tetraethoxysilane,
  • the crosslinking agent is used in an amount range of between 0.1 and 40.0% by weight, based on the total weight of the silicone rubber component.
  • the amount of crosslinking agent is chosen so that the degree of swelling of the silicone rubber, measured in toluene, is between 3 and 30, preferably between 3 and 25, and more preferably between 3 and 15.
  • the degree of swelling is defined as the weight ratio between the amount Toluene which is absorbed by the silicone rubber when saturated with toluene at 25 ° C and the amount of silicone rubber in the dried state.
  • the determination of the degree of swelling is described in detail in EP 249964. When the degree of swelling is less than 3, that is, when the content of crosslinking agent is too high, the silicone rubber does not show sufficient rubber elasticity. If the swelling index is greater than 30, the silicone rubber can not form a domain structure in the matrix polymer and therefore can not improve impact resistance, the effect would then be similar to simple addition of polydimethylsiloxane.
  • Tetrafunctional crosslinkers are preferred over irifunctional because then the degree of swelling is easier to control within the limits described above.
  • Suitable as the grafting agent (V) are compounds capable of forming structures of the following formulas:
  • CH 2 C (R 9 ) -COO- (CH 2 ) p -SiR 10 n O (3 ⁇ ) / 2 (VI)
  • CH 2 CH-SiR 1 ° n O (3 _n ) / 2 (V-) 2) or
  • C j -C / j -A! kyl preferably methyl, ethyl or propyl, or phenyl
  • p is an integer from 1 to 6.
  • Acryloyi- or methacryloyloxysilanes are particularly suitable, the o.g. Structure (V-l) to form, and have a high grafting efficiency. This ensures effective formation of the graft chains and thus favors the impact resistance of the resulting resin composition.
  • Exemplary and preferred are: ⁇ ⁇ methacr'loyloxy-ethyidimethoxymethyl ⁇ silane, y-methacryloyloxy-propylmemoxydimethyl-silane, y-methacryloyloxy-propyldimethoxymethyl-silane, y-methacryloxy-propyltrimethoxy-sian, ⁇ -methacryloyloxy-propylethoxydiethyl-silane, y- Methacryloyloxy-propyldiethoxymethyl-silane, ⁇ -methaciyloyl-oxy-butyldiethoxymethyl-silanes or mixtures thereof. Preference is given to using from 0 to 20% by weight of grafting agent, based on the total weight of the silicone rubber.
  • the silicone rubber can be prepared by emulsion polymerization, as described, for example, in US Pat. No. 2,892,920 and US Pat. No. 3,294,725.
  • the silicone rubber falls in the form of a aqueous latex.
  • a mixture comprising organosiloxane, crosslinking agent and, if appropriate, grafting agent is shear mixed with water, for example by means of a honeycomb, in the presence of an electrolyte solution on silica gel b as is wi ez.
  • B. Aikyibenzolsulfonklad or alkyl sulfonic acid, wherein the mixture polymerized to the silicone rubber latex.
  • aikyibenzenesulfonic acid since it acts not only as an emulsifier but also as a polymerization initiator.
  • a combination of the sulfonic acid with a metal salt of aikyibenzenesulfonic acid or with a metal salt is favorable for an alkylsulfuric acid, thereby stabilizing the polymer during the late graft polymerization.
  • Suitable polyalkyl (meth) acrylate rubber components B.2.2 of the silicone acrylate composite rubbers according to B.2 can be prepared from alkyl methacrylates and / or alkyl acrylates, a crosslinking agent (IV) and a grafting agent (V).
  • alkyl methacrylates and / or alkyl acrylates are the C 1 to C 6 alkyl esters, for example methyl, eihylene, n-butyl, t-butyl, n-propyl, n-hexyi, n-octyl, n Lauryl and 2-ethylhexyesters: haloalkyl esters, preferably halogen-Cj-Cg-alkyl esters, such as chloroethyl acrylate and mixtures of these monomers. Particularly preferred is n-butyl acrylate.
  • crosslinking agent (IV) for the polyalkylene (meth) acrylate rubber component of the silicone acrylate rubber monomers having more than one polymerizable double bond can be used.
  • Preferred examples of crosslinking monomers are esters of unsaturated monocarboxylic acids having 3 to 8 C atoms and unsaturated monohydric alcohols having 3 to 12 C atoms, or saturated polyols having 2 to 4 OH groups and 2 to 20 C atoms, such as ethylene glycol dimethacrylate, propylene glycol dimethacrylate , 1,3-butylene glycol dimethacrylate and 1,4-butylene glycol dimethacrylate.
  • the crosslinkers may be used alone or in mixtures of at least two crosslinkers.
  • Exemplary and preferred grafting agents (V) are ailyimethacrylate, triallyl cyanurate, triallyl isocyanurate, or mixtures thereof.
  • Ailyimethacrylate can also be used as a crosslinking agent (IV).
  • the grafting agents may be used alone or in mixtures of at least two grafting agents.
  • the amount of crosslinking agent (IV) and grafting agent (V) is 0.1 to 20% by weight based on the total weight of the polyalkyl (meth) acrylate rubber component of the silicone acrylate rubber.
  • the silicone acrylate composite rubber is prepared by first preparing the silicone rubber according to B.2.1 as an aqueous latex.
  • This latex is then enriched with the methacrylic acid esters and / or alkyl acylates, the crosslinking agent (IV) and the grafting agent (V) to be used, and polymerization is carried out.
  • a free-radically initiated emulsion polymerization for example by a peroxide, an azo or redox initiator.
  • a redox initiator system especially a sulfoxylate initiator system prepared by combining iron sulfate, disodium ethylenediaminetetraacetate, Rongalit and hydroperoxide.
  • the grafting agent (V) used in the production of the silicone rubber causes the polyalkyl (meth) acrylate rubber portion to be covalently attached to the silicone rubber portion.
  • the two rubber components penetrate each other and thus form the composite rubber, which can no longer be separated after the polymerization in its components of silicone rubber component and polyalkyl (meth) acrylate rubber component.
  • the monomers B.I are grafted onto the rubber base B.2.
  • the graft polymerization is carried out according to the following polymerization method:
  • the desired vinyl monomers B.sub.1 are grafted onto the graft base, which is in the form of an aqueous latex.
  • the grafting efficiency should be as high as possible and is preferably greater than or equal to 10%.
  • the grafting efficiency depends largely on the grafting agent (V) used.
  • the silicone (acrylate) graft rubber After polymerization to the silicone (acrylate) graft rubber, the aqueous latex is placed in hot water in which metal salts have been previously dissolved, such as calcium chloride or magnesium sulfate. The silicone coats (acrylate) graft rubber and can then be separated.
  • the ais component B) Methacryl Acid Chimethacryl Acid alkyl ester Pfropikautschuke are commercially available. Examples include: Metablen® SX 005, Metablen® S-2030 and Metablen® SRK 200 from Mitsubishi Rayon Co. Ltd. Component C
  • compositions of the invention also contain flame retardants, these being preferably selected from the group comprising the phosphorus-containing flame retardants and halogenated flame retardants.
  • phosphorus-containing flame retardants are selected from the groups of mono- and oligomeric phosphoric and phosphonic, Phosphonatamine, phosphazenes and phosphinic, wherein mixtures of a plurality of components selected from one or more of these groups can be used as flame retardants .
  • Other halogen-free phosphorus compounds not specifically mentioned here can also be used alone or in any combination with other halogen-free phosphorus compounds.
  • Preferred mono- and oligomeric phosphoric or phosphonic acid esters are phosphorus compounds of the general formula (VI)
  • R 1, R 2, R 3 and R 4 are each independently optionally halogenated C 1 to C 8 alkyl, in each case optionally substituted by alkyl, preferably C 1 to C 4 alkyl, and / or halogen, preferably chlorine, bromine, substituted C 5 to C 6 cycloalkyl, C 6 to C20-aryl or C7 to C12-aralkyl,
  • n independently, 0 or 1
  • X is a mononuclear or polynuclear aromatic radical having 6 to 30 C atoms, or a linear or branched aliphatic radical having 2 to 30 C atoms, which may be OH-substituted and may contain up to eight ether bonds.
  • R 1, R 2, R 3 and R 4 independently of one another are Cl to C 4 -alkyl, phenyl, naphthyl or phenyl-C 1 -C 4 -alkyl.
  • the aromatic groups R 1, R 2, R 3 and R 4 may in turn be substituted by halogen and / or alkyl groups, preferably chlorine, bromine and / or C 1 to C 4 alkyl.
  • Particularly preferred aryl radicals are cresyl, phenyl, xylenyl, propylphenyl or butylphenyl and the corresponding brominated and chlorinated derivatives thereof.
  • X in the formula (VI) is preferably a mono- or polynuclear aromatic radical with
  • n in the formula (VI) may independently be 0 or 1, preferably n is the same
  • q (also in formula VII) stands for integer values of 0 to 30, preferably 0 to 20, particularly preferably 0 to 10, in the case of mixtures for average values of 0.8 to 5.0, preferably 1.0 to 3.0 , more preferably. 1.05 to 2.00, and more preferably from 1.08 to 1.60.
  • X is particularly preferred for
  • X is derived from resorcinol, hydroquinone, bisphenol A or diphenyiphenol.
  • X is particularly preferably derived from bisphenol A.
  • Phosphorus compounds of the formula (VI) are in particular tributyl phosphate, triphenyl phosphate, tricresyl phosphate, diphenyl cresyl phosphate, diphenyl octyl phosphate, diphenyl 2-ethyl cresyl phosphate, tri (isopropyiphenyl) phosphate, resorcinol bridged oligophosphate and bisphenol A bridged oligophosphate.
  • the use of oligomeric phosphoric acid esters of the formula (VI) derived from bisphenol A is particularly preferred.
  • component C is bisphenol A-based oligophosphate of the formula (Via)
  • component C is resorcinol-based qligophosphate according to formula (VIb)
  • the phosphorus compounds according to component C are known (cf., for example, EP-A 0 363 608, EP-A 0 640 655) or can be prepared by known methods in an analogous manner (eg Ullmanns Enzyklopadie der ischen Chemie, Vol ff. 1979; Houben-Weyl, Methods of Organic Chemistry, Vol. 12/1, p. 43; Beilstein, Vol. 6, p. 177).
  • component C it is also possible to use mixtures of phosphates with different chemical structure and / or with the same chemical structure and different molecular weight.
  • the mean q value can be determined by determining the composition of the phosphorus compound (molecular weight distribution) by means of a suitable method (gas chromatography (GC), high pressure liquid chromatography (HPLC), gel permeation chromatography (GPC)) and from this the mean values for q are calculated.
  • a suitable method gas chromatography (GC), high pressure liquid chromatography (HPLC), gel permeation chromatography (GPC)
  • phosphonatoms and phosphazenes as described in WO 00/00541 and WO 01/18105, can be used as flame retardants.
  • the flame retardants can be used alone or in any mixture with each other or in mixture with other flame retardants.
  • Further preferred flame retardants in the sense of the invention are salts of a phosphinic acid with any desired metal cations. It is also possible to use mixtures of salts which differ in their metal cation.
  • the metal cations are the cations of metals of main group 1 (alkali metals, preferably Li +, Na ', K +), the 2nd Hauptgrappe (alkaline earth metals, preferably Mg 2+, Ca 2+, Sr 2+, Ba 2 + , more preferably Ca 2+ ) or the 3rd main group (elements of the boron group, preferably Al ' + ) and / or the 2nd, 7th or 8th subgroup (preferably ⁇ 2 ⁇ , Mn 2+ , Fe 2 " , Fe 3+ ) of the periodic table.
  • alkali metals preferably Li +, Na ', K +
  • the 2nd Hauptgrappe alkaline earth metals, preferably Mg 2+, Ca 2+, Sr 2+, Ba 2 + , more preferably Ca 2+
  • the 3rd main group elements of the boron group, preferably Al ' +
  • the 2nd, 7th or 8th subgroup preferably ⁇ 2 ⁇ , Mn
  • a salt or a mixture of salts of a phosphinic acid of the formula (IX) is used,
  • the average particle size d 50 of the Phosphinklasaizes (component C) is less than 80 ⁇ , preferably less than 60 ⁇ , more preferably d 5 o is between 10 ⁇ and 55 ⁇ .
  • the average particle size d 50 is the diameter, above and below which each 50 wt .-% of the particles are. It is also possible to use mixtures of salts which differ in their mean particle size d 50 .
  • the phosphinic acid salt can be used either alone or in combination with other phosphorus-containing flame retardants.
  • compositions according to the invention may preferably contain fluorinated polyolefins D.
  • Fluorinated polyolefins are generally known (cf., for example, EP-A 640 655).
  • a commercially available product is, for example, Teflon® 30 N from DuPont.
  • the fluorinated polyolefins may also be used in the form of a coagulated mixture of emulsions of the fluorinated polyolefins with emulsions of the graft polymers B) or an emulsion of a copolymer E.I) preferably based on styrene / acrylonitrile or polymethyl methacrylate, wherein the fluorinated polyolefin as emulsion is mixed with an emulsion of the graft polymer or (co) polymer and then coagulated.
  • the fluorinated polyolefins can be used as a precompound with the graft polymer B) or a copolymer E.I) preferably based on styrene / acrylonitrile or polymethyl methacrylate.
  • the fluorinated polyolefins are mixed as powder with a powder or granules of the graft polymer or copolymer and compounded in the melt generally at temperatures of 200 to 330 ° C in conventional units such as internal mixers, extruders or twin-screw.
  • the fluorinated polyolefins may also be used in the form of a masterbatch prepared by emulsion polymerizing at least one monoethylenically unsaturated monomer in the presence of an aqueous dispersion of the fluorinated polyolefin.
  • Preferred monomer components are styrene, acrylonitrile, polymethylmethacrylate and mixtures thereof.
  • the polymer is used after acid precipitation and subsequent drying as a free-flowing powder.
  • the coagulates, pre-compounds or masterbatches usually have solids contents of fluorinated polyolefin of 5 to 95 wt .-%, preferably 7 to 60 wt .-%.
  • Component E comprises one or more thermoplastic vinyl (co) polymers E.I. and / or poly (ethylene terephthalates) E.2.
  • Suitable as vinyl (co) polymers E. l polymers of at least one monomer from the group of vinyl aromatics, vinyl cyanides (unsaturated nitriles), unsaturated carboxylic acids and derivatives (such as anhydrides and imides) of unsaturated carboxylic acids. Particularly suitable are (co) polymers of
  • E.1.2 1 to 50, preferably 20 to 40 parts by weight of vinyl cyanides (unsaturated nitriles, such as acrylonitrile and methacrylonitrile) and / or unsaturated carboxylic acids (such as may acid) and / or derivatives (such as anhydrides and imides) of unsaturated carboxylic acids (for example Maleic anhydride and N-phenylmaleimide).
  • vinyl cyanides unsaturated nitriles, such as acrylonitrile and methacrylonitrile
  • carboxylic acids such as may acid
  • derivatives such as anhydrides and imides
  • unsaturated carboxylic acids for example Maleic anhydride and N-phenylmaleimide
  • the Vinyi (co) polymers E.I are resinous, thermoplastic and rubber free.
  • the copolymer of E.1.1 Styroi and E.1.2 acrylonitrile is particularly preferred.
  • the (co) polymers according to E.1 are known and can be prepared by free-radical polymerization, in particular by emulsion, suspension, solution or bulk polymerization.
  • the (co) polymers preferably have average molecular weights Mw (weight average, determined by light scattering or sedimentation) of between 15,000 and 200,000.
  • the Poiyaikylenterephthaiate of component E.2 are reaction products of aromatic dicarboxylic acids or their reactive derivatives, such as dimethyl esters or anhydrides, and aliphatic, cycloaliphatic or araliphatic diols, and mixtures of these reaction products.
  • Preferred polyisocyanate terephthalates contain at least 80% by weight, preferably at least 90% by weight, based on the dicarboxylic acid component of terephthalic acid residues and at least 80% by weight, preferably at least 90% by mole, based on the diol component of ethylene glycol and / or butanediol , 4-residues.
  • the preferred polyisocyanate terephthalates may contain up to 20 mol%, preferably up to 10 mol%, of other aromatic or cycloaliphatic dicarboxylic acids having 8 to 14 carbon atoms or aliphatic dicarboxylic acids having 4 to 12 carbon atoms, such as for example Remains of phthalic acid, Is ophtha! acid, naphthalene-2,6-dicarboxylic acid, 4,4'-diphenyldicarboxylic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, cyclohexanediacetic acid.
  • other aromatic or cycloaliphatic dicarboxylic acids having 8 to 14 carbon atoms or aliphatic dicarboxylic acids having 4 to 12 carbon atoms such as for example Remains of phthalic acid, Is ophtha! acid, naphthalene-2,6-dicarboxylic acid, 4,4'-diphenyldica
  • the preferred polyalkylene terephthalates in addition to ethylene glycol or butanediol-l, 4-radicals up to 20% by mole, preferably up to 10% by mole, other aliphatic Dioie having 3 to 12 carbon atoms or cycloaliphatic diols having 6 to 21 C Contain atoms, for example residues of 1,3-propanediol, 2-ethylpropanediol-1, 3, neopentyl glycol, pentanediol-1, 5, hexanediol-1, 6, cyclohexane-dimethanol-1, 4, 3-ethylpentanediol-2,4, 2-methylpentanediol-2,4,2,2,4-trimethylpentanediol-1,3,2-ethylhexanediol-1,3,2,2-diethylpropanediol-1,3-hexanediol
  • the polyalkylene terephthalates may be prepared by incorporation of relatively small amounts of trihydric or trihydric alcohols or 3- or 4-basic carboxylic acids, e.g. in accordance with DE-A 1 900 270 and US Pat. No. 3,692,744.
  • preferred branching agents are trime sinic acid, trimellitic acid, trimethylolethane and -propane and pentaerythritol.
  • polyalkylene terephthalates prepared from terephthalic acid alone and their reactive derivatives (e.g., their dialkyl esters) and ethylene glycol and / or butane-1,4-diol, and mixtures of these polyalkylene terephthalates.
  • Mixtures of polyalkylene terephthalates contain from 1 to 50% by weight, preferably from 1 to 30% by weight, of polyethylene terephthalate and from 50 to 99% by weight, preferably from 70 to 99% by weight, of polybutylene terephthalate.
  • the polyalkylene terephthalates which are preferably used generally have an intrinsic viscosity of 0.4 to 1.5 dl / g, preferably 0.5 to 1.2 dl / g, measured in phenol / o-dichlorobenzene (1: 1 parts by weight) at 25 ° C in the Ubbelohde viscometer.
  • the polyalkylene terephthalates can be prepared by known methods (see, for example, Kunststoff-Handbuch, Vol. VIII, p. 695 ff, Carl Hanser Verlag, Kunststoff 1973).
  • the molding compositions according to the invention may contain at least one of the usual additives, e.g. Lubricants and mold release agents, Nukieiermittei, antistatic agents, stabilizers, dyes and pigments and fillers and reinforcing materials.
  • Lubricants and mold release agents e.g., Lubricants and mold release agents, Nukieiermittei, antistatic agents, stabilizers, dyes and pigments and fillers and reinforcing materials.
  • the component F also comprises very finely divided inorganic compounds which are distinguished by an average particle diameter of less than or equal to 200 nm, preferably less than or equal to 150 nm, in particular from 1 to 100 nm.
  • Suitable finely divided inorganic compounds preferably consist of at least one polar compound of one or more metals of the 1st to 5th main group or 1st to 8th subgroup of the Periodic Table, preferably the 2nd to 5th main group or 4th to 8th subgroup, especially preferably the 3rd to 5th main group or 4th to 8th subgroup, or compounds of these metals with at least one element selected from oxygen, hydrogen, sulfur, phosphorus, boron, carbon, nitrogen or silicon.
  • Examples of preferred compounds are oxides, hydroxides, hydrous oxides, sulfates, sulfites, sulfides, carbonates, carbides, nitrates, nitrites, nitrides, borates, silicates, phosphates, hydrides, phosphites or phosphonates.
  • the finely divided inorganic compounds of oxides, phosphates, hydroxides preferably (from Ti0 2, Si0 2, Sn0 2, ZnO, ZnS, boehmite, Zr0 2, A1 2 0 3, aluminum phosphates, iron oxides, further TiN, WC, AlO OH ), Fe 2 O 3 iron oxides, NaSO 4 , vanadium oxides, cadmium borate, silicates such as Al Siiikate, Mg silicates, one-, two-, three-dimensional silicates and talc. Mixtures and doped compounds are also useful.
  • these very finely divided inorganic compounds can be surface-modified with organic molecules in order to achieve better compatibility with the polymers. In this way, hydrophobic or hydrophilic surfaces can be produced. Particularly preferred are hydrated aluminas (eg boehmite) or TiO 2 .
  • Particle size and particle diameter of the inorganic particles means the average particle diameter d 50 , determined by sedimentation measurements on the settling velocity of the particles, for example in a Sedigraph.
  • the inorganic compounds may be present as powders, pastes, brine dispersions or suspensions. By precipitation, powders can be obtained from dispersions, sols or suspensions.
  • the inorganic compounds can be incorporated into the thermoplastic molding compositions by conventional methods, for example by direct kneading or extrusion of molding compositions and the very finely divided inorganic compounds.
  • Preferred methods provide the Preparation of a masterbatch, for example in flameproofing additives and at least one component of the molding compositions according to the invention in monomers or solvents, or the co-extrusion of a thermoplastic component and the very finely divided inorganic compounds, eg. by co-precipitation of an aqueous emulsion and the very finely divided inorganic compounds, optionally in the form of dispersions, suspensions, pastes or sols of the very finely divided inorganic materials.
  • compositions according to the present invention are prepared by subjecting the respective constituents in a known manner and melt-compounding and melt-extruding at temperatures of 200 ° C to 300 ° C in conventional aggregates such as internal mixers, extruders and twin-screw screws.
  • the mixing of the individual constituents can be carried out in a known manner both successively and simultaneously, both at about 20 ° C. (room temperature) and at a higher temperature.
  • the thermoplastic compositions and molding compositions according to the present invention are due to their excellent balance of high impact strength at low temperatures, good flame retardancy with thin walls and excellent chemical resistance for the production of inventive battery housings.
  • the invention also provides methods for producing the battery housing and the use of the molding compositions for the production of battery housings.
  • the molding compounds can be processed by injection molding to battery housings.
  • Another object of the invention is the production of battery cases by thermoforming of previously prepared plates or films.
  • the battery cases are suitable for the following applications: vehicle battery and accumulators, battery cases for automobiles, buses, trucks, campers, rail vehicles, aircraft, watercraft or other vehicles, stationary batteries, e.g. in buildings for the emergency power supply, Speicherang of solar power from photovoltaic systems.
  • the battery cases preferably meet the requirements of the UN 3480 transport test.
  • FIGS. 1 and 2 Examples of battery housing according to the invention are shown in FIGS. 1 and 2.
  • FIG. 1A shows a battery housing for flat battery cells, which has a spacing between the insertion slots for the flat cells, in which a coolant can be arranged or in which a coolant circulates.
  • Figure 1B shows a plan view of the battery housing for flat battery lines.
  • Figure IC shows a sectional view (section AA) through the battery case for flat battery cells.
  • Figure 2A shows a battery case for cylindrical battery cells, which has a distance between the insertion slots for the cylindrical cells, in which a coolant may be arranged or in which a coolant circulates.
  • FIG. 2B shows a plan view of the battery housing for cylindrical battery lines.
  • Figure 2C shows a sectional view (section DD) through the battery housing for cylindrical
  • the battery housing channels for cooling the individual cells preferably a water / Gkykol- or air cooling on.
  • the battery housing consists of an outer housing and an inner insert for receiving the individual cells, the outer housing optionally comprising insulation, e.g. by a double wall, may have.
  • the outer housing and the receptacle of the cells (insertion slots) are preferably made of a material and, more preferably, of a component (in one piece).
  • a plurality of battery housings can be modulatively extended to larger units.
  • the battery housing contains a receptacle for control electronics.
  • Silicone acrylate composite rubber having the following composition:
  • Silicone acrylate composite rubber having the following composition:
  • F-2 phosphite stabilizer, phosphite stabilizer, Irganox® B900 (mixture of 80% Irgafos® 168 and 20% Irganox® 1076; BASF AG; Ludwigshafen / Irgafos® 168 (tris (2,4-di-tert-butyl-phenyl) - phosphite) / Irganox® 1076 (2,6-di-tert-butyl-4- (octadecanoxycarbonylethyl) phenol).
  • Irganox® B900 mixture of 80% Irgafos® 168 and 20% Irganox® 1076; BASF AG; Ludwigshafen / Irgafos® 168 (tris (2,4-di-tert-butyl-phenyl) - phosphite) / Irganox® 1076 (2,6-di-tert-butyl
  • the feedstocks listed in Table 1 are compounded at a speed of 225 rpm and a throughput of 20 kg / h at a machine temperature of 260 ° C and granulated.
  • the finished granules are processed on an injection molding machine to the corresponding test specimens (melt temperature 240 ° C, mold temperature 80 ° C, flow front speed 240 mm / s).
  • the flowability was determined according to ISO 11443 (melt viscosity).
  • the notch toughness ak was measured in accordance with ISO 1 80 / 1A on a single-sided sprayed test rod of dimension 80 ⁇ 10 ⁇ 4 mm at the indicated measuring temperatures.
  • the heat resistance was measured in accordance with DIN ISO 306 (Vicat softening temperature, method B with 50 N load and a heating rate of 120 K / h) on a single-side molded test rod of dimension 80x10x4 mm.
  • the fire behavior is measured according to UL 94V on rods measuring 127 x 12.7 x 1.5 mm.
  • the elongation at break and tensile modulus of elasticity were measured according to DIN EN ISO 527 on rods measuring 170.0 ⁇ 10.0 ⁇ 4.0 mm.

Abstract

Batteriegehäuse, umfassend Zusammensetzungen enthaltend A) 70,0 bis 90,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B + C) lineares und/oder verzweigtes aromatisches Polycarbonat und/oder aromatisches Polyestercarbonat, B) 6,0 bis 15,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B+ C) mindestens einse Pfropfpolymerisat mit B.1 5 bis 40 Gew.-%, vorzugsweise 5 bis 30 Gew.-%, besonders bevorzugt 10 bis 20 Gew. % (jeweils bezogen auf das Pfropfpolymerisat B) einer Hülle aus mindestens einem Vinylnonomeren und B.2 95 bis 60 Gew.-%, vorzugsweise 95 bis 70 Gew.-%, besonders bevorzugt 80 bis 90 Gew. % (jeweils bezogen auf das Pfropfpolymerisat B) einer oder mehrerer Pfropfgrundlagen aus Silikon-Acrylat-Kompositkautschuk, C) 2,0 bis 15,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B+ C) Phosphorverbindungen ausgewählt aus den Gruppen der Mono- und oligomeren Phosphor- und Phosphonsäureester, Phosphonatamine, Phosphazene und Phosphinate, sowie Mischungen dieser Verbindungen, D) 0 bis 3,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B+ C) Antitropfmittel, E) 0 - 3,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B+ C) thermoplastische Vinyl(Co)Polymerisat (E.1) und/oder Polyalkylenterephthalat (E.2), und F) 0 bis 20,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B+ C) weitere Zusatzstoffe, wobei die Zusammensetzungen vorzugsweise frei sind von kautschukfreiem Polyalkyl(alkyl)acrylat, und wobei alle Gewichtsteilangaben in der vorliegenden Anmeldung so normiert sind, dass die Summe der Gewichtsteile der Komponenten A+B+C in der Zusammensetzung 100 ergeben.

Description

Die vorliegende Erfindung betrifft flammge schützte schlagzähmoditizierte Batteriegehäuse auf Polycarbonatbasis, weiche als Pfropfpolymerisat einen Silikon-Acrylat-Kompositkautschuk und ein phosphorhaltiges Flammschutzmittel enthalten, die eine hohe Schlagzähigkeit bei tiefen Temperaturen, eine gute Flammwidrigkeit bei dünnen Wandstärken und eine exzellente chemische Beständigkeit aufweisen. Ferner betrifft die vorliegende Erfindung die Verwendung der erfindungsgemäßen Polycarbonat-Zusammensetzungen zur Herstellung von Batteriegehäusen. WO-A 2004/069914 offenbart flammwidrige Polycarbonatzusammensetzungen, die Polyalkyl(alkyi)acrylat und halogenfreie Oligophosphate enthalten und frei sind an Polymeren, an deren Aufbau Butadien, Styrol oder Acrylnitril beteiligt sind. Die Zusammensetzungen zeichnen sich durch gute Bindenahtfestigkeit, Chemikalienbeständigkeit, Wärmeformbeständigkeit, Reißdehnung und Fließfähigkeit aus. Die Zusammensetzungen der vorliegenden Erfindung unterscheiden sich von den Zusammensetzungen gemäß WO-A 2004/069914 dadurch, dass die erfindungsgemäßen Zusammensetzungen kein kautschukfreies Polyalkyl(alkyi)acrylat enthalten.
WO-A 2002/046305 offenbart schlagzähmodifizierte, fiammwidrige Polycarbonat- Zusammensetzungen enthaltend Poiycarbonat, Schiagzähmodifikator, phosphorhaltige Flammschutzmittel. Die Zusammensetzungen zeichnen sich durch eine verbesserte Kerbschlagzähigkeit im Tieftemperaturbereich aus. WO-A 2002/046305 offenbart aber keine Zusammensetzungen enthaltend einen Schiagzähmodifikator mit einer Pfropfgrundlage aus Siiikon-Aerylat-Kompositkautschuk. EP-A 635547 offenbart flammgeschützte Polycarbonatzusammensetzungen enthaltend Poiycarbonat, ein Copolymer-Gel, einen Acrylat- oder Dienkautschuk basierten Schiagzähmodifikator, ein Flammschutzmittel wie beispielsweise Oligophosphat und gegebenenfalls ein Schiagzähmodifikator mit einer Pfropfgrundlage aus Dienkautschuk, Acrylatkautschuk oder EPDM Kautschuk. EP-A 635547 offenbart aber keine Zusammensetzungen enthaltend einen Schiagzähmodifikator mit einer Pfropfgrundlage aus Silikon-Acrylat- Kompositkautschuk.
US 6423766 offenbart flammgeschützte Polycarbonatzusammensetzungen mit einem Schiagzähmodifikator mit einer Pfropfgrundlage aus Silikon-Acrylat-Kompositkautschuk, wobei das Gewichtsverhältnis von Schiagzähmodifikator zu Phosphor aus dem Phoshorsäureester zwischen 2 und 15 beträgt. Die Zusammensetzungen haben verbesserte mechanische Eigenschaften und ein gutes Verarbeitungsverhalten, Die Zusammensetzungen der vorliegenden Erfindung unterscheiden sich von den Zusammensetzungen gemäß US 6423766 dadurch, dass die erfindungsgemäßen Zusammensetzungen ein höheres Gewichts Verhältnis von Schlagzähmodifikator zu Phosphor aus dem Phoshorsäureester aufweisen.
Keines der im Stand der Technik genannten Dokumente beschreibt jedoch Batteriegehäuse mit den erfind ung sgemäßen Eigenschaften oder die Ve rwendung der erfindung sgemäßen Zusammensetzungen zur Herstellung von Batteriegehäusen. Die Aufgabe der vorliegenden Erfindung war es daher, Polycarbonatzusammensetzungen für die Herstellung von Batteriegehäusen sowie die Batteriegehäuse selbst bereitzustellen, die eine hohe Schlagzähigkeit bei tiefen Temperaturen, eine gute Flammwidrigkeit bei dünnen Wandstärken und eine exzellente chemische Beständigkeit aufweisen, wobei Batteriegehäuse im Sinne der vorliegenden Erfindung auch Gehäuse für stationäre und mobile wieder aufladbare Stromquellen wie Akkumulatoren und Kondensatoren umfassen.
Es wurde überraschend gefunden, dass Batteriegehäuse basierend auf Polycarbonatzusammensetzungen enthaltend
A) 70,0 bis 90,0 Gew. -Teile, bevorzugt 75,0 bis 88,0 Gew.-Teile, besonders bevorzugt 77,0 bis 85,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B + C) lineares und/ oder verzweigtes aromatisches Polycarbonat und/oder aromatisches Poly- estercarbonat,
B) 6,0 bis 15,0 Gew.-Teile, bevorzugt 7,0 bis 13,0 Gew.-Teile, besonders bevorzugt 9,0 bis 11,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B+ C) mindestens eines Pfropfpolymerisat mit
B. l 5 bis 40 Gew.-%, vorzugsweise 5 bis 30 Gew.-%, besonders bevorzugt 10 bis 20 Gew.
% (jeweils bezogen auf das Pfropfpolymerisat B) einer Hülle aus mindestens einem Vinylmonomeren und
B.2 95 bis 60 Gew.-%, vorzugsweise 95 bis 70 Gew.-%, besonders bevorzugt 80 bis 90 Gew. % (jeweils bezogen auf das Pfropfpolymerisat B) einer oder mehrerer Pfropfgrundlagen aus Silikon-Acrylat-Kompositkautschuk,
2,0 bis 15,0 Gew.-Teile, bevorzugt 3,0 bis 13,0 Gew.-Teile, besonders bevorzugt 4,0 bis 1 1 ,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B+ C) Phosphorverbindungen ausgewählt aus den Gruppen der Mono- und oligomeren Phosphor- und Phosphonsäureester, Phosphonatamine, Phosphazene und Phosphinate, wobei auch Mischungen von mehreren Komponenten ausgewählt aus einer oder verschiedenen dieser Gruppen als Flamm Schutzmittel zum Einsatz kommen können.
D) 0 bis 3,0 Gew. -Teile, bevorzugt 0,01 bis 1,00 Gew.-Teile, besonders bevorzugt 0, 1 bis 0,6 Gew. -Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B+ C) Antitropfmittel,
E) 0 - 3,0 Gew.-Teile, bevorzugt 0 bis 1 ,0 Gew.-Teile (bezogen auf die Summe der Gew.- Teile der Komponenten A + B+ C) thermoplastische Vmyi(Co)Polymerisat (E. l) und/oder Polyalkylenterephthalat (E.2), besonders bevorzugt ist die Zusammensetzung frei von thermoplastischen Vinyl(Co)Polymerisate (E. l) und/oder Polyalkylenterephthalaten (E.2), und
F) 0 bis 20,0 Gew.-Teile, bevorzugt 0, 1 bis 10,0 Gew.-Teile, besonders bevorzugt 0,2 bis 5,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B+ C) weitere Zusatzstoffe,
wobei die Zusammensetzungen vorzugsweise frei sind von kautschukfreiem Polyalkyl(aikyl)acrylat, und wobei alle Gewichtsteilangaben in der vorliegenden Anmeldung so normiert sind, dass die S umme der Gewichtsteile der Komponenten A+B+C in der Zusammensetzung 100 ergeben, das gewünschte Eigenschaftsprofil aufweisen.
Komponente A
Erfindungsgemäß geeignete aromatische Polycarbonate und/oder aromatische Polyestercarbonate gemäß Komponente A sind literaturbekannt oder nach literaturbekannten Verfaliren herstellbar (zur Herstellung aromatischer Polycarbonate siehe beispielsweise Schnell, "Chemistry and Physics of Polycarbonates", Interscience Publishers, 1964 sowie die DE-AS 1 495 626, DE-A 2 232 877, DE- A 2 703 376, DE-A 2 714 544, DE-A 3 000 610, DE-A 3 832 396; zur Herstellung aromatischer Polyestercarbonate, z, B. DE-A 3 077 934).
Die Herstellung aromatischer Polycarbonate erfolgt z. B. durch Umsetzung von Diphenolen mit Kohlensäurehalogeniden, vorzugsweise Phosgen und/oder mit aromatischen Dicarbonsäuredihalogeniden, vorzugsweise Benzoldicarbonsäuredihalogen i den, n ach dem Phasengrenzflächenverfahren, gegebenenfalls unter Verwendung von Kettenabbrechern, beispielsweise Monophenolen und gegebenenfalls unter Verwendung von trifunktionellen oder mehr als trifunktionellen Verzweigern, beispielsweise Triphenoien oder Tetraphenolen. Ebenso ist eine Herstellung über ein Schmelzepolymerisationsverfahren durch Umsetzung von Diphenolen mit beispielsweise Diphenylcarbonat möglich. Diphenole zur Herstellung der aromatischen Polycarbonate und/oder aromatischen Polyestercarbonate sind vorzugsweise solche der Formel (T)
Figure imgf000006_0001
eine Einfachbindung, C, bis C_-Alkylen, C7 bis C -Alkyliden, C_ bis C -Cycloalkyliden,
O-, -SO-, -CO-, -S-, -SO2-, C bis C -Arylen, an das weitere aromatische gegebenenfall
Heteroatome enthaltende Ringe kondensiert sein können,
oder ein Rest der Formel (Π) oder (III)
Figure imgf000006_0002
B jeweils C, bis C.7-Alkyl, vorzugsweise Methyl, Halogen, vorzugsweise Chlor und/oder Brom
x jeweils unabhängig voneinander 0, 1 oder 2,
p 1 oder 0 sind, und
R7 und R8 für jedes X1 individuell wählbar, unabhängig voneinander Wasserstoff oder C bis C - Alkyl, vorzugsweise Wasserstoff, Methyl oder Ethyl,
X Kohlenstoff und
m eine ganze Zahl von 4 bis 7, bevorzugt 4 oder 5 bedeuten, mit der Maßgabe, dass an mindestens einem Atom X1, R7 und R8 gleichzeitig Aikyl sind.
Bevorzugte Diphenole sind Hydrochinon, Resorcin, Dihydroxydiphenole, Bis-(hydroxyphenyl)- C^C^alkane, Bis-(hydroxyphenyl)-C5-C6-cycloalkane, Bis-(hydroxyphenyl)-ether, Bis-(hydroxy- phenyl)-sulfoxide, Bis-(hydrox\phenyl)-ketone, Bis-(hydroxyphenyl)-sulfone und a,a-Bis-(hy- droxyphenyl)-diisopropyl-benzole sowie deren kembromierte und/oder kernchlorierte Derivate. Besonders bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, Bisphenol-A, 2,4-Bis(4-hydroxy- phenyl)-2-methylbutan, l, l-Bis-(4-hydroxyphenyl)-cyclohexan, l, l-Bis-(4-hydroxyphen\T)-3.3.5- trimethylcyclohexan, 4,4'-Dihydroxydiphenylsulfid, 4,4'-Dihydroxydiphenylsulfon sowie deren di- und tetrabromierten oder chlorierten Derivate wie beispielsweise 2,2-Bis(3-Chlor-4-hydroxyphe- nyl)-propan, 2,2-Bis-(3,5-dichlor-4-hydrox 'phenyl)-propan oder 2,2-Bis-(3,5-dibrom-4-hydroxy- phenyl)-propan. Insbesondere bevorzugt ist 2,2-Bis-(4-hydroxyphenyl)-propan (Bisphenol-A). Es können die Diphenole einzeln oder als beliebige Mischungen eingesetzt werden. Die Diphenole sind literaturbekannt oder nach literaturbekannten Verfahren erhältlich.
Für die Hersteilung der thermoplastischen, aromatischen Poiycarbonate geeignete Kettenabbrecher sind beispielsweise Phenol, p-Chlorphenol, p-tert.-Butylphenoi oder 2,4,6-Tribromphenol, aber auch langkettige Alkylphenole, wie 4-[2-(2,4,4-Trimethylpentyl)]-phenol, 4-(i,3-Tetramethyl- butyS)-phenol gemäß DE-A 2 842 005 oder Monoalkylphenol oder Dialkylphenole mit insgesamt 8 bis 20 Kohlenstoffatomen in den Alkylsubstituenten, wie 3,5-di-tert.-Butylphenol, p-iso-Oc- tylphenol, p-tert.-Octylphenoi, p-Dodecylphenol und 2-(3,5-Dimethylheptyl)-phenoi und 4-(3,5- Dimethylheptyl)-phenoi. Die Menge an einzusetzenden Kettenabbrechern beträgt im aligemeinen zwischen 0,5 mol-%mol-%, und 10 mol-%mol-%, bezogen auf die Molsumme der jeweils eingesetzten Diphenole.
Die thermoplastischen, aromatischen Poiycarbonate haben mittlere Gewichtsmittelmolekulargewichte (Mw, gemessen z. B. durch GPC, Ultrazentrifuge oder Streulichtmessung) von 10,000 bis 200.000 g/mol, vorzugsweise 15.000 bis 80.000 g/moi, besonders bevorzugt 24.000 bis 32.000 g/moi.
Die thermoplastischen, aromatischen Poiycarbonate können in bekannter Weise verzweigt sein, und zwar vorzugsweise durch den Einbau von 0,05 bis 2,0 mol-%, bezogen auf die Summe der eingesetzten Diphenole, an dreifunktionellen oder mehr als dreifunktioneilen Verbindungen, beispielsweise solchen mit drei und mehr phenolischen Gruppen.
Geeignet sind sowohl Homopolycarbonate als auch Copolycarbonate. Zur Herstellung erfindungsgemäßer Copolycarbonate gemäß Komponente A können auch 1 bis 25 Gew.%, vorzugsweise 2,5 bis 25 Gew.%, bezogen auf die Gesamtmenge an einzusetzenden Diphenolen, Polydiorganosiloxane mit Hydroxyaryloxy-Endgruppen eingesetzt werden. Diese sind bekannt (US 3 419 634) und nach literaturbekannten Verfahren herstel lbar. Die Herstel lung Polydiorganosiloxanhaltiger Copolycarbonate ist in der DE-A 3 334 782 beschrieben. Bevorzugte Polycarbonate sind neben den Bisphenol-A-Homopolycarbonaten die Copolycarbonate von Bisphenoi-A mit bis zu 15 mol-%, bezogen auf die Molsummen an Diphenolen, anderen als bevorzugt oder besonders bevorzugt genannten Diphenolen, insbesondere 2,2-Bis(3,5-dibrom-4- hydroxyphenyl)-propan .
Aromatische Dicarbonsäuredihalogenide zur Herstellung von aromatischen Polyestercarbonaten sind vorzugsweise die Disäuredichioride der isophthaisäure, Terephthalsäure, Diphenylether-4,4'- dicarbonsäure und der Naphthalin-2,6-dicarbonsäure.
Besonders bevorzugt sind Gemische der Disäuredichioride der Isophthaisäure und der Terephthalsäure im Verhältnis zwischen 1 :20 und 20: 1.
Bei der Hersteilung von Polyestercarbonaten wird zusätzlich ein Kohlensäurehalogenid, vorzugsweise Phosgen, als bifunktionelles Säurederivat mit verwendet.
Als Kettenabbrecher für die Herstellung der aromatischen Polvestercarbonate kommen außer den bereits genannten Monophenoien noch deren Chlorkohlensäureester sowie die Säurechloride von aromatischen Monocarbonsäuren, die gegebenenfalls durch d bis C22-Alkylgruppen oder durch Halogenatome substituiert sein können, sowie aliphatische C2 bis Cii-Monoearbonsäurechloride in Betracht.
Die Menge an Kettenabbrechern beträgt jeweils 0, 1 bis 10 mol-%, bezogen im Falle der phenolischen Kettenabbrecher auf Mol Diphenol und im Falle von Monocarbonsäureehlorid- Kettenabbrecher auf Mol Dicarbonsäuredichiorid.
Die aromatischen Polyestercarbonate können auch aromatische Flydroxycarbonsäuren eingebaut enthalten. Die aromatischen Polvestercarbonate können sowohl linear als auch in bekannter Weise verzweigt sein (siehe dazu DE-A 2 940 024 und DE-A 3 007 934).
Als Verzweigungsmittel können beispielsweise drei- oder mehrf nktionelle Carbonsäurechloride, wie Trimesinsäuretrichlorid, Cyanursäuretrichlorid, 3,3'-,4,4'-Benzophenon-tetracarbonsäuretetra- chlorid, 1,4,5, 8-Napthaiintetracarbon-säuretetrachiorid oder Pyromellithsäuretetrachlorid, in Mengen von 0,01 bis 1,0 mol-% (bezogen auf eingesetzte Dicarbonsäuredichloride) oder drei- oder mehrfünktionelle Phenole, wie Phloroglucin, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-hept-2-en, 4,6-Dimethyl-2,4-6-tri-(4-hydroxyphenyl)-heptan, 1 ,3,5-Tri-(4-hydroxyphenyl)-benzol, 1 , 1, 1-Tri- (4-hydroxyphenyl)-ethan, Tri-(4-hydroxyphenyl)-phenyimethan, 2,2-Bis[4,4-bis(4-hydroxy-phe- nyl)-cyclohexyl]-propan, 2,4-Bis(4-hydroxyphenyl-isopropyl)-phenol, Tetra-(4-hydroxyphenyl)- methan, 2,6-Bis(2-hydroxy-5-methyl-benzyl)-4-methyl-phenol, 2-(4-Hydroxyphenyl)-2-(2,4-dihy- droxyphenyl)-propan, Tetra-(4-f4-hydroxyphenyl-isopropyl]-phenoxy)-methan, l,4-Bis[4,4'-dihy- droxytri-phenyl)-methyl]-benzol, in Mengen von 0,01 bis 1,00 mol-% bezogen auf eingesetzte Diphenole verwendet werden. Phenolische Verzweigungsmittel können mit den Diphenolen vorgelegt, Säurechlorid-Verzweigungsmittel können zusammen mit den Säuredichloriden eingetragen werden.
In d e n the rm op l asti s che n, arom ati s chen Po lye ste rcarb onaten kan n d e r Ante il an Carbonatstruktureinheiten beliebig variieren . Vorzugsweise beträgt der Anteil an Carbonatgruppen bis zu 100 mol-%, insbesondere bis zu 80 mol-%, besonders bevorzugt bis zu 50 mol-%, bezogen auf die Summe an Estergruppen und Carbonatgruppen. Sowohl der Ester- al s auch der Carbonatanteil der aromatischen Poiyestercarbonate kann in Form von Blöcken oder statistisch verteilt im. Polykondensat vorliegen.
DDiiee rreellaattiivvee LLöössuunnggssvviisskkoossiittäätt ((TTjjrereii)) ddeerr aarroommaattiisscchheenn PPooiiyyccaarrbboonnaattee uunndd PPooiiyyeesstteerrccaarrbboonnaattee lliieeggtt iimm BBeerreeiicchh 11,, 1188 bbiiss 11,,4400,, vvoorrzzuuggsswweeiissee 11,,2200 bbiiss 11,,3322 ((ggeemmeesssseenn aann LLöössuunnggeenn vvoonn 00,,55 gg PPoollyyccaarrbboonnaatt ooddeerr PPoollyyeesstteerrccaarrbboonnaatt iinn 110000 mmll MMeetthhyylleenncchhlloorriidd--LLöössuunngg bbeeii 2255°°CC)).. DDiiee tthheerrmmooppllaassttiisscchheenn,, aarroommaattiisscchheenn PPooiiyyccaarrbboonnaattee uunndd PPooiiyyeesstteerrccaarrbboonnaattee kköönnnneenn aalllleeiinn ooddeerr iimm bbeelliieebbiiggeenn GGeemmiisscchh eeiinnggeesseettzztt wweerrddeenn..
Figure imgf000009_0001
Die Pfropfpolymerisate B werden durch radikalische Polymerisation, z.B. durch Emulsions-, Suspensions-, Lösungs- oder Massepolymerisation, vorzugsweise durch Emulsionspolymerisation hergestellt.
Geeignete Monomere B. l sind Vinylmonomere wie Vinyiaromaten und /oder kernsubstituierte Vinylaromaten (wie Styrol, α-Methylstyrol, p-Methylstyrol, p-Chlorstyrol), Methacrylsäure-(Ci- Cg)-Alkylester (wie Methylmethacrylat, Ethylmethacrylat, 2-Ethylhexylmethacrylat, Aliylmethacrylat), Acrylsäure-(C]-Cg)-Alkylester (wie Methylacrylat, Ethylacrvlat, n-Butylacrylat, t-Butylacrylat), organische Säuren (wie Acryisäure, Methacryisäure) und/oder Vinylcyanide (wie Acryinitril und Methacrylnitrii) und/oder Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren (beispielsweise Maleinsäureanhydrid und N-Phenyl-Maleinimid) . Diese Vinylmonomere können alleine oder in Mischungen von mindestens zwei Monomeren verwendet werden.
Bevorzugte Monomere B. l sind ausgewählt aus mindestens einem der Monomere Styrol, oc- Methylstyrol, Methylmethacrylat, n-Butylacrylat und Acrylnitril. Besonders bevorzugt wird als Monomer B. l Methylmethacrylat eingesetzt.
Die Glasübergangstemperatur der Pfropfgrundlage B.2 beträgt < 10°C, vorzugsweise < 0°C, besonders bevorzugt < -20°C. Die Pfropfgrundlage B.2 hat im Allgemeinen eine mittlere Teilchengröße (d5o~Wert) von 0,05 bis 10 μπι, vorzugsweise 0,06 bis 5 μπι, besonders bevorzugt 0,08 bis 1 μηι.
Die Glasübergangstemperaturen wird mitteis dynamischer Differenz-Thermoanalyse (DSC) gemäß der Norm DIN EN 61006 bei einer Heizrate von 10 K/min mit Definition der T„ als Mittelpunkttemperatur (Tangentenmethode) bestimmt.
Die mittlere Teilchengröße d50 ist der Durchmesser, oberhalb und unterhalb dessen jeweils 50 Gew.-% der Teilchen liegen. Er kann mittels Ultrazentrifugenmessung (W. Schortau, H. Lange, Kolloid-Z. und Z. Polymere 250 (1972), 782-796) bestimm werden. Als Pfropfgrundiage B.2 wird erfindungsgemäß Silikon-Acrylat-Kompositkautschuk eingesetzt. Diese Siiikon-Acrylat-Kompositkautschuke sind vorzugsweise Komposit-Kautschuke mit pfropfaktiven Stellen enthaltend 10 - 90 Gew.-%, vorzugsweise 30 - 85 Gew,-% Silikonkautschuk-Anteil und 90 bis 10 Gew,-%, vorzugsweise 70 - 15 Gew.-% Polyalkyl(meth)acrylatkautschuk-Anteil, wobei sich die beiden genannten Kautschuk- Komponenten im Komposit-Kautschuk gegenseitig durchdringen, so dass sie sich nicht wesentlich voneinander trennen lassen.
Wenn im Komposit-Kautschuk der Anteil der Silikonkautschuk-Komponente zu hoch ist, haben die fertigen Harzzusammensetzungen nachteilige Oberflächeneigenschaften und eine verschlechterte Einfarbbarkeit. Wenn dagegen der Anteil der Polyalkyl(meth)acrylatkautschuk-Komponente im Komposit-Kautschuk zu hoch ist, wird die Schlagzähigheit der fertigen Harzzusammensetzung nachteilig beeinflußt).
Silikon-Acrylat-Komposit-Kautschuke sind bekannt und beispielsweise beschrieben in U S 5,807,914, EP 430134 und US 4888388. Geeignete Silikonkautschuk-Komponenten B.2.1 der Silikon-Acrylat-Kompositkautschuke gemäß B.2 sind Silikonkautschuke mit pfropfaktiven Stellen, deren Herstellungsmethode beispielsweise in US 2891920, US 3294725, DE-OS 3 631 540, EP 249964, EP 430134 und U S 4888388 beschrieben wird.
Der Silikonkautschuk gemäß B.2.1 wird bevorzugt durch Emulsionspolymerisation hergestellt, bei der Siloxan-Monomerbausteine, Vernetzungs- oder Verzweigungsmittel (IV) und gegebenenfalls Pfropfmittel (V) eingesetzt werden. Als Siloxan-Monomerbausteine werden beispielsweise und bevorzugt Dimethylsiloxan oder cyclische Organosiloxane mit wenigstens 3 Ringgliedern, vorzugsweise 3 bis 6 Ringgliedern, wie beispielsweise und bevorzugt Hexamethylcyciotrisiloxan, Octamethylcyclotetrasiloxan, Decamethylcyclopentasiioxan, Dodecamethyicyclohexasiioxan, Trimethyl-triphenyi-cyciotri- siloxane, Tetramethyl-tetraphenyl-cyclotetrasiloxane, Octaphenylcyclotetrasiloxan eingesetzt.
Die Organosiloxan-Monomere können aliein oder in Form von Mischungen mit 2 oder mehr Monomeren eingesetzt werden. Der Silikonkautschuk enthält vorzugsweise nicht weniger als 50 Gew.-% und besonders bevorzugt nicht weniger als 60 Gew.-% Organosiloxan, bezogen auf das Gesamtgewicht der Silikonkautschuk-Komponente.
Als Vernetzungs- oder Verzweigungsmittel (IV) werden vorzugsweise silanbasierende Vernetzungsmittel mit einer Funktionalität von 3 oder 4, besonders bevorzugt 4, verwendet. Beispielhaft und vorzugsweise seien genannt: Trimethoxymethylsilan, Triethoxyphenylsilan, Tetramethoxysilan, Tetraethoxysilan, Tetra-n-propoxysilan und Tetrabutoxysilan . Das Vemetzungsmittel kann allein oder in Mischung von zwei oder mehreren eingesetzt werden. Besonders bevorzugt ist Tetraethoxysilan,
Das Vernetzungsmittel wird in einem Mengenbereich zwischen 0, 1 und 40,0 Gew.%, bezogen auf das Gesamtgewicht der Silikonkautschuk-K omponente , e i nge setzt . Die Men ge an Vernetzungsmittel wird so gewählt, dass der Quellungsgrad des Silikonkautschuks, gemessen in Toluol, zwischen 3 und 30 liegt, bevorzugt zwischen 3 und 25, und besonders bevorzugt zwischen 3 und 15. Der Quellungsgrad ist definiert als das Gewichts Verhältnis zwischen der Menge Toluol, die durch den Silikonkautschuk absorbiert wird, wenn er mit Toluol bei 25 °C gesättigt wird, und der Menge an Silikonkautschuk im getrockneten Zustand. Die Ermittlung des Quellungsgrades ist im Detail in EP 249964 beschrieben. Wenn der Quellungsgrad geringer als 3 ist, d.h. wenn der Gehalt an Vernetzungsmittel zu hoch ist, zeigt der Silikonkautschuk nicht ausreichend Kautschukelastizität. Wenn der Quellungsindex größer als 30 ist, kann der Silikonkautschuk keine Domänenstruktur im Matrixpolymer ausbilden und daher auch keine Schlagzähigkeit verbessern, der Effekt wäre dann ähnlich einer einfachen Zugabe von Polydimethylsiloxan.
Tetrafunktionelle Vernetzungsmittel sind bevorzugt gegenüber irifunktionellen, weil dann der Quellungsgrad einfacher kontrollierbarer innerhalb der oben beschriebenen Grenzen ist. Als Pfropfmittel (V) geeignet sind Verbindungen, die fähig sind, Strukturen der folgenden Formeln zu bilden:
CH2=C(R9)-COO-(CH2)p-SiR10 nO(3^)/2 (V-l) CH2=CH-SiR1°nO(3_n)/2 (V-2) oder
HS-(CH2)p-SiR10 nO(3,1)/2 (V-3),
wobei
für Wasserstoff oder Methyl stehen,
für C j-C/j-A!kyl, vorzugsweise Methyl, Ethyi oder Propyl, oder Phenyl,
n 0, 1 oder 2 und
p eine ganze Zahl von 1 bis 6 bedeuten.
Acryloyi- oder Methacryloyloxysilane sind besonders geeignet, die o.g. Struktur (V-l) zu bilden, und haben eine hohe Pfropfeffizienz. Dadurch wird eine effektive Bildung der Pfropfketten gewährleistet, und somit die Schlagzähigkeit der resultierenden Harzzusammensetzung begünstigt. Beispielhaft und bevorzugt seien genannt: ß~Methacr 'loyloxy-ethyidimethoxymethyl~silan, y- Methacryloyloxy-propylmemoxydimethyl-silan, y-Memacryloyloxy-propyldimethoxymethyl-silan, y- Methacryioyloxy-propyltrimethoxy-siian, γ-Methacryloyloxy-propylethoxydiethyl-silan, y-Meth- acryloyloxy-propyldiethoxymethyl-silan, δ-Methaciyloyl-oxy-butyldiethoxymethyl-silane oder Mischungen hieraus. Bevorzugt werden 0 bis 20 Gew.-% Pfropfmittel bezogen auf das Gesamtgewicht des Silikonkautschuks eingesetzt.
Der Silikonkautschuk kann durch Emulsionspolymerisation hergestellt werden, wie beispielsweise in US 2891920 und US 3294725 beschrieben. Der Silikonkautschuk fällt dabei in Form eines wäßrigen Latex an. Dafür wird ein Gemisch enthaltend Organosiloxan, Vernetzungsmittel und gegebenenfalls Pfropfmittel unter Scherung mit Wasser vermischt, bei spielsweise durch einen Ho m og e ni s ato r, in Geg e nw art e in e s Em uig ato rs a uf S u l fo n s äure b as i s wi e z . B . Aikyibenzolsulfonsäure oder Alkylsulfonsäure, wobei die Mischung zum Silikonkautschuklatex auspolymerisiert. Besonders geeignet ist eine Aikyibenzolsulfonsäure, da sie nicht nur als Emulgator, sondern auch als Polymerisationsmitiator wirkt. In diesem Fall ist eine Kombination der Sulfonsäure mit einem Metallsalz einer Aikyibenzolsulfonsäure oder mit einem Metallsalz eine r Alkyl sulfon säure günstig , we il dadurch das Po lyme r während de r späte ren Pfropfpolymerisation stabilisiert wird.
Nach der Polymerisation wird die Reaktion beendet, indem die Reaktionsmischung durch Zugabe einer wässrigen alkalischen Lösung neutralisiert wird, z.B. durch Zugabe einer wässrigen atriumhydroxid, Kaliumhydroxid oder Natriumcarbonat-Lösung. Geeignete Polyalkyl(meth)acrylatkautschuk-Komponenten B.2.2 der Silikon- Acrylat- Kompositkautschuke gemäß B.2 können hergestellt werden aus Methacryisäurealkylestem und/oder Acrylsäurealkylestern, einem Vernetzungsmittel (IV) und einem Pfropfmittel (V). Hierbei sind beispielhafte und bevorzugte Methacrylsäurealkylester und/oder Acrylsäurealkylester die Ci bis Cg-Alkylester, beispielsweise Methyl-, Eihyi-, n-Butyl-, t-Butyl-, n-Propyl-, n-Hexyi-, n-Octyl-, n-Lauryl- und 2-Ethylhexyiester: Halogenalkylester, vorzugsweise Halogen-Cj-Cg-alkylester, wie Chlorethylacrylat sowie Mischungen dieser Monomeren. Besonders bevorzugt ist n-Butylacrylat.
Als Vernetzungsmittel (IV) für die Polyalkyi(meth)aciylatkautschuk-Komponente des Siiikonaciyiat-Kautschuks können Monomere mit mehr als einer polymerisierbaren Doppelbindung eingesetzt werden. Bevorzugte Beispiele für vernetzende Monomere sind Ester ungesättigter Monocarbonsäuren mit 3 bis 8 C- Atomen und ungesättigter einwertiger Alkohole mit 3 bis 12 C- Atomen, oder gesättigter Polyoie mit 2 bis 4 OH-Gruppen und 2 bis 20 C-Atomen, wie Ethyienglykoldimethacryiat, Propylengiykoldimethacryiat, 1,3-Butylenglykoldimethacryiat und 1 ,4-Butylenglykoldimethacrylat. Die Vernetzungsmittel können alleine oder in Gemischen aus mindestsens zwei Vernetzungsmitteln verwendet werden.
Beispielhafte und bevorzugte Pfropfmittel (V) sind Ailyimethacrylat, Triallylcyanurat, Triallylisocyanurat oder Mischungen hieraus. Ailyimethacrylat kann auch als Vernetzungsmittel (IV) eingesetzt werden . Die Pfropfmittel können alieine oder in Gemischen aus mindestens zwei Pfropfmitteln verwendet werden. Die Menge an Vernetzungsmittel (IV) und Pfropfmittel (V) beträgt 0,1 bis 20 Gew.%, bezogen auf das gesamte Gewicht der Polyalkyl(meth)acrylatkautschuk-Komponente des Silikonacrylat- Kautschuks. Der Silikonacrylat-Kompositkautschuk wird hergestellt, indem zunächst der Silikonkautschuk gemäß B.2.1 als wäßriger Latex hergestellt wird. Dieser Latex wird anschließend mit den zu verwendenden Methacrylsäurealkvlestem und/oder Aciylsäurealkylestern, dem Vernetzungsmittel (IV) und dem Pfropfmittel (V) angereichert, und eine Polymerisation wird durchgeführt. Bevorzugt ist eine radikalisch initiierte Emulsionspolymerisation, beispielsweise durch einen Peroxid-, einen Azo- oder Redoxinitiator. Besonders bevorzugt ist die Verwendung eines Redoxinitiatorsystems, spezieil eines Sulfoxylat-Initiatorsystems hergestellt durch Kombiniation von Eisensulfat, Dinatriumethylendiamintetraacetat, Rongalit und Hydroperoxid.
Das Pfropfmittel (V), das bei der Herstellung des Silikonkautschuks verwendet wird, führt dabei dazu, daß der Polyalkyl(meth)acrylatkautschuk- Anteil kovalent an den Silikonkautschuk -Anteil angebunden wird. Bei der Polymerisation durchdringen sich die beiden Kautschuk-Komponenten gegenseitig und bilden so den Komposit-Kautschuk, der sich nach der Polymerisation nicht mehr in seine Bestandteile aus Silikonkautschuk-Komponente und Polyalkyl(meth)acrylatkautschuk- Komponente trennen läßt.
Zur Herstellung der als Komponente B) genannten Silikon-Acrylat-Komposit-Pfropfkautschuke B werden die Monomere B. l auf die Kautschuk-Grundlage B.2 aufgepfropft.
Dabei können die beispielsweise in EP 249964, EP 430134 und U S 4888388 beschriebenen Polymerisationsmethoden angewendet werden.
Beispielsweise erfolgt die Pfropfpolymerisation nach folgender Polymerisationsmethode: In einer ein- oder mehrstufigen radikalisch initiierten Emulsionspolymerisation werden die gewünschten Vinylmonomere B. 1 auf die Pfropfgrundlage, die als wässriger Latex vorliegt, aufpolymerisiert. Die Pfropfeffizienz soll dabei möglichst hoch sein und beträgt bevorzugt größer oder gleich 10%. Die Pfropfeffizienz hängt maßgeblich vom verwendeten Pfropfmittel (V) ab . Nach der Polymerisation zum Silikon(acrylat)-Pfropfkautschuk wird der wäßrige Latex in heißes Wasser gegeben, in dem zuvor Metallsalze gelöst wurden, wie z.B. Calciumchiorid oder Magnesiumsulfat. Dabei koaguliert der Silikon(acrylat)-Pfropfkautschuk und kann anschließend separiert werden. Die ais Komponente B) genannten Methacrylsäurealkylester- und Acrylsäurealkylester- Pfropikautschuke sind kommerziell erhältlich. Beispielhaft seien genannt: Metablen® SX 005, Metablen® S-2030 und Metablen® SRK 200 der Mitsubishi Rayon Co. Ltd. Komponente C
Die Erfindungsgemäßen Zusammensetzungen enthalten weiterhin Fiammschutzmittel, wobei diese vorzugsweise ausgewählt sind aus der Gruppe, die die phosphorhaltigen Fiammschutzmittel und halogenierten Fiammschutzmittel umfaßt.
Besonders bevorzugt werden phosphorhaltige Flammschutzmittel, wobei diese phosphorhaltigen Fiammschutzmittel ausgewählt sind aus den Gruppen der Mono- und oligomeren Phosphor- und Phosphonsäureester, Phosphonatamine, Phosphazene und Phosphinsäuresalzen, wobei auch Mischungen von mehreren Komponenten ausgewählt aus einer oder verschiedenen dieser Gruppen als Fiammschutzmittel zum Einsatz kommen können. Auch andere hier nicht speziell erwähnte halogenfreie Phosphorverbindungen können alleine oder in beliebiger Kombination mit anderen halogenfreien Phosphorverbindungen eingesetzt werden.
Bevorzugte Mono- und oligomere Phosphor- bzw. Phosphonsäureester sind Phosphorverbindungen der allgemeinen Formel (VI)
Figure imgf000015_0001
worin
Rl, R2, R3 und R4, unabhängig voneinander jeweils gegebenenfalls haiogeniertes C l bis C8- Alkyl, jeweils gegebenenfalls durch Alkyl, vorzugsweise Cl bis C4-Alkyi, und/oder Halogen, vorzugsweise Chlor, Brom, substituiertes C5 bis C6-Cyeloalkyl, C6 bis C20-Aryl oder C7 bis C12- Aralkyl,
n unabhängig voneinander, 0 oder 1 ,
q 0 bis 30 und
X einen ein- oder mehrkernigen aromatischen Rest mit 6 bis 30 C-Atomen, oder einen linearen oder verzweigten aliphatischen Rest mit 2 bis 30 C-Ätomen, der OH-substituiert sein und bis zu acht Etherbindungen enthalten kann, bedeuten. Bevorzugt stehen Rl, R2, R3 und R4 unabhängig voneinander für Cl bis C4-Aikyl, Phenyl, Naphthyl oder Phenyl-C l -C4-alkyl. Die aromatischen Gruppen Rl, R2, R3 und R4 können ihrerseits mit Halogen- und/oder Aikylgruppen, vorzugsweise Chlor, Brom und/oder Cl bis C4- Alkyl substituiert sein. Besonders bevorzugte Aryl-Reste sind Kresyl, Phenyi, Xylenyl, Propylphenyl oder Butylphenyl sowie die entsprechenden bromierten und chlorierten Derivate davon.
X in der Formel (VI) bedeutet bevorzugt einen ein- oder mehrkernigen aromatischen Rest mit
6 bis 30 C- Atomen. Dieser leitet sich bevorzugt von Diphenolen der Formel (I) ab.
n in der Formel (VI) kann, unabhängig voneinander, 0 oder 1 sein, vorzugsweise ist n gleich
1.
q (auch in Formel VII) steht für ganzzahiige Werte von 0 bis 30, bevorzugt 0 bis 20, besonders bevorzugt 0 bis 10, im Falle von Mischungen für Durchschnittswerte von 0,8 bis 5,0, bevorzugt 1,0 bis 3,0, weiter bevorzugt. 1 ,05 bis 2,00, und besonders bevorzugt von 1,08 bis 1 ,60. X steht besonders bevorzugt für
Figure imgf000016_0001
oder deren chlorierte oder bromierte Derivate, insbesondere leitet sich X von Resorcin, Hydrochinon, Bisphenol A oder Diphenyiphenol ab. Besonders bevorzugt leitet sich X von Bisphenol A ab.
Phosphorverbindungen der Formel (VI) sind insbesondere Tributylphosphat, Triphenylphosphat, Trikresylphosphat, Diphenylkresylphosphat, Diphenyloctylphosphat, Diphenyl-2-ethylkresyl- phosphat, Tri-(isopropyiphenyi)-phosphat, Resorcin verbrücktes Oligophosphat und Bisphenoi A verbrücktes Oligophosphat. Der Einsatz von oiigomeren Phosphorsäureestern der Formel (VI), die sich vom Bisphenol A ableiten, ist insbesondere bevorzugt.
Höchst bevorzugt als Komponente C ist Bisphenol-A basierendes Oligophosphat gemäß Formel (Via)
Figure imgf000017_0001
In einer alternativen bevorzugten Ausfiihningsform ist Komponente C Resorcinol-basierendes Qligophosphat gemäß Formel (VIb)
Figure imgf000017_0002
Die Phosphorverbindungen gemäß Komponente C sind bekannt (vgl. z.B. EP-A 0 363 608, EP-Ä 0 640 655) oder lassen sieh nach bekannten Methoden in analoger Weise herstellen (z.B. Ullmanns Enzyklopädie der technischen Chemie, Bd. 18, S. 301 ff. 1979; Houben-Weyl, Methoden der organischen Chemie, Bd. 12/1, S. 43; Beilstein Bd. 6, S. 177).
Als erfindungsgemäße Komponente C können auch Mischungen von Phosphaten mit unterschiedlicher chemischer Struktur und/oder mit gleicher chemischer Struktur und verschiedenem Molekulargewicht eingesetzt werden.
Vorzugsweise werden Mischungen mit gleicher Struktur und unterschiedlicher Ketteniänge verwendet, wobei es sich bei dem angegebenen q-Wert um den mittleren q-Wert handelt. Der mittlere q-Wert kann bestimmt werden, indem mittels geeigneter Methode (Gaschromatographie (GC), High Pressure Liquid Chromatography (HPLC), Gelpermeationschromatographie (GPC)) die Zusammensetzung der Phosphorverbindung (Molekulargewichtsverteilung) bestimmt wird und daraus die Mittelwerte für q berechnet werden.
Weiterhin können Phosphonatamme und Phosphazene, wie sie in WO 00/00541 und WO 01/18105 beschrieben sind, als Flamm Schutzmittel eingesetzt werden.
Die Flammschutzmittel können allein oder in beliebiger Mischung untereinander oder in Mischung mit anderen Flammschutzmitteln eingesetzt werden. Weitere bevorzugte Flammschutzmittel im erfindungsgemäßen Sinne sind Salze einer Phosphinsäure mit beliebigen Metallkationen. Es können auch Mischungen von Salzen eingesetzt werden, die sich in Ihrem Metallkation unterscheiden. Bei den Metallkationen handelt es sich um die Kationen Metalle der 1. Hauptgruppe (Alkalimetalle, vorzugsweise Li+, Na", K+), der 2. Hauptgrappe (Erdalkalimetalle; vorzugsweise Mg2+, Ca2+, Sr2+, Ba2+, besonders bevorzugt Ca2+) oder der 3. Hauptgruppe (Elemente der Borgruppe; vorzugsweise Al'+) und/oder der 2., 7. oder 8. Nebengruppe (vorzugsweise Ζη, Mn2+, Fe2", Fe3+) des Periodensystems ist.
Vorzugsweise wird ein Salz oder eine Mischung von Salzen einer Phosphinsäure der Formel (IX) eingesetzt,
0
i !
H-P-O m
(IX) worin Mm+ ein Metallkation der 1. Hauptgruppe (Alkalimetall e; m = 1), 2, Hauptgruppe (Erdalkalimetalle; m = 2) oder der 3. Hauptgruppe (m = 3) oder der 2., 7. oder 8. Nebengruppe (wobei m eine ganze Zahl von 1 bis 6, bevorzugt 1 bis 3 und besonders bevorzugt 2 oder 3 bedeutet) des Periodensystems ist.
Besonders bevorzugt sind in Formel (IX)
für m = 1 die Metallkationen M+ = Li+, Na+, IC,
für m = 2 die Metallkationen M2+ = Mg2+, Ca2+,Sr2+, Ba2+ und
für m = 3 die Metallkationen M3+ = AI J+,
höchst bevorzugt sind Ca2 " (m = 2) und AI3"' (m = 3). In einer bevorzugten Ausführungsform ist die mittlere Teilchengröße d50 des Phosphinsäuresaizes (Komponente C) kleiner als 80 μιτι, vorzugsweise kleiner als 60 μηι, besonders bevorzugt ist d5o zwischen 10 μηι und 55 μηι. Die mittlere Teilchengröße d50 ist der Durchmesser, oberhalb und unterhalb dessen jeweils 50 Gew.-% der Teilchen liegen. Es können auch Mischungen von Salzen eingesetzt werden, die sich in ihrer mittleren Teilchengröße d50 unterscheiden.
Diese Anforderungen an die Teilchengröße sind jeweils mit dem technischen Effekt verbunden, dass die Flammschutzeffizienz des Phosphinsäuresaizes erhöht ist. Das Phosphmsäuresalz kann entweder alleine oder in Kombination mit anderen phosphorhaltigen Flammschutzmitteln eingesetzt werden.
Als Antitropfmittel können die erfindungsgemäßen Zusammensetzungen vorzugsweise fluorierte Polvolefme D enthalten. Fluorierte Poiyolefine sind allgemein bekannt (vgl. z.B. EP-A 640 655). Ein handelsübliches Produkt ist beispielsweise Teflon® 30 N von der Firma DuPont.
Die fluorierten Poiyolefine können auch in Form einer koagulierten Mischung von Emulsionen der fluorierten Poiyolefine mit Emulsionen der Pfropfpolymerisate B) oder einer Emulsion eines Copolymerisats E. l) vorzugsweise auf Styrol/Acrylnitril-Basis oder Polymethylmethacrylat-Basis eingesetzt werden, wobei das fluorierte Polyolefin als Emulsion mit einer Emulsion des Pfropf- polymerisats bzw. (Co)polymerisats gemischt und anschließend koaguliert wird.
Weiterhin können die fluorierten Poiyolefine als Präcompound mit dem Pfropfpolymerisat B) oder einem Copolymerisat E. l) auf vorzugsweise Stwol/Acrylnitri -Basis oder Polymethylmethacrylat- Basis eingesetzt werden. Die fluorierten Poiyolefine werden als Pulver mit einem Pulver oder Granulat des Pfropfpolymerisats bzw. Copolymerisats vermischt und in der Schmelze im allgemeinen bei Temperaturen von 200 bis 330°C in üblichen Aggregaten wie Innenknetern, Extrudern oder Doppelwellenschnecken compoundiert.
Die fluorierten Poiyolefine können auch in Form eines Masterbatches eingesetzt werden, welcher durch Emulsionspolymerisation mindestens eines monoethylenisch ungesättigten Monomers in Gegenwart einer wässrigen Dispersion des fluorierten Polyolefins hergestellt wird. Bevorzugte Monomerkomponenten sind Styrol, Acrylnitril, Polymethylmethacrylat und Mischungen daraus. Das Polymerisat wird nach saurer Fällung und nachfolgender Trocknung als rieselfähiges Pulver eingesetzt.
Die Koagulate, Präcompounds bzw. Masterbatches besitzen üblicherweise Feststoffgehalte an fluoriertem Polyolefin von 5 bis 95 Gew.-%, vorzugsweise 7 bis 60 Gew.-%. Die Komponente E umfasst ein oder mehrere thermoplastische Vinyl(Co)Poiymerisate E. l und/oder Poiyaikylenterephthaiate E.2.
Geeignet sind als Vinyl(Co)Polymerisate E. l Polymerisate von mindestens einem Monomeren aus der Gruppe der Vinylaromaten, Vinylcyanide (ungesättigte Nitrile), ungesättigte Carbonsäuren sowie Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren. Insbesondere geeignet sind (Co)Polymerisate aus
E.1 , 1 50 bis 99, vorzugsweise 60 bis 80 Gew.-Teilen Vinylaromaten und/oder kernsubstituierten Vinylaromaten (wie Styroi, α-Methylstyrol, p-Methyistyrol, p-Chlorstyrol), und
E.1.2 1 bis 50, vorzugsweise 20 bis 40 Gew.-Teilen Vinylcyanide (ungesättigte Nitrile, wie Acryl-nitril und Methacrylnitril) und/oder ungesättigte Carbonsäuren (wie Maieinsäure) und/oder Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren (beispielsweise Maleinsäureanhydrid und N-Phenylmaleinimid).
Die Vinyi(co)poiymerisate E. l sind harzartig, thermoplastisch und kautschukfrei. Besonders bevorzugt ist das Copolymerisat aus E.1.1 Styroi und E.1.2 Acrylnitril. Die (Co)Polymerisate gemäß E.1 sind bekannt und lassen sich durch radikalische Polymerisation, insbesondere durch Emuisions-, Suspensions-, Lösungs- oder Massepolymerisation hersteilen. Die (Co)Polymerisate besitzen vorzugsweise mittlere Molekulargewichte Mw (Gewichtsmittel, ermittelt durch Lichtstreuung oder Sedimentation) zwischen 15,000 und 200.000. Die Poiyaikylenterephthaiate der Komponente E.2 sind Reaktionsprodukte aus aromatischen Dicarbonsäuren oder ihren reaktionsfähigen Derivaten, wie Dimethylestem oder Anhydriden, und aliphatischen, cycloaliphatischen oder araliphatischen Diolen sowie Mischungen dieser Reaktionsprodukte. Bevorzugte Poiyaikylenterephthaiate enthalten mindestens 80 Gew.-%, vorzugsweise mindestens 90 Gew.-%, bezogen auf die Dicarbonsäurekomponente Terephthalsäurereste und mindestens 80 Gew.-%, vorzugsweise mindestens 90 Mol-%, bezogen auf die Diolkomponente Ethylenglykol- und/oder Butandiol-l,4-Reste.
Die bevorzugten Poiyaikylenterephthaiate können neben Terephthalsäureresten bis zu 20 Mol-%, vorzugsweise bis zu 10 Mol-%, Reste anderer aromatischer oder cycioaliphatischer Dicarbonsäuren mit 8 bis 14 C-Atomen oder aliphatischer Dicarbonsäuren mit 4 bis 12 C-Atomen enthalten, wie z .B . Reste von Phthalsäure, Is ophtha! säure, Naphthalin-2,6-dicarbonsäure, 4,4'-Diphenyldi- carhonsäure, Bernsteinsäure, Adipinsäure, Sebacinsäure, Azelainsäure, Cyclohexandiessigsäure. Die bevorzugten Polyalkylenterephthalate können neben Ethylenglykol- bzw. Butandiol-l,4-Resten bis zu 20 Moi-%, vorzugsweise bis zu 10 Moi-%, andere aliphatische Dioie mit 3 bis 12 C-Atomen oder cycloaSiphatische Diole mit 6 bis 21 C-Atomen enthalten, z.B. Reste von Propandiol-1,3, 2- Ethylpropandiol-1 ,3, Neopentylgiykol, Pentandiol-1 ,5, Hexandiol-1 ,6, Cyclohexan-dimethanol-1 ,4, 3 -Ethylpentandiol-2,4, 2-Methylpentandiol-2,4, 2,2,4-Trimethylpentandiol- 1,3, 2-Ethylhexandiol- 1,3, 2,2-Diethylpropandiol-l,3, Hexandiol-2,5, l,4-Di-(ß-hydroxyethoxy)-benzoi, 2,2-Bis-(4- hydroxycyclohexyl)-propan, 2,4-Dihydroxy-l, l,3,3-tetramethyl-cyelobutan, 2,2-Bis-(4-ß- hydroxyethoxy-phenyl)-propan und 2,2-Bis-(4-hydrox}ipropox\i]3henyl)-propan (DE-A 2 407 674, 2 407 776, 2 715 932).
Die Polyalkylenterephthalate können durch Einbau relativ kleiner Mengen 3- oder 4-wertiger Alkohole oder 3- oder 4-basiseher Carbonsäuren, z.B. gemäß DE-A 1 900 270 und US-PS 3 692 744, verzweigt werden. Beispiele bevorzugter Verzweigungsmittel sind Trime sin säure, Trimellithsäure, Trimethylolethan und -propan und Pentaerythrit.
Besonders bevorzugt sind Polyalkylenterephthalate, die allein aus Terephthalsäure und deren reaktionsfähigen Derivaten (z.B. deren Dialkylestem) und Ethylenglykol und/oder Butandiol-1,4 hergestellt worden sind, und Mischungen dieser Polyalkylenterephthalate.
Mischungen von Polyalkylenterephthalaten enthalten 1 bis 50 Gew.-%, vorzugsweise 1 bi s 30 Gew.-%, Polyethylenterephthalat und 50 bis 99 Gew.-%, vorzugsweise 70 bis 99 Gew.-%, Polybutylenterephthalat .
Die vorzugsweise verwendeten Polyalkylenterephthalate besitzen im Allgemeinen eine Grenzviskosität von 0,4 bis 1,5 dl/g, vorzugsweise 0,5 bis l,2 dl/g, gemessen in Phenol/o-Dichlorbenzol (1 : 1 Gewichtsteile) bei 25 °C im Ubbelohde-Viskosimeter. Die Polyalkylenterephthalate lassen sich nach bekannten Methoden herstellen (s. z.B. Kunststoff- Handbuch, Band VIII, S. 695 ff, Carl-Hanser- Verlag, München 1973). Weitere Zusatzstoffe F
Die erfindungsgemäßen Formmassen können wenigstens ein weiteres der üblichen Additive, wie z.B. Gleit- und Entformungsmittel, Nukieiermittei, Antistatika, Stabilisatoren, Farbstoffe und Pigmente sowie Füll- und Verstärkungsstoffe enthalten.
Die Komponente F umfasst auch feinstteilige anorganische Verbindungen, die sich durch einen durchschnittlichen Teilchendurchmesser von kleiner oder gleich 200 nm, bevorzugt kleiner oder gleich 150 nm, insbesondere von 1 bis 100 nm auszeichnen. Geeignete feinstteilige anorganische Verbindungen bestehen vorzugsweise aus wenigstens einer polaren Verbindung von einem oder mehreren Metallen der 1. bis 5. Hauptgruppe oder 1. bis 8. Nebengruppe des Periodensystems, bevorzugt der 2. bis 5. Hauptgruppe oder 4. bis 8. Nebengruppe, besonders bevorzugt der 3. bis 5. Hauptgruppe oder 4. bis 8. Nebengruppe, oder aus Verbindungen dieser Metalle mit wenigstens einem Element ausgewählt aus Sauerstoff, Wasserstoff, Schwefel, Phosphor, Bor, Kohlenstoff, Stickstoff oder Silicium . Bevorzugte Verbindungen sind beispielsweise Oxide, Hydroxide, wasserhaltige Oxide, Sulfate, Sulfite, Sulfide, Carbonate, Carbide, Nitrate, Nitrite, Nitride, Borate, Silikate, Phosphate, Hydride, Phosphite oder Phosphonate. Bevorzugt bestehen die feinstteiligen anorganischen Verbindungen aus Oxiden, Phosphaten, Hydroxiden, vorzugsweise aus Ti02, Si02, Sn02, ZnO, ZnS, Böhmit, Zr02, A1203, Aluminiumphosphate, Eisenoxide, ferner TiN, WC, AIO(OH), Fe203 Eisenoxide, NaS04, Vanadianoxide, Zmkborat, Silikate wie Al-Siiikate, Mg- Silikate, ein-, zwei-, dreidimensionale Silikate und Talk. Mischungen und dotierte Verbindungen sind ebenfalls verwendbar. Des weiteren können diese feinstteilige anorganische Verbindungen mit organischen Molekülen oberflächenmodifiziert sein, um eine bessere Verträglichkeit mit den Polymeren zu erzielen. Auf diese Weise lassen sich hydrophobe oder hydrophile Oberflächen er- zeugen. Besonders bevorzugt sind hydrathaStige Aluminiumoxide (z.B. Böhmit) oder Ti02.
Teilchengröße und Teilchendurchmesser der anorganischen Partikel bedeutet den mittleren Teilchendurchmesser d50, ermittelt durch Sedimentationsmessungen ü b e r d i e Absetzgeschwindigkeit der Partikel beispielsweise in einem Sedigraph.
Die anorganischen Verbindungen können als Pulver, Pasten, Sole Dispersionen oder Suspensionen vorliegen. Durch Ausfällen können aus Dispersionen, Sole oder Suspensionen Pulver erhalten werden.
Die anorganischen Verbindungen können nach üblichen Verfahren in die thermoplastischen Formmassen eingearbeitet werden, beispielsweise durch direktes Kneten oder Extrudieren von Formmassen und den feinstteiligen anorganischen Verbindungen. Bevorzugte Verfahren stellen die Herstellung eines Masterbatch, z.B. in Flammschutzadditiven und wenigstens einer Komponente der erfindungsgemäßen Formmassen in Monomeren oder Lösungsmitteln, oder die Cofäliung von einer thermoplastischen Komponente und den feinstteiligen anorganischen Verbindungen, z.B . durch Cofäliung einer wässrigen Emulsion und den feinstteiligen anorganischen Verbindungen dar, gegebenenfalls in Form von Dispersionen, Suspensionen, Pasten oder Solen der feinstteiligen anorganischen Materialien.
Die Zusammensetzungen gemäß der vorliegenden Erfindungen werden hergestellt, indem man die jeweiligen Bestandteile in bekannter Weise vennischt und bei Temperaturen von 200°C bis 300°C in üblichen Aggregaten wie Innenknetern, Extrudern und Doppelwellenschnecken schmelzcompoundieri und schmelzextrudiert. Die Vermischung der einzelnen Bestandteile kann in bekannter Weise sowohl sukzessive als auch simultan erfolgen, und zwar sowohl bei etwa 20°C (Raumtemperatur) als auch bei höherer Temperatur. Die thermoplastischen Zusammensetzungen und Formmassen gemäß der vorliegenden Erfindung eignen sich aufgrund ihrer ausgezeichneten Balance aus hoher Schlagzähigkeit bei tiefen Temperaturen, guter Flammwidrigkeit bei dünnen Wandstärken und einer exzellente chemischen Beständigkeit zur Herstellung von erfmdungsgemäßen Batteriegehäusen. Gegenstand der Erfindung sind ebenfalls Verfahren zur Herstellung der Batteriegehäuse und die Verwendung der Formmassen zur Herstellung von Batteriengehäusen. Die Formmassen können durch Spritzguss zu Batteriegehäusen verarbeitet werden. Ein weiterer Gegenstand der Erfindung ist die Herstellung von Batteriegehäusen durch Thermoformen aus vorher hergestellten Platten oder Folien.
Die Batteriegehäuse sind für folgende Anwendungen geeignet: Fahrzeugbatterien- und akkumulatoren, Batteriegehäuse für Kraftfahrzeuge, Busse, Lastwagen, Wohnmobile, Schienenfahrzeuge, Luftfahrzeuge, Wasserfahrzeuge oder sonstige Fahrzeuge, stationäre Batterien, z.B. in Gebäuden für die Notstromversorgung, Speicherang von Solarstrom aus Photovoltaikanlagen. Die Batteriegehäuse erfüllen vorzugsweise die Anforderungen des UN 3480 Transporttests.
Beispiele für erfindungsgemäße Batteriegehäuse sind in den Figuren 1 und 2 dargestellt. Figur 1A zeigt ein Batteriegehäuse für flache Batteriezellen, das einen Abstand zwischen den Einschubslots für die Flachzellen aufweist, in dem ein Kühlmittel angeordnet sein kann oder in dem ein Kühlmittel zirkuliert. .
Figur 1B zeigt eine Draufsicht auf das Batteriegehäuse für flache Batteriezeilen.
Figur IC zeigt eine Schnittdarstellung (Schnitt AA) durch das Batteriegehäuse für flache Batteriezellen.
Figur 2A zeigt ein Batteriegehäuse für zylindrische Batteriezellen, das einen Abstand zwischen den Einschubslots für die zylindrischen Zellen aufweist, in dem ein Kühlmittel angeordnet sein kann oder in dem ein Kühlmittel zirkuliert.
Figur 2B zeigt eine Draufsicht auf das Batteriegehäuse für zylindrische Batteriezeilen.
Figur 2C zeigt eine Schnittdarstellung (Schnitt DD) durch das Batteriegehäuse für zylindrische
Batteriezellen. In den Figuren bedeuten:
1, 5 = Gehäuse
2, 6 = Deckel
3, 7 = Einschubsiot für Flachzelie (Fig. 1) oder zylindrische Zelle (Fig. 2)
4, 8 = Zeilenabstand für Kühimedium
In einer bevorzugten Ausfuhrungsform weist das Batteriegehäuse Kanäle für eine Kühlung der einzelnen Zellen, vorzugsweise eine Wasser/Gkykol- oder Luftkühlung, auf.
In einer alternativen Ausführungsform besteht das Batteriegehäuse aus einem äußeren Gehäuse und einem inneren Einsatz zur Aufnahme der einzelnen Zellen, wobei das äußere Gehäuse optional eine Isolierung, z.B. durch eine Doppelwand, aufweisen kann. Vorzugsweise sind das äußere Gehäuse und die Aufnahme der Zellen (Einschubslots) aus einem Material und, weiter bevorzugt aus einem Bauteil (einstückig), gefertigt.
Vorzugsweise können mehrere Batteriegehäuse moduiar zu größeren Einheiten erweitert werden.
In einer weiteren bevorzugten Ausführungsform enthält das Batteriegehäuse eine Aufnahme für eine Steuerelektronik. Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung.
Beispiele
Komponente A-l
Lineares Polycarbonat auf Basis Bisphenol A mit einer relativen Lösungsviskosität von η„ gemessen in CH2CS2 als Lösungsmittel bei 25°C und einer Konzentration von 0,5g/100ml.
Komponente B-l :
Silikon- Acrylat-Kompositkautschuk mit folgender Zusammensetzung:
Polymethyimethacr 'iat/Silikonkautsehuk/Aciy'latkautschuk: 14/3 /55 Gew.
Komponente B-2 :
Silikon-Acrylat-Kompositkautschuk mit folgender Zusammensetzung:
Polymethvlmethacrvlat/Silikonkautschuk/Acrylatkautschuk: 11/82/7 Gew.-%
Komponente C:
Bisphenol-A basierendes Oligophospliat (Reofoss BAPP) gemäß Formel (Via)
Figure imgf000025_0001
Komponente D:
PohtetrafluorethySen-PuSver, CFP 6000 N, Fa. Du Pont.
Komponente F:
F-l : Pentaemhrittetrastearat als Gleit-ZEntformungsmittel
F-2: Phosphitstabilisator, Phosphitstabilisator, Irganox® B900 (Gemisch aus 80% Irgafos® 168 und 20% Irganox® 1076; BASF AG; Ludwigshafen / Irgafos® 168 (Tris(2,4-di-tert-butyl-phenyl)- phosphit) / Irganox® 1076 (2,6-Di-tert-butyl-4-(octadecanoxycarbonylethyl)phenol). Auf einem Zweischneckenextruder (ZSK-25) (Fa. Werner und Pfleiderer) werden die in Tabelle 1 aufgeführten Einsatzstoffe bei einer Drehzahl von 225 Upm und einem Durchsatz von 20 kg/h bei einer Maschinentemperatur von 260°C compoundiert und granuliert. Die fertigen Granulate werden auf einer Spritzgussmaschine zu den entsprechenden Probekörpern verarbeitet (Massetemperatur 240 °C , Werkzeugtemperatur 80°C, Fließfrontgeschwindigkeit 240 mm/s).
Zur Charakterisiemng der Eigenschaften der Probekörper wurden folgende Methoden angewandt: Die Fließfähigkeit wurde nach ISO 11443 (Schmelzeviskosität) bestimmt. Die KerbschSagzähigkeit ak wurde gemessen nach ISO 1 80/1A an einem einseitig angespritzten Prüfstab der Dimension 80x10x4 mm bei den angegebenen Meßtemperaturen.
Die Wärmeformbeständigkeit wurde gemessen gemäß DIN ISO 306 (Vicat- Erweichungstemperatur, Verfahren B mit 50 N Belastung und einer Heizrate von 120 K/h) an einem einseitig angespritzten Prüfstab der Dimension 80x10x4 mm.
Das Brandverhalten wird nach UL 94V an Stäben der Abmessung 127 x 12,7 x 1,5 mm gemessen. Die Reißdehnung und Zug-E-Modul wanden nach DIN EN ISO 527 an Stäben der Abmessung 170,0 x 10,0 x 4,0 mm gemessen.
Unter Chemikalienbeständigkeit (ESC- Verhalten) wird die Zeit bis z um Bruch be i 2,4 °/o Randfaserdehnung nach Lagerung des Probekörpers in den gegebenen Testsubstanzen bei Raumtemperatur an einem einseitig angespritzten Prüfstab der Dimension 80x10x4 mm angegeben.
Tabelle: Zusammensetzungen und ihre Eigenschaften
Komponenten Gew.-% 1 2 3 4
A 84, 10 78, 10 84, 10 78, 10
Bl 9,00 11,00
B2 9,00 11,00
C 6,00 10,00 6,00 10,00
D 0,40 0,40 0,40 0,40
Fl 0,40 0,40 0,40 0,40
F2 0, 10 0, 10 0, 10 0, 10
Summe 100,00 100,00 100,00 100,00
Eigenschaften Einheiten
ak lSO 180/1 A bei RT [kJ/m2] 59 57 60 58 ak lSO 180/lA bei-20°C [kj/m2] 45 42 42 37 ak lSO 180/lA bei-40°C [kJ/m2] 32 30 20 18
Vicat B 120 [°C] 120 109 120 109
UL 94 V /1,5 mm V-0 V-0 V-0 V-0
Nachbrennzeit [s] 10 12 20 16
Schmelzeviskosität [PasJ 370 297 366 292 260°C/1000s-l
ESC bei 2,4% h:min 14:08 30:00 7:00 14:36 Toluol/Isopropanol
(60:40)
ESC bei 2,4% Rapsöl h:min 7:45 2:45 7:00 2:39
ESC bei 2,4% h:min 125:50 124:00 122:20 67:00 GlykoiAVasser (50:50)
ESC bei 2,4% h:min 168:00 168:00 168:00 168:00 Hydrauiiköl
Zug-E-Modul N/mm2 2248 2258 2242 2263
Reißdehnung % 106 1 10 103 110

Claims

l . Batteriegehäuse, umfassend Zusammensetzungen enthaltend
A) 70,0 bis 90,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B + C) lineares und/ oder verzweigtes aromatisches Polycarbonat und/oder aromatisches Poly- estercarbonat,
B) 6,0 bis 15,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B+ C) mindestens einse Pfropfpolymerisat mit
B. l 5 bis 40 Gew.-%, vorzugsweise 5 bis 30 Gew.-%, besonders bevorzugt 10 bis 20 Gew.
% (jeweils bezogen auf das Pfropfpolymerisat B) einer Hülle aus mindestens einem Vinylmonomeren und
B.2 95 bis 60 Gew.-%, vorzugsweise 95 bis 70 Gew.-%, besonders bevorzugt 80 bis 90 Gew. % (jeweils bezogen auf das Pfropfpolymerisat B) einer oder mehrerer Pfropf- grundlagen aus Silikon-Acrylat-Kompositkautschuk,
C) 2,0 bis 15,0 Gew .-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B+ C) Phosphorverbindungen ausgewählt aus den Gruppen der Mono- und oligomeren Phosphor- und Phosphonsäureester, Phosphonatamine, Phosphazene und Phosphinate, sowie Mischungen dieser Verbindungen,
D) 0 bis 3,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B f C) Antitropfmittel,
E) 0 - 3,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B+ C) thermoplastische Vinyl(Co)Polymerisat (Ε. Γ) und/oder Polyalkylenterephthalat (E.2), und
F) 0 bis 20,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten Ä + B+ C) weitere Zusatzstoffe,
wobei die Zusammensetzungen vorzugsweise frei sind von kautschukfreiem Polyalkyl(alky!)acrylat, und wobei alle Gewichtsteilangaben in der vorliegenden Anmeldung so normiert sind, dass die Summe der Gewichtsteile der Komponenten A+B+C in der Zusammensetzung 100 ergeben.
2. Batteriegehäuse gemäß Anspruch 1, dadurch gekennzeichnet, daß Komponente C ausgewählt ist aus Phosphorverbindungen gemäß Formel (VII),
Figure imgf000029_0001
worin
R , R2, und R4, unabhängig voneinander gegebenenfalls durch Halogen substituiertes C] -Cg-Aikyl, jeweils gegebenenfalls durch Halogen und/oder Alkyl substituiertes C^-Cg-Cycloalkyl, Cg-CjQ-Aryi oder C7-C ] 2-Aralkyl, n unabhängig voneinander 0 oder 1,
a unabhängig voneinander 0, 1, 2, 3 oder 4,
Figure imgf000029_0002
R5 und R6 unabhängig voneinander
Figure imgf000029_0003
vorzugsweise Methyl, oder Halogen, vorzugsweise Chlor und/oder Brom, und
Y C|-C7-Alkyliden, C^-Cy-Alkylen, C5-C|2-Cycloalkylen, CVC^-Cyclo- alkyliden, -O-, -S-, -SO-, -SO - oder -CO- bedeuten.
Batteriegehäuse gemäß Anspruch 1 oder 2 enthaltend 9,0 bis 1 1 ,0 Gew.-Teile (bezogen auf die Summe der Komponenten A + B+ C) Komponente B.
Batteriegehäuse nach einem der Ansprüche 1 bis 3 enthaltend 4,0 bis 11,0 Gew.-Teile (bezogen auf die Summe der Komponenten A + B+ C) Komponente C .
Batteriegehäuse nach einem der Anspräche 1 bis 4 enthaltend als Komponente C eine Mischung aus einem Monophosphat und einem Oligophosphat gemäß Formel (VII), wobei der Durchschnittswert von q 1,06 bis 1, 15 ist.
Batteriegehäuse nach einem der Ansprüche 1 bis 5 enthaltend 0, 1 bis 0,6 Gew.-Teile (bezogen auf die Summe der Komponenten A + B+ C) Komponente D.
Batteriegehäuse nach einem der Ansprüche 1 bis 6 enthaltend als Komponente F mindestens eine Additive ausgewählt aus der Gruppe bestehend aus Gleit- und Entformungsmittel, Nukleiermittel, Antistatika, Stabilisatoren, Farbstoffe, Pigmente, Füllstoffe, Verstärkungsstoffe und feinstteilige anorganische Verbindungen, wobei die feinstteiligen anorganischen Verbindungen einen durchschnittlichen Teilchendurchmesser von kleiner oder gleich 200 nm aufweisen.
8. Batteriegehäuse nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Batteriegehäuse ein äußeres Gehäuse und einen inneren Einsatz zur Aufnahme der einzelnen Zellen aufweist.
9. Batteriegehäuse nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Batteriegehäuse Kanäle für eine Kühlung der einzelnen Zellen aufweist.
10. Verwendung einer Zusammensetzungen enthaltend
A) 70,0 bis 90,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B + C) lineares und oder verzweigtes aromatisches Poiycarbonat und/oder aromatisches Poiy- estercarbonat,
B) 6,0 bis 15,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teiie der Komponenten A + B+ C) mindestens einse Pfropfpolymerisat mit
B. i 5 bis 40 Gew.-%, vorzugsweise 5 bis 30 Gew.-%, besonders bevorzugt 10 bis 20 Gew.
% (jeweils bezogen auf das Pfropfpolymerisat B) einer Hülle aus mindestens einem Vinylmonomeren und
B.2 95 bis 60 Gew.-%, vorzugsweise 95 bis 70 Gew.-%, besonders bevorzugt 80 bis 90 Gew. % (jeweils bezogen auf das Pfropfpolymerisat B) einer oder mehrerer Pfropfgrundlagen aus Siiikon-Acryiat-Kompositkautschuk, C) 2,0 bis 15,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B+ C) Phosphorverbindungen ausgewählt aus den Gruppen der Mono- und oligomeren Phosphor- und Phosphonsäureester, Phosphonatamine, Phosphazene und Phosphinate, sowie Mischungen dieser Verbindungen, D) 0 bis 3,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten A + B+ C) Antitropfmittel,
E) 0 - 3,0 Gew.-Teiie (bezogen auf die Summe der Gew.-Teile der Komponenten A + B+ C) thermoplastische Vinyl(Co)Polymerisat (E. i) und/oder Polyalkylenterephthalat (E.2), und F) 0 bis 20,0 Gew.-Teile (bezogen auf die Summe der Gew.-Teile der Komponenten Ä + B+ C) weitere Zusatzstoffe,
wobei die Zusammensetzungen vorzugsweise frei sind von kauischukfreiem Polyalkyl(alkyl)acrylat, und wobei alle Gewichtsteilangaben in der vorliegenden Anmeldung so normiert sind, dass die Summe der Gewichtsteile der Komponenten A+B+C in der Zusammensetzung 100 ergeben, zur Herstellung von Batteriegehäusen.
11. Verwendung einer Zusammensetzung gemäß Anspruch 10, dadurch gekennzeichnet, daß Komponente C ausgewählt ist aus Phosphorverbindungen gemäß Formel (VII),
Figure imgf000031_0001
worin
, R und R^, unabhängig voneinander gegebenenfalls durch Halogen substituiertes C|-Cg-Alkyl, jeweils gegebenenfalls durch Halogen und/oder Alkyl substituiertes C^-Cg-Cycloalkyl, Cg-C j Q-Aryi oder C -C^-Aralkyl, unabhängig voneinander 0 oder 1 ,
unabhängig voneinander 0, 1, 2, 3 oder 4,
0 bis 30
R~ und unabhängig voneinander Ci-C/j-Alkyl, vorzugsweise Methyl, oder Halogen, vorzugsweise Chlor und/oder Brom, und
Y C j-C7-Alkyliden, Cj-Cy-Alkylen, C5-C 12-Cycloalkylen, C5-C j2-Cyclo- alkyliden, -O-, -S-, -SO-, -SO2- oder -CO- bedeuten,
Verwendung einer Zusammensetzung gemäß Anspruch 10 oder 11 enthaltend 9,0 bis 11,0 Gew .-Teile (bezogen auf die Summe der Komponenten Ä + B+ C) Komponente B.
13. Verwendung einer Zusammensetzung nach einem der Ansprüche 10 bis 12 enthaltend 4,0 bis 11,0 Gew.-Teile (bezogen auf die Summe der Komponenten A + B ί Q Komponente C.
14. Verwendung einer Zusammensetzung nach einem der Ansprüche 10 bis 13 enthaltend 0,1 bis 0,6 Gew.-Teile (bezogen auf die Summe der Komponenten A + B+ Q Komponente D.
15. Verfahren zur Herstellung von Batteriegehäusen nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß Zusammensetzungen nach Anspruch 10 bis 14 spritzgegossenen oder thermogeformt werden.
PCT/EP2011/066313 2010-09-24 2011-09-20 Flammgeschützte schlagzähmodifizierte batteriegehäuse auf polycarbonatbasis i WO2012038421A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137009759A KR101860359B1 (ko) 2010-09-24 2011-09-20 폴리카보네이트 i을 포함하는 충격이 개질된 방염 배터리 박스
EP11760759.8A EP2619264A1 (de) 2010-09-24 2011-09-20 Flammgeschützte schlagzähmodifizierte batteriegehäuse auf polycarbonatbasis i
CN201180056777.4A CN103370369B (zh) 2010-09-24 2011-09-20 基于聚碳酸酯i的阻燃冲击改性电池组外壳
MX2013003305A MX2013003305A (es) 2010-09-24 2011-09-20 Cajas de baterias modificadas por impacto y retardantes de la llamada a base de policarbonato i.
BR112013006912A BR112013006912A2 (pt) 2010-09-24 2011-09-20 caixas de bateria retardadoras de chama modificadas por impacto com base em policarbonato i
CA2812292A CA2812292A1 (en) 2010-09-24 2011-09-20 Flame-protected impact-modified battery housing based on polycarbonates i

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010041387A DE102010041387A1 (de) 2010-09-24 2010-09-24 Flammgeschützte schlagzähmodifizierte Batteriegehäuse auf Polycarbonatbasis I
DE102010041387.9 2010-09-24

Publications (1)

Publication Number Publication Date
WO2012038421A1 true WO2012038421A1 (de) 2012-03-29

Family

ID=44675580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/066313 WO2012038421A1 (de) 2010-09-24 2011-09-20 Flammgeschützte schlagzähmodifizierte batteriegehäuse auf polycarbonatbasis i

Country Status (10)

Country Link
US (1) US8530551B2 (de)
EP (1) EP2619264A1 (de)
KR (1) KR101860359B1 (de)
CN (1) CN103370369B (de)
BR (1) BR112013006912A2 (de)
CA (1) CA2812292A1 (de)
DE (1) DE102010041387A1 (de)
MX (1) MX2013003305A (de)
TW (1) TWI528615B (de)
WO (1) WO2012038421A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10734622B2 (en) * 2013-02-25 2020-08-04 The Boeing Company Ventilation conduit for an aircraft
US9614209B2 (en) * 2013-02-25 2017-04-04 The Boeing Company Aircraft including mitigation system for rechargeable batteries
EP2970661A4 (de) * 2013-03-11 2016-10-12 Covestro Llc Flammhemmendes polycarbonat
EP2819206B1 (de) * 2013-06-27 2018-12-26 Dometic Italy S.r.l. Elektrischer Akkumulator
CN105814709A (zh) * 2013-10-02 2016-07-27 科思创德国股份有限公司 具有逃逸区的电池组模块、电池包和电动车辆
WO2015049188A2 (de) * 2013-10-02 2015-04-09 Bayer Materialscience Ag Batteriemodul mit sicherheitsabschnitt, batteriepack und elektrofahrzeug
CN105009323B (zh) * 2014-02-24 2019-04-26 波音公司 包括用于可再充电电池的缓解系统的飞机
CN106103643B (zh) * 2014-03-14 2019-10-18 科思创德国股份有限公司 具有均衡可加工性的导热的热塑性组合物
CN108780855B (zh) * 2016-03-22 2021-03-26 大日本印刷株式会社 电化学电池用包装材料
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR102368241B1 (ko) * 2017-06-06 2022-02-28 미쯔비시 케미컬 주식회사 폴리오르가노실록산 함유 그래프트 공중합체, 열가소성 수지 조성물 및 성형체
DE102017122416A1 (de) 2017-09-27 2019-03-28 Airbus Operations Gmbh Batterie mit integrierter Flammschutzvorrichtung
WO2019197270A1 (en) * 2018-04-09 2019-10-17 Covestro Deutschland Ag Glass fiber reinforced thermoplastic compositions with good mechanical properties
KR102396438B1 (ko) * 2019-02-21 2022-05-10 주식회사 엘지에너지솔루션 전지 모듈 및 그 제조 방법
EP4152495A1 (de) * 2020-10-12 2023-03-22 LG Energy Solution, Ltd. Batteriemodul, batteriepack und fahrzeug
TWI793638B (zh) * 2021-06-16 2023-02-21 陳樹錦 用於電動車輛之阻燃防爆電池組及其製造方法

Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891920A (en) 1955-01-26 1959-06-23 Dow Corning Polymerization of organopolysiloxanes in aqueous emulsion
US3294725A (en) 1963-04-08 1966-12-27 Dow Corning Method of polymerizing siloxanes and silcarbanes in emulsion by using a surface active sulfonic acid catalyst
US3419634A (en) 1966-01-03 1968-12-31 Gen Electric Organopolysiloxane polycarbonate block copolymers
DE1900270A1 (de) 1968-01-04 1969-11-06 Rhodiaceta Neue thermoplastische Formmassen
DE1495626B1 (de) 1960-03-30 1971-06-09 Bayer Ag Verfahren zum herstellen von polyestern
DE2232877A1 (de) 1972-07-05 1974-01-17 Dynamit Nobel Ag Verfahren zur kontinuierlichen kondensation von polyarylester
DE2407674A1 (de) 1973-03-30 1974-10-10 Tokyo Kosei Kaken Co Fahrbare vorrichtung zum schleifen und reinigen von boeden
DE2407776A1 (de) 1974-02-19 1975-09-04 Licentia Gmbh Schaltung zur regelung der betriebsspannung fuer die transistor-zeilenendstufe eines fernsehempfaengers
DE2703376A1 (de) 1976-01-29 1977-08-04 Sumitomo Chemical Co Verfahren zur herstellung aromatischer copolyester
DE2714544A1 (de) 1976-04-02 1977-10-06 Allied Chem Bisphenol-a-terephthalat-carbonat- copolymer und verfahren zu dessen herstellung
DE2715932A1 (de) 1977-04-09 1978-10-19 Bayer Ag Schnellkristallisierende poly(aethylen/alkylen)-terephthalate
DE2842005A1 (de) 1978-09-27 1980-04-10 Bayer Ag Polycarbonate mit alkylphenyl-endgruppen, ihre herstellung und ihre verwendung
DE3000610A1 (de) 1979-01-10 1980-07-17 Sumitomo Chemical Co Verfahren zur herstellung von aromatischen polyestern
DE2940024A1 (de) 1979-10-03 1981-04-16 Bayer Ag, 5090 Leverkusen Aromatische polyester, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von spritzgussartikeln, folien und ueberzuegen
DE3007934A1 (de) 1980-03-01 1981-09-17 Bayer Ag, 5090 Leverkusen Aromatische polyestercarbonate, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von spritzgussartikeln, folien und ueberzuegen
DE3334782A1 (de) 1983-04-19 1984-10-25 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von polydiorganosiloxanen mit hydroxyaryloxy-endgruppen
EP0249964A2 (de) 1986-06-17 1987-12-23 Mitsubishi Rayon Co., Ltd. Polykarbonatharz-Zusammensetzung
DE3631540A1 (de) 1986-09-17 1988-03-24 Bayer Ag Thermoplastische formmassen mit hoher alterungsbestaendigkeit und guter tieftemperaturzaehigkeit
US4888388A (en) 1987-09-21 1989-12-19 Mitsubishi Rayon Company Limited Polycarbonate resin composition
DE3832396A1 (de) 1988-08-12 1990-02-15 Bayer Ag Dihydroxydiphenylcycloalkane, ihre herstellung und ihre verwendung zur herstellung von hochmolekularen polycarbonaten
EP0363608A1 (de) 1988-09-22 1990-04-18 General Electric Company Polymer-Mischung aus einem aromatischen Polycarbonat, einem Styrol enthaltenden Copolymer und/oder Pfropfpolymer und einem Flammschutzmittel auf der Basis eines Phosphats, geformte Gegenstände daraus
EP0430134A2 (de) 1989-11-27 1991-06-05 Mitsubishi Rayon Co., Ltd. Hochschlagfeste Pfropfkopolymere und Harzzusammensetzungen
EP0635547A2 (de) 1993-07-23 1995-01-25 General Electric Company Flammwidrige, schlagzähe thermoplastische Zusammensetzungen mit reduziertem Glanz
EP0640655A2 (de) 1993-08-26 1995-03-01 Bayer Ag Flammwidrige, spannungsrissbeständige Polycarbonat-ABS-Formmassen
JPH08259791A (ja) * 1995-01-23 1996-10-08 Mitsubishi Rayon Co Ltd 難燃性樹脂組成物
US5807914A (en) 1995-07-05 1998-09-15 Mitsubishi Engineering-Plastics Corporation Glass fiber-reinforced polycarbonate resin composition
WO2000000541A1 (de) 1998-06-26 2000-01-06 Bayer Aktiengesellschaft Flammwidrige polycarbonat/abs-formmassen
WO2001018105A1 (de) 1999-09-02 2001-03-15 Bayer Aktiengesellschaft Flammwidrige polycarbonat-abs-blends
WO2002046305A1 (de) 2000-12-08 2002-06-13 Bayer Aktiengesellschaft Polycarbonat-zusammensetzungen
US6423766B1 (en) 1997-05-06 2002-07-23 Idemitsu Petrochemical Co., Ltd. Flame-retardant polycarbonate resin composition and electrical and electronic components made by molding the same
WO2004069914A1 (de) 2003-02-03 2004-08-19 Bayer Materialscience Ag Flammwidrige polycarbonat-blends
JP2008280491A (ja) * 2007-05-14 2008-11-20 Mitsubishi Engineering Plastics Corp 薄肉成形用難燃性芳香族ポリカーボネート樹脂組成物及び薄肉成形品
JP2009007487A (ja) * 2007-06-28 2009-01-15 Mitsubishi Engineering Plastics Corp 芳香族ポリカーボネート樹脂組成物、これを用いた成形品および成形品の製造方法
DE102008062945A1 (de) * 2008-12-23 2010-06-24 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polycarbonat-Zusammensetzungen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19721628A1 (de) * 1997-05-23 1998-11-26 Bayer Ag Flammwidrige hochwärmeformbeständige Polycarbonat-Formmassen mit hoher Fließnahtfestigkeit
GB9802181D0 (en) * 1998-02-03 1998-04-01 Fmc Corp Uk Ltd Polymer compositions

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891920A (en) 1955-01-26 1959-06-23 Dow Corning Polymerization of organopolysiloxanes in aqueous emulsion
DE1495626B1 (de) 1960-03-30 1971-06-09 Bayer Ag Verfahren zum herstellen von polyestern
US3294725A (en) 1963-04-08 1966-12-27 Dow Corning Method of polymerizing siloxanes and silcarbanes in emulsion by using a surface active sulfonic acid catalyst
US3419634A (en) 1966-01-03 1968-12-31 Gen Electric Organopolysiloxane polycarbonate block copolymers
DE1900270A1 (de) 1968-01-04 1969-11-06 Rhodiaceta Neue thermoplastische Formmassen
US3692744A (en) 1968-01-04 1972-09-19 Rhodiaceta Injection molded branched polyesters
DE2232877A1 (de) 1972-07-05 1974-01-17 Dynamit Nobel Ag Verfahren zur kontinuierlichen kondensation von polyarylester
DE2407674A1 (de) 1973-03-30 1974-10-10 Tokyo Kosei Kaken Co Fahrbare vorrichtung zum schleifen und reinigen von boeden
DE2407776A1 (de) 1974-02-19 1975-09-04 Licentia Gmbh Schaltung zur regelung der betriebsspannung fuer die transistor-zeilenendstufe eines fernsehempfaengers
DE2703376A1 (de) 1976-01-29 1977-08-04 Sumitomo Chemical Co Verfahren zur herstellung aromatischer copolyester
DE2714544A1 (de) 1976-04-02 1977-10-06 Allied Chem Bisphenol-a-terephthalat-carbonat- copolymer und verfahren zu dessen herstellung
DE2715932A1 (de) 1977-04-09 1978-10-19 Bayer Ag Schnellkristallisierende poly(aethylen/alkylen)-terephthalate
DE2842005A1 (de) 1978-09-27 1980-04-10 Bayer Ag Polycarbonate mit alkylphenyl-endgruppen, ihre herstellung und ihre verwendung
DE3000610A1 (de) 1979-01-10 1980-07-17 Sumitomo Chemical Co Verfahren zur herstellung von aromatischen polyestern
DE2940024A1 (de) 1979-10-03 1981-04-16 Bayer Ag, 5090 Leverkusen Aromatische polyester, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von spritzgussartikeln, folien und ueberzuegen
DE3007934A1 (de) 1980-03-01 1981-09-17 Bayer Ag, 5090 Leverkusen Aromatische polyestercarbonate, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von spritzgussartikeln, folien und ueberzuegen
DE3334782A1 (de) 1983-04-19 1984-10-25 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von polydiorganosiloxanen mit hydroxyaryloxy-endgruppen
EP0249964A2 (de) 1986-06-17 1987-12-23 Mitsubishi Rayon Co., Ltd. Polykarbonatharz-Zusammensetzung
DE3631540A1 (de) 1986-09-17 1988-03-24 Bayer Ag Thermoplastische formmassen mit hoher alterungsbestaendigkeit und guter tieftemperaturzaehigkeit
US4888388A (en) 1987-09-21 1989-12-19 Mitsubishi Rayon Company Limited Polycarbonate resin composition
DE3832396A1 (de) 1988-08-12 1990-02-15 Bayer Ag Dihydroxydiphenylcycloalkane, ihre herstellung und ihre verwendung zur herstellung von hochmolekularen polycarbonaten
EP0363608A1 (de) 1988-09-22 1990-04-18 General Electric Company Polymer-Mischung aus einem aromatischen Polycarbonat, einem Styrol enthaltenden Copolymer und/oder Pfropfpolymer und einem Flammschutzmittel auf der Basis eines Phosphats, geformte Gegenstände daraus
EP0430134A2 (de) 1989-11-27 1991-06-05 Mitsubishi Rayon Co., Ltd. Hochschlagfeste Pfropfkopolymere und Harzzusammensetzungen
EP0635547A2 (de) 1993-07-23 1995-01-25 General Electric Company Flammwidrige, schlagzähe thermoplastische Zusammensetzungen mit reduziertem Glanz
EP0640655A2 (de) 1993-08-26 1995-03-01 Bayer Ag Flammwidrige, spannungsrissbeständige Polycarbonat-ABS-Formmassen
JPH08259791A (ja) * 1995-01-23 1996-10-08 Mitsubishi Rayon Co Ltd 難燃性樹脂組成物
US5807914A (en) 1995-07-05 1998-09-15 Mitsubishi Engineering-Plastics Corporation Glass fiber-reinforced polycarbonate resin composition
US6423766B1 (en) 1997-05-06 2002-07-23 Idemitsu Petrochemical Co., Ltd. Flame-retardant polycarbonate resin composition and electrical and electronic components made by molding the same
WO2000000541A1 (de) 1998-06-26 2000-01-06 Bayer Aktiengesellschaft Flammwidrige polycarbonat/abs-formmassen
WO2001018105A1 (de) 1999-09-02 2001-03-15 Bayer Aktiengesellschaft Flammwidrige polycarbonat-abs-blends
WO2002046305A1 (de) 2000-12-08 2002-06-13 Bayer Aktiengesellschaft Polycarbonat-zusammensetzungen
WO2004069914A1 (de) 2003-02-03 2004-08-19 Bayer Materialscience Ag Flammwidrige polycarbonat-blends
JP2008280491A (ja) * 2007-05-14 2008-11-20 Mitsubishi Engineering Plastics Corp 薄肉成形用難燃性芳香族ポリカーボネート樹脂組成物及び薄肉成形品
JP2009007487A (ja) * 2007-06-28 2009-01-15 Mitsubishi Engineering Plastics Corp 芳香族ポリカーボネート樹脂組成物、これを用いた成形品および成形品の製造方法
DE102008062945A1 (de) * 2008-12-23 2010-06-24 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polycarbonat-Zusammensetzungen

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Ullmanns Enzyklopädie der technischen Chemie", vol. 18, 1979, pages: 301
BEILSTEIN: "METHODEN DER ORGANISCHEN CHEMIE", vol. 6, pages: 177
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; KUROKAWA, HARUHIKO: "Aromatic polycarbonate compositions containing vinyl compound-grafted silicone-poly[alkyl (meth)acrylate] rubbers, their moldings, and manufacture of moldings", XP002664151, retrieved from STN Database accession no. 150:99734 *
HOUBEN-WEYL: "Methoden der organischen Chemie", vol. 12/1, pages: 43
SCHNELL: "Chemistry and Physics of Polycarbonates", 1964, INTERSCIENCE PUBLISHERS
W. SCHOLTAN, H. LANGE, KOLLOID-Z. UND Z. POLYMERE, vol. 250, 1972, pages 782 - 796

Also Published As

Publication number Publication date
CN103370369B (zh) 2015-11-25
MX2013003305A (es) 2013-04-29
DE102010041387A1 (de) 2012-03-29
KR20130116873A (ko) 2013-10-24
CA2812292A1 (en) 2012-03-29
BR112013006912A2 (pt) 2016-07-12
US8530551B2 (en) 2013-09-10
TWI528615B (zh) 2016-04-01
TW201230448A (en) 2012-07-16
KR101860359B1 (ko) 2018-05-23
CN103370369A (zh) 2013-10-23
US20120074617A1 (en) 2012-03-29
EP2619264A1 (de) 2013-07-31

Similar Documents

Publication Publication Date Title
EP1999210B1 (de) Flammgeschützte schlagzähmodifizierte polycarbonat-zusammensetzungen
EP3053207B1 (de) Batteriemodul mit ausweichbereich, batteriepack und elektrofahrzeug
WO2012038421A1 (de) Flammgeschützte schlagzähmodifizierte batteriegehäuse auf polycarbonatbasis i
EP1999211B1 (de) Flammgeschützte schlagzähmodifizierte polycarbonat-zusammensetzungen
EP3053206B1 (de) Batteriemodul mit sicherheitsabschnitt, batteriepack und elektrofahrzeug
EP2382268B1 (de) Flammgeschützte schlagzähmodifizierte polycarbonat-zusammensetzungen
EP2382269A1 (de) Flammgeschützte schlagzähmodifizierte polycarbonat-zusammensetzungen
WO2003037973A1 (de) Mineralverstärkte schlagzähmodifizierte polycarbonat-blends
WO2012038419A1 (de) Flammgeschützte schlagzähmodifizierte batteriegehäuse auf polycarbonatbasis ii
EP2411461B1 (de) Flammgeschützte schlagzähmodifizierte polycarbonat-zusammensetzungen
WO2002046305A1 (de) Polycarbonat-zusammensetzungen
WO2009152955A1 (de) Schlagzähmodifizierte polycarbonat-zusammensetzungen
DE19853108A1 (de) Flammwidrige wärmeformbeständige Polycarbonat-ABS-Formmassen
EP2225316A1 (de) Flammgeschützte schlagzähmodifizierte polycarbonat-zusammensetzungen
EP2225317B1 (de) Flammgeschützte schlagzähmodifizierte polycarbonat-zusammensetzungen
DE19851676A1 (de) Thermoplastische Formmassen mit verbesserten mechanischen Eigenschaften

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11760759

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011760759

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2812292

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/003305

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137009759

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013006912

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013006912

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130325