WO2012035745A1 - ワイヤレス給電装置およびワイヤレス給電システム - Google Patents

ワイヤレス給電装置およびワイヤレス給電システム Download PDF

Info

Publication number
WO2012035745A1
WO2012035745A1 PCT/JP2011/005117 JP2011005117W WO2012035745A1 WO 2012035745 A1 WO2012035745 A1 WO 2012035745A1 JP 2011005117 W JP2011005117 W JP 2011005117W WO 2012035745 A1 WO2012035745 A1 WO 2012035745A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless power
bridge circuit
frequency
coil
switch
Prior art date
Application number
PCT/JP2011/005117
Other languages
English (en)
French (fr)
Inventor
祐樹 圓藤
古川 靖夫
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to JP2012533857A priority Critical patent/JPWO2012035745A1/ja
Priority to KR1020137009609A priority patent/KR20130106840A/ko
Priority to CN2011800446125A priority patent/CN103141008A/zh
Publication of WO2012035745A1 publication Critical patent/WO2012035745A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the present invention relates to wireless power feeding technology.
  • Wireless (non-contact) power transmission has attracted attention as a power feeding technique for electronic devices such as mobile phone terminals and notebook computers, or electric vehicles.
  • Wireless power transmission is mainly classified into three types: an electromagnetic induction type, a radio wave reception type, and an electric field / magnetic field resonance type.
  • the electromagnetic induction type is used in a short distance (within several centimeters) and can transmit several hundred watts of power in a band of several hundred kHz or less.
  • the power use efficiency is about 60-98%.
  • a radio wave receiving type is used.
  • the radio wave reception type can transmit power of several watts or less in the medium wave to microwave band, but the power use efficiency is low.
  • An electric field / magnetic field resonance type is attracting attention as a method of supplying power at a relatively high efficiency over a medium distance of several meters (see Non-Patent Document 1).
  • FIG. 1A is a diagram illustrating an example of a wireless power feeding system.
  • the wireless power feeding system 1100 includes a wireless power feeding device 1200 and a wireless power receiving device 1300.
  • Wireless power supply apparatus 1200 includes a transmission coil L T1, resonance capacitor C T and the AC power source 10.
  • AC power source 10 generates an electric signal (drive signal) S2 having a transmission frequency f 1.
  • the resonance capacitor CT and the transmission coil LT1 constitute a resonance circuit, and the resonance frequency is tuned to the frequency of the electric signal S2.
  • a power signal S1 is transmitted from the transmission coil LT1 .
  • the wireless power receiver 1300 includes a receiving coil L R1, resonance capacitor C R and the load circuit 20.
  • the resonance capacitor C R , the reception coil L R1 and the load circuit 20 constitute a resonance circuit, and the resonance frequency is tuned to the frequency of the power signal S1.
  • the variable capacitor includes a plurality of capacitors C and a plurality of switches SW for switching them.
  • the variable capacitor shown in FIG. 1B has a problem that when the number of switching stages of the capacitance value is increased, the number of components such as capacitors and switches increases, and the circuit area and cost increase.
  • the present invention has been made in view of the above problems, and one of the exemplary purposes of an aspect thereof is to provide a wireless power feeding system in which an increase in the number of parts is suppressed.
  • An aspect of the present invention relates to a wireless power feeding apparatus that transmits a power signal including any one of an electric field, a magnetic field, and an electromagnetic field.
  • the wireless power feeding apparatus includes a bridge circuit including a plurality of switches, a control unit that performs switching control of the plurality of switches of the bridge circuit at a first frequency that is a transmission frequency, and a resonance antenna that is connected to the bridge circuit, A resonance coil including a transmission coil for transmitting a power signal and a resonance capacitor provided in series with the transmission coil, the resonance frequency of which is a second frequency equal to or higher than the first frequency.
  • the control unit is configured to be able to adjust the length of the dead time in which all the plurality of switches are simultaneously turned off.
  • the resonance state can be realized by optimizing the length of the dead time without changing the resonance frequency of the resonance antenna. That is, the configuration for changing the resonant frequency of the resonant antenna is not required, and the number of components can be reduced.
  • the control unit may set the length of the dead time so that the coil current flowing through the transmission coil partially resonates with the resonant antenna.
  • the control unit may turn off the plurality of switches at the timing when the coil current flowing through the transmission coil becomes zero.
  • the bridge circuit may include a half bridge circuit.
  • the bridge circuit may include a full bridge circuit.
  • This wireless power supply system includes the wireless power supply apparatus according to any one of the above aspects, and a wireless power reception apparatus that receives a power signal transmitted from the wireless power supply apparatus.
  • the circuit area can be reduced.
  • FIGS. 1A and 1B are diagrams illustrating an example of a wireless power feeding system. It is a circuit diagram which shows the structure of the wireless electric power feeding system which concerns on embodiment.
  • FIG. 3 is a waveform diagram illustrating an operation of the wireless power supply apparatus of FIG. 2. It is a circuit diagram which shows the structural example of a bridge circuit.
  • FIG. 5 is a waveform diagram showing an operation when the bridge circuit of FIG. 4 is used.
  • FIG. 9A and 9B are circuit diagrams illustrating the operation of the wireless power receiving apparatus of FIG. It is a wave form diagram which shows operation
  • FIG. 9 is an equivalent circuit diagram of the wireless power supply system of FIG. 8. It is a time chart which shows operation
  • the state in which the member A is connected to the member B means that the member A and the member B are electrically connected in addition to the case where the member A and the member B are physically directly connected. It includes the case of being indirectly connected through another member that does not affect the connection state.
  • the state in which the member C is provided between the member A and the member B refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as an electrical condition. It includes the case of being indirectly connected through another member that does not affect the connection state.
  • FIG. 2 is a circuit diagram showing a configuration of the wireless power feeding system 100 according to the first embodiment.
  • the wireless power feeding system 100 includes a wireless power feeding device 200 and a wireless power receiving device 300.
  • the wireless power receiving apparatus 300 receives the power signal S1 transmitted from the wireless power supply apparatus 200.
  • the wireless power receiving apparatus 300 includes a receiving coil L R , a resonance capacitor C R , and a load circuit 20.
  • Resonance capacitor C R forms a resonant circuit together with the receiving coil L R.
  • the resonant frequency of the resonant circuit is tuned to the power signal S1.
  • Receiving coil L R receives power signal S1 from the wireless power supply apparatus 200.
  • the receiving coil L R, the induced current (resonance current) I R flows in response to the power signal S1, the wireless power receiving device 300 draws power from the induced current.
  • the load circuit 20 is a circuit that operates by receiving power supply from the wireless power supply apparatus 200, and its use and configuration are not limited.
  • the wireless power supply apparatus 200 transmits a power signal S1 to the wireless power receiving apparatus 300.
  • a near field (electric field, magnetic field, or electromagnetic field) of an electromagnetic wave that is not a radio wave is used as the power signal S1.
  • Wireless power supply apparatus 200 includes an AC power source 10, transmission coil L T, a resonance capacitor C T.
  • the AC power supply 10 generates an electric signal S2 having a predetermined frequency, frequency-modulated, phase-modulated, amplitude-modulated, or the like.
  • the electric signal S2 is an AC signal having a constant frequency will be described for the sake of simplicity of explanation and easy understanding.
  • AC power supply 10 includes a bridge circuit 14 and its control unit 12.
  • the bridge circuit 14 in FIG. 2 is a half bridge circuit including a high side switch SW1 and a low side switch SW2.
  • the controller 12 of the AC power supply 10 controls the on / off states of the high-side switch SW1 and the low-side switch SW2.
  • the transmission frequency of the power signal S1 is a first frequency f 1
  • the switching frequency of the high-side switch SW1 and the low-side switch SW2 i.e. also the frequency of the electrical signal S2 is set equal to the first frequency f 1.
  • Resonance capacitor C T and the transmission coil L T forms a resonant antenna.
  • Transmitting coil L T is an electrical signal S2 AC power supply 10 occurs, electric, magnetic, and radiated into space as near field (power signal) S1 containing either an electromagnetic field.
  • Resonance capacitor C T is provided to the transmitter coil L T and series to form a closed loop together with the low side switch SW2.
  • the resonance frequency of the resonance antenna resonance capacitor C T and the transmission coil L T1 is formed is tuned to the first frequency f 1 of the electric signal S2.
  • the resonant frequency of the resonant antenna of the wireless power feeding apparatus 200 is set to the second frequency f 2 that is equal to or higher than the first frequency f 1 .
  • Power signal S1 is frequency modulated, phase modulated, or if the transmission frequency f 1 is switchable in multiple values, the resonance frequency f 2 of the resonant antenna is highest one of the frequencies that can take the transmission frequency f 1 Higher or equal.
  • the control unit 12 instead of tuning the resonance frequency f 2 of the resonant antenna to the first frequency f 1 of the electric signal S2, the control unit 12, a plurality of switches SW1 of the bridge circuit 14, Adjusts the length of dead time when all SW2s are turned off simultaneously.
  • control unit 12 the coil current I L flowing through the transmitter coil L T is, resonance antenna L T, to resonate C T and partial, sets the length of the dead time.
  • Control unit 12 the coil current I L flowing through the transmitter coil L T is in the zero timing, and turns off the plurality of switches SW1, SW2.
  • FIG. 3 is a waveform diagram showing the operation of the wireless power supply apparatus 200 of FIG.
  • the vertical and horizontal axes of the waveform diagrams and time charts in this specification are enlarged or reduced as appropriate for easy understanding, and each waveform shown is also simplified for easy understanding. Yes.
  • the drive voltage Vdr VIN is applied to the resonant antennas L T and C T.
  • the coil current I L substantially has a half-wave waveform corresponding to the resonance frequency f 2 of the resonance antennas L T and C T.
  • Resonance capacitor C T by the coil current I L is charged, the voltage Vrc increases with time.
  • the coil current I L is zero, a transition to the dead time Td.
  • the coil current I L does not flow, the voltage Vcr is kept constant. Further, the output terminal of the bridge circuit 14 becomes high impedance, and the drive voltage Vdr becomes indefinite.
  • the on period Ton2 is reached and the drive voltage Vdr becomes zero (GND).
  • the resonance capacitor C T is discharged, the coil current I L takes a half-wave waveform.
  • the transition is made again to the dead time Td.
  • the wireless power supply apparatus 200 repeats the above operation.
  • the on-period Ton1 by adjusting the length of the dead time Td according to the transmission frequency f 1 while keeping the resonance frequency f 2 of the resonance antennas L T and C T constant.
  • the coil current I L flowing through the Ton2 can be partial resonance.
  • a variable capacitor and a variable inductor are not required for changing the resonance frequency, and therefore, the number of parts and the circuit area can be reduced.
  • FIG. 4 is a circuit diagram illustrating a configuration example of the bridge circuit 14.
  • the high side switch SW1 and the low side switch SW2 are composed of FETs (Field Effect Transistors) M1 and M2.
  • Body diodes D B1 and D B2 exist between the back gates and drains of the transistors M1 and M2.
  • the diode D1 is provided in the opposite orientation.
  • the diode D2 is provided in the opposite direction in series with the transistor M2 for the same reason. Note that an N-channel MOSFET may be used for the high-side switch SW1.
  • FIG. 5 is a waveform diagram showing the operation when the bridge circuit 14 of FIG. 4 is used.
  • the bridge circuit 14 of FIG. 4 is used, although the operation waveform of the wireless power supply apparatus 200 of FIG. 2 shown in FIG. 3 is different, the same effect as FIG. 2 can be obtained by adjusting the dead time Td. it can.
  • an FET having the opposite conductivity to that of the transistor M1 may be used instead of the diode D1
  • an FET having the opposite conductivity to that of the transistor M2 may be used instead of the diode D2.
  • the diodes D1 and D2 may be omitted.
  • FIG. 6 is a circuit diagram showing a configuration of a wireless power supply apparatus 200a according to a modification.
  • the full bridge circuit includes switches SW1 to SW4.
  • the control unit 12 turns on the switch SW4 during the on period Ton1 of the switch SW1. Further, the switch SW3 is turned on during the on period Ton2 of the switch SW2.
  • a dead time Td is provided between the on periods Ton1 and Ton2, and the length thereof is adjusted.
  • FIG. 7 is a waveform diagram showing the operation of the wireless power supply apparatus 200a of FIG.
  • the coil current IL can be partially resonated as in the case of using the half bridge circuit, and the same effect as the circuit of FIG. 2 can be obtained.
  • transmission efficiency may deteriorate if the coupling degree between the power supply (transmission) side and the power reception (reception) side is too high. If the frequency adjustment technique using the dead time Td described above is used, the resonance state can be intentionally deteriorated without changing the transmission frequency, the degree of coupling can be reduced, and the deterioration of efficiency can be prevented. is there.
  • the power supply apparatus has been described.
  • a power receiving device that can be used alone or in combination with the power feeding device according to the first embodiment will be described.
  • FIG. 8 is a circuit diagram showing a configuration of the wireless power feeding system 100 according to the second embodiment. This circuit diagram illustrates circuit constants, but these numerical values do not limit the present invention.
  • the wireless power feeding system 100 includes a wireless power feeding device 200 and a wireless power receiving device 300. First, the configuration of the wireless power supply apparatus 200 will be described.
  • the wireless power supply apparatus 200 transmits a power signal to the wireless power receiving apparatus 300.
  • a near field (electric field, magnetic field, or electromagnetic field) of an electromagnetic wave that is not a radio wave is used as the power signal S1.
  • the wireless power supply apparatus 200 includes an AC power supply 10, a transmission coil L1, and a capacitor C2.
  • the AC power supply 10 generates an electric signal S2 having a predetermined frequency, frequency-modulated, phase-modulated, amplitude-modulated, or the like.
  • the electric signal S2 is an AC signal having a constant frequency
  • the frequency of the electric signal S2 is appropriately selected between several hundred kHz to several MHz.
  • the transmission coil L1 is an antenna that radiates the electric signal S2 generated by the AC power supply 10 into space as a near field (power signal) S1 including any one of an electric field, a magnetic field, and an electromagnetic field.
  • the transmission capacitor C2 is provided in series with the transmission coil L1.
  • the resistor R1 indicates a resistance component in series with the transmission coil L1.
  • the above is the configuration of the wireless power supply apparatus 200. Next, the configuration of the wireless power receiving apparatus 300 will be described.
  • the wireless power receiving apparatus 300 receives the power signal S1 sent from the wireless power supply apparatus 200.
  • the reception coil 20 receives the power signal S1 from the transmission coil L1.
  • An induced current (resonant current) I COIL corresponding to the power signal S1 flows through the reception coil L2, and the wireless power receiving apparatus 300 extracts power from the induced current.
  • the wireless power receiving apparatus 300 includes a receiving coil L2, a resonance capacitor C1, an H bridge circuit 12, a control unit 14, and a power storage capacitor C3.
  • the resonance capacitor C1 forms a resonance circuit together with the reception coil L2.
  • the H bridge circuit 12 includes a first switch SW1 to a fourth switch SW4.
  • the first switch SW1 and the second switch SW2 are sequentially connected in series so as to form a closed loop with the receiving coil L2 and the resonance capacitor C1.
  • a connection point N1 between the first switch SW1 and the second switch SW2 is connected to a second terminal of the power storage capacitor C3.
  • the loss resistance R ⁇ b> 2 indicates a loss in the wireless power receiving apparatus 300.
  • the load resistor R3 indicates a load driven by the electric power stored in the power storage capacitor C3, and does not mean a resistance as a circuit element.
  • the voltage V PWR generated in the power storage capacitor C3 is supplied to the load resistor R3.
  • the third switch SW3 and the fourth switch SW4 are sequentially provided in series on a path parallel to the first switch SW1 and the second switch SW2.
  • the connection point N2 between the third switch SW3 and the fourth switch SW4 is grounded, and its potential is fixed.
  • the load resistor R3 may be controlled so that the voltage V PWR of the power storage capacitor C3 becomes an optimum voltage for increasing the Q value.
  • the first switch SW1 to the fourth switch SW4 constituting the H-bridge circuit 12 can be configured using semiconductor elements such as MOSFET (Metal Oxide Semiconductor Semiconductor Field Effect Transistor), bipolar transistor, or IGBT (Insulated Gate Bipolar Transistor).
  • MOSFET Metal Oxide Semiconductor Semiconductor Field Effect Transistor
  • bipolar transistor bipolar transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the control unit 14 controls the first switch SW1 to the fourth switch SW4. Specifically, the control unit 14 is configured to be able to switch between the first state ⁇ 1 and the second state ⁇ 2. In the first state ⁇ 1, the first switch SW1 and the fourth switch SW4 are turned on, and the second switch SW2 and the third switch SW3 are turned off. In the second state ⁇ 2, the first switch SW1 and the fourth switch SW4 are turned off, and the second switch SW2 and the third switch SW3 are turned on.
  • the induced current I COIL generated in the receiving coil L2 has an AC waveform.
  • the control unit 14 adjusts the switching timing (phase) of the first state ⁇ 1 and the second state ⁇ 2 so that the amplitude of the induced current I COIL approaches the maximum.
  • FIGS. 9A and 9B are circuit diagrams illustrating the operation of the wireless power receiving apparatus 300 of FIG.
  • FIG. 9A shows the state and current of each switch in the first state ⁇ 1
  • FIG. 9B shows the state and current of each switch in the second state ⁇ 2.
  • FIG. 10 is a waveform diagram showing the operation of the wireless power receiving apparatus 300 of FIG. In FIG. 10, in order from the top, the voltage V PWR generated in the power storage capacitor C3, the current I C3 flowing into the power storage capacitor C3, the state of the second switch SW2 and the third switch SW3, the first switch SW1 and the fourth switch The state of SW4 and the induced current I COIL of the receiving coil L2 are shown.
  • the second switch SW2 and the third switch SW3 correspond to full on when + 1V and off when 0V.
  • the first switch SW1 and the fourth switch SW4 correspond to full on when -1V and off when 0V.
  • the voltage level indicating the state of the switch is convenient.
  • the current waveform is positive in the direction of the arrow in FIG.
  • an AC power signal S1 is transmitted from the wireless power feeder 200 of FIG.
  • an alternating current flows through the receiving coil L2 as the induced current I COIL .
  • the control unit 14 controls the on / off states of the first switch SW1 to the fourth switch SW4 in synchronization with the power signal S1.
  • a current I C3 flows from the ground terminal via the fourth switch SW4, the receiving coil L2, the resonance capacitor C1, and the first switch SW1.
  • a current I C3 flows from the ground terminal via the third switch SW3, the receiving coil L2, the resonance capacitor C1, and the second switch SW2.
  • the control unit 14 may monitor the induced current I COIL or the power supplied to the load resistor R3 and optimize the switching timing (phase) of the H-bridge circuit 12 so that the amplitude approaches the maximum.
  • the power storage capacitor C3 has a sufficiently large capacity and can be handled as a voltage source, it can be used as a drive voltage for the resonance circuit.
  • the H bridge circuit 12 and the control unit 14 couple the power storage capacitor C3 to the receiving coil L2 with a phase shifted by 90 degrees with respect to the zero cross point of the induced current (resonant current) I COIL.
  • the loss due to the resistance component of the receiving coil L2 can be compensated by the power storage capacitor C3 which is a power source.
  • the Q value of the resonance circuit is inversely proportional to the resistance R. If the loss due to the resistance R can be completely compensated by the power storage capacitor C3, the resistance R can be regarded as zero and the Q value is infinite ( ⁇ ). It is equivalent to the resonance circuit.
  • the wireless power receiving apparatus 300 by optimizing the switching timing (phase) of the first state ⁇ 1 and the second state ⁇ 2 in the H bridge circuit 12, the power storage capacitor C3
  • the generated voltage can be applied to the receiving coil L2 at an appropriate timing, and the effective Q value can be greatly increased.
  • FIG. 14 is an equivalent circuit diagram of the wireless power feeding system 100 of FIG.
  • the transmission coil L1 and the reception coil L2 coupled with the coupling coefficient k can be regarded as equivalent to the T-type circuit 20 including the inductors L5 to L7.
  • Optimizing the switching timing of the first state ⁇ 1 and the second state ⁇ 2 in the H bridge circuit 12 is nothing other than optimizing the impedance matching between the AC power supply 10 and the load resistor R3. That is, the H-bridge circuit 12 can be grasped as a switch mode impedance matching circuit. When the output impedance of the AC power supply 10 and the coupling coefficient k change, the impedance matching conditions also change. The switching phase of the H-bridge circuit 12 is controlled so as to obtain an optimum impedance matching.
  • the impedance matching is performed by configuring the resonance capacitors C1 and C2 with variable capacitors (variable capacitors) and mechanically controlling the variable capacitors with a motor.
  • impedance matching can be realized by an electrical method rather than a mechanical method.
  • impedance matching In impedance matching by a mechanical method, high-speed control is impossible, and when the wireless power receiving apparatus 300 is moving, there is a problem that impedance matching is not achieved and power supply efficiency is deteriorated.
  • impedance matching can be achieved at a higher speed than in the past, and even when the wireless power receiving apparatus 300 is moving or the power feeding state of the wireless power feeding apparatus 200 is switched at a high speed, the efficiency is improved. Power supply is possible.
  • the timing for switching the first switch SW1 to the fourth switch SW4 on and off is not limited to that described with reference to FIG. Since the Q value of the resonance circuit can be controlled by controlling the timing of switching between on and off, when it is desired to positively realize a low Q value, the on / off switching timing is intentionally shifted from that in FIG. May be.
  • the H bridge circuit 12 for increasing the Q value also functions as a rectifier circuit, so that a rectifier circuit having a diode or the like is not required as in a modified example described later. There are also benefits.
  • FIG. 11 is a waveform diagram showing the operation of a synchronous rectifier circuit as a comparison technique.
  • the first state ⁇ 1 and the second state ⁇ 2 are switched at the timing of the zero cross point of the resonance current I COIL .
  • the current I C3 flowing into the power storage capacitor C3 has a full-wave rectified waveform.
  • diode rectification there is no voltage loss. In such a synchronous rectifier circuit, the loss of the resonance circuit cannot be compensated and the Q value cannot be increased.
  • FIG. 12 is a circuit diagram showing a configuration of a wireless power receiving apparatus 300a according to the first modification. Note that some circuits overlapping those in FIG. 8 are omitted.
  • the wireless power receiving apparatus 300a in FIG. 12 is different from the wireless power receiving apparatus 300 in FIG. 8 in the position of the load. Specifically, in FIG. 12, not the resistor R3 but the resistor R6 is a load. The resistor R3 in parallel with the power storage capacitor C3 can be ignored.
  • auxiliary coil L3 includes an auxiliary coil L3, a rectifier circuit 16, and an inductor L4 in addition to the wireless power receiving apparatus 300 of FIG.
  • the auxiliary coil L3 is tightly coupled with the receiving coil L2.
  • the rectifier circuit 16 full-wave rectifies the current IL3 flowing through the auxiliary coil L3.
  • the inductor L4 is provided in series with the load resistor R6 on the output side of the rectifier circuit 16.
  • the Q value of the resonance circuit including the receiving coil L2 and the resonance capacitor C1 is increased by the Q value increasing circuit including the H bridge circuit 12 and the power storage capacitor C3.
  • a large current IL3 is also induced in the auxiliary coil L3 that is tightly coupled to the receiving coil L2, and a large amount of power can be supplied to the load resistor R6.
  • FIG. 13 is a circuit diagram showing a configuration of a wireless power receiving apparatus 300b according to the second modification.
  • the wireless power receiving apparatus 300b includes an auxiliary coil L3 that is tightly coupled to the receiving coil L2.
  • the H bridge circuit 12b is connected not to the receiving coil L2 but to the auxiliary coil L3.
  • An inductor L4 and a resistor R5 connected in parallel are provided between the H bridge circuit 12b and the power storage capacitor C3.
  • the rectifier circuit 16b performs full-wave rectification of the current flowing through the resonance circuit including the reception coil L2 and the resonance capacitor C1.
  • the power storage capacitor C4 is provided on the output side of the rectifier circuit 16b, and smoothes the current that has been full-wave rectified by the rectifier circuit 16b.
  • the voltage generated in the power storage capacitor C4 is supplied to the load resistor R6.
  • the Q value increasing circuit including the H bridge circuit 12b and the power storage capacitor C3 increases the Q value of the resonance circuit including the receiving coil L2 and the resonance capacitor C1 via the auxiliary coil L3. can do. As a result, power can be received with high efficiency.
  • the H-bridge circuit 12 can switch between the first state ⁇ 1 and the second state ⁇ 2 and controls the phase of the switching has been described.
  • the following control is performed instead of or in addition to the phase control.
  • the control unit 14 can switch from the first switch SW1 to the third state ⁇ 3 in which all the fourth switches SW4 are turned off, in addition to the first state ⁇ 1 and the second state ⁇ 2.
  • the control unit 14 inserts the third state ⁇ 3 in at least one of the transition from the first state ⁇ 1 to the second state ⁇ 2 and the transition from the second state ⁇ 2 to the first state ⁇ 1, and flows to the receiving coil L2.
  • the length of the period of the third state ⁇ 3 (also referred to as dead time Td) is adjusted so that the amplitude of the induced current I COIL approaches the maximum.
  • FIG. 15 is a time chart showing the operation of the wireless power feeding system 100 according to the third modification.
  • the resonance frequency of the resonance circuit formed by the reception coil L2, the resonance capacitor C1, and the H bridge circuit 12 does not necessarily match the frequency of the power signal S1 generated by the wireless power supply apparatus 200.
  • the induced current I COIL flowing in the first state ⁇ 1 and the second state ⁇ 2 can be partially resonated in the resonance circuit of the wireless power receiving apparatus 300. That is, the resonance frequency of the wireless power supply apparatus 200 can be tuned to the frequency of the power signal S1, and the power supply efficiency can be increased.
  • the H bridge circuit 12 is used as the impedance matching circuit in the switch mode.
  • a half bridge circuit may be used.
  • FIG. 16 is a circuit diagram showing a configuration of a wireless power receiving apparatus 300c according to a fourth modification.
  • the wireless power receiving apparatus 300c in FIG. 16 has a configuration in which the H bridge circuit 12b of the wireless power receiving apparatus 300b in FIG. 13 is replaced with a half bridge circuit 12c.
  • the half bridge circuit 12c includes a fifth switch SW5 and a sixth switch SW6.
  • the fifth switch SW5 is connected to form a closed loop with the power storage capacitor C3 and the auxiliary coil L3.
  • the sixth switch SW6 is provided between both ends of the auxiliary coil L3.
  • impedance matching can be achieved by controlling the phase at which the fifth switch SW5 and the sixth switch SW6 are switched on and off. Further, by adjusting the length of the dead time during which the fifth switch SW5 and the sixth switch SW6 are turned off at the same time, it is possible to increase the transmission efficiency using partial resonance.
  • Certain aspects of the present invention can be used for wireless power transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

 ワイヤレス給電装置200は、電界、磁界、電磁界のいずれかを含む電力信号S1を送信する。ブリッジ回路14は、複数のスイッチSW1、SW2を含む。制御部12は、ブリッジ回路14の複数のスイッチSW1、SW2を、送信周波数である第1周波数fでスイッチング制御する。送信コイルLTおよび共振用キャパシタCTは、共振アンテナを構成し、ブリッジ回路14と接続され、その共振周波数は第1周波数f以上の第2周波数fである。制御部12は、複数のスイッチSW1、SW2がすべて同時オフとなるデッドタイムTdの長さを調節可能に構成される。

Description

ワイヤレス給電装置およびワイヤレス給電システム
 本発明は、ワイヤレス給電技術に関する。
 近年、携帯電話端末やノート型コンピュータなどの電子機器、あるいは電気自動車に対する給電技術として、ワイヤレス(非接触)電力伝送が着目されている。ワイヤレス電力伝送は、主に電磁誘導型、電波受信型、電場・磁場共鳴型、の3つに分類される。
 電磁誘導型は短距離(数cm以内)において利用され、数百kHz以下の帯域で数百Wの電力を伝送することができる。電力の利用効率は60~98%程度となっている。数m以上の比較的長い距離に給電する場合、電波受信型が利用される。電波受信型では、中波~マイクロ波の帯域で数W以下の電力を伝送することができるが、電力の利用効率は低い。数m程度の中距離を、比較的高い効率で給電する手法として、電場・磁場共鳴型が着目されている(非特許文献1参照)。
A. Karalis, J.D. Joannopoulos, M. Soljacic、「Efficient wireless non-radiative mid-range energy transfer」、ANNALS of PHYSICS Vol. 323, pp.34-48, 2008, Jan.
 磁場(電場)共鳴型の電力伝送において重要となるパラメータとして、Q値が挙げられる。図1(a)は、ワイヤレス給電システムの一例を示す図である。ワイヤレス給電システム1100は、ワイヤレス給電装置1200およびワイヤレス受電装置1300を備える。ワイヤレス給電装置1200は、送信コイルLT1、共振用キャパシタCおよび交流電源10を備える。交流電源10は、送信周波数fを有する電気信号(駆動信号)S2を発生する。共振用キャパシタCおよび送信コイルLT1は共振回路を構成しており、その共振周波数は、電気信号S2の周波数にチューニングされている。送信コイルLT1からは、電力信号S1が送出される。
 ワイヤレス受電装置1300は、受信コイルLR1、共振用キャパシタCおよび負荷回路20を備える。共振用キャパシタC、受信コイルLR1および負荷回路20は共振回路を構成しており、その共振周波数は、電力信号S1の周波数にチューニングされる。
 ワイヤレス給電装置1200とワイヤレス受電装置1300を、電気信号S2の周波数に同調させるために、共振用キャパシタC、Cは、図1(b)に示すような可変キャパシタで構成される。
 可変キャパシタは、複数のキャパシタCと、それらを切りかえるための複数のスイッチSWを含む。図1(b)の可変キャパシタは、容量値の切りかえ段数を大きくすると、キャパシタおよびスイッチなどの部品点数が増え、回路面積やコストが増大するという問題がある。
 本発明は係る課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、部品点数の増加を抑制したワイヤレス給電システムの提供にある。
 本発明のある態様は、電界、磁界、電磁界のいずれかを含む電力信号を送信するワイヤレス給電装置に関する。このワイヤレス給電装置は、複数のスイッチを含むブリッジ回路と、ブリッジ回路の複数のスイッチを、送信周波数である第1周波数でスイッチング制御する制御部と、ブリッジ回路と接続された共振アンテナであって、電力信号を送出するための送信コイルおよび送信コイルと直列に設けられた共振用キャパシタと、を含み、その共振周波数が第1周波数以上の第2周波数である、共振アンテナと、を備える。制御部は、複数のスイッチがすべて同時オフとなるデッドタイムの長さを調節可能に構成される。
 この態様によると、共振アンテナの共振周波数を変更しなくても、デッドタイムの長さを最適化することにより、共振状態を実現することができる。つまり共振アンテナの共振周波数を変更するための構成が不要となるため、部品点数を削減できる。
 制御部は、送信コイルに流れるコイル電流が、共振アンテナと部分共振するように、デッドタイムの長さを設定してもよい。
 制御部は、送信コイルに流れるコイル電流がゼロとなるタイミングで、複数のスイッチをオフしてもよい。
 ブリッジ回路は、ハーフブリッジ回路を含んでもよい。ブリッジ回路は、フルブリッジ回路を含んでもよい。
 本発明の別の態様は、ワイヤレス給電システムである。このワイヤレス給電システムは、上述のいずれかの態様のワイヤレス給電装置と、ワイヤレス給電装置から送信される電力信号を受信するワイヤレス受電装置と、を備える。
 なお、以上の構成要素の任意の組み合わせや、本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
 本発明のある態様によれば、回路面積を削減できる。
図1(a)、(b)は、ワイヤレス給電システムの一例を示す図である。 実施の形態に係るワイヤレス給電システムの構成を示す回路図である。 図2のワイヤレス給電装置の動作を示す波形図である。 ブリッジ回路の構成例を示す回路図である。 図4のブリッジ回路を用いた場合の動作を示す波形図である。 変形例に係るワイヤレス給電装置の構成を示す回路図である。 図6のワイヤレス給電装置の動作を示す波形図である。 第2の実施の形態に係るワイヤレス給電システムの構成を示す回路図である。 図9(a)、(b)は、図8のワイヤレス受電装置の動作を示す回路図である。 図8のワイヤレス受電装置の動作を示す波形図である。 比較技術としての同期整流回路の動作を示す波形図である。 第1の変形例に係るワイヤレス受電装置の構成を示す回路図である。 第2の変形例に係るワイヤレス受電装置の構成を示す回路図である。 図8のワイヤレス給電システムの等価回路図である。 第3の変形例に係るワイヤレス給電システムの動作を示すタイムチャートである。 第4の変形例に係るワイヤレス受電装置の構成を示す回路図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。
(第1の実施の形態)
 図2は、第1の実施の形態に係るワイヤレス給電システム100の構成を示す回路図である。ワイヤレス給電システム100は、ワイヤレス給電装置200およびワイヤレス受電装置300を備える。
 はじめにワイヤレス受電装置300の構成を説明する。ワイヤレス受電装置300は、ワイヤレス給電装置200から送出される電力信号S1を受信する。ワイヤレス受電装置300は、受信コイルL、共振用キャパシタC、負荷回路20を備える。共振用キャパシタCは、受信コイルLとともに共振回路を形成する。共振回路の共振周波数は、電力信号S1に同調される。
 受信コイルLは、ワイヤレス給電装置200からの電力信号S1を受信する。受信コイルLには、電力信号S1に応じた誘起電流(共振電流)Iが流れ、ワイヤレス受電装置300はこの誘起電流から電力を取り出す。負荷回路20は、ワイヤレス給電装置200から電力供給を受けて動作する回路であり、その用途、構成は限定されない。
 ワイヤレス給電装置200は、ワイヤレス受電装置300に対して電力信号S1を送出する。ワイヤレス給電システム100では、電力信号S1として電波になっていない電磁波の近傍界(電界、磁界、あるいは電磁界)が利用される。
 ワイヤレス給電装置200は、交流電源10、送信コイルL、共振用キャパシタCを備える。交流電源10は、所定の周波数を有する、あるいは周波数変調された、もしくは位相変調、振幅変調などが施された電気信号S2を発生する。本実施の形態においては説明の簡潔化と理解の容易化のため、電気信号S2が一定の周波数を有する交流信号である場合を説明する。
 交流電源10は、ブリッジ回路14およびその制御部12を含む。図2のブリッジ回路14は、ハイサイドスイッチSW1およびローサイドスイッチSW2を含むハーフブリッジ回路である。
 交流電源10の制御部12は、ハイサイドスイッチSW1およびローサイドスイッチSW2のオン、オフ状態を制御する。電力信号S1の送信周波数が第1周波数fであるとき、ハイサイドスイッチSW1およびローサイドスイッチSW2のスイッチング周波数、つまり電気信号S2の周波数も第1周波数fに等しく設定される。
 共振用キャパシタCおよび送信コイルLは、共振アンテナを形成する。送信コイルLは、交流電源10が発生した電気信号S2を、電界、磁界、電磁界のいずれかを含む近傍界(電力信号)S1として空間に放射する。共振用キャパシタCは、送信コイルLと直列に設けられ、ローサイドスイッチSW2とともに閉ループを形成している。
 一般的なワイヤレス給電装置では、共振用キャパシタCと送信コイルLT1が形成する共振アンテナの共振周波数は、電気信号S2の第1周波数fにチューニングされる。これに対して、実施の形態に係るワイヤレス給電システム100では、ワイヤレス給電装置200の共振アンテナの共振周波数は、第1周波数f以上の第2周波数fに設定される。電力信号S1が周波数変調、位相変調され、あるいは送信周波数fが複数の値で切りかえ可能な場合には、共振アンテナの共振周波数fは、送信周波数fが取り得る周波数のうち最も高いひとつよりも高く、もしくはそれと等しく設定される。
 実施の形態に係るワイヤレス給電装置200では、共振アンテナの共振周波数fを電気信号S2の第1周波数fにチューニングすることに代えて、制御部12が、ブリッジ回路14の複数のスイッチSW1、SW2がすべて同時オフとなるデッドタイムの長さを調節する。
 具体的には、制御部12は、送信コイルLに流れるコイル電流Iが、共振アンテナL、Cと部分共振するように、デッドタイムの長さを設定する。制御部12は、送信コイルLに流れるコイル電流Iがゼロとなるタイミングで、複数のスイッチSW1、SW2をオフする。
 図3は、図2のワイヤレス給電装置200の動作を示す波形図である。本明細書における波形図やタイムチャートの縦軸および横軸は、理解を容易とするために適宜拡大、縮小したものであり、また示される各波形も、理解の容易のために簡略化されている。
 図3の波形図には、上から順に、ハイサイドスイッチSW1、ローサイドスイッチSW2のオンオフ状態、共振用キャパシタCの両端間の電圧Vrc、電気信号(駆動信号)S2の電圧Vdr、コイル電流Iを示す。
 ハイサイドスイッチSW1、ローサイドスイッチSW2は、第1周波数fでスイッチングされる。つまり、それぞれの周期は、T=1/fとなる。ハイサイドスイッチSW1のオン期間Ton1と、ローサイドスイッチSW2のオン期間Ton2の間には、デッドタイムTdが設けられる。デッドタイムTdの長さは、Ton1=Ton2=1/(2×f)が成り立つように設定される。
 オン期間Ton1において、共振アンテナL、Cには、駆動電圧Vdr=VINが印加される。この間、コイル電流Iは、実質的に共振アンテナL、Cの共振周波数fに応じた半波波形となる。コイル電流Iによって共振用キャパシタCが充電され、電圧Vrcは時間とともに増大する。コイル電流Iがゼロとなると、デッドタイムTdに遷移する。デッドタイムTdの間、コイル電流Iが流れないため、電圧Vcrは一定に保たれる。またブリッジ回路14の出力端子はハイインピーダンスとなり、駆動電圧Vdrは不定となる。
 デッドタイムTdが終了すると、オン期間Ton2となり、駆動電圧Vdrはゼロ(GND)となる。これにより共振用キャパシタCが放電され、コイル電流Iは半波波形をとる。コイル電流Iがゼロとなると、再びデッドタイムTdに遷移する。ワイヤレス給電装置200は以上の動作を繰り返す。
 このようにワイヤレス給電装置200では、共振アンテナL、Cの共振周波数fを一定に保ちつつ、送信周波数fに応じてデッドタイムTdの長さを調節することにより、オン期間Ton1、Ton2に流れるコイル電流Iを部分共振させることができる。
 このワイヤレス給電装置200によれば、共振周波数を変化させるために可変キャパシタや可変インダクタが不要となるため、部品点数、回路面積を削減することができる。
 図4は、ブリッジ回路14の構成例を示す回路図である。ハイサイドスイッチSW1、ローサイドスイッチSW2は、FET(Field Effect Transistor)M1、M2で構成される。トランジスタM1、M2のバックゲートとドレインの間には、ボディダイオードDB1、DB2が存在する。トランジスタM1がオフ状態において、ボディダイオードDB1を介して電流が流れるのを防止するために、ボディダイオードDB1に対して、ダイオードD1が反対の向きで設けられる。ダイオードD2は、同様の理由によりトランジスタM2と直列に反対の向きで設けられる。なお、ハイサイドスイッチSW1に、NチャンネルMOSFETを用いてもよい。
 図5は、図4のブリッジ回路14を用いた場合の動作を示す波形図である。図4のブリッジ回路14を用いた場合、図3に示される図2のワイヤレス給電装置200の動作波形とは異なるものの、デッドタイムTdを調節することにより、図2と同様の効果を得ることができる。
 なおダイオードD1に代えてトランジスタM1と反対の導電性を有するFETを用いてもよく、同様にダイオードD2に代えてトランジスタM2と反対の導電性を有するFETを用いてもよい。あるいはダイオードD1、D2は省略してもよい。
 以上、本発明について、実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下、こうした変形例について説明する。
 実施の形態では、ブリッジ回路14としてハーフブリッジ回路を用いる場合を説明したが、これに代えてフルブリッジ回路(Hブリッジ回路)を用いてもよい。図6は、変形例に係るワイヤレス給電装置200aの構成を示す回路図である。フルブリッジ回路は、スイッチSW1~SW4を備える。制御部12は、スイッチSW1のオン期間Ton1において、スイッチSW4をオンする。またスイッチSW2のオン期間Ton2において、スイッチSW3をオンする。オン期間Ton1、Ton2の間には、デッドタイムTdが設けられ、その長さを調節される。
 図7は、図6のワイヤレス給電装置200aの動作を示す波形図である。Hブリッジ回路を用いた場合も、ハーフブリッジ回路を用いた場合と同様に、コイル電流Iを部分的に共振させることができ、図2の回路と同様の効果を得ることができる。
 共鳴型のワイヤレス電力伝送では、給電(送信)側と受電(受信)側の結合度が高すぎると伝送効率が悪化する場合がある。上述のデッドタイムTdを用いた周波数調節技術を用いれば、送信周波数を変更することなく、意図的に共振状態を悪化させることができ、結合度を低下させ、効率の悪化を防止できるという利点もある。
(第2の実施の形態)
 第1の実施の形態では、給電装置に関して説明した。第2の実施の形態では、第1の実施の形態に係る給電装置と組み合わせて、あるいは単独で利用可能な受電装置について説明する。
 図8は、第2の実施の形態に係るワイヤレス給電システム100の構成を示す回路図である。この回路図には、回路定数が例示されるが、これらの数値は本発明を限定するものではない。ワイヤレス給電システム100は、ワイヤレス給電装置200およびワイヤレス受電装置300を備える。はじめにワイヤレス給電装置200の構成を説明する。
 ワイヤレス給電装置200は、ワイヤレス受電装置300に対して電力信号を送出する。ワイヤレス給電システム100では、電力信号S1として電波になっていない電磁波の近傍界(電界、磁界、あるいは電磁界)が利用される。
 ワイヤレス給電装置200は、交流電源10、送信コイルL1、キャパシタC2を備える。交流電源10は、所定の周波数を有する、あるいは周波数変調された、もしくは位相変調、振幅変調などが施された電気信号S2を発生する。本実施の形態においては説明の簡潔化と理解の容易化のため、電気信号S2が一定の周波数を有する交流信号である場合を説明する。たとえば電気信号S2の周波数は、数百kHz~数MHzの間で適宜選択される。
 送信コイルL1は、交流電源10が発生した電気信号S2を、電界、磁界、電磁界のいずれかを含む近傍界(電力信号)S1として空間に放射するアンテナである。送信キャパシタC2は、送信コイルL1と直列に設けられる。抵抗R1は、送信コイルL1と直列な抵抗成分を示す。
 以上がワイヤレス給電装置200の構成である。続いてワイヤレス受電装置300の構成を説明する。
 ワイヤレス受電装置300は、ワイヤレス給電装置200から送出される電力信号S1を受信する。
 受信コイル20は、送信コイルL1からの電力信号S1を受信する。受信コイルL2には、電力信号S1に応じた誘起電流(共振電流)ICOILが流れ、ワイヤレス受電装置300はこの誘起電流から電力を取り出す。
 ワイヤレス受電装置300は、受信コイルL2、共振用キャパシタC1、Hブリッジ回路12、制御部14、電力保存用キャパシタC3を備える。共振用キャパシタC1は、受信コイルL2とともに共振回路を形成する。
 電力保存用キャパシタC3の第1端子は接地されてその電位が固定されている。Hブリッジ回路12は、第1スイッチSW1~第4スイッチSW4を含む。第1スイッチSW1および第2スイッチSW2は、受信コイルL2および共振用キャパシタC1と閉ループを形成するように順に直列に接続される。第1スイッチSW1と第2スイッチSW2の接続点N1は、電力保存用キャパシタC3の第2端子と接続される。損失抵抗R2は、ワイヤレス受電装置300における損失を示している。負荷抵抗R3は、電力保存用キャパシタC3に蓄えられた電力によって駆動される負荷を示しており、回路素子としての抵抗を意味するものではない。負荷抵抗R3には、電力保存用キャパシタC3に生ずる電圧VPWRが供給される。
 第3スイッチSW3および第4スイッチSW4は、第1スイッチSW1、第2スイッチSW2と並列な経路に、順に直列に設けられる。第3スイッチSW3と第4スイッチSW4の接続点N2は接地されて、その電位が固定されている。負荷抵抗R3は、電力保存用キャパシタC3の電圧VPWRをQ値の増大に最適な電圧になるように制御されてもよい。
 Hブリッジ回路12を構成する第1スイッチSW1~第4スイッチSW4は、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)あるいはバイポーラトランジスタ、あるいはIGBT(Insulated Gate Bipolar Transistor)などの半導体素子を用いて構成できる。
 制御部14は第1スイッチSW1から第4スイッチSW4を制御する。
 具体的には制御部14は、第1状態φ1と、第2状態φ2が切りかえ可能に構成される。第1状態φ1において、第1スイッチSW1および第4スイッチSW4がオンし、第2スイッチSW2および第3スイッチSW3がオフする。第2状態φ2において、第1スイッチSW1および第4スイッチSW4がオフし、第2スイッチSW2および第3スイッチSW3がオンする。
 受信コイルL2に生ずる誘起電流ICOILが交流波形を有している。制御部14は、誘起電流ICOILの振幅が最大に近づくように、第1状態φ1と第2状態φ2の切りかえタイミング(位相)を調節する。
 以上がワイヤレス給電システム100の構成である。続いてその動作を説明する。図9(a)、(b)は、図8のワイヤレス受電装置300の動作を示す回路図である。図9(a)は第1状態φ1における各スイッチの状態および電流の様子を、図9(b)は第2状態φ2における各スイッチの状態および電流の様子を示す。図10は、図8のワイヤレス受電装置300の動作を示す波形図である。図10には上から順に、電力保存用キャパシタC3に生ずる電圧VPWR、電力保存用キャパシタC3に流れ込む電流IC3、第2スイッチSW2および第3スイッチSW3の状態、第1スイッチSW1および第4スイッチSW4の状態、ならびに受信コイルL2の誘起電流ICOILを示す。
 図10において、第2スイッチSW2および第3スイッチSW3は、+1Vのときがフルオンに、0Vのときがオフに対応する。また第1スイッチSW1および第4スイッチSW4は、-1Vのときがフルオンに、0Vのときがオフに対応する。スイッチの状態を示す電圧レベルは便宜的なものである。また、電流波形は、図8の矢印の方向を正にとっている。
 いま、図8のワイヤレス給電装置200から交流の電力信号S1が送出される。この電力信号S1に応じて、受信コイルL2には誘起電流ICOILは交流電流が流れる。
 制御部14は、電力信号S1と同期して、第1スイッチSW1~第4スイッチSW4のオン、オフ状態を制御する。第1状態φ1では、図9(a)に示すように接地端子から第4スイッチSW4、受信コイルL2、共振用キャパシタC1、第1スイッチSW1を介して電流IC3が流れる。第2状態φ2では、図9(b)に示すように接地端子から第3スイッチSW3、受信コイルL2、共振用キャパシタC1、第2スイッチSW2を介して電流IC3が流れる。制御部14は、誘起電流ICOIL、あるいは負荷抵抗R3に供給される電力をモニタし、その振幅が最大に近づくように、Hブリッジ回路12の切りかえタイミング(位相)を最適化してもよい。
 電力保存用キャパシタC3が十分の大きな容量を持ち、電圧源として扱えるとすると、共振回路の駆動電圧として利用することが可能である。そこで、Hブリッジ回路12および制御部14によって、電力保存用キャパシタC3を受信コイルL2に対して、誘起電流(共振電流)ICOILのゼロクロス点に対して90度シフトした位相でカップリングすることにより、受信コイルL2の抵抗成分などによる損失を、電源である電力保存用キャパシタC3によって補うことができる。
 共振回路のQ値は、抵抗Rに反比例するところ、電力保存用キャパシタC3によって抵抗Rによる損失を完全に補うことができれば、抵抗Rはゼロとみなすことができ、Q値が無限大(∞)の共振回路と等価となる。
 このように、実施の形態に係るワイヤレス受電装置300によれば、Hブリッジ回路12における第1状態φ1と第2状態φ2の切りかえタイミング(位相)を最適化することにより、電力保存用キャパシタC3の生ずる電圧を、受信コイルL2に対して適切なタイミングで印加することができ、実効的なQ値を非常に高めることができる。
 図14は、図8のワイヤレス給電システム100の等価回路図である。図8のワイヤレス給電システム100において、結合係数kで結合する送信コイルL1と受信コイルL2は、インダクタL5~L7を含むT型回路20と等価とみなすことができる。L1=L2=Lのとき、インダクタL5、L6それぞれのインダクタンスは、L×(1-k)で与えられ、L7=L×kで与えられる。
 Hブリッジ回路12における第1状態φ1と第2状態φ2の切りかえタイミングを最適化することは、交流電源10と負荷抵抗R3の間のインピーダンス整合を最適化することに他ならない。つまりHブリッジ回路12は、スイッチモードのインピーダンス整合回路と把握できる。交流電源10の出力インピーダンスや、結合係数kが変化すると、インピーダンス整合の条件も変化する。Hブリッジ回路12のスイッチングの位相は、最適なインピーダンス整合が得られるように制御される。
 従来では、共振用キャパシタC1やC2をバリコン(バリアブルコンデンサ)で構成し、モータでバリコンを機械的に制御することにより、インピーダンス整合を行っていた。これに対して本実施の形態によれば、Hブリッジ回路12のスイッチング状態を制御することで、機械的ではなく、電気的な手法によってインピーダンス整合を実現できる。
 機械的な手法によるインピーダンス整合では、高速な制御が不可能であり、ワイヤレス受電装置300が移動している場合には、インピーダンス整合がとれずに給電効率が悪化するという問題が生ずる。これに対して本実施の形態では、従来よりも高速にインピーダンス整合をとることができ、ワイヤレス受電装置300が移動していたり、ワイヤレス給電装置200の給電状態が高速に切りかえられる場合にも、効率的な給電が可能となる。
 ワイヤレス受電装置300のQ値が高くなると、送信コイルL1と受信コイルL2の間の結合係数kが小さくても、言い換えればワイヤレス受電装置300とワイヤレス給電装置200の距離が長い場合であっても、高効率な電力伝送が実現できる。
 なお、第1スイッチSW1~第4スイッチSW4のオン、オフを切りかえるタイミングは、図10で説明したそれには限定されない。オン、オフを切りかえるタイミングを制御することにより、共振回路のQ値をコントロールできるため、積極的に低いQ値を実現したい場合には、オン、オフの切りかえタイミングを図10のそれから意図的にずらしてもよい。
 また、図8の構成によれば、Q値を増大するためのHブリッジ回路12が、整流回路としても機能するため、後述する変形例のように、ダイオードなどを有する整流回路が不要となるというメリットもある。
 なお、上述のHブリッジ回路12を、一般的な同期整流回路と混同してはならない。図11は、比較技術としての同期整流回路の動作を示す波形図である。同期整流回路では、共振電流ICOILのゼロクロス点のタイミングで、第1状態φ1と第2状態φ2が切りかえられる。この場合、電力保存用キャパシタC3に流れ込む電流IC3は、全波整流された波形となる。ただし、ダイオードによる整流とは異なり電圧ロスは存在しない。このような同期整流回路では、共振回路の損失を補うことができず、Q値を高めることはできない。
 以上、本発明について、実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下、こうした変形例について説明する。
 図12は、第1の変形例に係るワイヤレス受電装置300aの構成を示す回路図である。なお図8と重複する一部の回路は省略している。図12のワイヤレス受電装置300aが図8のワイヤレス受電装置300と異なる点は、負荷の位置である。具体的に図12においては、抵抗R3ではなく、抵抗R6が負荷となっている。電力保存用キャパシタC3と並列な抵抗R3は無視して差し支えない。
 図12のワイヤレス受電装置300aは、図8のワイヤレス受電装置300に加えて、補助コイルL3、整流回路16、インダクタL4を備える。
 補助コイルL3は受信コイルL2と密に結合されている。整流回路16は、補助コイルL3に流れる電流IL3を全波整流する。インダクタL4は、整流回路16の出力側に、負荷抵抗R6と直列に設けられる。
 図12の構成によれば、受信コイルL2および共振用キャパシタC1を含む共振回路のQ値が、Hブリッジ回路12および電力保存用キャパシタC3を含むQ値増大回路によって増大される。その結果、受信コイルL2と密に結合された補助コイルL3にも、大きな電流IL3が誘起され、負荷抵抗R6に大電力を供給することができる。
 図13は、第2の変形例に係るワイヤレス受電装置300bの構成を示す回路図である。ワイヤレス受電装置300bは、受信コイルL2と密に結合された補助コイルL3を備える。そしてHブリッジ回路12bは、受信コイルL2ではなく、補助コイルL3に接続される。Hブリッジ回路12bと電力保存用キャパシタC3の間には、並列に接続されたインダクタL4および抵抗R5が設けられる。
 整流回路16bは、受信コイルL2および共振用キャパシタC1を含む共振回路に流れる電流を全波整流する。電力保存用キャパシタC4は整流回路16bの出力側に設けられており、整流回路16bにより全波整流された電流を平滑化する。電力保存用キャパシタC4に生ずる電圧が負荷抵抗R6に供給される。
 図13の構成によれば、Hブリッジ回路12bおよび電力保存用キャパシタC3を含むQ値増大回路は、補助コイルL3を介して、受信コイルL2および共振用キャパシタC1を含む共振回路のQ値を増大することができる。その結果、電力を高効率で受信できる。
 実施の形態では、Hブリッジ回路12が第1状態φ1と第2状態φ2が切りかえ可能であり、それらの切りかえの位相を制御する場合を説明した。第3の変形例では、位相の制御に代えて、あるいは位相の制御に加えて、以下の制御を行う。
 第3の変形例において、制御部14は、第1状態φ1と第2状態φ2に加えて、第1スイッチSW1から第4スイッチSW4がすべてオフする第3状態φ3に切りかえ可能である。制御部14は、第1状態φ1から第2状態φ2へ遷移する途中、第2状態φ2から第1状態φ1へ遷移する途中の少なくとも一方に、第3状態φ3を挿入し、受信コイルL2に流れる誘起電流ICOILの振幅が最大に近づくように、第3状態φ3の期間(デッドタイムTdともいう)の長さを調節する。図15は、第3の変形例に係るワイヤレス給電システム100の動作を示すタイムチャートである。
 受信コイルL2、共振用キャパシタC1、Hブリッジ回路12が構成する共振回路の共振周波数は、必ずしもワイヤレス給電装置200が発生する電力信号S1の周波数と一致するとは限らない。このような場合に、デッドタイムTdの長さを調節することにより、第1状態φ1、第2状態φ2において流れる誘起電流ICOILを、ワイヤレス受電装置300の共振回路に部分共振させることができる。つまり、ワイヤレス給電装置200の共振周波数を電力信号S1の周波数にチューニングでき、給電効率を高めることができる。
 実施の形態では、スイッチモードのインピーダンス整合回路としてHブリッジ回路12を用いる場合を説明したが、ハーフブリッジ回路を用いてもよい。
 図16は、第4の変形例に係るワイヤレス受電装置300cの構成を示す回路図である。図16のワイヤレス受電装置300cは、図13のワイヤレス受電装置300bのHブリッジ回路12bを、ハーフブリッジ回路12cに置換した構成を有する。ハーフブリッジ回路12cは、第5スイッチSW5と、第6スイッチSW6を含む。第5スイッチSW5は、電力保存用キャパシタC3および補助コイルL3と閉ループを形成するように接続される。第6スイッチSW6は、補助コイルL3の両端間に設けられる。
 第4の変形例によれば、第5スイッチSW5、第6スイッチSW6のオン、オフを切りかえる位相を制御することで、インピーダンス整合をとることができる。また、第5スイッチSW5、第6スイッチSW6が同時にオフするデッドタイムの長さを調節することにより、部分共振を利用して伝送効率を高めることができる。
 実施の形態にもとづき本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が可能である。
100…ワイヤレス給電システム、200…ワイヤレス給電装置、300…ワイヤレス受電装置、10…交流電源、12…制御部、14…ブリッジ回路、20…負荷回路、L…送信コイル、C,C…共振用キャパシタ、L…受信コイル、S1…電力信号、S2…電気信号、SW1…ハイサイドスイッチ、SW2…ローサイドスイッチ。
 本発明のある態様は、ワイヤレス電力伝送に利用できる。

Claims (6)

  1.  電界、磁界、電磁界のいずれかを含む電力信号を送信するワイヤレス給電装置であって、
     複数のスイッチを含むブリッジ回路と、
     前記ブリッジ回路の前記複数のスイッチを、送信周波数である第1周波数でスイッチング制御する制御部と、
     前記ブリッジ回路と接続された共振アンテナであって、電力信号を送出するための送信コイルおよび前記送信コイルと直列に設けられた共振用キャパシタと、を含み、その共振周波数が前記第1周波数以上の第2周波数である、共振アンテナと、
     を備え、
     前記制御部は、前記複数のスイッチがすべて同時オフとなるデッドタイムの長さを調節可能に構成されることを特徴とするワイヤレス給電装置。
  2.  前記制御部は、前記送信コイルに流れるコイル電流が、前記共振アンテナと部分共振するように、前記デッドタイムの長さを設定することを特徴とする請求項1に記載のワイヤレス給電装置。
  3.  前記制御部は、前記送信コイルに流れるコイル電流がゼロとなるタイミングで、前記複数のスイッチをオフすることを特徴とする請求項1または2に記載のワイヤレス給電装置。
  4.  前記ブリッジ回路は、ハーフブリッジ回路を含むことを特徴とする請求項1から3のいずれかに記載のワイヤレス給電装置。
  5.  前記ブリッジ回路は、フルブリッジ回路を含むことを特徴とする請求項1から3のいずれかに記載のワイヤレス給電装置。
  6.  請求項1から5のいずれかに記載のワイヤレス給電装置と、
     前記ワイヤレス給電装置から送信される電力信号を受信するワイヤレス受電装置と、
     を備えることを特徴とするワイヤレス給電システム。
PCT/JP2011/005117 2010-09-16 2011-09-12 ワイヤレス給電装置およびワイヤレス給電システム WO2012035745A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012533857A JPWO2012035745A1 (ja) 2010-09-16 2011-09-12 ワイヤレス給電装置およびワイヤレス給電システム
KR1020137009609A KR20130106840A (ko) 2010-09-16 2011-09-12 무선 급전 장치 및 무선 급전 시스템
CN2011800446125A CN103141008A (zh) 2010-09-16 2011-09-12 无线供电装置及无线供电系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US38347910P 2010-09-16 2010-09-16
US61/383,479 2010-09-16
US13/222,821 US20120068548A1 (en) 2010-09-16 2011-08-31 Wireless power supply apparatus
US13/222,821 2011-08-31

Publications (1)

Publication Number Publication Date
WO2012035745A1 true WO2012035745A1 (ja) 2012-03-22

Family

ID=45817107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005117 WO2012035745A1 (ja) 2010-09-16 2011-09-12 ワイヤレス給電装置およびワイヤレス給電システム

Country Status (6)

Country Link
US (1) US20120068548A1 (ja)
JP (1) JPWO2012035745A1 (ja)
KR (1) KR20130106840A (ja)
CN (1) CN103141008A (ja)
TW (1) TW201216587A (ja)
WO (1) WO2012035745A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061217A1 (ja) * 2012-10-18 2014-04-24 株式会社アドバンテスト ワイヤレス受電装置およびそれに利用可能なインピーダンス制御回路、インピーダンス制御方法
JP2014176173A (ja) * 2013-03-07 2014-09-22 Fujitsu Ltd 電力伝送装置、受電装置、及び、送電装置
WO2015008506A1 (ja) * 2013-07-19 2015-01-22 株式会社Ihi 給電装置及び非接触給電システム
JP2015130750A (ja) * 2014-01-07 2015-07-16 パナソニックIpマネジメント株式会社 回路定数可変回路
KR101544345B1 (ko) 2012-10-31 2015-08-12 미쓰비시 덴끼 엔지니어링 가부시키가이샤 무선 전력 전송에 의한 다중화 전송 시스템 및 송신측 다중화 전송 장치
KR101568967B1 (ko) 2012-10-31 2015-11-12 미쓰비시 덴끼 엔지니어링 가부시키가이샤 무선 전력 전송에 의한 가동부 다중화 전송 시스템
JP2016032345A (ja) * 2014-07-29 2016-03-07 日立マクセル株式会社 非接触電力伝送装置
KR20160030799A (ko) * 2014-09-11 2016-03-21 삼성전기주식회사 비접촉 방식 충전 장치
KR20160030802A (ko) * 2014-09-11 2016-03-21 삼성전기주식회사 비접촉 방식 전력 수전 장치 및 비접촉 방식 배터리 장치
KR20160030800A (ko) * 2014-09-11 2016-03-21 삼성전기주식회사 비접촉 방식 충전 장치 및 비접촉 방식 배터리 장치
JP2016039647A (ja) * 2014-08-05 2016-03-22 日立マクセル株式会社 非接触電力伝送装置
JP2016039775A (ja) * 2014-08-11 2016-03-22 ゼネラル・エレクトリック・カンパニイ 電力の非接触交換のためのシステムおよび方法
JP2016539528A (ja) * 2014-05-12 2016-12-15 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH インダクタのための駆動回路、インダクタの作動方法、駆動回路を備えたアクティブ送信装置
KR20170017039A (ko) * 2015-08-04 2017-02-15 주식회사 지니틱스 외부 노이즈 차단이 가능한 무선충전장치
JPWO2015097804A1 (ja) * 2013-12-26 2017-03-23 三菱電機エンジニアリング株式会社 高周波電源用自動整合回路
JP2017537588A (ja) * 2014-10-22 2017-12-14 パワーバイプロキシ リミテッド コンバータ
US10819154B2 (en) 2016-09-06 2020-10-27 Apple Inc. Inductive power transmitter

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5857251B2 (ja) 2011-08-01 2016-02-10 パナソニックIpマネジメント株式会社 非接触給電装置の制御方法及び非接触給電装置
JP5748628B2 (ja) * 2011-09-28 2015-07-15 株式会社アドバンテスト ワイヤレス受電装置およびワイヤレス給電装置
TWI620390B (zh) * 2011-11-28 2018-04-01 通路實業集團國際公司 具多電橋式拓撲之無線電源供應器及其系統
JP5764082B2 (ja) * 2012-03-06 2015-08-12 株式会社アドバンテスト ワイヤレス受電装置、ワイヤレス給電装置およびワイヤレス送電システム
KR102099819B1 (ko) * 2012-07-09 2020-04-10 엘지전자 주식회사 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
US9287039B2 (en) 2012-07-09 2016-03-15 Lg Electronics Inc. Wireless power transfer method, apparatus and system for low and medium power
EP2688140A3 (en) 2012-07-18 2014-04-30 Aisin Seiki Kabushiki Kaisha Antenna drive apparatus
TWI514712B (zh) * 2012-08-31 2015-12-21 Tdk Taiwan Corp Electromagnetic Field Sensing Plate Structure
CN105074848B (zh) * 2012-09-28 2018-01-26 联发科技(新加坡)私人有限公司 谐振无线电源接收器及谐振无线电源系统
KR20140060865A (ko) * 2012-11-12 2014-05-21 엘지이노텍 주식회사 무선 전력 송신 장치 및 방법
DE102013012339A1 (de) * 2013-07-25 2015-01-29 Giesecke & Devrient Gmbh Externe sichere Einheit
US9847666B2 (en) 2013-09-03 2017-12-19 Apple Inc. Power management for inductive charging systems
JP6208503B2 (ja) * 2013-09-11 2017-10-04 ローム株式会社 ワイヤレス受電装置、その制御回路および制御方法
US9837866B2 (en) * 2013-10-09 2017-12-05 Apple Inc. Reducing power dissipation in inductive energy transfer systems
US20190089183A9 (en) * 2013-10-23 2019-03-21 Apple Inc. Transmitter and receiver communication for inductive power transfer systems
US9979315B2 (en) * 2013-11-15 2018-05-22 Mitsubishi Electric Engineering Company, Limited Rectifying circuit for high-frequency power supply
US9673784B2 (en) 2013-11-21 2017-06-06 Apple Inc. Using pulsed biases to represent DC bias for charging
EP3108487B1 (en) 2014-01-22 2019-02-27 Apple Inc. Coupled-coil power control for inductive power transfer systems
US9923381B2 (en) * 2014-03-04 2018-03-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Resonant tuning through rectifier time shifting
WO2015133843A1 (ko) * 2014-03-07 2015-09-11 엘지전자(주) 무선 전력 송신 장치 및 방법
EP3161922A4 (en) 2014-06-26 2018-03-14 Solace Power Inc. Wireless electric field power transmission system, transmitter and receiver therefor and method of wirelessly transferring power
RU2565664C1 (ru) 2014-07-15 2015-10-20 Самсунг Электроникс Ко., Лтд. Способ управления в системах беспроводной передачи мощности
AU2015311561A1 (en) 2014-09-05 2017-03-23 Solace Power Inc. Wireless electric field power transfer system, method, transmitter and receiver therefor
KR101681376B1 (ko) * 2014-10-10 2016-11-30 삼성전기주식회사 전력 공급 장치
JP6202221B2 (ja) * 2014-11-17 2017-09-27 株式会社村田製作所 ワイヤレス給電装置
SE1550340A1 (sv) * 2015-03-23 2016-06-21 Nok9 Ab A testing device for wireless power transfer, and an associated method
US10122217B2 (en) 2015-09-28 2018-11-06 Apple Inc. In-band signaling within wireless power transfer systems
CN105471286B (zh) * 2015-12-10 2017-09-29 无锡华润矽科微电子有限公司 同步整流电路、无线充电系统以及同步整流方法
CN106899086B (zh) * 2015-12-17 2019-12-20 比亚迪股份有限公司 无线充电系统及其耦合度补偿装置和方法
CN106921218A (zh) * 2015-12-26 2017-07-04 宁波微鹅电子科技有限公司 电能发射端及应用其的无线电能传输装置
CN105896744A (zh) * 2016-04-26 2016-08-24 圣邦微电子(北京)股份有限公司 Lc槽路谐振耦合和非谐振耦合槽路控制方法及电路
CN107591898B (zh) * 2016-07-07 2020-02-07 立锜科技股份有限公司 谐振式无线电源发送电路及其控制方法
US10727697B2 (en) * 2016-09-14 2020-07-28 Witricity Corporation Power flow controller synchronization
US10601250B1 (en) 2016-09-22 2020-03-24 Apple Inc. Asymmetric duty control of a half bridge power converter
CN106371492B (zh) * 2016-11-17 2018-09-07 中惠创智无线供电技术有限公司 一种全桥保护方法、电路、控制器及无线供电系统
US10418857B2 (en) * 2016-11-29 2019-09-17 Wits Co., Ltd. Wireless power transmitter
US10978899B2 (en) 2017-02-02 2021-04-13 Apple Inc. Wireless charging system with duty cycle control
JP6927113B2 (ja) * 2018-03-27 2021-08-25 オムロン株式会社 非接触給電装置
JP7408952B2 (ja) * 2019-08-28 2024-01-09 オムロン株式会社 非接触給電装置
US20230327650A1 (en) * 2020-08-27 2023-10-12 Etherdyne Technologies, Inc. Continuously variable active reactance systems and methods
FR3117601B1 (fr) * 2020-12-15 2023-02-24 Thales Sa Dispositif de mesure
KR20220100381A (ko) * 2021-01-08 2022-07-15 삼성전자주식회사 무선 전력을 전송하는 전자 장치와 이의 동작 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185070A (ja) * 1985-02-06 1986-08-18 リライアンス エレクトリツク カンパニ− 直列共振回路を有する電力変換装置
JPH03139168A (ja) * 1989-10-24 1991-06-13 Hitachi Metals Ltd 直列共振形コンバータ
JPH07227003A (ja) * 1993-12-15 1995-08-22 Fuji Electric Co Ltd 移動体の無接触給電装置
JP2001297862A (ja) * 2000-04-14 2001-10-26 Fuji Electric Co Ltd 誘導加熱電源
JP2007060829A (ja) * 2005-08-25 2007-03-08 Matsushita Electric Works Ltd 給電システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4648017A (en) * 1985-02-06 1987-03-03 Reliance Electric Company Control of a series resonant converter
CN1677791A (zh) * 2005-05-18 2005-10-05 伍佰科技企业股份有限公司 非接触感应式电源供应装置
WO2008143893A1 (en) * 2007-05-15 2008-11-27 Extremely Ingenious Engineering, Llc System and method for controlling an electromagnetic field generator
US8791601B2 (en) * 2010-04-02 2014-07-29 Advantest Corporation Wireless power receiving apparatus and wireless power supply system
US20110285211A1 (en) * 2010-05-20 2011-11-24 Advantest Corporation Wireless power supply system
US8946937B2 (en) * 2010-08-18 2015-02-03 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185070A (ja) * 1985-02-06 1986-08-18 リライアンス エレクトリツク カンパニ− 直列共振回路を有する電力変換装置
JPH03139168A (ja) * 1989-10-24 1991-06-13 Hitachi Metals Ltd 直列共振形コンバータ
JPH07227003A (ja) * 1993-12-15 1995-08-22 Fuji Electric Co Ltd 移動体の無接触給電装置
JP2001297862A (ja) * 2000-04-14 2001-10-26 Fuji Electric Co Ltd 誘導加熱電源
JP2007060829A (ja) * 2005-08-25 2007-03-08 Matsushita Electric Works Ltd 給電システム

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061217A1 (ja) * 2012-10-18 2014-04-24 株式会社アドバンテスト ワイヤレス受電装置およびそれに利用可能なインピーダンス制御回路、インピーダンス制御方法
JP2014082897A (ja) * 2012-10-18 2014-05-08 Advantest Corp ワイヤレス受電装置およびそれに利用可能なインピーダンス制御回路、インピーダンス制御方法
US9871413B2 (en) 2012-10-18 2018-01-16 Advantest Corporation Wireless power receiving apparatus
KR101568967B1 (ko) 2012-10-31 2015-11-12 미쓰비시 덴끼 엔지니어링 가부시키가이샤 무선 전력 전송에 의한 가동부 다중화 전송 시스템
KR101544345B1 (ko) 2012-10-31 2015-08-12 미쓰비시 덴끼 엔지니어링 가부시키가이샤 무선 전력 전송에 의한 다중화 전송 시스템 및 송신측 다중화 전송 장치
JP2017005992A (ja) * 2013-03-07 2017-01-05 富士通株式会社 電力伝送装置、及び、受電装置
JP2014176173A (ja) * 2013-03-07 2014-09-22 Fujitsu Ltd 電力伝送装置、受電装置、及び、送電装置
WO2015008506A1 (ja) * 2013-07-19 2015-01-22 株式会社Ihi 給電装置及び非接触給電システム
CN105379065A (zh) * 2013-07-19 2016-03-02 株式会社Ihi 供电装置及非接触供电系统
US10097012B2 (en) 2013-07-19 2018-10-09 Ihi Corporation Power supplying device and wireless power-supplying system
CN105379065B (zh) * 2013-07-19 2018-09-28 株式会社 Ihi 供电装置及非接触供电系统
JPWO2015008506A1 (ja) * 2013-07-19 2017-03-02 株式会社Ihi 給電装置及び非接触給電システム
JPWO2015097804A1 (ja) * 2013-12-26 2017-03-23 三菱電機エンジニアリング株式会社 高周波電源用自動整合回路
WO2015104769A1 (ja) * 2014-01-07 2015-07-16 パナソニックIpマネジメント株式会社 回路定数可変回路
JP2015130750A (ja) * 2014-01-07 2015-07-16 パナソニックIpマネジメント株式会社 回路定数可変回路
US10078928B2 (en) 2014-05-12 2018-09-18 Continental Automotive Gmbh Driver circuit for an inductor coil
JP2016539528A (ja) * 2014-05-12 2016-12-15 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH インダクタのための駆動回路、インダクタの作動方法、駆動回路を備えたアクティブ送信装置
JP2016032345A (ja) * 2014-07-29 2016-03-07 日立マクセル株式会社 非接触電力伝送装置
JP2016039647A (ja) * 2014-08-05 2016-03-22 日立マクセル株式会社 非接触電力伝送装置
JP2016039775A (ja) * 2014-08-11 2016-03-22 ゼネラル・エレクトリック・カンパニイ 電力の非接触交換のためのシステムおよび方法
KR20160030802A (ko) * 2014-09-11 2016-03-21 삼성전기주식회사 비접촉 방식 전력 수전 장치 및 비접촉 방식 배터리 장치
KR20160030800A (ko) * 2014-09-11 2016-03-21 삼성전기주식회사 비접촉 방식 충전 장치 및 비접촉 방식 배터리 장치
KR20160030799A (ko) * 2014-09-11 2016-03-21 삼성전기주식회사 비접촉 방식 충전 장치
KR101983173B1 (ko) * 2014-09-11 2019-09-10 주식회사 위츠 비접촉 방식 전력 수전 장치 및 비접촉 방식 배터리 장치
KR102025899B1 (ko) * 2014-09-11 2019-09-26 주식회사 위츠 비접촉 방식 충전 장치 및 비접촉 방식 배터리 장치
KR102025890B1 (ko) * 2014-09-11 2019-09-26 주식회사 위츠 비접촉 방식 충전 장치
JP2017537588A (ja) * 2014-10-22 2017-12-14 パワーバイプロキシ リミテッド コンバータ
KR20170017039A (ko) * 2015-08-04 2017-02-15 주식회사 지니틱스 외부 노이즈 차단이 가능한 무선충전장치
KR102097827B1 (ko) * 2015-08-04 2020-04-06 주식회사 지니틱스 외부 노이즈 차단이 가능한 무선충전장치
US10819154B2 (en) 2016-09-06 2020-10-27 Apple Inc. Inductive power transmitter

Also Published As

Publication number Publication date
CN103141008A (zh) 2013-06-05
KR20130106840A (ko) 2013-09-30
JPWO2012035745A1 (ja) 2014-01-20
US20120068548A1 (en) 2012-03-22
TW201216587A (en) 2012-04-16

Similar Documents

Publication Publication Date Title
WO2012035745A1 (ja) ワイヤレス給電装置およびワイヤレス給電システム
JP5462953B2 (ja) ワイヤレス受電装置およびワイヤレス給電システム
JP5748628B2 (ja) ワイヤレス受電装置およびワイヤレス給電装置
US10243408B2 (en) Wireless power receiver
US10566840B2 (en) Wireless power feeding system
US9478992B2 (en) Power transmission system
JP5698599B2 (ja) ワイヤレス受電装置、ワイヤレス給電装置およびワイヤレス給電システム
JP5702696B2 (ja) ワイヤレス受電装置、ワイヤレス給電装置およびワイヤレス給電システム
JP5715613B2 (ja) ワイヤレス送電システムの中継器およびそれを用いたワイヤレス送電システム
WO2013057896A1 (ja) ワイヤレス受電装置、ワイヤレス給電装置およびワイヤレス給電システム
JP5764032B2 (ja) ワイヤレス給電装置、受電装置および給電システム
US10511194B2 (en) Wireless power transfer system
TW201427225A (zh) 無線受電裝置以及其可利用的阻抗控制電路、阻抗控制方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044612.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012533857

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137009609

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11824761

Country of ref document: EP

Kind code of ref document: A1