WO2012038176A2 - System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems - Google Patents

System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems Download PDF

Info

Publication number
WO2012038176A2
WO2012038176A2 PCT/EP2011/064563 EP2011064563W WO2012038176A2 WO 2012038176 A2 WO2012038176 A2 WO 2012038176A2 EP 2011064563 W EP2011064563 W EP 2011064563W WO 2012038176 A2 WO2012038176 A2 WO 2012038176A2
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
power supply
rectifier
storage cells
electric machine
Prior art date
Application number
PCT/EP2011/064563
Other languages
English (en)
French (fr)
Other versions
WO2012038176A3 (de
Inventor
Peter Feuerstack
Erik Weissenborn
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201180045026.2A priority Critical patent/CN103119843B/zh
Priority to US13/825,260 priority patent/US20130257355A1/en
Priority to EP11748652.2A priority patent/EP2619893A2/de
Publication of WO2012038176A2 publication Critical patent/WO2012038176A2/de
Publication of WO2012038176A3 publication Critical patent/WO2012038176A3/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1492Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/40Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to a system for charging an energy store and a method for operating the charging system.
  • Wind turbines as well as in vehicles such as hybrid or electric vehicles, increasingly electronic systems are used that combine new energy storage technologies with electric drive technology.
  • an electric machine e.g. is designed as a rotating field machine, controlled by a converter in the form of an inverter.
  • Characteristic of such systems is a so-called DC voltage intermediate circuit, via which an energy store, usually a battery, is connected to the DC side of the inverter.
  • an energy store usually a battery
  • multiple battery cells are connected in series. Since the power provided by such an energy store must flow through all the battery cells and a battery cell can only conduct a limited current, battery cells are often additionally connected in parallel in order to increase the maximum current.
  • Wind turbines it may in unfavorable conditions, such. strong Wnd, even come to safety-threatening situations. Therefore, it is always high
  • batteries are described with several battery module strings, which are directly connected to an electrical machine.
  • the battery module strands in this case have a plurality of series-connected battery modules, wherein each battery module has at least one battery cell and an associated controllable coupling unit, which allows depending on control signals to interrupt the respective battery module strand or to bridge the respectively associated (at least one) battery cell or to switch the respectively assigned (at least one) battery cell in the respective battery module string.
  • control of the coupling units for example by means of pulse width modulation, it is also possible to provide suitable phase signals for controlling the electrical machine, so that a separate one can be used
  • Pulse inverter can be dispensed with.
  • the required for controlling the electrical machine pulse inverter is so to speak integrated into the battery.
  • Energy storage cell in a controllable energy storage which serves the control and the electrical power supply of an n-phase electric machine, with n> 1, is used.
  • the controllable energy storage on n parallel power supply branches each having at least two series-connected energy storage modules, each comprising at least one electrical energy storage cell with an associated controllable coupling unit.
  • the coupling units either interrupt the energy supply branch or they bridge the respectively assigned energy storage cells or they switch the respectively assigned energy storage cells into the energy supply branch. All
  • Power supply branches are via at least one inductance and a
  • Rectifier unit with an external power supply network in particular a public AC or rotary power system, connectable.
  • the reference rail is connectable to the rectifier unit.
  • the present invention also provides a method of operating a
  • Energy storage cells lie, but are not assigned to be charged energy storage cells are controlled so that the respectively associated
  • PFC Power Factor Correction
  • a typical implementation of a PFC circuit includes a bridge rectifier and a subsequent one
  • the invention is based on the basic idea of utilizing the already existing coupling units of the controllable energy store for realizing a charging function with power factor correction. This is realized in that the coupling units during a charging process analogous to the
  • Switching elements of a boost converter are operated, wherein the at least one inductance in a charging phase energy is supplied and stored there, which is then delivered in a freewheeling phase to the energy storage cells to be charged. This results in minimal additional hardware expense for the necessary free-wheeling diodes, which is associated with low cost and small footprint.
  • Energy storage cells of a single energy storage module as well as the simultaneous charging of energy storage cells of several energy storage modules possible.
  • a multi-phase electric machine and the energy storage cells of energy storage modules, which are located in different power supply branches can be loaded simultaneously.
  • the motor inductance in the form of stator windings of the electric machine for realizing the charging function can be shared with power factor correction. This can be realized by using the stator windings as inductors of a boost converter during a charging process.
  • an embodiment of the invention provides that the power supply branches on the one hand with a reference potential - hereinafter referred to as a reference rail - and on the other hand each connected to a phase of the electric machine and the at least one inductance is at least partially formed by stator windings of the electric machine.
  • a reference potential - hereinafter referred to as a reference rail -
  • the at least one inductance is at least partially formed by stator windings of the electric machine.
  • the rotor position of the electric machine can also be monitored, e.g. be switched off by means of a corresponding sensor, and in the case of a detected rotor movement.
  • Rectifier unit comprises a rectifier, in particular a diode rectifier, and a star point of the phases of the electric machine is connectable to the rectifier.
  • an additional charging inductance can be connected between the rectifier and the neutral point of the electric machine.
  • the rectifier unit comprises n rectifiers, in particular diode rectifiers, and each phase of the electrical machine can be connected to one rectifier each. Also in this case, if the inductances of the stator windings of the electrical machine are insufficient, additional charging inductances may be provided, wherein the phases of the electrical machine can each be connected to a respective rectifier via an additional charging inductance.
  • FIG. 1 shows a schematic representation of a PFC circuit
  • FIG. 2 shows a schematic representation of a charging system according to the invention in a charging phase from a single-phase power supply network
  • FIG. 3 shows the charging system according to FIG. 2 in a freewheeling phase
  • FIG. 4 shows a schematic basic illustration of a charging device according to the invention
  • Fig. 5 is a schematic diagram of an inventive
  • Figures 2 and 3 show a schematic representation of a
  • the controllable energy store 2 comprises three power supply branches 3-1, 3-2 and 3-3, which on the one hand with a reference potential T- (reference rail), which in the illustrated
  • Embodiment leads a low potential, and on the other hand in each case with the individual phases U, V, W of the electric machine 1 are connected.
  • Each of the power supply branches 3-1, 3-2 and 3-3 has m in series
  • the energy storage modules 4 in turn each comprise a plurality of series-connected electrical energy storage cells, which For the sake of clarity, only in the power supply branch 3-3 connected to the phase W of the electric machine 1 are provided with reference numerals 5-31 to 5-3m.
  • the energy storage modules 4 each comprise a coupling unit which blocks the energy storage cells 5 of the respective one
  • the coupling units 6 are each formed by two controllable switching elements 7-31 1 and 7-312 to 7-3m1 and 7-3m2.
  • the switching elements may be used as power semiconductor switches, e.g. in the form of IGBTs (Insulated Gate Bipolar Transistors) or as MOSFETs (Metal Oxide Semiconductor Field Effect
  • the coupling units 6 make it possible to interrupt the respective power supply branch 3 by opening both switching elements 7 of a coupling unit 6.
  • the energy storage cells 5 can either be bridged by closing one of the switching elements 7 of a coupling unit 6, e.g. by closing the switch 7-311 or in the respective power supply branch 3, e.g. by closing the switch 7-312.
  • the total output voltage of the power supply branches 3-1 to 3-3 are determined by the respective switching state of the controllable switching elements 7 of the coupling units 6 and can be set in stages. The grading results depending on the voltage of the individual energy storage modules 4. If one goes from the preferred embodiment of similar ausgestalteter
  • the coupling units 6 thus allow the phases U, V, W of the electric machine 1 either against a high reference potential or a low
  • the power and operating mode of the electric machine 1 can be controlled by the controllable energy store 2 with suitable control of the coupling units 6.
  • Energy storage 2 thus fulfills a dual function insofar as it serves on the one hand the electrical power supply on the other hand, but also the control of the electric machine 1.
  • the electric machine 1 has stator windings 8-U, 8-V and 8-W, which are interconnected in the illustrated embodiment in star connection with each other.
  • the electric machine 1 is designed in the illustrated embodiment as a three-phase three-phase machine, but may also have fewer or more than three phases.
  • the number of power supply branches 3 in the controllable depends on the number of phases of the electric machine
  • each energy storage module 4 each has a plurality of energy storage cells 5 connected in series.
  • Energy storage modules 4 may alternatively have only a single energy storage cell or parallel energy storage cells.
  • the coupling units 6 are each formed by two controllable switching elements 7.
  • the coupling units 6 can also be realized by more or less controllable switching elements, as long as the necessary functions (interrupting the power supply branch, bridging the power supply cells and switching the
  • Energy storage module offers. To the charge of energy storage cells 5 one or more
  • a star point S of the electric machine 1 via an additional charging inductance 9 is connected to a rectifier unit 10.
  • the reference rail T- is connected to the rectifier unit 10.
  • the rectifier unit 10 includes in the illustrated embodiment, for example, a diode rectifier 11 in B2 circuit.
  • the diode rectifier 1 1 is connected via a known network filter 12 to a non-illustrated single-phase external power supply network, in particular a public (AC) power grid, connected.
  • Energy storage cells are 5-3m, controlled by a control unit, not shown, such that the respectively associated energy storage cells are bridged 5-31 to 5-3m. This is concretely achieved by closing the switching elements 7-31 1 to 7-3m1, whereas the switching elements 7-312 to 7-3m2 are opened. All other coupling units 6, that is, all coupling units 6 in the
  • Energy storage modules 4 of the other two power supply branches 3-1 and 3-2 are also controlled such that the respectively associated energy storage cells 5-31 to 5-3m are bridged. Such a control of the coupling units 6 in the power supply branches 3-1 and 3-2, which no to be loaded
  • Include energy storage cells 5 is useful to basically for this
  • Power supply branch 3-3 in which also the energy storage cells to be charged 5- 3m, causes a current flow through the additional charging inductor 9 and the stator winding 8-W, so that during the charging phase electrical energy in the additional charging inductance 9 and the stator winding 8-W is stored.
  • the coupling unit 6-3m which is assigned to the energy storage cells 5-3m to be charged, is controlled in such a way that the associated energy storage cells 5-31 in the
  • Power supply branch 3-3 are switched. This is achieved concretely in that the switching element 7-3m2 is closed and the switching element 7-3m1 is opened. All other coupling units 6-32 to 6-3m, which lie in the power supply branch 3-3 of the energy storage cells 5-31 to be charged, but which are not assigned to any energy storage cells 5 to be charged, are controlled in such a way that the respectively assigned energy storage cells are bridged ( Closing the switching elements 7-311 to 7-3 (m-1) 1 and opening the switching elements 7-312 to 7-3 (m-1) 2). All other coupling units 6, that is, all coupling units 6 in the energy storage modules 4 of the other two power supply branches 3-1 and 3-2 are controlled such that the respective power supply branches 3-1 and 3-2 are interrupted. Specifically, this is achieved in that both switching elements 7 of the coupling units 6 are opened.
  • Inductance of the stator winding 8-W drive the current on and charge in this way the energy storage cells 5-3 m.
  • the inductances of the stator windings 8-U, 8-V and 8-W are used as inductors of a power factor correction.
  • the coupling units 6 take over the implementation of the stator windings 8-U, 8-V and 8-W.
  • the electric machine 1 can be mechanically blocked during the charging process, for example by means of a transmission pawl.
  • the rotor position of the electric machine 1 can be monitored, for example by means of a corresponding sensor, and be switched off in the case of a detected rotor movement.
  • the inductance required for power factor correction may also be provided solely by an external charging inductance, such as an external charging inductor.
  • an external charging inductance such as an external charging inductor.
  • the additional charging inductance 9 without the use of the stator windings 8-u, 8-V and 8-W, are formed.
  • FIGS. 4 and 5 show exemplary schematic diagrams of a charging system according to the invention when charging from a three-phase
  • stator windings 8-U, 8-V and 8-W of the electric machine according to FIG. 4 are connected analogously to the representation in FIGS. 2 and 3 in star connection.
  • the charging system according to FIG. 4 thus differs from the charging system illustrated in FIGS. 2 and 3 only in that the
  • Rectifier unit 10 instead of a diode rectifier in B2 circuit a
  • Diode rectifier 40 in B6 circuit comprises, which directly or via an unillustrated line filter to an unillustrated three-phase external
  • Power supply network in particular a public (rotary) power grid, can be connected.
  • the stator windings 8-U, 8-V and 8-W are not connected in star connection but in delta connection. In such a
  • Embodiment of the electrical machine 1 comprises the rectifier unit 10 for each phase U, V, W of the electric machine 1 has its own rectifier 50-1 or 50-2 and 50-3, which are exemplified as a diode rectifier in B2 circuit.
  • the Machine (1) is connected in each case to a rectifier 50-1 or 50-2 or 50-3.
  • the rectifiers 50-1, 50-2 and 50-3 are connected directly or via an unillustrated line filter to an unillustrated three-phase external one
  • Power supply network in particular a public (rotary) power grid, connectable.
  • the individual rectifiers 50-1, 50-2 and 50-3 are each with two phases L1 and L2 and L2 and L3 or L1 and L3 of the external power supply network connectable.
  • the inductances required for realizing the power factor correction are also formed by the motor inductances of the electric machine 1 or alternatively by external charging inductances or a combination of the motor inductances with external charging inductances can.
  • the minimum total voltage must be at a
  • Power supply branch 3-1, 3-2, 3-3 discharged state

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die Erfindung betrifft ein System zum Laden mindestens einer Energiespeicherzelle (5) in einem steuerbaren Energiespeicher (2), welcher der Steuerung und der elektrischen Energieversorgung einer n-phasigen elektrischen Maschine (1), mit n ≥1, dient. Dabei weist der steuerbare Energiespeicher (2) n parallele Energieversorgungszweige (3-1, 3-2, 3-3) auf, welche jeweils mindestens zwei in Reihe geschaltete Energiespeichermodule (4) aufweisen, welche jeweils mindestens eine elektrische Energiespeicherzelle (5) mit einer zugeordneten steuerbaren Koppeleinheit (6) umfassen. Die Energieversorgungszweige (3-1, 3-2, 3-3) sind einerseits mit einer Bezugsschiene(T-) verbunden und andererseits mit jeweils einer Phase (U, V, W) der elektrischen Maschine(1) verbunden. In Abhängigkeit von Steuersignalen unterbrechen die Koppeleinheiten (6) entweder den Energieversorgungszweig (3-1, 3-2, 3-3) oder sie überbrücken die jeweils zugeordneten Energiespeicherzellen (5) oder sie schalten die jeweils zugeordneten Energiespeicherzellen (5) in den Energieversorgungszweig (3-1, 3-2, 3-3). Alle Energieversorgungszweige (3-1, 3-2, 3-3) sind über mindestens eine Induktivität (8-U; 8-V; 8-W; 9) und eine Gleichrichtereinheit (10) mit einem externen Energieversorgungsnetz verbindbar. Außerdem ist die Bezugsschiene(T-) mit der Gleichrichtereinheit (10) verbindbar.

Description

Beschreibung Titel
System zum Laden eines Energiespeichers und Verfahren zum Betrieb des Ladesystems
Die Erfindung betrifft ein System zum Laden eines Energiespeichers und ein Verfahren zum Betrieb des Ladesystems.
Stand der Technik
Es zeichnet sich ab, dass in Zukunft sowohl bei stationären Anwendungen, wie z.B.
Windkraftanlagen, wie auch in Fahrzeugen, wie Hybrid- oder Elektrofahrzeugen, vermehrt elektronische Systeme zum Einsatz kommen, die neue Energiespeichertechnologien mit elektrischer Antriebstechnik kombinieren. In herkömmlichen Anwendungen wird eine elektrische Maschine, welche z.B. als Drehfeldmaschine ausgeführt ist, über einen Umrichter in Form eines Wechselrichters gesteuert. Kennzeichnend für derartige Systeme ist ein sogenannter Gleichspannungszwischenkreis, über welchen ein Energiespeicher, in der Regel eine Batterie, an die Gleichspannungsseite des Wechselrichters angeschlossen ist. Um die für eine jeweilige Anwendung gegebenen Anforderungen an Leistung und Energie erfüllen zu können, werden mehrere Batteriezellen in Serie geschaltet. Da der von einem derartigen Energiespeicher bereitgestellte Strom durch alle Batteriezellen fließen muss und eine Batteriezelle nur einen begrenzten Strom leiten kann, werden oft zusätzlich Batteriezellen parallel geschaltet, um den maximalen Strom zu erhöhen.
Die Serienschaltung mehrerer Batteriezellen bringt neben einer hohen Gesamtspannung das Problem mit sich, dass der gesamte Energiespeicher ausfällt, wenn eine einzige Batteriezelle ausfällt, weil dann kein Batteriestrom mehr fließen kann. Ein solcher Ausfall des Energiespeichers kann zu einem Ausfall des Gesamtsystems führen. Bei einem Fahrzeug kann ein Ausfall der Antriebsbatterie zum "Liegenbleiben" des Fahrzeugs führen. Bei anderen Anwendungen, wie z.B. der Rotorblattverstellung von
Windkraftanlagen, kann es bei ungünstigen Rahmenbedingungen, wie z.B. starkem Wnd, sogar zu sicherheitsgefährdenden Situationen kommen. Daher ist stets eine hohe
Zuverlässigkeit des Energiespeichers anzustreben, wobei mit "Zuverlässigkeit" die
Fähigkeit eines Systems bezeichnet wird, für eine vorgegebene Zeit fehlerfrei zu arbeiten. In den älteren Anmeldungen DE 10 2010 027857 und DE 10 2010 027861 sind Batterien mit mehreren Batteriemodulsträngen beschrieben, welche direkt an eine elektrische Maschine anschließbar sind. Die Batteriemodulstränge weisen dabei eine Mehrzahl von in Serie geschalteten Batteriemodulen auf, wobei jedes Batteriemodul mindestens eine Batteriezelle und eine zugeordnete steuerbare Koppeleinheit aufweist, welche es erlaubt in Abhängigkeit von Steuersignalen den jeweiligen Batteriemodulstrang zu unterbrechen oder die jeweils zugeordnete (mindestens eine) Batteriezelle zu überbrücken oder die jeweils zugeordnete (mindestens eine) Batteriezelle in den jeweiligen Batteriemodulstrang zu schalten. Durch geeignete Ansteuerung der Koppeleinheiten, z.B. mit Hilfe von Pulsweitenmodulation, können auch geeignete Phasensignale zur Steuerung der elektrischen Maschine bereitgestellt werden, so dass auf einen separaten
Pulswechselrichter verzichtet werden kann. Der zur Steuerung der elektrischen Maschine erforderliche Pulswechselrichter ist damit sozusagen in die Batterie integriert. Zum Zwecke der Offenbarung werden diese beiden älteren Anmeldungen vollumfänglich in die vorliegende Anmeldung einbezogen.
Offenbarung der Erfindung Die vorliegende Erfindung schafft ein System zum Laden mindestens einer
Energiespeicherzelle in einem steuerbaren Energiespeicher, welcher der Steuerung und der elektrischen Energieversorgung einer n-phasigen elektrischen Maschine, mit n >1 , dient. Dabei weist der steuerbare Energiespeicher n parallele Energieversorgungszweige auf, welche jeweils mindestens zwei in Reihe geschaltete Energiespeichermodule aufweisen, welche jeweils mindestens eine elektrische Energiespeicherzelle mit einer zugeordneten steuerbaren Koppeleinheit umfassen. In Abhängigkeit von Steuersignalen unterbrechen die Koppeleinheiten entweder den Energieversorgungszweig oder sie überbrücken die jeweils zugeordneten Energiespeicherzellen oder sie schalten die jeweils zugeordneten Energiespeicherzellen in den Energieversorgungszweig. Alle
Energieversorgungszweige sind über mindestens eine Induktivität und eine
Gleichrichtereinheit mit einem externen Energieversorgungsnetz, insbesondere einem öffentlichen Wechsel- oder Dreh-Stromnetz, verbindbar. Außerdem ist die Bezugsschiene mit der Gleichrichtereinheit verbindbar. Die vorliegende Erfindung schafft auch ein Verfahren zum Betrieb eines
erfindungsgemäßen Ladesystems. Dabei werden alle Energieversorgungszweige über mindestens eine Induktivität und eine Gleichrichtereinheit mit einem externen Energieversorgungsnetz, insbesondere einem öffentlichen Stromnetz, und die
Bezugsschiene mit der Gleichrichtereinheit verbunden. In einer Ladephase werden alle Koppeleinheiten derjenigen Energiespeichermodule welche in einem
Energieversorgungszweig von zu ladenden Energiespeicherzellen liegen, derart gesteuert, dass die jeweils zugeordneten Energiespeicherzellen überbrückt werden. In einer der Ladephase folgenden Freilaufphase werden alle Koppeleinheiten, welche zu ladenden Energiespeicherzellen zugeordnet sind, derart gesteuert, dass die zugeordneten Energiespeicherzellen in den jeweiligen Energieversorgungszweig geschaltet werden. Alle Koppeleinheiten, welche in dem Energieversorgungszweig von zu ladenden
Energiespeicherzellen liegen, selbst aber keinen zu ladenden Energiespeicherzellen zugeordnet sind, derart gesteuert werden, dass die jeweils zugeordneten
Energiespeicherzellen überbrückt werden.
Vorteile der Erfindung
Zur Einhaltung von EMV-Normen (EMV = Elektromagnetische Verträglichkeit) ist für Ladegeräte der Einsatz einer Leistungsfaktorkorrektur - häufig auch als Power Factor Correction oder Power Factor Compensation (PFC) bezeichnet - erforderlich. Diese regelt den aufgenommenen Netzstrom mittels eines Leistungsschalters einem sinusförmigen Verlauf nach und minimiert dabei dessen Oberwellengehalt. Des Weiteren können auch Netzspannungsschwankungen ausgeglichen werden. Eine typische Realisierung einer PFC-Schaltung umfasst einen Brückengleichrichter sowie eine nachfolgende
Hochsetzstellerstufe, wie in Figur 1 dargestellt. Die Erfindung basiert auf der Grundidee, die ohnehin vorhandenen Koppeleinheiten des steuerbaren Energiespeichers zur Realisierung einer Ladefunktion mit Leistungsfaktorkorrektur zu nutzen. Dies wird dadurch realisiert, dass die Koppeleinheiten während eines Ladevorgangs analog zu den
Schaltelementen eines Hochsetzstellers betrieben werden, wobei der mindestens einen Induktivität in einer Ladephase Energie zugeführt und dort gespeichert wird, welche anschließend in einer Freilaufphase an die zu ladenden Energiespeicherzellen abgegeben wird. Dabei entsteht nur minimaler zusätzlicher Hardware-Aufwand für die notwendigen Freilaufdioden, was mit geringen Kosten und geringem Platzbedarf einhergeht.
Mit den erfindungsgemäßen Systemen und Verfahren ist sowohl die Ladung von
Energiespeicherzellen eines einzelnen Energiespeichermoduls als auch die gleichzeitige Ladung von Energiespeicherzellen mehrerer Energiespeichermodule möglich. Im Fall einer mehrphasigen elektrischen Maschine können auch die Energiespeicherzellen von Energiespeichermodulen, welche in verschiedenen Energieversorgungszweigen liegen, gleichzeitig geladen werden. Vorteilhaft kann auch die Motorinduktivität in Form von Statorwicklungen der elektrischen Maschine zur Realisierung der Ladefunktion mit Leistungsfaktorkorrektur mitgenutzt werden. Dies kann dadurch realisiert werden, dass die Statorwicklungen während eines Ladevorgangs als Induktivitäten eines Hochsetzstellers genutzt werden. Demgemäß sieht eine Ausführungsform der Erfindung vor, dass die Energieversorgungszweige einerseits mit einem Bezugspotential - im Folgenden als Bezugsschiene bezeichnet - und andererseits mit jeweils einer Phase der elektrischen Maschine verbidndbar sind und die mindestens eine Induktivität zumindest teilweise durch Statorwicklungen der elektrischen Maschine gebildet wird. Bei der Mitnutzung der Motorinduktivität der elektrischen Maschine, gilt es allerdings den Aufbau unerwünschter Momente in der elektrischen Maschine während des
Ladevorgangs zu vermeiden. Dies kann dadurch realisiert werden, dass die elektrische Maschine während des Ladevorgangs mechanisch blockiert wird, z.B. mit Hilfe einer Getriebesperrklinke. Alternativ kann auch die Rotorlage der elektrischen Maschine überwacht werden, z.B. mit Hilfe einer entsprechenden Sensorik, und im Falle einer detektierten Rotorbewegung abgeschaltet werden.
Sind die Phasen der elektrischen Maschine in Sternschaltung miteinander verschaltet, so ist es gemäß einer Ausführungsform der Erfindung vorgesehen, dass die
Gleichrichtereinheit einen Gleichrichter, insbesondere einen Diodengleichrichter, umfasst und ein Sternpunkt der Phasen der elektrischen Maschine mit dem Gleichrichter verbindbar ist.
Sind die Induktivitäten der Statorwicklungen der elektrischen Maschine nicht ausreichend, so kann zwischen den Gleichrichter und den Sternpunkt der elektrischen Maschine eine zusätzliche Ladeinduktivität geschaltet sein.
Sind die Phasen der elektrischen Maschine dagegen in n-Eckschaltung miteinander verschaltet, so ist es gemäß einer Ausführungsform der Erfindung vorgesehen, dass die Gleichrichtereinheit n Gleichrichter, insbesondere Diodengleichrichter, umfasst und jede Phase der elektrischen Maschine mit jeweils einem Gleichrichter verbindbar ist. Auch in diesem Fall können, falls die Induktivitäten der Statorwicklungen der elektrischen Maschine nicht ausreichen, zusätzliche Ladeinduktivitäten vorgesehen sein, wobei die Phasen der elektrischen Maschine jeweils über eine zusätzliche Ladeinduktivität mit jeweils einem Gleichrichter verbindbar sind.
Zur weiteren Verbesserung der EMV ist gemäß einer weiteren Ausführungsform der Erfindung ein Netzfilter zwischen die Gleichrichtereinheit und das externe
Energieversorgungsnetz schaltbar.
Weitere Merkmale und Vorteile von Ausführungsformen der Erfindung ergeben sich der nachfolgenden Beschreibung mit Bezug auf die beigefügten Zeichnungen.
Kurze Beschreibung der Zeichnungen
Es zeigen:
Fig. 1 eine schematische Darstellung einer PFC-Schaltung, Fig. 2 eine schematische Darstellung eines erfindungsgemäßen Ladesystems in einer Ladephase aus einem einphasigen Energieversorgungsnetz,
Fig. 3 das Ladesystem gemäß Fig. 2 in einer Freilaufphase, Fig. 4 eine schematische Prinzipdarstellung eines erfindungsgemäßen
Ladesystems bei Ladung aus einem dreiphasigen Energieversorgungsnetz (elektrische Maschine mit Sternschaltung) und
Fig. 5 eine schematische Prinzipdarstellung eines erfindungsgemäßen
Ladesystems bei Ladung aus einem dreiphasigen Energieversorgungsnetz (elektrische Maschine mit Dreieckschaltung)
Ausführungsformen der Erfindung
Die Figuren 2 und 3 zeigen eine schematische Darstellung eines
erfindungsgemäßen Ladesystems. An eine dreiphasige elektrische Maschine 1 ist ein steuerbarer Energiespeicher 2 angeschlossen. Der steuerbare Energiespeicher 2 umfasst drei Energieversorgungszweige 3-1 , 3-2 und 3-3, welche einerseits mit einem Bezugspotential T- (Bezugsschiene), welches in der dargestellten
Ausführungsform ein niedriges Potential führt, und andererseits jeweils mit den einzelnen Phasen U, V, W der elektrischen Maschine 1 verbunden sind. Jeder der Energieversorgungszweige 3-1 , 3-2 und 3-3 weist m in Reihe geschaltete
Energiespeichermodule 4-1 1 bis 4-1 m bzw. 4-21 bis 4-2m bzw. 4-31 bis 4-3m auf, wobei m > 2. Die Energiespeichermodule 4 wiederum umfassen jeweils mehrere in Reihe geschaltete elektrische Energiespeicherzellen, welche aus Gründen der Übersichtlichkeit lediglich in dem mit der Phase W der elektrischen Maschine 1 verbundenen Energieversorgungszweig 3-3 mit Bezugszeichen 5-31 bis 5-3m versehen sind. Die Energiespeichermodule 4 umfassen des Weiteren jeweils eine Koppeleinheit, welche den Energiespeicherzellen 5 des jeweiligen
Energiespeichermoduls 4 zugeordnet ist. Aus Gründen der Übersichtlichkeit sind auch die Koppeleinheiten lediglich in dem Energieversorgungszweig 3-3 mit
Bezugszeichen 6-31 bis 6-3m versehen. In der dargestellten Ausführungsvariante werden die Koppeleinheiten 6 jeweils durch zwei steuerbare Schaltelemente 7-31 1 und 7-312 bis 7-3m1 und 7-3m2 gebildet. Die Schaltelemente können dabei als Leistungshalbleiterschalter, z.B. in Form von IGBTs (Insulated Gate Bipolar Transistors) oder als MOSFETs (Metal Oxide Semiconductor Field-Effect
Transistors), ausgeführt sein.
Die Koppeleinheiten 6 ermöglichen es, den jeweiligen Energieversorgungszweig 3, durch Öffnen beider Schaltelemente 7 einer Kopplungseinheit 6 zu unterbrechen. Alternativ können die Energiespeicherzellen 5 durch Schließen jeweils eines der Schaltelemente 7 einer Koppeleinheit 6 entweder überbrückt werden, z.B. durch Schließen des Schalters 7-311 oder in den jeweiligen Energieversorgungszweig 3 geschaltet werden, z.B. durch Schließen des Schalters 7-312. Die Gesamt-Ausgangsspannung der Energieversorgungszweige 3-1 bis 3-3 werden bestimmt durch den jeweiligen Schaltzustand der steuerbaren Schaltelemente 7 der Koppeleinheiten 6 und kann stufig eingestellt werden. Die Stufung ergibt sich dabei in Abhängigkeit von der Spannung der einzelnen Energiespeichermodule 4. Geht man von der bevorzugten Ausführungsform gleichartig ausgestalteter
Energiespeichermodule 4 aus, so ergibt sich eine maximal mögliche Gesamt- Ausgangsspannung aus der Spannung eines einzelnen Energiespeichermoduls 4 mal der Anzahl m der pro Energieversorgungszweig in Reihe geschalteten
Energiespeichermodule 4. Die Koppeleinheiten 6 erlauben es damit, die Phasen U, V, W der elektrischen Maschine 1 entweder gegen ein hohes Bezugspotential oder ein niedriges
Bezugspotential zu schalten und können insofern auch die Funktion eines bekannten Wechselrichters erfüllen. Damit können Leistung und Betriebsart der elektrischen Maschine 1 bei geeigneter Ansteuerung der Koppeleinheiten 6 durch den steuerbaren Energiespeicher 2 gesteuert werden. Der steuerbare
Energiespeicher 2 erfüllt also insofern eine Doppelfunktion, da er einerseits der elektrischen Energieversorgung andererseits aber auch der Steuerung der elektrischen Maschine 1 dient.
Die elektrische Maschine 1 weist Statorwicklungen 8-U, 8-V und 8-W auf, die im dargestellten Ausführungsbeispiel in Sternschaltung miteinander verschaltet sind. Die elektrische Maschine 1 ist im dargestellten Ausführungsbeispiel als dreiphasige Drehstrommaschine ausgeführt, kann aber auch weniger oder mehr als drei Phasen aufweisen. Nach der Phasenanzahl der elektrischen Maschine richtet sich natürlich auch die Anzahl der Energieversorgungszweige 3 in dem steuerbaren
Energiespeicher 2.
Im dargestellten Ausführungsbeispiel weist jedes Energiespeichermodul 4 jeweils mehrere in Reihe geschaltete Energiespeicherzellen 5 auf. Die
Energiespeichermodule 4 können aber alternativ auch jeweils nur eine einzige Energiespeicherzelle oder auch parallel geschaltete Energiespeicherzellen aufweisen.
Im dargestellten Ausführungsbeispiel werden die Koppeleinheiten 6 jeweils durch zwei steuerbare Schaltelemente 7 gebildet. Die Koppeleinheiten 6 können aber auch durch mehr oder weniger steuerbare Schaltelemente realisiert sein, solange die notwendigen Funktionen (Unterbrechen des Energieversorgungszweiges, Überbrücken der Energieversorgungszellen und Schalten der
Energieversorgungszellen in den Energieversorgungszweig) realisierbar sind. Beispielhafte alternative Ausgestaltungen einer Koppeleinheit ergeben sich aus den älteren Anmeldungen DE XX und DE YY. Darüber hinaus ist es aber auch denkbar, dass die Koppeleinheiten Schaltelemente in Vollbrückenschaltung aufweisen, was die zusätzliche Möglichkeit einer Spannungsumkehr am Ausgang des
Energiespeichermoduls bietet. Um die Ladung von Energiespeicherzellen 5 eines oder mehrerer
Energiespeichermodule 4 zu ermöglichen, ist ein Sternpunkt S der elektrischen Maschine 1 über eine zusätzliche Ladeinduktivität 9 mit einer Gleichrichtereinheit 10 verbunden. Außerdem ist die Bezugsschiene T- mit der Gleichrichtereinheit 10 verbunden. Es sei darauf hingewiesen, dass die zusätzliche Ladeinduktivität 9 für die Anwendbarkeit der Erfindung nicht erforderlich ist und lediglich dann Verwendung finden kann, wenn die Induktivitäten der Statorwicklungen 8-U, 8-V und 8-W zur Realisierung der Ladefunktion oder der erforderlichen Leistungsfaktorkorrektur nicht ausreichen. Die Gleichrichtereinheit 10 umfasst im dargestellten Ausführungsbeispiel beispielhaft einen Diodengleichrichter 11 in B2-Schaltung. Der Diodengleichrichter 1 1 ist über einen an sich bekannten Netzfilter 12 an ein nicht dargestelltes einphasiges externes Energieversorgungsnetz, insbesondere ein öffentliches (Wechsel-)Stromnetz, anschließbar.
Im Folgenden wird exemplarisch der Ladevorgang der Energiespeicherzellen 5 eines einzelnen Energiespeichermoduls 4, nämlich der Energiespeicherzellen 5-3m des Energiespeichermoduls 4-3m in dem Energieversorgungszweig 3-3 beschrieben.
Während einer Ladephase, welche in Fig. 1 dargestellt ist, werden die Koppeleinheiten 6- 31 bis 6-3m der Energiespeichermodule 4-31 bis 4-3m, welche in dem
Energieversorgungszweig 3-3 liegen, in welchem auch die zu ladenden
Energiespeicherzellen 5-3m liegen, durch eine nicht dargestellte Steuereinheit derart gesteuert, dass die jeweils zugeordneten Energiespeicherzellen 5-31 bis 5-3m überbrückt werden. Dies wird konkret dadurch erreicht, dass die Schaltelemente 7-31 1 bis 7-3m1 geschlossen werden, wohingegen die Schaltelemente 7-312 bis 7-3m2 geöffnet werden. Alle übrigen Koppeleinheiten 6, das heißt alle Koppeleinheiten 6 in den
Energiespeichermodulen 4 der anderen beiden Energieversorgungszweige 3-1 und 3-2 werden ebenfalls derart gesteuert, dass die jeweils zugeordneten Energiespeicherzellen 5-31 bis 5-3m überbrückt werden. Eine derartige Steuerung der Koppeleinheiten 6 in den Energieversorgungszweigen 3-1 und 3-2, welche keine zu ladenden
Energiespeicherzellen 5 umfassen, ist sinnvoll, um grundsätzlich auch für diese
Energiespeicherzellen eine Ladeoption zu erreichen. Es sei aber darauf hingewiesen, dass die Koppeleinheiten 6 in den Energieversorgungszweigen 3-1 und 3-2, welche keine zu ladenden Energiespeicherzellen 5 umfassen, auch anders angesteuert werden können, insbesondere derart, dass die jeweiligen Energieversorgungszweige 3-1 und/oder 3-2 unterbrochen werden. Die Überbrückung der Energiespeicherzellen 5-31 bis 5-3m in dem
Energieversorgungszweig 3-3, in welchem auch die zu ladenden Energiespeicherzellen 5- 3m liegen, bewirkt einen Stromfluss durch die zusätzliche Ladeinduktivität 9 und die Statorwicklung 8-W, so dass während der Ladephase elektrische Energie in der zusätzlichen Ladeinduktivität 9 und der Statorwicklung 8-W gespeichert wird.
In einer der Ladephase folgenden Freilaufphase, welche in Fig. 3 dargestellt ist, wird die Koppeleinheit 6-3m, welche den zu ladenden Energiespeicherzellen 5-3m zugeordnet ist, derart gesteuert, dass die zugeordneten Energiespeicherzellen 5-31 in den
Energieversorgungszweig 3-3 geschaltet werden. Dies wird konkret dadurch erreicht, dass das Schaltelement 7-3m2 geschlossen und das Schaltelement 7-3m1 geöffnet wird. Alle übrigen Koppeleinheiten 6-32 bis 6-3m, welche in dem Energieversorgungszweig 3-3 der zu ladenden Energiespeicherzellen 5-31 liegen, die selbst aber keinen zu ladenden Energiespeicherzellen 5 zugeordnet sind, werden derart gesteuert, dass die jeweils zugeordneten Energiespeicherzellen überbrückt werden (Schließen der Schaltelemente 7- 311 bis 7-3(m-1)1 und Öffnen der Schaltelemente 7-312 bis 7-3(m-1)2). Alle übrigen Koppeleinheiten 6, das heißt alle Koppeleinheiten 6 in den Energiespeichermodulen 4 der anderen beiden Energieversorgungszweige 3-1 und 3-2 werden derart gesteuert, dass die jeweiligen Energieversorgungszweige 3-1 bzw. 3-2 unterbrochen werden. Konkret wird dies dadurch erreicht, dass jeweils beide Schaltelemente 7 der Koppeleinheiten 6 geöffnet werden.
Eine derartige Steuerung der Koppeleinheiten 6-31 bis 6-3m bewirkt eine elektrische Verbindung der zusätzlichen Ladeinduktivität 9 und der Statorwicklung 8-W mit den zu ladenden Energiespeicherzellen 5-3m. Die zusätzliche Ladeinduktivität 9 und die
Induktivität der Statorwicklung 8-W treiben dabei den Strom weiter und laden auf diese Weise die Energiespeicherzellen 5-3 m auf.
Bei der in den Figuren 2 und 3 dargestellten Ausführungsform werden die Induktivitäten der Statorwicklungen 8-U, 8-V und 8-W als Induktivitäten einer Leistungsfaktorkorrektur mitgenutzt. Die Koppeleinheiten 6 übernehmen dabei die zur Realisierung der
Leistungsfaktorkorrektur erforderlichen Steuerung des aufgenommenen Netzstroms, in dem die Koppeleinheiten 6 mit einem geeigneten Tastgrad angesteuert werden. Da die Funktion einer Leistungsfaktorkorrektur grundsätzlich bekannt ist, soll sie an dieser Stelle nicht weiter erläutert werden. Um die Erzeugung unerwünschter Momente in der elektrischen Maschine 1 während des Ladebetriebs zu vermeiden, kann die elektrische Maschine 1 während des Ladevorgangs mechanisch blockiert werden, z.B. mit Hilfe einer Getriebesperrklinke. Alternativ kann auch die Rotorlage der elektrischen Maschine 1 überwacht werden, z.B. mit Hilfe einer entsprechenden Sensorik, und im Falle einer detektierten Rotorbewegung abgeschaltet werden.
Alternativ zu der dargestellten Ausführungsform kann die zur Leistungsfaktorkorrektur erforderliche Induktivität auch ausschließlich durch eine externe Ladeinduktivität, wie z.B. die zusätzliche Ladeinduktivität 9, ohne Nutzung der Statorwicklungen 8-u, 8-V und 8-W, gebildet werden.
Die Figuren 4 und 5 zeigen beispielhafte schematische Prinzipdarstellungen eines erfindungsgemäßen Ladesystems bei Ladung aus einem dreiphasigen
Energieversorgungsnetz. Dabei sind die Statorwicklungen 8-U, 8-V und 8-W der elektrischen Maschine gemäß Figur 4 analog zur Darstellung in den Figuren 2 und 3 in Sternschaltung verschaltet. Das Ladesystem gemäß Figur 4 unterscheidet sich damit von dem in den Figuren 2 und 3 dargestellten Ladesystem lediglich dadurch, dass die
Gleichrichtereinheit 10 anstelle eines Diodengleichrichters in B2-Schaltung einen
Diodengleichrichter 40 in B6-Schaltung umfasst, welcher direkt oder über ein nicht dargestelltes Netzfilter an ein nicht dargestelltes dreiphasiges externes
Energieversorgungsnetz, insbesondere ein öffentliches (Dreh-) Stromnetz, anschließbar ist. Bei dem Ladesystem gemäß Figur 5 sind die Statorwicklungen 8-U, 8-V und 8-W nicht in Sternschaltung, sondern in Dreieckschaltung verschaltet. Bei einer derartigen
Ausgestaltung der elektrischen Maschine 1 umfasst die Gleichrichtereinheit 10 für jede Phase U, V, W der elektrischen Maschine 1 einen eigenen Gleichrichter 50-1 bzw. 50-2 bzw. 50-3, welche beispielhaft als Diodengleichrichter in B2-Schaltung ausgeführt sind. Jede Phase U, V, W bzw. jede Statorwicklung 8-U, 8-V und 8-W der elektrischen
Maschine (1) ist dabei mit jeweils einem Gleichrichter 50-1 bzw. 50-2 bzw. 50-3 verbunden. Die Gleichrichter 50-1 , 50-2 und 50-3 wiederum sind direkt oder über ein nicht dargestelltes Netzfilter an ein nicht dargestelltes dreiphasiges externes
Energieversorgungsnetz, insbesondere ein öffentliches (Dreh-) Stromnetz, anschließbar. Dabei sind die einzelnen Gleichrichter 50-1 , 50-2 und 50-3 mit jeweils zwei Phasen L1 und L2 bzw. L2 und L3 bzw. L1 und L3 des externen Energieversorgungsnetzes verbindbar.
Auch für die in den Figuren 4 und 5 dargestellten Ausführungsformen der Erfindung gilt, dass die zur Realisierung der Leistungsfaktorkorrektur erforderlichen Induktivitäten, wie dargestellt, durch die Motorinduktivitäten der elektrischen Maschine 1 oder alternativ dazu durch externe Ladeinduktivitäten oder einer Kombination der Motorinduktivitäten mit externen Ladeinduktivitäten gebildet werden können. Um sicherzustellen, dass die während der Ladephase in der/den Induktivität(en) gespeicherte Energie in der Freilaufphase abgebaut werden kann und ein ausreichender Leistungsfaktor erzielbar ist, muss die minimale Gesamt-Spannung an einem
Energieversorgungszweig 3-1 , 3-2, 3-3 (entladener Zustand) größer sein, als ein
Scheitelwert der gleichgereichteten Netzspannung.

Claims

Ansprüche 1. System zum Laden mindestens einer Energiespeicherzelle (5) in einem steuerbaren Energiespeicher (2), welcher der Steuerung und der elektrischen Energieversorgung einer n-phasigen elektrischen Maschine (1), mit n >1 , dient, wobei
- der steuerbare Energiespeicher (2) n parallele Energieversorgungszweige (3-1 , 3-2, 3- 3) aufweist, welche jeweils mindestens zwei in Reihe geschaltete
Energiespeichermodule (4) aufweisen, welche jeweils mindestens eine elektrische Energiespeicherzelle (5) mit einer zugeordneten steuerbaren Koppeleinheit (6) umfassen,
- die Koppeleinheiten (6) in Abhängigkeit von Steuersignalen den
Energieversorgungszweig (3) unterbrechen oder die jeweils zugeordneten
Energiespeicherzellen (5) überbrücken oder die jeweils zugeordneten
Energiespeicherzellen (5) in den Energieversorgungszweig (3) schalten,
- alle Energieversorgungszweige (3-1 , 3-2, 3-3) über mindestens eine Induktivität (8-U;
8-V; 8-W; 9) und eine Gleichrichtereinheit (10) mit einem externen
Energieversorgungsnetz, insbesondere einem öffentlichen Stromnetz, verbindbar sind und
- die Bezugsschiene (T-) mit der Gleichrichtereinheit (10) verbindbar ist.
2. System nach Anspruch 1 , wobei die Energieversorgungszweige (3-1 , 3-2, 3-3) einerseits mit einer Bezugsschiene (T-) und andererseits mit jeweils einer Phase (U, V, W) der elektrischen Maschine (1) verbindbar sind und die mindestens eine Induktivität zumindest teilweise durch Statorwicklungen (8-U, 8-V, 8-W) der elektrischen Maschine (1) gebildet wird.
3. System nach Anspruch 2, wobei
- die Gleichrichtereinheit (10) einen Gleichrichter (1 1 ; 40), insbesondere einen
Diodengleichrichter, umfasst,
- die Phasen (U, V, W) der elektrischen Maschine (1) in Sternschaltung miteinander verschaltet sind und
- ein Sternpunkt (S) der Phasen (U, V, W) der elektrischen Maschine (1) mit dem
Gleichrichter (1 1 ; 40) verbindbar ist.
4. System nach Anspruch 3 wobei zwischen den Gleichrichter (1 1 ; 40) und den
Sternpunkt (S) der elektrischen Maschine (1) eine zusätzliche Ladeinduktivität (9) schaltbar ist.
5. System nach Anspruch 2, wobei
- die Gleichrichtereinheit (10) n Gleichrichter (50-1 , 50-2, 50-3), insbesondere
Diodengleichrichter, umfasst,
- die Phasen (U, V, W) der elektrischen Maschine (1) in n-Eckschaltung miteinander verschaltet sind und
- jede Phase (U, V, W) der elektrischen Maschine (1) mit jeweils einem Gleichrichter (50-1 , 50-2, 50-3) verbindbar ist.
6. System nach Anspruch 5, wobei die Phasen (U, V, W) der elektrischen Maschine (1) jeweils über eine zusätzliche Ladeinduktivität mit jeweils einem Gleichrichter (50-1 , 50-2, 50-3) verbindbar sind.
7. System nach einem der vorhergehenden Ansprüche, wobei zwischen die
Gleichrichtereinheit (10) und das externe Energieversorgungsnetz ein Netzfilter (12) schaltbar ist.
8. Verfahren zum Betrieb eines Ladesystems gemäß einem der Ansprüche 1 bis 7, bei dem
- alle Energieversorgungszweige (3-1 , 3-2, 3-3) über mindestens eine Induktivität (8-U;
8-V; 8-W; 9) und eine Gleichrichtereinheit (10) mit einem externen
Energieversorgungsnetz, insbesondere einem öffentlichen Stromnetz, verbunden werden und die Bezugsschiene (T-) mit der Gleichrichtereinheit (10) verbunden wird,
- in einer Ladephase
alle Koppeleinheiten (6-31 bis 6-3m) derjenigen Energiespeichermodule (4- 31 bis 4-3m), welche in einem Energieversorgungszweig (3-3) von zu ladenden Energiespeicherzellen (5-3m) liegen, derart gesteuert werden, dass die jeweils zugeordneten Energiespeicherzellen (5-31 bis 5-3m) überbrückt werden, und
- in einer der Ladephase folgenden Freilaufphase
alle Koppeleinheiten (6-3m), welche zu ladenden Energiespeicherzellen (5- 3m) zugeordnet sind, derart gesteuert werden, dass die zugeordneten Energiespeicherzellen (5-3m) in den jeweiligen Energieversorgungszweig (3- 3) geschaltet werden,
alle Koppeleinheiten (6-31 bis 6-3(m-1)), welche in dem
Energieversorgungszweig (3-3) von zu ladenden Energiespeicherzellen (5- 3m) liegen, selbst aber keinen zu ladenden Energiespeicherzellen (5) zugeordnet sind, derart gesteuert werden, dass die jeweils zugeordneten Energiespeicherzellen (5-31 bis 5-3(m-1)) überbrückt werden, und
alle übrigen Koppeleinheiten (6-1 1 bis 6-1 m, 6-21 bis 6-2m) derart gesteuert werden, dass die jeweiligen Energieversorgungszweige (3-1 , 3-2) unterbrochen werden.
PCT/EP2011/064563 2010-09-20 2011-08-24 System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems WO2012038176A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180045026.2A CN103119843B (zh) 2010-09-20 2011-08-24 用于为储能器充电的系统和用于运行充电系统的方法
US13/825,260 US20130257355A1 (en) 2010-09-20 2011-08-24 System for charging an energy store, and method for operating the charging system
EP11748652.2A EP2619893A2 (de) 2010-09-20 2011-08-24 System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010041077.2 2010-09-20
DE102010041077A DE102010041077A1 (de) 2010-09-20 2010-09-20 System zum Laden eines Energiespeichers und Verfahren zum Betrieb des Ladesystems

Publications (2)

Publication Number Publication Date
WO2012038176A2 true WO2012038176A2 (de) 2012-03-29
WO2012038176A3 WO2012038176A3 (de) 2012-10-04

Family

ID=44510996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/064563 WO2012038176A2 (de) 2010-09-20 2011-08-24 System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems

Country Status (4)

Country Link
US (1) US20130257355A1 (de)
EP (1) EP2619893A2 (de)
DE (1) DE102010041077A1 (de)
WO (1) WO2012038176A2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140008985A1 (en) * 2012-07-06 2014-01-09 Robert Bosh Gmbh Method and system for control of energy storage devices
DE102012212262A1 (de) * 2012-07-13 2014-01-16 Robert Bosch Gmbh Ansteuervorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers
DE102012220376A1 (de) * 2012-11-08 2014-05-08 Robert Bosch Gmbh Vorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers aus einer Wechselspannungsquelle
DE102013212692A1 (de) * 2013-06-28 2014-12-31 Robert Bosch Gmbh Energiespeichereinrichtung mit Gleichspannungsversorgungsschaltung
DE202014002953U1 (de) * 2014-04-07 2015-07-09 Stefan Goetz Elektrisches Energiespeichersystem
DE102014110410A1 (de) * 2014-07-23 2016-01-28 Universität der Bundeswehr München Modulares Energiespeicher-Direktumrichtersystem
DE102017124125A1 (de) 2017-10-17 2019-04-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Laden eines Energiespeichers
CN108312878B (zh) * 2018-02-09 2020-11-13 合肥巨一动力系统有限公司 一种车载复用充电机
IT202100012749A1 (it) * 2021-05-18 2022-11-18 Virgieco S R L Start Up Costituita A Norma Dellarticolo 4 Comma 10 Bis Del Decreto Legge 24 Gennaio Gruppo di continuità mobile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010027857A1 (de) 2010-04-16 2011-10-20 Sb Limotive Company Ltd. Koppeleinheit und Batteriemodul mit integriertem Pulswechselrichter und erhöhter Zuverlässigkeit
DE102010027861A1 (de) 2010-04-16 2011-10-20 Sb Limotive Company Ltd. Koppeleinheit und Batteriemodul mit integriertem Pulswechselrichter und im Betrieb austauschbaren Zellmodulen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3741171B2 (ja) * 1996-06-17 2006-02-01 株式会社安川電機 多重パルス幅変調方式の電力変換装置
EP0834977A3 (de) * 1996-08-08 1999-04-14 Schmidhauser AG Einrichtung zum Laden mindestens eines Akkumulators, insbesondere eines Akkumulators für ein elektrisch angetriebenes Fahrzeug sowie ein Verfahren zum Betrieb dieser Einrichtung
US6034506A (en) * 1998-01-16 2000-03-07 Space Systems/Loral, Inc. Lithium ion satellite battery charge control circuit
DE19816918C2 (de) * 1998-04-16 2002-07-18 Siemens Ag Elektrisches System
US6236580B1 (en) * 1999-04-09 2001-05-22 Robicon Corporation Modular multi-level adjustable supply with series connected active inputs
US6599655B2 (en) * 2001-04-06 2003-07-29 The Boeing Company Procedure for performing battery reconditioning on a space vehicle designed with one battery
FR2937803A3 (fr) * 2008-10-23 2010-04-30 Renault Sas Dispositif pour la mise en forme d'un courant de charge d'une source de tension continue rechargeable d'un vehicule automobile electrique ou hybride
JP4691171B2 (ja) * 2009-03-11 2011-06-01 本田技研工業株式会社 充放電装置
US8760115B2 (en) * 2009-08-20 2014-06-24 GM Global Technology Operations LLC Method for charging a plug-in electric vehicle
US8395280B2 (en) * 2010-02-16 2013-03-12 Infineon Technologies Ag Circuit arrangement including a multi-level converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010027857A1 (de) 2010-04-16 2011-10-20 Sb Limotive Company Ltd. Koppeleinheit und Batteriemodul mit integriertem Pulswechselrichter und erhöhter Zuverlässigkeit
DE102010027861A1 (de) 2010-04-16 2011-10-20 Sb Limotive Company Ltd. Koppeleinheit und Batteriemodul mit integriertem Pulswechselrichter und im Betrieb austauschbaren Zellmodulen

Also Published As

Publication number Publication date
WO2012038176A3 (de) 2012-10-04
CN103119843A (zh) 2013-05-22
US20130257355A1 (en) 2013-10-03
EP2619893A2 (de) 2013-07-31
DE102010041077A1 (de) 2012-03-22

Similar Documents

Publication Publication Date Title
EP2673160B1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
WO2012038176A2 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
EP2673829B1 (de) Steuerbarer energiespeicher und verfahren zum betreiben eines steuerbaren energiespeichers
EP2619874B1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
EP2658738B1 (de) System zur ankopplung mindestens einer gleichstromquelle an einen steuerbaren energiespeicher und zugehöriges betriebsverfahren
EP2673860B1 (de) Laden eines energiespeichers
WO2013091951A2 (de) System und verfahren zum laden der energiespeicherzellen einer energiespeichereinrichtung
EP2619875B1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
EP2619892B1 (de) Systeme zum laden eines energiespeichers und verfahren zum betrieb der ladesysteme
EP2659566A2 (de) Steuerbarer energiespeicher und verfahren zum betreiben eines steuerbaren energiespeichers
WO2012107148A1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
EP2619873B1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
WO2012038210A2 (de) Energieversorgungsnetz und verfahren zum laden mindestens einer als energiespeicher für einen gleichspannungszwischenkreis dienenden energiespeicherzelle in einem energieversorgungsnetz
EP2619876B1 (de) Verfahren zum umladen von energie zwischen mindestens zwei energiespeicherzellen in einem steuerbaren energiespeicher
WO2013072107A1 (de) Energiespeichereinrichtung, system mit energiespeichereinrichtung und verfahren zum ansteuern einer energiespeichereinrichtung
EP2673864B1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045026.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011748652

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11748652

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13825260

Country of ref document: US