WO2012036258A1 - 表面硬化層の測定方法及び測定装置 - Google Patents

表面硬化層の測定方法及び測定装置 Download PDF

Info

Publication number
WO2012036258A1
WO2012036258A1 PCT/JP2011/071192 JP2011071192W WO2012036258A1 WO 2012036258 A1 WO2012036258 A1 WO 2012036258A1 JP 2011071192 W JP2011071192 W JP 2011071192W WO 2012036258 A1 WO2012036258 A1 WO 2012036258A1
Authority
WO
WIPO (PCT)
Prior art keywords
propagation time
depth
peak
hardened layer
calibration curve
Prior art date
Application number
PCT/JP2011/071192
Other languages
English (en)
French (fr)
Inventor
有紗 柳原
稔 田上
渡辺 健一郎
佳範 石田
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2012534059A priority Critical patent/JPWO2012036258A1/ja
Priority to US13/822,555 priority patent/US9464889B2/en
Priority to KR1020137006611A priority patent/KR101501857B1/ko
Priority to EP11825256.8A priority patent/EP2618141A4/en
Priority to CA2810487A priority patent/CA2810487C/en
Publication of WO2012036258A1 publication Critical patent/WO2012036258A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • G01B17/025Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness for measuring thickness of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4436Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a reference signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4454Signal recognition, e.g. specific values or portions, signal events, signatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0251Solidification, icing, curing composites, polymerisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0423Surface waves, e.g. Rayleigh waves, Love waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver

Definitions

  • the present invention relates to a method and apparatus for measuring a surface hardened layer, and more particularly, to a method and apparatus for measuring the depth of a surface hardened layer by propagating surface waves to the surface hardened layer.
  • Solid materials are concerned about a reduction in strength and a decrease in abrasion resistance depending on the environment in which they are used, and it is generally practiced to form a hardened layer on the surface of the solid material as a countermeasure therefor.
  • the depth of the surface-hardened layer thus formed is an evaluation standard of mechanical properties such as strength and wear resistance of the part.
  • the technique disclosed in the above publication measures the rise time of the ultrasonic echo with respect to the surface wave when calculating the rate of sound velocity change, and a human error occurs in reading the rise time of the ultrasonic echo. It is not preferable because there is a fear that there is a concern in the process of calculating the depth of the surface hardened layer from the measurement error.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method and apparatus for measuring a surface-hardened layer capable of reducing the calculation error of the depth of the surface-hardened layer. It is to provide.
  • a plurality of groups having different carburized depths changed stepwise are provided in the method for measuring the depth of the surface hardened layer of a subject. Two specimens are produced at a time, and the depth of the surface hardened layer is measured by a destructive test for one of the plurality of groups, and the surface of the other specimen is measured.
  • the transmitting probe for transmitting the wave and the receiving probe for receiving the transmitted surface wave are disposed on the other object surface, and the surface transmitted from the transmitting probe by nondestructive inspection
  • the propagation time of at least the first peak in the first wave of the signal waveform acquired by receiving the wave with the receiving probe is measured, and the calibration curve is based on the depth of the surface hardened layer and the propagation time Forming a calibration curve on the surface of the object to be measured;
  • a waveform measurement process according to the nondestructive inspection wherein a cred probe and the receiving probe are disposed, and a surface wave transmitted from the transmitting probe is received by the receiving probe to acquire a signal waveform.
  • a propagation time acquiring step of acquiring a propagation time of at least a first peak of the first wave of the signal waveform acquired in the waveform measuring step, and the calibration curve preparing step based on the acquired propagation time.
  • a hardened layer depth estimation step of calculating the depth of the surface hardened layer of the object to be measured using the calibration curve.
  • the carburing depth is 0 among the plurality of groups having different carburized depths which are gradually changed.
  • An object is prepared as a standard object, the nondestructive inspection is performed on the standard object, the propagation time of at least the first peak in the first wave of the acquired signal waveform is measured, and the surface hardening is performed.
  • the calibration curve is created from the difference between the layer depth and the propagation time acquired from the other object and the propagation time acquired from the standard object, and in the hardened layer depth estimation step, the propagation time is acquired
  • the depth of the surface hardened layer of the object to be measured is calculated from the calibration curve using the propagation time difference obtained from the propagation time acquired in the step and the propagation time of the standard object. .
  • the calibration curve creating step the propagation time of the first peak and the second peak in the first wave is measured, and the surface A first calibration curve and a second calibration curve are created from the relationship based on the hardened layer depth and the propagation time, and stored in the computing device, and in the propagation time acquiring step, the first of the waveforms acquired in the waveform measuring step The propagation time of the first peak and the second peak in the wave is acquired, and in the hardened layer depth estimation step, surface hardening is performed based on the propagation time of the first peak using the first calibration curve. Measuring the first depth of the layer and measuring the second depth of the surface hardened layer based on the propagation time of the second peak using the second calibration curve, and The average value calculated from the second depth Characterized in that the estimate of the depth of the hardened layer.
  • the signal waveform obtained in the waveform measuring step is obtained by continuously obtaining measurement points at a predetermined sampling frequency
  • the first peak is an average value of two measurement points in the vicinity of the first peak in the first wave
  • the second peak is two points in the vicinity of the second peak in the first wave. It is characterized in that it is an average value of measurement points.
  • the calibration curve is approximated by an exponential function, and the coefficient of determination of the exponential function is 0.9 or more.
  • a range including the first peak and the second peak. Is set as a gate range.
  • the apparatus for measuring the surface hardened layer according to claim 7 is an apparatus for measuring the depth of the surface hardened layer of a subject, comprising: a transmission probe for transmitting a surface wave to the surface of the subject; and the transmission probe Probe movement for moving the receiving probe for receiving the surface wave transmitted from the child, and the transmitting probe and the receiving probe in a direction toward or away from the object , Waveform measuring means by nondestructive inspection for arranging a transmitting probe and the receiving probe by the probe moving means on the surface of the object and acquiring a signal waveform, and the waveform measuring means Propagation time acquisition means for acquiring the propagation time of at least the first peak of the first wave of the signal waveform acquired in step b, and two objects are prepared for each of a plurality of groups with different carburized depths which are changed stepwise Perform a destructive test on one of the plurality of groups.
  • Calibration curve creation means for creating a calibration curve based on the acquired surface hardening layer depth and the propagation time acquired by executing the waveform measurement means and the propagation time acquisition means for the other object, and the propagation time
  • a hardened layer depth estimation unit configured to calculate the depth of the surface hardened layer of the subject using the calibration curve generated by the calibration curve generation unit based on the propagation time acquired by the acquisition unit. It is characterized by
  • the carburing depth is 0 among the plurality of groups having different carburized depths which are gradually changed.
  • One object is prepared as a standard object, and the waveform measurement means and the propagation time acquisition means are executed to acquire the propagation time, and the depth of the surface hardened layer and the other object are acquired.
  • the calibration curve is created from the propagation time and the difference between the propagation times obtained from the standard object, and the hardened layer depth estimation means determines the propagation time of the object and the propagation time acquired by the propagation time acquisition means.
  • the depth of the surface hardened layer of the subject is calculated from the calibration curve using a difference from the propagation time of the standard subject.
  • the destruction test is performed on one of the two specimens for each of a plurality of groups in which the carburizing depth is changed stepwise.
  • the depth of the surface hardened layer is measured, and for the other object, the transmitting probe for transmitting the surface wave to the surface of the object and the receiving probe for receiving the transmitted surface wave are used.
  • the disposition time is measured, and the propagation time of the first peak in at least the first wave of the signal waveform acquired by nondestructive inspection is measured, and a calibration curve is created based on the depth of the surface hardened layer and the propagation time.
  • the transmission probe and the reception probe are disposed on the object to be measured to measure the propagation time of the surface wave, and at least the first peak of the first wave of the waveform acquired in the waveform measurement step And a hardened layer depth estimation step of calculating the depth of the surface hardened layer of the object to be measured using the calibration curve from the acquired propagation time.
  • the signal waveform is obtained by arranging the transmitting probe and the receiving probe on the surface of the object by the waveform measuring means by nondestructive inspection.
  • the propagation time of at least the first peak in the first wave of the waveform is acquired, and one of the two specimens prepared for each of a plurality of groups of different carburized depths which are stepwise changed
  • a calibration curve is created from the depth of the surface hardened layer obtained by the destructive inspection and the propagation time acquired by executing the waveform measuring means and the propagation time acquiring means on the other object. Then, the depth of the surface hardened layer of the subject is calculated using the calibration curve from the propagation time of the subject.
  • the reading error of the propagation time is reduced. It can be improved. Also, in the propagation time acquisition step, the propagation time reading error is reduced by acquiring not only the first peak in the first wave of the waveform acquired in the waveform measurement step but also the second peak, so that the reading error of the propagation time is reduced. The calculation accuracy of the hardened layer depth can be improved.
  • FIG. 2 is a partially enlarged view showing an outline of a surface wave propagating on the surface of a subject. It is a figure which shows an example of the signal waveform in embodiment of this invention. It is an enlarged view of the gate range set in FIG. 4A. It is a graph which shows an example of the calibration curve in the embodiment of the present invention. It is a flowchart which shows the measuring method in the modification of this invention. It is a graph which shows an example of the calibration curve in the modification of the present invention.
  • FIG. 1 is a schematic configuration view including a measuring device of a surface hardened layer according to the present invention.
  • the measuring device 1 of the surface hardened layer is, for example, a device for measuring the depth of the carburized hardened layer of the solid material subjected to the carburizing treatment, and evaluating the strength and the like of the solid material.
  • a transmission probe for transmitting an ultrasonic wave to the surface of the subject 2 and a reception probe for receiving the transmitted ultrasonic wave are integrally configured.
  • a probe 4 an ultrasonic measurement device 6 connected to the probe 4, an arithmetic processing unit 12 for processing data acquired by the probe 4 and setting regarding transmission and reception of ultrasonic waves, and the arithmetic processing device 12 and a monitor device 16 connected to the same.
  • a transmission probe 4 a and a reception probe 4 b are provided in the probe 4, and the transmission probe 4 a and the reception probe 4 b have sensitivity to ultrasonic waves propagating on the surface of the subject 2. It is arranged oppositely so that it can transmit and receive well.
  • the transmission probe 4 a and the reception probe 4 b are in contact with the surface of the subject 2 at a predetermined distance apart.
  • the ultrasonic measurement device 6 is provided with a probe moving means 10 for moving the probe 4 in a direction toward and away from the surface of the subject 2, and the probe moving means 10 is controlled by the arithmetic processing unit 12. Be done.
  • the arithmetic processing unit 12 is constituted by a central processing unit and a memory 14, the memory 14 is constituted including a RAM, a ROM and the like, and each program is stored in the memory 14.
  • the program includes a gate setting, and when the gate is set in a time range described later, a peak value in the set time range, a propagation time at the peak value, etc. are automatically acquired, and the monitoring device 16 Can be monitored together with the measurement results.
  • FIG. 2 is a flowchart showing a method of measuring the surface hardened layer, which is a procedure for measuring the depth of carburization formed on the subject 2, and will be described below based on the flowchart.
  • step S1 a subject 2 consisting of a plurality of groups in which the carburizing depth is changed stepwise is produced. Two specimens 2 are prepared for each group of different carburized depths, one is subjected to a destructive test, and the other is subjected to a nondestructive test. In addition, it is desirable that the two test subjects 2 of the carburization depth which is the same group are carburized together.
  • step S2 a Vickers hardness test of a cross section of a carburized layer, which is a destructive test, is performed on one subject 2 of two subjects 2 of the same carburized depth for each group having different carburized depths. The carburizing depth of the subject 2 is measured (calibration curve creation step).
  • step S3 as a nondestructive inspection, a probe is formed on the surface of the subject 2 with respect to the other subject 2 of the two subjects 2 of the same carburized depth for each group of different carburized depths. Abuts 4 and propagates ultrasonic waves on the surface of the subject 2 for a fixed distance (waveform measurement means), and measures the propagation time at the first and second peaks of the acquired signal waveform (calibration curve creation process, propagation time acquisition means).
  • FIG. 3 is a partially enlarged view showing an outline of the ultrasonic wave propagating on the surface of the subject 2, and the ultrasonic wave is transmitted from the transmission probe 4a of the probe 4 to the surface of the subject 2 and transmitted.
  • the ultrasonic wave propagates on the surface of the subject 2 as a surface wave and is received by the receiving probe 4b.
  • the signal waveform of the surface wave acquired by the probe 4b for reception is shown to FIG. 4A.
  • the gate range S is set by the arithmetic processing unit 12 so that the first peak P1 and the second peak P2 in the first wave of the signal waveform are included.
  • the propagation time in the maximum value, the minimum value, and the maximum value and the minimum value of the signal waveform in the gate range S is automatically acquired.
  • the signal waveform of the surface wave received by the receiving probe 4b is the signal waveform of the measurement point continuous at intervals according to the sampling frequency (predetermined sampling frequency) of the A / D converter (analog / digital converter) 8. Because the data is acquired, the measurement point is not necessarily acquired at the peak of the received signal waveform.
  • the propagation time T1 at the average value calculated by acquiring two points near the first peak P1 is propagated at the first peak P1.
  • the propagation time T2 in the mean value calculated by acquiring two points near the second peak P2 is acquired as the propagation time in the second peak P2.
  • the above step S3 may be performed a plurality of times to calculate the average value of the propagation times T1 and T2.
  • a calibration curve is created based on the measured carburized depth measured in the above step S2 and the propagation time obtained in the above step S3, and stored in the processing unit 12 (calibration curve creation step, calibration curve creation) means).
  • the propagation time T1 of the first peak P1 and the propagation time T2 of the second peak P2 corresponding to the measured carburized depth are respectively plotted. Since the physical quantity associated with carburization changes exponentially, create a calibration curve with an R 2 value that indicates the variation of each point plotted using an exponential function as a correlation function, that is, a coefficient of determination of 0.9 or more .
  • the calibration curve C1 represents the relationship between the actual carburization depth and the propagation time at the first peak P1
  • the calibration curve C2 represents the relationship between the actual carburization depth and the propagation time at the second peak P2.
  • the calibration curves C1 and C2 in FIG. 5 are prepared by setting the sampling frequency of the A / D converter 8 to 800 MHz and performing the above step S3 three times and using the average value of the measured propagation times FIG.
  • step S5 for the subject 2 whose carburization depth is unknown, a surface wave is propagated on the surface of the subject 2 by a predetermined distance using the probe 4 (waveform measuring step, waveform measuring means).
  • step S6 the propagation time T1 at the first peak P1 and the propagation time T2 at the second peak P2 of the signal waveform acquired in step S5 are measured (propagation time acquisition step, propagation time acquisition means).
  • the gate range S is set so that the first peak P1 and the second peak P2 in the first wave of the signal waveform are included in the arithmetic processing unit 12 in the same manner as step S1.
  • the maximum value, the minimum value, the propagation time T1 at the maximum value, and the propagation time T2 at the minimum value are automatically acquired.
  • the propagation time T1 obtains two points in the vicinity of the first peak P1 to calculate an average value, and the propagation time corresponding to the average value is acquired as the propagation time T1 in the first peak P1.
  • the propagation time T2 is acquired at two points in the vicinity of the second peak P2 to calculate an average value, and the propagation time corresponding to the average value is acquired as the propagation time T2 at the second peak P2.
  • step S7 using the calibration curve stored in the arithmetic processing unit 12 in step S4, the propagation time T1 in the first peak P1 measured in step S6 and the propagation time T2 in the second peak P2 are measured.
  • Carburized depth is estimated (hardened layer depth estimation step, hardened layer depth estimation means). Specifically, the carburization depth at the propagation time T1 at the first peak P1 is obtained from the calibration curve C1, and the carburization depth at the propagation time T2 at the second peak P2 is obtained from the calibration curve C2, respectively. The average value is taken as the estimated value of carburization depth.
  • the estimation accuracy of a subject whose carburization depth is unknown was investigated by the method described above.
  • As a result of measuring the carburizing depth in the Vickers hardness test for the subject it was 0.611 mm. Therefore, the measurement error was 0.05 mm, and the carburized depth could be accurately estimated.
  • two objects 2 of which the carburization depth is changed stepwise are prepared two by two, and the Vickers hardness test is performed on one object 2 of the two sets.
  • Carburizing depth is measured, and a surface wave is propagated for a fixed distance to each other object 2 to acquire a signal waveform, and the first peak P1 and the second peak P2 of the first wave of the signal waveform
  • the propagation times T1 and T2 at are measured, and calibration curves C1 and C2 are created from the measured carburization depth and the propagation time.
  • the surface wave is propagated for a fixed distance to the subject 2 whose carburization depth is unknown, and the propagation times T1 and T2 at the first peak P1 and the second peak P2 of the first wave of the acquired signal waveform are respectively Measure and estimate the carburized depth from the calibration curves C1 and C2.
  • the propagation time T1 at the first peak P1 in the first wave of the first wave of the signal waveform acquired by propagating the surface wave a certain distance and The measurement error of the propagation time can be reduced by measuring the propagation time T2 at the peak P2 of the above, so that the estimation accuracy of the carburized depth can be improved.
  • the calibration curve is created from the propagation times and the actual carburized depths obtained from the plurality of subjects 2 having different carburized depths, the estimation accuracy of the carburized depth can be improved.
  • the estimation accuracy can be improved.
  • the signal waveform is constituted by continuous measurement points of fine intervals converted by the sampling frequency of the A / D converter 8, and the signal intensity value of the first peak P1 is an average of two points near the first peak P1.
  • the signal strength value of the second peak P2 is the average value of two points near the second peak, and the propagation time corresponding to each average value is propagated at the first peak P1 and the second peak P2, respectively
  • the propagation time closer to the peak can be acquired, and the estimation accuracy of the carburized depth can be further improved.
  • the calibration curves C1 and C2 use an exponential function as a correlation function because the physical quantity accompanying carburization changes exponentially, and each point connecting the propagation time corresponding to the carburization depth has a determination coefficient
  • the modification of the said embodiment is demonstrated below.
  • the modification differs from the above embodiment in that a calibration curve is created using a standard object to estimate the carburized depth, and the other configurations are common, and therefore the description thereof will be omitted.
  • FIG. 6 is a flowchart showing a method of measuring the surface hardened layer, which will be described below based on the flowchart.
  • a subject 2 composed of a plurality of groups in which the carburizing depth is changed stepwise is produced.
  • the subject 2 one standard subject and two subjects 2 for each group having different carburized depths are prepared.
  • the standard subject is obtained by heat-treating the same solid material as the subject 2.
  • the standard specimen is a heat treatment material having a carburized depth of 0, which is given a heat history other than the carburizing step and the diffusion step of mixing carbon into a solid material.
  • the heat history other than the carburizing step and the diffusion step means, for example, heat treatment such as temperature raising, quenching, deep cooling, tempering, etc. for carburizing treatment.
  • the heat treatment material is used as the standard analyte because the properties of the solid material and the heat treatment material obtained by heat treatment of the solid material are largely different.
  • the properties of the heat-treated material also differ depending on the heating temperature and the cooling temperature, it is preferable that the standard specimen be produced in a heat treatment step substantially equal to the specimen 2 to be carburized.
  • step S12 the Vickers hardness test of the carburized layer cross section, which is a destructive test, is performed on one subject 2 of the two subjects 2 of the same carburized depth for each group of different carburized depths.
  • the carburizing depth of the subject 2 is measured (calibration curve creation step).
  • step S13 as a nondestructive test, the measurement of the propagation time for the other object 2 of the two objects 2 of the same group of carburized depths for each of the standard object and different carburized depth groups is measured respectively.
  • Perform (Calibration curve creation process, propagation time acquisition means).
  • the probe 4 is brought into contact with the surface of the standard object to propagate ultrasonic waves on the surface of the standard object for a certain distance, and the first and second peaks of the acquired signal waveform It measures the propagation time in The propagation time of the subject 2 is also measured in the same manner.
  • step S14 a calibration curve is created based on the measured carburized depth of the subject 2 measured in step S12 described above and the propagation time of the standard subject and the subject 2 acquired in step S13, and calculation processing is performed. It stores in the apparatus 12 (calibration curve creation process, calibration curve creation means). Specifically, for each of the first peak and the second peak of the acquired signal waveform, the propagation time difference between the propagation time of the subject 2 acquired in step S13 and the propagation time of the standard subject for each carburized depth A calibration curve is created from the determined propagation time differences and the measured carburized depths of the object 2 determined.
  • FIG. 7 As an example of a calibration curve is shown in FIG. 7, the propagation time differences of the first peak and the second peak corresponding to the measured carburized depth of the subject 2 are respectively plotted.
  • the calibration curve C'1 represents the relationship between the actual carburization depth at the first peak and the propagation time difference
  • the calibration curve C'2 represents the relationship between the actual carburization depth at the second peak and the propagation time difference.
  • the calibration curves C'1 and C'2 in FIG. 7 are created with the sampling frequency of the A / D converter 8 as 6 MHz.
  • step S15 for the subject 2 whose carburization depth is unknown, a surface wave is propagated on the surface of the subject 2 by a predetermined distance using the probe 4 (waveform measuring step, waveform measuring means) ).
  • step S16 the propagation time T1 at the first peak P1 and the propagation time T2 at the second peak P2 of the signal waveform acquired in step S15 are measured (propagation time acquisition step, propagation time acquisition means).
  • step S17 using the calibration curve generated in step S14, the propagation times at the first peak and the second peak of the subject 2 whose carburization depth is unknown obtained in steps S15 and S16 described above Based on the above, the carburized depth of the subject 2 whose carburized depth is unknown is estimated (hardened layer depth estimating step, hardened layer depth estimating means).
  • the propagation time of the first peak of the subject 2 whose carburization depth is unknown acquired in step S16 described above and the propagation time of the first peak of the standard analyte acquired in step S13 described above The time difference dT1 and the propagation time difference dT2 between the propagation time at the second peak of the subject 2 whose carburization depth is unknown and the propagation time at the second peak of the standard subject are respectively determined. Then, the carburization depth at the propagation time difference dT1 is obtained from the calibration curve C'1, and the carburization depth at the propagation time difference dT2 is obtained from the calibration curve C'2, and the obtained carburization depth average value is unknown. This is an estimated value of the carburized depth of the subject 2.
  • the estimation accuracy of a subject whose carburization depth is unknown was investigated by the method described above.
  • the carburized depth was estimated to be 0.465 mm as a result of estimating the carburized depth using the calibration curves C'1 and C'2 prepared by the method described above for the subject whose carburized depth is unknown .
  • the actually measured carburized depth was 0.486 mm. Therefore, the estimation error is -0.02 mm, and the carburized depth can be accurately estimated.
  • the calibration curves C'1 and C'2 are obtained from the difference in propagation time between the standard subject and the subject 2 with different carburized depths and the actually measured carburized depth of the subject 2 with different carburized depth. Create the difference between the propagation time of the subject 2 whose carburization depth is unknown and the propagation time of the standard subject for each of the first peak and the second peak, and propagate from the calibration curves C'1 and C'2. Estimate the carburization depth in the time difference.
  • a calibration curve is created from the propagation time difference between the subject 2 and the standard subject on the basis of the propagation time of the standard subject, and the carburized depth is estimated.
  • the influence of the temperature at the time of manufacturing and the measurer who measures the carburized depth of the subject 2 can be reduced, and the carburized depth can be determined more accurately.
  • the carburization depth of the subject can be more easily estimated.
  • the carburizing depth is estimated using the propagation time difference between the standard specimen and the specimen 2, but different types of lots although the solid material of the specimen is the same, that is, the alloy to be added
  • the lot type of the standard object is described as lot A
  • the lot A and the solid material are the same but different types of lots are described as lot B below.
  • Zero-point adjustment means preparing a standard analyte of lot B, measuring the propagation time Tb1 of the first peak and the propagation time Tb2 of the second peak of the standard analyte, and measuring the propagation times Tb1 and Tb2 Are corrected to match the propagation time Ta1 at the first peak of the standard analyte of lot A and the propagation time Ta2 at the second peak, respectively.
  • the propagation time Ta1 at the first peak of the standard analyte in lot A is 20 ⁇ s
  • the propagation time Tb1 at the first peak of the standard analyte in lot B is 21 ⁇ s
  • the propagation time between Ta1 and Tb1 is 1 ⁇ s. It will be off.
  • the deviation of 1 ⁇ s from the propagation time at the first peak measured from the subject 2b is corrected, and the carburized depth at the propagation time after correction is estimated from the calibration curve Cn1.
  • the propagation time Ta2 of the second peak of the standard analyte in lot A is 40 ⁇ s
  • the propagation time Tb2 of the second peak of the standard analyte in lot B is 42 ⁇ s
  • the propagation time is between Ta2 and Tb2 Are offset by 2 ⁇ s. Therefore, with 2 ⁇ s as the adjustment time at the second peak, the deviation of 2 ⁇ s from the propagation time at the second peak measured from the subject 2b is corrected, and the carburized depth at the propagation time after correction is estimated .
  • the carburization depth of a subject with unknown carburization depth was estimated using the calibration curves of different lots by the method described above.
  • the carburized depth of the object 2d of unknown carburized depth of lot D was estimated using a calibration curve based on the standard C of lot C and the propagation time of the object 2c.
  • the estimated carburized depth was 0.652 mm.
  • the estimation error is 0.05 mm, and it was possible to accurately estimate the carburized depth by performing zero-point adjustment even for objects of different lots.
  • the adjustment time is determined from the propagation time at the first peak of the standard subject for each lot type, and the carburization depth estimated value is adjusted to zero for a lot different from the lot used to create the calibration curve.
  • the propagation time acquired by creating the calibration curves C1 and C2 and estimating the carburized depth of the subject 2 whose carburization depth is unknown is a signal waveform acquired by propagating the surface wave to the subject 2
  • the first peak P1 and the second peak P2 may be acquired respectively, but only the first peak P1 in the first wave may be used, and the calibration curve for estimating the carburized depth may be only C1.
  • the estimation of the carburized depth has been described.
  • the present invention is not limited to this, and the present invention can be applied to measurement of the depth of the hardened layer other than carburization and thickness measurement of the plating layer.
  • the propagation time and the propagation time difference can be used as parameters of the vertical axis of the calibration curve used to estimate the carburization depth, but the invention is not limited thereto. It is also possible to use the rate, the speed of sound, the rate of change of sound speed, the speed of sound difference, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 段階的に変化させた浸炭深さの異なる複数の群毎に被検体を2体づつ作製し、これら複数の群毎に一方の被検体に対しては破壊検査による表面硬化層の深さの測定を行い、他方の被検体に対しては非破壊検査により取得した信号波形の第1波での少なくとも第1のピークの伝搬時間の測定を行い表面硬化層の深さと伝搬時間とに基づいて校正曲線を作成する校正曲線作成工程(S2,S3,S4)と、測定対象の被検体から信号波形を取得する波形測定工程(S5)と、取得した信号波形の第1波における少なくとも第1のピークの伝搬時間を取得する伝搬時間取得工程(S6)と、校正曲線により取得した伝搬時間に基づいて測定対象の被検体の表面硬化層の深さを算出する硬化層深さ推定工程(S7)とを備える。

Description

表面硬化層の測定方法及び測定装置
 本発明は、表面硬化層の測定方法及び測定装置に係り、詳しくは表面硬化層に表面波を伝搬して表面硬化層の深さを測定する測定方法及び測定装置に関するものである。
 固体材料は、使用される環境により強度の低下や耐摩耗性の低下が懸念され、それらの対策として固体材料の表面に硬化層を形成することが一般的に行われている。このように形成された表面硬化層の深さは、その部品の強度や耐摩耗性等の機械的性質の評価基準となる。
 従来、表面硬化層の深さを測定する方法として、破壊検査の1つであるビッカース硬さ試験という手法があるが、当該手法は被検体を切断して表面硬化層の深さを測定する方法であるため、製品となる固体材料自体を検査することができず、且つ検査時間を要するという問題もあり、非破壊検査による表面硬化層の深さを測定する手法が求められている。
 そこで、超音波を被検体の表面に伝搬し、表面硬化層深さを音速変化率により測定する超音波を使用した非破壊検査方法が知られている(特許文献1)。
特公平6-14026号公報
 しかしながら、上記公報に開示された技術は、音速変化率を算出する際に表面波に対する超音波エコーの立ち上がり時間を測定するものであり、超音波エコーの立ち上がり時間の読み取りには人的誤差が発生する恐れがあり、測定誤差から表面硬化層の深さを算出する過程での影響が懸念されるため好ましくない。
 本発明は、上述した課題を解決すべくなされたものであり、その目的とするところは、表面硬化層の深さの算出誤差を低減することの可能な表面硬化層の測定方法及び測定装置を提供することにある。
 上記の目的を達成するべく、請求項1の表面硬化層の測定方法は、被検体の表面硬化層の深さを測定する方法において、段階的に変化させた浸炭深さの異なる複数の群毎に被検体を2体づつ作製し、これら複数の群毎に、一方の被検体に対しては、破壊検査による表面硬化層の深さの測定を行い、他方の被検体に対しては、表面波を送信する送信用探触子と送信された表面波を受信する受信用探触子とを該他方の被検体表面に配置し、非破壊検査により前記送信用探触子から送信された表面波を前記受信用探触子で受信して取得した信号波形の第1波における少なくとも第1のピークの伝搬時間の測定を行い、前記表面硬化層の深さと前記伝搬時間とに基づいて校正曲線を作成する校正曲線作成工程と、測定対象である被検体の表面に前記送信用探触子及び前記受信用探触子を配置し、前記送信用探触子から送信した表面波を前記受信用探触子で受信して信号波形を取得する前記非破壊検査による波形測定工程と、該波形測定工程で取得した信号波形の第1波における少なくとも第1のピークの伝搬時間を取得する伝搬時間取得工程と、取得した前記伝搬時間に基づいて、前記校正曲線作成工程で作成した前記校正曲線を使用して前記測定対象の被検体の表面硬化層の深さを算出する硬化層深さ推定工程と、を備えることを特徴とする。
 請求項2の表面硬化層の測定方法では、請求項1において、前記校正曲線作成工程では、さらに、前記段階的に変化させた浸炭深さの異なる複数の群のうち、浸炭深さが0の被検体を標準被検体として1体作製し、前記非破壊検査を前記標準被検体に対して行い取得した信号波形の第1波における少なくとも第1のピークの伝搬時間の測定を行い、前記表面硬化層の深さと前記他方の被検体から取得された伝搬時間及び前記標準被検体から取得された伝搬時間の差とから前記校正曲線を作成し、前記硬化層深さ推定工程では、前記伝搬時間取得工程で取得された伝搬時間と前記標準被検体の伝搬時間とから求められる伝搬時間差を用いて、前記測定対象の被検体の表面硬化層の深さを前記校正曲線から算出することを特徴とする。
 請求項3の表面硬化層の測定方法では、請求項1または2において、前記校正曲線作成工程では、前記第1波における第1のピークと第2のピークとの伝搬時間を測定し、前記表面硬化層深さと該伝搬時間とに基づく関係から第1校正曲線と第2校正曲線を作成して演算装置に格納し、前記伝搬時間取得工程では、前記波形測定工程で取得した前記波形の第1波における第1のピークと第2のピークとの伝搬時間を取得し、前記硬化層深さ推定工程では、前記第1校正曲線を使用して前記第1のピークの伝搬時間に基づいて表面硬化層の第1の深さを測定するとともに前記第2校正曲線を使用して前記第2のピークの伝搬時間に基づいて表面硬化層の第2の深さを測定し、前記第1の深さと前記第2の深さとから算出された平均値を前記表面硬化層の深さの推定値とすることを特徴とする。
 請求項4の表面硬化層の測定方法では、請求項1乃至3のいずれかにおいて、前記波形測定工程で取得した信号波形は、所定のサンプリング周波数で測定点を連続して取得したものであり、前記第1のピークは、前記第1波における1番目のピーク近傍の2点の測定点の平均値であり、前記第2のピークは、前記第1波における2番目のピーク近傍の2点の測定点の平均値であることを特徴とする。
 請求項5の表面硬化層の測定方法では、請求項1乃至4のいずれかにおいて、前記校正曲線は指数関数で近似され、該指数関数の決定係数は0.9以上であることを特徴とする。
 請求項6の表面硬化層の測定方法では、請求項1乃至5のいずれかにおいて、前記校正曲線作成工程及び前記伝搬時間取得工程では、前記第1のピーク及び前記第2のピークが含まれる範囲をゲート範囲として設定することを特徴とする。
 請求項7の表面硬化層の測定装置は、被検体の表面硬化層の深さを測定する装置において、前記被検体の表面に表面波を送信する送信用探触子と、該送信用探触子から送信された表面波を受信する受信用探触子と、前記送信用探触子と前記受信用探触子とを前記被検体に対して接近、離間する方向に移動させる探触子移動手段と、前記被検体の表面に前記探触子移動手段により送信用探触子及び前記受信用探触子を配置して信号波形を取得する非破壊検査による波形測定手段と、該波形測定手段で取得した信号波形の第1波における少なくとも第1のピークの伝搬時間を取得する伝搬時間取得手段と、段階的に変化させた浸炭深さの異なる複数の群毎に被検体を2体づつ作製し、これら複数の群毎に、一方の被検体に対し破壊検査を行い取得した表面硬化層の深さと、他方の被検体に対し前記波形測定手段と前記伝搬時間取得手段とを実行し取得した伝搬時間とに基づいて校正曲線を作成する校正曲線作成手段と、前記伝搬時間取得手段により取得した前記伝搬時間に基づいて、前記校正曲線作成手段で作成した前記校正曲線を使用して前記被検体の表面硬化層の深さを算出する硬化層深さ推定手段と、を備えることを特徴とする。
 請求項8の表面硬化層の測定装置では、請求項7において、前記校正曲線作成手段では、さらに、前記段階的に変化させた浸炭深さの異なる複数の群のうち、浸炭深さが0の被検体を標準被検体として1体作製し、前記波形測定手段と前記伝搬時間取得手段とを実行して伝搬時間を取得し、前記表面硬化層の深さと、前記他方の被検体から取得された伝搬時間及び前記標準被検体から取得された伝搬時間の差とから前記校正曲線を作成し、前記硬化層深さ推定手段では、前記伝搬時間取得手段で取得された前記被検体の伝搬時間と前記標準被検体の伝搬時間との差を用いて、前記校正曲線から前記被検体の表面硬化層の深さを算出することを特徴とする。
 本発明の表面硬化層の測定方法によれば、段階的に浸炭深さを変化させた複数の群毎に2体づつ作製した被検体に対し、一方の被検体に対しては、破壊試験による表面硬化層の深さの測定を行い、他方の被検体に対しては、被検体表面に表面波を送信する送信用探触子と送信された表面波を受信する受信用探触子とを配置し、非破壊検査により取得した信号波形の少なくとも第1波における第1のピークの伝搬時間の測定を行い、表面硬化層の深さと伝搬時間とに基づいて校正曲線を作成する。そして、測定対象の被検体に送信用探触子及び受信用探触子を配置して表面波の伝搬時間を測定し、波形測定工程で取得した波形の第1波における少なくとも第1のピークの伝搬時間を取得した伝搬時間から校正曲線を使用して測定対象の被検体の表面硬化層の深さを算出する硬化層深さ推定工程とを備える。
 また、請求項6の表面硬化層の測定装置によれば、非破壊検査による波形測定手段により被検体の表面に送信用探触子及び受信用探触子を配置して信号波形を取得した信号波形の第1波における少なくとも第1のピークの伝搬時間を取得し、段階的に変化させた浸炭深さの異なる複数の群毎に2体づつ作製した被検体のうちの一方の被検体に対し破壊検査を行い取得した表面硬化層の深さと他方の被検体に対し波形測定手段と伝搬時間取得手段とを実行して取得した伝搬時間とから校正曲線を作成する。そして被検体の伝搬時間から校正曲線を用いて被検体の表面硬化層の深さを算出する。
 従って、測定対象の被検体から取得した波形の第1波における少なくとも第1のピークにおける伝搬時間を取得することにより、伝搬時間の読み取り誤差が低減するので、表面硬化層の深さの算出精度を向上させることができる。
 また、伝搬時間取得工程では波形測定工程で取得した波形の第1波における第1のピークのみならず第2のピークにおける伝搬時間も取得することにより、伝搬時間の読み取り誤差が低減するので、表面硬化層深さの算出精度を向上させることができる。
本発明に係る表面硬化層の測定装置の概略構成図である。 表面硬化層の測定方法を示すフローチャートである。 被検体の表面を伝搬する表面波の概要を示す部分拡大図である。 本発明の実施形態における信号波形の一例を示す図である。 図4Aで設定したゲート範囲の拡大図である。 本発明の実施形態における校正曲線の一例を示すグラフである。 本発明の変形例における測定方法を示すフローチャートである。 本発明の変形例における校正曲線の一例を示すグラフである。
 以下、本発明の実施形態について図面を参照しながら説明する。
 図1は、本発明に係る表面硬化層の測定装置を含む概略構成図である。
 表面硬化層の測定装置1は、例えば浸炭処理が行われた固体材料の浸炭硬化層の深さを測定し、当該固体材料の強度等を評価するための装置である。
 図1に示すように、測定装置1は、被検体2の表面に超音波を送信する送信用探触子と送信された超音波を受信する受信用探触子が一体となって構成された探触子4と、探触子4に接続された超音波測定装置6と、探触子4で取得したデータの処理や超音波の送受信に関する設定等を行う演算処理装置12と、演算処理装置12に接続されたモニタ装置16とを備える。
 探触子4内には送信用探触子4a、受信用探触子4bが設けられ、送信用探触子4a、受信用探触子4bは被検体2の表面を伝搬する超音波を感度良く送受信できるように対向して配置されている。送信用探触子4a、受信用探触子4bは、被検体2の表面に一定の距離離間させて当接されている。
 超音波測定装置6は、探触子4を被検体2の表面に接近及び離間する方向に移動させる探触子移動手段10を備えており、探触子移動手段10は演算処理装置12で制御される。
 演算処理装置12は中央演算処理装置やメモリ14により構成され、メモリ14はRAM、ROM等を含んで構成されており、メモリ14には各プログラムが格納されている。当該プログラムにはゲート設定が含まれており、後述する時間範囲にゲートを設定した場合は、設定した時間範囲内でのピーク値や当該ピーク値における伝搬時間等を自動で取得し、モニタ装置16で測定結果と共にモニタ可能である。
 このように構成された本発明に係る測定装置1の表面硬化層の測定方法について、以下に説明する。
 図2は、被検体2に形成された浸炭の深さを測定する手順である表面硬化層の測定方法を示すフローチャートであり、以下同フローチャートに基づいて説明する。
 ステップS1では、段階的に浸炭深さを変化させた複数の群からなる被検体2を作製する。異なる浸炭深さの群毎に被検体2を2個づつ作製し、一方を破壊試験に供し、他方を非破壊試験に供する。なお、同じ群である浸炭深さの2個の被検体2は、一緒に浸炭処理されたものであることが望ましい。
 ステップS2では、異なる浸炭深さの群毎に、同じ群の浸炭深さの2個の被検体2のうち一方の被検体2に対して、破壊検査である浸炭層断面のビッカース硬さ試験を行い、被検体2の浸炭深さを測定する(校正曲線作成工程)。
 ステップS3では、非破壊検査として、異なる浸炭深さの群毎に同じ群の浸炭深さの2個の被検体2のうち他方の被検体2に対して、被検体2の表面に探触子4を当接して被検体2の表面に超音波を一定距離伝搬させ(波形測定手段)、取得した信号波形の1、2番目のピークにおける伝搬時間を測定する(校正曲線作成工程、伝搬時間取得手段)。
 詳しくは、図3~図5に基づいて説明する。
 図3は被検体2の表面を伝搬する超音波の概要を示す部分拡大図であり、探触子4の送信用探触子4aから超音波が被検体2の表面に送信され、送信された超音波は表面波として被検体2の表面を伝搬して受信用探触子4bで受信される。
 受信用探触子4bで取得した表面波の信号波形を図4Aに示す。
 図4Aに示すように、信号波形の第1波における第1のピークP1及び第2のピークP2が入るようにゲート範囲Sを演算処理装置12で設定する。ゲート範囲Sを設定することで、ゲート範囲Sにおける信号波形の最大値、最小値、及び当該最大値、最小値における各伝搬時間が自動で取得される。
 受信用探触子4bで受信した表面波の信号波形は、A/D変換器(アナログ/デジタル変換器)8のサンプリング周波数(所定のサンプリング周波数)に応じた間隔で連続した測定点の信号波形としてデータが取得されるため、必ずしも受信した信号波形のピークに測定点が取得されるとは限らない。
 このため、図4Bに図4Aのゲート範囲Sの拡大図を示すように、第1のピークP1の近傍の2点を取得して算出した平均値における伝搬時間T1を第1のピークP1における伝搬時間、第2のピークP2近傍の2点を取得して算出した平均値における伝搬時間T2を第2のピークP2における伝搬時間として取得する。
 ここで、A/D変換器8のサンプリング周波数を高く設定して信号波形を変換することにより、測定点をより細かい間隔で取得して信号波形のピークに近い測定点を取得するようにするとよい。また、上記ステップS3を複数回行い、伝搬時間T1、T2の平均値を算出するようにしてもよい。
 続くステップS4では、上記ステップS2で測定した実測浸炭深さと、上記ステップS3で取得した伝搬時間とに基づいて校正曲線を作成し、演算処理装置12に格納する(校正曲線作成工程、校正曲線作成手段)。
 詳しくは図5に校正曲線の一例を示すように、実測浸炭深さに対応する第1のピークP1の伝搬時間T1、及び第2のピークP2の伝搬時間T2をそれぞれプロットする。浸炭に伴う物理量は指数関数的に変化するので、相関関数として指数関数を使用してプロットされた各点のばらつきを示すR2値、つまり決定係数が0.9以上となる校正曲線を作成する。図5では、校正曲線C1が第1のピークP1における実測浸炭深さと伝搬時間との関係、校正曲線C2が第2のピークP2における実測浸炭深さと伝搬時間との関係をそれぞれ表している。なお、図5の校正曲線C1,C2は、A/D変換器8のサンプリング周波数を800MHzとし、校正曲線は上記ステップS3を3回行い、測定した伝搬時間の平均値を使用して作成した場合の模式図である。
 続くステップS5では、浸炭深さが未知の被検体2に対して、探触子4を使用して被検体2の表面に表面波を一定距離伝搬させる(波形測定工程、波形測定手段)。
 ステップS6では、上記ステップS5で取得した信号波形の第1のピークP1における伝搬時間T1、及び第2のピークP2における伝搬時間T2をそれぞれ測定する(伝搬時間取得工程、伝搬時間取得手段)。
 詳しくは、上記ステップS1と同様に、演算処理装置12で信号波形の第1波における第1のピークP1及び第2のピークP2が入るようにゲート範囲Sを設定し、ゲート範囲Sにおける信号強度の最大値、最小値及び当該最大値における伝搬時間T1、最小値における伝搬時間T2を自動で取得する。伝搬時間T1は、第1のピークP1近傍の2点を取得して平均値を算出し、当該平均値に相当する伝搬時間を第1のピークP1における伝搬時間T1として取得される。同様に、伝搬時間T2は、第2のピークP2近傍の2点を取得して平均値を算出し、この平均値に相当する伝搬時間を第2のピークP2における伝搬時間T2として取得される。
 ステップS7では、上記ステップS4で演算処理装置12に格納した校正曲線を使用して、上記ステップS6で測定した第1のピークP1における伝搬時間T1、及び第2のピークP2における伝搬時間T2に基づいて浸炭深さを推定する(硬化層深さ推定工程、硬化層深さ推定手段)。
 詳しくは、第1のピークP1での伝搬時間T1における浸炭深さを校正曲線C1から、第2のピークP2での伝搬時間T2における浸炭深さを校正曲線C2からそれぞれ取得し、取得した値の平均値を浸炭深さの推定値とする。
 上述した方法で浸炭深さが未知の被検体の推定精度を調査した。
 浸炭深さが未知の被検体に対して当該校正曲線を使用して浸炭深さを推定した結果、0.565mmであった。
 一方、当該被検体に対してビッカース硬さ試験で浸炭深さを測定した結果、0.611mmであった。
 従って、測定誤差は0.05mmとなり、精度良く浸炭深さを推定することができた。
 このように、本実施形態では、段階的に浸炭深さを変化させた複数の被検体2を2体ずつ作製し、2組のうち一方の各被検体2に対してビッカース硬さ試験を行って浸炭深さを測定し、他方の各被検体2に対して表面波を一定距離伝搬させて信号波形を取得し、当該信号波形の第1波の第1のピークP1及び第2のピークP2における伝搬時間T1、T2をそれぞれ測定し、実測浸炭深さと伝搬時間とから校正曲線C1、C2を作成する。そして、浸炭深さが未知の被検体2に対して表面波を一定距離伝搬し、取得した信号波形の第1波の第1のピークP1及び第2のピークP2における伝搬時間T1、T2をそれぞれ測定し、校正曲線C1、C2から浸炭深さを推定する。
 従って、校正曲線の作成及び浸炭深さが未知の被検体2の推定において、表面波を一定距離伝搬させて取得した信号波形の第1波における第1のピークP1における伝搬時間T1、及び第2のピークP2における伝搬時間T2を測定することにより、伝搬時間の読み取り誤差を低減することができるので、浸炭深さの推定精度を向上させることができる。
 また、校正曲線は複数の浸炭深さの異なる被検体2から取得した伝搬時間と実測浸炭深さとから作成されるので、浸炭深さの推定精度を向上させることができる。
 さらに、複数の校正曲線C1、C2からそれぞれ取得した浸炭深さの平均値を浸炭深さの推定値とするので、推定精度を向上させることができる。
 また、信号波形はA/D変換器8のサンプリング周波数で変換された細かい間隔の連続した測定点で構成され、第1のピークP1の信号強度値は第1のピークP1近傍の2点の平均値、第2のピークP2の信号強度値は第2のピーク近傍の2点の平均値であって、各平均値に相当する伝搬時間をそれぞれ第1のピークP1、第2のピークP2における伝搬時間T1、T2として演算処理装置12に出力することにより、よりピークに近い伝搬時間を取得することができ、浸炭深さの推定精度をより向上させることができる。
 また、第1のピークP1及び第2のピークP2が入るようにゲート範囲Sを設定して伝搬時間T1、T2を自動で取得することにより、伝搬時間T1、T2の読み取り誤差が低減するので、浸炭深さの推定精度が向上すると共に、浸炭深さの推定に要する時間を短縮することができる。
 そして、校正曲線C1、C2は、浸炭に伴う物理量が指数関数的に変化することから相関関数には指数関数を使用すると共に、浸炭深さに対応する伝搬時間を結ぶ各点は、決定係数が0.9以上となる指数関数で近似されることにより、当該指数関数は各点との近似が非常に良好であるので推定誤差をより低減することができ、浸炭深さの推定に要する時間を短縮することができる。
<変形例>
 上記実施形態の変形例について以下に説明する。この変形例では上記実施形態に対して標準被検体を用いて校正曲線を作成し、浸炭深さを推定するという点が異なっており、その他の構成は共通しているので説明は省略する。
 図6は、表面硬化層の測定方法を示すフローチャートであり、以下同フローチャートに基づいて説明する。
 ステップS11では、段階的に浸炭深さを変化させた複数の群からなる被検体2を作製する。ここでは被検体2として、標準被検体を1個、異なる浸炭深さの群毎に2個ずつの被検体2を作製する。標準被検体は、被検体2と同じ固体材料を熱処理したものである。
 標準被検体とは、固体材料に炭素を混入する浸炭工程及び拡散工程以外の熱履歴を付与した、浸炭深さが0の熱処理材のことである。ここで浸炭工程及び拡散工程以外の熱履歴とは、例えば浸炭処理のための昇温、焼き入れ、深冷、焼き戻し等の熱処理のことである。
 標準被検体として熱処理材を用いるのは、固体材料と固体材料を熱処理した熱処理材とでは性質が大きく異なるためである。また、加熱温度や冷却温度によっても熱処理材の性質が異なることから、標準被検体は浸炭処理される被検体2と略等しい熱処理工程で作製されるのが好ましい。
 ステップS12では、異なる浸炭深さの群毎に、同じ群の浸炭深さの2個の被検体2のうち一方の被検体2に対して、破壊検査である浸炭層断面のビッカース硬さ試験を行い、被検体2の浸炭深さを測定する(校正曲線作成工程)。
 続くステップS13では、非破壊検査として標準被検体及び異なる浸炭深さの群毎に同じ群の浸炭深さの2個の被検体2のうち他方の被検体2に対して伝搬時間の測定をそれぞれ行う(校正曲線作成工程、伝搬時間取得手段)。測定方法は上述したステップS3と同様に、標準被検体の表面に探触子4を当接して標準被検体の表面に超音波を一定距離伝搬させ、取得した信号波形の1、2番目のピークにおける伝搬時間を測定するものである。被検体2についても同様の方法で伝搬時間を測定する。
 ステップS14では、上述したステップS12で測定された被検体2の実測浸炭深さと、上記ステップS13で取得された標準被検体及び被検体2の伝搬時間とに基づいて校正曲線を作成し、演算処理装置12に格納する(校正曲線作成工程、校正曲線作成手段)。
 詳しくは、取得した信号波形の第1のピーク及び第2のピーク毎に、上記ステップS13で取得された被検体2の伝搬時間と標準被検体の伝搬時間との伝搬時間差を浸炭深さ毎に求め、求めた各伝搬時間差と被検体2の各実測浸炭深さとから校正曲線を作成する。
 図7に校正曲線の一例を示すように、被検体2の実測浸炭深さに対応する第1のピーク及び第2のピークの伝搬時間差をそれぞれプロットする。図7では、校正曲線C’1が第1のピークにおける実測浸炭深さと伝搬時間差との関係、校正曲線C’2が第2のピークにおける実測浸炭深さと伝搬時間差との関係をそれぞれ表している。なお、図7の校正曲線C’1、C’2は、A/D変換器8のサンプリング周波数を6MHzとして作成したものである。
 図6に戻り、ステップS15では、浸炭深さが未知の被検体2に対して、探触子4を用いて被検体2の表面に表面波を一定距離伝搬させる(波形測定工程、波形測定手段)。
 ステップS16では、上記ステップS15で取得した信号波形の第1のピークP1における伝搬時間T1、及び第2のピークP2における伝搬時間T2をそれぞれ測定する(伝搬時間取得工程、伝搬時間取得手段)。
 ステップS17では、上記ステップS14で作成された校正曲線を用いて、上述したステップS15、S16で取得された浸炭深さが未知の被検体2の第1のピーク及び第2のピークにおける各伝搬時間に基づいて、浸炭深さが未知の被検体2の浸炭深さを推定する(硬化層深さ推定工程、硬化層深さ推定手段)。
 詳しくは、上述したステップS16で取得された浸炭深さが未知の被検体2の第1のピークにおける伝搬時間と上記ステップS13で取得された標準被検体の第1のピークにおける伝搬時間との伝搬時間差dT1、及び浸炭深さが未知の被検体2の第2のピークにおける伝搬時間と標準被検体の第2のピークにおける伝搬時間との伝搬時間差dT2をそれぞれ求める。そして、伝搬時間差dT1における浸炭深さを校正曲線C’1から、伝搬時間差dT2における浸炭深さを校正曲線C’2からそれぞれ取得し、取得した浸炭深さの平均値を浸炭深さが未知の被検体2の浸炭深さの推定値とする。
 上述した方法で浸炭深さが未知の被検体の推定精度を調査した。
 浸炭深さが未知の被検体に対して上述した方法で作成した校正曲線C’1、C’2を用いて浸炭深さを推定した結果、推定された浸炭深さは0.465mmであった。一方、当該被検体をビッカース硬さ試験で浸炭深さを測定した結果、実測浸炭深さは0.486mmであった。従って推定誤差は-0.02mmとなり、精度よく浸炭深さを推定することができた。
 このように本実施例では、標準被検体及び異なる浸炭深さの被検体2の伝搬時間の差と異なる浸炭深さの被検体2の実測浸炭深さとから校正曲線C’1、C’2を作成し、第1のピーク及び第2のピーク毎に浸炭深さが未知の被検体2の伝搬時間と標準被検体の伝搬時間との差を求め、校正曲線C’1、C’2から伝搬時間差における浸炭深さを推定する。
 従って、標準被検体の伝搬時間を基準として、被検体2と標準被検体との伝搬時間差から校正曲線を作成して浸炭深さを推定するので、被検体2の測定状況、例えば被検体2を作製する際の温度や、被検体2の浸炭深さを測定する測定者等による影響が低減され、より精度よく浸炭深さを求めることができる。
 また、浸炭深さを推定した後に測定状況の影響をなくすための補正を行う必要はないので、より容易に被検体の浸炭深さを推定することができる。
 なお、本実施例では標準被検体と被検体2との伝搬時間差を用いて浸炭深さを推定しているが、被検体の固体材料が同じであるものの異なる種類のロット、即ち添加される合金元素が異なるロットの浸炭深さを推定する場合に、校正曲線から推定された浸炭深さを補正するようにしてもよい。
 詳しくは、標準被検体のロットの種類をロットA、ロットAと固体材料は同じだが異なる種類のロットをロットBとして以下に説明する。
 ロットAの標準被検体及び被検体2aとして作成した第1のピークに対応する校正曲線Cn1及び第2のピークに対応する校正曲線Cn2を用いてロットBを被検体とする未知の浸炭深さの被検体2bの浸炭深さを推定すると、ロットが異なるために推定誤差が大きくなる。そのため、校正曲線Cn1、Cn2から推定された被検体2bの浸炭深さの0点調整を行う。
 0点調整とは、ロットBの標準被検体を作製し、その標準被検体の第1のピークの伝搬時間Tb1及び第2のピークの伝搬時間Tb2を測定し、測定された伝搬時間Tb1、Tb2をロットAの標準被検体の第1のピークにおける伝搬時間Ta1及び第2のピークにおける伝搬時間Ta2に合うようにそれぞれ補正することである。例えば、ロットAの標準被検体の第1のピークにおける伝搬時間Ta1が20μs、ロットBの標準被検体の第1のピークにおける伝搬時間Tb1が21μsであったとすると、伝搬時間Ta1、Tb1間は1μsずれていることになる。従って第1のピークでは1μsを調整時間として、被検体2bから測定された第1のピークにおける伝搬時間から1μsのずれを補正し、補正後の伝搬時間における浸炭深さを校正曲線Cn1から推定する。同様に、例えばロットAの標準被検体の第2のピークにおける伝搬時間Ta2が40μs、ロットBの標準被検体の第2のピークにおける伝搬時間Tb2が42μsであったとすると、伝搬時間Ta2、Tb2間は2μsずれていることになる。従って第2のピークでは2μsを調整時間として、被検体2bから測定された第2のピークにおける伝搬時間から2μsのずれを補正し、補正後の伝搬時間における浸炭深さを校正曲線Cn2から推定する。
 上述した方法で、異なるロットの校正曲線を用いて未知の浸炭深さの被検体の浸炭深さを推定した。
 ロットCの標準被検体及び被検体2cの伝搬時間に基づく校正曲線を用いてロットDの未知の浸炭深さの被検体2dの浸炭深さを推定した。推定された浸炭深さは0.652mmであった。ここで被検体2dの0点調整を行うと、0点調整後の推定浸炭深さは0.535mmであった。一方、被検体2dの実測浸炭深さは0.487mmであった。従って推定誤差は0.05mmであり、異なるロットの被検体でも0点調整を行うことによって浸炭深さを精度よく推定することができた。
 このように、ロットの種類毎に標準被検体の第1のピークにおける伝搬時間から調整時間を求めて、校正曲線の作成に用いたロットとは異なるロットについて浸炭深さの推定値を0点調整することによって、同じ固体材料でも異なるロットの浸炭深さを精度よく推定することができる。
 以上で実施形態の説明を終えるが、本発明は上述した実施形態に限定されるものではない。
 例えば、上記実施形態では、校正曲線C1、C2の作成及び浸炭深さが未知の被検体2の浸炭深さ推定で取得する伝搬時間は、被検体2に表面波を伝搬して取得した信号波形の第1のピークP1及び第2のピークP2についてそれぞれ取得しているが、第1波における第1のピークP1のみとし、浸炭深さを推定するための校正曲線をC1のみとしてもよい。
 また、上記実施形態では浸炭深さの推定について説明したが、これに限られず、本発明は浸炭以外の硬化層深さの測定や鍍金層の厚さ測定等にも適用可能である。
 さらに、上記実施形態及び上記変形例では、浸炭深さの推定に用いる校正曲線の縦軸のパラメータとして伝搬時間や伝搬時間差を用いることができるとしているが、これに限られず、例えば伝搬時間の変化率としてもよいし、音速、音速変化率、音速差等を用いることも可能である。
  1 測定装置
  4 探触子
  6 超音波測定装置
  8 A/D変換器
 10 探触子移動手段
 12 演算処理装置
 14 メモリ

Claims (8)

  1.  被検体の表面硬化層の深さを測定する方法において、
     段階的に変化させた浸炭深さの異なる複数の群毎に被検体を2体づつ作製し、これら複数の群毎に、一方の被検体に対しては、破壊検査による表面硬化層の深さの測定を行い、他方の被検体に対しては、表面波を送信する送信用探触子と送信された表面波を受信する受信用探触子とを該他方の被検体表面に配置し、非破壊検査により前記送信用探触子から送信された表面波を前記受信用探触子で受信して取得した信号波形の第1波における少なくとも第1のピークの伝搬時間の測定を行い、前記表面硬化層の深さと前記伝搬時間とに基づいて校正曲線を作成する校正曲線作成工程と、
     測定対象である被検体の表面に前記送信用探触子及び前記受信用探触子を配置し、前記送信用探触子から送信した表面波を前記受信用探触子で受信して信号波形を取得する前記非破壊検査による波形測定工程と、
     該波形測定工程で取得した信号波形の第1波における少なくとも第1のピークの伝搬時間を取得する伝搬時間取得工程と、
     取得した前記伝搬時間に基づいて、前記校正曲線作成工程で作成した前記校正曲線を使用して前記測定対象の被検体の表面硬化層の深さを算出する硬化層深さ推定工程と、
    を備えることを特徴とする表面硬化層の測定方法。
  2.  前記校正曲線作成工程では、さらに、前記段階的に変化させた浸炭深さの異なる複数の群のうち、浸炭深さが0の被検体を標準被検体として1体作製し、前記非破壊検査を前記標準被検体に対して行い取得した信号波形の第1波における少なくとも第1のピークの伝搬時間の測定を行い、前記表面硬化層の深さと前記他方の被検体から取得された伝搬時間及び前記標準被検体から取得された伝搬時間の差とから前記校正曲線を作成し、
     前記硬化層深さ推定工程では、前記伝搬時間取得工程で取得された伝搬時間と前記標準被検体の伝搬時間とから求められる伝搬時間差を用いて、前記測定対象の被検体の表面硬化層の深さを前記校正曲線から算出することを特徴とする請求項1に記載の表面硬化層の測定方法。
  3.  前記校正曲線作成工程では、前記第1波における第1のピークと第2のピークとの伝搬時間を測定し、前記表面硬化層深さと該伝搬時間とに基づく関係から第1校正曲線と第2校正曲線を作成して演算装置に格納し、
     前記伝搬時間取得工程では、前記波形測定工程で取得した前記波形の第1波における第1のピークと第2のピークとの伝搬時間を取得し、
     前記硬化層深さ推定工程では、前記第1校正曲線を使用して前記第1のピークの伝搬時間に基づいて表面硬化層の第1の深さを測定するとともに前記第2校正曲線を使用して前記第2のピークの伝搬時間に基づいて表面硬化層の第2の深さを測定し、前記第1の深さと前記第2の深さとから算出された平均値を前記表面硬化層の深さの推定値とすることを特徴とする、請求項1または2に記載の表面硬化層の測定方法。
  4.  前記波形測定工程で取得した信号波形は、所定のサンプリング周波数で測定点を連続して取得したものであり、
     前記第1のピークは、前記第1波における1番目のピーク近傍の2点の測定点の平均値であり、
     前記第2のピークは、前記第1波における2番目のピーク近傍の2点の測定点の平均値であることを特徴とする、請求項1乃至3のいずれかに記載の表面硬化層の測定方法。
  5.  前記校正曲線は指数関数で近似され、該指数関数の決定係数は0.9以上であることを特徴とする、請求項1乃至4のいずれかに記載の表面硬化層の測定方法。
  6.  前記校正曲線作成工程及び前記伝搬時間取得工程では、前記第1のピーク及び前記第2のピークが含まれる範囲をゲート範囲として設定することを特徴とする、請求項1乃至5のいずれかに記載の表面硬化層の測定方法。
  7.  被検体の表面硬化層の深さを測定する装置において、
     前記被検体の表面に表面波を送信する送信用探触子と、
     該送信用探触子から送信された表面波を受信する受信用探触子と、
     前記送信用探触子と前記受信用探触子とを前記被検体に対して接近、離間する方向に移動させる探触子移動手段と、
     前記被検体の表面に前記探触子移動手段により送信用探触子及び前記受信用探触子を配置して信号波形を取得する非破壊検査による波形測定手段と、
     該波形測定手段で取得した信号波形の第1波における少なくとも第1のピークの伝搬時間を取得する伝搬時間取得手段と、
     段階的に変化させた浸炭深さの異なる複数の群毎に被検体を2体づつ作製し、これら複数の群毎に、一方の被検体に対し破壊検査を行い取得した表面硬化層の深さと、他方の被検体に対し前記波形測定手段と前記伝搬時間取得手段とを実行し取得した伝搬時間とに基づいて校正曲線を作成する校正曲線作成手段と、
     前記伝搬時間取得手段により取得した前記伝搬時間に基づいて、前記校正曲線作成手段で作成した前記校正曲線を使用して前記被検体の表面硬化層の深さを算出する硬化層深さ推定手段と、
    を備えることを特徴とする表面硬化層の測定装置。
  8.  前記校正曲線作成手段では、さらに、前記段階的に変化させた浸炭深さの異なる複数の群のうち、浸炭深さが0の被検体を標準被検体として1体作製し、前記波形測定手段と前記伝搬時間取得手段とを実行して伝搬時間を取得し、前記表面硬化層の深さと、前記他方の被検体から取得された伝搬時間及び前記標準被検体から取得された伝搬時間の差とから前記校正曲線を作成し、
     前記硬化層深さ推定手段では、前記伝搬時間取得手段で取得された前記被検体の伝搬時間と前記標準被検体の伝搬時間との差を用いて、前記校正曲線から前記被検体の表面硬化層の深さを算出することを特徴とする請求項7に記載の表面硬化層の測定装置。
PCT/JP2011/071192 2010-09-16 2011-09-16 表面硬化層の測定方法及び測定装置 WO2012036258A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012534059A JPWO2012036258A1 (ja) 2010-09-16 2011-09-16 表面硬化層の測定方法及び測定装置
US13/822,555 US9464889B2 (en) 2010-09-16 2011-09-16 Method and apparatus for measuring hardened surface layer
KR1020137006611A KR101501857B1 (ko) 2010-09-16 2011-09-16 표면경화층의 측정방법 및 측정장치
EP11825256.8A EP2618141A4 (en) 2010-09-16 2011-09-16 METHOD AND DEVICE FOR MEASURING A LAYER WITH SURFACE CURING
CA2810487A CA2810487C (en) 2010-09-16 2011-09-16 Method and apparatus for measuring hardened surface layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-207975 2010-09-16
JP2010207975 2010-09-16

Publications (1)

Publication Number Publication Date
WO2012036258A1 true WO2012036258A1 (ja) 2012-03-22

Family

ID=45831711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071192 WO2012036258A1 (ja) 2010-09-16 2011-09-16 表面硬化層の測定方法及び測定装置

Country Status (6)

Country Link
US (1) US9464889B2 (ja)
EP (1) EP2618141A4 (ja)
JP (1) JPWO2012036258A1 (ja)
KR (1) KR101501857B1 (ja)
CA (1) CA2810487C (ja)
WO (1) WO2012036258A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10036733B2 (en) * 2015-04-13 2018-07-31 Zf Friedrichshafen Ag Hardness verification utilizing ultrasonic velocities

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031009A (ja) * 1983-07-29 1985-02-16 Nippon Steel Corp 鋳片凝固厚み測定装置
JPS62277554A (ja) * 1986-05-27 1987-12-02 Hitachi Constr Mach Co Ltd 超音波による表面硬化層深さの測定方法
JP2003329657A (ja) * 2002-05-15 2003-11-19 Koyo Seiko Co Ltd 金属材料の疲労測定方法
JP2004333388A (ja) * 2003-05-09 2004-11-25 Koyo Seiko Co Ltd 超音波伝播速度測定方法およびそれを用いた固体表層部状態測定方法
JP2008256575A (ja) * 2007-04-06 2008-10-23 Sumitomo Metal Ind Ltd 硬化層の深さを計測する方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3789869T2 (de) * 1987-06-08 1994-12-22 Hitachi Construction Machinery Verfahren zur messung der tiefe von oberflächenunebenheitsfehlern eines festen materials unter verwendung von ultraschallwellen.
DE4315794C2 (de) * 1993-05-13 1995-09-21 Nukem Gmbh Verfahren und Vorrichtung zur zerstörungsfreien Prüfung von Gegenständen mit Ultraschall
GB2306648B (en) * 1993-09-28 1997-09-10 Defelsko Corp High resolution ultrasonic thickness gauge
JP3035820B2 (ja) * 1998-03-30 2000-04-24 アンリツ株式会社 アクセスプローブ測定装置
JP4425690B2 (ja) * 2004-04-28 2010-03-03 新日本製鐵株式会社 スパイラル鋼管の外周長測定方法及びその装置並びにスパイラル鋼管の製造方法及びその設備
JP2006084447A (ja) * 2004-09-17 2006-03-30 Toyota Motor Corp 超音波非破壊計測方法及びそれに用いる超音波非破壊計測装置
US7900516B2 (en) * 2006-07-11 2011-03-08 Central Research Institute Of Electric Power Industry Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
KR20090040699A (ko) * 2007-10-22 2009-04-27 (주)피코소닉 초음파 두께측정기의 측정범위 연장 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031009A (ja) * 1983-07-29 1985-02-16 Nippon Steel Corp 鋳片凝固厚み測定装置
JPS62277554A (ja) * 1986-05-27 1987-12-02 Hitachi Constr Mach Co Ltd 超音波による表面硬化層深さの測定方法
JPH0614026B2 (ja) 1986-05-27 1994-02-23 日立建機株式会社 超音波による表面硬化層深さの測定方法
JP2003329657A (ja) * 2002-05-15 2003-11-19 Koyo Seiko Co Ltd 金属材料の疲労測定方法
JP2004333388A (ja) * 2003-05-09 2004-11-25 Koyo Seiko Co Ltd 超音波伝播速度測定方法およびそれを用いた固体表層部状態測定方法
JP2008256575A (ja) * 2007-04-06 2008-10-23 Sumitomo Metal Ind Ltd 硬化層の深さを計測する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2618141A4 *

Also Published As

Publication number Publication date
KR101501857B1 (ko) 2015-03-18
US20130231884A1 (en) 2013-09-05
JPWO2012036258A1 (ja) 2014-02-03
CA2810487A1 (en) 2012-03-22
EP2618141A4 (en) 2014-03-19
EP2618141A1 (en) 2013-07-24
US9464889B2 (en) 2016-10-11
CA2810487C (en) 2017-02-21
KR20130045394A (ko) 2013-05-03

Similar Documents

Publication Publication Date Title
JP2017078699A (ja) 残留応力評価方法
KR101656377B1 (ko) 초음파를 이용한 열화 평가 및 강도 추정 장치, 그리고 이를 이용한 열화 평가 및 강도 추정 방법
CN109724727B (zh) 燃气轮机曲面叶片残余应力测量方法及其装置
WO2018190042A1 (ja) 残留応力測定方法
JP6018630B2 (ja) 鋼部材、特に歯車の肌焼又は窒化の有効深さを求める装置及び方法
KR101814462B1 (ko) 초음파를 이용한 항복강도 측정 장치 및 방법
WO2012036258A1 (ja) 表面硬化層の測定方法及び測定装置
JP4746365B2 (ja) 表面検査方法
JP4673686B2 (ja) 表面検査方法およびその表面検査装置
Men et al. Research on the method of quantitative evaluating material hardness and tensile strength by critically refracted longitudinal wave
JP2019060740A (ja) 温度測定方法
JP2006084447A (ja) 超音波非破壊計測方法及びそれに用いる超音波非破壊計測装置
JP2001343365A (ja) 金属薄板の厚み共振スペクトル測定方法及び金属薄板の電磁超音波計測方法
JPH0614026B2 (ja) 超音波による表面硬化層深さの測定方法
KR101566009B1 (ko) 누적 초음파 비선형 파라미터를 이용한 열화 평가 장치 및 이의 열화 평가 방법
JP2017032478A (ja) 残留応力評価方法
JP2012189352A (ja) 表面を伝播する超音波の音速測定装置と方法
JP5163877B2 (ja) 焼入れ部品の検査方法および検査装置
RU2406993C1 (ru) Способ определения механических свойств металлических образцов
JP2006170719A (ja) 塑性域寸法測定方法
CN117074525A (zh) 一种双相梯度结构金属材料硬度分布无损测定方法
Stevenson et al. Velocity compensation and practical aspects for high-temperature ultrasonic testing
JP5747666B2 (ja) 焼入れ鋼のオーバーヒート検出方法
JP2000088818A (ja) 表面改質層の品質評価方法
CN109632540A (zh) 一种测量合金钢表层硬度的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825256

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012534059

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2810487

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20137006611

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011825256

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13822555

Country of ref document: US