WO2012038340A1 - Renfort composite et son procede de fabrication - Google Patents

Renfort composite et son procede de fabrication Download PDF

Info

Publication number
WO2012038340A1
WO2012038340A1 PCT/EP2011/066112 EP2011066112W WO2012038340A1 WO 2012038340 A1 WO2012038340 A1 WO 2012038340A1 EP 2011066112 W EP2011066112 W EP 2011066112W WO 2012038340 A1 WO2012038340 A1 WO 2012038340A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
reinforcement according
reinforcement
diene elastomer
wire
Prior art date
Application number
PCT/EP2011/066112
Other languages
English (en)
Inventor
Vincent Abad
Sébastien RIGO
Emmanuel Custodero
Original Assignee
Societe De Technologie Michelin
Michelin Recherche Et Technique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe De Technologie Michelin, Michelin Recherche Et Technique S.A. filed Critical Societe De Technologie Michelin
Priority to EP11757333.7A priority Critical patent/EP2618975B1/fr
Priority to US13/825,935 priority patent/US9540766B2/en
Priority to CN201180045881.3A priority patent/CN103118848B/zh
Priority to JP2013529616A priority patent/JP5807679B2/ja
Publication of WO2012038340A1 publication Critical patent/WO2012038340A1/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • D07B1/0633Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration having a multiple-layer configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0666Reinforcing cords for rubber or plastic articles the wires being characterised by an anti-corrosive or adhesion promoting coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/38Textile inserts, e.g. cord or canvas layers, for tyres; Treatment of inserts prior to building the tyre
    • B29D2030/383Chemical treatment of the reinforcing elements, e.g. cords, wires and filamentary materials, to increase the adhesion to the rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2938Coating on discrete and individual rods, strands or filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2942Plural coatings
    • Y10T428/2947Synthetic resin or polymer in plural coatings, each of different type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester

Definitions

  • the field of the present invention is that reinforcing elements or "reinforcements", in particular metal, used for reinforcing articles or semi-finished products of diene rubber such as for example pneumatic tires.
  • the present invention relates more particularly to reinforcements of the hybrid or composite type consisting of at least one core, in particular metal, said core being sheathed or covered with one or more layers of polymer.
  • thermoplastic polymers such as for example polyamide or polyester
  • various sets of son or wire assemblies such as cables, and thus increase their particular buckling resistance.
  • patent application EP 0 962 562 describes a reinforcement made of steel or aramid textile sheathed with a thermoplastic material such as polyester or polyamide, in order to improve its resistance to abrasion.
  • the patent application FR 2 601 293 has described the sheathing of a wire rope with polyamide for use as a bead wire in a tire bead, this sheath advantageously making it possible to adapt the shape of this bead wire to the structure and operating conditions of the bead of the tire that it reinforces.
  • These reinforcements and sheathed polyester or polyamide material have, in addition to the aforementioned advantages of corrosion resistance, abrasion resistance and structural rigidity, that not insignificant to be then glued to matrices of diene rubber using simple "RFL" textile glues (resorcinol-formaldehyde-latex) comprising at least one diene elastomer such as natural rubber, adhesives which, in known manner, confer a satisfactory adhesion between textile fibers such as polyester or polyamide fibers and a diene rubber.
  • RTL textile glues
  • metal reinforcements not coated with adhesive metal layers such as brass, as well as surrounding rubber matrices devoid of metal salts such as cobalt salts, which are necessary in a manner known to maintain adhesive performance over time can advantageously be used.
  • metal salts such as cobalt salts
  • the RFL glues above are not without drawbacks; they include in particular as a basic substance formaldehyde (or formaldehyde) that it is desirable to eventually remove adhesive compositions, because of the recent evolution of European regulations on this type of product.
  • designers of diene rubber articles, including tire manufacturers are looking today for new adhesive systems or new reinforcements that overcomes all or part of the aforementioned drawbacks.
  • a first object of the invention relates to a composite reinforcement comprising:
  • thermoplastic polymer whose glass transition temperature is positive; covering the first layer, a second layer of a composition comprising at least one poly (p-phenylene ether) (abbreviated as "PPE") and a functionalized diene elastomer bearing functional groups chosen from epoxide, carboxyl, anhydride or ester groups acid.
  • PPE poly(p-phenylene ether)
  • this second layer makes it possible to ensure direct adhesion (that is to say without RFL glue or any other adhesive) and high performance of the composite reinforcement of the invention to a matrix or composition.
  • diene elastomer such as those commonly used in pneumatic tires.
  • the invention also relates to a method of manufacturing the composite reinforcement above, said method comprising at least the following steps: the wire or each reinforcing wire, or collectively several reinforcing wires, is covered individually by a first layer of the thermoplastic polymer whose glass transition temperature is positive; depositing on the first layer a second layer of the composition comprising the poly (p-phenylene ether) and the functionalized diene elastomer bearing functional groups chosen from epoxide, carboxyl, anhydride or acid ester groups;
  • thermo-oxidative treatment the whole is subjected to a thermo-oxidative treatment.
  • the present invention also relates to the use of the composite reinforcement of the invention as a reinforcing element for semi-finished articles or rubber products, particularly pneumatic tires, in particular those intended for equipping tourism-type motor vehicles, SUVs.
  • “Sport Utility Vehicles” two wheels (including bicycles, motorcycles), aircraft, such as industrial vehicles selected from vans, "heavy trucks” - that is to say, subway, bus, road transport equipment (trucks, tractors , trailers), off-the-road vehicles such as agricultural or civil engineering -, other transport or handling vehicles.
  • the invention also relates per se to any article or semi-finished product made of rubber, in particular a tire, comprising a composite reinforcement according to the invention.
  • FIG. 1 an example of a composite reinforcement according to the invention
  • FIGG 2 another example of a reinforcement according to the invention
  • FIG 3 another example of a reinforcement according to the invention
  • FIG 4 in cross-section, another example of a reinforcement according to the invention
  • FIG 5 in radial section, a pneumatic tire with a radial carcass reinforcement according to the invention, incorporating a composite reinforcement according to the invention
  • any range of values designated by the expression "between a and b" represents the range of values from more than a to less than b (i.e. terminals a and b excluded) while any range of values designated by the term “from a to b” means the range from a to b (i.e., including the strict limits a and b).
  • the composite reinforcement of the invention capable of directly adhering by firing to an unsaturated rubber composition and used in particular for reinforcing diene rubber articles such as pneumatic tires, therefore has the essential characteristics of comprising: at least one thread (i.e., one or more threads) of reinforcement;
  • thermoplastic polymer whose glass transition temperature is positive (that is to say greater than 0 ° C);
  • a second layer of a composition comprising at least on the one hand a poly (p-phenylene ether) (PPE) and on the other hand a functionalized diene elastomer carrying functional groups chosen from epoxide and carboxyl groups; acid anhydride or ester.
  • PPE poly (p-phenylene ether)
  • the composite reinforcement of the invention comprises a single thread or several reinforcing threads, each reinforcing thread being covered (individually or collectively) by two distinct and superposed polymer layers, in contact with one another. the other.
  • the structure of the reinforcement of the invention is described in detail below.
  • the term "reinforcing thread” is generally understood to mean any elongate element of great length relative to its cross section, whatever the shape of the latter, for example circular, oblong, rectangular or square, or even flat, this wire may be rectilinear as non-rectilinear, for example twisted or corrugated.
  • This reinforcing wire may take any known shape, it may be for example an elementary monofilament of large diameter (for example and preferably equal to or greater than 50 ⁇ ), an elementary ribbon, a multifilament fiber (consisting of a plurality of elementary filaments of small diameter, typically less than 30 ⁇ ), a textile twist formed of several fibers twisted together, a textile or metal cable formed of several fibers or monofilaments cabled or twisted together, or an assembly, a row of son such as for example a strip or strip comprising several of these monofilaments, fibers, twisted or cables grouped together, for example aligned in a main direction, rectilinear or not.
  • the wire or each reinforcing wire has a diameter which is preferably less than 5 mm, in particular within a range of 0.1 to 2 mm.
  • the reinforcing wire is a metal reinforcing wire, in particular carbon steel such as those used in steel cord type cables for tires; but it is of course possible to use other steels, for example stainless steels.
  • carbon steel When carbon steel is used, its carbon content is preferably between 0.4% and 1.2%, especially between 0.5% and 1.1%.
  • the invention applies in particular to any steel of the steel cord type with standard resistance (called “NT” for “Normal Tensile”), with high resistance (called “HT” for “High Tensile”), with very high resistance ( said “SHT” for “Super High Tensile") as ultra-high resistance (so-called “UHT” for "Ultra High Tensile”).
  • the metal reinforcing wire is in the form of a cable comprising at least two (that is to say two or more) metal monofilaments assembled together, more particularly carbon steel.
  • the steel could be coated with an adhesive layer such as brass or zinc.
  • an adhesive layer such as brass or zinc.
  • the rubber composition to be reinforced by a metal reinforcement according to the invention no longer requires the use in its formulation of metal salts such as cobalt salts.
  • the first layer or sheath covering the or each reinforcing wire is constituted by a thermoplastic polymer whose glass transition temperature (Tg) is by definition positive, preferably greater than + 20 ° C, more preferably greater than + 30 ° C.
  • the melting temperature (denoted Tf) of this thermoplastic polymer is preferably greater than 100 ° C, more preferably greater than 150 ° C, especially greater than 200 ° C, in particular function of the nature (in particular textile or metal) of the constituent material of the reinforcing wire.
  • This thermoplastic polymer is preferably chosen from the group consisting of polyamides, polyesters and polyimides, more particularly from the group consisting of aliphatic polyamides and polyesters.
  • polyesters that may be mentioned for example are PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PBT (polybutylene terephthalate), PBN (polybutylene naphthalate), PPT (polypropylene terephthalate), PPN (polypropylene naphthalate).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • PBN polybutylene naphthalate
  • PPT polypropylene terephthalate
  • PPN polypropylene naphthalate
  • aliphatic polyamides mention may be made especially polyamides 4-6, 6, 6-6, 1 1 where 12.
  • This thermoplastic polymer is preferably an aliphatic polyamide, more preferably a 6-6 polyamide (Nylon ® or 6-6) .
  • the second layer covering the first layer, and therefore in direct contact with the latter, consists of a polymer composition
  • a polymer composition comprising, in combination with the diene elastomer described in detail later, at least one poly (p-phenylene ether) polymer. or poly (1,4-phenylene ether) (abbreviated as PPE).
  • Thermoplastic polymers PPE are well known to those skilled in the art, they are solid resins at room temperature (20 ° C).
  • the EPP used here has a glass transition temperature which is greater than 150 ° C., more preferably greater than 180 ° C. As for its number-average molecular weight (Mn), it is preferably between 5,000 and 100,000 g / mol.
  • the number-average molecular weight (Mn) is determined in a known manner by steric exclusion chromatography (SEC).
  • SEC steric exclusion chromatography
  • the sample is first solubilized in tetrahydrofuran at a concentration of about 1 g / l; then the solution is filtered on 0.45 ⁇ porosity filter before injection.
  • the equipment used is a chromatographic chain "WATERS alliance”.
  • the elution solvent is tetrahydrofuran, the flow rate 0.7 ml / min, the system temperature 35 ° C and the analysis time 90 min.
  • a set of four WATERS columns in series, of trade names "STYRAGEL" ("HMW7", “HMW6E” and two "HT6E" is used.
  • the injected volume of the solution of the polymer sample is 100 ⁇ .
  • the detector is a differential refractometer "WATERS 2410" and its associated software for the exploitation of chromatographic data is the “WATERS MILLENIUM” system.
  • the calculated average molar masses relate to a calibration curve made with polystyrene standards.
  • thermoplastic polymers and diene elastomers described in the present application is measured in a known manner by DSC (Differential Scanning Calorimetry), by example and unless otherwise specified in this application, according to ASTM D3418 of 1999.
  • the EPP used is poly (2,6-dimethyl-1,4-phenylene ether) also sometimes referred to as polyphenylene oxide (or abbreviated as "PPO").
  • PPO polyphenylene oxide
  • Examples of such commercially available EPPs or PPOs are, for example, the PEP under the name “Xyron S202" from Asahi Kasei or the “Noryl SA120” EPP from Sabic.
  • the amount of EPP polymer is adjusted in such a way that the weight ratio of EPP is between 0.02 and 2 times, more preferably between 0.10 and 10.0. and 1 times the functional weight of diene elastomer. Below the recommended minima, the adhesion of the composite reinforcement rubber can be decreased while beyond the maximum indicated, there is a risk of fragility of the second layer.
  • the polymeric composition of the second layer further comprises a functionalized diene elastomer, said elastomer carrying functional groups chosen from epoxide, carboxyl, anhydride or acid ester groups or functional groups.
  • the functional groups are epoxide groups, that is to say that the diene elastomer is an epoxide diene elastomer.
  • elastomer or rubber both terms being known in a known manner and interchangeable
  • diene elastomers non-thermoplastic by definition in the present application, having a Tg in the vast majority of cases which is negative (that is to say less than 0 ° C), can be classified in a known manner into two categories. : those said to be “essentially unsaturated” and those termed "essentially saturated”.
  • Butyl rubbers such as, for example, copolymers of dienes and alpha-olefins of the EPDM type, fall into the category of essentially saturated diene elastomers, with a level of units of diene origin which is low or very low, always less than 15. % (mole%).
  • essentially unsaturated diene elastomer is understood to mean a diene elastomer derived at least in part from conjugated diene monomers having a proportion of units or units of diene origin (conjugated dienes) which is greater than 15% (mol%).
  • the term “highly unsaturated” diene elastomer is particularly understood to mean a diene elastomer having a content of units of diene origin (conjugated dienes) which is greater than 50%.
  • At least one diene elastomer of the highly unsaturated type in particular a diene elastomer chosen from the group consisting of natural rubber (NR), synthetic polyisoprenes (IR), polybutadienes (BR) and butadiene copolymers, copolymers of isoprene and mixtures of these elastomers.
  • a diene elastomer chosen from the group consisting of natural rubber (NR), synthetic polyisoprenes (IR), polybutadienes (BR) and butadiene copolymers, copolymers of isoprene and mixtures of these elastomers.
  • Such copolymers are more preferably selected from the group consisting of butadiene-styrene copolymers (SBR), isoprene-butadiene copolymers (BIR), isoprene-styrene copolymers (SIR), isoprene-copolymers butadiene-styrene (SBIR) and mixtures of such copolymers.
  • SBR butadiene-styrene copolymers
  • BIR isoprene-butadiene copolymers
  • SIR isoprene-styrene copolymers
  • SBIR isoprene-copolymers butadiene-styrene
  • the above diene elastomers can be, for example, block, random, block, microsequential, and be prepared in dispersion or in solution.
  • Polybutadienes and in particular those having a 1,2-unit content of between 4% and 80%, or those having a cis-1,4 content of greater than 80%, polyisoprenes and copolymers of butadiene- styrene and in particular those having a styrene content of between 5% and 50% by weight and more particularly between 20% and 40%), a 1,2-butadiene content of the butadiene part of between 4% and 65%, a content of trans-1,4 bonds of between 20% and 80%, butadiene-isoprene copolymers and in particular those having an isoprene content of between 5% and 90% by weight and a glass transition temperature of -40 ° C.
  • the isoprene-styrene copolymers and in particular those having a styrene content of between 5% and 50% by weight and a Tg of between -25 ° C. and -50 ° C.
  • butadiene-styrene-isoprene copolymers are especially suitable those having a styrene content of between 5% and 50% by weight and more particularly between 10% and 40%, an isoprene content of between 15% and 60% by weight and more particularly between 20% and 50%, a butadiene content of between 5% and 50% by weight and more particularly between 20% and 50% by weight.
  • a second essential characteristic of the diene elastomer used in the composite reinforcement of the invention is that it is functionalized and carries functional groups chosen from epoxide, carboxyl, anhydride or acid ester groups or functional groups.
  • diene elastomers and processes for obtaining them are well known to those skilled in the art and commercially available.
  • Diene elastomers carrying carboxyl groups have been described for example in WO 01/92402 or US 6815473, WO 2004/096865 or US 7312264; diene elastomers bearing epoxide groups have been described for example in US 2003/120007 or EP 0763564, US 6903165 or EP 1403287.
  • the functional groups are epoxide groups, that is to say that the diene elastomer is an epoxide diene elastomer. More preferably still, the epoxidized diene elastomer is chosen from the group consisting of epoxidized natural rubbers (NR), epoxidized synthetic polyisoprenes (IR) and epoxidized polybutadienes (BR), preferably having a cis-1,4 bond ratio. greater than 90%, epoxidized butadiene-styrene copolymers (SBR) and mixtures of these elastomers.
  • NR epoxidized natural rubbers
  • IR epoxidized synthetic polyisoprenes
  • BR epoxidized polybutadienes
  • SBR epoxidized butadiene-styrene copolymers
  • Epoxidized natural rubbers can be obtained in known manner by epoxidation of natural rubber, for example by chlorohydrin or bromohydrin-based processes or processes based on hydrogen peroxides, alkyl hydroperoxides or peracids (such as peracetic acid or performic acid); such ENR are for example sold under the names “ENR-25” and “ENR-50” (epoxidation rate of 25% and 50% respectively) by the company Guthrie Polymer.
  • the epoxidized BRs are also well known, sold for example by the company Sartomer under the name "Poly Bd” (for example "Poly Bd 605E").
  • Epoxidized SBRs can also be prepared by epoxidation techniques well known to those skilled in the art. More preferably still, an epoxidized SBR copolymer is used.
  • the rate (mol%) of functionalization, in particular of epoxidation, of the functionalized diene elastomers previously described may vary to a large extent according to the particular embodiments of the invention, preferably in a range from 5% to 60%.
  • the degree of functionalization, especially epoxidation is more preferably in a range of 10% to 50%.
  • the diene elastomers epoxidized previously described are known in solid manner at room temperature (20 ° C); solid means any substance which does not have the capacity to take up, at the latest after 24 hours, under the sole effect of gravity and at ambient temperature (20 ° C.), the shape of the container which contains it .
  • these solid elastomers are characterized by a very high viscosity: their Mooney viscosity in the green (ie, uncrosslinked) state, denoted ML (1 + 4), measured at 100.degree. is preferably greater than 20, more preferably greater than 30, in particular between 30 and 130.
  • an oscillating consistometer is used as described in ASTM D1646 (1999).
  • the sample analyzed in the uncured state ie, before firing
  • a given temperature for example 100 ° C.
  • the rotor rotates within the test tube at 2 revolutions / minute and the useful torque is measured to maintain this movement after 4 minutes of rotation.
  • the second layer or polymer composition described above may furthermore comprise various additives, at preferential levels of less than 30%, more preferably of 20%, even more preferentially less than 10% by weight relative to the amount of PPE.
  • additives could be, for example, elastomers or polymers other than those previously described, the addition of these elastomers or polymers being for example intended to modulate the rigidity properties of the second layer, in particular to reduce the stiffness gradients that may exist between the first and second layers.
  • Such additives could also be reinforcing fillers such as carbon black or silica, non-reinforcing or inert fillers, coloring agents that can be used for coloring the composition, plasticizers such as oils, protective agents such as as antioxidants, antiozonants, anti-UV or other stabilizers.
  • Figure 1 attached shows very schematically (without respecting a specific scale), in cross section, a first example of a composite reinforcement according to the invention.
  • This composite reinforcement denoted R1 consists of a reinforcing thread (10) consisting of a unitary filament or monofilament of relatively large diameter (for example between 0.10 and 0.50 mm), for example made of carbon steel, which is covered with a first layer (11) of a thermoplastic polymer whose Tg is positive, for example polyamide or polyester, whose minimum thickness is noted E ml in this figure 1.
  • a second layer (12) d a composition comprising a PPE and a functionalized diene elastomer, for example an epoxidized BR, SBR or R, covers the first layer (11); its minimum thickness is denoted E 1 in FIG.
  • FIG. 2 schematizes in cross-section a second example of a composite reinforcement according to the invention.
  • This composite reinforcement noted R-2 consists of a reinforcing thread
  • the reinforcing wire (20) in fact consists of two unit filaments or monofilaments (20a, 20b) of relatively large diameter (for example between 0, 10 and 0.50 mm) twisted or cabled together, for example carbon steel; the reinforcing wire (20) is covered with a first layer (21) of a thermoplastic polymer whose Tg is positive, for example polyamide 6-6 or polyester, minimum thickness E ml .
  • FIG. 3 schematizes in cross-section another example of composite reinforcement according to the invention.
  • This composite reinforcement denoted R-3 consists of three reinforcing threads (30) each consisting of two monofilaments (30a, 30b) of relatively large diameter (for example between 0.10 and 0.50 mm) twisted or cabled together, by example of carbon steel; the assembly consisting of the three reinforcing son (30) for example aligned is covered with a first layer (31) of a thermoplastic polymer whose Tg is positive, for example polyamide or polyester.
  • FIG. 4 schematizes, again in cross-section, another example of composite reinforcement according to the invention.
  • This composite reinforcement R-4 comprises a reinforcing thread (40) consisting of a 1 + 6 structural steel wire, with a core wire or core wire (41a) and six filaments (41b) of the same diameter wound together in a helix around the central wire.
  • This reinforcing wire or wire (40) is covered with a first layer (42) of a polyamide 6-6, itself covered with a second layer (43) of a composition comprising a PPE and a diene elastomer functionalized, for example an epoxidized BR, SBR or NR.
  • H "
  • the minimum thickness of the two layers can vary to a very large extent depending on the conditions particular embodiments of the invention.
  • the minimum thickness E ml of the first layer is preferably between 1 ⁇ and 2 mm, more preferably between 10 ⁇ and 1 mm.
  • the minimum thickness E i of the second layer may be of the same order of magnitude as that of the first layer (in the case of a second thick layer of a thickness, for example between 1 ⁇ and 2 mm, in particular between 10 ⁇ and 1 mm), or be significantly different.
  • the second layer could constitute for example a thin or ultrafine adhesive layer, deposited for example by a coating technique, by spraying, or other thin or ultrathin film deposition technique, for example with a thickness in a range from 0.02 ⁇ to 10 ⁇ , in particular between 0.05 ⁇ and 0.5 ⁇ .
  • the first and second layers can be deposited individually on each of the reinforcing son (as a reminder, whether these reinforcing son is unitary or not), as illustrated for example in Figures 1, 2 and 4 commented previously. But the first and second layers can also be collectively deposited on a plurality of appropriately arranged reinforcement son, for example aligned in a main direction, as illustrated for example in Figure 3.
  • the composite reinforcement of the invention may be prepared according to a specific process comprising at least the following steps: in a first step, at least one (i.e. or more) reinforcement yarn at a first overlap by the first layer of thermoplastic polymer whose glass transition temperature is positive;
  • a second layer of the composition comprising the PPE and the functionalized diene elastomer is deposited on the first layer;
  • the first two steps can be conducted in a manner known to those skilled in the art, online and continuously, or not; they consist for example in passing the wire or each reinforcement wire (taken individually or collectively), through dies of suitable diameter, in one or more extrusion heads heated to appropriate temperatures, or else, which constitutes a more preferable embodiment, in a coating bath containing the EPP and functionalized diene elastomer previously placed (together or separately) in solution in a suitable organic solvent (or solvent mixture).
  • the wire or each reinforcing wire (taken individually or collectively) is preheated, for example by induction or by IR radiation, before passing through the extrusion head delivering the thermoplastic polymer; at the outlet of the extrusion head, the wire or each reinforcing thread thus sheathed is then cooled sufficiently so as to solidify the polymer layer, for example with air or another cold gas, or by passing through a bath water followed by a drying step; the or each reinforcement yarn thus sheathed and cooled is then covered by the composition of PPE and functionalized diene elastomer, by passing through a coating bath of appropriate dimensions.
  • thermo-oxidative treatment intended to better secure the two layers.
  • thermo-oxidizing is meant by definition a heat treatment in the presence of oxygen, for example oxygen from the air.
  • oxygen for example oxygen from the air.
  • the temperature used for this heat treatment is preferably between 150 ° C and 300 ° C, for a treatment time more preferably between 20 s and 600 s.
  • the polyamide melted at a temperature of 290.degree. C. in the extruder, thus covers the reinforcement yarn, by means of the cladding head, at a yarn running speed typically equal to several tens of m / min, for an extrusion pump flow typically of several tens of cm 3 / min.
  • the wire can be immersed in a cooling tank filled with cold water, for solidify and set the polyamide in its amorphous state, then dried for example by passing the receiving coil to the oven.
  • the cable (reinforcing wire) is advantageously preheated before passing through the extrusion head, for example by passing through an HF generator or through a heating tunnel.
  • the yarn thus covered with polyamide is then covered with the composition of PPE and functionalized diene elastomer according to an embodiment adapted to the thickness intended for the second layer.
  • the polyamide-coated wire passes, for example at a speed of a few cm / min or tens of m / min and over a length of a few cm or tens of cm, between two wool felttresses pressed by a mass of 1 kg and continuously soaked with the EPP and the functionalized diene elastomer (by Example BR, SBR or epoxidized R) diluted in a suitable solvent (for example 5% in toluene), so as to cover the whole with an ultra-thin layer of the composition of EPP and functionalized diene elastomer.
  • a suitable solvent for example 5% in toluene
  • the composite wire passes through a tunnel furnace, for example several meters long, to undergo a heat treatment under air.
  • This treatment temperature is for example between 150 ° C and 300 ° C for treatment times of a few seconds to a few minutes depending on the case, it being understood that the duration of the treatment will be shorter as the temperature will be high and that the heat treatment obviously does not lead to excessive reflow or softening of the polymeric materials used.
  • the composite reinforcement of the invention is advantageously cooled, for example in air, to avoid possible parasitic bonding problems during its winding on the final receiving coil.
  • the previously described steps of the process of the invention may be optionally completed by a final three-dimensional crosslinking treatment of the reinforcement, more precisely of its second layer of PPE and of functionalized diene elastomer, to further reinforce its own cohesion.
  • This crosslinking may be carried out by any known means, for example by physical crosslinking means such as ionic or electronic bombardment, or by chemical crosslinking means.
  • Crosslinking may also be obtained during the baking of pneumatic tires (or more generally rubber articles) that the composite reinforcement of the invention is intended to reinforce, thanks to the own crosslinking system present in the diene rubber compositions constituting such bandages (or articles) and coming into contact with the composite reinforcement of the invention.
  • the composite reinforcement of the invention can be used directly, that is to say without requiring any additional adhesive system, as a reinforcing element of a diene rubber matrix, for example in a tire. It is advantageously used for the reinforcement of pneumatic tires of all types of vehicles, in particular passenger vehicles or industrial vehicles such as heavy goods vehicles.
  • the appended FIG. 5 shows very schematically (without respecting a specific scale) a radial section of a tire according to the invention for a tourism type vehicle.
  • This tire 1 has a crown 2 reinforced by a crown reinforcement or belt 6, two sidewalls 3 and two beads 4, each of these beads 4 being reinforced with a rod 5.
  • the crown 2 is surmounted by a tread represented in this schematic figure.
  • a carcass reinforcement 7 is wound around the two rods 5 in each bead 4, the upturn 8 of this armature 7 being for example disposed towards the outside of the tire 1 which is shown here mounted on its rim 9.
  • the carcass reinforcement 7 is in known manner constituted of at least one sheet reinforced by so-called "radial" cables, for example textile or metal, that is to say that these cables are arranged substantially parallel to each other and s' extend from one bead to the other so as to form an angle of between 80 ° and 90 ° with the median circumferential plane (plane perpendicular to the axis of rotation of the tire which is located halfway between the two beads 4 and goes through the middle of the crown frame 6).
  • This tire 1 of the invention for example has the essential feature that at least one of its crown or carcass reinforcement comprises a composite reinforcement according to the invention.
  • it is the rods 5 which could consist of a composite reinforcement according to the invention.
  • the starting reinforcing thread is a steel cord (known as "steel cord” for pneumatic tires (standard steel 0.7% by weight of carbon), of 1x2 construction consisting of two elementary or monofilaments of diameter 0.30. mm twisted together at a pitch of 10 mm and its diameter is 0.6 mm.
  • steel cord for pneumatic tires (standard steel 0.7% by weight of carbon)
  • 1x2 construction consisting of two elementary or monofilaments of diameter 0.30. mm twisted together at a pitch of 10 mm and its diameter is 0.6 mm.
  • the covering of this cable with polyamide 6-6 is carried out on an extrusion-cladding line by passing through a extrusion head heated to a temperature of 300 ° C and comprising two dies, an upstream die diameter 0.63 mm and a downstream die diameter 0.92 mm.
  • the polyamide brought to a temperature equal to about 290 ° C in the extruder (pump flow of 20 cm 3 / min) thus covers the reinforcing wire (preheated to about 280-290 ° C by passing through an HF generator) scrolling at a speed of 30 m / min.
  • the composite reinforcement obtained is immersed continuously in a cooling tank filled with water at 5 ° C. so as to freeze the polyamide in its amorphous state, and then dried by an air nozzle.
  • control composite reinforcement (thus not in accordance with the invention) consisting of the starting steel cable sheathed only with its first polyamide layer.
  • This control composite reinforcement (denoted R-5) has a total diameter (Le., When sheathed) of approximately 1.0 mm.
  • a second layer of a composition comprising a mixture (weight ratio 1 / 0.4) of an epoxide diene elastomer and of PPE ("Xyron S202") is deposited on the cable thus sheathed.
  • Asahi Kasei company whose minimum thickness (E ⁇ ) is equal to a few tens of nanometers, as follows.
  • the polyamide-coated cable 6-6 is passed through a coating bath, at a speed of about 3 m / min, over a length of about 15 cm, between two wool felt presses with a mass of 1 kg and soaked continuously by the mixture of the diene elastomer epoxidized and PPE, diluted to 5% by weight in toluene, so as to cover the whole with an ultra-thin layer of the composition of EPP and elastomer.
  • the reinforcement thus sheathed is then dried to remove the solvent by evaporation.
  • the glass transition temperatures of the two thermoplastic polymers used above are respectively equal to about + 50 ° C. and + 215 ° C.
  • the assembly (double-sheathed composite reinforcement) is subjected to a thermo-oxidizing treatment of a duration of about 100 s, by passing at 3 m / min in a tunnel furnace, under ambient atmosphere, brought to a temperature of 270 ° C.
  • a composite reinforcement according to the invention consisting of the starting steel cable sheathed with its first polyamide layer and its second layer of EPP and epoxidized diene elastomer.
  • the composite reinforcement according to the invention thus prepared (reinforcement R-2 as shown diagrammatically in FIG. 2) has a total final diameter of approximately 1 mm.
  • a temperature sweep of 160 ° C. to 280 ° C. was carried out beforehand for four treatment periods (50 s, 100 s, 200 s and 400 s).
  • BR epoxidized polybutadiene
  • SBR epoxidation rate of about 15% (mol)
  • the quality of the bond between the rubber and the composite reinforcements previously manufactured is then assessed by a test in which the force necessary to extract the reinforcements of a vulcanized rubber composition, also called a vulcanizate, is measured.
  • This rubber composition is a conventional composition used for calendering tire belt metal plies, based on natural rubber, carbon black and conventional additives.
  • the vulcanizate is a rubber block consisting of two plates of dimensions 200 mm by 4.5 mm and thickness 3.5 mm, applied one on the other before firing (the thickness of the resulting block is then 7 mm).
  • this block It is during the manufacture of this block that the composite reinforcements (15 strands in total) are trapped between the two rubber plates in the raw state, equidistant and leaving to go over on both sides of these plates a composite reinforcing end of sufficient length for subsequent traction.
  • the block comprising the reinforcements is then placed in a suitable mold and then cooked under pressure.
  • the temperature and the cooking time are adapted to the targeted test conditions and left to the initiative of those skilled in the art; for example, in this case, the firing of the block is carried out at 160 ° C for 15 min, at a pressure of 16 bar.
  • the test thus formed of the vulcanized block and the reinforcements is put in place in the jaws of a traction machine adapted to allow each reinforcement to be pulled apart from the rubber, at a speed and given temperature (for example, in the present case at 50 mm / min and 20 ° C).
  • the adhesion levels are characterized by measuring the so-called pulling force (denoted Fma X ) to tear off the reinforcements of the specimen (average over 15 pulls).
  • the composite reinforcements of the invention despite the fact that they are free of RFL glue (or any other glue), had a particularly high and unexpected pulling force F max , always greater than the force of reference tear measured on the nylon-coated control composite reinforcement (R-5) and glued with a conventional RFL glue: at room temperature (25 ° C) and for a relative base of 100 on the R-5 composite composite reinforcement , the composite reinforcements of the invention, with a second layer of EPP and respectively BR or SBR epoxidized, had a tearing force Fma X increased by 25% (epoxidized BR) and 150% (epoxidized SBR) compared to the composite reinforcement witness R-5.
  • control composite reinforcement sheathed in nylon but lacking RFL glue (or any other glue), had a zero adhesion to the rubber (peel force virtually equal to zero).
  • the composite reinforcement of the invention by its self-adhesive nature is a particularly interesting alternative, given the very high levels of adhesion obtained, the composite reinforcements of the prior art sheathed by a thermoplastic material such as polyamide or polyester, requiring in known manner the use of an RFL-type adhesive to ensure their adhesion to rubber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ropes Or Cables (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

Renfort composite (R-2) auto-adhérent par cuisson à une matrice de caoutchouc diénique, utilisable comme élément de renforcement d'un bandage pneumatique, comportant : - un ou plusieurs fil(s) de renforcement (20), par exemple un câble en acier au carbone; - recouvrant ledit fil, individuellement chaque fil ou collectivement plusieurs fils, une première couche (21) d'un polymère thermoplastique dont la température de transition vitreuse est positive, par exemple un polyamide; - recouvrant la première couche (21), une deuxième couche (22) d'une composition comportant un poly(p-phénylène éther) ("PPE") et un élastomère diénique fonctionnalisé porteur de groupes fonctionnels choisis parmi les groupes époxyde, carboxyle, anhydride ou ester d'acide, en particulier un SBR époxydé. Procédé de fabrication d'un tel renfort composite; article ou produit semi-fini en caoutchouc, notamment bandage pneumatique, incorporant un tel renfort composite.

Description

RENFORT COMPOSITE ET SON PROCEDE DE FABRICATION DOMAINE DE L'INVENTION
Le domaine de la présente invention est celui des éléments de renforcement ou « renforts », notamment métalliques, utilisables pour renforcer des articles ou produits semi-finis en caoutchouc diène tels que par exemple des bandages pneumatiques.
La présente invention est plus particulièrement relative à des renforts de type hybride ou composite constitués d'au moins une âme, en particulier métallique, ladite âme étant gainée ou recouverte d'une ou plusieurs couches de polymère.
ETAT DE LA TECHNIQUE
Le gainage de renforts métalliques par des polymères thermoplastiques tels que par exemple polyamide ou polyester est connu depuis fort longtemps, notamment afin de protéger ces renforts contre diverses agressions externes tels qu'oxydation ou abrasion, ou encore en vue de rigidifier structurellement, solidariser entre eux divers ensembles de fils ou assemblages de fils tels que des câbles, et ainsi augmenter notamment leur résistance au flambage.
De tels renforts composites, ainsi que leur utilisation dans des articles en caoutchouc tels que des bandages pneumatiques, ont été décrits dans de nombreux documents brevet.
La demande de brevet EP 0 962 562 a décrit par exemple un renfort en acier ou en textile aramide gainé par une matière thermoplastique telle que polyester ou polyamide, en vue d'améliorer sa résistance à l'abrasion.
La demande de brevet FR 2 601 293 a décrit le gainage d'un câble métallique avec du polyamide pour l'utiliser comme tringle dans un bourrelet de bandage pneumatique, ce gainage permettant avantageusement d'adapter la forme de cette tringle à la structure et aux conditions de fonctionnement du bourrelet du bandage pneumatique qu'elle renforce.
Les documents brevet FR 2 576 247 ou US 4 754 794 ont également décrit des fils ou câbles métalliques utilisables comme tringle dans un bourrelet de bandage pneumatique, ces fils ou câbles étant doublement voire triplement gainés par deux, respectivement trois matières thermoplastiques différentes (e.g. polyamides) ayant des températures de fusion différentes, en vue d'une part de contrôler la distance entre ces fils ou câbles, d'autre part de supprimer les risques d'usure par frottement ou de corrosion, pour les utiliser comme tringle dans un bourrelet de bandage pneumatique.
Ces renforts ainsi gainés de matière polyester ou polyamide présentent, outre les avantages précités de résistance à la corrosion, de résistance à l'abrasion et de rigidité structurelle, celui non négligeable de pouvoir être ensuite collés à des matrices de caoutchouc diénique en utilisant de simples colles textiles dites "RFL" (résorcinol-formaldéhyde-latex) comportant au moins un élastomère diénique tel que du caoutchouc naturel, colles qui de manière connue confèrent une adhésion satisfaisante entre des fibres textiles tels que fibres en polyester ou polyamide et un caoutchouc diénique.
Ainsi, peuvent être utilisés avantageusement des renforts métalliques non revêtus de couches métalliques adhésives tels que laiton, ainsi que des matrices de caoutchouc environnantes dépourvues de sels métalliques tels que sels de cobalt, nécessaires de manière connue au maintien des performances adhésives au cours du temps mais augmentant significativement d'une part le coût des matrices de caoutchouc elles-mêmes, d'autre part leur sensibilité à l'oxydation et au vieillissement (voir par exemple demande WO 2005/113666). Toutefois, les colles RFL ci-dessus ne sont pas dépourvues d'inconvénient ; elles comportent en particulier comme substance de base le formaldéhyde (ou formol) qu'il est souhaitable de supprimer à terme des compositions adhésives, en raison de l'évolution récente de la réglementation européenne sur ce type de produit. Ainsi, les concepteurs d'articles en caoutchouc diénique, notamment les manufacturiers de bandages pneumatiques sont à la recherche aujourd'hui de nouveaux systèmes adhésifs ou de nouveaux renforts qui permettent de pallier tout ou partie des inconvénients précités.
BREVE DESCRIPTION DE L'INVENTION
Or, au cours de leurs recherches, les Demanderesses ont découvert un renfort composite nouveau qui permet de répondre à l'objectif ci-dessus. En conséquence, un premier objet de l'invention concerne un renfort composite comportant :
- un ou plusieurs fil(s) de renforcement ;
recouvrant ledit fil, individuellement chaque fil ou collectivement plusieurs fils, une première couche d'un polymère thermoplastique dont la température de transition vitreuse est positive ; recouvrant la première couche, une deuxième couche d'une composition comportant au moins un poly(p-phénylène éther) (en abrégé "PPE") et un élastomère diénique fonctionnalisé porteur de groupes fonctionnels choisis parmi les groupes époxyde, carboxyle, anhydride ou ester d'acide.
On a constaté de manière inattendue que la présence de cette deuxième couche permettait d'assurer une adhésion directe (c'est-à-dire sans colle RFL ni tout autre adhésif) et performante du renfort composite de l'invention à une matrice ou composition d'élastomère diénique telle que celles couramment utilisées dans des bandages pneumatiques.
En outre et de manière tout aussi inattendue, les propriétés d'adhésion sont très notablement améliorées par rapport à l'emploi d'une colle textile RFL conventionnelle.
L'invention concerne également un procédé de fabrication du renfort composite ci-dessus, ledit procédé comportant au moins les étapes suivantes : on recouvre individuellement le fil ou chaque fil de renforcement, ou collectivement plusieurs fils de renforcement, par une première couche du polymère thermoplastique dont la température de transition vitreuse est positive ; - on dépose sur la première couche une deuxième couche de la composition comportant le poly(p-phénylène éther) et l'élastomère diénique fonctionnalisé porteur de groupes fonctionnels choisis parmi les groupes époxyde, carboxyle, anhydride ou ester d'acide ;
on soumet l'ensemble à un traitement thermo-oxydant.
La présente invention concerne également l'utilisation du renfort composite de l'invention comme élément de renforcement d'articles ou produits semi-finis en caoutchouc, particulièrement de bandages pneumatiques, notamment ceux destinés à équiper des véhicules à moteur de type tourisme, SUV {"Sport Utility Vehicles" , deux roues (notamment vélos, motos), avions, comme des véhicules industriels choisis parmi camionnettes, "poids-lourd" - c'est-à-dire métro, bus, engins de transport routier (camions, tracteurs, remorques), véhicules hors-la-route tels qu'engins agricoles ou de génie civil -, autres véhicules de transport ou de manutention. L'invention concerne également en soi tout article ou produit semi-fini en caoutchouc, en particulier bandage pneumatique, comportant un renfort composite selon l'invention.
L'invention ainsi que ses avantages seront aisément compris à la lumière de la description et des exemples de réalisation qui suivent, ainsi que des figures relatives à ces exemples qui schématisent : en coupe transversale, un exemple d'un renfort composite selon l'invention (Fig. 1) ; en coupe transversale, un autre exemple d'un renfort conforme à l'invention (Fig. 2) ; en coupe transversale, un autre exemple d'un renfort conforme à l'invention (Fig. 3) ; en coupe transversale, un autre exemple d'un renfort conforme à l'invention (Fig. 4) ; - en coupe radiale, un bandage pneumatique à armature de carcasse radiale conforme à l'invention, incorporant un renfort composite selon l'invention (Fig. 5).
DESCRIPTION DETAILLEE DE L'INVENTION
Dans la présente description, sauf indication expresse différente, tous les pourcentages (%) indiqués sont des % en masse.
D'autre part, tout intervalle de valeurs désigné par l'expression "entre a et b" représente le domaine de valeurs allant de plus de a à moins de b (c'est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l'expression "de a à b" signifie le domaine de valeurs allant de a jusqu'à b (c'est-à-dire incluant les bornes strictes a et b).
Le renfort composite de l'invention, susceptible d'adhérer directement par cuisson à une composition de caoutchouc insaturé et utilisable notamment pour le renforcement d'articles en caoutchouc diène tels que des bandages pneumatiques, a donc pour caractéristiques essentielles de comporter : au moins un fil (c'est-à-dire un ou plusieurs fils) de renforcement ;
- recouvrant individuellement ledit fil, chaque fil ou collectivement plusieurs fils, une première couche d'un polymère thermoplastique dont la température de transition vitreuse est positive (c'est-à-dire supérieure à 0°C) ;
recouvrant ladite première couche, une deuxième couche d'une composition comportant au moins d'une part un poly(p-phénylène éther) (PPE) et d'autre part un élastomère diénique fonctionnalisé porteur de groupes fonctionnels choisis parmi les groupes époxyde, carboxyle, anhydride ou ester d'acide.
En d'autres termes, le renfort composite de l'invention comporte un seul fil ou plusieurs fils de renforcement, chaque fil de renforcement étant recouvert (à titre individuel ou collectivement) par deux couches de polymère distinctes et superposées, au contact l'une de l'autre. La structure du renfort de l'invention est décrite en détail ci-après.
Dans la présente demande, on entend de manière générale par fil de renforcement {"reinforcing thread") tout élément longiligne de grande longueur relativement à sa section transversale, quelle que soit la forme de cette dernière, par exemple circulaire, oblongue, rectangulaire ou carrée, ou même plate, ce fil pouvant être rectiligne comme non rectiligne, par exemple torsadé, ou ondulé.
Ce fil de renforcement peut prendre tout forme connue, il peut s'agir par exemple d'un monofilament élémentaire de diamètre important (par exemple et de préférence égal ou supérieur à 50 μιη), d'un ruban élémentaire, d'une fibre multifilamentaire (constituée d'une pluralité de filaments élémentaires de faible diamètre, typiquement inférieur à 30 μιη), d'un retors textile formé de plusieurs fibres retordues ensemble, d'un câble textile ou métallique formé de plusieurs fibres ou monofilaments câblés ou retordus ensemble, ou encore d'un assemblage, une rangée de fils tels que par exemple une bande ou bandelette comportant plusieurs de ces monofilaments, fibres, retors ou câbles regroupés ensemble, par exemple alignés selon une direction principale, rectiligne ou pas.
Le fil ou chaque fil de renforcement a un diamètre qui est préférentiellement inférieur à 5 mm, notamment compris dans un domaine de 0, 1 à 2 mm.
De préférence, le fil de renforcement est un fil de renforcement métallique, notamment en acier au carbone tel que ceux utilisés dans les câbles type "steel cord" pour pneumatiques ; mais il est bien entendu possible d'utiliser d'autres aciers, par exemple des aciers inoxydables. Lorsqu'un acier au carbone est utilisé, sa teneur en carbone est de préférence comprise entre 0,4% et 1,2%, notamment entre 0,5% et 1,1%. L'invention s'applique en particulier à tout acier du type steel cord à résistance standard (dit "NT" pour " Normal Tensile "), à haute résistance (dit "HT" pour " High Tensile "), à très haute résistance (dit "SHT" pour " Super High Tensile ") comme à ultra-haute résistance (dit "UHT" pour "Ultra High Tensile ").
Plus préférentiellement, le fil de renforcement métallique est sous forme d'un câble comportant au moins deux (c'est-à-dire deux ou plus) monofilaments métalliques assemblés entre eux, plus particulièrement en acier au carbone.
L'acier pourrait être revêtu d'une couche adhésive telle que du laiton ou du zinc. Toutefois, on peut avantageusement utiliser un acier clair, c'est-à-dire non revêtu. En outre, grâce à l'invention, la composition de caoutchouc destinée à être renforcée par un renfort métallique selon l'invention ne nécessite plus l'emploi dans sa formulation de sels métalliques tels que des sels de cobalt.
La première couche ou gaine recouvrant le ou chaque fil de renforcement est constituée par un polymère thermoplastique dont la température de transition vitreuse (Tg) est par définition positive, de préférence supérieure à +20°C, plus préférentiellement supérieure à +30°C. D'autre part, la température de fusion (notée Tf) de ce polymère thermoplastique est préférentiellement supérieure à 100°C, plus préférentiellement supérieure à 150°C, notamment supérieure à 200°C, fonction notamment de la nature (en particulier textile ou métallique) du matériau constitutif du fil de renforcement. Ce polymère thermoplastique est choisi préférentiellement dans le groupe constitué par les polyamides, les polyesters et les polyimides, plus particulièrement dans le groupe constitué par les polyamides aliphatiques et les polyesters. Parmi les polyesters, on peut citer par exemple les PET (polyéthylène téréphthalate), PEN (polyéthylène naphthalate), PBT (polybutylène téréphthalate), PBN (polybutylène naphthalate), PPT (polypropylène téréphthalate), PPN (polypropylène naphthalate). Parmi les polyamides aliphatiques, on peut citer notamment les polyamides 4-6, 6, 6-6, 1 1 ou 12. Ce polymère thermoplastique est préférentiellement un polyamide aliphatique, plus préférentiellement un polyamide 6-6 (ou Nylon® 6-6). La deuxième couche recouvrant la première couche, et donc au contact direct de cette dernière, est constituée d'une composition de polymère comportant, en combinaison avec l'élastomère diénique décrit en détail ultérieurement, au moins un polymère de poly(p- phénylène éther) ou poly(l,4-phénylène éther) (en abrégé PPE). Les polymères thermoplastiques PPE sont bien connus de l'homme du métier, ce sont des résines solides à température ambiante (20°C). Préférentiellement, le PPE utilisé ici possède une température de transition vitreuse qui est supérieure à 150°C, plus préférentiellement supérieure à 180°C. Quant à sa masse moléculaire moyenne en nombre (Mn), elle est préférentiellement comprise entre 5 000 et 100 000 g/mol.
La masse moléculaire moyenne en nombre (Mn) est déterminée de manière connue, par chromatographie d'exclusion stérique (SEC). L'échantillon est préalablement solubilisé dans du tétrahydrofuranne à une concentration d'environ 1 g/1 ; puis la solution est filtrée sur filtre de porosité 0,45 μπι avant injection. L'appareillage utilisé est une chaîne chromatographique "WATERS alliance". Le solvant d'élution est le tétrahydrofuranne, le débit de 0,7 ml/min, la température du système de 35°C et la durée d'analyse de 90 min. On utilise un jeu de quatre colonnes WATERS en série, de dénominations commerciales "STYRAGEL" ("HMW7", "HMW6E" et deux "HT6E"). Le volume injecté de la solution de l'échantillon de polymère est de 100 μΐ. Le détecteur est un réfractomètre différentiel "WATERS 2410" et son logiciel associé d'exploitation des données chromatographiques est le système "WATERS MILLENIUM". Les masses molaires moyennes calculées sont relatives à une courbe d'étalonnage réalisée avec des étalons de polystyrène.
La Tg des polymères thermoplastiques et des élastomères diéniques décrits dans la présente demande est mesurée de manière connue par DSC (Differential Scanning Calorimetry), par exemple et sauf indications différentes spécifiées dans la présente demande, selon la norme ASTM D3418 de 1999.
A titres d'exemples non limitatifs de polymères PPE utilisables dans le renfort composite de l'invention, on peut citer notamment ceux choisis dans le groupe constitué par les poly(2,6- diméthyl- 1 ,4-phénylène-éther), poly(2,6-diméthyl-co-2,3 ,6-triméthyl- 1 ,4-phénylène-éther), poly-(2,3,6-triméthyl-l,4-phénylène-éther), poly(2,6-diéthyl-l,4-phénylène-éther), poly(2- méthyl-6-éthyl- 1 ,4-phénylène-éther), poly(2-méthyl-6-propyl- 1 ,4-phénylène-éther), poly- (2,6-dipropyl-l,4-phénylène-éther), poly(2-éthyl-6-propyl-l,4-phénylène-éther), poly(2,6- dilauryl-l,4-phénylène-éther), poly(2,6-diphényl-l,4-phénylène-éther), poly(2,6-diméthoxy- 1 ,4-phénylène-éther), poly( 1 ,6-diéthoxy- 1 ,4-phénylène-éther), poly(2-méthoxy-6-éthoxy- 1 ,4-phénylène-éther), poly(2-éthyl-6-stéaryloxy- 1 ,4-phénylène-éther), poly(2,6-dichloro- 1 ,4-phénylène-éther), poly(2-méthyl-6-phényl- 1 ,4-phénylène-éther), poly(2-éthoxy- 1 ,4- phénylène-éther), poly(2-chloro- 1 ,4-phénylène-éther), poly(2,6-dibromo- 1 ,4-phénylène- éther), poly(3-bromo-2,6-diméthyl-l,4-phénylène-éther), leurs copolymères respectifs, et les mélanges de ces homopolymères ou copolymères.
Selon un mode de réalisation particulier et préférentiel, le PPE utilisé est le poly(2,6- diméthyl-l,4-phénylène-éther) également dénommé parfois polyphénylène oxyde (ou, en abrégé, "PPO"). De tels PPE ou PPO commercialement disponibles sont par exemple les PPE de dénomination "Xyron S202" de la société Asahi Kasei, ou les PPE de dénomination "Noryl SA120" de la société Sabic.
De préférence, dans la composition formant la deuxième couche du renfort composite de l'invention, la quantité de polymère PPE est ajustée de telle manière que le taux pondéral de PPE soit compris entre 0,02 et 2 fois, plus préférentiellement entre 0, 10 et 1 fois le taux pondéral d' élastomère diénique fonctionnalisé. En dessous des minima préconisés, l'adhésion du renfort composite au caoutchouc peut être diminuée alors qu'au-delà des maxima indiqués, il existe un risque de fragilité de la deuxième couche.
La composition polymérique de la deuxième couche comporte d'autre part un élastomère diénique fonctionnalisé, ledit élastomère étant porteur de groupes fonctionnels choisis parmi les groupes ou fonctions époxyde, carboxyle, anhydride ou ester d'acide. Préférentiellement, les groupes fonctionnels sont des groupes époxydes, c'est-à-dire que l'élastomère diénique est un élastomère diénique époxydé.
Par élastomère ou caoutchouc (les deux termes étant de manière connue synonymes et interchangeables) du type "diénique", on rappelle que doit être entendu un élastomère qui est issu au moins en partie (i.e. un homopolymère ou un copolymère) de monomères diènes (monomères porteurs de deux doubles liaisons carbone-carbone, conjuguées ou non). Ces élastomères diéniques, non thermoplastiques par définition dans la présente demande, présentant une Tg dans la très grande majorité des cas qui est négative (c'est-à-dire inférieure à 0°C), peuvent être classés de manière connue en deux catégories : ceux dits "essentiellement insaturés" et ceux dits "essentiellement saturés". Les caoutchoucs butyl, comme par exemple les copolymères de diènes et d'alpha-oléfines type EPDM, entrent dans la catégorie des élastomères diéniques essentiellement saturés, ayant un taux de motifs d'origine diénique qui est faible ou très faible, toujours inférieur à 15% (% en moles). A contrario, par élastomère diénique essentiellement insaturé, on entend un élastomère diénique issu au moins en partie de monomères diènes conjugués, ayant un taux de motifs ou unités d'origine diénique (diènes conjugués) qui est supérieur à 15% (% en moles). Dans la catégorie des élastomères diéniques "essentiellement insaturés", on entend en particulier par élastomère diénique "fortement insaturé" un élastomère diénique ayant un taux de motifs d'origine diénique (diènes conjugués) qui est supérieur à 50%.
On préfère utiliser au moins un élastomère diénique du type fortement insaturé, en particulier un élastomère diénique choisi dans le groupe constitué par le caoutchouc naturel (NR), les polyisoprènes de synthèse (IR), les polybutadiènes (BR), les copolymères de butadiène, les copolymères d'isoprène et les mélanges de ces élastomères. De tels copolymères sont plus préférentiellement choisis dans le groupe constitué par les copolymères de butadiène- styrène (SBR), les copolymères d'isoprène-butadiène (BIR), les copolymères d'isoprène-styrène (SIR), les copolymères d'isoprène-butadiène-styrène (SBIR) et les mélanges de tels copolymères. Les élastomères diéniques ci-dessus peuvent être par exemple à blocs, statistiques, séquencés, microséquencés, et être préparés en dispersion ou en solution.
A titre préférentiel conviennent les polybutadiènes et en particulier ceux ayant une teneur en unités -1,2 comprise entre 4% et 80% ou ceux ayant une teneur en cis-1,4 supérieure à 80%, les polyisoprènes, les copolymères de butadiène- styrène et en particulier ceux ayant une teneur en styrène comprise entre 5% et 50% en poids et plus particulièrement entre 20% et 40%), une teneur en liaisons -1,2 de la partie butadiénique comprise entre 4% et 65% , une teneur en liaisons trans-1,4 comprise entre 20% et 80%, les copolymères de butadiène- isoprène et notamment ceux ayant une teneur en isoprène comprise entre 5% et 90% en poids et une température de transition vitreuse de -40°C à -80°C, les copolymères isoprène- styrène et notamment ceux ayant une teneur en styrène comprise entre 5% et 50% en poids et une Tg comprise entre -25°C et -50°C.
Dans le cas des copolymères de butadiène-styrène-isoprène conviennent notamment ceux ayant une teneur en styrène comprise entre 5% et 50% en poids et plus particulièrement comprise entre 10% et 40%, une teneur en isoprène comprise entre 15% et 60% en poids et plus particulièrement entre 20% et 50%, une teneur en butadiène comprise entre 5% et 50% en poids et plus particulièrement comprise entre 20% et 40%, une teneur en unités -1,2 de la partie butadiénique comprise entre 4% et 85%, une teneur en unités trans -1,4 de la partie butadiénique comprise entre 6% et 80%, une teneur en unités -1,2 plus -3,4 de la partie isoprénique comprise entre 5% et 70% et une teneur en unités trans -1,4 de la partie isoprénique comprise entre 10% et 50%, et plus généralement tout copolymère butadiène- styrène-isoprène ayant une Tg comprise entre -20°C et -70°C. Plus préférentiellement encore, est utilisé un copolymère SBR.
Une deuxième caractéristique essentielle de l'élastomère diénique utilisé dans le renfort composite de l'invention est qu'il est fonctionnalisé, porteur de groupes fonctionnels choisis parmi les groupes ou fonctions époxyde, carboxyle, anhydride ou ester d'acide.
De tels élastomères diéniques fonctionnalisés et leurs procédés d'obtention sont bien connus de l'homme du métier et disponibles commercialement. Des élastomères diéniques porteurs de groupes carboxyle ont été décrits par exemple dans WO 01/92402 ou US 6815473, WO 2004/096865 ou US 7312264 ; des élastomères diéniques porteurs de groupes époxyde ont été décrits par exemple dans US 2003/120007 ou EP 0763564, US 6903165 ou EP 1403287.
Préférentiellement, les groupes fonctionnels sont des groupes époxydés c'est-à-dire que l'élastomère diénique est un élastomère diénique époxydé. Plus préférentiellement encore, l'élastomère diénique époxydé est choisi dans le groupe constitué par les caoutchoucs naturels (NR) époxydés, les polyisoprènes (IR) de synthèse époxydés, les polybutadiènes (BR) époxydés ayant préférentiellement un taux de liaisons cis-1,4 supérieur à 90%, les copolymères de butadiène- styrène (SBR) époxydés et les mélanges de ces élastomères. Les caoutchoucs naturels époxydés (en abrégé "ENR"), par exemple, peuvent être obtenus de manière connue par époxydation du caoutchouc naturel, par exemple par des procédés à base de chlorohydrine ou de bromohydrine ou des procédés à base de peroxydes d'hydrogène, d'alkyl hydroperoxydes ou de peracides (tel que acide peracétique ou acide performique) ; de tels ENR sont par exemple vendus sous les dénominations "ENR-25" et "ENR-50" (taux d'époxydation respectifs de 25% et 50%) par la société Guthrie Polymer. Les BR époxydés sont eux aussi bien connus, vendus par exemple par la société Sartomer sous la dénomination "Poly Bd" (par exemple "Poly Bd 605E"). Les SBR époxydés peuvent être aussi préparés par des techniques d'époxydation bien connues de l'homme du métier. Plus préférentiellement encore, est utilisé un copolymère SBR époxydé. Le taux (% molaire) de fonctionnalisation, notamment d'époxydation, des élastomères diéniques fonctionnalisés précédemment décrits peut varier dans une large part selon les modes de réalisation particuliers de l'invention, de préférence dans un domaine de 5% à 60%. Quand le taux d'époxydation est inférieur à 5%, l'effet technique visé risque d'être insuffisant tandis qu'au-delà de 60%, la masse moléculaire du polymère diminue fortement. Pour toutes ces raisons, le taux de fonctionnalisation, notamment d'époxydation, est plus préférentiellement compris dans un domaine de 10% à 50%. Les élastomères diéniques époxydés précédemment décrits sont de manière connue solides à température ambiante (20°C) ; on entend par solide toute substance n'ayant pas la capacité de prendre à terme, au plus tard au bout de 24 heures, sous le seul effet de la gravité et à température ambiante (20°C), la forme du récipient qui la contient. Par opposition notamment à des élastomères du type liquides, ces élastomères solides se caractérisent par une viscosité très élevée : leur viscosité Mooney à l'état cru (i.e., non réticulé), notée ML (1+4), mesurée à 100°C, est de préférence supérieure à 20, plus préférentiellement supérieure à 30, en particulier comprise entre 30 et 130. On utilise pour cette mesure un consistomètre oscillant tel que décrit dans la norme ASTM D1646 (1999). La mesure se fait selon le principe suivant : l'échantillon analysé à l'état cru (i.e., avant cuisson) est moulé (mis en forme) dans une enceinte cylindrique chauffée à une température donnée (par exemple 100°C). Après 1 minute de préchauffage, le rotor tourne au sein de l'éprouvette à 2 tours/minute et on mesure le couple utile pour entretenir ce mouvement après 4 minutes de rotation. La viscosité Mooney (ML 1+4) est exprimée en "unité Mooney" (UM, avec 1 UM=0,83 Newton. mètre). On rappellera aussi que ces élastomères solides se caractérisent de manière connue par une masse moléculaire élevée, typiquement nettement supérieure à leur masse entre enchevêtrements.
La deuxième couche ou composition polymère décrite ci-dessus peut comporter par ailleurs divers additifs, à des taux préférentiels inférieurs à 30%, plus préférentiellement à 20%, encore plus préférentiellement inférieur à 10% en poids par rapport à la quantité de PPE. De tels additifs pourraient être par exemple des élastomères ou polymères autres que ceux précédemment décrits, l'addition de ces élastomères ou polymères étant par exemple destinée à moduler les propriétés de rigidité de la deuxième couche afin notamment de réduire les gradients de rigidité pouvant exister entre les première et deuxième couches. De tels additifs pourraient être également des charges renforçantes telles que du noir de carbone ou de la silice, des charges non renforçantes ou inertes, des agents colorants utilisables pour la coloration de la composition, des plastifiants tels que des huiles, des agents de protection tels que antioxydants, antiozonants, anti-UV ou autres stabilisants. La figure 1 annexée représente de manière très schématique (sans respect d'une échelle spécifique), en coupe transversale, un premier exemple d'un renfort composite conforme à l'invention. Ce renfort composite noté R-l est constitué d'un fil de renforcement (10) constitué d'un filament unitaire ou monofilament de diamètre relativement élevé (par exemple entre 0, 10 et 0,50 mm), par exemple en acier au carbone, qui est recouvert d'une première couche (11) d'un polymère thermoplastique dont la Tg est positive, par exemple en polyamide ou en polyester, dont l'épaisseur minimale est notée Eml sur cette figure 1. Une deuxième couche (12) d'une composition comportant un PPE et un élastomère diénique fonctionnalisé, par exemple un BR, SBR ou R du type époxydé, vient recouvrir la première couche (11) ; son épaisseur minimale est notée E^ sur la figure 1.
La figure 2 schématise en coupe transversale un deuxième exemple d'un renfort composite conforme à l'invention. Ce renfort composite noté R-2 est constitué d'un fil de renforcement
(20) constitué en fait de deux filaments unitaires ou monofilaments (20a, 20b) de diamètre relativement élevé (par exemple entre 0, 10 et 0,50 mm) retordus ou câblés ensemble, par exemple en acier au carbone ; le fil de renforcement (20) est recouvert d'une première couche (21) d'un polymère thermoplastique dont la Tg est positive, par exemple en polyamide 6-6 ou en polyester, d'épaisseur minimale Eml. Une deuxième couche (22) d'une composition comportant un PPE et un élastomère diénique fonctionnalisé, par exemple un BR, SBR ou NR époxydé, d'épaisseur minimale E^, vient recouvrir la première couche
(21) .
La figure 3 schématise en coupe transversale un autre exemple de renfort composite selon l'invention. Ce renfort composite noté R-3 est constitué de trois fils de renforcement (30) constitués chacun de deux monofilaments (30a, 30b) de diamètre relativement élevé (par exemple entre 0,10 et 0,50 mm) retordus ou câblés ensemble, par exemple en acier au carbone ; l'ensemble constitué par les trois fils de renforcement (30) par exemple alignés est recouvert d'une première couche (31) d'un polymère thermoplastique dont la Tg est positive, par exemple en polyamide ou en polyester. Une deuxième couche (32) d'une composition comportant un PPE et un élastomère diénique fonctionnalisé, par exemple un BR, SBR ou NR époxydé, vient recouvrir la première couche (31).
La figure 4 schématise, toujours en coupe transversale, un autre exemple de renfort composite selon l'invention. Ce renfort composite R-4 comporte un fil de renforcement (40) consistant en un câble d'acier de construction 1+6, avec un fil central ou fil d'âme (41a) et six filaments (41b) de même diamètre enroulés ensemble en hélice autour du fil central. Ce câble ou fil de renforcement (40) est recouvert d'une première couche (42) d'un polyamide 6-6, elle-même recouverte d'une deuxième couche (43) d'une composition comportant un PPE et un élastomère diénique fonctionnalisé, par exemple un BR, SBR ou NR époxydé. H
- 12 -
Dans les renforts composites conformes à l'invention tels que ceux schématisés par exemple dans les figures 1 à 4 ci-dessus, l'épaisseur minimale des deux couches (Eml et E^) peut varier dans une très large mesure en fonction des conditions particulières de réalisation de l'invention.
L'épaisseur minimale Eml de la première couche est de préférence comprise entre 1 μπι et 2 mm, plus préférentiellement entre 10 μπι et 1 mm.
Selon un mode de réalisation particulier de l'invention, l'épaisseur minimale E^ de la deuxième couche peut être du même ordre de grandeur que celle de la première couche (cas d'une deuxième couche épaisse d'une épaisseur comprise par exemple entre 1 μπι et 2 mm, en particulier entre 10 μπι et 1 mm), ou bien être notablement différente.
Selon un autre mode de réalisation particulier de l'invention, la deuxième couche pourrait constituer par exemple une couche adhésive fine ou ultrafine, déposée par exemple par une technique d'enduction, par pulvérisation, ou autre technique de dépôt de film mince ou ultramince, par exemple d'épaisseur comprise dans un domaine de 0,02 μπι à 10 μπι, en particulier entre 0,05 μπι et 0,5 μπι. Dans le cas où plusieurs fils de renforcement sont utilisés dans le renfort composite de l'invention, les première et deuxième couches peuvent être déposées individuellement sur chacun des fils de renforcement (pour rappel, que ces fils de renforcement soit unitaires ou pas), comme illustré par exemple aux figures 1, 2 et 4 commentées précédemment. Mais les première et deuxième couches peuvent être aussi déposées collectivement sur plusieurs des fils de renforcement disposés de manière appropriée, par exemple alignés selon une direction principale, comme illustré par exemple à la figure 3.
Le renfort composite de l'invention est susceptible d'être préparé selon un procédé spécifique comportant au moins les étapes suivantes : au cours d'une première étape, on soumet tout d'abord au moins un (c'est-à-dire un ou plusieurs) fil de renforcement à un premier recouvrement par la première couche de polymère thermoplastique dont la température de transition vitreuse est positive ;
- puis, au cours d'une deuxième étape, on dépose sur la première couche une deuxième couche de la composition comportant le PPE et l'élastomère diénique fonctionnalisé ;
enfin, on soumet l'ensemble à un traitement thermo-oxydant. Les deux premières étapes peuvent être conduites de manière connue de l'homme du métier, en ligne et en continu, ou pas ; elles consistent par exemple à faire passer le fil ou chaque fil de renforcement (pris individuellement ou collectivement), à travers des filières de diamètre adapté, dans une ou plusieurs têtes d'extrusion chauffées à des températures appropriées, ou encore, ce qui constitue un mode de réalisation plus préférentiel, dans un bain d'enduction contenant le PPE et l'élastomère diénique fonctionnalisé mis préalablement (ensemble ou séparément) en solution dans un solvant (ou un mélange de solvants) organique approprié.
Selon un mode de réalisation particulier et préférentiel, le fil ou chaque fil de renforcement (pris individuellement ou collectivement) est préalablement chauffé, par exemple par induction ou par rayonnement IR, avant passage dans la tête d'extrusion délivrant le polymère thermoplastique ; en sortie de la tête d'extrusion, le fil ou chaque fil de renforcement ainsi gainé est ensuite refroidi suffisamment de manière à solidifier la couche de polymère, par exemple avec de l'air ou un autre gaz froid, ou par passage dans un bain d'eau suivi d'une étape de séchage ; le ou chaque fil de renforcement ainsi gainé et refroidi est ensuite recouvert par la composition de PPE et d'élastomère diénique fonctionnalisé, par passage à travers un bain d'enduction de dimensions appropriées.
L'étape suivante consiste en un traitement thermo-oxydant destiné à solidariser au mieux les deux couches. Par traitement "thermo-oxydant" on entend par définition un traitement thermique en présence d'oxygène, par exemple de l'oxygène de l'air. Une telle étape permet d'obtenir une adhésion optimale de la deuxième couche à la première couche de polymère thermoplastique ; par exemple, un traitement thermique sous vide s'est avéré insuffisant. La température utilisée pour ce traitement thermique est préférentiellement comprise entre 150°C et 300°C, pour une durée de traitement plus préférentiellement comprise entre 20 s et 600 s.
A titre d'exemple, le recouvrement d'un fil de renforcement de diamètre proche de 0,6 mm, par exemple d'un câble métallique constitué simplement de deux monofils élémentaires de diamètre 0,3 mm torsadés ensemble (comme illustré par exemple à la figure 2), par une première couche de polyamide 6-6 d'épaisseur maximale égale à environ 0,4 mm, pour l'obtention d'un fil de renforcement gainé ayant un diamètre total d'environ 1 mm, est réalisé sur une ligne d'extrusion-gainage comportant deux filières, une première filière (contre- filière ou filière amont) de diamètre égal à environ 0,7 mm et une seconde filière (ou filière aval) de diamètre égal à environ 1 mm, disposées toutes deux dans une tête d'extrusion portée à environ 300°C. Le polyamide, fondu à une température de 290°C dans l'extrudeuse, recouvre ainsi le fil de renforcement, par le biais de la tête de gainage, à une vitesse de défilement du fil égale typiquement à plusieurs dizaines de m/min, pour un débit de pompe d'extrusion typiquement de plusieurs dizaines de cm3/min. En sortie de ce premier gainage, le fil peut être immergé dans un bac de refroidissement rempli d'eau froide, pour solidifier et figer le polyamide dans son état amorphe, puis séché par exemple par passage de la bobine de réception à l'étuve.
Pour la première étape de gainage décrite ci-dessus, le câble (fil de renforcement) est avantageusement préchauffé avant passage dans la tête d'extrusion, par exemple par passage à travers un générateur HF ou à travers un tunnel chauffant.
Le fil ainsi recouvert de polyamide est ensuite recouvert de la composition de PPE et d'élastomère diénique fonctionnalisé selon un mode de réalisation adapté à l'épaisseur visée pour la deuxième couche.
A titre d' exemple, dans le cas où l'épaisseur visée de la deuxième couche est très nettement inférieure à celle de la première couche, par exemple égale à quelques dizaines de nanomètres, le fil recouvert de polyamide passe, par exemple à une vitesse de quelques m/min ou dizaines de m/min et sur une longueur de quelques cm ou dizaines de cm, entre deux feutrines de laine pressées par une masse de 1 kg et imbibées en continu par le PPE et l'élastomère diénique fonctionnalisé (par exemple BR, SBR ou R époxydé) dilués dans un solvant approprié (par exemple à 5% dans du toluène), afin de recouvrir ainsi le tout d'une couche ultra-fine de la composition de PPE et d'élastomère diénique fonctionnalisé.
A l'issue de la seconde opération, par exemple en sortie du bain d'enduction précédemment décrit, le fil composite traverse un four-tunnel, par exemple de plusieurs mètres de long, pour y subir un traitement thermique sous air. Cette température de traitement est par exemple comprise entre 150°C et 300°C, pour des durées de traitement de quelques secondes à quelques minutes selon les cas, étant entendu que la durée du traitement sera d'autant plus courte que la température sera élevée, et que le traitement thermique ne doit évidemment pas conduire à une refusion ou même un ramollissement excessif des matières polymériques utilisées. Ainsi terminé, le renfort composite de l'invention est avantageusement refroidi, par exemple à l'air, pour éviter d'éventuels problèmes de collage parasite lors de son enroulement sur la bobine de réception finale.
L'homme du métier saura ajuster la température et la durée du traitement thermique en fonction des conditions particulières de mise en œuvre de l'invention, notamment de la nature exacte du renfort composite fabriqué, notamment selon que l'on traite des monofilaments pris individuellement, des câbles constitués de plusieurs monofilaments ou des groupes de tels monofilaments ou câbles tels que des bandelettes. En particulier, l'homme du métier aura avantage à réaliser des balayages en température et durée de traitement, de manière à rechercher, par approches successives, les conditions opératoires conduisant aux meilleurs résultats d'adhésion, pour chaque mode de réalisation particulier de l'invention.
Les étapes du procédé de l'invention précédemment décrites peuvent être éventuellement complétées par un traitement final de réticulation tridimensionnelle du renfort, plus exactement de sa seconde couche de PPE et d'élastomère diénique fonctionnalisé, pour renforcer encore sa propre cohésion. Cette réticulation pourra être conduite par tout moyen connu, par exemple par des moyens de réticulation physiques tels que bombardement ionique ou électronique, ou par des moyens de réticulation chimiques.
Une réticulation pourra être également obtenue lors de la cuisson des bandages pneumatiques (ou plus généralement des articles en caoutchouc) que le renfort composite de l'invention est destiné à renforcer, grâce au propre système de réticulation présent dans les compositions de caoutchouc diénique constitutives de tels bandages (ou articles) et entrant au contact du renfort composite de l'invention.
Le renfort composite de l'invention est utilisable directement, c'est-à-dire sans nécessiter un quelconque système adhésif supplémentaire, comme élément de renforcement d'une matrice de caoutchouc diène, par exemple dans un bandage pneumatique. Il est avantageusement utilisable pour le renforcement de bandages pneumatiques de tous types de véhicules, en particulier véhicules tourisme ou véhicules industriels tels que poids-lourd. A titre d'exemple, la figure 5 annexée représente de manière très schématique (sans respect d'une échelle spécifique), une coupe radiale d'un bandage pneumatique conforme à l'invention pour véhicule du type tourisme.
Ce bandage pneumatique 1 comporte un sommet 2 renforcé par une armature de sommet ou ceinture 6, deux flancs 3 et deux bourrelets 4, chacun de ces bourrelets 4 étant renforcé avec une tringle 5. Le sommet 2 est surmonté d'une bande de roulement non représentée sur cette figure schématique. Une armature de carcasse 7 est enroulée autour des deux tringles 5 dans chaque bourrelet 4, le retournement 8 de cette armature 7 étant par exemple disposé vers l'extérieur du pneumatique 1 qui est ici représenté monté sur sa jante 9. L'armature de carcasse 7 est de manière connue en soi constituée d'au moins une nappe renforcée par des câbles dits "radiaux", par exemple textiles ou métalliques, c'est-à-dire que ces câbles sont disposés pratiquement parallèles les uns aux autres et s'étendent d'un bourrelet à l'autre de manière à former un angle compris entre 80° et 90° avec le plan circonférentiel médian (plan perpendiculaire à l'axe de rotation du pneumatique qui est situé à mi-distance des deux bourrelets 4 et passe par le milieu de l'armature de sommet 6). Ce bandage pneumatique 1 de l'invention a par exemple pour caractéristique essentielle qu'au moins une de ses armatures de sommet ou de carcasse comporte un renfort composite selon l'invention. Selon un autre exemple de mode de réalisation possible de l'invention, ce sont les tringles 5 qui pourraient être constituées d'un renfort composite selon l'invention.
EXEMPLES DE REALISATION DE L'INVENTION Essai 1 - Fabrication des renforts composites
On fabrique tout d'abord des renforts composites, conformes ou non à l'invention, de la manière suivante. Le fil de renforcement de départ est un câble d'acier (dit "steel cord" pour bandages pneumatiques (acier standard à 0,7% en poids de carbone), de construction 1x2 constitué de deux fils élémentaires ou monofils de diamètre 0,30 mm retordus ensemble selon un pas d'hélice de 10 mm. Son diamètre est de 0,6 mm.
Le recouvrement de ce câble par du polyamide 6-6 ("ZYTEL E40 NC010" de la société DuPont de Nemours ; température de fusion Tf égale à environ 260°C) est réalisé sur une ligne d'extrusion-gainage par passage à travers une tête d'extrusion portée à une température de 300°C et comportant deux filières, une filière amont de diamètre 0,63 mm et une filière aval de diamètre 0,92 mm. Le polyamide porté à une température égale à environ 290°C dans l'extrudeuse (débit de pompe de 20 cm3/min) recouvre ainsi le fil de renforcement (préchauffé à environ 280-290°C par passage à travers un générateur HF) défilant à une vitesse de 30 m/min. En sortie de la tête de gainage, le renfort composite obtenu est immergé en continu dans un bac de refroidissement rempli d'eau à 5°C pour figer le polyamide dans son état amorphe, puis séché par une buse d'air.
A ce stade de la fabrication, on obtient un renfort composite témoin (donc non conforme à l'invention) constitué du câble d'acier de départ gainé uniquement de sa première couche de polyamide. Ce renfort composite témoin (noté R-5) a un diamètre total (Le., une fois gainé) d'environ 1,0 mm.
Puis, au cours d'une deuxième étape, on dépose sur le câble ainsi gainé une deuxième couche d'une composition comportant un mélange (rapport pondéral 1/0,4) d'un élastomère diénique époxydé et de PPE ("Xyron S202" de la société Asahi Kasei) dont l'épaisseur minimale (E^) visée est égale à quelques dizaines de nanomètres, de la manière qui suit. Le câble recouvert de polyamide 6-6 est passé à travers un bain d'enduction, à une vitesse d'environ 3 m/min, sur une longueur d'environ 15 cm, entre deux feutrines de laine pressées par une masse de 1 kg et imbibées en continu par le mélange de l'élastomère diénique époxydé et de PPE, dilué à 5% en poids dans du toluène, afin de recouvrir ainsi le tout d'une couche ultra-fine de la composition de PPE et d'élastomère. Le renfort ainsi gainé est ensuite séché pour éliminer le solvant par évaporation. Les températures de transition vitreuse des deux polymères thermoplastiques utilisés ci- dessus (polyamide 6-6 et PPE) sont respectivement égales à environ + 50°C et + 215°C (mesurées par exemple selon le mode opératoire qui suit : appareil DSC "822-2" de Mettler Toledo ; atmosphère Hélium ; échantillons préalablement portés de la température ambiante (20°C) à 100°C (20°C/min), puis refroidis rapidement jusqu'à -140°C, avant enregistrement final de la courbe de DSC de -140°C à +300°C à 20°C/min).
A l'issue de ce deuxième gainage, on soumet l'ensemble (renfort composite doublement gainé) à un traitement thermo-oxydant d'une durée d'environ 100 s, par passage à 3 m/min dans un four-tunnel, sous atmosphère ambiante, porté à une température de 270°C. A ce stade final de la fabrication, on obtient un renfort composite conforme à l'invention, constitué du câble d'acier de départ gainé de sa première couche de polyamide et de sa deuxième couche de PPE et d'élastomère diénique époxydé. Le renfort composite conforme à l'invention ainsi préparé (renfort R-2 tel que schématisé à la figure 2) a un diamètre final total d'environ 1 mm.
Dans cet essai, pour déterminer les meilleures conditions opératoires du traitement thermooxydant, on a réalisé préalablement un balayage en température de 160°C à 280°C, pour quatre durées de traitement (50 s, 100 s, 200 s et 400 s). Au cours de ces essais de fabrication, deux élastomères diéniques époxydés différents ont été utilisés, à savoir un polybutadiène (BR) époxydé (« Epolead » PB3600 de la société Daicel Chemical Industries ; taux d'époxy dation égal à environ 28% (mol)) et un SBR époxydé (taux d'époxydation égal à environ 15% (mol) ; Tg égale à -35°C ; 27% de styrène, 42% de liaisons 1,4 et 16% de liaisons 1,2).
Essai 2 - Tests d'adhésion
La qualité de la liaison entre le caoutchouc et les renforts composites précédemment fabriqués est ensuite appréciée par un test dans lequel on mesure la force nécessaire pour extraire les renforts d'une composition de caoutchouc vulcanisée, dit encore vulcanisât. Cette composition de caoutchouc est une composition conventionnelle utilisée pour le calandrage de nappes métalliques de ceinture de pneumatique, à base de caoutchouc naturel, de noir de carbone et des additifs usuels. Le vulcanisât est un bloc de caoutchouc constitué de deux plaques de dimensions 200 mm par 4,5 mm et d'épaisseur 3,5 mm, appliquées l'une sur l'autre avant cuisson (l'épaisseur du bloc résultant est alors de 7 mm). C'est lors de la confection de ce bloc que les renforts composites (15 brins au total) sont emprisonnés entre les deux plaques de caoutchouc à l'état cru, à égale distance et en laissant dépasser de part et d'autre de ces plaques une extrémité de renfort composite de longueur suffisante pour la traction ultérieure. Le bloc comportant les renforts est alors placé dans un moule adapté puis cuit sous pression. La température et la durée de cuisson sont adaptées aux conditions de tests visées et laissées à l'initiative de l'homme de l'art ; à titre d'exemple, dans le cas présent, la cuisson du bloc est réalisée à 160°C pendant 15 min, sous une pression de 16 bars.
A l'issue de la cuisson, l'éprouvette ainsi constituée du bloc vulcanisé et des 15 renforts est mise en place dans les mâchoires d'une machine de traction adaptée pour permettre de tractionner chaque renfort isolément hors du caoutchouc, à une vitesse et une température données (par exemple, dans le cas présent, à 50 mm/min et 20°C). On caractérise les niveaux d'adhésion en mesurant la force dite d'arrachage (notée FmaX) pour arracher les renforts de l'éprouvette (moyenne sur 15 tractions).
On a constaté que les renforts composites de l'invention, malgré le fait qu'ils soient dépourvus de colle RFL (ou toute autre colle), présentaient une force d'arrachage Fmax particulièrement élevée et inattendue, toujours supérieure à la force d'arrachage de référence mesurée sur le renfort composite témoin gainé de nylon (R-5) et encollé avec une colle conventionnelle RFL : à la température ambiante (25°C) et pour une base relative égale à 100 sur le renfort composite témoin R-5, les renforts composites de l'invention, avec une seconde couche en PPE et respectivement BR ou SBR époxydés, présentaient une force d'arrachage FmaX augmentée de 25% (BR époxydé) et de 150% (SBR époxydé) comparativement au renfort composite témoin R-5.
Dans les mêmes conditions, le renfort composite témoin (R-5) gainé de nylon mais dépourvu de colle RFL (ou toute autre colle), présentait une adhésion nulle au caoutchouc (force d'arrachage égale pratiquement à zéro).
En conséquence, le renfort composite de l'invention par son caractère auto-adhérent constitue une alternative particulièrement intéressante, compte tenu des très hauts niveaux d'adhésion obtenus, aux renforts composites de l'art antérieur gainés par une matière thermoplastique telle que polyamide ou polyester, nécessitant de manière connue l'emploi d'une colle du type RFL pour assurer leur adhésion au caoutchouc.

Claims

REVENDICATIONS
1. Renfort composite comportant :
- un ou plusieurs fil(s) de renforcement ;
recouvrant ledit fil, individuellement chaque fil ou collectivement plusieurs fils, une première couche d'un polymère thermoplastique dont la température de transition vitreuse est positive ;
recouvrant la première couche, une deuxième couche d'une composition comportant un poly(p-phénylène éther) ("PPE") et un élastomère diénique fonctionnalisé porteur de groupes fonctionnels choisis parmi les groupes époxyde, carboxyle, anhydride ou ester d'acide.
2. Renfort selon la revendication 1, dans lequel la température de transition vitreuse du polymère thermoplastique est supérieure à +20°C.
3. Renfort selon l'une quelconque des revendications 1 ou 2, dans lequel le polymère thermoplastique est un polyamide aliphatique ou un polyester.
4. Renfort selon la revendication 3, dans lequel le polymère thermoplastique est un polyamide 6-6.
5. Renfort selon l'une quelconque des revendications 1 à 4, dans lequel le PPE a une température de transition vitreuse supérieure à 150°C, de préférence supérieure à 180°C.
6. Renfort selon l'une quelconque des revendications 1 à 5, dans lequel le PPE est le poly(2,6-diméthyl- 1 ,4-phénylène-éther).
7. Renfort selon l'une quelconque des revendications 1 à 6, dans lequel l'élastomère diénique est choisi dans le groupe constitué par le caoutchouc naturel, les polyisoprènes de synthèse, les polybutadiènes, les copolymères de butadiène, les copolymères d'isoprène et les mélanges de ces élastomères.
8. Renfort selon l'une quelconque des revendications 1 à 7, dans lequel l'élastomère diénique est un élastomère diénique époxydé.
9. Renfort selon la revendication 8, dans lequel l'élastomère diénique est un caoutchouc naturel ou un polyisoprène de synthèse.
10. Renfort selon la revendication 8, dans lequel l'élastomère diénique est un polybutadiène ou un copolymère de butadiène- styrène.
11. Renfort selon l'une quelconque des revendications 1 à 8, dans lequel l'élastomère diénique est un copolymère styrène-butadiène.
12. Renfort selon l'une quelconque des revendications 1 à 11, dans lequel l'épaisseur minimale de la première couche est comprise entre 1 μιη et 2 mm.
13. Renfort selon l'une quelconque des revendications 1 à 12, dans lequel l'épaisseur minimale de la deuxième couche est comprise dans un domaine de 0,02 μιη à 10 μιη.
14. Renfort selon l'une quelconque des revendications 1 à 13, dans lequel le fil de renforcement est métallique, de préférence sous forme d'un câble.
15. Renfort selon la revendication 14, dans lequel le fil métallique est un fil en acier au carbone.
16. Article ou produit semi-fini en caoutchouc comportant un renfort composite selon l'une quelconque des revendications 1 à 15.
17. Bandage pneumatique comportant un renfort composite selon l'une quelconque des revendications 1 à 15.
18. Procédé de fabrication d'un renfort composite selon l'une quelconque des revendications 1 à 15, caractérisé en ce qu'il comporte au moins les étapes suivantes : on recouvre individuellement le fil ou chaque fil de renforcement, ou collectivement plusieurs fils de renforcement, par une première couche du polymère thermoplastique dont la température de transition vitreuse est positive ; on dépose sur la première couche une deuxième couche d'une composition comportant le poly(p-phénylène éther) ("PPE") et l'élastomère diénique fonctionnalisé porteur de groupes fonctionnels choisis parmi les groupes époxyde, carboxyle, anhydride ou ester d'acide ;
on soumet l'ensemble à un traitement thermo-oxydant.
Procédé selon la revendication 18, comportant en outre une étape de réticulation du brt composite.
PCT/EP2011/066112 2010-09-23 2011-09-16 Renfort composite et son procede de fabrication WO2012038340A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11757333.7A EP2618975B1 (fr) 2010-09-23 2011-09-16 Renfort composite et son procede de fabrication
US13/825,935 US9540766B2 (en) 2010-09-23 2011-09-16 Composite reinforcer
CN201180045881.3A CN103118848B (zh) 2010-09-23 2011-09-16 复合补强件
JP2013529616A JP5807679B2 (ja) 2010-09-23 2011-09-16 複合補強材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1057664A FR2965208B1 (fr) 2010-09-23 2010-09-23 Renfort composite
FR1057664 2010-09-23

Publications (1)

Publication Number Publication Date
WO2012038340A1 true WO2012038340A1 (fr) 2012-03-29

Family

ID=43844580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/066112 WO2012038340A1 (fr) 2010-09-23 2011-09-16 Renfort composite et son procede de fabrication

Country Status (6)

Country Link
US (1) US9540766B2 (fr)
EP (1) EP2618975B1 (fr)
JP (1) JP5807679B2 (fr)
CN (1) CN103118848B (fr)
FR (1) FR2965208B1 (fr)
WO (1) WO2012038340A1 (fr)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015014776A1 (fr) 2013-07-29 2015-02-05 Compagnie Generale Des Etablissements Michelin Produit renforcé à faible épaisseur et pneumatique comprenant ce produit
WO2015165777A1 (fr) 2014-04-29 2015-11-05 Compagnie Generale Des Etablissements Michelin Renfort plat multi-composite
WO2016058943A1 (fr) 2014-10-13 2016-04-21 Compagnie Generale Des Etablissements Michelin Produit renforce comprenant une composition comprenant un accelerateur de vulcanisation rapide et pneumatique comprenant ledit produit renforce
WO2016058942A1 (fr) 2014-10-13 2016-04-21 Compagnie Generale Des Etablissements Michelin Produit renforce comprenant une composition a faible taux de soufre et pneumatique comprenant ledit produit renforce
WO2016058945A1 (fr) 2014-10-13 2016-04-21 Compagnie Generale Des Etablissements Michelin Produit renforce comprenant une composition a faible taux de soufre et pneumatique comprenant ledit produit renforce
WO2016058944A1 (fr) 2014-10-13 2016-04-21 Compagnie Generale Des Etablissements Michelin Produit renforce comprenant une composition comprenant un systeme oxyde metallique et derive d'acide stearique equilibre et pneumatique comprenant ledit produit renforce
WO2016124417A1 (fr) 2015-02-03 2016-08-11 Compagnie Generale Des Etablissements Michelin Pneu radial ayant une structure de ceinture améliorée
WO2016189209A1 (fr) 2015-05-28 2016-12-01 Compagnie Generale Des Etablissements Michelin Renfort multi-composite en verre-resine ameliore
WO2016189126A1 (fr) 2015-05-28 2016-12-01 Compagnie Generale Des Etablissements Michelin Renfort plat multi-composite
WO2017050780A1 (fr) 2015-09-21 2017-03-30 Compagnie Generale Des Etablissements Michelin Procede de fabrication d'un element de renfort gaine comprenant une etape de degraissage
WO2019115900A1 (fr) 2017-12-15 2019-06-20 Compagnie Generale Des Etablissements Michelin Procédé de fabrication d'un produit renforcé par un élément de renfort
WO2019115786A1 (fr) 2017-12-14 2019-06-20 Compagnie Generale Des Etablissements Michelin Guide-fil pour la fabrication d'elements de renfort gaines pour pneumatiques
WO2019122686A1 (fr) 2017-12-19 2019-06-27 Compagnie Generale Des Etablissements Michelin Produit renforce comprenant une composition comprenant un compose polysulfuré et pneumatique comprenant ledit produit renforce
US10391817B2 (en) 2013-07-29 2019-08-27 Compagnie Generale Des Etablissements Michelin Thin reinforced product and tire comprising said product
US10427462B2 (en) 2013-07-29 2019-10-01 Compagnie Generale Des Etablissements Michelin Thin reinforced product and tire comprising said product
WO2020074830A1 (fr) 2018-10-11 2020-04-16 Compagnie Generale Des Etablissements Michelin Composant caoutchouc comprenant des elements de renforcement
WO2020128261A1 (fr) 2018-12-21 2020-06-25 Compagnie Generale Des Etablissements Michelin Produit renforce comprenant une composition comportant un compose polysulfuré
FR3090645A1 (fr) 2018-12-21 2020-06-26 Compagnie Generale Des Etablissements Michelin Produit renforce comprenant une composition comportant un compose polysulfuré
WO2020141142A1 (fr) 2018-12-30 2020-07-09 Compagnie Generale Des Etablissements Michelin Bloc guide-fil pour la fabrication d'elements de renfort gaines pour pneumatiques
WO2022018342A1 (fr) 2020-07-24 2022-01-27 Compagnie Generale Des Etablissements Michelin Produit renforcé obtenu par un procédé comprenant une étape de traitement thermique de la gaine
US11433709B2 (en) 2015-02-03 2022-09-06 Compagnie Generale Des Etablissements Michelin Radial tire having a very thin belt structure
WO2024121069A1 (fr) 2022-12-08 2024-06-13 Compagnie Generale Des Etablissements Michelin Composite pour article de caoutchouc

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2971188B1 (fr) 2011-02-03 2013-03-08 Michelin Soc Tech Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
FR2971266B1 (fr) * 2011-02-03 2014-06-27 Soc Tech Michelin Materiau textile pourvu d'une colle thermoplastique
WO2014129600A1 (fr) * 2013-02-21 2014-08-28 古河電気工業株式会社 Faisceau de conducteurs, procédé permettant de raccorder un contact et un câble enrobé, et structure de faisceau de conducteurs
CN108367597A (zh) * 2015-12-16 2018-08-03 株式会社普利司通 轮胎
KR101998599B1 (ko) * 2017-11-29 2019-10-01 금호타이어 주식회사 박층형 캡플라이 및 이를 적용한 저중량 타이어

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2576247A1 (fr) 1985-01-18 1986-07-25 Michelin & Cie Ensembles renforcants comportant des fils de renfort et une matrice; procede pour obtenir ces ensembles; articles comportant ces ensembles
FR2601293A1 (fr) 1986-07-09 1988-01-15 Michelin & Cie Tringle gainee pour enveloppes de pneumatiques; procede pour realiser cette tringle; enveloppes de pneumatiques comportant cette tringle.
EP0763564A2 (fr) 1995-09-14 1997-03-19 ENICHEM ELASTOMERI S.r.l. Composition de caoutchouc pour bande de roulement
JPH09227760A (ja) * 1996-02-27 1997-09-02 Mitsubishi Chem Corp 熱可塑性エラストマー組成物
EP0902046A2 (fr) * 1997-09-12 1999-03-17 The Goodyear Tire & Rubber Company Fil multifilament de carbone revêtu pour renforcement
EP0962562A1 (fr) 1998-06-05 1999-12-08 W.L. GORE & ASSOCIATES GmbH Fil
WO2001092402A1 (fr) 2000-05-26 2001-12-06 Societe De Technologie Michelin Composition de caoutchouc utilisable comme bande de roulement de pneumatique
EP1403287A1 (fr) 2001-05-14 2004-03-31 DAICEL CHEMICAL INDUSTRIES, Ltd. Procede de production de polymere diene epoxyde
WO2004096865A2 (fr) 2003-04-29 2004-11-11 Societe De Technologie Michelin Procede d’obtention d’un elastomere greffe a groupes fonctionnels le long de la chaîne et composition de caoutchouc
WO2005113666A1 (fr) 2004-04-30 2005-12-01 Societe De Technologie Michelin Composition de caoutchouc a adhesion amelioree vis-a-vis d’un renfort metallique
US20080206449A1 (en) * 2007-02-28 2008-08-28 Steven Raymond Klei Poly(arylene ether) composition, method, and article
WO2011012521A1 (fr) * 2009-07-31 2011-02-03 Societe De Technologie Michelin Renfort composite auto-adherent

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2694521A1 (fr) * 1992-08-05 1994-02-11 Sedepro Ancrage de la carcasse d'un pneumatique.
JPH0655665A (ja) * 1992-08-11 1994-03-01 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JP3591988B2 (ja) * 1996-06-20 2004-11-24 横浜ゴム株式会社 コード・ゴム複合体
DE60142161D1 (de) * 2000-06-29 2010-07-01 Michelin Soc Tech Reifen mit verbesserter karkassenverankerungsstruktur
KR100845750B1 (ko) * 2001-10-19 2008-07-11 제온 코포레이션 공액 디엔의 분리정제방법 및 분리정제장치
JP2003313309A (ja) * 2002-04-24 2003-11-06 Bridgestone Corp ゴム−不織布繊維複合体及びタイヤ
JP3786645B2 (ja) * 2003-01-08 2006-06-14 住友電工スチールワイヤー株式会社 被覆pc鋼撚り線
JP4054736B2 (ja) * 2003-09-01 2008-03-05 有限会社よつあみ 自己融着糸条の製造方法
US20080306215A1 (en) * 2007-06-06 2008-12-11 Abhimanyu Onkar Patil Functionalization of olefin/diene copolymers
US8871866B2 (en) * 2008-11-19 2014-10-28 Sabic Global Technologies B.V. Poly(arylene ether) composition and a covered conductor with flexible covering wall and large size conductor
EP2351621B1 (fr) * 2008-10-30 2014-12-10 Bridgestone Corporation Fil d'acier au carbone avec une résistance élevée et des excellentes ductilité et résistance à la fatigue, procédé pour sa production et procédé d'évaluation du fil
JP5473118B2 (ja) * 2009-09-03 2014-04-16 株式会社ブリヂストン 乗用車用タイヤ
FR2952076B1 (fr) * 2009-10-29 2011-12-02 Michelin Soc Tech Renfort composite
FR2971266B1 (fr) * 2011-02-03 2014-06-27 Soc Tech Michelin Materiau textile pourvu d'une colle thermoplastique
FR2971187B1 (fr) * 2011-02-03 2013-03-08 Michelin Soc Tech Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
FR2986455B1 (fr) * 2012-02-08 2014-10-31 Michelin & Cie Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
FR2986456B1 (fr) * 2012-02-08 2014-03-07 Michelin & Cie Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4754794A (en) 1985-01-18 1988-07-05 Compagnie Generale Des Establissements Michelin Reinforcing assemblies comprising reinforcement threads and a matrix; articles comprising such assemblies
FR2576247A1 (fr) 1985-01-18 1986-07-25 Michelin & Cie Ensembles renforcants comportant des fils de renfort et une matrice; procede pour obtenir ces ensembles; articles comportant ces ensembles
FR2601293A1 (fr) 1986-07-09 1988-01-15 Michelin & Cie Tringle gainee pour enveloppes de pneumatiques; procede pour realiser cette tringle; enveloppes de pneumatiques comportant cette tringle.
US20030120007A1 (en) 1995-09-14 2003-06-26 Michele Bortolotti Elastomeric composition useful as tire treads
EP0763564A2 (fr) 1995-09-14 1997-03-19 ENICHEM ELASTOMERI S.r.l. Composition de caoutchouc pour bande de roulement
JPH09227760A (ja) * 1996-02-27 1997-09-02 Mitsubishi Chem Corp 熱可塑性エラストマー組成物
EP0902046A2 (fr) * 1997-09-12 1999-03-17 The Goodyear Tire & Rubber Company Fil multifilament de carbone revêtu pour renforcement
EP0962562A1 (fr) 1998-06-05 1999-12-08 W.L. GORE & ASSOCIATES GmbH Fil
WO2001092402A1 (fr) 2000-05-26 2001-12-06 Societe De Technologie Michelin Composition de caoutchouc utilisable comme bande de roulement de pneumatique
US6815473B2 (en) 2000-05-26 2004-11-09 Michelin Recherche Et Technique S.A. Rubber composition usable as a tire tread
EP1403287A1 (fr) 2001-05-14 2004-03-31 DAICEL CHEMICAL INDUSTRIES, Ltd. Procede de production de polymere diene epoxyde
US6903165B2 (en) 2001-05-14 2005-06-07 Daicel Chemical Industries, Ltd. Process for producing epoxidized diene polymer
WO2004096865A2 (fr) 2003-04-29 2004-11-11 Societe De Technologie Michelin Procede d’obtention d’un elastomere greffe a groupes fonctionnels le long de la chaîne et composition de caoutchouc
US7312264B2 (en) 2003-04-29 2007-12-25 Michelin Recherche Et Technique S.A. Process for obtaining a grafted elastomer having functional groups along the chain and a rubber composition
WO2005113666A1 (fr) 2004-04-30 2005-12-01 Societe De Technologie Michelin Composition de caoutchouc a adhesion amelioree vis-a-vis d’un renfort metallique
US20080206449A1 (en) * 2007-02-28 2008-08-28 Steven Raymond Klei Poly(arylene ether) composition, method, and article
WO2011012521A1 (fr) * 2009-07-31 2011-02-03 Societe De Technologie Michelin Renfort composite auto-adherent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199745, Derwent World Patents Index; AN 1997-486547, XP002633571 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10427462B2 (en) 2013-07-29 2019-10-01 Compagnie Generale Des Etablissements Michelin Thin reinforced product and tire comprising said product
US10391817B2 (en) 2013-07-29 2019-08-27 Compagnie Generale Des Etablissements Michelin Thin reinforced product and tire comprising said product
WO2015014776A1 (fr) 2013-07-29 2015-02-05 Compagnie Generale Des Etablissements Michelin Produit renforcé à faible épaisseur et pneumatique comprenant ce produit
US10315465B2 (en) 2013-07-29 2019-06-11 Compagnie Generale Des Etablissements Michelin Thin reinforced product and tire comprising said product
US10259266B2 (en) 2014-04-29 2019-04-16 Compagnie Generale Des Etablissements Michelin Multi-composite planar reinforcement
WO2015165777A1 (fr) 2014-04-29 2015-11-05 Compagnie Generale Des Etablissements Michelin Renfort plat multi-composite
WO2016058945A1 (fr) 2014-10-13 2016-04-21 Compagnie Generale Des Etablissements Michelin Produit renforce comprenant une composition a faible taux de soufre et pneumatique comprenant ledit produit renforce
US10173468B2 (en) 2014-10-13 2019-01-08 Compagnie Generale Des Etablissements Michelin Reinforced product comprising a composition with a low sulfur content and tire comprising said reinforced product
WO2016058944A1 (fr) 2014-10-13 2016-04-21 Compagnie Generale Des Etablissements Michelin Produit renforce comprenant une composition comprenant un systeme oxyde metallique et derive d'acide stearique equilibre et pneumatique comprenant ledit produit renforce
US10737532B2 (en) 2014-10-13 2020-08-11 Compagnie Generale Des Establissements Michelin Reinforced product comprising a composition containing a rapid vulcanization accelerator and tire comprising said reinforced product
WO2016058942A1 (fr) 2014-10-13 2016-04-21 Compagnie Generale Des Etablissements Michelin Produit renforce comprenant une composition a faible taux de soufre et pneumatique comprenant ledit produit renforce
WO2016058943A1 (fr) 2014-10-13 2016-04-21 Compagnie Generale Des Etablissements Michelin Produit renforce comprenant une composition comprenant un accelerateur de vulcanisation rapide et pneumatique comprenant ledit produit renforce
WO2016124417A1 (fr) 2015-02-03 2016-08-11 Compagnie Generale Des Etablissements Michelin Pneu radial ayant une structure de ceinture améliorée
US11433709B2 (en) 2015-02-03 2022-09-06 Compagnie Generale Des Etablissements Michelin Radial tire having a very thin belt structure
WO2016189209A1 (fr) 2015-05-28 2016-12-01 Compagnie Generale Des Etablissements Michelin Renfort multi-composite en verre-resine ameliore
WO2016189126A1 (fr) 2015-05-28 2016-12-01 Compagnie Generale Des Etablissements Michelin Renfort plat multi-composite
US10994573B2 (en) 2015-05-28 2021-05-04 Compagnie Generale Des Etablissements Michelin Multi-composite planar reinforcement
WO2017050780A1 (fr) 2015-09-21 2017-03-30 Compagnie Generale Des Etablissements Michelin Procede de fabrication d'un element de renfort gaine comprenant une etape de degraissage
WO2019115786A1 (fr) 2017-12-14 2019-06-20 Compagnie Generale Des Etablissements Michelin Guide-fil pour la fabrication d'elements de renfort gaines pour pneumatiques
WO2019115900A1 (fr) 2017-12-15 2019-06-20 Compagnie Generale Des Etablissements Michelin Procédé de fabrication d'un produit renforcé par un élément de renfort
WO2019122686A1 (fr) 2017-12-19 2019-06-27 Compagnie Generale Des Etablissements Michelin Produit renforce comprenant une composition comprenant un compose polysulfuré et pneumatique comprenant ledit produit renforce
FR3087197A1 (fr) 2018-10-11 2020-04-17 Compagnie Generale Des Etablissements Michelin Composant caoutchouc comprenant des elements de renforcement
WO2020074830A1 (fr) 2018-10-11 2020-04-16 Compagnie Generale Des Etablissements Michelin Composant caoutchouc comprenant des elements de renforcement
WO2020128261A1 (fr) 2018-12-21 2020-06-25 Compagnie Generale Des Etablissements Michelin Produit renforce comprenant une composition comportant un compose polysulfuré
FR3090645A1 (fr) 2018-12-21 2020-06-26 Compagnie Generale Des Etablissements Michelin Produit renforce comprenant une composition comportant un compose polysulfuré
WO2020141142A1 (fr) 2018-12-30 2020-07-09 Compagnie Generale Des Etablissements Michelin Bloc guide-fil pour la fabrication d'elements de renfort gaines pour pneumatiques
WO2022018342A1 (fr) 2020-07-24 2022-01-27 Compagnie Generale Des Etablissements Michelin Produit renforcé obtenu par un procédé comprenant une étape de traitement thermique de la gaine
FR3112783A1 (fr) 2020-07-24 2022-01-28 Compagnie Generale Des Etablissements Michelin Produit renforcé obtenu par un procédé comprenant une étape de traitement thermique de la gaine
WO2024121069A1 (fr) 2022-12-08 2024-06-13 Compagnie Generale Des Etablissements Michelin Composite pour article de caoutchouc
FR3143032A1 (fr) 2022-12-08 2024-06-14 Compagnie Generale Des Etablissements Michelin Composite pour article de caoutchouc

Also Published As

Publication number Publication date
FR2965208B1 (fr) 2012-10-12
EP2618975A1 (fr) 2013-07-31
FR2965208A1 (fr) 2012-03-30
JP5807679B2 (ja) 2015-11-10
US20130273366A1 (en) 2013-10-17
CN103118848A (zh) 2013-05-22
US9540766B2 (en) 2017-01-10
JP2013544900A (ja) 2013-12-19
EP2618975B1 (fr) 2014-05-14
CN103118848B (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
EP2618975B1 (fr) Renfort composite et son procede de fabrication
EP2812178B1 (fr) Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc et procédé de fabrication associé
EP2494105B1 (fr) Renfort composite auto-adherent
EP2459358B1 (fr) Renfort composite auto-adherent et son procédé de fabrication
EP2812177B1 (fr) Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc et procédé de fabrication associé
EP2670609B1 (fr) Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc et son et procédé de fabrication associé
EP2670585B1 (fr) Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
EP2408612B1 (fr) Renfort composite auto-adherent, son procédé de fabrication et bandage pneumatique
EP2435627B1 (fr) Renfort composite auto-adherent, particulièrement pour les pneumatiques, et procédé de fabrication associé
EP2643515B1 (fr) Renfort composite auto-adherent
EP2670905B1 (fr) Composite de caoutchouc renforce d'un materiau textile pourvu d'une colle thermoplastique
EP2618976B1 (fr) Bandage pneumatique comportant un renfort composite auto-adherent
WO2012016757A1 (fr) Renfort composite

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045881.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11757333

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011757333

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013529616

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13825935

Country of ref document: US