WO2012107148A1 - System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems - Google Patents

System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems Download PDF

Info

Publication number
WO2012107148A1
WO2012107148A1 PCT/EP2011/074221 EP2011074221W WO2012107148A1 WO 2012107148 A1 WO2012107148 A1 WO 2012107148A1 EP 2011074221 W EP2011074221 W EP 2011074221W WO 2012107148 A1 WO2012107148 A1 WO 2012107148A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
sources
energy storage
power supply
charging
Prior art date
Application number
PCT/EP2011/074221
Other languages
English (en)
French (fr)
Inventor
Peter Feuerstack
Erik Weissenborn
Martin Kessler
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US13/984,291 priority Critical patent/US20130320912A1/en
Priority to EP11802766.3A priority patent/EP2673863A1/de
Priority to CN201180067108.7A priority patent/CN103339819B/zh
Publication of WO2012107148A1 publication Critical patent/WO2012107148A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1492Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/14Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation with three or more levels of voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/40Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the invention relates to a system for charging an energy store and a method for operating the charging system according to the invention.
  • Wind turbines as well as in vehicles such as hybrid or electric vehicles, increasingly electronic systems are used that combine new energy storage technologies with electric drive technology.
  • an electric machine e.g. is designed as a rotating field machine, controlled by a converter in the form of an inverter.
  • Characteristic of such systems is a so-called DC voltage intermediate circuit, via which an energy store, usually a battery, is connected to the DC side of the inverter.
  • an energy store usually a battery
  • multiple battery cells are connected in series. Since the power provided by such an energy store must flow through all the battery cells and a battery cell can only conduct a limited current, battery cells are often additionally connected in parallel in order to increase the maximum current.
  • Wind turbines it may in unfavorable conditions, such. strong Wnd, even come to safety-threatening situations. Therefore, it is always high
  • batteries are described with several battery module strings, which are directly connected to an electrical machine.
  • the battery module strands in this case have a plurality of battery modules connected in series, each battery module having at least one battery cell and an associated controllable coupling unit, which allows depending on control signals to interrupt the respective battery module strand or to bridge the respectively associated at least one battery cell or each assigned to switch at least one battery cell in the respective battery module string.
  • suitable control of the coupling units for example by means of pulse width modulation, it is also possible to provide suitable phase signals for controlling the electrical machine, so that a separate one can be used
  • Pulse inverter can be dispensed with.
  • the required for controlling the electrical machine pulse inverter is so to speak integrated into the battery.
  • the invention provides a system for charging at least one energy storage cell in a controllable energy store, which controls and electrical
  • the controllable energy store has n parallel energy supply branches, each of which has at least two energy storage modules connected in series, and which each comprise at least one electrical energy storage cell with an associated controllable coupling unit.
  • the power supply branches are on the one hand connected to a reference rail and on the other hand, each with a phase of the electric machine.
  • the coupling units bridge the respectively assigned energy storage cells or they switch the respectively assigned energy storage cells into the respective energy supply branch.
  • At least one external energy source is connectable on the one hand to a power supply branch and on the other hand to the reference rail.
  • the invention also provides a method for operating a charging system according to the invention, wherein energy storage cells are charged simultaneously in all energy supply branches.
  • the invention is based on the basic idea of electrically connecting the energy supply branches to an external energy source for directly charging the energy storage cells without the intermediary of an additional charge component.
  • Energy storage cells in all energy supply branches in particular even a simultaneous charging of all energy storage cells of the controllable energy storage, individually adjustable by the controllable energy storage charging currents is possible.
  • the charging current but also flows through the
  • the external energy sources are as
  • Power sources designed which offers the advantage that they can be connected in parallel to the acting as a voltage source controllable energy storage without further action, since the charging current is automatically limited by the power sources.
  • the energy sources can also be configured as voltage sources whose voltage values are below the voltages of the respectively connected ones Energy supply branches lie.
  • the charging current is not automatically limited by the voltage sources, so that they are not readily parallel to the controllable acting as a voltage source
  • the energy sources each comprise, in addition to the voltage sources, series-connected additional charging inductances which can be operated in conjunction with the coupling units of the controllable energy store as a step-up converter.
  • the voltage sources gain "current source character", so that even when using voltage sources as external energy storage no additional charging components are required.
  • the energy sources which can be connected to the energy supply branches of the controllable energy store are designed as DC voltage sources or DC sources.
  • the coupling units of the controllable energy store are designed as full bridges, then the
  • energy sources may be designed as symmetrical AC voltage sources or AC sources.
  • the energy sources can also be configured as asymmetrical AC voltage sources or AC sources.
  • controllable switching elements are provided in this case, by means of which the electric machine can be separated from the power supply branches.
  • unwanted moments during the charging process can be avoided by mechanically blocking the electric machine during the charging process, e.g. with the help of a transmission pawl.
  • the rotor position of the electric machine can also be monitored, e.g. be switched off by means of a corresponding sensor, and in the case of a detected rotor movement.
  • Fig. 1 is a schematic representation of a first embodiment
  • Fig. 2 is a schematic representation of a second embodiment
  • Fig. 3 shows the charging system of FIG. 2 in a freewheeling phase.
  • FIGS 1 to 3 show schematic representations of embodiments of a charging system according to the invention.
  • a controllable energy storage 2 is connected to a three-phase electric machine 1.
  • the controllable energy store 2 comprises three power supply branches 3-1, 3-2 and 3-3, which on the one hand with a reference potential T- (reference rail), which leads in the illustrated embodiments, a low potential, and on the other hand in each case with individual phases U, V, W of the electric machine 1 are connected.
  • Each of the power supply branches 3-1, 3-2 and 3-3 has m series-connected energy storage modules 4-1 1 to 4-1m and 4-21 to 4-2m and 4-31 to 4-3m, respectively 2.
  • the energy storage modules 4 each comprise a plurality of electrical energy storage cells connected in series, which for reasons of clarity are only provided in the energy supply branch 3-3 connected to the phase W of the electric machine 1 with reference symbols 5-31 to 5-3m.
  • the energy storage modules 4 further comprise one each
  • the coupling units are each formed by four controllable switching elements 7-31 1, 7-312, 7-313 and 7-314 to 7-3m1, 7- 3m2, 7-3m3 and 7-3m4, which in shape a full bridge are connected.
  • the switching elements can be embodied as power semiconductor switches, for example in the form of IGBTs (Insulated Gate Bipolar Transistors) or as MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors).
  • the coupling units 6 make it possible to interrupt the respective power supply branch 3 by opening all switching elements 7 of a coupling unit 6.
  • the energy storage cells 5 can either be bridged by closing two of the switching elements 7 of a coupling unit 6, e.g.
  • Power supply branch 3 are switched, for. Close the switches 7-312 and 7-313.
  • the total output voltages of the power supply branches 3-1 to 3-3 are determined by the respective switching state of the controllable
  • Switching elements 7 of the coupling units 6 can be adjusted in stages. The grading results depending on the voltage of the individual
  • Energy storage modules 4 If one starts from the preferred embodiment of similarly designed energy storage modules 4, the result is a maximum possible total output voltage from the voltage of a single one
  • Energy storage module 4 times the number m of per energy supply branch 3 in series energy storage modules. 4
  • the coupling units 6 thus allow the phases U, V, W of the electric machine 1 either against a high reference potential or a low
  • the power and operating mode of the electric machine 1 can be controlled by the controllable energy store 2 with suitable control of the coupling units 6.
  • Energy storage 2 thus fulfills a dual function insofar as it serves on the one hand the electrical power supply on the other hand, but also the control of the electric machine 1.
  • the electric machine 1 has stator windings 8-U, 8-V and 8-W, which are connected in a known manner in star connection with each other.
  • the electric machine 1 is designed as a three-phase three-phase machine in the illustrated embodiments, but may also have fewer or more than three phases.
  • the number of power supply branches 3 in the controllable energy store 2 also depends on the number of phases of the electrical machine.
  • each energy storage module 4 in each case has a plurality of energy storage cells 5 connected in series.
  • Energy storage modules 4 can alternatively also only a single
  • the coupling units 6 are each formed by four controllable switching elements 7 in the form of a full bridge, which also offers the possibility of a voltage reversal at the output of the energy storage module .
  • the coupling units 6 can also be more or less
  • controllable switching elements be realized as long as the necessary functions
  • Energy supply cells in the power supply branch can be realized.
  • the coupling units can also be in the form of Hall bridges
  • Enabling energy storage modules 4 three as power sources 10'-1, 10'-2 and 10'- 3 configured external energy sources 10-1 or 10-2 or 10-3 are provided, which on the one hand with a respective energy supply branch 3-1 or 3-2 or 3-3 and on the other hand with the reference rail T- are connected.
  • the current sources 10 ' can be used as DC sources or in the illustrated embodiment of
  • Coupling units 6 are designed as full bridges as well as AC sources and each provide a suitable charging of the energy storage cells 5 in the corresponding power supply branch 3 charging current. Since the individual power supply branches 3-1 to 3-3 are connected to each other via the star point S of the electric machine 1, it is also conceivable as an alternative to the embodiment shown not to provide a separate power source 10 'for each of the power supply branches 3, but only a part the power supply branches 3 to a power source 10 'to connect.
  • FIGS 2 and 3 show a second embodiment of the invention. This differs from the third embodiment in that the external
  • Energy sources 10-1, 10-2 and 10-3 not as power sources, but as
  • Voltage sources 10 "-1, 10" -2 and 10 "-3 are configured whose voltage values are below the voltages of the power supply branches 3-1 to 3-3 each of the power sources 10-1, 10-2 and 10-3 has one in series with the
  • the charging process must take place in two phases, which in the following exemplifies the charging process of the energy storage cells 5 of a single energy storage module 4, namely the energy storage cells 5 -3m of the energy storage module 4-3m in the power supply branch 3-3, using a designed as a DC voltage source voltage source 10 "is described.
  • the coupling units 6 are operated in conjunction with the additional charging inductors 11 as a boost converter.
  • the coupling units 6-31 to 6-3m of the energy storage modules 4-31 to 4-3m which in the
  • Energy storage cells 5-31 are controlled by a control unit, not shown in such a way that the respective associated energy storage cells are 5-31 to 5-3m bridged. Concretely, this is achieved by closing the switching elements 7-312 and 7-314 to 7-3m2 and 7-3m4, whereas the switching elements 7-311 and 7-313 to 7-3m1 and 7-3m3 are opened. All other coupling units 6, that is, all coupling units 6 in the energy storage modules 4 of the other two
  • Power supply branches 3-1 and 3-2 are controlled such that the respective power supply branches 3-1 and 3-2 are interrupted. Specifically, this is achieved in that each switching elements 7 of the coupling units 6 are opened.
  • Such a control of the coupling units 6 causes a current flow through the charging inductor 1-3, so that during the charging phase electrical energy in the
  • Charging inductance 1 1-3 is stored.
  • the coupling unit 6-3m which is assigned to the energy storage cells 5-3m to be charged, is controlled in such a way that the associated energy storage cells 5-3m in the
  • Power supply branch 3-3 are switched. This is achieved concretely in that the switching elements 7-3m2 and 7-3m3 are opened and the switching elements 7-3m1 and 7 3m4 to be closed. All other coupling units 6-31 to 6-3 (m-1), which lie in the power supply branch 3-3 of the energy storage cells 5-3m to be charged, but which are not assigned to any energy storage cells 5 to be charged, are controlled in such a way that the respective associated energy storage cells 5-31 to 5-3 (m-1) are bridged (closing of the switching elements 7-312 and 7-314 to 7-3 (m-1) 2 to 7- 3 (m-1) 4 and opening the Switching elements 7-311 and 7-313 to 7-3 (m-1) 1 to 7-3 (m-1) 3.
  • Power supply branches 3-1 and 3-2 are further controlled so that the respective power supply branches 3-1 and 3-2 are interrupted.
  • Such a control of the coupling units 6 causes an electrical connection of the charging inductor 1-3 with the energy storage cells 5-3m to be charged.
  • Charging inductance 1 1-3 drives the current and charges in this way the
  • all energy storage cells 5 in all energy supply branches 3 of the controllable energy store 2 can be charged in the manner described.
  • the coupling units 6 it is also possible by appropriate control of the coupling units 6, a plurality of energy storage cells 5 in several
  • Power supply branches 3 adjustable. The voltages of the power supply branches 3 are in turn by the number of in the respective
  • Energy supply branch 3 switched energy storage cells 5 set.
  • controllable switching elements may be provided, which allow to separate the electric machine 1 during the charging of the power supply branches.
  • unwanted moments during the charging process can also be avoided by mechanically blocking the electric machine 1 during the charging process, for example by means of a transmission pawl.
  • the rotor position of the electric machine 1 can be monitored, e.g. be switched off by means of a corresponding sensor, and in the case of a detected rotor movement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft ein System zum Laden mindestens einer Energiespeicherzelle (5) in einem steuerbaren Energiespeicher (2), welcher der Steuerung und der elektrischen Energieversorgung einer n-phasigen elektrischen Maschine (1), mit n ≥ 1, dient. Dabei weist der steuerbare Energiespeicher (2) n parallele Energieversorgungszweige (3-1, 3-2, 3-3) auf, welche jeweils mindestens zwei in Reihe geschaltete Energiespeichermodule (4) aufweisen, welche jeweils mindestens eine elektrische Energiespeicherzelle (5) mit einer zugeordneten steuerbaren Koppeleinheit (6) umfassen. Die Energieversorgungszweige (3-1, 3-2, 3-3) sind einerseits mit einer Bezugsschiene (T-) und andererseits mit jeweils einer Phase (U, V, W) der elektrischen Maschine (1) verbindbar. In Abhängigkeit von Steuersignalen überbrücken die Koppeleinheiten (6) die jeweils zugeordneten Energiespeicherzellen (5) oder schalten diese in den jeweiligen Energieversorgungszweig (3-1, 3-2; 3-3). Um ein Laden mindestens einer Energiespeicherzelle (5) zu ermöglichen, ist mindestens eine externe Energiequelle (10) einerseits mit einem Energieversorgungszweig (3-1; 3-2; 3-3) und andererseits mit der Bezugsschiene (T-) verbindbar.

Description

Titel
System zum Laden eines Energiespeichers und Verfahren zum Betrieb des Ladesystems
Die Erfindung betrifft ein System zum Laden eines Energiespeichers und ein Verfahren zum Betrieb des erfindungsgemäßen Ladesystems.
Stand der Technik
Es zeichnet sich ab, dass in Zukunft sowohl bei stationären Anwendungen, wie z.B.
Windkraftanlagen, wie auch in Fahrzeugen, wie Hybrid- oder Elektrofahrzeugen, vermehrt elektronische Systeme zum Einsatz kommen, die neue Energiespeichertechnologien mit elektrischer Antriebstechnik kombinieren. In herkömmlichen Anwendungen wird eine elektrische Maschine, welche z.B. als Drehfeldmaschine ausgeführt ist, über einen Umrichter in Form eines Wechselrichters gesteuert. Kennzeichnend für derartige Systeme ist ein sogenannter Gleichspannungszwischenkreis, über welchen ein Energiespeicher, in der Regel eine Batterie, an die Gleichspannungsseite des Wechselrichters angeschlossen ist. Um die für eine jeweilige Anwendung gegebenen Anforderungen an Leistung und Energie erfüllen zu können, werden mehrere Batteriezellen in Serie geschaltet. Da der von einem derartigen Energiespeicher bereitgestellte Strom durch alle Batteriezellen fließen muss und eine Batteriezelle nur einen begrenzten Strom leiten kann, werden oft zusätzlich Batteriezellen parallel geschaltet, um den maximalen Strom zu erhöhen.
Die Serienschaltung mehrerer Batteriezellen bringt neben einer hohen Gesamtspannung das Problem mit sich, dass der gesamte Energiespeicher ausfällt, wenn eine einzige Batteriezelle ausfällt, weil dann kein Batteriestrom mehr fließen kann. Ein solcher Ausfall des Energiespeichers kann zu einem Ausfall des Gesamtsystems führen. Bei einem Fahrzeug kann ein Ausfall der Antriebsbatterie zum "Liegenbleiben" des Fahrzeugs führen. Bei anderen Anwendungen, wie z.B. der Rotorblattverstellung von
Windkraftanlagen, kann es bei ungünstigen Rahmenbedingungen, wie z.B. starkem Wnd, sogar zu sicherheitsgefährdenden Situationen kommen. Daher ist stets eine hohe
Zuverlässigkeit des Energiespeichers anzustreben, wobei mit "Zuverlässigkeit" die
Fähigkeit eines Systems bezeichnet wird, für eine vorgegebene Zeit fehlerfrei zu arbeiten. In den älteren Anmeldungen DE 10 2010 027857 und DE 10 2010 027861 sind Batterien mit mehreren Batteriemodulsträngen beschrieben, welche direkt an eine elektrische Maschine anschließbar sind. Die Batteriemodulstränge weisen dabei eine Mehrzahl von in Serie geschalteten Batteriemodulen auf, wobei jedes Batteriemodul mindestens eine Batteriezelle und eine zugeordnete steuerbare Koppeleinheit aufweist, welche es erlaubt in Abhängigkeit von Steuersignalen den jeweiligen Batteriemodulstrang zu unterbrechen oder die jeweils zugeordnete mindestens eine Batteriezelle zu überbrücken oder die jeweils zugeordnete mindestens eine Batteriezelle in den jeweiligen Batteriemodulstrang zu schalten. Durch geeignete Ansteuerung der Koppeleinheiten, z.B. mit Hilfe von Pulsweitenmodulation, können auch geeignete Phasensignale zur Steuerung der elektrischen Maschine bereitgestellt werden, so dass auf einen separaten
Pulswechselrichter verzichtet werden kann. Der zur Steuerung der elektrischen Maschine erforderliche Pulswechselrichter ist damit sozusagen in die Batterie integriert. Zum Zwecke der Offenbarung werden diese beiden älteren Anmeldungen vollumfänglich in die vorliegende Anmeldung einbezogen.
Offenbarung der Erfindung Die Erfindung schafft ein System zum Laden mindestens einer Energiespeicherzelle in einem steuerbaren Energiespeicher, welcher der Steuerung und der elektrischen
Energieversorgung einer n-phasigen elektrischen Maschine, mit n > 1 , dient. Dabei weist der steuerbare Energiespeicher n parallele Energieversorgungszweige auf, welche jeweils mindestens zwei in Reihe geschaltete Energiespeichermodule aufweisen und welche jeweils mindestens eine elektrische Energiespeicherzelle mit einer zugeordneten steuerbaren Koppeleinheit umfassen. Die Energieversorgungszweige sind einerseits mit einer Bezugsschiene und andererseits mit jeweils einer Phase der elektrischen Maschine verbindbar. In Abhängigkeit von Steuersignalen überbrücken die Koppeleinheiten die jeweils zugeordneten Energiespeicherzellen oder sie schalten die jeweils zugeordneten Energiespeicherzellen in den jeweiligen Energieversorgungszweig. Mindestens eine externe Energiequelle ist einerseits mit einem Energieversorgungszweig und andererseits mit der Bezugsschiene verbindbar.
Die Erfindung schafft außerdem ein Verfahren zum Betreiben eines erfindungsgemäßen Ladesystems, wobei Energiespeicherzellen in allen Energieversorgungszweigen gleichzeitig geladen werden. Vorteile der Erfindung
Die Erfindung basiert auf der Grundidee, zur Ladung der Energiespeicherzellen die Energieversorgungszweige unmittelbar ohne die Zwischenschaltung einer zusätzlichen Ladungskomponente elektrisch mit einer externen Energiequelle zu verbinden.
Neben der Einsparung zusätzlicher Ladungskomponenten zeichnet sich das
erfindungsgemäße System dadurch aus, dass ein gleichzeitiges Laden von
Energiespeicherzellen in allen Energieversorgungszweigen, insbesondere sogar ein gleichzeitiges Laden aller Energiespeicherzellen des steuerbaren Energiespeichers, bei individuell durch den steuerbaren Energiespeicher einstellbaren Ladeströmen möglich ist.
Erfindungsgemäß wird eine externe Energiequelle unmittelbar mit den
Energieversorgungszweigen und damit auch mit der zugehörigen Phase der elektrischen Maschine verbunden. Dabei muss nicht für jeden Energieversorgungszweig eine eigene externe Energiequelle vorgesehen sein, da die einzelnen Energieversorgungszweige über die Phasen der elektrischen Maschine und den Sternpunkt der elektrischen Maschine elektrisch miteinander verbunden sind, was eine Ladestromfluss durch alle
Energieversorgungszweige erlaubt.
Bei einer derartigen Ausführungsform fließt der Ladestrom aber auch über die
Motorinduktivitäten, welche in der Realität nicht ideal sind und daher einen parasitären resistiven Anteil aufweisen, welcher den Stromfluss behindert. Um dieses Problem zu umgehen, können auch n externe Energiequellen vorgesehen sein, welche einerseits mit jeweils einem Energieversorgungszweig und andererseits mit der Bezugsschiene verbindbar sind. In diesem Fall ist für jeden Energieversorgungszweig eine eigene Energiequelle vorhanden, welche einen Ladestrom ohne Umweg über die elektrische Maschine direkt in den jeweiligen Energieversorgungszweig einspeisen kann. Gemäß einer Ausführungsform der Erfindung sind die externen Energiequellen als
Stromquellen ausgestaltet, was den Vorteil bietet, dass diese ohne weitere Maßnahmen parallel zu dem als Spannungsquelle wirkenden steuerbaren Energiespeicher geschaltet werden können, da der Ladestrom durch die Stromquellen automatisch begrenzt wird.
Alternativ dazu können die Energiequellen auch als Spannungsquellen ausgestaltet sein, deren Spannungswerte unterhalb der Spannungen des jeweils verbundenen Energieversorgungszweiges liegen. Dabei ergibt sich aber das Problem, dass der Ladestrom durch die Spannungsquellen nicht automatisch begrenzt wird, so dass diese nicht ohne weiteres parallel zu dem als Spannungsquelle wirkenden steuerbaren
Energiespeicher geschaltet werden können. Dieses Problem wird aber dadurch gelöst, dass die Energiequellen neben den Spannungsquellen jeweils in Reihe geschaltete zusätzliche Ladeinduktivitäten umfassen, welche in Verbindung mit den Koppeleinheiten des steuerbaren Energiespeichers als Hochsetzsteller betreibbar sind. In Verbindung mit einem Hochsetzsteller erlangen die Spannungsquellen aber "Stromquellen-Charakter", so dass auch bei Verwendung von Spannungsquellen als externe Energiespeicher keine zusätzlichen Ladekomponenten erforderlich sind.
Gemäß einer Ausführungsform der Erfindung sind die Energiequellen, welche mit den Energieversorgungszweigen des steuerbaren Energiespeichers verbindbar sind, als Gleichspannungsquellen oder Gleichstromquellen ausgestaltet. Sind die Koppeleinheiten des steuerbaren Energiespeichers aber als Vollbrücken ausgelegt, so können die
Energiequellen alternativ auch als symmetrische Wechselspannungsquellen oder Wechselstromquellen ausgestaltet sein.
Bei Koppeleinheiten in Form von Vollbrücken können die Energiequellen auch als unsymmetrische Wechselspannungsquellen oder Wechselstromquellen ausgestaltet sein. Zur Vermeidung unerwünschter Momente während des Ladevorgangs sind in diesem Fall aber steuerbare Schaltelemente vorgesehen, durch welche die elektrische Maschine von den Energieversorgungszweigen abtrennbar ist. Alternativ oder zusätzlich können unerwünschte Momente während des Ladevorgangs dadurch vermieden werden, dass die elektrische Maschine während des Ladevorgangs mechanisch blockiert wird, z.B. mit Hilfe einer Getriebesperrklinke. Alternativ kann auch die Rotorlage der elektrischen Maschine überwacht werden, z.B. mit Hilfe einer entsprechenden Sensorik, und im Falle einer detektierten Rotorbewegung abgeschaltet werden.
Weitere Merkmale und Vorteile von Ausführungsformen der Erfindung ergeben sich aus der nachfolgenden Beschreibung mit Bezug auf die beigefügten Zeichnungen.
Kurze Beschreibung der Zeichnungen Es zeigen:
Fig. 1 eine schematische Darstellung einer ersten Ausführungsform
erfindungsgemäßen Ladesystems,
Fig. 2 eine schematische Darstellung einer zweiten Ausführungsform
erfindungsgemäßen Ladesystems in einer Ladephase,
Fig. 3 das Ladesystem gemäß Fig. 2 in einer Freilaufphase.
Ausführungsformen der Erfindung
Die Figuren 1 bis 3 zeigen schematische Darstellungen von Ausführungsformen eines erfindungsgemäßen Ladesystems. An eine dreiphasige elektrische Maschine 1 ist ein steuerbarer Energiespeicher 2 angeschlossen. Der steuerbare Energiespeicher 2 umfasst drei Energieversorgungszweige 3-1 , 3-2 und 3-3, welche einerseits mit einem Bezugspotential T- (Bezugsschiene), welches in den dargestellten Ausführungsformen ein niedriges Potential führt, und andererseits jeweils mit einzelnen Phasen U, V, W der elektrischen Maschine 1 verbunden sind. Jeder der Energieversorgungszweige 3-1 , 3-2 und 3-3 weist m in Reihe geschaltete Energiespeichermodule 4-1 1 bis 4-1 m bzw. 4-21 bis 4-2m bzw. 4-31 bis 4-3m auf, wobei m > 2. Die Energiespeichermodule 4 wiederum umfassen jeweils mehrere in Reihe geschaltete elektrische Energiespeicherzellen, welche aus Gründen der Übersichtlichkeit lediglich in dem mit der Phase W der elektrischen Maschine 1 verbundenen Energieversorgungszweig 3-3 mit Bezugszeichen 5-31 bis 5-3m versehen sind. Die Energiespeichermodule 4 umfassen des Weiteren jeweils eine
Koppeleinheit, welche den Energiespeicherzellen 5 des jeweiligen Energiespeichermoduls 4 zugeordnet ist. Aus Gründen der Übersichtlichkeit sind auch die Koppeleinheiten lediglich in dem Energieversorgungszweig 3-3 mit Bezugszeichen 6-31 bis 6-3m versehen. In den dargestellten Ausführungsvarianten werden die Koppeleinheiten 6 jeweils durch vier steuerbare Schaltelemente 7-31 1 , 7-312, 7-313 und 7-314 bis 7-3m1 , 7- 3m2, 7-3m3 und 7-3m4 gebildet, welche in Form einer Vollbrücke verschaltet sind. Die Schaltelemente können dabei als Leistungshalbleiterschalter, z.B. in Form von IGBTs (Insulated Gate Bipolar Transistors) oder als MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors), ausgeführt sein. Die Koppeleinheiten 6 ermöglichen es, den jeweiligen Energieversorgungszweig 3, durch Öffnen aller Schaltelemente 7 einer Koppeleinheit 6 zu unterbrechen.
Alternativ können die Energiespeicherzellen 5 durch Schließen von jeweils zwei der Schaltelemente 7 einer Koppeleinheit 6 entweder überbrückt werden, z.B.
Schließen der Schalter 7-312 und 7-314 oder in den jeweiligen
Energieversorgungszweig 3 geschaltet werden, z.B. Schließen der Schalter 7-312 und 7-313.
Die Gesamt-Ausgangsspannungen der Energieversorgungszweige 3-1 bis 3-3 werden bestimmt durch den jeweiligen Schaltzustand der steuerbaren
Schaltelemente 7 der Koppeleinheiten 6 und können stufig eingestellt werden. Die Stufung ergibt sich dabei in Abhängigkeit von der Spannung der einzelnen
Energiespeichermodule 4. Geht man von der bevorzugten Ausführungsform gleichartig ausgestalteter Energiespeichermodule 4 aus, so ergibt sich eine maximal mögliche Gesamt-Ausgangsspannung aus der Spannung eines einzelnen
Energiespeichermoduls 4 mal der Anzahl m der pro Energieversorgungszweig 3 in Reihe geschalteten Energiespeichermodule 4.
Die Koppeleinheiten 6 erlauben es damit, die Phasen U, V, W der elektrischen Maschine 1 entweder gegen ein hohes Bezugspotential oder ein niedriges
Bezugspotential zu schalten und können insofern auch die Funktion eines bekannten Wechselrichters erfüllen. Damit können Leistung und Betriebsart der elektrischen Maschine 1 bei geeigneter Ansteuerung der Koppeleinheiten 6 durch den steuerbaren Energiespeicher 2 gesteuert werden. Der steuerbare
Energiespeicher 2 erfüllt also insofern eine Doppelfunktion, da er einerseits der elektrischen Energieversorgung andererseits aber auch der Steuerung der elektrischen Maschine 1 dient.
Die elektrische Maschine 1 weist Statorwicklungen 8-U, 8-V und 8-W auf, die in bekannter Weise in Sternschaltung miteinander verschaltet sind.
Die elektrische Maschine 1 ist in den dargestellten Ausführungsbeispielen als dreiphasige Drehstrommaschine ausgeführt, kann aber auch weniger oder mehr als drei Phasen aufweisen. Nach der Phasenanzahl der elektrischen Maschine richtet sich natürlich auch die Anzahl der Energieversorgungszweige 3 in dem steuerbaren Energiespeicher 2. In den dargestellten Ausführungsbeispielen weist jedes Energiespeichermodul 4 jeweils mehrere in Reihe geschaltete Energiespeicherzellen 5 auf. Die
Energiespeichermodule 4 können aber alternativ auch jeweils nur eine einzige
Energiespeicherzelle oder auch parallel geschaltete Energiespeicherzellen
aufweisen.
In den dargestellten Ausführungsbeispielen werden die Koppeleinheiten 6 jeweils durch vier steuerbare Schaltelemente 7 in Form einer Vollbrücke gebildet, was auch die Möglichkeit einer Spannungsumkehr am Ausgang des Energiespeichermoduls bietet.. Die Koppeleinheiten 6 können aber auch durch mehr oder weniger
steuerbare Schaltelemente realisiert sein, solange die notwendigen Funktionen
(Überbrücken der Energieversorgungszellen und Schalten der
Energieversorgungszellen in den Energieversorgungszweig) realisierbar sind.
Insbesondere können die Koppeleinheiten auch in Form von Hallbrücken
ausgebildet sein. Derartige Ausführungsformen ergeben sich beispielhaft aus den älteren Anmeldungen DE 10 2010 027857 und DE 10 2010 027861.
Um die Ladung von Energiespeicherzellen 5 eines oder mehrerer
Energiespeichermodule 4 zu ermöglichen, sind drei als Stromquellen 10'-1 , 10'-2 und 10'- 3 ausgestaltete externe Energiequellen 10-1 bzw. 10-2 bzw. 10-3 vorgesehen, welche einerseits mit jeweils einem Energieversorgungszweig 3-1 bzw. 3-2 bzw. 3-3 und andererseits mit der Bezugsschiene T- verbunden sind. Die Stromquellen 10' können dabei als Gleichstromquellen oder bei der dargestellten Ausgestaltung der
Koppeleinheiten 6 als Vollbrücken auch als Wechselstromquellen ausgeführt sein und stellen jeweils einen zum Laden der Energiespeicherzellen 5 in dem entsprechenden Energieversorgungszweig 3 geeigneten Ladestrom zur Verfügung. Da die einzelnen Energieversorgungszweige 3-1 bis 3-3 über den Sternpunkt S der elektrischen Maschine 1 miteinander verbunden sind, ist es alternativ zu der dargestellten Ausführungsvariante auch denkbar, nicht für jeden der Energieversorgungszweige 3 eine eigene Stromquelle 10' vorzusehen, sondern nur einen Teil der Energieversorgungszweige 3 mit einer Stromquelle 10' zu verbinden.
Die Figuren 2 und 3 zeigen eine zweite Ausführungsform der Erfindung. Diese unterscheidet sich von der dritten Ausführungsform dadurch, dass die externen
Energiequellen 10-1 , 10-2 und 10-3 nicht als Stromquellen, sondern als
Spannungsquellen 10"-1 , 10"-2 und 10"-3 ausgestaltet sind, deren Spannungswerte unterhalb der Spannungen der Energieversorgungszweige 3-1 bis 3-3 liegen. Außerdem weisen die Energiequellen 10-1 , 10-2 und 10-3 jeweils eine in Reihe zu der
Spannungsquelle 10"-1 bzw. 10"-2 bzw. 10"-3 geschaltete zusätzliche Ladeinduktivität 1 1- 1 bzw. 1 1-2 bzw. 1 1-3 auf. Die Spannungsquellen 10" können dabei als
Gleichspannungsquellen oder bei der dargestellten Ausgestaltung der Koppeleinheiten 6 als Vollbrücken auch als Wechselspannungsquellen ausgeführt sein. Um auch im Falle von Spannungsquelle 10" einen zum Laden der Energiespeicherzellen 5 geeigneten Ladestrom zur Verfügung stellen zu können, muss der Ladevorgang dabei in zwei Phasen erfolgen, was im Folgenden exemplarisch für den Ladevorgang der Energiespeicherzellen 5 eines einzelnen Energiespeichermoduls 4, nämlich der Energiespeicherzellen 5-3m des Energiespeichermoduls 4-3m in dem Energieversorgungszweig 3-3, mit Hilfe einer als Gleichspannungsquelle ausgestalteten Spannungsquelle 10" beschrieben wird. Dabei werden die Koppeleinheiten 6 in Verbindung mit den zusätzlichen Ladeinduktivitäten 11 als Hochsetzsteller betrieben. Während einer Ladephase, welche in Fig. 2 dargestellt ist, werden die Koppeleinheiten 6- 31 bis 6-3m der Energiespeichermodule 4-31 bis 4-3m, welche in dem
Energieversorgungszweig 3-3 liegen, in welchem auch die zu ladenden
Energiespeicherzellen 5-31 liegen, durch eine nicht dargestellte Steuereinheit derart gesteuert, dass die jeweils zugeordneten Energiespeicherzellen 5-31 bis 5-3m überbrückt werden. Dies wird konkret dadurch erreicht, dass die Schaltelemente 7-312 und 7-314 bis 7-3m2 und 7-3m4 geschlossen werden, wohingegen die Schaltelemente 7-311 und 7-313 bis 7-3m1 und 7-3m3 geöffnet werden. Alle übrigen Koppeleinheiten 6, das heißt alle Koppeleinheiten 6 in den Energiespeichermodulen 4 der anderen beiden
Energieversorgungszweige 3-1 und 3-2 werden derart gesteuert, dass die jeweiligen Energieversorgungszweige 3-1 bzw. 3-2 unterbrochen werden. Konkret wird dies dadurch erreicht, dass jeweils alle Schaltelemente 7 der Koppeleinheiten 6 geöffnet werden.
Eine derartige Ansteuerung der Koppeleinheiten 6 bewirkt einen Stromfluss durch die Ladeinduktivität 1 1-3, so dass während der Ladephase elektrische Energie in der
Ladeinduktivität 1 1-3 gespeichert wird.
In einer der Ladephase folgenden Freilaufphase, welche in Fig. 3 dargestellt ist, wird die Koppeleinheit 6-3m, welche den zu ladenden Energiespeicherzellen 5-3m zugeordnet ist, derart gesteuert, dass die zugeordneten Energiespeicherzellen 5-3m in den
Energieversorgungszweig 3-3 geschaltet werden. Dies wird konkret dadurch erreicht, dass die Schaltelemente 7-3m2 und 7-3m3 geöffnet und die Schaltelemente 7-3m1 und 7- 3m4 geschlossen werden. Alle übrigen Koppeleinheiten 6-31 bis 6-3(m-1), welche in dem Energieversorgungszweig 3-3 der zu ladenden Energiespeicherzellen 5-3m liegen, die selbst aber keinen zu ladenden Energiespeicherzellen 5 zugeordnet sind, werden derart gesteuert, dass die jeweils zugeordneten Energiespeicherzellen 5-31 bis 5-3(m-1) überbrückt werden (Schließen der Schaltelemente 7-312 und 7-314 bis 7-3(m-1)2 bis 7- 3(m-1)4 und Öffnen der Schaltelemente 7-311 und 7-313 bis 7-3(m-1)1 bis 7-3(m-1)3. Die Koppeleinheiten 6-1 1 bis 6-1 m und 6-21 bis 6-2m in den übrigen
Energieversorgungszweigen 3-1 und 3-2 werden weiterhin derart gesteuert, dass die jeweiligen Energieversorgungszweige 3-1 und 3-2 unterbrochen werden.
Eine derartige Steuerung der Koppeleinheiten 6 bewirkt eine elektrische Verbindung der Ladeinduktivität 1 1-3 mit den zu ladenden Energiespeicherzellen 5-3m. Die
Ladeinduktivität 1 1-3 treibt dabei den Strom weiter und lädt auf diese Weise die
Energiespeicherzellen 5-3m auf.
Auf die beschriebene Weise können grundsätzlich alle Energiespeicherzellen 5 in allen Energieversorgungszweigen 3 des steuerbaren Energiespeichers 2 geladen werden. Mit den erfindungsgemäßen System ist es aber durch entsprechende Ansteuerung der Koppeleinheiten 6 auch möglich, mehrere Energiespeicherzellen 5 in mehreren
Energieversorgungszweigen 3 oder sogar alle Energiespeicherzellen 5 gleichzeitig zu laden. Eine Verteilung eines durch die Energiequelle 10 eingespeisten Stromes auf die einzelnen Energieversorgungszweige 3 ist dabei über die Spannungen der
Energieversorgungszweige 3 einstellbar. Die Spannungen der Energieversorgungszweige 3 wiederum werden dabei durch die Anzahl der in den jeweiligen
Energieversorgungszweig 3 geschalteten Energiespeicherzellen 5 festgelegt.
Auch bei der anhand der Figuren 2 und 3 erläuterten Ausführungsform ist es alternativ zu der dargestellten Variante denkbar, nicht für jeden der Energieversorgungszweige 3 eine eigene Spannungsquelle 10" vorzusehen, sondern nur einen Teil der
Energieversorgungszweige 3 mit einer Spannungsquelle 10' zu verbinden. Auch dabei macht man es sich zunutze, dass die einzelnen Energieversorgungszweige 3-1 bis 3-3 über den Sternpunkt S der elektrischen Maschine 1 ohnehin miteinander verbunden sind.
Werden bei direkter Ankopplung von Energiequellen 10 an die Energieversorgungszweige 3 des steuerbaren Energiespeichers 2 unsymmetrische Wechselspannungsquellen, wie z.B. das öffentliche Netz, eingesetzt, so kann es zur Erzeugung unerwünschter Momente in der elektrischen Maschine kommen. Daher können nicht dargestellte steuerbare Schaltelemente vorgesehen sein, welche es erlauben, die elektrische Maschine 1 während des Ladevorgangs von den Energieversorgungszweigen zu trennen. Alternativ oder zusätzlich können unerwünschte Momente während des Ladevorgangs auch dadurch vermieden werden, dass die elektrische Maschine 1 während des Ladevorgangs mechanisch blockiert wird, z.B. mit Hilfe einer Getriebesperrklinke.
Alternativ kann auch die Rotorlage der elektrischen Maschine 1 überwacht werden, z.B. mit Hilfe einer entsprechenden Sensorik, und im Falle einer detektierten Rotorbewegung abgeschaltet werden.

Claims

Ansprüche 1. System zum Laden mindestens einer Energiespeicherzelle (5) in einem steuerbaren Energiespeicher (2), welcher der Steuerung und der elektrischen Energieversorgung einer n-phasigen elektrischen Maschine (1), mit n > 1 , dient, wobei
- der steuerbare Energiespeicher (2) n parallele Energieversorgungszweige (3-1 , 3-2, 3- 3) aufweist, welche
■ jeweils mindestens zwei in Reihe geschaltete Energiespeichermodule (4) aufweisen, welche jeweils mindestens eine elektrische Energiespeicherzelle (5) mit einer zugeordneten steuerbaren Koppeleinheit (6) umfassen,
einerseits mit einer Bezugsschiene (T-) verbindbar sind und
andererseits mit jeweils einer Phase (U, V, W) der elektrischen Maschine (1) verbindbar sind,
- die Koppeleinheiten (6) in Abhängigkeit von Steuersignalen die jeweils zugeordneten Energiespeicherzellen (5) überbrücken oder die jeweils zugeordneten
Energiespeicherzellen (5) in den jeweiligen Energieversorgungszweig (3-1 , 3-2; 3-3) schalten,
- mindestens eine externe Energiequelle (10), welche einerseits mit einem
Energieversorgungszweig (3-1 ; 3-2; 3-3) und andererseits mit der Bezugsschiene (T-) verbindbar ist.
2. System nach Anspruch 1 , wobei n externe Energiequellen (10-1 , 10-2, 10-3) vorgesehen sind, welche einerseits mit jeweils einem Energieversorgungszweig (3-1 ; 3-2; 3-3) und andererseits mit der Bezugsschiene (T-) verbindbar sind.
3. System nach einem der Ansprüche 1 oder 2, wobei die Energiequellen (10) als
Stromquellen (10') ausgestaltet sind.
4. System nach einem der Ansprüche 1 oder 2, wobei die externen Energiequellen (10) Spannungsquellen (10") mit dazu jeweils in Reihe geschalteten zusätzlichen
Ladeinduktivitäten (1 1) umfassen, wobei Spannungswerte der Spannungsquellen (10") unterhalb der Spannungen des jeweils verbundenen Energieversorgungszweiges (3-1 ; 3- 2; 3-3) liegen, und wobei die Koppeleinheiten (6) in Verbindung mit den zusätzlichen Ladeinduktivitäten (11) als Hochsetzsteller betreibbar sind.
5. System nach einem der Ansprüche 1 bis 4, wobei die Energiequellen (10) als
Gleichstromquellen (10') bzw. Gleichspannungsquellen (10")ausgestaltet sind.
6. System nach einem der Ansprüche 1 bis 4, wobei die Energiequellen (10) als symmetrische Wechselstromsquellen (10') bzw. Wechselspannungsquellen (10") und die Koppeleinheiten (6) als Vollbrücken ausgestaltet sind.
7. System nach einem der Ansprüche 1 bis 4, wobei die Energiequellen (10) als unsymmetrische Wechselstromsquellen (10') bzw. Wechselspannungsquellen (10") und die Koppeleinheiten (6) als Vollbrücken ausgestaltet sind und wobei die elektrische Maschine (1) durch steuerbare Schaltelemente von den Energieversorgungszweigen (3-1 , 3-2, 3-3) abtrennbar ist.
8. Verfahren zum Betreiben eines Ladesystems nach einem der Ansprüche 1 bis 7, wobei Energiespeicherzellen (5) in allen Energieversorgungszweigen (3-1 , 3-2, 3-3) gleichzeitig geladen werden.
PCT/EP2011/074221 2011-02-09 2011-12-29 System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems WO2012107148A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/984,291 US20130320912A1 (en) 2011-02-09 2011-12-29 System for charging an energy store, and method for operating the charging system
EP11802766.3A EP2673863A1 (de) 2011-02-09 2011-12-29 System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
CN201180067108.7A CN103339819B (zh) 2011-02-09 2011-12-29 用于为储能器充电的系统和用于运行该充电系统的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011003863A DE102011003863A1 (de) 2011-02-09 2011-02-09 System zum Laden eines Energiespeichers und Verfahren zum Betrieb des Ladesystems
DE102011003863.9 2011-02-09

Publications (1)

Publication Number Publication Date
WO2012107148A1 true WO2012107148A1 (de) 2012-08-16

Family

ID=45422165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/074221 WO2012107148A1 (de) 2011-02-09 2011-12-29 System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems

Country Status (5)

Country Link
US (1) US20130320912A1 (de)
EP (1) EP2673863A1 (de)
CN (1) CN103339819B (de)
DE (1) DE102011003863A1 (de)
WO (1) WO2012107148A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10771001B2 (en) 2015-09-11 2020-09-08 Invertedpower Pty Ltd Controller for an inductive load having one or more inductive windings
US11479139B2 (en) 2015-09-11 2022-10-25 Invertedpower Pty Ltd Methods and systems for an integrated charging system for an electric vehicle
WO2018204965A1 (en) 2017-05-08 2018-11-15 Invertedpower Pty Ltd A vehicle charging station
CN109017352B (zh) * 2018-06-21 2021-04-23 重庆国翰能源发展有限公司 一种充电桩储能结构供电监控方法
WO2020104013A1 (en) * 2018-11-20 2020-05-28 Volvo Truck Corporation A battery system for a vehicle
CN115923539A (zh) * 2021-09-23 2023-04-07 沃尔沃汽车公司 具有偏移校正的电池控制

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341075A (en) * 1993-03-10 1994-08-23 A.C. Propulsion, Inc. Combined motor drive and battery recharge system
DE19736414A1 (de) * 1996-08-22 1998-03-05 Toyota Motor Co Ltd Elektromotorfahrzeug
US7782015B1 (en) * 2009-07-30 2010-08-24 Billy Joe Aaron Electric power system
DE102010027861A1 (de) 2010-04-16 2011-10-20 Sb Limotive Company Ltd. Koppeleinheit und Batteriemodul mit integriertem Pulswechselrichter und im Betrieb austauschbaren Zellmodulen
DE102010027857A1 (de) 2010-04-16 2011-10-20 Sb Limotive Company Ltd. Koppeleinheit und Batteriemodul mit integriertem Pulswechselrichter und erhöhter Zuverlässigkeit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3741171B2 (ja) * 1996-06-17 2006-02-01 株式会社安川電機 多重パルス幅変調方式の電力変換装置
JPH1066276A (ja) * 1996-08-21 1998-03-06 Japan Tobacco Inc 充電保護装置および充電装置
DE19923729A1 (de) * 1999-05-22 2000-11-23 Nokia Mobile Phones Ltd Schaltungsanordnung zum Prüfen der Funktionsbereitschaft mindestens einer Antenne
CN100521506C (zh) * 2007-02-02 2009-07-29 清华大学 带储能单元的多电平变频驱动装置
US8395280B2 (en) * 2010-02-16 2013-03-12 Infineon Technologies Ag Circuit arrangement including a multi-level converter
DE102010041075A1 (de) * 2010-09-20 2012-03-22 Robert Bosch Gmbh Systeme zum Laden eines Energiespeichers und Verfahren zum Betrieb der Ladesysteme
DE102010064317A1 (de) * 2010-12-29 2012-07-05 Robert Bosch Gmbh System zur Ankopplung mindestens einer Gleichstromquelle an einen steuerbaren Energiespeicher und zugehöriges Betriebsverfahren

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341075A (en) * 1993-03-10 1994-08-23 A.C. Propulsion, Inc. Combined motor drive and battery recharge system
DE19736414A1 (de) * 1996-08-22 1998-03-05 Toyota Motor Co Ltd Elektromotorfahrzeug
US7782015B1 (en) * 2009-07-30 2010-08-24 Billy Joe Aaron Electric power system
DE102010027861A1 (de) 2010-04-16 2011-10-20 Sb Limotive Company Ltd. Koppeleinheit und Batteriemodul mit integriertem Pulswechselrichter und im Betrieb austauschbaren Zellmodulen
DE102010027857A1 (de) 2010-04-16 2011-10-20 Sb Limotive Company Ltd. Koppeleinheit und Batteriemodul mit integriertem Pulswechselrichter und erhöhter Zuverlässigkeit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2673863A1

Also Published As

Publication number Publication date
EP2673863A1 (de) 2013-12-18
CN103339819A (zh) 2013-10-02
DE102011003863A1 (de) 2012-08-09
CN103339819B (zh) 2016-06-22
US20130320912A1 (en) 2013-12-05

Similar Documents

Publication Publication Date Title
EP2619842B1 (de) Energieversorgungsnetz und verfahren zum laden mindestens einer als energiespeicher für einen gleichspannungszwischenkreis dienenden energiespeicherzelle in einem energieversorgungsnetz
EP2673829B1 (de) Steuerbarer energiespeicher und verfahren zum betreiben eines steuerbaren energiespeichers
EP2619875B1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
EP2619874B1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
EP2673160B1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
EP2673860B1 (de) Laden eines energiespeichers
WO2012038174A2 (de) Verfahren zum einstellen einer soll-ausgangsspannung eines energieversorgungszweiges eines steuerbaren energiespeichers
EP2658738A2 (de) System zur ankopplung mindestens einer gleichstromquelle an einen steuerbaren energiespeicher und zugehöriges betriebsverfahren
EP2619892B1 (de) Systeme zum laden eines energiespeichers und verfahren zum betrieb der ladesysteme
EP2619893A2 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
EP2659566A2 (de) Steuerbarer energiespeicher und verfahren zum betreiben eines steuerbaren energiespeichers
WO2012107148A1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
WO2012038210A2 (de) Energieversorgungsnetz und verfahren zum laden mindestens einer als energiespeicher für einen gleichspannungszwischenkreis dienenden energiespeicherzelle in einem energieversorgungsnetz
EP2619873B1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
EP2619876B1 (de) Verfahren zum umladen von energie zwischen mindestens zwei energiespeicherzellen in einem steuerbaren energiespeicher
EP2673864B1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
WO2012038182A2 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
WO2012089397A2 (de) System zur ankopplung mindestens einer wechselstromquelle an einen steuerbaren energiespeicher und zugehöriges betriebsverfahren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11802766

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011802766

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13984291

Country of ref document: US