WO2012089397A2 - System zur ankopplung mindestens einer wechselstromquelle an einen steuerbaren energiespeicher und zugehöriges betriebsverfahren - Google Patents

System zur ankopplung mindestens einer wechselstromquelle an einen steuerbaren energiespeicher und zugehöriges betriebsverfahren Download PDF

Info

Publication number
WO2012089397A2
WO2012089397A2 PCT/EP2011/070108 EP2011070108W WO2012089397A2 WO 2012089397 A2 WO2012089397 A2 WO 2012089397A2 EP 2011070108 W EP2011070108 W EP 2011070108W WO 2012089397 A2 WO2012089397 A2 WO 2012089397A2
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
controllable
power supply
power source
source
Prior art date
Application number
PCT/EP2011/070108
Other languages
English (en)
French (fr)
Other versions
WO2012089397A3 (de
Inventor
Martin Kessler
Thorsten Mausbach
Peter Feuerstack
Erik Weissenborn
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2012089397A2 publication Critical patent/WO2012089397A2/de
Publication of WO2012089397A3 publication Critical patent/WO2012089397A3/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1492Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/40Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • Wind turbines as well as in vehicles such as hybrid or electric vehicles, increasingly electronic systems are used that combine new energy storage technologies with electric drive technology.
  • an electrical machine which z. B. is designed as a rotating field machine, controlled by a converter in the form of an inverter.
  • Characteristic of such systems is a so-called DC voltage intermediate circuit, via which an energy store, usually a battery, is connected to the DC side of the inverter.
  • an energy store usually a battery
  • multiple battery cells are connected in series. Since the power provided by such an energy store must flow through all the battery cells and a battery cell can only conduct a limited current, battery cells are often additionally connected in parallel in order to increase the maximum current.
  • Battery cell fails because then no battery power can flow. Such a failure of the energy storage can lead to a failure of the entire system. In a vehicle, failure of the traction battery can result in the vehicle "stalling". For other applications, such as. B. the rotor blade adjustment of
  • Wind turbines it may be in unfavorable conditions, such. B. strong Wnd, even come to safety-threatening situations. Therefore, it is always high Reliability of the energy storage, where "reliability" is the ability of a system to work for a given time error-free.
  • the battery module strands in this case have a plurality of battery modules connected in series, each battery module having at least one battery cell and an associated controllable coupling unit, which allows depending on control signals to interrupt the respective battery module strand or to bridge the respectively associated at least one battery cell or each assigned to switch at least one battery cell in the respective battery module string.
  • suitable activation of the coupling units e.g. with the help of pulse width modulation, suitable phase signals for controlling the electrical machine can be provided, so that on a separate
  • Pulse inverter can be dispensed with.
  • the required for controlling the electrical machine pulse inverter is so to speak integrated into the battery.
  • these two earlier applications are fully incorporated into the present application. If such batteries are to be used e.g. In electric vehicles, it should be noted that battery technologies available today significantly limit the range of electric vehicles.
  • the present invention provides a system for coupling at least one
  • Power supply of the electric machine can be used.
  • the system according to the invention is characterized in particular by an easily realizable and therefore cost-effective circuit topology.
  • Embodiment of the invention provides controllable switching elements, by means of which the at least one AC power source can be coupled to the individual power supply branches
  • the alternating current source in particular with the aid of the controllable switching elements, can be connected in parallel with the energy supply branches of the controllable energy store. If the current required by the electrical machine is above the value provided by the AC power source, the controllable energy store compensates for the difference. In the opposite case, the controllable energy storage takes on the difference, whereby energy storage cells of the controllable energy storage are charged by the AC power source.
  • Energy storage can be switched.
  • the difference between the desired voltage at the electrical machine and the voltage of the AC power source is available adjusted voltage.
  • phase voltages of the electric machine may be different from the phase voltages of the alternating current source both in terms of amplitude and frequency.
  • any other alternating current sources such as e.g. Any three-phase network, in particular the public network, are used.
  • Fig. 1 is a schematic representation of a first embodiment of a
  • FIGS. 1 and 2 show schematic representations of embodiments of a system according to the invention for coupling at least one AC power source to a controllable energy storage.
  • a controllable energy storage 2 is connected to a three-phase electric machine 1, a controllable energy storage 2 is connected.
  • the controllable energy store 2 comprises three power supply branches 3-1, 3-2 and 3-3, which on the one hand with a reference potential T- (reference rail), which leads in the illustrated embodiments, a low potential, and on the other hand in each case with individual phases U, V, W of the electric machine 1 are connected.
  • Each of the power supply branches 3-1, 3-2 and 3-3 has m series-connected energy storage modules 4-1 1 to 4-1m and 4-21 to 4-2m and 4-31 to 4-3m, respectively 2.
  • the energy storage modules 4 each comprise a plurality of series-connected electrical energy storage cells, which for reasons of clarity, only in that with the phase W of the electrical Machine 1 connected power supply branch 3-3 with reference numerals 5-31 to 5-3m are provided.
  • the energy storage modules 4 further comprise one each
  • the coupling units are each formed by four controllable switching elements 7-31 1, 7-312, 7-313 and 7-314 to 7-3m1, 7- 3m2, 7-3m3 and 7-3m4, which in shape a full bridge are connected.
  • the switching elements may be used as power semiconductor switches, e.g. in the form of IGBTs (Insulated Gate Bipolar Transistors) or as MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors).
  • the coupling units 6 make it possible to interrupt the respective power supply branch 3 by opening all switching elements 7 of a coupling unit 6.
  • Power supply branch 3 are switched, for. Close the switches 7-312 and 7-313.
  • Switching elements 7 of the coupling units 6 can be adjusted in stages. The grading results depending on the voltage of the individual
  • the coupling units 6 thus allow the phases U, V, W of the electrical
  • Energy storage 2 so far fulfills a dual function, since he on the one hand the electrical power supply on the other hand, but also the control of
  • the electric machine 1 is designed as a three-phase three-phase machine in the illustrated embodiments, but may also have fewer or more than three phases.
  • the number of power supply branches 3 in the controllable energy store 2 also depends on the number of phases of the electrical machine.
  • the coupling units 6 are each formed by four controllable switching elements 7 in the form of a full bridge, which also offers the possibility of a voltage reversal at the output of the energy storage module ..
  • the coupling units 6 can also by more or less
  • controllable switching elements be realized as long as the necessary functions
  • the coupling units can also be in the form of Hall bridges
  • an AC power source 9 can be connected to the individual power supply branches 3-1, 3-2, 3-3 of the controllable energy storage.
  • the alternating current source 9 in each case comprises a known per se
  • the range extender 13th can also any other AC power sources, such as an n-phase network, in particular the public network, with the power supply branches 3-1, 3-2, 3-3 are connected.
  • the phases of the AC power source 9 via controllable switching elements 16-1, 16-2 and 16-3 with the connecting lines between the power supply branches 3-1, 3-2 and 3-3 of the controllable energy storage 2 and the phases U and V or W of the electric machine 1 connected.
  • By closing the switching elements 16 a parallel connection of the AC power source 9 with the power supply branches 3 of the controllable energy storage device 2 is achieved in this way.
  • connection points A1 and A2 or A3 lie respectively on the side of the reference rail T- facing away from the directly connected to the reference rail T-
  • the difference between a desired phase voltage at the electric machine 1 and a voltage provided by the AC power source 9 is set.
  • the controllable energy storage 2 the AC power source 9 in the power supply of the electric machine.
  • connection points A1, A2 and A3 at a different location in the respective energy supply branch 3-1 or 3-2 or 3-3. If the AC power source 9 is also from the power supply branches. 3
  • Connection of the power supply branches 3-1, 3-2 and 3-3, can be used.
  • the phases of the AC power source 9 at the lower end of the power supply branches 3-1, 5 3-2 and 3-2 that is, in a region between the reference rail T- and

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Die Erfindung betrifft ein System zur Ankopplung mindestens einer Wechselstromquelle (9) an einen steuerbaren Energiespeicher (2), welcher der Steuerung und der elektrischen Energieversorgung einer n-phasigen elektrischen Maschine (1), mit n ≥1, dient. Dabei weist der steuerbare Energiespeicher (2) n parallele Energieversorgungszweige (3-1, 3-2, 3-3) auf, welche einerseits mit einer Bezugsschiene (T-) und andererseits mit jeweils einer Phase (U, V, W) der elektrischen Maschine (1) verbindbar sind. Mindestens eine n-phasige Wechselstromquelle (9) ist mit den einzelnen Energieversorgungszweigen (3-1, 3-2, 3-3) koppelbar.

Description

Beschreibung Titel
System zur Ankopplung mindestens einer Wechselstromquelle an einen steuerbaren Energiespeicher und zugehöriges Betriebsverfahren
Die Erfindung betrifft ein System zur Ankopplung mindestens einer Wechselstromquelle an einen steuerbaren Energiespeicher sowie ein Verfahren zum Betrieb des
erfindungsgemäßen Systems.
Stand der Technik Es zeichnet sich ab, dass in Zukunft sowohl bei stationären Anwendungen, wie z. B.
Windkraftanlagen, wie auch in Fahrzeugen, wie Hybrid- oder Elektrofahrzeugen, vermehrt elektronische Systeme zum Einsatz kommen, die neue Energiespeichertechnologien mit elektrischer Antriebstechnik kombinieren. In herkömmlichen Anwendungen wird eine elektrische Maschine, welche z. B. als Drehfeldmaschine ausgeführt ist, über einen Umrichter in Form eines Wechselrichters gesteuert. Kennzeichnend für derartige Systeme ist ein sogenannter Gleichspannungszwischenkreis, über welchen ein Energiespeicher, in der Regel eine Batterie, an die Gleichspannungsseite des Wechselrichters angeschlossen ist. Um die für eine jeweilige Anwendung gegebenen Anforderungen an Leistung und Energie erfüllen zu können, werden mehrere Batteriezellen in Serie geschaltet. Da der von einem derartigen Energiespeicher bereitgestellte Strom durch alle Batteriezellen fließen muss und eine Batteriezelle nur einen begrenzten Strom leiten kann, werden oft zusätzlich Batteriezellen parallel geschaltet, um den maximalen Strom zu erhöhen.
Die Serienschaltung mehrerer Batteriezellen bringt neben einer hohen Gesamtspannung das Problem mit sich, dass der gesamte Energiespeicher ausfällt, wenn eine einzige
Batteriezelle ausfällt, weil dann kein Batteriestrom mehr fließen kann. Ein solcher Ausfall des Energiespeichers kann zu einem Ausfall des Gesamtsystems führen. Bei einem Fahrzeug kann ein Ausfall der Antriebsbatterie zum "Liegenbleiben" des Fahrzeugs führen. Bei anderen Anwendungen, wie z. B. der Rotorblattverstellung von
Windkraftanlagen, kann es bei ungünstigen Rahmenbedingungen, wie z. B. starkem Wnd, sogar zu sicherheitsgefährdenden Situationen kommen. Daher ist stets eine hohe Zuverlässigkeit des Energiespeichers anzustreben, wobei mit "Zuverlässigkeit" die Fähigkeit eines Systems bezeichnet wird, für eine vorgegebene Zeit fehlerfrei zu arbeiten.
In den älteren Anmeldungen DE 10 2010 027857 und DE 10 2010 027861 sind Batterien mit mehreren Batteriemodulsträngen beschrieben, welche direkt an eine elektrische
Maschine anschließbar sind. Die Batteriemodulstränge weisen dabei eine Mehrzahl von in Serie geschalteten Batteriemodulen auf, wobei jedes Batteriemodul mindestens eine Batteriezelle und eine zugeordnete steuerbare Koppeleinheit aufweist, welche es erlaubt in Abhängigkeit von Steuersignalen den jeweiligen Batteriemodulstrang zu unterbrechen oder die jeweils zugeordnete mindestens eine Batteriezelle zu überbrücken oder die jeweils zugeordnete mindestens eine Batteriezelle in den jeweiligen Batteriemodulstrang zu schalten. Durch geeignete Ansteuerung der Koppeleinheiten, z.B. mit Hilfe von Pulsweitenmodulation, können auch geeignete Phasensignale zur Steuerung der elektrischen Maschine bereitgestellt werden, so dass auf einen separaten
Pulswechselrichter verzichtet werden kann. Der zur Steuerung der elektrischen Maschine erforderliche Pulswechselrichter ist damit sozusagen in die Batterie integriert. Zum Zwecke der Offenbarung werden diese beiden älteren Anmeldungen vollumfänglich in die vorliegende Anmeldung einbezogen. Sollen derartige Batterien z.B. in Elektrofahrzeugen eingesetzt werden, ist zu beachten, dass heute verfügbare Batterietechnologien die Reichweite der Elektrofahrzeuge erheblich limitieren.
Offenbarung der Erfindung
Die vorliegende Erfindung schafft ein System zur Ankopplung mindestens einer
Wechselstromquelle an einen steuerbaren Energiespeicher, welcher der Steuerung und der elektrischen Energieversorgung einer n-phasigen elektrischen Maschine, mit n >1 , dient. Der steuerbare Energiespeicher weist dabei n parallele Energieversorgungszweige auf, welche einerseits mit einer Bezugsschiene und andererseits mit jeweils einer Phase der elektrischen Maschine verbindbar sind. Zur Einspeisung von elektrischer Energie ist mindestens eine n-phasige Wechselstromquelle vorgesehen, welche mit den einzelnen Energieversorgungszweigen koppelbar ist. Die vorliegende Erfindung schafft außerdem ein Verfahren zum Betrieb eines
erfindungsgemäßen Systems, wobei zur Unterstützung der Energieversorgung der elektrischen Maschine und/oder zum Laden des steuerbaren Energiespeichers die mindestens eine Wechselstromquelle mit den einzelnen Energieversorgungszweigen des steuerbaren Energiespeichers gekoppelt wird.
Vorteile der Erfindung
Durch die erfindungsgemäße Ankopplung einer zusätzlichen Wechselstromquelle an den steuerbaren Energiespeicher ist es möglich, zusätzliche elektrische Energie zur
Verfügung zu stellen und auf diese Weise zum Beispiel die Reichweite eines
Elektrofahrzeugs erheblich zu verlängern. Die zur Verfügung gestellte Energie kann dabei je nach aktuellem Betriebszustand des steuerbaren Energiespeichers und der
elektrischen Maschine entweder zum Laden von Energiespeicherzellen der steuerbaren Energiequelle oder zur Unterstützung der steuerbaren Energiequelle bei der
Energieversorgung der elektrischen Maschine genutzt werden. Das erfindungsgemäße System zeichnet sich dabei insbesondere durch eine einfach realisierbare und damit kostengünstige Schaltungstopologie aus.
Um einen Betrieb der elektrischen Maschine und des steuerbaren Energiespeichers auch ohne Unterstützung der Wechselstromquelle zu ermöglichen, sind gemäß einer
Ausführungsform der Erfindung steuerbare Schaltelemente vorgesehen, mit deren Hilfe die mindestens eine Wechselstromquelle mit den einzelnen Energieversorgungszweigen koppelbar ist
Gemäß einer Ausführungsform der Erfindung ist die Wechselstromquelle, insbesondere mit Hilfe der steuerbaren Schaltelemente, parallel zu den Energieversorgungszweigen des steuerbaren Energiespeichers schaltbar. Liegt der von der elektrischen Maschine benötigte Strom über dem von der Wechselstromquelle zur Verfügung gestellten Wert, gleicht der steuerbare Energiespeicher die Differenz aus. Im umgekehrten Fall nimmt der steuerbare Energiespeicher die Differenz auf, wodurch Energiespeicherzellen des steuerbaren Energiespeichers durch die Wechselstromquelle geladen werden.
Eine ähnliche Wirkung kann erzielt werden, wenn die mindestens eine
Wechselstromquelle, insbesondere mit Hilfe der steuerbaren Schaltelemente, nicht parallel, sondern in Reihe zu den Energieversorgungszweigen des steuerbaren
Energiespeichers geschaltet werden kann. Über Energiespeicherzellen des steuerbaren Energiespeichers wird die Differenz zwischen der an der elektrischen Maschine gewünschten Phasenspannung und der von der Wechselstromquelle zur Verfügung gestellten Spannung eingestellt. Damit kann der steuerbare Energiespeicher die
Wechselstromquelle unterstützen oder die Energiespeicherzellen des steuerbaren Energiespeichers können mit Hilfe der Wechselstromquelle geladen werden. Dabei können die Phasenspannungen der elektrischen Maschine von den Phasenspannungen der Wechselstromquelle sowohl bezüglich Amplitude als auch Frequenz verschieden sein.
Eine besonders effiziente Energieeinspeisung bei hoher Verfügbarkeit lässt sich erreichen, wenn die Wechselstromquelle einen Reichweitenverlängerer (ränge extender) mit einem durch einen Verbrennungsmotor angetrieben Wechselstromgenerator umfasst.
Alternativ oder zusätzlich können aber auch beliebige andere Wechselstromquellen, wie z.B. ein beliebiges dreiphasiges Netz, insbesondere das öffentliche Netz, genutzt werden.
Eine weitere Ausführungsform der Erfindung sieht vor, dass die
Energieversorgungszweige des steuerbaren Energiespeichers jeweils mindestens zwei in Reihe geschaltete Energiespeichermodule aufweisen, welche jeweils mindestens eine elektrische Energiespeicherzelle mit einer zugeordneten steuerbaren Koppeleinheit umfassen, welche in Abhängigkeit von Steuersignalen die jeweils zugeordneten
Energiespeicherzellen überbrückt oder die jeweils zugeordneten Energiespeicherzellen in den jeweiligen Energieversorgungszweig schaltet. Durch eine derartige Ausgestaltung lässt sich die Doppelfunktion des steuerbaren Energiespeichers, nämlich Steuerung und Energieversorgung der elektrischen Maschine auf besonders einfache und effiziente Art realisieren. Bei einer derartigen Ausgestaltung des steuerbaren Energiespeichers besteht auch die
Möglichkeit, die Wechselstromquelle mit jeweils einem Anschlusspunkt in dem jeweiligen Energieversorgungszweig zu verbinden, wobei die jeweiligen Anschlusspunkte zwischen zwei Energiespeichermodulen des jeweiligen Energieversorgungszweiges liegen. Die Koppeleinheit mindestens eines zwischen dem jeweiligen Anschlusspunkt und der Bezugsschiene liegenden Energiespeichermoduls kann dabei jeweils als steuerbares
Schaltelement für den betreffenden Energieversorgungszweig genutzt werden. Dabei kann die gemeinsame Verbindung der Energieversorgungszweige mit Hilfe dieser Koppeleinheiten aufgetrennt werden und auf diese Weise die Wechselstromquelle in Reihe zu den darüber liegenden Energiespeichermodulen geschaltet werden. Auch diese Reihenschaltung stellt eine Kopplung der Wechselstromquelle mit den einzelnen
Energieversorgungszweigen im Sinne der Anmeldung dar. Da die Wechselstromquelle bei dieser Ausführungsform nur zu den zwischen dem jeweiligen Anschlusspunkt und den Phasen der elektrischen Maschine liegenden
Energiespeichermodulen in Serie geschaltet wird, ist es vorteilhaft, die Anschlusspunkte jeweils auf der, der Bezugsschiene abgewandten Seite des unmittelbar mit der
Bezugsschiene verbundenen Energiespeichermoduls vorzusehen, so dass bei
Ankopplung der Wechselstromquelle pro Energieversorgungszweig jeweils nur ein einziges Energiespeichermodul wirkungslos wird. Weitere Merkmale und Vorteile von Ausführungsformen der Erfindung ergeben sich aus der nachfolgenden Beschreibung mit Bezug auf die beigefügten Zeichnungen.
Kurze Beschreibung der Zeichnungen Es zeigen:
Fig. 1 eine schematische Darstellung einer ersten Ausführungsform eines
erfindungsgemäßen Systems zur Ankopplung mindestens einer
Wechselstromquelle an einen steuerbaren Energiespeicher und
Fig. 2 eine schematische Darstellung einer zweiten Ausführungsform eines
erfindungsgemäßen Systems zur Ankopplung mindestens einer
Wechselstromquelle an einen steuerbaren Energiespeicher. Die Figuren 1 und 2 zeigen schematische Darstellungen von Ausführungsformen eines erfindungsgemäßen Systems zur Ankopplung mindestens einer Wechselstromquelle an einen steuerbaren Energiespeicher. An eine dreiphasige elektrische Maschine 1 ist ein steuerbarer Energiespeicher 2 angeschlossen. Der steuerbare Energiespeicher 2 umfasst drei Energieversorgungszweige 3-1 , 3-2 und 3-3, welche einerseits mit einem Bezugspotential T- (Bezugsschiene), welches in den dargestellten Ausführungsformen ein niedriges Potential führt, und andererseits jeweils mit einzelnen Phasen U, V, W der elektrischen Maschine 1 verbunden sind. Jeder der Energieversorgungszweige 3-1 , 3-2 und 3-3 weist m in Reihe geschaltete Energiespeichermodule 4-1 1 bis 4-1 m bzw. 4-21 bis 4-2m bzw. 4-31 bis 4-3m auf, wobei m > 2. Die Energiespeichermodule 4 wiederum umfassen jeweils mehrere in Reihe geschaltete elektrische Energiespeicherzellen, welche aus Gründen der Übersichtlichkeit lediglich in dem mit der Phase W der elektrischen Maschine 1 verbundenen Energieversorgungszweig 3-3 mit Bezugszeichen 5-31 bis 5-3m versehen sind. Die Energiespeichermodule 4 umfassen des Weiteren jeweils eine
Koppeleinheit, welche den Energiespeicherzellen 5 des jeweiligen Energiespeichermoduls 4 zugeordnet ist. Aus Gründen der Übersichtlichkeit sind auch die Koppeleinheiten lediglich in dem Energieversorgungszweig 3-3 mit Bezugszeichen 6-31 bis 6-3m versehen. In den dargestellten Ausführungsvarianten werden die Koppeleinheiten 6 jeweils durch vier steuerbare Schaltelemente 7-31 1 , 7-312, 7-313 und 7-314 bis 7-3m1 , 7- 3m2, 7-3m3 und 7-3m4 gebildet, welche in Form einer Vollbrücke verschaltet sind. Die Schaltelemente können dabei als Leistungshalbleiterschalter, z.B. in Form von IGBTs (Insulated Gate Bipolar Transistors) oder als MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors), ausgeführt sein.
Die Koppeleinheiten 6 ermöglichen es, den jeweiligen Energieversorgungszweig 3, durch Öffnen aller Schaltelemente 7 einer Koppeleinheit 6 zu unterbrechen.
Alternativ können die Energiespeicherzellen 5 durch Schließen von jeweils zwei der Schaltelemente 7 einer Koppeleinheit 6 entweder überbrückt werden, z.B.
Schließen der Schalter 7-312 und 7-314 oder in den jeweiligen
Energieversorgungszweig 3 geschaltet werden, z.B. Schließen der Schalter 7-312 und 7-313.
Die Gesamt-Ausgangsspannungen der Energieversorgungszweige 3-1 bis 3-3
werden bestimmt durch den jeweiligen Schaltzustand der steuerbaren
Schaltelemente 7 der Koppeleinheiten 6 und können stufig eingestellt werden. Die Stufung ergibt sich dabei in Abhängigkeit von der Spannung der einzelnen
Energiespeichermodule 4. Geht man von der bevorzugten Ausführungsform
gleichartig ausgestalteter Energiespeichermodule 4 aus, so ergibt sich eine maximal mögliche Gesamt-Ausgangsspannung aus der Spannung eines einzelnen
Energiespeichermoduls 4 mal der Anzahl m der pro Energieversorgungszweig 3 in Reihe geschalteten Energiespeichermodule 4.
Die Koppeleinheiten 6 erlauben es damit, die Phasen U, V, W der elektrischen
Maschine 1 entweder gegen ein hohes Bezugspotential oder ein niedriges
Bezugspotential zu schalten und können insofern auch die Funktion eines
bekannten Wechselrichters erfüllen. Damit können Leistung und Betriebsart der elektrischen Maschine 1 bei geeigneter Ansteuerung der Koppeleinheiten 6 durch den steuerbaren Energiespeicher 2 gesteuert werden. Der steuerbare
Energiespeicher 2 erfüllt also insofern eine Doppelfunktion, da er einerseits der elektrischen Energieversorgung andererseits aber auch der Steuerung der
elektrischen Maschine 1 dient.
Die elektrische Maschine 1 weist Statorwicklungen 8-U, 8-V und 8-W auf, die in bekannter Weise in Sternschaltung miteinander verschaltet sind.
Die elektrische Maschine 1 ist in den dargestellten Ausführungsbeispielen als dreiphasige Drehstrommaschine ausgeführt, kann aber auch weniger oder mehr als drei Phasen aufweisen. Nach der Phasenanzahl der elektrischen Maschine richtet sich natürlich auch die Anzahl der Energieversorgungszweige 3 in dem steuerbaren Energiespeicher 2.
In den dargestellten Ausführungsbeispielen weist jedes Energiespeichermodul 4 jeweils mehrere in Reihe geschaltete Energiespeicherzellen 5 auf. Die
Energiespeichermodule 4 können aber alternativ auch jeweils nur eine einzige
Energiespeicherzelle oder auch parallel geschaltete Energiespeicherzellen
aufweisen.
In den dargestellten Ausführungsbeispielen werden die Koppeleinheiten 6 jeweils durch vier steuerbare Schaltelemente 7 in Form einer Vollbrücke gebildet, was auch die Möglichkeit einer Spannungsumkehr am Ausgang des Energiespeichermoduls bietet.. Die Koppeleinheiten 6 können aber auch durch mehr oder weniger
steuerbare Schaltelemente realisiert sein, solange die notwendigen Funktionen
(Überbrücken der Energieversorgungszellen und Schalten der
Energieversorgungszellen in den Energieversorgungszweig) realisierbar sind.
Insbesondere können die Koppeleinheiten auch in Form von Hallbrücken
ausgebildet sein. Derartige Ausführungsformen ergeben sich beispielhaft aus den älteren Anmeldungen DE 10 2010 027857 und DE 10 2010 027861. Zur Unterstützung der Energieversorgung der elektrischen Maschine 1 und/oder zum
Laden von Energiespeicherzellen 5 des steuerbaren Energiespeichers 2 kann eine Wechselstromquelle 9 mit den einzelnen Energieversorgungszweigen 3-1 , 3-2, 3-3 des steuerbaren Energiespeichers verbunden werden. Die Wechselstromquelle 9 umfasst dabei jeweils einen an sich bekannten
Reichweitenverlängerer 13 mit einem durch einen Verbrennungsmotor 14 angetrieben Wechselstromgenerator 15. Alternativ oder zusätzlich zu dem Reichweitenverlängerer 13 können auch beliebige andere Wechselstromquellen, wie z.B. ein n-phasiges Netz, insbesondere das öffentliche Netz, mit den Energieversorgungszweigen 3-1 , 3-2, 3-3 verbunden werden. Gemäß einer in Figur 1 dargestellten ersten Ausführungsform der Erfindung sind die Phasen der Wechselstromquelle 9 über steuerbare Schaltelemente 16-1 , 16-2 und 16-3 mit den Verbindungsleitungen zwischen den Energieversorgungszweigen 3-1 , 3-2 und 3-3 des steuerbaren Energiespeichers 2 und den Phasen U bzw. V bzw. W der elektrischen Maschine 1 verbunden. Durch Schließen der Schaltelemente 16 wird auf diese Weise eine Parallelschaltung der Wechselstromquelle 9 mit den Energieversorgungszweigen 3 des steuerbaren Energiespeichers 2 erreicht.
Die Regelung der Drehzahl des Wechselstromgenerators 15 erfolgt synchron zur elektrischen Maschine 1 über den Verbrennungsmotor 14. Liegt ein von der elektrischen Maschine 1 benötigter Strom über einem von der Wechselstromquelle 9 zur Verfügung gestellten Wert, gleicht der steuerbare Energiespeicher 2 die Differenz aus. Im
umgekehrten Fall nimmt der steuerbare Energiespeicher 2 die Differenz auf, wodurch Energiespeicherzellen 5 des steuerbaren Energiespeichers 2 durch die
Wechselstromquelle 9 geladen werden. Durch Verbinden der einzelnen Phasen der Wechselstromquelle 9 mit jeweils einem der Energieversorgungszweige 3-1 , 3-2, 3-3 des steuerbaren Energiespeichers kann somit einerseits eine Unterstützung der
Energieversorgung der elektrischen Maschine 1 und andererseits auch ein Laden des steuerbaren Energiespeichers 2 erreicht werden. Gemäß einer zweiten Ausführungsform der Erfindung, welche in Figur 2 dargestellt ist, sind die Phasen der Wechselstromquelle 9 mit jeweils einem Anschlusspunkt A1 bzw. A2 bzw. A3 in dem jeweiligen Energieversorgungszweig 3-1 bzw. 3-2 bzw. 3-3 verbunden. Die Anschlusspunkte A1. A2 und A3 liegen dabei jeweils auf der, der Bezugsschiene T- abgewandten Seite des unmittelbar mit der Bezugsschiene T- verbundenen
Energiespeichermoduls 4-1 m bzw. 4-2m bzw. 4-3m. Durch entsprechende Steuerung der
Schaltelemente 7 der diesen Energiespeichermodulen 4-1 m, 4-2m und 4-3m
zugeordneten Koppeleinheiten 6, z.B. Öffnen aller Schaltelemente 7, kann die
gemeinsame Verbindung der Energieversorgungszweige 3-1 , 3-2 und 3-3 aufgetrennt werden. Dadurch wird die Wechselstromquelle 9 in Reihe zu den zwischen den
Anschlusspunkten A1 , A2, A3 und den jeweiligen Phasen U bzw. V bzw. W der elektrischen Maschine 1 liegenden Energiespeichermodulen 4-1 1 bis 4-1 (m-1) bzw. 4-21 bis 4-2(m-1) bzw. 4-31 bis 4-3(m-1) geschaltet, was eine Kopplung der
Wechselstromquelle 9 mit den einzelnen Energieversorgungszweigen 3 darstellt.
Über die Energiespeicherzellen 5 der in Reihe mit der Wechselstromquelle 9 geschalteten 5 Energiespeichermodule 4 wird die Differenz zwischen einer an der elektrischen Maschine 1 gewünschten Phasenspannung und einer von der Wechselstromquelle 9 zur Verfügung gestellten Spannung eingestellt. Damit kann der steuerbare Energiespeicher 2 die Wechselstromquelle 9 bei der Energieversorgung der elektrischen Maschine 1
unterstützen oder die Energiespeicherzellen 5 des steuerbaren Energiespeichers 2 o können mit Hilfe der Wechselstromquelle 9 geladen werden.
Grundsätzlich ist es auch möglich die Anschlusspunkte A1 , A2 und A3 an einer anderen Stelle in dem jeweiligen Energieversorgungszweig 3-1 bzw. 3-2 bzw. 3-3 vorzusehen. Soll die Wechselstromquelle 9 dabei auch von den Energieversorgungszweigen 3
5 abkoppelbar sein, ist lediglich darauf zu achten, dass die Anschlusspunkte A1 , A2, A3 jeweils zwischen zwei Energiespeichermodulen 4 des jeweiligen
Energieversorgungszweiges 3 liegen, so dass zwischen dem Anschlusspunkt A und der Bezugsschiene T- jeweils zumindest noch ein Energiespeichermodul 4 liegt, dessen Koppeleinheit 6 als steuerbares Schaltelement zur Kopplung der Wechselstromquelle 9 o mit den Energieversorgungszweigen 3, das heißt also zur Auftrennung der gemeinsamen
Verbindung der Energieversorgungszweige 3-1 , 3-2 und 3-3, genutzt werden kann.
In einer nicht eigens dargestellten weiteren Ausführungsform ist es auch möglich, die Phasen der Wechselstromquelle 9 am unteren Ende der Energieversorgungszweige 3-1 , 5 3-2 und 3-2 , das heißt in einem Bereich zwischen der Bezugsschiene T- und den
unmittelbar daran angeschlossenen Energiespeichermodul 4-1 m bzw. 4-2m bzw. 4-3m anzuschließen. In diesem Fall können ähnlich zur ersten Ausführungsform wieder zusätzliche steuerbare Schaltelemente vorgesehen sein, die es erlauben, die
Wechselstromquelle 9 mit den Energieversorgungszweigen 3 zu koppeln, aber auch von 0 diesen zu trennen, so dass auch ein Betrieb ohne Unterstützung durch die
Wechselstromquelle 9 möglich ist.

Claims

Ansprüche 1. System zur Ankopplung mindestens einer Wechselstromquelle (9) an einen
steuerbaren Energiespeicher (2) mit
- dem steuerbaren Energiespeicher (2), welcher der Steuerung und der elektrischen Energieversorgung einer n-phasigen elektrischen Maschine (1), mit n >1 , dient, wobei der steuerbare Energiespeicher (2) n parallele Energieversorgungszweige (3-1 , 3-2, 3- 3) aufweist, welche
einerseits mit einer Bezugsschiene (T-) verbindbar sind und
andererseits mit jeweils einer Phase (U, V, W) der elektrischen Maschine (1) verbindbar sind, und
- mindestens einer n-phasigen Wechselstromquelle (9), welche mit den einzelnen
Energieversorgungszweigen (3-1 , 3-2, 3-3) koppelbar ist.
2. System nach Anspruch 1 , wobei die mindestens eine Wechselstromquelle mit Hilfe von steuerbaren Schaltelementen (16) mit den einzelnen Energieversorgungszweigen (3-1 , 3-
2, 3-3) koppelbar ist.
3. System nach einem der Ansprüche 1 oder 2, wobei die mindestens eine
Wechselstromquelle parallel zu den Energieversorgungszweigen (3-1 , 3-2, 3-3) des steuerbaren Energiespeichers (2) schaltbar ist.
4. System nach einem der Ansprüche 1 oder 2, wobei die mindestens eine
Wechselstromquelle in Reihe zu den Energieversorgungszweigen (3-1 , 3-2, 3-3) des steuerbaren Energiespeichers (2) schaltbar ist.
5. System nach einem der Ansprüche 1 bis 4, wobei die mindestens eine
Wechselstromquelle (9) als Reichweitenverlängerer (13) mit einem durch einen
Verbrennungsmotor (14) angetrieben Wechselstromgenerator (15) ausgestaltet ist.
6. System nach einem der Ansprüche 1 bis 4, wobei ein n-phasiges Netz,
insbesondere das öffentliche Netz, als Wechselstromquelle (9) dient.
7. System nach einem der vorhergehenden Ansprüche, wobei die
Energieversorgungszweige (3-1 , 3-2, 3-3) des steuerbaren ersten Energiespeichers (2) jeweils mindestens zwei in Reihe geschaltete Energiespeichermodule (4) aufweisen, welche jeweils mindestens eine elektrische Energiespeicherzelle (5) mit einer
zugeordneten steuerbaren Koppeleinheit (6) umfassen, welche in Abhängigkeit von Steuersignalen die jeweils zugeordneten Energiespeicherzellen (5) überbrückt oder die jeweils zugeordneten Energiespeicherzellen (5) in den jeweiligen
Energieversorgungszweig (3-1 , 3-2; 3-3) schaltet.
8. System nach Anspruch 7, wobei die mindestens eine Wechselstromquelle (9) mit jeweils einem Anschlusspunkt (A1 ; A2; A3) in dem jeweiligen Energieversorgungszweig (3-1 ; 3-2; 3-3) verbindbar ist, welcher zwischen zwei Energiespeichermodulen (4) des jeweiligen Energieversorgungszweiges (3-1 ; 3-2; 3-3) liegt, und wobei jeweils die
Koppeleinheit (6) mindestens eines zwischen dem jeweiligen Anschlusspunkt (A1 ; A2; A3) und der Bezugsschiene (T-) liegenden Energiespeichermoduls (4) als steuerbares Schaltelement genutzt wird.
9. System nach Anspruch 8, wobei die Anschlusspunkte (A1 ; A2; A3) jeweils auf der, der Bezugsschiene (T-) abgewandten Seite des unmittelbar mit der Bezugsschiene (T-) verbundenen Energiespeichermoduls (4-1 m; 4-2m; 4-3m) liegen.
10. Verfahren zum Betrieb eines Systems gemäß einem der Ansprüche 1 bis 9, wobei zur Unterstützung der Energieversorgung der elektrischen Maschine (1) und/oder zum Laden des steuerbaren Energiespeichers (2) die mindestens eine Wechselstromquelle (9) mit den einzelnen Energieversorgungszweigen (3-1 , 3-2, 3-3) des steuerbaren
Energiespeichers (2) gekoppelt wird.
PCT/EP2011/070108 2010-12-29 2011-11-15 System zur ankopplung mindestens einer wechselstromquelle an einen steuerbaren energiespeicher und zugehöriges betriebsverfahren WO2012089397A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010064314A DE102010064314A1 (de) 2010-12-29 2010-12-29 System zur Ankopplung mindestens einer Wechselstromquelle an einen steuerbaren Energiespeicher und zugehöriges Betriebsverfahren
DE102010064314.9 2010-12-29

Publications (2)

Publication Number Publication Date
WO2012089397A2 true WO2012089397A2 (de) 2012-07-05
WO2012089397A3 WO2012089397A3 (de) 2013-04-18

Family

ID=45047743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/070108 WO2012089397A2 (de) 2010-12-29 2011-11-15 System zur ankopplung mindestens einer wechselstromquelle an einen steuerbaren energiespeicher und zugehöriges betriebsverfahren

Country Status (2)

Country Link
DE (1) DE102010064314A1 (de)
WO (1) WO2012089397A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015121083A3 (de) * 2014-02-11 2016-03-31 Robert Bosch Gmbh Energieversorgungseinrichtung für ein elektrisch betreibbares fahrzeug und verfahren zum laden

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012207809A1 (de) 2012-05-10 2013-11-14 Robert Bosch Gmbh Reichweitenverlängerer, Antrieb und Kraftfahrzeug

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010027861A1 (de) 2010-04-16 2011-10-20 Sb Limotive Company Ltd. Koppeleinheit und Batteriemodul mit integriertem Pulswechselrichter und im Betrieb austauschbaren Zellmodulen
DE102010027857A1 (de) 2010-04-16 2011-10-20 Sb Limotive Company Ltd. Koppeleinheit und Batteriemodul mit integriertem Pulswechselrichter und erhöhter Zuverlässigkeit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670861A (en) * 1995-01-17 1997-09-23 Norvik Tractions Inc. Battery energy monitoring circuits
JP3741171B2 (ja) * 1996-06-17 2006-02-01 株式会社安川電機 多重パルス幅変調方式の電力変換装置
US7224132B2 (en) * 2004-01-22 2007-05-29 Wavecrest Laboratories, Llc. Portable range extender operable in automatic and manual modes
DE102005045107A1 (de) * 2005-09-21 2007-03-29 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Ladeverfahren zur Verlängerung der Lebensdauer von Batterien und Vorrichtung zur Durchführung desselben
DE102009000674A1 (de) * 2009-02-06 2010-08-12 Robert Bosch Gmbh Traktionsbatterie mit erhöhter Verfügbarkeit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010027861A1 (de) 2010-04-16 2011-10-20 Sb Limotive Company Ltd. Koppeleinheit und Batteriemodul mit integriertem Pulswechselrichter und im Betrieb austauschbaren Zellmodulen
DE102010027857A1 (de) 2010-04-16 2011-10-20 Sb Limotive Company Ltd. Koppeleinheit und Batteriemodul mit integriertem Pulswechselrichter und erhöhter Zuverlässigkeit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015121083A3 (de) * 2014-02-11 2016-03-31 Robert Bosch Gmbh Energieversorgungseinrichtung für ein elektrisch betreibbares fahrzeug und verfahren zum laden
US10106050B2 (en) 2014-02-11 2018-10-23 Robert Bosch Gmbh Power supply device for an electrically operable vehicle and charging method

Also Published As

Publication number Publication date
DE102010064314A1 (de) 2012-07-05
WO2012089397A3 (de) 2013-04-18

Similar Documents

Publication Publication Date Title
EP2619842B1 (de) Energieversorgungsnetz und verfahren zum laden mindestens einer als energiespeicher für einen gleichspannungszwischenkreis dienenden energiespeicherzelle in einem energieversorgungsnetz
EP2673829B1 (de) Steuerbarer energiespeicher und verfahren zum betreiben eines steuerbaren energiespeichers
EP2619874B1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
EP2673160B1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
EP2658738B1 (de) System zur ankopplung mindestens einer gleichstromquelle an einen steuerbaren energiespeicher und zugehöriges betriebsverfahren
EP2619894A2 (de) Verfahren zum einstellen einer soll-ausgangsspannung eines energieversorgungszweiges eines steuerbaren energiespeichers
EP2619875B1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
EP2659566B1 (de) Steuerbarer energiespeicher und verfahren zum betreiben eines steuerbaren energiespeichers
EP2673860B1 (de) Laden eines energiespeichers
DE102010064325A1 (de) System mit einer elektrischen Maschine
EP2619892B1 (de) Systeme zum laden eines energiespeichers und verfahren zum betrieb der ladesysteme
WO2012107148A1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
EP2673876B1 (de) Energiespeichereinrichtung für eine fremderregte elektrische maschine
WO2012038210A2 (de) Energieversorgungsnetz und verfahren zum laden mindestens einer als energiespeicher für einen gleichspannungszwischenkreis dienenden energiespeicherzelle in einem energieversorgungsnetz
WO2012107150A2 (de) System mit einer elektrisch erregten maschine
EP2619873B1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
WO2012089397A2 (de) System zur ankopplung mindestens einer wechselstromquelle an einen steuerbaren energiespeicher und zugehöriges betriebsverfahren
EP2673864B1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
WO2012038182A2 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11788407

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 11788407

Country of ref document: EP

Kind code of ref document: A2