WO2012032958A1 - Film for semiconductor device and semiconductor device - Google Patents

Film for semiconductor device and semiconductor device Download PDF

Info

Publication number
WO2012032958A1
WO2012032958A1 PCT/JP2011/069468 JP2011069468W WO2012032958A1 WO 2012032958 A1 WO2012032958 A1 WO 2012032958A1 JP 2011069468 W JP2011069468 W JP 2011069468W WO 2012032958 A1 WO2012032958 A1 WO 2012032958A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
adhesive
dicing
adhesive film
semiconductor device
Prior art date
Application number
PCT/JP2011/069468
Other languages
French (fr)
Japanese (ja)
Inventor
康弘 天野
木村 雄大
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201180042800.4A priority Critical patent/CN103081069B/en
Priority to KR1020117027459A priority patent/KR101183730B1/en
Publication of WO2012032958A1 publication Critical patent/WO2012032958A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a film for a semiconductor device and a semiconductor device manufactured using the film for a semiconductor device.
  • silver paste is used for fixing a semiconductor chip to a lead frame or an electrode member in a manufacturing process of a semiconductor device.
  • the fixing process is performed by applying a paste adhesive on a die pad or the like of the lead frame, mounting a semiconductor chip on the lead adhesive, and curing the paste adhesive layer.
  • paste adhesives have large variations in coating amount and coating shape due to their viscosity behavior and deterioration.
  • the thickness of the paste-like adhesive formed is not uniform, and the reliability of the fixing strength related to the semiconductor chip is poor. That is, when the application amount of the paste adhesive is insufficient, the bonding strength between the semiconductor chip and the electrode member is lowered, and the semiconductor chip is peeled off in the subsequent wire bonding process.
  • the application amount of the paste adhesive is too large, the paste adhesive is cast onto the semiconductor chip, resulting in poor characteristics, and the yield and reliability are lowered.
  • Such a problem in the adhering process becomes particularly remarkable as the semiconductor chip becomes larger. Therefore, it is necessary to frequently control the amount of paste adhesive applied, which hinders workability and productivity.
  • This adhesive film with a dicing sheet is formed by providing an adhesive layer on a supporting substrate so that the adhesive layer can be peeled off, and is formed by dicing a semiconductor wafer while being held by the adhesive layer and then stretching the supporting substrate.
  • the chip is peeled off together with the adhesive layer, and the chips are individually collected and fixed to an adherend such as a lead frame through the adhesive layer.
  • an adhesive film with a dicing sheet has been manufactured by individually bonding a dicing film and an adhesive film, due to restrictions in the manufacturing process. For this reason, from the viewpoint of preventing the occurrence of slack, winding deviation, positional deviation, voids (bubbles), etc. in each film production process, the production is performed while applying tensile tension to each film during conveyance by a roll. .
  • This type of adhesive film with a dicing sheet may be cured when placed in a high temperature and high humidity environment or stored for a long time under a load. As a result, the fluidity of the adhesive layer, the holding power against the semiconductor wafer, and the peelability after dicing are reduced. For this reason, adhesive films with dicing sheets are often transported while being stored in a frozen state at -30 to -10 ° C or refrigerated at -5 to 10 ° C, thereby enabling long-term storage of film properties. ing.
  • the adhesive film with a dicing sheet described above is processed in advance into the shape of a semiconductor wafer to be attached (for example, a circular shape) in consideration of workability such as attachment to a semiconductor wafer and attachment to a ring frame during dicing. There are those that have been pre-cut.
  • Such an adhesive film with a dicing sheet is obtained by laminating an adhesive film punched in a circular shape on a dicing film in which an adhesive layer is laminated on a substrate, and then dicing the dicing film into a circular shape corresponding to the ring frame. Manufactured by punching. Thereby, when dicing a semiconductor wafer, a ring frame can be affixed to the outer peripheral part of a dicing film, and an adhesive film with a dicing sheet can be fixed here now.
  • the pre-cut adhesive film with a dicing sheet is affixed to a long cover film at a predetermined interval, wound in a roll shape, and transported and stored as a film for a semiconductor device.
  • the thickness of the portion where the adhesive film with a dicing sheet is laminated is larger than the thickness of the portion where the adhesive film is not laminated. Therefore, especially when the number of windings is increased or the tension at the time of winding is increased, the edge of another adhesive film with a dicing sheet is pressed against the adhesive film with another dicing sheet, and the trace is transferred. The smoothness of the adhesive film may be impaired. Such transfer marks are particularly prominent when the adhesive film is formed of a relatively soft resin, when the adhesive film is thick, and when the number of windings of the film for a semiconductor device is large.
  • voids bubbles
  • Such voids cause problems during the processing of semiconductor wafers, and may reduce the yield of manufactured semiconductor devices.
  • the cover film has a low modulus of elasticity, a defect that prevents the film from leading out (veloping) when peeling the cover film during wafer mounting occurs, the machine stops due to a transport error, or the cover film is attached. The process proceeds to wafer bonding, and the wafer is laminated on the cover film. And since it is conveyed in the state which is not closely_contact
  • the present invention has been made in view of the above problems, and an object thereof is to provide a film for a semiconductor device in which an adhesive film with a dicing sheet in which an adhesive film is laminated on a dicing film is laminated on a cover film at a predetermined interval. It is an object to provide an adhesive film with a dicing sheet that is capable of easily leading out (veloping out) a cover film while maintaining the function of suppressing transfer marks when the film is rolled up.
  • the inventors of the present application have studied a film for a semiconductor device in order to solve the conventional problems. As a result, by controlling the tensile storage modulus of the dicing film constituting the film for semiconductor devices and the tensile storage modulus of the cover film, it is possible to suppress the generation of transfer marks on the die bond film, and the tip of the cover film.
  • the present invention was completed by finding out that the feeding (bello feeding) can be easily performed.
  • the film for a semiconductor device is a film for a semiconductor device in which an adhesive film with a dicing sheet obtained by laminating an adhesive film on a dicing film is laminated on a cover film at a predetermined interval.
  • the ratio Ea / Eb of the tensile storage elastic modulus Ea of the dicing film and the tensile storage elastic modulus Eb of the cover film at 23 ° C. is in the range of 0.001 to 100.
  • Ea / Eb the larger the value, the harder the dicing film and the softer the cover film.
  • Ea / Eb the softer the dicing film and the harder the cover film.
  • the dicing sheet having the dicing film is bonded to the semiconductor wafer.
  • the attached adhesive film and the cover film can be suitably peeled off.
  • the hardness of the cover film (tensile storage elastic modulus Eb) is not less than a certain value, while the hardness of the dicing film (tensile storage elastic modulus Ea) is not more than a certain value. Become. Therefore, it is possible to prevent the cover film from being broken when the adhesive film is bonded to the cover film, and to prevent the adhesive film surface from being damaged or air bubbles from being mixed between the films. . As a result, it is possible to suppress the generation of voids between the adhesive film and the semiconductor wafer when the cover film is lifted or the semiconductor wafer is mounted.
  • the adhesive film preferably has a glass transition temperature in the range of 0 to 100 ° C. and a tensile storage modulus at 23 ° C. before curing in the range of 50 MPa to 5000 MPa.
  • a glass transition temperature of the said adhesive film 0 degreeC or more, it can suppress that the tackiness of the adhesive film in a B stage state becomes large, and can maintain favorable handleability.
  • dicing it is possible to prevent a part of the adhesive film from melting and the pressure-sensitive adhesive from adhering to the semiconductor chip. As a result, a good pick-up property of the semiconductor chip can be maintained.
  • liquidity fall of an adhesive film can be prevented by making glass transition temperature into 100 degrees C or less.
  • the favorable adhesiveness with a semiconductor wafer can also be maintained.
  • the glass transition temperature of an adhesive film means the thing before thermosetting.
  • the tensile storage modulus at 23 ° C. before curing of the adhesive film to 50 MPa or more, a part of the pressure-sensitive adhesive layer is prevented from melting and adhering to the semiconductor chip during dicing. be able to.
  • the tensile storage modulus to 5000 MPa or less, it is possible to maintain good adhesion to a semiconductor wafer or substrate.
  • the cover film preferably has a thickness of 10 to 100 ⁇ m.
  • the thickness of the dicing film is preferably 25 to 180 ⁇ m.
  • the tensile storage elastic modulus Ea of the dicing film at 23 ° C. is preferably 1 to 500 MPa.
  • the tensile storage modulus Eb of the cover film at 23 ° C. is preferably 1 to 5000 MPa.
  • the semiconductor device according to the present invention is manufactured using the film for a semiconductor device described above.
  • (A) is a top view which shows the outline of the film for semiconductor devices which concerns on this embodiment
  • (b) is the fragmentary sectional view. It is a fragmentary sectional view in the state where the film for semiconductor devices shown in Drawing 1 (a) and Drawing 1 (b) was rolled up. It is the schematic for demonstrating the manufacturing process of the film for semiconductor devices.
  • FIG.1 (a) is a top view which shows the outline of the film for semiconductor devices which concerns on this embodiment
  • FIG.1 (b) is the fragmentary sectional view.
  • the film 10 for a semiconductor device has a configuration in which an adhesive film 1 with a dicing sheet is laminated on a cover film 2 at a predetermined interval.
  • the adhesive film 1 with a dicing sheet has a structure in which an adhesive film 12 is laminated on a dicing film 11, and the dicing film 11 has a structure in which an adhesive layer 14 is laminated on a base material 13.
  • FIG. 2 is a partial cross-sectional view of the semiconductor device film shown in FIGS. 1A and 1B wound in a roll shape.
  • the film 10 for a semiconductor device wound in a roll shape there is a step 19 between a portion where the adhesive film 1 with a dicing sheet is laminated and a portion 18 where the adhesive film 1 is not laminated.
  • the several adhesive film 1 with a dicing sheet on the cover film 2 is laminated
  • the ratio Ea / Eb between the tensile storage modulus Ea of the dicing film 11 at 23 ° C. and the tensile storage modulus Eb of the cover film 2 at 23 ° C. is in the range of 0.001 to 100. .
  • the Ea / Eb is preferably 0.01 to 50, and more preferably 0.1 to 5.
  • the value of Ea / Eb is larger, the dicing film 11 is relatively harder and the cover film 2 is softer.
  • the smaller the value of Ea / Eb the softer the dicing film 11 and the harder the cover film 2.
  • the film 10 for a semiconductor device since the Ea / Eb is 0.001 or more, the hardness (tensile storage elastic modulus Ea) of the dicing film 11 becomes a certain value or more. Therefore, it can suppress that a transfer mark generate
  • the hardness of the cover film 2 (tensile storage elastic modulus Eb) is not less than a certain value, while the hardness of the dicing film 11 (tensile storage elastic modulus Ea) is constant. It becomes as follows. Therefore, it is possible to prevent the cover film 2 from being folded when the adhesive film 12 is bonded to the cover film 2, and to prevent the surface of the adhesive film 12 from being damaged or air bubbles from being mixed between the films. can do. As a result, it is possible to suppress the generation of voids between the adhesive layer and the semiconductor wafer when the cover film 2 is lifted or the semiconductor wafer is mounted.
  • the film 10 for semiconductor devices it is possible to prevent the transfer mark from being generated on the adhesive film 12 when the film is wound into a roll. Moreover, it can suppress that a void (bubble) generate
  • the peel force F1 between the adhesive film 12 and the cover film 2 is preferably smaller than the peel force F2 between the adhesive film 12 and the dicing film 11.
  • the film 10 for semiconductor devices is applied with tensile tension to the dicing film 11, the adhesive film 12, and the cover film 2 from the viewpoint of preventing the occurrence of loosening, winding deviation, positional deviation, voids (bubbles), etc. in the manufacturing process. Laminated and manufactured. Therefore, each film has a tensile residual strain. This tensile residual strain causes shrinkage in each film, for example, when frozen at ⁇ 30 to ⁇ 10 ° C. or transported at a low temperature of ⁇ 5 to 10 ° C. or stored for a long time.
  • the dicing film has the largest degree of shrinkage and the cover film has the smallest degree of shrinkage.
  • the peeling force F1 and F2 are in a relationship of F1 ⁇ F2, so that the interfacial peeling between the films due to the difference in shrinkage between the films and the cover film. 2 can prevent the film floating phenomenon. Furthermore, it is possible to prevent a part or all of the adhesive film 12 from being transferred to the cover film 2.
  • the peel force F1 between the adhesive film 12 and the cover film 2 is preferably in the range of 0.025 to 0.075 N / 100 mm, more preferably in the range of 0.03 to 0.06 N / 100 mm, and 0.035 to 0. A range of 0.05 N / 100 mm is particularly preferable.
  • the peeling force F1 is less than 0.025 N / 100 mm, the adhesive film 12 and the cover film, for example, when frozen at ⁇ 30 to ⁇ 10 ° C. or transported at a low temperature of ⁇ 5 to 10 ° C. or stored for a long time 2 contracts at different shrinkage rates, which may cause a film floating phenomenon of the cover film 2.
  • the peel force F1 is greater than 0.075 N / 100 mm, the adhesive film 12 and the cover film 2 are too close to each other, so that the adhesive film 12 is bonded when the cover film 2 is peeled off or contracted.
  • the agent (details will be described later) may be transferred partially or entirely.
  • the value of the said peeling force F1 means the peeling force between the adhesive film 12 and the cover film 2 before thermosetting, when the adhesive film 12 is a thermosetting type.
  • the peel force F2 between the adhesive film 12 and the dicing film 11 is preferably in the range of 0.08 to 10 N / 100 mm, more preferably in the range of 0.1 to 6 N / 100 mm, and 0.15 to 0.4 N. Particularly preferred is within the range of / 100 mm.
  • the peeling force F2 is 0.08 N / 100 mm or more, the dicing film 11 and the adhesive film, for example, when frozen at ⁇ 30 to ⁇ 10 ° C. or transported at a low temperature of ⁇ 5 to 10 ° C. or stored for a long time 12 can be prevented from shrinking at different shrinkage rates, thereby preventing interfacial peeling between the dicing film 11 and the adhesive film 12.
  • the numerical range of the peeling force F2 includes the case where the pressure-sensitive adhesive layer in the dicing film 11 is an ultraviolet curable type and is cured to a certain extent by ultraviolet irradiation in advance. Moreover, hardening of the adhesive layer by ultraviolet irradiation may be before bonding with the adhesive film 12, and may be after bonding.
  • the values of the peeling forces F1 and F2 are measured values in a T-type peeling test (JIS K6854-3) performed under conditions of a temperature of 23 ⁇ 2 ° C., a peeling speed of 300 mm / min, and a distance between chucks of 100 mm.
  • a tensile tester a trade name “Autograph AGS-H” (manufactured by Shimadzu Corporation) was used.
  • the base material 13 in the dicing film 11 serves as a strength matrix for the semiconductor device film 10 as well as the dicing film 11.
  • Examples of the base material 13 include low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, polymethylpentene, and the like.
  • the substrate 13 is preferably one having ultraviolet transparency among those exemplified above.
  • a material of the base material 13 a polymer such as a cross-linked body of the resin can be mentioned.
  • the plastic film may be used unstretched or may be uniaxially or biaxially stretched as necessary. According to the resin sheet imparted with heat shrinkability by stretching or the like, the adhesive area between the pressure-sensitive adhesive layer 14 and the adhesive film 12 is reduced by thermally shrinking the base material 13 after dicing, and the semiconductor chip can be recovered. Simplification can be achieved.
  • the surface of the substrate 13 is chemically treated by conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, ionizing radiation treatment, etc. in order to improve adhesion and retention with adjacent layers.
  • a physical treatment or a coating treatment with a primer for example, an adhesive substance described later can be performed.
  • the base material 13 can be used by appropriately selecting the same type or different types, and a blend of several types can be used as necessary. Further, in order to provide the base 13 with an antistatic ability, a conductive material vapor deposition layer having a thickness of about 30 to 500 mm made of metal, an alloy, or an oxide thereof is provided on the base 13. it can.
  • the substrate 13 may be a single layer or a multilayer of two or more types.
  • the thickness of the base material 13 is 10 to 170 ⁇ m in order to ensure the film transportability and prevent the base material 13 from being torn, torn or plastically deformed even when the supporting base material is expanded in the bonding process.
  • the thickness is preferably 50 to 150 ⁇ m, and more preferably 100 to 130 ⁇ m.
  • the pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer 14 is not particularly limited, and for example, a general pressure-sensitive pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive can be used.
  • the pressure-sensitive adhesive is an acrylic pressure-sensitive adhesive based on an acrylic polymer from the standpoint of cleanability with an organic solvent such as ultrapure water or alcohol for electronic components that are difficult to contaminate semiconductor wafers and glass. Is preferred.
  • acrylic polymer examples include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, Isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester , Octadecyl esters, eicosyl esters, etc., alkyl groups having 1 to 30 carbon atoms, especially 4 to 18 carbon atoms, such as
  • the acrylic polymer contains units corresponding to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance and the like. You may go out.
  • Such monomer components include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate; Styrene Contains sulfonic acid groups such as phonic acid, allyl sulf
  • a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary.
  • examples of such polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) An acrylate etc. are mentioned. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is preferably
  • the acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization.
  • the polymerization can be performed by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like.
  • the content of the low molecular weight substance is preferably small.
  • the number average molecular weight of the acrylic polymer is preferably 300,000 or more, more preferably about 400,000 to 1.5 million.
  • an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive in order to increase the number average molecular weight of an acrylic polymer as a base polymer.
  • the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked and further depending on the intended use as an adhesive. Generally, it is preferable to add about 5 parts by weight or less, more preferably 0.1 to 5 parts by weight, with respect to 100 parts by weight of the base polymer.
  • additives such as conventionally well-known various tackifier and anti-aging agent, other than the said component as needed to an adhesive.
  • the pressure-sensitive adhesive layer 14 can be formed of an ultraviolet curable pressure-sensitive adhesive.
  • the UV curable pressure-sensitive adhesive can easily reduce its adhesive strength by increasing the degree of crosslinking by irradiation with ultraviolet rays, and by irradiating only the portion corresponding to the semiconductor wafer attachment portion of the pressure-sensitive adhesive layer 14 with UV irradiation. A difference in adhesive strength with other portions can be provided.
  • the tensile storage modulus Ea of the dicing film 11 at 23 ° C. is preferably in the range of 1 to 500 MPa, and more preferably in the range of 5 to 200 MPa.
  • the pressure-sensitive adhesive layer 14 is formed of an ultraviolet curable pressure-sensitive adhesive
  • the tensile storage elastic modulus Ea of the dicing film 11 at 23 ° C. after the pressure-sensitive adhesive layer 14 is ultraviolet-cured is in the range of 1 to 500 MPa. Preferably, it is in the range of 5 to 200 MPa.
  • the tensile storage elastic modulus Ea is set to 500 MPa or less, occurrence of chip jumping can be prevented. Further, since the dicing film 11 can be expanded, adjacent chips can be brought into contact with each other to prevent the occurrence of cracks and sticking, thereby realizing good pickup properties.
  • the ultraviolet irradiation is preferably performed with an ultraviolet irradiation integrated light quantity of, for example, 30 to 1000 mJ / cm 2. By setting the cumulative amount of ultraviolet irradiation to 30 mJ / cm 2 or more, the pressure-sensitive adhesive layer 14 can be cured without deficiency, and excessive adhesion with the adhesive film 12 can be prevented.
  • the value of the tensile storage modulus Ea of the dicing film 11 is based on the following measurement method. That is, a solution of the pressure-sensitive adhesive composition is applied onto a release liner that has been subjected to a release treatment and dried, and a substrate is bonded to the surface of the pressure-sensitive adhesive layer to form a dicing film.
  • the dicing film is measured for a tensile storage elastic modulus at 23 ° C. of the dicing film 11 using a viscoelasticity measuring device (Rheometrics: model: RSA-II).
  • a measurement sample having a length of 30.0 mm ⁇ a width of 5.0 mm and a cross-sectional area of 0.125 to 0.9 mm 2 is set in a film tension measurement jig, and the frequency is in a temperature range of ⁇ 30 ° C. to 100 ° C.
  • the measurement is performed under the conditions of 10.0 Hz, a strain of 0.025%, and a heating rate of 10 ° C./min.
  • the adhesive film 12 has a configuration formed only on the affixed portion according to the shape of the semiconductor wafer in plan view. Therefore, by curing the ultraviolet curable pressure-sensitive adhesive layer 14 in accordance with the shape of the adhesive film 12, the adhesive strength of the portion corresponding to the semiconductor wafer attachment portion can be easily reduced. Since the adhesive film 12 is affixed to the portion where the adhesive strength is reduced, the interface between the portion of the pressure-sensitive adhesive layer 14 and the adhesive film 12 has a property of being easily peeled off during pickup. On the other hand, the part which is not irradiated with ultraviolet rays has sufficient adhesive force.
  • the portion where the pressure-sensitive adhesive layer 14 is formed of an uncured ultraviolet curable pressure-sensitive adhesive sticks to the adhesive film 12 and can secure a holding force when dicing.
  • the ultraviolet curable pressure-sensitive adhesive can support the adhesive film 12 for fixing a chip-shaped semiconductor wafer (semiconductor chip or the like) to an adherend such as a substrate with a good balance of adhesion and peeling.
  • the adhesive film 12 is laminated only on the portion where the semiconductor wafer is attached, the wafer ring is fixed in a region where the adhesive film 12 is not laminated.
  • the ultraviolet curable adhesive those having an ultraviolet curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation.
  • the ultraviolet curable pressure-sensitive adhesive include an additive-type ultraviolet curable pressure-sensitive adhesive in which an ultraviolet curable monomer component or an oligomer component is blended with a general pressure-sensitive adhesive such as the acrylic pressure-sensitive adhesive or the rubber-based pressure-sensitive adhesive. An agent can be illustrated.
  • UV curable monomer component to be blended examples include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol.
  • examples include stall tetra (meth) acrylate, dipentaerystol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 1,4-butanediol di (meth) acrylate.
  • Examples of the ultraviolet curable oligomer component include urethane, polyether, polyester, polycarbonate, and polybutadiene oligomers, and those having a molecular weight in the range of about 100 to 30000 are suitable.
  • the blending amount of the ultraviolet curable monomer component and oligomer component can be appropriately determined in accordance with the type of the pressure-sensitive adhesive layer, and the amount capable of reducing the pressure-sensitive adhesive strength of the pressure-sensitive adhesive layer. In general, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
  • the UV-curable adhesive has a carbon-carbon double bond in the polymer side chain or main chain or at the main chain end as a base polymer.
  • Intrinsic ultraviolet curable pressure sensitive adhesives using Intrinsic UV curable adhesives do not need to contain oligomer components, which are low molecular weight components, or do not contain many, so they are stable without the oligomer components moving through the adhesive over time. It is preferable because an adhesive layer having a layered structure can be formed.
  • the base polymer having a carbon-carbon double bond those having a carbon-carbon double bond and having adhesiveness can be used without particular limitation.
  • those having an acrylic polymer as a basic skeleton are preferable.
  • the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.
  • the method for introducing the carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted.
  • the carbon-carbon double bond can be easily introduced into the polymer side chain for easy molecular design.
  • a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into an ultraviolet curable carbon-carbon double bond.
  • combinations of these functional groups include carboxylic acid groups and epoxy groups, carboxylic acid groups and aziridyl groups, hydroxyl groups and isocyanate groups, and the like.
  • a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction.
  • the functional group may be on either side of the acrylic polymer and the compound as long as the combination of these functional groups generates an acrylic polymer having the carbon-carbon double bond.
  • it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group.
  • examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, and the like.
  • the acrylic polymer a copolymer obtained by copolymerizing the above-exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like is used.
  • the base polymer (particularly acrylic polymer) having the carbon-carbon double bond can be used alone, but the ultraviolet curable monomer does not deteriorate the characteristics.
  • Components and oligomer components can also be blended.
  • the UV-curable oligomer component and the like are usually in the range of 30 parts by weight, preferably 0 to 10 parts by weight, with respect to 100 parts by weight of the base polymer.
  • the ultraviolet curable pressure-sensitive adhesive contains a photopolymerization initiator when cured by ultraviolet rays or the like.
  • the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-methyl-2-hydroxypropio ⁇ -ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropane-1; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; 2-naphthalene
  • a compound that is colored by ultraviolet irradiation can be contained as necessary.
  • a compound to be colored in the pressure-sensitive adhesive layer 14 by irradiation with ultraviolet rays only the portion irradiated with ultraviolet rays can be colored. Thereby, it can be immediately determined by visual observation whether the adhesive layer 14 is irradiated with ultraviolet rays, the semiconductor wafer attachment portion can be easily recognized, and the semiconductor wafer can be easily attached.
  • the detection accuracy is increased, and no malfunction occurs when the semiconductor chip is picked up.
  • a compound colored by ultraviolet irradiation is a compound that is colorless or light-colored before ultraviolet irradiation but becomes colored by ultraviolet irradiation.
  • Preferable specific examples of such compounds include leuco dyes.
  • leuco dye conventional triphenylmethane, fluoran, phenothiazine, auramine, and spiropyran dyes are preferably used.
  • Developers preferably used together with these leuco dyes include conventionally used initial polymers of phenol formalin resins, aromatic carboxylic acid derivatives, electron acceptors such as activated clay, and further change the color tone. In some cases, various known color formers can be used in combination.
  • Such a compound colored by ultraviolet irradiation may be once dissolved in an organic solvent or the like and then contained in the ultraviolet curable pressure sensitive adhesive, or may be finely powdered and contained in the pressure sensitive adhesive.
  • the proportion of the compound used is desirably 10% by weight or less, preferably 0.01 to 10% by weight, more preferably 0.5 to 5% by weight in the pressure-sensitive adhesive layer 14. If the ratio of the compound exceeds 10% by weight, the ultraviolet ray irradiated to the pressure-sensitive adhesive layer 14 is excessively absorbed by the compound, so that the portion of the pressure-sensitive adhesive layer 14 corresponding to the semiconductor wafer attachment portion is not cured. It may be sufficient and the adhesive strength may not be sufficiently reduced. On the other hand, in order to sufficiently color, it is preferable that the ratio of the compound is 0.01% by weight or more.
  • the pressure-sensitive adhesive layer 14 is formed of an ultraviolet curable pressure-sensitive adhesive, all or a part of the base material 13 other than the part corresponding to the semiconductor wafer pasting part is shielded from light. It is possible to form the portion with reduced adhesive force by forming the ultraviolet curable pressure-sensitive adhesive layer 14 and then irradiating it with ultraviolet rays to cure the portion corresponding to the semiconductor wafer attachment portion.
  • a light shielding material what can become a photomask on a support film can be prepared by printing, vapor deposition, or the like. According to this manufacturing method, the film 10 for a semiconductor device of the present invention can be efficiently manufactured.
  • oxygen air
  • a method of covering the surface of the pressure-sensitive adhesive layer 14 with a separator, a method of irradiating ultraviolet rays in a nitrogen gas atmosphere, and the like can be mentioned.
  • the thickness of the pressure-sensitive adhesive layer 14 is not particularly limited, but is preferably about 1 to 50 ⁇ m from the viewpoint of preventing chipping of the chip cut surface and compatibility of fixing and holding the adhesive film.
  • the thickness is preferably 2 to 30 ⁇ m, more preferably 5 to 25 ⁇ m.
  • the total thickness of the base material 13 and the pressure-sensitive adhesive layer 14, that is, the thickness of the dicing film 11 is from the viewpoint of transportability, chip chipping surface chipping prevention, fixing and holding of the adhesive film, and pick-up properties.
  • the thickness is preferably 25 to 180 ⁇ m, more preferably 50 to 150 ⁇ m, and still more preferably 100 to 130 ⁇ m.
  • the adhesive film 12 is a layer having an adhesive function, and as a constituent material thereof, a thermoplastic resin and a thermosetting resin may be used in combination, or a thermoplastic resin may be used alone.
  • the glass transition temperature of the adhesive film 12 is preferably within the range of 0 to 100 ° C, more preferably within the range of 10 to 80 ° C, and even more preferably 20 ° C to 60 ° C.
  • the glass transition temperature is 0 ° C. or higher, it is possible to prevent the tackiness of the adhesive film 12 in the B-stage state from being increased and the handling property from being lowered.
  • the semiconductor wafer is diced, it is possible to prevent the adhesive melted by friction with the dicing blade from adhering to the semiconductor chip, thereby causing a pickup failure.
  • by setting the glass transition temperature to 100 ° C. or lower it is possible to prevent fluidity and adhesion with a semiconductor wafer from being lowered.
  • the glass transition temperature was measured using a viscoelasticity measuring device (Rheometrics: Model: RSA-II) at a frequency of ⁇ 30 ° C. to 250 ° C., a frequency of 10.0 Hz, a strain of 0.025%, This is the temperature at which Tan ⁇ (G ′′ (loss elastic modulus) / G ′ (storage elastic modulus)) shows a maximum value when measured under a temperature rising rate of 10 ° C./min.
  • RSA-II viscoelasticity measuring device
  • the tensile storage modulus of the adhesive film 12 at 23 ° C. before curing is preferably in the range of 50 to 5000 MPa, more preferably in the range of 100 to 3000 MPa, and even more preferably in the range of 300 to 2000 MPa.
  • the tensile storage elastic modulus of the adhesive film 12 is preferably in the range of 50 to 5000 MPa, more preferably in the range of 100 to 3000 MPa, and even more preferably in the range of 300 to 2000 MPa.
  • the tensile storage elastic modulus of the adhesive film 12 can be made favorable by the said tensile storage elastic modulus of the adhesive film 12 being 5000 Mpa or less.
  • the tensile storage elastic modulus of the adhesive film means the tensile storage elastic modulus before thermosetting when the adhesive film is a thermosetting type.
  • the value of the tensile storage elastic modulus is based on the following measurement method. That is, the adhesive composition solution is applied onto a release liner that has been subjected to a mold release treatment and dried to form an adhesive film 12 having a thickness of 100 ⁇ m.
  • the adhesive film 12 is measured for a tensile storage elastic modulus at 23 ° C. before the adhesive film 12 is cured by using a viscoelasticity measuring device (Rheometrics: model: RSA-II). More specifically, the sample size is 30.0 ⁇ length 5.0 ⁇ thickness 0.1 mm, the measurement sample is set in a film tensile measurement jig, and the frequency is in the temperature range of ⁇ 30 ° C. to 280 ° C. The measurement is performed under the conditions of 10.0 Hz, a strain of 0.025%, and a heating rate of 10 ° C./min.
  • the weight average molecular weight of the thermoplastic resin is preferably 300,000 or more and 150 or less, more preferably 350,000 to 1,000,000, still more preferably 400,000 to 800,000.
  • the weight average molecular weight of the thermoplastic resin is preferably 300,000 or more and 150 or less, more preferably 350,000 to 1,000,000, still more preferably 400,000 to 800,000.
  • the tensile storage modulus of the adhesive film at 23 ° C. can be controlled to a suitable value.
  • the thermoplastic resin has a weight average molecular weight of 300,000 or more and a relatively low molecular weight content, the contamination of a clean adherend can be prevented.
  • the weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
  • thermoplastic resin examples include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, heat Examples thereof include plastic polyimide resins, polyamide resins such as 6-nylon and 6,6-nylon, phenoxy resins, acrylic resins, saturated polyester resins such as PET and PBT, polyamideimide resins, and fluorine resins. These thermoplastic resins can be used alone or in combination of two or more. Of these thermoplastic resins, an acrylic resin that has few ionic impurities and high heat resistance and can ensure the reliability of the semiconductor device is particularly preferable.
  • the acrylic resin is not particularly limited, and includes one or more esters of acrylic acid or methacrylic acid ester having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms.
  • Examples include polymers as components.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a t-butyl group, an isobutyl group, an amyl group, an isoamyl group, a hexyl group, a heptyl group, a cyclohexyl group, and 2-ethylhexyl.
  • octyl group isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, lauryl group, tridecyl group, tetradecyl group, stearyl group, octadecyl group, or dodecyl group.
  • the other monomer forming the polymer is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid.
  • Carboxyl group-containing monomers maleic anhydride or acid anhydride monomers such as itaconic anhydride, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-methacrylic acid 4- Hydroxybutyl, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate or (4-hydroxymethylcyclohexyl) -Methyl Hydroxyl group-containing monomers such as acrylate, styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate or (meth) Examples thereof include sulfonic acid group-containing monomers such as
  • thermosetting resin examples include phenol resin, amino resin, unsaturated polyester resin, epoxy resin, polyurethane resin, silicone resin, and thermosetting polyimide resin. These resins can be used alone or in combination of two or more. In particular, an epoxy resin containing a small amount of ionic impurities that corrode semiconductor chips is preferable. Moreover, as a hardening
  • the epoxy resin is not particularly limited as long as it is generally used as an adhesive composition, for example, bisphenol A type, bisphenol F type, bisphenol S type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol AF type. , Biphenyl type, naphthalene type, fluorene type, phenol novolak type, orthocresol novolak type, trishydroxyphenylmethane type, tetraphenylolethane type, etc. Type or glycidylamine type epoxy resin is used. These can be used alone or in combination of two or more.
  • novolac type epoxy resins novolac type epoxy resins, biphenyl type epoxy resins, trishydroxyphenylmethane type resins or tetraphenylolethane type epoxy resins are particularly preferred. This is because these epoxy resins are rich in reactivity with a phenol resin as a curing agent and are excellent in heat resistance and the like.
  • the phenol resin acts as a curing agent for the epoxy resin.
  • examples include resol-type phenolic resins and polyoxystyrenes such as polyparaoxystyrene. These can be used alone or in combination of two or more. Of these phenol resins, phenol novolac resins and phenol aralkyl resins are particularly preferred. This is because the connection reliability of the semiconductor device can be improved.
  • the compounding ratio of the epoxy resin and the phenol resin is preferably such that, for example, the hydroxyl group in the phenol resin is 0.5 to 2.0 equivalents per equivalent of the epoxy group in the epoxy resin component. More preferred is 0.8 to 1.2 equivalents. That is, if the blending ratio of both is out of the above range, sufficient curing reaction does not proceed and the properties of the cured epoxy resin are likely to deteriorate.
  • the adhesive film 12 containing an epoxy resin, a phenol resin, and an acrylic resin is particularly preferable. Since these resins have few ionic impurities and high heat resistance, the reliability of the semiconductor chip can be ensured.
  • the mixing ratio of the epoxy resin and the phenol resin is 10 to 200 parts by weight with respect to 100 parts by weight of the acrylic resin component.
  • the adhesive film 12 may use a thermosetting catalyst as a constituent material of the adhesive film 12 as necessary.
  • the blending ratio is preferably within the range of 0.1 to 3.0 parts by weight, more preferably within the range of 0.15 to 2.0 parts by weight, with respect to 100 parts by weight of the organic component, and 0.2 to 1. A range of 0 part by weight is particularly preferable. By setting the blending ratio to 0.1 parts by weight or more, the adhesive force after thermosetting can be favorably expressed. On the other hand, when the blending ratio is 3.0 parts by weight or less, it is possible to suppress a decrease in storage stability.
  • thermosetting catalyst is not particularly limited, and examples thereof include imidazole compounds, triphenylphosphine compounds, amine compounds, triphenylborane compounds, and trihalogenborane compounds. These can be used alone or in combination of two or more.
  • imidazole compound examples include 2-methylimidazole (trade name; 2MZ), 2-undecylimidazole (trade name; C11Z), 2-heptadecylimidazole (trade name; C17Z), 1,2-dimethylimidazole (product).
  • the triphenylphosphine compound is not particularly limited, and examples thereof include triorganophosphines such as triphenylphosphine, tributylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, and diphenyltolylphosphine.
  • triorganophosphines such as triphenylphosphine, tributylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, and diphenyltolylphosphine.
  • the triphenylphosphine compound is preferably substantially insoluble in the epoxy resin. It can suppress that thermosetting progresses too much that it is insoluble with respect to an epoxy resin.
  • thermosetting catalyst having a triphenylphosphine structure and substantially insoluble in an epoxy resin examples include methyltriphenylphosphonium (trade name: TPP-MB).
  • TPP-MB methyltriphenylphosphonium
  • the “insoluble” means that the thermosetting catalyst made of a triphenylphosphine compound is insoluble in a solvent made of an epoxy resin, and more specifically, a temperature range of 10 to 40 ° C. It means that 10% by weight or more does not dissolve.
  • the triphenylborane compound is not particularly limited, and examples thereof include tri (p-methylphenyl) phosphine.
  • the triphenylborane compound further includes those having a triphenylphosphine structure.
  • the compound having the triphenylphosphine structure and the triphenylborane structure is not particularly limited.
  • tetraphenylphosphonium tetraphenylborate (trade name; TPP-K), tetraphenylphosphonium tetra-p-triborate (trade name; TPP-MK), benzyltriphenylphosphonium tetraphenylborate (trade name; TPP-ZK), triphenylphosphine triphenylborane (trade name; TPP-S), and the like (all manufactured by Hokuko Chemical Co., Ltd.).
  • the amino compound is not particularly limited, and examples thereof include monoethanolamine trifluoroborate (manufactured by Stella Chemifa Corporation), dicyandiamide (manufactured by Nacalai Tesque Corporation), and the like.
  • the trihalogen borane-based compound is not particularly limited, and examples thereof include trichloroborane.
  • the adhesive film 12 according to the present embodiment is crosslinked to some extent in advance, a polyfunctional compound that reacts with a functional group at the molecular chain end of the polymer may be added as a crosslinking agent during production. . Thereby, the adhesive property under high temperature is improved and heat resistance is improved.
  • crosslinking agent conventionally known crosslinking agents can be used. Particularly preferred are polyisocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, p-phenylene diisocyanate, 1,5-naphthalene diisocyanate, adducts of polyhydric alcohol and diisocyanate.
  • the addition amount of the crosslinking agent is usually preferably 0.05 to 7 parts by weight with respect to 100 parts by weight of the polymer. When the amount of the cross-linking agent is more than 7 parts by weight, the adhesive force is lowered, which is not preferable. On the other hand, if it is less than 0.05 parts by weight, the cohesive force is insufficient, which is not preferable. Moreover, you may make it include other polyfunctional compounds, such as an epoxy resin, together with such a polyisocyanate compound as needed.
  • an inorganic filler can be appropriately blended into the adhesive film 12 according to its use.
  • the blending of the inorganic filler makes it possible to impart conductivity, improve thermal conductivity, adjust the elastic modulus, and the like.
  • the inorganic filler include silica, clay, gypsum, calcium carbonate, barium sulfate, alumina oxide, beryllium oxide, silicon carbide, silicon nitride and other ceramics, aluminum, copper, silver, gold, nickel, chromium, bell
  • silica particularly a melting strength is preferably used.
  • the average particle size of the inorganic filler is preferably in the range of 0.01 to 80 ⁇ m.
  • the blending amount of the inorganic filler is preferably set to 0 to 80 parts by weight, more preferably 0 to 70 parts by weight with respect to 100 parts by weight of the organic component.
  • the adhesive film 12 can be appropriately mixed with other additives as necessary.
  • other additives include flame retardants, silane coupling agents, ion trapping agents, and the like.
  • flame retardant include antimony trioxide, antimony pentoxide, brominated epoxy resin, and the like. These can be used alone or in combination of two or more.
  • silane coupling agent include ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and the like. These compounds can be used alone or in combination of two or more.
  • the ion trapping agent include hydrotalcites and bismuth hydroxide. These can be used alone or in combination of two or more.
  • the thickness of the adhesive film 12 is not particularly limited, but is, for example, about 5 to 100 ⁇ m, preferably about 5 to 70 ⁇ m.
  • the film for semiconductor device 10 can have antistatic ability. As a result, it is possible to prevent the circuit from being broken due to the generation of static electricity during the bonding and peeling, and the resulting charging of the semiconductor wafer or the like.
  • the antistatic ability is imparted by adding an antistatic agent or a conductive material to the base material 13, the pressure-sensitive adhesive layer 14 or the adhesive film 12, and providing a conductive layer made of a charge transfer complex or a metal film on the base material 13. Etc., etc. As these methods, a method in which impurity ions that may change the quality of the semiconductor wafer are less likely to be generated is preferable.
  • a conductive substance (conductive filler) blended for the purpose of imparting conductivity and improving thermal conductivity spherical, needle-like, and flaky shapes such as silver, aluminum, gold, copper, nickel, and conductive alloys
  • spherical, needle-like, and flaky shapes such as silver, aluminum, gold, copper, nickel, and conductive alloys
  • metal powders, metal oxides such as alumina, amorphous carbon black, and graphite examples thereof include metal powders, metal oxides such as alumina, amorphous carbon black, and graphite.
  • the adhesive film 12 is non-conductive because it can be prevented from electrically leaking.
  • the adhesive film 12 is protected by the cover film 2.
  • the cover film 2 has a function as a protective material that protects the adhesive film 12 until it is put into practical use.
  • the cover film 2 is peeled off when a semiconductor wafer is stuck on the adhesive film 12 of the adhesive film with a dicing sheet.
  • a plastic film or paper surface-coated with a release agent such as polyethylene terephthalate (PET), polyethylene, polypropylene, a fluorine-type release agent, or a long-chain alkyl acrylate-type release agent can be used.
  • the tensile storage elastic modulus Eb of the cover film 2 is preferably in the range of 1 to 5000 MPa, more preferably in the range of 50 to 4500 MPa, and further preferably in the range of 100 to 4000 MPa.
  • the tensile storage modulus Eb of the cover film 2 is preferably in the range of 1 to 5000 MPa, more preferably in the range of 50 to 4500 MPa, and further preferably in the range of 100 to 4000 MPa.
  • the thickness of the cover film 2 is preferably 10 to 100 ⁇ m, more preferably 15 to 75 ⁇ m, and further preferably 25 to 50 ⁇ m from the viewpoint of workability and transportability.
  • the adhesive layer 14 is formed on the substrate 13 to form the dicing film 11, and the adhesive film 12 is formed on the substrate separator 22.
  • the base material 13 can be formed by a conventionally known film forming method.
  • the film forming method include a calendar film forming method, a casting method in an organic solvent, an inflation extrusion method in a closed system, a T-die extrusion method, a co-extrusion method, and a dry lamination method.
  • the coating film is dried under predetermined conditions (heat-crosslinked as necessary) to form a pressure-sensitive adhesive layer 14.
  • predetermined conditions heat-crosslinked as necessary
  • the drying conditions can be appropriately set according to the thickness and material of the coating film. Specifically, for example, the drying temperature is 80 to 150 ° C. and the drying time is 0.5 to 5 minutes.
  • the coating film may be dried on the said drying conditions, and the adhesive layer 14 may be formed.
  • the produced dicing film 11 may have a long form wound in a roll shape. In this case, it is preferable to wind the dicing film 11 while applying a tensile tension in the longitudinal direction or the width direction so that no slack, winding deviation, or positional deviation occurs. However, by applying a tensile tension, the dicing film 11 is wound into a roll shape with a residual tensile strain remaining. In addition, although the dicing film 11 may be extended
  • the pressure-sensitive adhesive layer 14 is made of an ultraviolet-curing pressure-sensitive adhesive and is pre-cured with ultraviolet light, it is formed as follows. That is, after an ultraviolet curable pressure-sensitive adhesive composition is applied onto the substrate 13 to form a coating film, the coating film is dried under a predetermined condition (heat-crosslinked as necessary) to form a pressure-sensitive adhesive layer. Form.
  • the coating method, coating conditions, and drying conditions can be performed in the same manner as described above.
  • an ultraviolet curable pressure-sensitive adhesive composition may be applied onto the first separator 21 to form a coating film, and then the coating film may be dried under the drying conditions to form a pressure-sensitive adhesive layer. Thereafter, the pressure-sensitive adhesive layer is transferred onto the substrate 13.
  • the adhesive layer is irradiated with ultraviolet rays under predetermined conditions.
  • the ultraviolet irradiation conditions are not particularly limited, it is usually preferably within a range where the integrated light quantity is 30 to 1000 mJ / cm 2, more preferably within a range where 50 to 800 mJ / cm 2, and within a range where 100 to 500 mJ / cm 2 is reached. Is more preferable.
  • the peeling force F2 between the adhesive film 12 and the dicing film 11 can be controlled within a range of 0.08 to 10 N / 100 mm.
  • the pressure-sensitive adhesive layer 14 may be insufficiently cured, and the peeling force from the adhesive film 12 may be excessively increased. As a result, the adhesiveness with the adhesive film is increased and the pickup property is lowered. Further, adhesive residue may occur on the adhesive film after pickup. On the other hand, if the integrated light quantity exceeds 1000 mJ / cm 2, the peeling force from the adhesive film 12 may be too small. As a result, interface peeling may occur between the pressure-sensitive adhesive layer 14 and the adhesive film 12. As a result, chip skipping may occur during dicing of the semiconductor wafer. In addition, the base material 13 may be thermally damaged.
  • the curing of the pressure-sensitive adhesive layer 14 proceeds excessively, the tensile elastic modulus becomes too large, and the expandability decreases.
  • FIG. in this case, the ultraviolet irradiation is preferably performed from the substrate 13 side.
  • the production process of the adhesive film 12 is performed as follows. That is, an adhesive composition solution for forming the adhesive film 12 is applied on the base separator 22 so as to have a predetermined thickness, thereby forming a coating film. Thereafter, the coating film is dried under predetermined conditions to form the adhesive film 12. It does not specifically limit as a coating method, For example, roll coating, screen coating, gravure coating, etc. are mentioned. Further, the drying conditions can be appropriately set according to the thickness and material of the coating film. Specifically, for example, the drying is performed within a range of 70 to 160 ° C. and a drying time of 1 to 5 minutes.
  • the coating film may be dried on the said drying conditions, and the adhesive film 12 may be formed. Thereafter, the adhesive film 12 is bonded together with the second separator 23 on the substrate separator 22. Thereby, the laminated
  • This laminated film may have a long form wound in a roll shape. In this case, it is preferable to wind the adhesive film 12 while applying a tensile tension in the longitudinal direction or the width direction so that the adhesive film 12 is not loosened, wound or misaligned.
  • the adhesive film 12 is punched in accordance with the shape of the semiconductor wafer to be attached, and is attached to the dicing film 11.
  • the adhesive film 1 with a dicing sheet is obtained. That is, the first separator 21 is peeled off from the dicing film 11 and the second separator 23 is peeled off from the punched adhesive film 12 so that the adhesive film 12 and the pressure-sensitive adhesive layer 14 are bonded to each other. Paste together (see FIG. 3C).
  • pressure bonding is performed on at least one of the dicing film 11 and the adhesive film 12 while applying a tensile tension to the peripheral edge.
  • a tensile tension may be applied within a range of 10 to 25 N from the viewpoint of preventing the dicing film 11 from being loosened, wound, misaligned, or voids (bubbles). Within this range, even if tensile residual strain remains in the dicing film 11, it is possible to prevent the occurrence of interface peeling between the dicing film 11 and the adhesive film 12.
  • the dicing film 11 and the adhesive film 12 can be bonded together by, for example, pressure bonding.
  • the laminating temperature is not particularly limited, but is usually preferably 30 to 80 ° C, more preferably 30 to 60 ° C, and particularly preferably 30 to 50 ° C.
  • the linear pressure is not particularly limited, but is usually preferably 0.1 to 20 kgf / cm, and more preferably 1 to 10 kgf / cm.
  • the peeling force F2 between the adhesive film 12 and the dicing film 11 can be controlled within the range of 0.08 to 10 N / 100 mm.
  • the peeling force F2 between the dicing film 11 and the adhesive film 12 can be increased by increasing the laminating temperature within the above range.
  • the peeling force F2 can be increased by increasing the linear pressure within the above range.
  • the base material separator 22 on the adhesive film 12 is peeled off, and the cover film 2 is bonded while applying tensile tension.
  • the dicing film 11 is punched out into a circular shape corresponding to the ring frame at a predetermined interval. Thereby, the film 10 for semiconductor devices by which the pre-cut adhesive film 1 with a dicing sheet was laminated
  • the bonding of the adhesive film 12 to the cover film 2 in the adhesive film 1 with a dicing sheet is preferably performed by pressure bonding.
  • the lamination temperature is not particularly limited, but is usually preferably 20 to 80 ° C., more preferably 20 to 60 ° C., and particularly preferably 20 to 50 ° C.
  • the linear pressure is not particularly limited, but is usually preferably 0.1 to 20 kgf / cm, more preferably 0.2 to 10 kgf / cm.
  • the laminating temperature and / or the linear pressure are adjusted within the above numerical ranges, respectively, and bonded to the cover film 2
  • the peeling force F1 between the adhesive film 12 and the cover film 2 can be controlled within the range of 0.025 to 0.075 N / 100 mm.
  • the peeling force F1 between the adhesive film with dicing sheet 1 and the cover film 2 can be increased by increasing the laminating temperature within the above range.
  • the peeling force F1 can be increased by increasing the linear pressure within the above range.
  • a tensile tension may be applied within a range of 10 to 25N. If it is in the said range, even if the tensile residual distortion remains in the cover film 2, it can prevent that the film floating phenomenon of the cover film 2 with respect to the adhesive film 1 with a dicing sheet generate
  • the first separator 21 bonded on the pressure-sensitive adhesive layer 14 of the dicing film 11, the substrate separator 22 of the adhesive film 12, and the second separator 23 bonded on the adhesive film 12 are not particularly limited.
  • a conventionally known release-treated film can be used.
  • the first separator 21 and the second separator 23 each have a function as a protective material.
  • the substrate separator 22 has a function as a substrate when the adhesive film 12 is transferred onto the pressure-sensitive adhesive layer 14 of the dicing film 11.
  • the material constituting each of these films is not particularly limited, and conventionally known materials can be employed.
  • PET polyethylene terephthalate
  • polyethylene polyethylene
  • polypropylene polypropylene
  • a plastic film or paper surface-coated with a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent
  • a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent
  • the adhesive film of the present invention can be used as a die bond film or a flip chip type semiconductor back film.
  • the flip chip type semiconductor back film is used for forming on the back surface of a semiconductor element (for example, a semiconductor chip) flip-chip connected to an adherend (for example, various substrates such as a lead frame and a circuit board). Is.
  • Example 1 (Preparation of adhesive layer for dicing film)
  • a reaction vessel equipped with a cooling tube, a nitrogen introducing tube, a thermometer and a stirrer, 76 parts of 2-ethylhexyl acrylate (2EHA), 24 parts of 2-hydroxyethyl acrylate (HEA), and benzoyl peroxide 0 .2 parts and 60 parts of toluene were added and polymerized in a nitrogen stream at 61 ° C. for 6 hours to obtain an acrylic polymer A having a weight average molecular weight of 750,000.
  • the molar ratio of 2EHA to HEA was 100 mol to 20 mol.
  • the measurement of a weight average molecular weight is as above-mentioned.
  • the pressure-sensitive adhesive solution prepared above was applied on the surface of the PET release liner (first separator) that had been subjected to silicone treatment, and heat-crosslinked at 120 ° C. for 2 minutes to form a pressure-sensitive adhesive layer having a thickness of 30 ⁇ m.
  • a low-density polyethylene resin (Sumitomo Chemical Sumikasen F218) was extruded by the T-die method to prepare a sheet-like base material having a thickness of 40 ⁇ m, and bonded to the surface of the pressure-sensitive adhesive layer. Thereafter, it was stored at 50 ° C. for 24 hours.
  • the PET release liner was peeled off, and ultraviolet rays were directly irradiated only to the portion (circular shape with a diameter of 220 mm) corresponding to the adhesive layer of the semiconductor wafer (circular shape with a diameter of 200 mm).
  • the irradiation conditions are as follows.
  • UV irradiation device high-pressure mercury lamp UV irradiation integrated light quantity: 500 mJ / cm2 Output: 120W Irradiation intensity: 200 mW / cm2
  • Epoxy resin 1 (manufactured by JER Corporation, Epicoat 1004) 228 parts, epoxy resin 2 (manufactured by JER Corporation) with respect to 100 parts of acrylic rubber having an epoxy group ("SG80H"; manufactured by Nagase ChemteX Corporation) , Epicoat 827) 206 parts, phenol resin (Mitsui Chemicals Co., Ltd., Milex XLC-4L) 466 parts, spherical silica (manufactured by Admatex Co., Ltd., trade name; SO-25R, average particle size 0) 0.5 ⁇ m) and 667 parts of a curing catalyst (C11-Z, manufactured by Shikoku Kasei Co., Ltd.) were dissolved in methyl ethyl ketone and adjusted to a concentration of 25% by weight.
  • the tensile storage modulus of the adhesive film at 23 ° C. was 1421 MPa, and the glass transition temperature was 41.5 ° C.
  • This adhesive composition solution is applied onto a release-treated film (base separator) with a fountain coater to form a coating layer, and hot air at 150 ° C. and 10 m / s is directly applied to the coating layer for 2 minutes. Sprayed and dried. Thus, an adhesive film having a thickness of 25 ⁇ m was produced on the release treatment film.
  • a release treatment film (base separator) a polyethylene terephthalate film (thickness 50 ⁇ m) subjected to silicone release treatment was used.
  • the adhesive film was cut into a circular shape having a diameter of 230 mm, and the pressure-sensitive adhesive layer of the dicing film and the adhesive film cut into a circular shape were bonded together.
  • a nip roll is used for the bonding, and the bonding conditions are a lamination temperature of 50 ° C. and a linear pressure of 3 kgf / cm.
  • the base separator on the adhesive film is peeled off to form a release treatment film (cover film).
  • a release-treated polyethylene terephthalate film was bonded. At this time, in order to prevent misalignment, voids (bubbles), etc.
  • a linear pressure is applied without applying a lamination temperature while applying a tensile tension of 17 N in the MD direction using a dancer roll. Bonding was performed at 2 kgf / cm to prepare an adhesive film with a dicing sheet.
  • the film for a semiconductor device in which 250 dicing sheet-attached adhesive films were bonded to each other at a distance of 10 mm by punching the dicing film into a circular shape having a diameter of 270 mm so that the adhesive film is at the center.
  • Example 2 ⁇ Production of dicing film>
  • the dicing film according to this example was the same as in Example 1 except that a 100 ⁇ m polyolefin film (base material) was bonded to the pressure-sensitive adhesive layer.
  • This adhesive composition solution is applied onto a release-treated film (base separator) with a fountain coater to form a coating layer, and hot air at 150 ° C. and 10 m / s is directly applied to the coating layer for 2 minutes. Sprayed and dried. Thus, an adhesive film having a thickness of 25 ⁇ m was produced on the release treatment film.
  • a release treatment film (base separator) a polyethylene terephthalate film (thickness 50 ⁇ m) subjected to silicone release treatment was used.
  • the adhesive film was cut into a circular shape having a diameter of 230 mm, and the pressure-sensitive adhesive layer of the dicing film was bonded to the adhesive film cut into a circular shape. Furthermore, the substrate separator on the adhesive film was peeled off, and a silicone release-treated polyolefin film (thickness 25 ⁇ m) was bonded as a release-treated film (cover film) to produce an adhesive film with a dicing sheet. .
  • the bonding conditions were the same as in Example 1.
  • Example 3 ⁇ Production of dicing film> The dicing film according to the present example, except that an adhesive tape base material (thickness 100 ⁇ m) made only of random polypropylene resin (MFR: 2 g / 10 min, ethylene component content: 60% by weight) was used as the adhesive layer. The same one as in Example 1 was used. In addition, the corona treatment was given to one surface of the adhesive tape base material. Next, a polyolefin film (base material) having a thickness of 100 ⁇ m was bonded to the surface of the pressure-sensitive adhesive layer. Thereafter, it was stored at 50 ° C. for 24 hours.
  • an adhesive tape base material thickness 100 ⁇ m
  • MFR random polypropylene resin
  • ethylene component content 60% by weight
  • the tensile storage modulus of the adhesive film at 23 ° C. was 2320 MPa, and the glass transition temperature was 38.9 ° C.
  • This adhesive composition solution is applied onto a release-treated film (base separator) with a fountain coater to form a coating layer, and hot air at 150 ° C. and 10 m / s is directly applied to the coating layer for 2 minutes. Sprayed and dried. Thus, an adhesive film having a thickness of 25 ⁇ m was produced on the release treatment film.
  • a release treatment film (base separator) a polyethylene terephthalate film (thickness 50 ⁇ m) subjected to silicone release treatment was used.
  • the adhesive film was cut into a circular shape having a diameter of 230 mm, and the pressure-sensitive adhesive layer of the dicing film was bonded to the adhesive film cut into a circular shape. Further, the substrate separator on the adhesive film is peeled off to form a release treatment film (cover film), and a low-density polyethylene resin (Sumitomo Chemical F218) is extruded by the T-die method to form a sheet having a thickness of 25 ⁇ m. By bonding together, an adhesive film with a dicing sheet was produced. The bonding conditions were the same as in Example 1.
  • the film for a semiconductor device in which 250 dicing sheet-attached adhesive films were bonded to each other at a distance of 10 mm by punching the dicing film into a circular shape having a diameter of 270 mm so that the adhesive film is at the center.
  • Comparative Example 1 ⁇ Preparation of film for semiconductor device> A film for a semiconductor device according to this comparative example was produced in the same manner as in Example 1, except that a polyethylene terephthalate film having a silicone release treatment having a thickness of 100 ⁇ m was used as the cover film.
  • the dicing film according to this comparative example is an example except that 130 ⁇ m of an adhesive tape base material made only of a random polypropylene resin (MFR: 1.7 g / 10 minutes, ethylene component content: 75% by weight) was used as an adhesive layer. 1 was used.
  • the adhesive film was cut into a circular shape having a diameter of 230 mm, and the pressure-sensitive adhesive layer of the dicing film was bonded to the adhesive film cut into a circular shape. Furthermore, the base film separator on the adhesive film was peeled off, and a 25 ⁇ m-thick polyolefin release-treated polyolefin film was bonded as a release-treated film (cover film) to produce an adhesive film with a dicing sheet.
  • the bonding conditions were the same as in Example 1.
  • the tensile storage modulus Eb of cover film at 23 ° C. was measured using the viscoelasticity measuring apparatus (Rheometrics company_made: type
  • the tensile storage modulus of adhesive film at 23 ° C. was measured using the viscoelasticity measuring apparatus (Rheometrics company_made: type
  • Glass-transition temperature The glass transition temperature of each of the examples and comparative examples was measured using a viscoelasticity measuring apparatus (Rheometrics, model: RSA-II) at a frequency of 10.0 Hz and a strain of 0. The temperature at which Tan ⁇ (G ′′ (loss elastic modulus) / G ′ (storage elastic modulus)) when measured under the conditions of 025% and a heating rate of 10 ° C./min was the maximum value.
  • the cover film was peeled off from each film for a semiconductor device, and a semiconductor wafer was mounted on the adhesive film.
  • a semiconductor wafer having a size of 8 inches and a thickness of 75 ⁇ m was used.
  • the semiconductor wafer mounting conditions were the same as described above.
  • the semiconductor wafer was diced according to the following conditions to form 30 semiconductor chips. Furthermore, the semiconductor chip was picked up together with the die bond film. The pick-up was performed on 30 semiconductor chips (5 mm long ⁇ 5 mm wide), and the success rate was calculated by counting the cases where the semiconductor chip was successfully picked up without breakage. The results are shown in Table 1 below.
  • the pickup conditions are as follows.
  • Dicing conditions Dicing method: Step cut Dicing device: DISCO DFD6361 (trade name, manufactured by DISCO Corporation) Dicing speed: 50mm / sec Dicing blade: Z1; “NBC-ZH203O-SE27HDD” manufactured by Disco Corporation Z2: “NBC-ZH203O-SE27HBB” manufactured by Disco Corporation Dicing blade rotation speed: Z1; 50,000 rpm, Z2; 50,000 rpm Dicing tape cutting depth: 20 ⁇ m Wafer chip size: 5mm x 5mm
  • Pasting device ACC Co., Ltd., trade name: RM-300 Pasting speed: 20mm / sec Pasting pressure: 0.25 MPa Pasting temperature: 60 ° C
  • ⁇ Hygroscopic reliability evaluation> The film for a semiconductor device used in the frozen storage test was mounted, diced, and picked up under the above conditions. Next, the semiconductor element was die-bonded to a bismaleimide-triazine resin substrate under conditions of 120 ° C. ⁇ 500 gf ⁇ 1 sec, and then subjected to a thermal history at 180 ° C. for 1 hour. Next, these were molded using a molding machine (manufactured by TOWA, Model-Y-series). Specifically, an epoxy sealing resin (manufactured by Nitto Denko, HC-300B6) was used and molded at 175 ° C.

Abstract

Provided is an adhesive film with a dicing sheet (1), wherein the adhesive film (12) is laminated on top of a dicing film (11), which has excellent reliability and is readily capable of tip protrusion (tongue protrusion) of a cover film (2) while maintaining a function for suppressing the formation of transfer marks when a film (10) for a semiconductor device, wherein the adhesive film with the dicing sheet is laminated at prescribed intervals on the cover film, is wound into a roll. The film for a semiconductor device of the present invention is a film for a semiconductor device wherein the adhesive film with a dicing sheet, which is the adhesive film laminated on top of a dicing film, is laminated to the cover film at prescribed intervals, and said film for a semiconductor device has an Ea/Eb ratio between the tensile storage modulus (Ea) for the dicing film at 23°C and the tensile storage modulus (Eb) for the cover film at 23°C of 0.001-100.

Description

半導体装置用フィルム、及び、半導体装置Film for semiconductor device and semiconductor device
 本発明は、半導体装置用フィルム、及び、当該半導体装置用フィルムを用いて製造された半導体装置に関する。 The present invention relates to a film for a semiconductor device and a semiconductor device manufactured using the film for a semiconductor device.
 従来、半導体装置の製造過程に於いてリードフレームや電極部材への半導体チップの固着には、銀ペーストが用いられている。かかる固着処理は、リードフレームのダイパッド等の上にペースト状接着剤を塗工し、それに半導体チップを搭載してペースト状接着剤層を硬化させて行う。 Conventionally, silver paste is used for fixing a semiconductor chip to a lead frame or an electrode member in a manufacturing process of a semiconductor device. The fixing process is performed by applying a paste adhesive on a die pad or the like of the lead frame, mounting a semiconductor chip on the lead adhesive, and curing the paste adhesive layer.
 しかしながら、ペースト状接着剤はその粘度挙動や劣化等により塗工量や塗工形状等に大きなバラツキを生じる。その結果、形成されるペースト状接着剤厚は不均一となるため半導体チップに係わる固着強度の信頼性が乏しい。即ち、ペースト状接着剤の塗工量が不足すると半導体チップと電極部材との間の固着強度が低くなり、後続のワイヤーボンディング工程で半導体チップが剥離する。一方、ペースト状接着剤の塗工量が多すぎると半導体チップの上までペースト状接着剤が流延して特性不良を生じ、歩留まりや信頼性が低下する。この様な固着処理に於ける問題は、半導体チップの大型化に伴って特に顕著なものとなっている。そのため、ペースト状接着剤の塗工量の制御を頻繁に行う必要があり、作業性や生産性に支障をきたす。 However, paste adhesives have large variations in coating amount and coating shape due to their viscosity behavior and deterioration. As a result, the thickness of the paste-like adhesive formed is not uniform, and the reliability of the fixing strength related to the semiconductor chip is poor. That is, when the application amount of the paste adhesive is insufficient, the bonding strength between the semiconductor chip and the electrode member is lowered, and the semiconductor chip is peeled off in the subsequent wire bonding process. On the other hand, when the application amount of the paste adhesive is too large, the paste adhesive is cast onto the semiconductor chip, resulting in poor characteristics, and the yield and reliability are lowered. Such a problem in the adhering process becomes particularly remarkable as the semiconductor chip becomes larger. Therefore, it is necessary to frequently control the amount of paste adhesive applied, which hinders workability and productivity.
 このペースト状接着剤の塗工工程に於いて、ペースト状接着剤をリードフレームや形成チップに別途塗布する方法がある。しかし、この方法では、ペースト状接着剤層の均一化が困難であり、またペースト状接着剤の塗布に特殊装置や長時間を必要とする。このためダイシング工程で半導体ウェハを接着保持するとともに、マウント工程に必要なチップ固着用の接着剤層をも付与するダイシングフィルム、ダイシングシート付き接着フィルムが提案されている(例えば、特許文献1参照)。 In this paste adhesive application process, there is a method in which the paste adhesive is separately applied to a lead frame or a formed chip. However, in this method, it is difficult to make the paste adhesive layer uniform, and a special apparatus and a long time are required for applying the paste adhesive. For this reason, a dicing film and an adhesive film with a dicing sheet for adhering and holding a semiconductor wafer in a dicing process and also providing an adhesive layer for chip fixation necessary for the mounting process have been proposed (for example, see Patent Document 1). .
 このダイシングシート付き接着フィルムは、支持基材上に接着剤層を剥離可能に設けてなるものであり、その接着剤層による保持下に半導体ウェハをダイシングしたのち、支持基材を延伸して形成チップを接着剤層とともに剥離し、これを個々に回収してその接着剤層を介してリードフレーム等の被着体に固着させるようにしたものである。 This adhesive film with a dicing sheet is formed by providing an adhesive layer on a supporting substrate so that the adhesive layer can be peeled off, and is formed by dicing a semiconductor wafer while being held by the adhesive layer and then stretching the supporting substrate. The chip is peeled off together with the adhesive layer, and the chips are individually collected and fixed to an adherend such as a lead frame through the adhesive layer.
 従来、ダイシングシート付き接着フィルムは、製造工程上の制約から、ダイシングフィルムと接着フィルムをそれぞれ個別に作製した上で、両者を貼り合わせて作製している。このため、各々フィルム作製工程において弛みや巻ズレ、位置ズレ、ボイド(気泡)等が発生するのを防止する観点から、ロールによる搬送の際に各フィルムに引張張力を加えながらその作製が行われる。 Conventionally, an adhesive film with a dicing sheet has been manufactured by individually bonding a dicing film and an adhesive film, due to restrictions in the manufacturing process. For this reason, from the viewpoint of preventing the occurrence of slack, winding deviation, positional deviation, voids (bubbles), etc. in each film production process, the production is performed while applying tensile tension to each film during conveyance by a roll. .
 この種のダイシングシート付き接着フィルムは、高温・高湿の環境下に置かれたり、荷重が加えられた状態で長期間保存されると硬化する場合がある。その結果、接着剤層の流動性や、半導体ウェハに対する保持力の低下、ダイシング後の剥離性の低下を招来する。このため、ダイシングシート付き接着フィルムは-30~-10℃の冷凍、又は-5~10℃の冷蔵状態で保存しながら輸送されることが多く、これによりフィルム特性の長期間の保存を可能にしている。 This type of adhesive film with a dicing sheet may be cured when placed in a high temperature and high humidity environment or stored for a long time under a load. As a result, the fluidity of the adhesive layer, the holding power against the semiconductor wafer, and the peelability after dicing are reduced. For this reason, adhesive films with dicing sheets are often transported while being stored in a frozen state at -30 to -10 ° C or refrigerated at -5 to 10 ° C, thereby enabling long-term storage of film properties. ing.
 上述したダイシングシート付き接着フィルムとしては、半導体ウェハへの貼り付けや、ダイシングの際のリングフレームへの取り付け等の作業性考慮して、貼り付ける半導体ウェハの形状(例えば、円形状)に予め加工しておく、プリカット加工が施されたものが存在する。 The adhesive film with a dicing sheet described above is processed in advance into the shape of a semiconductor wafer to be attached (for example, a circular shape) in consideration of workability such as attachment to a semiconductor wafer and attachment to a ring frame during dicing. There are those that have been pre-cut.
 このようなダイシングシート付き接着フィルムは、基材上に粘着剤層が積層されたダイシングフィルムに、円形状に打ち抜かれた接着フィルムを貼り合わせた後、リングフレームに対応した円形状にダイシングフィルムを打ち抜いて製造される。これにより、半導体ウェハをダイシングする際に、ダイシングフィルムの外周部にリングフレームを貼り付けて、ダイシングシート付き接着フィルムを固定することができるようになる。 Such an adhesive film with a dicing sheet is obtained by laminating an adhesive film punched in a circular shape on a dicing film in which an adhesive layer is laminated on a substrate, and then dicing the dicing film into a circular shape corresponding to the ring frame. Manufactured by punching. Thereby, when dicing a semiconductor wafer, a ring frame can be affixed to the outer peripheral part of a dicing film, and an adhesive film with a dicing sheet can be fixed here now.
 プリカット加工されたダイシングシート付き接着フィルムは、長尺のカバーフィルムに所定の間隔をおいて貼り付けられた後、ロール状に巻回され、半導体装置用フィルムとして輸送や保管が行われる。 The pre-cut adhesive film with a dicing sheet is affixed to a long cover film at a predetermined interval, wound in a roll shape, and transported and stored as a film for a semiconductor device.
特開昭60-57642号公報JP-A-60-57642
 しかしながら、上述した半導体装置用フィルムの場合、ダイシングシート付き接着フィルムが積層されている部分の厚みは、積層されていない部分の厚みよりも厚くなる。そのため、特に、巻き数が大きくなったり、巻取り時の張力が高くなった場合、1のダイシングシート付き接着フィルムに、他のダイシングシート付き接着フィルムのエッジが押し当てられて巻き跡が転写され、接着フィルムの平滑性が損なわれる場合があった。このような転写痕は、特に、接着フィルムが比較的柔らかい樹脂で形成される場合、接着フィルムの厚みが厚い場合、及び、半導体装置用フィルムの巻き数が多い場合等に顕著に発生する。そして、このような転写痕を有し、平滑性に欠陥のある接着フィルムが半導体ウェハに貼り付けられると、半導体ウェハと接着フィルムとの間にボイド(気泡)が発生することとなる。このようなボイドは、半導体ウェハ加工時に不具合を生じさせることとなり、製造される半導体装置の歩留りを低下させるおそれがある。 However, in the case of the film for a semiconductor device described above, the thickness of the portion where the adhesive film with a dicing sheet is laminated is larger than the thickness of the portion where the adhesive film is not laminated. Therefore, especially when the number of windings is increased or the tension at the time of winding is increased, the edge of another adhesive film with a dicing sheet is pressed against the adhesive film with another dicing sheet, and the trace is transferred. The smoothness of the adhesive film may be impaired. Such transfer marks are particularly prominent when the adhesive film is formed of a relatively soft resin, when the adhesive film is thick, and when the number of windings of the film for a semiconductor device is large. When an adhesive film having such transfer marks and having a smoothness defect is attached to a semiconductor wafer, voids (bubbles) are generated between the semiconductor wafer and the adhesive film. Such voids cause problems during the processing of semiconductor wafers, and may reduce the yield of manufactured semiconductor devices.
 そこで、上記転写痕の発生を抑制するために、半導体装置用フィルムの巻取り圧を弱くする方法が考えられる。しかしながら、この方法では巻きズレが生じ、例えば、テープマウンターへのセットが困難となる等、実使用時に支障をきたすおそれがある。 Therefore, in order to suppress the occurrence of the transfer mark, a method of reducing the winding pressure of the film for a semiconductor device can be considered. However, in this method, winding deviation occurs, and there is a possibility that troubles may occur during actual use, for example, it becomes difficult to set the tape mounter.
  また、上記転写痕の発生を抑制するために接着シートの裏面側に緩衝基材を設けることが考えられる。しかしながら、この種のダイシングシート付き接着フィルムは、高温、高湿下や、荷重のかかったまま長期保存すると、ダイシングフィルムと接着フィルムが硬化し、半導体ウェハに対する保持力の低下や、ダイシング後の剥離性、成形時の流動性などが低下する。そのため、前記ダイシングシート付き接着フィルムは冷凍状態又は冷蔵状態の低温で輸送されることが多い。ところが、接着フィルムと緩衝基材との間には、残留応力が残存することとなり、これにより前述の低温状態での輸送や長時間の保管後において、接着フィルムと緩衝基材の界面で両者の剥離を生じるという問題がある。ここで、冷凍および冷蔵それぞれの温度範囲は、冷凍が-30℃~-10℃程度の範囲であり、冷蔵が-5℃~10℃である。 It is also conceivable to provide a buffer base on the back side of the adhesive sheet in order to suppress the generation of the transfer marks. However, this kind of adhesive film with a dicing sheet, when stored for a long time under high temperature and high humidity or under load, the dicing film and the adhesive film are cured, the holding power to the semiconductor wafer is reduced, or peeling after dicing Properties, fluidity during molding, and the like are reduced. Therefore, the adhesive film with a dicing sheet is often transported at a low temperature in a frozen state or a refrigerated state. However, residual stress remains between the adhesive film and the buffer base material, so that both of them at the interface between the adhesive film and the buffer base material after transportation in the low temperature state and storage for a long time described above. There is a problem of causing peeling. Here, the temperature ranges of refrigeration and refrigeration are in the range of -30 ° C to -10 ° C for refrigeration, and -5 ° C to 10 ° C for refrigeration.
 また、上記の環境下のように温度変化が大きいと、カバーフィルム側とダイシングフィルムを構成する基材側から応力集中が発生し、吸収または分散しきれなくなった力が接着フィルムにダメージを与え、転写痕が接着フィルムに発生したり、ウェハマウント時に接着フィルムに割れ、欠けが発生する。また、カバーフィルムの弾性率が低い場合、ウェハマウント時にカバーフィルムを剥離する際のフィルムの先端出し(ベロ出し)が出来ない不良が発生し、搬送エラーで機械が停止するか、カバーフィルムがついたままでウェハ貼りあわせまで工程が進み、カバーフィルム上にウェハが積層される。そして、密着していない状態で搬送されるため、ウェハが割れることがある。 Also, if the temperature change is large as in the above environment, stress concentration occurs from the cover film side and the base material side constituting the dicing film, and the force that can not be absorbed or dispersed damages the adhesive film, A transfer mark is generated on the adhesive film, or the adhesive film is cracked or chipped at the time of wafer mounting. Also, if the cover film has a low modulus of elasticity, a defect that prevents the film from leading out (veloping) when peeling the cover film during wafer mounting occurs, the machine stops due to a transport error, or the cover film is attached. The process proceeds to wafer bonding, and the wafer is laminated on the cover film. And since it is conveyed in the state which is not closely_contact | adhering, a wafer may be broken.
 本発明は前記問題点に鑑みなされたものであり、その目的は、ダイシングフィルム上に接着フィルムが積層されたダイシングシート付き接着フィルムが所定の間隔をおいてカバーフィルムに積層された半導体装置用フィルムをロール状に巻き取った際の転写痕の抑制機能を維持しつつ、カバーフィルムの先端出し(ベロ出し)が容易にでき、信頼性に優れるダイシングシート付き接着フィルムを提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to provide a film for a semiconductor device in which an adhesive film with a dicing sheet in which an adhesive film is laminated on a dicing film is laminated on a cover film at a predetermined interval. It is an object to provide an adhesive film with a dicing sheet that is capable of easily leading out (veloping out) a cover film while maintaining the function of suppressing transfer marks when the film is rolled up.
 本願発明者等は、前記従来の問題点を解決すべく、半導体装置用フィルムについて検討した。その結果、半導体装置用フィルムを構成するダイシングフィルムの引張貯蔵弾性率と、カバーフィルムの引張貯蔵弾性率とを制御することにより、転写痕がダイボンドフィルムに発生することを抑制し、カバーフィルムの先端出し(ベロ出し)が容易にできることを見出して、本発明を完成させるに至った。 The inventors of the present application have studied a film for a semiconductor device in order to solve the conventional problems. As a result, by controlling the tensile storage modulus of the dicing film constituting the film for semiconductor devices and the tensile storage modulus of the cover film, it is possible to suppress the generation of transfer marks on the die bond film, and the tip of the cover film. The present invention was completed by finding out that the feeding (bello feeding) can be easily performed.
 すなわち、本発明に係る半導体装置用フィルムは、ダイシングフィルム上に接着フィルムが積層されたダイシングシート付き接着フィルムが所定の間隔をおいてカバーフィルムに積層された半導体装置用フィルムであって、23℃におけるダイシングフィルムの引張貯蔵弾性率Eaと、23℃におけるカバーフィルムの引張貯蔵弾性率Ebとの比Ea/Ebが0.001~100の範囲内であることを特徴とする。 That is, the film for a semiconductor device according to the present invention is a film for a semiconductor device in which an adhesive film with a dicing sheet obtained by laminating an adhesive film on a dicing film is laminated on a cover film at a predetermined interval. The ratio Ea / Eb of the tensile storage elastic modulus Ea of the dicing film and the tensile storage elastic modulus Eb of the cover film at 23 ° C. is in the range of 0.001 to 100.
 前記Ea/Ebは、値が大きいほど相対的にダイシングフィルムが硬く、カバーフィルムが柔らかい。一方、前記Ea/Ebは、値が小さいほど相対的にダイシングフィルムが軟らかく、カバーフィルムが硬い。前記構成によれば、前記Ea/Ebが0.001以上であるため、ダイシングフィルムの硬さ(引張貯蔵弾性率Ea)は、一定以上となる。従って、ダイシングシート付き接着フィルムを構成する接着フィルムに転写痕が発生することを抑制することができる。また、前記Ea/Ebが0.001以上であり、ダイシングフィルムの硬さ(引張貯蔵弾性率Ea)は、一定以上となるため、半導体ウェハへの貼り合わせの際に、ダイシングフィルムを有するダイシングシート付き接着フィルムとカバーフィルムとを好適に剥離する(ベロ出しする)ことができる。 As for Ea / Eb, the larger the value, the harder the dicing film and the softer the cover film. On the other hand, the smaller the value of Ea / Eb, the softer the dicing film and the harder the cover film. According to the said structure, since said Ea / Eb is 0.001 or more, the hardness (tensile storage elastic modulus Ea) of a dicing film becomes fixed or more. Therefore, it can suppress that a transfer mark generate | occur | produces in the adhesive film which comprises an adhesive film with a dicing sheet. Further, since the Ea / Eb is 0.001 or more and the hardness (tensile storage elastic modulus Ea) of the dicing film is a certain value or more, the dicing sheet having the dicing film is bonded to the semiconductor wafer. The attached adhesive film and the cover film can be suitably peeled off.
 また、前記Ea/Ebが100以下であるため、カバーフィルムの硬さ(引張貯蔵弾性率Eb)は、一定以上となる一方、ダイシングフィルムの硬さ(引張貯蔵弾性率Ea)は、一定以下となる。従って、接着フィルムのカバーフィルムへの貼り合わせの際にカバーフィルムに折れが発生することを抑制することができ、接着フィルム表面を傷つけたり、フィルム間に気泡が混入することを防止することができる。その結果、カバーフィルムのフィルム浮きや半導体ウェハのマウントの際に接着フィルムと半導体ウェハとの間でボイドが発生することを抑制することができる。
 このように、前記構成によれば、ロール状に巻き取った際に、転写痕が接着フィルムに発生することを抑制することができる。また、カバーフィルムのフィルム浮きや、半導体ウェハのマウントの際に接着フィルムと半導体ウェハとの間でボイド(気泡)が発生することを抑制することができる。
Further, since the Ea / Eb is 100 or less, the hardness of the cover film (tensile storage elastic modulus Eb) is not less than a certain value, while the hardness of the dicing film (tensile storage elastic modulus Ea) is not more than a certain value. Become. Therefore, it is possible to prevent the cover film from being broken when the adhesive film is bonded to the cover film, and to prevent the adhesive film surface from being damaged or air bubbles from being mixed between the films. . As a result, it is possible to suppress the generation of voids between the adhesive film and the semiconductor wafer when the cover film is lifted or the semiconductor wafer is mounted.
Thus, according to the said structure, when winding up in roll shape, it can suppress that a transfer trace generate | occur | produces on an adhesive film. Moreover, it is possible to suppress the occurrence of voids (bubbles) between the adhesive film and the semiconductor wafer when the cover film is lifted or the semiconductor wafer is mounted.
 前記構成において、前記接着フィルムは、ガラス転移温度が0~100℃の範囲内であり、かつ、硬化前23℃における引張貯蔵弾性率が50MPa~5000MPaの範囲であることが好ましい。前記接着フィルムのガラス転移温度を0℃以上にすることにより、Bステージ状態での接着フィルムのタック性が大きくなるのを抑制し、良好な取り扱い性を維持することができる。また、ダイシングの際に、接着フィルムの一部が溶融して粘着剤が半導体チップに付着するのを防止することができる。その結果、半導体チップの良好なピックアップ性を維持することができる。その一方、ガラス転移温度を100℃以下にすることにより、接着フィルムの流動性の低下を防止できる。また、半導体ウェハとの良好な接着性も維持することができる。なお、接着フィルムが熱硬化型の場合、接着フィルムのガラス転移温度とは、熱硬化前のことをいう。また、前記接着フィルムの硬化前23℃における引張貯蔵弾性率を50MPa以上にすることにより、ダイシングの際に、粘着剤層の一部が溶融して粘着剤が半導体チップに付着するのを防止することができる。その一方、引張貯蔵弾性率を5000MPa以下にすることにより、半導体ウェハや基板との良好な接着性も維持することができる。 In the above configuration, the adhesive film preferably has a glass transition temperature in the range of 0 to 100 ° C. and a tensile storage modulus at 23 ° C. before curing in the range of 50 MPa to 5000 MPa. By making the glass transition temperature of the said adhesive film 0 degreeC or more, it can suppress that the tackiness of the adhesive film in a B stage state becomes large, and can maintain favorable handleability. Further, when dicing, it is possible to prevent a part of the adhesive film from melting and the pressure-sensitive adhesive from adhering to the semiconductor chip. As a result, a good pick-up property of the semiconductor chip can be maintained. On the other hand, the fluidity | liquidity fall of an adhesive film can be prevented by making glass transition temperature into 100 degrees C or less. Moreover, the favorable adhesiveness with a semiconductor wafer can also be maintained. In addition, when an adhesive film is a thermosetting type, the glass transition temperature of an adhesive film means the thing before thermosetting. In addition, by setting the tensile storage modulus at 23 ° C. before curing of the adhesive film to 50 MPa or more, a part of the pressure-sensitive adhesive layer is prevented from melting and adhering to the semiconductor chip during dicing. be able to. On the other hand, by setting the tensile storage modulus to 5000 MPa or less, it is possible to maintain good adhesion to a semiconductor wafer or substrate.
 前記構成において、前記カバーフィルムの厚みは、10~100μmであることが好ましい。 In the above structure, the cover film preferably has a thickness of 10 to 100 μm.
 前記構成において、前記ダイシングフィルムの厚みは、25~180μmであることが好ましい。 In the above configuration, the thickness of the dicing film is preferably 25 to 180 μm.
 前記構成において、23℃におけるダイシングフィルムの引張貯蔵弾性率Eaは、1~500MPaであることが好ましい。 In the above structure, the tensile storage elastic modulus Ea of the dicing film at 23 ° C. is preferably 1 to 500 MPa.
 前記構成において、23℃におけるカバーフィルムの引張貯蔵弾性率Ebは、1~5000MPaであることが好ましい。 In the above configuration, the tensile storage modulus Eb of the cover film at 23 ° C. is preferably 1 to 5000 MPa.
 また、本発明に係る半導体装置は、前記に記載の半導体装置用フィルムを用いて製造されたものである。 The semiconductor device according to the present invention is manufactured using the film for a semiconductor device described above.
(a)は、本実施形態に係る半導体装置用フィルムの概略を示す平面図であり、(b)は、その部分断面図である。(A) is a top view which shows the outline of the film for semiconductor devices which concerns on this embodiment, (b) is the fragmentary sectional view. 図1(a)及び図1(b)に示した半導体装置用フィルムをロール状に巻回した状態での部分断面図である。It is a fragmentary sectional view in the state where the film for semiconductor devices shown in Drawing 1 (a) and Drawing 1 (b) was rolled up. 半導体装置用フィルムの製造過程を説明するための概略図である。It is the schematic for demonstrating the manufacturing process of the film for semiconductor devices.
1 ダイシングシート付き接着フィルム
2 カバーフィルム
10 半導体装置用フィルム
11 ダイシングフィルム
12 接着フィルム
13 基材
14 粘着剤層
21 第1セパレータ
22 基材セパレータ
23 第2セパレータ
DESCRIPTION OF SYMBOLS 1 Adhesive film with a dicing sheet 2 Cover film 10 Film for semiconductor devices 11 Dicing film 12 Adhesive film 13 Base material 14 Adhesive layer 21 First separator 22 Base material separator 23 Second separator
 本実施の形態に係る半導体装置用フィルムについて以下に説明する。
 図1(a)は、本実施形態に係る半導体装置用フィルムの概略を示す平面図であり、図1(b)は、その部分断面図である。半導体装置用フィルム10は、ダイシングシート付き接着フィルム1が所定の間隔をおいてカバーフィルム2に積層された構成を有している。ダイシングシート付き接着フィルム1は、ダイシングフィルム11上に接着フィルム12が積層されており、更にダイシングフィルム11は基材13上に粘着剤層14が積層された構造である。
The film for a semiconductor device according to the present embodiment will be described below.
Fig.1 (a) is a top view which shows the outline of the film for semiconductor devices which concerns on this embodiment, FIG.1 (b) is the fragmentary sectional view. The film 10 for a semiconductor device has a configuration in which an adhesive film 1 with a dicing sheet is laminated on a cover film 2 at a predetermined interval. The adhesive film 1 with a dicing sheet has a structure in which an adhesive film 12 is laminated on a dicing film 11, and the dicing film 11 has a structure in which an adhesive layer 14 is laminated on a base material 13.
 図2は、図1(a)及び図1(b)に示した半導体装置用フィルムをロール状に巻回した状態での部分断面図である。図2に示すように、ロール状に巻回された半導体装置用フィルム10には、ダイシングシート付き接着フィルム1が積層されている部分と、積層されていない部分18とに段差19が存在する。また、カバーフィルム2上の複数のダイシングシート付き接着フィルム1は、互いに横方向にずれながら積層されている。そのため、1のダイシングシート付き接着フィルム1に、他のダイシングシート付き接着フィルム1のエッジが押し当てられている。 FIG. 2 is a partial cross-sectional view of the semiconductor device film shown in FIGS. 1A and 1B wound in a roll shape. As shown in FIG. 2, in the film 10 for a semiconductor device wound in a roll shape, there is a step 19 between a portion where the adhesive film 1 with a dicing sheet is laminated and a portion 18 where the adhesive film 1 is not laminated. Moreover, the several adhesive film 1 with a dicing sheet on the cover film 2 is laminated | stacked, mutually shifting | deviating to a horizontal direction. Therefore, the edge of the other adhesive film 1 with a dicing sheet is pressed against one adhesive film 1 with a dicing sheet.
 半導体装置用フィルム10では、23℃におけるダイシングフィルム11の引張貯蔵弾性率Eaと、23℃におけるカバーフィルム2の引張貯蔵弾性率Ebとの比Ea/Ebが0.001~100の範囲内である。前記Ea/Ebは、0.01~50であることが好ましく、0.1~5であることがより好ましい。前記Ea/Ebは、値が大きいほど相対的にダイシングフィルム11が硬く、カバーフィルム2が柔らかい。一方、前記Ea/Ebは、値が小さいほど相対的にダイシングフィルム11が軟らかく、カバーフィルム2が硬い。半導体装置用フィルム10によれば、前記Ea/Ebが0.001以上であるため、ダイシングフィルム11の硬さ(引張貯蔵弾性率Ea)は、一定以上となる。従って、ダイシングシート付き接着フィルム1を構成する接着フィルム12に転写痕が発生することを抑制することができる。また、半導体装置用フィルム10によれば、前記Ea/Ebが0.001以上であり、ダイシングフィルム11の硬さ(引張貯蔵弾性率Ea)は、一定以上となるため、半導体ウェハへの貼り合わせの際に、ダイシングフィルム11を有するダイシングシート付き接着フィルム1とカバーフィルム2とを好適に剥離する(ベロ出しする)ことができる。 In the film 10 for a semiconductor device, the ratio Ea / Eb between the tensile storage modulus Ea of the dicing film 11 at 23 ° C. and the tensile storage modulus Eb of the cover film 2 at 23 ° C. is in the range of 0.001 to 100. . The Ea / Eb is preferably 0.01 to 50, and more preferably 0.1 to 5. As the value of Ea / Eb is larger, the dicing film 11 is relatively harder and the cover film 2 is softer. On the other hand, the smaller the value of Ea / Eb, the softer the dicing film 11 and the harder the cover film 2. According to the film 10 for a semiconductor device, since the Ea / Eb is 0.001 or more, the hardness (tensile storage elastic modulus Ea) of the dicing film 11 becomes a certain value or more. Therefore, it can suppress that a transfer mark generate | occur | produces in the adhesive film 12 which comprises the adhesive film 1 with a dicing sheet. Moreover, according to the film 10 for semiconductor devices, since the Ea / Eb is 0.001 or more and the hardness (tensile storage elastic modulus Ea) of the dicing film 11 is more than a certain value, it is bonded to a semiconductor wafer. In this case, the adhesive film with a dicing sheet 1 having the dicing film 11 and the cover film 2 can be suitably peeled off (develop).
 また、前記Ea/Ebが100以下であるため、カバーフィルム2の硬さ(引張貯蔵弾性率Eb)は、一定以上となる一方、ダイシングフィルム11の硬さ(引張貯蔵弾性率Ea)は、一定以下となる。従って、接着フィルム12のカバーフィルム2への貼り合わせの際にカバーフィルム2に折れが発生することを抑制することができ、接着フィルム12表面を傷つけたり、フィルム間に気泡が混入することを防止することができる。その結果、カバーフィルム2のフィルム浮きや半導体ウェハのマウントの際に接着剤層と半導体ウェハとの間でボイドが発生することを抑制することができる。
 このように、半導体装置用フィルム10によれば、ロール状に巻き取った際に、転写痕が接着フィルム12に発生することを抑制することができる。また、カバーフィルム2のフィルム浮きや、半導体ウェハのマウントの際に接着フィルム12と半導体ウェハとの間でボイド(気泡)が発生することを抑制することができる。
Further, since Ea / Eb is 100 or less, the hardness of the cover film 2 (tensile storage elastic modulus Eb) is not less than a certain value, while the hardness of the dicing film 11 (tensile storage elastic modulus Ea) is constant. It becomes as follows. Therefore, it is possible to prevent the cover film 2 from being folded when the adhesive film 12 is bonded to the cover film 2, and to prevent the surface of the adhesive film 12 from being damaged or air bubbles from being mixed between the films. can do. As a result, it is possible to suppress the generation of voids between the adhesive layer and the semiconductor wafer when the cover film 2 is lifted or the semiconductor wafer is mounted.
Thus, according to the film 10 for semiconductor devices, it is possible to prevent the transfer mark from being generated on the adhesive film 12 when the film is wound into a roll. Moreover, it can suppress that a void (bubble) generate | occur | produces between the adhesive film 12 and a semiconductor wafer at the time of the film floating of the cover film 2, or the mounting of a semiconductor wafer.
 接着フィルム12とカバーフィルム2の間の剥離力F1は、接着フィルム12とダイシングフィルム11の間の剥離力F2よりも小さいことが好ましい。半導体装置用フィルム10は、その製造過程において、弛みや巻ズレ、位置ズレ、ボイド(気泡)等の発生防止の観点から、ダイシングフィルム11、接着フィルム12及びカバーフィルム2に対し引張張力を加えながら積層し製造される。そのため、各フィルムには引張残留歪みが存在する。この引張残留歪みは、例えば、-30~-10℃の冷凍、又は-5~10℃の低温状態で輸送したり長時間保管した場合に各フィルムでそれぞれ収縮を引き起こす。例えば、ダイシングフィルムは最も収縮の程度が大きく、カバーフィルムは最も収縮の程度が小さい。ここで、本実施の形態に係る半導体装置用フィルムは、前記剥離力F1及びF2をF1<F2の関係にすることで、各フィルムでの収縮の差異に起因したフィルム間の界面剥離やカバーフィルム2のフィルム浮き現象を防止することができる。更に、接着フィルム12の一部又は全部がカバーフィルム2に転写することも防止できる。 The peel force F1 between the adhesive film 12 and the cover film 2 is preferably smaller than the peel force F2 between the adhesive film 12 and the dicing film 11. The film 10 for semiconductor devices is applied with tensile tension to the dicing film 11, the adhesive film 12, and the cover film 2 from the viewpoint of preventing the occurrence of loosening, winding deviation, positional deviation, voids (bubbles), etc. in the manufacturing process. Laminated and manufactured. Therefore, each film has a tensile residual strain. This tensile residual strain causes shrinkage in each film, for example, when frozen at −30 to −10 ° C. or transported at a low temperature of −5 to 10 ° C. or stored for a long time. For example, the dicing film has the largest degree of shrinkage and the cover film has the smallest degree of shrinkage. Here, in the film for a semiconductor device according to the present embodiment, the peeling force F1 and F2 are in a relationship of F1 <F2, so that the interfacial peeling between the films due to the difference in shrinkage between the films and the cover film. 2 can prevent the film floating phenomenon. Furthermore, it is possible to prevent a part or all of the adhesive film 12 from being transferred to the cover film 2.
 接着フィルム12とカバーフィルム2の間の剥離力F1は0.025~0.075N/100mmの範囲内が好ましく、0.03~0.06N/100mmの範囲内がより好ましく、0.035~0.05N/100mmの範囲内が特に好ましい。剥離力F1が0.025N/100mm未満であると、例えば-30~-10℃の冷凍、又は-5~10℃の低温状態で輸送したり長時間保管した場合に、接着フィルム12及びカバーフィルム2が各々異なる収縮率で収縮し、これによりカバーフィルム2のフィルム浮き現象が生じる場合がある。また、半導体装置用フィルム10等の搬送中に、シワや巻きズレ、異物の混入を発生させる場合がある。更に、半導体ウェハのマウントの際に接着フィルム12と半導体ウェハとの間でボイド(気泡)を発生させる場合がある。その一方、剥離力F1が0.075N/100mmより大きいと、接着フィルム12とカバーフィルム2の密着性が強すぎるので、カバーフィルム2の剥離やその収縮の際に、接着フィルム12を構成する接着剤(詳細については後述する。)が一部又は全面に転写する場合がある。尚、前記剥離力F1の値は、接着フィルム12が熱硬化型である場合は、熱硬化前の接着フィルム12とカバーフィルム2の間の剥離力を意味する。 The peel force F1 between the adhesive film 12 and the cover film 2 is preferably in the range of 0.025 to 0.075 N / 100 mm, more preferably in the range of 0.03 to 0.06 N / 100 mm, and 0.035 to 0. A range of 0.05 N / 100 mm is particularly preferable. When the peeling force F1 is less than 0.025 N / 100 mm, the adhesive film 12 and the cover film, for example, when frozen at −30 to −10 ° C. or transported at a low temperature of −5 to 10 ° C. or stored for a long time 2 contracts at different shrinkage rates, which may cause a film floating phenomenon of the cover film 2. In addition, wrinkles, winding deviations, and foreign matters may be generated during the transport of the semiconductor device film 10 or the like. Furthermore, a void (bubble) may be generated between the adhesive film 12 and the semiconductor wafer when the semiconductor wafer is mounted. On the other hand, if the peel force F1 is greater than 0.075 N / 100 mm, the adhesive film 12 and the cover film 2 are too close to each other, so that the adhesive film 12 is bonded when the cover film 2 is peeled off or contracted. The agent (details will be described later) may be transferred partially or entirely. In addition, the value of the said peeling force F1 means the peeling force between the adhesive film 12 and the cover film 2 before thermosetting, when the adhesive film 12 is a thermosetting type.
 また、接着フィルム12とダイシングフィルム11の間の剥離力F2は0.08~10N/100mmの範囲内が好ましく、0.1~6N/100mmの範囲内がより好ましく、0.15~0.4N/100mmの範囲内が特に好ましい。剥離力F2が0.08N/100mm以上であると、例えば-30~-10℃の冷凍、又は-5~10℃の低温状態で輸送したり長時間保管した場合に、ダイシングフィルム11及び接着フィルム12が各々異なる収縮率で収縮し、これによりダイシングフィルム11と接着フィルム12の間で界面剥離を生じることを防止することができる。また、半導体装置用フィルム10等の搬送中に、シワや巻きズレ、異物の混入、ボイドが発生することを防止することができる。更に、半導体ウェハをダイシングする際にチップ飛びやチッピングが発生することを防止することができる。その一方、剥離力F2が10N/100mm以下であると、半導体チップのピックアップの際に、接着フィルム12と粘着剤層14との間での剥離性が好適となり、半導体チップのピックアップを良好とすることができる。また、接着剤付き半導体チップに粘着剤層14を構成する粘着剤(詳細については後述する。)に糊付着することを防止することができる。尚、前記剥離力F2の数値範囲は、ダイシングフィルム11に於ける粘着剤層が紫外線硬化型であり、かつ、予め紫外線照射により一定程度硬化された場合も包含している。また、紫外線照射による粘着剤層の硬化は、接着フィルム12と貼り合わせる前であってもよく、貼り合わせた後であってもよい。 The peel force F2 between the adhesive film 12 and the dicing film 11 is preferably in the range of 0.08 to 10 N / 100 mm, more preferably in the range of 0.1 to 6 N / 100 mm, and 0.15 to 0.4 N. Particularly preferred is within the range of / 100 mm. When the peeling force F2 is 0.08 N / 100 mm or more, the dicing film 11 and the adhesive film, for example, when frozen at −30 to −10 ° C. or transported at a low temperature of −5 to 10 ° C. or stored for a long time 12 can be prevented from shrinking at different shrinkage rates, thereby preventing interfacial peeling between the dicing film 11 and the adhesive film 12. Further, it is possible to prevent the generation of wrinkles, winding misalignment, mixing of foreign matters, and voids during the transport of the semiconductor device film 10 and the like. Furthermore, chip jumping and chipping can be prevented when dicing the semiconductor wafer. On the other hand, when the peel force F2 is 10 N / 100 mm or less, the peelability between the adhesive film 12 and the pressure-sensitive adhesive layer 14 is suitable when the semiconductor chip is picked up, and the semiconductor chip pick-up is good. be able to. Moreover, it is possible to prevent the adhesive from adhering to the adhesive (details will be described later) constituting the adhesive layer 14 on the semiconductor chip with adhesive. The numerical range of the peeling force F2 includes the case where the pressure-sensitive adhesive layer in the dicing film 11 is an ultraviolet curable type and is cured to a certain extent by ultraviolet irradiation in advance. Moreover, hardening of the adhesive layer by ultraviolet irradiation may be before bonding with the adhesive film 12, and may be after bonding.
 前記剥離力F1及びF2の値は、温度23±2℃、剥離速度300mm/min、チャック間距離100mmの条件下で行ったT型剥離試験(JIS K6854-3)における測定値である。また、引張試験機としては、商品名「オートグラフAGS-H」((株)島津製作所製)を用いた。 The values of the peeling forces F1 and F2 are measured values in a T-type peeling test (JIS K6854-3) performed under conditions of a temperature of 23 ± 2 ° C., a peeling speed of 300 mm / min, and a distance between chucks of 100 mm. As a tensile tester, a trade name “Autograph AGS-H” (manufactured by Shimadzu Corporation) was used.
 ダイシングフィルム11における基材13は、ダイシングフィルム11だけでなく半導体装置用フィルム10の強度母体となるものである。基材13としては、例えば、低密度ポリエチレン、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテン等のポリオレフィン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、ポリウレタン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリフェニルスルフイド、アラミド(紙)、ガラス、ガラスクロス、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース系樹脂、シリコーン樹脂、金属(箔)、紙等が挙げられる。尚、粘着剤層14が紫外線硬化型の場合、基材13としては前記に例示したもののうち紫外線透過性を有するものが好ましい。 The base material 13 in the dicing film 11 serves as a strength matrix for the semiconductor device film 10 as well as the dicing film 11. Examples of the base material 13 include low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, polymethylpentene, and the like. Polyolefin, ethylene-vinyl acetate copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene -Hexene copolymer, Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyetherimide, polyamide, wholly aromatic polyamide, polyphenyl Rufuido, aramid (paper), glass, glass cloth, fluorine resin, polyvinyl chloride, polyvinylidene chloride, cellulose resin, silicone resin, metal (foil), paper, and the like. In the case where the pressure-sensitive adhesive layer 14 is of an ultraviolet curable type, the substrate 13 is preferably one having ultraviolet transparency among those exemplified above.
 また基材13の材料としては、前記樹脂の架橋体等のポリマーが挙げられる。前記プラスチックフィルムは、無延伸で用いてもよく、必要に応じて一軸又は二軸の延伸処理を施したものを用いてもよい。延伸処理等により熱収縮性を付与した樹脂シートによれば、ダイシング後にその基材13を熱収縮させることにより粘着剤層14と接着フィルム12との接着面積を低下させて、半導体チップの回収の容易化を図ることができる。 Further, as a material of the base material 13, a polymer such as a cross-linked body of the resin can be mentioned. The plastic film may be used unstretched or may be uniaxially or biaxially stretched as necessary. According to the resin sheet imparted with heat shrinkability by stretching or the like, the adhesive area between the pressure-sensitive adhesive layer 14 and the adhesive film 12 is reduced by thermally shrinking the base material 13 after dicing, and the semiconductor chip can be recovered. Simplification can be achieved.
 基材13の表面は、隣接する層との密着性、保持性等を高める為、慣用の表面処理、例えば、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理等の化学的又は物理的処理、下塗剤(例えば、後述する粘着物質)によるコーティング処理を施すことができる。 The surface of the substrate 13 is chemically treated by conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, ionizing radiation treatment, etc. in order to improve adhesion and retention with adjacent layers. Alternatively, a physical treatment or a coating treatment with a primer (for example, an adhesive substance described later) can be performed.
 基材13は、同種又は異種のものを適宜に選択して使用することができ、必要に応じて数種をブレンドしたものを用いることができる。また、基材13には、帯電防止能を付与する為、基材13上に金属、合金、これらの酸化物等からなる厚さが30~500Å程度の導電性物質の蒸着層を設けることができる。基材13は単層あるいは2種以上の複層でもよい。 The base material 13 can be used by appropriately selecting the same type or different types, and a blend of several types can be used as necessary. Further, in order to provide the base 13 with an antistatic ability, a conductive material vapor deposition layer having a thickness of about 30 to 500 mm made of metal, an alloy, or an oxide thereof is provided on the base 13. it can. The substrate 13 may be a single layer or a multilayer of two or more types.
 基材13の厚さは、フィルムの搬送性を確保し、ボンディング工程での支持基材の拡張時においても基材13の裂け・破れ・塑性変形の発生を防止するために、10~170μmが好ましく、より好ましくは、50~150μmであり、さらに好ましくは、100~130μmである。 The thickness of the base material 13 is 10 to 170 μm in order to ensure the film transportability and prevent the base material 13 from being torn, torn or plastically deformed even when the supporting base material is expanded in the bonding process. The thickness is preferably 50 to 150 μm, and more preferably 100 to 130 μm.
 粘着剤層14の形成に用いる粘着剤としては特に制限されず、例えば、アクリル系粘着剤、ゴム系粘着剤等の一般的な感圧性粘着剤を用いることができる。前記感圧性粘着剤としては、半導体ウェハやガラス等の汚染をきらう電子部品の超純水やアルコール等の有機溶剤による清浄洗浄性等の点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。 The pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer 14 is not particularly limited, and for example, a general pressure-sensitive pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive can be used. The pressure-sensitive adhesive is an acrylic pressure-sensitive adhesive based on an acrylic polymer from the standpoint of cleanability with an organic solvent such as ultrapure water or alcohol for electronic components that are difficult to contaminate semiconductor wafers and glass. Is preferred.
 前記アクリル系ポリマーとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、s-ブチルエステル、t-ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2-エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステル等のアルキル基の炭素数1~30、特に炭素数4~18の直鎖状又は分岐鎖状のアルキルエステル等)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステル等)の1種又は2種以上を単量体成分として用いたアクリル系ポリマー等が挙げられる。尚、(メタ)アクリル酸エステルとはアクリル酸エステル及び/又はメタクリル酸エステルをいい、本発明の(メタ)とは全て同様の意味である。 Examples of the acrylic polymer include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, Isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester , Octadecyl esters, eicosyl esters, etc., alkyl groups having 1 to 30 carbon atoms, especially 4 to 18 carbon atoms, such as linear or branched alkyl esters) (Meth) acrylic acid cycloalkyl esters (e.g., cyclopentyl ester, cyclohexyl ester, etc.) acryl-based polymer such as one or more was used as a monomer component thereof. In addition, (meth) acrylic acid ester means acrylic acid ester and / or methacrylic acid ester, and (meth) of the present invention has the same meaning.
 前記アクリル系ポリマーは、凝集力、耐熱性等の改質を目的として、必要に応じ、前記(メタ)アクリル酸アルキルエステル又はシクロアルキルエステルと共重合可能な他のモノマー成分に対応する単位を含んでいてもよい。この様なモノマー成分として、例えば、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸等のカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸等の酸無水物モノマー;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレート等のヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸等のスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェート等のリン酸基含有モノマー;アクリルアミド、アクリロニトリル等が挙げられる。これら共重合可能なモノマー成分は、1種又は2種以上使用できる。これら共重合可能なモノマーの使用量は、全モノマー成分の40重量%以下が好ましい。 The acrylic polymer contains units corresponding to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance and the like. You may go out. Examples of such monomer components include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate; Styrene Contains sulfonic acid groups such as phonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate, (meth) acryloyloxynaphthalene sulfonic acid Monomers; Phosphoric acid group-containing monomers such as 2-hydroxyethylacryloyl phosphate; acrylamide, acrylonitrile and the like. One or more of these copolymerizable monomer components can be used. The amount of these copolymerizable monomers used is preferably 40% by weight or less based on the total monomer components.
 更に、前記アクリル系ポリマーは、架橋させる為、多官能性モノマー等も、必要に応じて共重合用モノマー成分として含むことができる。この様な多官能性モノマーとして、例えば、ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。これらの多官能性モノマーも1種又は2種以上用いることができる。多官能性モノマーの使用量は、粘着特性等の点から、全モノマー成分の30重量%以下が好ましい。 Furthermore, since the acrylic polymer is crosslinked, a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary. Examples of such polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) An acrylate etc. are mentioned. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is preferably 30% by weight or less of the total monomer components from the viewpoint of adhesive properties and the like.
 前記アクリル系ポリマーは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合、乳化重合、塊状重合、懸濁重合等の何れの方式で行うこともできる。清浄な被着体への汚染防止等の点から、低分子量物質の含有量が小さいのが好ましい。この点から、アクリル系ポリマーの数平均分子量は、好ましくは30万以上、更に好ましくは40万~150万程度である。 The acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization. The polymerization can be performed by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like. From the viewpoint of preventing contamination of a clean adherend, the content of the low molecular weight substance is preferably small. From this point, the number average molecular weight of the acrylic polymer is preferably 300,000 or more, more preferably about 400,000 to 1.5 million.
 また、前記粘着剤には、ベースポリマーであるアクリル系ポリマー等の数平均分子量を高める為、外部架橋剤を適宜に採用することもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤等のいわゆる架橋剤を添加し反応させる方法が挙げられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、更には、粘着剤としての使用用途によって適宜決定される。一般的には、前記ベースポリマー100重量部に対して、5重量部程度以下、更には0.1~5重量部配合するのが好ましい。更に、粘着剤には、必要により、前記成分のほかに、従来公知の各種の粘着付与剤、老化防止剤等の添加剤を用いてもよい。 In addition, an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive in order to increase the number average molecular weight of an acrylic polymer as a base polymer. Specific examples of the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them. When using an external cross-linking agent, the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked and further depending on the intended use as an adhesive. Generally, it is preferable to add about 5 parts by weight or less, more preferably 0.1 to 5 parts by weight, with respect to 100 parts by weight of the base polymer. Furthermore, you may use additives, such as conventionally well-known various tackifier and anti-aging agent, other than the said component as needed to an adhesive.
 粘着剤層14は紫外線硬化型粘着剤により形成することができる。紫外線硬化型粘着剤は、紫外線の照射により架橋度を増大させてその粘着力を容易に低下させることができ、粘着剤層14の半導体ウェハ貼り付け部分に対応する部分のみを紫外線照射することにより他の部分との粘着力の差を設けることができる。 The pressure-sensitive adhesive layer 14 can be formed of an ultraviolet curable pressure-sensitive adhesive. The UV curable pressure-sensitive adhesive can easily reduce its adhesive strength by increasing the degree of crosslinking by irradiation with ultraviolet rays, and by irradiating only the portion corresponding to the semiconductor wafer attachment portion of the pressure-sensitive adhesive layer 14 with UV irradiation. A difference in adhesive strength with other portions can be provided.
 23℃におけるダイシングフィルム11の引張貯蔵弾性率Eaは1~500MPaの範囲内が好ましく、5~200MPaの範囲内がより好ましい。なお、粘着剤層14が紫外線硬化型粘着剤により形成されている場合、粘着剤層14を紫外線硬化させた後の23℃におけるダイシングフィルム11の引張貯蔵弾性率Eaは1~500MPaの範囲内が好ましく、5~200MPaの範囲内がより好ましい。前記引張貯蔵弾性率Eaを1MPa以上にすることにより、良好なピックアップ性を維持することができる。その一方、前記引張貯蔵弾性率Eaを500MPa以下にすることにより、チップ飛びの発生を防止することができる。また、ダイシングフィルム11をエキスパンドすることができるので、隣り合うチップ同士が接触してクラックの発生や固着を防止し、良好なピックアップ性を実現することができる。尚、前記紫外線の照射は、例えば30~1000mJ/cm2の紫外線照射積算光量で行われることが好ましい。紫外線照射積算光量が30mJ/cm2以上にすることにより、粘着剤層14を不足なく硬化させることができ、接着フィルム12との過度な密着を防止できる。その結果、半導体チップのピックアップの際に、良好なピックアップ性を示すことができる。また、ピックアップ後に接着フィルム12に粘着剤層14の粘着剤が付着(いわゆる糊残り)するのを防止できる。その一方、紫外線照射積算光量を1000mJ/cm2以下にすることにより、粘着剤層14の粘着力の極度の低下を防止し、これにより接着フィルム12との間で剥離が生じて、マウントされた半導体ウェハの脱落が生じるのを防止する。また、半導体ウェハのダイシングの際に、形成された半導体チップのチップ飛びが発生するのを防止することができる。 The tensile storage modulus Ea of the dicing film 11 at 23 ° C. is preferably in the range of 1 to 500 MPa, and more preferably in the range of 5 to 200 MPa. When the pressure-sensitive adhesive layer 14 is formed of an ultraviolet curable pressure-sensitive adhesive, the tensile storage elastic modulus Ea of the dicing film 11 at 23 ° C. after the pressure-sensitive adhesive layer 14 is ultraviolet-cured is in the range of 1 to 500 MPa. Preferably, it is in the range of 5 to 200 MPa. By setting the tensile storage elastic modulus Ea to 1 MPa or more, good pickup properties can be maintained. On the other hand, when the tensile storage elastic modulus Ea is set to 500 MPa or less, occurrence of chip jumping can be prevented. Further, since the dicing film 11 can be expanded, adjacent chips can be brought into contact with each other to prevent the occurrence of cracks and sticking, thereby realizing good pickup properties. The ultraviolet irradiation is preferably performed with an ultraviolet irradiation integrated light quantity of, for example, 30 to 1000 mJ / cm 2. By setting the cumulative amount of ultraviolet irradiation to 30 mJ / cm 2 or more, the pressure-sensitive adhesive layer 14 can be cured without deficiency, and excessive adhesion with the adhesive film 12 can be prevented. As a result, a good pick-up property can be exhibited when picking up a semiconductor chip. Further, it is possible to prevent the adhesive of the adhesive layer 14 from adhering to the adhesive film 12 after picking up (so-called adhesive residue). On the other hand, by making the accumulated amount of ultraviolet irradiation less than 1000 mJ / cm 2, it is possible to prevent the adhesive layer 14 from being extremely reduced in adhesive force, thereby causing peeling between the adhesive film 12 and the mounted semiconductor. Prevents the wafer from falling off. Further, it is possible to prevent the chip jump of the formed semiconductor chip from occurring during the dicing of the semiconductor wafer.
 前記ダイシングフィルム11の引張貯蔵弾性率Eaの値は、次の測定方法によるものである。即ち、離型処理を施した剥離ライナー上に粘着剤組成物の溶液を塗布して乾燥し、当該粘着剤層の表面に、基材を貼り合わせ、ダイシングフィルムを形成する。このダイシングフィルムを粘弾性測定装置(レオメトリックス社製:形式:RSA-II)を用いて、ダイシングフィルム11の23℃における引張貯蔵弾性率を測定する。より詳細には、長さ30.0mm×幅5.0mm、断面積0.125~0.9mm2の測定試料をフィルム引っ張り測定用治具にセットし、-30℃~100℃の温度域で周波数10.0Hz、歪み0.025%、昇温速度10℃/分の条件下で測定する。 The value of the tensile storage modulus Ea of the dicing film 11 is based on the following measurement method. That is, a solution of the pressure-sensitive adhesive composition is applied onto a release liner that has been subjected to a release treatment and dried, and a substrate is bonded to the surface of the pressure-sensitive adhesive layer to form a dicing film. The dicing film is measured for a tensile storage elastic modulus at 23 ° C. of the dicing film 11 using a viscoelasticity measuring device (Rheometrics: model: RSA-II). More specifically, a measurement sample having a length of 30.0 mm × a width of 5.0 mm and a cross-sectional area of 0.125 to 0.9 mm 2 is set in a film tension measurement jig, and the frequency is in a temperature range of −30 ° C. to 100 ° C. The measurement is performed under the conditions of 10.0 Hz, a strain of 0.025%, and a heating rate of 10 ° C./min.
 ここで、接着フィルム12は、半導体ウェハの平面視における形状に応じて、その貼り付け部分にのみ形成した構成である。従って、接着フィルム12の形状に合わせて紫外線硬化型の粘着剤層14を硬化させることにより、半導体ウェハ貼り付け部分に対応する部分の粘着力を容易に低下させることができる。粘着力の低下した前記部分に接着フィルム12が貼付けられる為、粘着剤層14の前記部分と接着フィルム12との界面は、ピックアップ時に容易に剥がれる性質を有する。一方、紫外線を照射していない部分は十分な粘着力を有している。 Here, the adhesive film 12 has a configuration formed only on the affixed portion according to the shape of the semiconductor wafer in plan view. Therefore, by curing the ultraviolet curable pressure-sensitive adhesive layer 14 in accordance with the shape of the adhesive film 12, the adhesive strength of the portion corresponding to the semiconductor wafer attachment portion can be easily reduced. Since the adhesive film 12 is affixed to the portion where the adhesive strength is reduced, the interface between the portion of the pressure-sensitive adhesive layer 14 and the adhesive film 12 has a property of being easily peeled off during pickup. On the other hand, the part which is not irradiated with ultraviolet rays has sufficient adhesive force.
 前述の通り、前記粘着剤層14が未硬化の紫外線硬化型粘着剤により形成されている前記部分は接着フィルム12と粘着し、ダイシングする際の保持力を確保できる。この様に紫外線硬化型粘着剤は、チップ状半導体ウェハ(半導体チップ等)を基板等の被着体に固着する為の接着フィルム12を、接着・剥離のバランスよく支持することができる。半導体ウェハの貼り付け部分にのみ接着フィルム12が積層される場合は、接着フィルム12が積層されていない領域において、ウェハリングが固定される。 As described above, the portion where the pressure-sensitive adhesive layer 14 is formed of an uncured ultraviolet curable pressure-sensitive adhesive sticks to the adhesive film 12 and can secure a holding force when dicing. As described above, the ultraviolet curable pressure-sensitive adhesive can support the adhesive film 12 for fixing a chip-shaped semiconductor wafer (semiconductor chip or the like) to an adherend such as a substrate with a good balance of adhesion and peeling. When the adhesive film 12 is laminated only on the portion where the semiconductor wafer is attached, the wafer ring is fixed in a region where the adhesive film 12 is not laminated.
 紫外線硬化型粘着剤は、炭素-炭素二重結合等の紫外線硬化性の官能基を有し、かつ粘着性を示すものを特に制限なく使用することができる。紫外線硬化型粘着剤としては、例えば、前記アクリル系粘着剤、ゴム系粘着剤等の一般的な感圧性粘着剤に、紫外線硬化性のモノマー成分やオリゴマー成分を配合した添加型の紫外線硬化型粘着剤を例示できる。 As the ultraviolet curable adhesive, those having an ultraviolet curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation. Examples of the ultraviolet curable pressure-sensitive adhesive include an additive-type ultraviolet curable pressure-sensitive adhesive in which an ultraviolet curable monomer component or an oligomer component is blended with a general pressure-sensitive adhesive such as the acrylic pressure-sensitive adhesive or the rubber-based pressure-sensitive adhesive. An agent can be illustrated.
 配合する紫外線硬化性のモノマー成分としては、例えば、ウレタンオリゴマー、ウレタン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、ジペンタエリストールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等が挙げられる。また紫外線硬化性のオリゴマー成分はウレタン系、ポリエーテル系、ポリエステル系、ポリカーボネート系、ポリブタジエン系等種々のオリゴマーがあげられ、その分子量が100~30000程度の範囲のものが適当である。紫外線硬化性のモノマー成分やオリゴマー成分の配合量は、前記粘着剤層の種類に応じて、粘着剤層の粘着力を低下できる量を、適宜に決定することができる。一般的には、粘着剤を構成するアクリル系ポリマー等のベースポリマー100重量部に対して、例えば5~500重量部、好ましくは40~150重量部程度である。 Examples of the UV curable monomer component to be blended include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol. Examples include stall tetra (meth) acrylate, dipentaerystol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 1,4-butanediol di (meth) acrylate. Examples of the ultraviolet curable oligomer component include urethane, polyether, polyester, polycarbonate, and polybutadiene oligomers, and those having a molecular weight in the range of about 100 to 30000 are suitable. The blending amount of the ultraviolet curable monomer component and oligomer component can be appropriately determined in accordance with the type of the pressure-sensitive adhesive layer, and the amount capable of reducing the pressure-sensitive adhesive strength of the pressure-sensitive adhesive layer. In general, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
 また、紫外線硬化型粘着剤としては、前記説明した添加型の紫外線硬化型粘着剤のほかに、ベースポリマーとして、炭素-炭素二重結合をポリマー側鎖又は主鎖中もしくは主鎖末端に有するものを用いた内在型の紫外線硬化型粘着剤が挙げられる。内在型の紫外線硬化型粘着剤は、低分子量成分であるオリゴマー成分等を含有する必要がなく、又は多くは含まない為、経時的にオリゴマー成分等が粘着剤在中を移動することなく、安定した層構造の粘着剤層を形成することができる為好ましい。 In addition to the additive-type UV-curable adhesive described above, the UV-curable adhesive has a carbon-carbon double bond in the polymer side chain or main chain or at the main chain end as a base polymer. Intrinsic ultraviolet curable pressure sensitive adhesives using Intrinsic UV curable adhesives do not need to contain oligomer components, which are low molecular weight components, or do not contain many, so they are stable without the oligomer components moving through the adhesive over time. It is preferable because an adhesive layer having a layered structure can be formed.
 前記炭素-炭素二重結合を有するベースポリマーは、炭素-炭素二重結合を有し、かつ粘着性を有するものを特に制限なく使用できる。この様なベースポリマーとしては、アクリル系ポリマーを基本骨格とするものが好ましい。アクリル系ポリマーの基本骨格としては、前記例示したアクリル系ポリマーが挙げられる。 As the base polymer having a carbon-carbon double bond, those having a carbon-carbon double bond and having adhesiveness can be used without particular limitation. As such a base polymer, those having an acrylic polymer as a basic skeleton are preferable. Examples of the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.
 前記アクリル系ポリマーへの炭素-炭素二重結合の導入法は特に制限されず、様々な方法を採用できるが、炭素-炭素二重結合はポリマー側鎖に導入するのが分子設計が容易である。例えば、予め、アクリル系ポリマーに官能基を有するモノマーを共重合した後、この官能基と反応しうる官能基及び炭素-炭素二重結合を有する化合物を、炭素-炭素二重結合の紫外線硬化性を維持したまま縮合又は付加反応させる方法が挙げられる。 The method for introducing the carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted. However, the carbon-carbon double bond can be easily introduced into the polymer side chain for easy molecular design. . For example, after a monomer having a functional group is copolymerized in advance with an acrylic polymer, a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into an ultraviolet curable carbon-carbon double bond. A method of performing condensation or addition reaction while maintaining the above.
 これら官能基の組合せの例としては、カルボン酸基とエポキシ基、カルボン酸基とアジリジル基、ヒドロキシル基とイソシアネート基等が挙げられる。これら官能基の組合せのなかでも反応追跡の容易さから、ヒドロキシル基とイソシアネート基との組合せが好適である。また、これら官能基の組み合わせにより、前記炭素-炭素二重結合を有するアクリル系ポリマーを生成するような組合せであれば、官能基はアクリル系ポリマーと前記化合物のいずれの側にあってもよいが、前記の好ましい組み合わせでは、アクリル系ポリマーがヒドロキシル基を有し、前記化合物がイソシアネート基を有する場合が好適である。この場合、炭素-炭素二重結合を有するイソシアネート化合物としては、例えば、メタクリロイルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネート等が挙げられる。また、アクリル系ポリマーとしては、前記例示のヒドロキシ基含有モノマーや2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングルコールモノビニルエーテルのエーテル系化合物等を共重合したものが用いられる。 Examples of combinations of these functional groups include carboxylic acid groups and epoxy groups, carboxylic acid groups and aziridyl groups, hydroxyl groups and isocyanate groups, and the like. Among these combinations of functional groups, a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction. In addition, the functional group may be on either side of the acrylic polymer and the compound as long as the combination of these functional groups generates an acrylic polymer having the carbon-carbon double bond. In the preferable combination, it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group. In this case, examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl-α, α-dimethylbenzyl isocyanate, and the like. As the acrylic polymer, a copolymer obtained by copolymerizing the above-exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like is used.
 前記内在型の紫外線硬化型粘着剤は、前記炭素-炭素二重結合を有するベースポリマー(特にアクリル系ポリマー)を単独で使用することができるが、特性を悪化させない程度に前記紫外線硬化性のモノマー成分やオリゴマー成分を配合することもできる。紫外線硬化性のオリゴマー成分等は、通常ベースポリマー100重量部に対して30重量部の範囲内であり、好ましくは0~10重量部の範囲である。 As the intrinsic ultraviolet curable pressure-sensitive adhesive, the base polymer (particularly acrylic polymer) having the carbon-carbon double bond can be used alone, but the ultraviolet curable monomer does not deteriorate the characteristics. Components and oligomer components can also be blended. The UV-curable oligomer component and the like are usually in the range of 30 parts by weight, preferably 0 to 10 parts by weight, with respect to 100 parts by weight of the base polymer.
 前記紫外線硬化型粘着剤には、紫外線等により硬化させる場合には光重合開始剤を含有させる。光重合開始剤としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α’-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン等のα-ケトール系化合物;メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフエノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1等のアセトフェノン系化合物;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アニソインメチルエーテル等のベンゾインエーテル系化合物;ベンジルジメチルケタール等のケタール系化合物;2-ナフタレンスルホニルクロリド等の芳香族スルホニルクロリド系化合物;1-フェノン-1,1―プロパンジオン-2-(o-エトキシカルボニル)オキシム等の光活性オキシム系化合物;ベンゾフェノン、ベンゾイル安息香酸、3,3’-ジメチル-4-メトキシベンゾフェノン等のベンゾフェノン系化合物;チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等のチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナート等が挙げられる。光重合開始剤の配合量は、粘着剤を構成するアクリル系ポリマー等のベースポリマー100重量部に対して、例えば0.05~20重量部程度である。 The ultraviolet curable pressure-sensitive adhesive contains a photopolymerization initiator when cured by ultraviolet rays or the like. Examples of the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, α-hydroxy-α, α'-dimethylacetophenone, 2-methyl-2-hydroxypropio Α-ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropane-1; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; 2-naphthalenesulfonyl Black Aromatic sulfonyl chloride compounds such as 1; phenone-1,1-propanedione-2- (o-ethoxycarbonyl) oxime and other photoactive oxime compounds; benzophenone, benzoylbenzoic acid, 3,3′-dimethyl Benzophenone compounds such as -4-methoxybenzophenone; thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2 Thioxanthone compounds such as 1,4-diethylthioxanthone and 2,4-diisopropylthioxanthone; camphorquinone; halogenated ketone; acyl phosphinoxide; acyl phosphonate and the like. The blending amount of the photopolymerization initiator is, for example, about 0.05 to 20 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
 前記紫外線硬化型の粘着剤層14中には、必要に応じて、紫外線照射により着色する化合物を含有させることもできる。紫外線照射により、着色する化合物を粘着剤層14に含ませることによって、紫外線照射された部分のみを着色することができる。これにより、粘着剤層14に紫外線が照射されたか否かが目視により直ちに判明することができ、半導体ウェハ貼り付け部分を認識し易く、半導体ウェハの貼り合せが容易である。また光センサー等によって半導体チップを検出する際に、その検出精度が高まり、半導体チップのピックアップ時に誤動作が生ずることがない。 In the ultraviolet curable pressure-sensitive adhesive layer 14, a compound that is colored by ultraviolet irradiation can be contained as necessary. By including a compound to be colored in the pressure-sensitive adhesive layer 14 by irradiation with ultraviolet rays, only the portion irradiated with ultraviolet rays can be colored. Thereby, it can be immediately determined by visual observation whether the adhesive layer 14 is irradiated with ultraviolet rays, the semiconductor wafer attachment portion can be easily recognized, and the semiconductor wafer can be easily attached. In addition, when detecting a semiconductor chip by an optical sensor or the like, the detection accuracy is increased, and no malfunction occurs when the semiconductor chip is picked up.
 紫外線照射により着色する化合物は、紫外線照射前には無色又は淡色であるが、紫外線照射により有色となる化合物である。かかる化合物の好ましい具体例としてはロイコ染料が挙げられる。ロイコ染料としては、慣用のトリフェニルメタン系、フルオラン系、フェノチアジン系、オーラミン系、スピロピラン系のものが好ましく用いられる。具体的には3-[N-(p-トリルアミノ)]-7-アニリノフルオラン、3-[N-(p-トリル)-N-メチルアミノ]-7-アニリノフルオラン、3-[N-(p-トリル)-N-エチルアミノ]-7-アニリノフルオラン、3-ジエチルアミノ-6-メチル-7-アニリノフルオラン、クリスタルバイオレットラクトン、4,4’,4”-トリスジメチルアミノトリフエニルメタノール、4,4’,4”-トリスジメチルアミノトリフェニルメタン等が挙げられる。 A compound colored by ultraviolet irradiation is a compound that is colorless or light-colored before ultraviolet irradiation but becomes colored by ultraviolet irradiation. Preferable specific examples of such compounds include leuco dyes. As the leuco dye, conventional triphenylmethane, fluoran, phenothiazine, auramine, and spiropyran dyes are preferably used. Specifically, 3- [N- (p-tolylamino)]-7-anilinofluorane, 3- [N- (p-tolyl) -N-methylamino] -7-anilinofluorane, 3- [ N- (p-tolyl) -N-ethylamino] -7-anilinofluorane, 3-diethylamino-6-methyl-7-anilinofluorane, crystal violet lactone, 4,4 ', 4 "-trisdimethyl Examples include aminotriphenylmethanol, 4,4 ′, 4 ″ -trisdimethylaminotriphenylmethane, and the like.
 これらロイコ染料とともに好ましく用いられる顕色剤としては、従来から用いられているフェノールホルマリン樹脂の初期重合体、芳香族カルボン酸誘導体、活性白土等の電子受容体があげられ、更に、色調を変化させる場合は種々公知の発色剤を組合せて用いることもできる。 Developers preferably used together with these leuco dyes include conventionally used initial polymers of phenol formalin resins, aromatic carboxylic acid derivatives, electron acceptors such as activated clay, and further change the color tone. In some cases, various known color formers can be used in combination.
 この様な紫外線照射によって着色する化合物は、一旦有機溶媒等に溶解された後に紫外線硬化型粘着剤中に含ませてもよく、また微粉末状にして当該粘着剤中に含ませてもよい。この化合物の使用割合は、粘着剤層14中に10重量%以下、好ましくは0.01~10重量%、更に好ましくは0.5~5重量%であるのが望ましい。該化合物の割合が10重量%を超えると、粘着剤層14に照射される紫外線がこの化合物に吸収されすぎてしまう為、粘着剤層14における半導体ウェハ貼り付け部分に対応する部分の硬化が不十分となり、十分に粘着力が低下しないことがある。一方、充分に着色させるには、該化合物の割合を0.01重量%以上とするのが好ましい。 Such a compound colored by ultraviolet irradiation may be once dissolved in an organic solvent or the like and then contained in the ultraviolet curable pressure sensitive adhesive, or may be finely powdered and contained in the pressure sensitive adhesive. The proportion of the compound used is desirably 10% by weight or less, preferably 0.01 to 10% by weight, more preferably 0.5 to 5% by weight in the pressure-sensitive adhesive layer 14. If the ratio of the compound exceeds 10% by weight, the ultraviolet ray irradiated to the pressure-sensitive adhesive layer 14 is excessively absorbed by the compound, so that the portion of the pressure-sensitive adhesive layer 14 corresponding to the semiconductor wafer attachment portion is not cured. It may be sufficient and the adhesive strength may not be sufficiently reduced. On the other hand, in order to sufficiently color, it is preferable that the ratio of the compound is 0.01% by weight or more.
 また、粘着剤層14を紫外線硬化型粘着剤により形成する場合には、基材13の少なくとも片面の、半導体ウェハ貼り付け部分に対応する部分以外の部分の全部又は一部が遮光されたものを用い、これに紫外線硬化型の粘着剤層14を形成した後に紫外線照射して、半導体ウェハ貼り付け部分に対応する部分を硬化させ、粘着力を低下させた前記部分を形成することができる。遮光材料としては、支持フィルム上でフォトマスクになりえるものを印刷や蒸着等で作成することができる。かかる製造方法によれば、効率よく本発明の半導体装置用フィルム10を製造可能である。 Further, when the pressure-sensitive adhesive layer 14 is formed of an ultraviolet curable pressure-sensitive adhesive, all or a part of the base material 13 other than the part corresponding to the semiconductor wafer pasting part is shielded from light. It is possible to form the portion with reduced adhesive force by forming the ultraviolet curable pressure-sensitive adhesive layer 14 and then irradiating it with ultraviolet rays to cure the portion corresponding to the semiconductor wafer attachment portion. As a light shielding material, what can become a photomask on a support film can be prepared by printing, vapor deposition, or the like. According to this manufacturing method, the film 10 for a semiconductor device of the present invention can be efficiently manufactured.
 尚、紫外線照射の際に、酸素による硬化阻害が起こる場合は、紫外線硬化型の粘着剤層14の表面よりなんらかの方法で酸素(空気)を遮断するのが望ましい。例えば、前記粘着剤層14の表面をセパレータで被覆する方法や、窒素ガス雰囲気中で紫外線の照射を行う方法等が挙げられる。 In addition, when curing inhibition by oxygen occurs during ultraviolet irradiation, it is desirable to block oxygen (air) from the surface of the ultraviolet curable pressure-sensitive adhesive layer 14 by some method. For example, a method of covering the surface of the pressure-sensitive adhesive layer 14 with a separator, a method of irradiating ultraviolet rays in a nitrogen gas atmosphere, and the like can be mentioned.
 粘着剤層14の厚さは、特に限定されないが、チップ切断面の欠け防止や接着フィルムの固定保持の両立性等の点よりは、1~50μm程度であるのが好ましい。好ましくは2~30μm、更には5~25μmが好ましい。 The thickness of the pressure-sensitive adhesive layer 14 is not particularly limited, but is preferably about 1 to 50 μm from the viewpoint of preventing chipping of the chip cut surface and compatibility of fixing and holding the adhesive film. The thickness is preferably 2 to 30 μm, more preferably 5 to 25 μm.
 また、基材13の厚さと粘着剤層14の厚さの合計、すなわち、ダイシングフィルム11の厚みは、搬送性、チップ切断面の欠け防止や接着フィルムの固定保持の観点、ピックアップ性の観点から25~180μmが好ましく、より好ましくは、50~150μmであり、さらに好ましくは、100~130μmである。 Further, the total thickness of the base material 13 and the pressure-sensitive adhesive layer 14, that is, the thickness of the dicing film 11 is from the viewpoint of transportability, chip chipping surface chipping prevention, fixing and holding of the adhesive film, and pick-up properties. The thickness is preferably 25 to 180 μm, more preferably 50 to 150 μm, and still more preferably 100 to 130 μm.
 接着フィルム12は接着機能を有する層であり、その構成材料としては、熱可塑性樹脂と熱硬化性樹脂を併用してもよく、熱可塑性樹脂を単独で使用してもよい。 The adhesive film 12 is a layer having an adhesive function, and as a constituent material thereof, a thermoplastic resin and a thermosetting resin may be used in combination, or a thermoplastic resin may be used alone.
 接着フィルム12のガラス転移温度は0~100℃の範囲内が好ましく、より好ましくは10~80℃の範囲内が好ましく、さらに好ましくは20℃~60℃である。前記ガラス転移温度が0℃以上であると、Bステージ状態での接着フィルム12のタック性が大きくなってその取り扱い性が低下するのを防止できる。また、半導体ウェハのダイシングの際に、ダイシング刃との摩擦により熱溶融した接着剤が半導体チップに付着し、これによりピックアップ不良の原因となるのを防止できる。その一方、ガラス転移温度を100℃以下にすることにより、流動性や半導体ウェハとの密着性が低下するのを防止することができる。ここで、前記ガラス転移温度は、粘弾性測定装置(レオメトリックス社製:形式:RSA-II)を用いて、-30℃~250℃の温度域で周波数10.0Hz、歪み0.025%、昇温速度10℃/分の条件下で測定したときのTanδ(G”(損失弾性率)/G’(貯蔵弾性率))が極大値を示す温度である。 The glass transition temperature of the adhesive film 12 is preferably within the range of 0 to 100 ° C, more preferably within the range of 10 to 80 ° C, and even more preferably 20 ° C to 60 ° C. When the glass transition temperature is 0 ° C. or higher, it is possible to prevent the tackiness of the adhesive film 12 in the B-stage state from being increased and the handling property from being lowered. Further, when the semiconductor wafer is diced, it is possible to prevent the adhesive melted by friction with the dicing blade from adhering to the semiconductor chip, thereby causing a pickup failure. On the other hand, by setting the glass transition temperature to 100 ° C. or lower, it is possible to prevent fluidity and adhesion with a semiconductor wafer from being lowered. Here, the glass transition temperature was measured using a viscoelasticity measuring device (Rheometrics: Model: RSA-II) at a frequency of −30 ° C. to 250 ° C., a frequency of 10.0 Hz, a strain of 0.025%, This is the temperature at which Tan δ (G ″ (loss elastic modulus) / G ′ (storage elastic modulus)) shows a maximum value when measured under a temperature rising rate of 10 ° C./min.
 硬化前23℃における接着フィルム12の引張貯蔵弾性率は50~5000MPaの範囲内が好ましく、100~3000MPaの範囲内がより好ましく、300~2000MPaの範囲内がさらに好ましい。接着フィルム12の前記引張貯蔵弾性率を50MPa以上にすることにより、接着フィルム12に転写痕が発生することをより確実に抑制することができる。また、接着フィルム12のすべり性が向上し、カバーフィルム2への貼り合わせの際にしわが発生するのをより確実に抑制することができる。また、接着フィルム12の前記引張貯蔵弾性率を5000MPa以下にすることにより、マウントされる半導体ウェハやダイボンドする基板等との密着性を良好とすることができる。なお、本発明において、接着フィルムの引張貯蔵弾性率とは、接着フィルムが熱硬化型である場合には、熱硬化前の引張貯蔵弾性率をいう。 The tensile storage modulus of the adhesive film 12 at 23 ° C. before curing is preferably in the range of 50 to 5000 MPa, more preferably in the range of 100 to 3000 MPa, and even more preferably in the range of 300 to 2000 MPa. By setting the tensile storage elastic modulus of the adhesive film 12 to 50 MPa or more, generation of transfer marks on the adhesive film 12 can be more reliably suppressed. In addition, the sliding property of the adhesive film 12 is improved, and the occurrence of wrinkles when bonded to the cover film 2 can be more reliably suppressed. Moreover, adhesiveness with the semiconductor wafer mounted, the board | substrate to die-bond, etc. can be made favorable by the said tensile storage elastic modulus of the adhesive film 12 being 5000 Mpa or less. In the present invention, the tensile storage elastic modulus of the adhesive film means the tensile storage elastic modulus before thermosetting when the adhesive film is a thermosetting type.
 前記引張貯蔵弾性率の値は、次の測定方法によるものである。即ち、離型処理を施した剥離ライナー上に接着剤組成物の溶液を塗布して乾燥し、厚さ100μmの接着フィルム12を形成する。この接着フィルム12を粘弾性測定装置(レオメトリックス社製:形式:RSA-II)を用いて、接着フィルム12の硬化前の23℃における引張貯蔵弾性率を測定する。より詳細には、サンプルサイズを長さ30.0×幅5.0×厚さ0.1mmとし、測定試料をフィルム引っ張り測定用治具にセットし、-30℃~280℃の温度域で周波数10.0Hz、歪み0.025%、昇温速度10℃/分の条件下で測定する。 The value of the tensile storage elastic modulus is based on the following measurement method. That is, the adhesive composition solution is applied onto a release liner that has been subjected to a mold release treatment and dried to form an adhesive film 12 having a thickness of 100 μm. The adhesive film 12 is measured for a tensile storage elastic modulus at 23 ° C. before the adhesive film 12 is cured by using a viscoelasticity measuring device (Rheometrics: model: RSA-II). More specifically, the sample size is 30.0 × length 5.0 × thickness 0.1 mm, the measurement sample is set in a film tensile measurement jig, and the frequency is in the temperature range of −30 ° C. to 280 ° C. The measurement is performed under the conditions of 10.0 Hz, a strain of 0.025%, and a heating rate of 10 ° C./min.
 前記熱可塑性樹脂の重量平均分子量は、30万以上150以下であることが好ましく、より好ましくは35万~100万、さらに好ましくは40万~80万である。前記熱可塑性樹脂の重量平均分子量を30万以上とすることにより、23℃における接着フィルムの引張貯蔵弾性率を好適な値にコントロールすることができる。また、前記熱可塑性樹脂の重量平均分子量が30万以上であり、比較的低分子量物質の含有量が少ないと、清浄な被着体の汚染を防止すること等ができる。なお、重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値をいう。 The weight average molecular weight of the thermoplastic resin is preferably 300,000 or more and 150 or less, more preferably 350,000 to 1,000,000, still more preferably 400,000 to 800,000. By setting the weight average molecular weight of the thermoplastic resin to 300,000 or more, the tensile storage modulus of the adhesive film at 23 ° C. can be controlled to a suitable value. In addition, when the thermoplastic resin has a weight average molecular weight of 300,000 or more and a relatively low molecular weight content, the contamination of a clean adherend can be prevented. The weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
 前記熱可塑性樹脂としては、天然ゴム、ブチルゴム、イソプレンゴム、クロロプレンゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、6-ナイロンや6,6-ナイロン等のポリアミド樹脂、フェノキシ樹脂、アクリル樹脂、PETやPBT等の飽和ポリエステル樹脂、ポリアミドイミド樹脂又はフッ素樹脂等が挙げられる。これらの熱可塑性樹脂は単独で、又は2種以上を併用して用いることができる。これらの熱可塑性樹脂のうち、イオン性不純物が少なく耐熱性が高く、半導体装置の信頼性を確保できるアクリル樹脂が特に好ましい。 Examples of the thermoplastic resin include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, heat Examples thereof include plastic polyimide resins, polyamide resins such as 6-nylon and 6,6-nylon, phenoxy resins, acrylic resins, saturated polyester resins such as PET and PBT, polyamideimide resins, and fluorine resins. These thermoplastic resins can be used alone or in combination of two or more. Of these thermoplastic resins, an acrylic resin that has few ionic impurities and high heat resistance and can ensure the reliability of the semiconductor device is particularly preferable.
 前記アクリル樹脂としては、特に限定されるものではなく、炭素数30以下、特に炭素数4~18の直鎖若しくは分岐のアルキル基を有するアクリル酸又はメタクリル酸のエステルの1種又は2種以上を成分とする重合体等が挙げられる。前記アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、イソブチル基、アミル基、イソアミル基、ヘキシル基、ヘプチル基、シクロヘキシル基、2-エチルヘキシル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、オクタデシル基、又はドデシル基等が挙げられる。 The acrylic resin is not particularly limited, and includes one or more esters of acrylic acid or methacrylic acid ester having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms. Examples include polymers as components. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a t-butyl group, an isobutyl group, an amyl group, an isoamyl group, a hexyl group, a heptyl group, a cyclohexyl group, and 2-ethylhexyl. Group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, lauryl group, tridecyl group, tetradecyl group, stearyl group, octadecyl group, or dodecyl group.
 また、前記重合体を形成する他のモノマーとしては、特に限定されるものではなく、例えばアクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマール酸若しくはクロトン酸等の様なカルボキシル基含有モノマー、無水マレイン酸若しくは無水イタコン酸等の様な酸無水物モノマー、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル若しくは(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレート等の様なヒドロキシル基含有モノマー、スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート若しくは(メタ)アクリロイルオキシナフタレンスルホン酸等の様なスルホン酸基含有モノマー、又は2-ヒドロキシエチルアクリロイルホスフェート等の様な燐酸基含有モノマーが挙げられる。なかでも、ダイボンドフィルムの引張貯蔵弾性率を好適な値とする観点から、カルボキシル基含有モノマーが好ましい。 In addition, the other monomer forming the polymer is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid. Carboxyl group-containing monomers, maleic anhydride or acid anhydride monomers such as itaconic anhydride, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-methacrylic acid 4- Hydroxybutyl, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate or (4-hydroxymethylcyclohexyl) -Methyl Hydroxyl group-containing monomers such as acrylate, styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate or (meth) Examples thereof include sulfonic acid group-containing monomers such as acryloyloxynaphthalene sulfonic acid, and phosphoric acid group-containing monomers such as 2-hydroxyethylacryloyl phosphate. Among these, a carboxyl group-containing monomer is preferable from the viewpoint of setting the tensile storage modulus of the die bond film to a suitable value.
 前記熱硬化性樹脂としては、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂、シリコーン樹脂、又は熱硬化性ポリイミド樹脂等が挙げられる。これらの樹脂は、単独で又は2種以上併用して用いることができる。特に、半導体チップを腐食させるイオン性不純物等含有が少ないエポキシ樹脂が好ましい。また、エポキシ樹脂の硬化剤としてはフェノール樹脂が好ましい。 Examples of the thermosetting resin include phenol resin, amino resin, unsaturated polyester resin, epoxy resin, polyurethane resin, silicone resin, and thermosetting polyimide resin. These resins can be used alone or in combination of two or more. In particular, an epoxy resin containing a small amount of ionic impurities that corrode semiconductor chips is preferable. Moreover, as a hardening | curing agent of an epoxy resin, a phenol resin is preferable.
 前記エポキシ樹脂は、接着剤組成物として一般に用いられるものであれば特に限定は無く、例えばビスフェノールA型、ビスフェノールF型、ビスフェノールS型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールAF型,ビフェニル型、ナフタレン型、フルオンレン型、フェノールノボラック型、オルソクレゾールノボラック型、トリスヒドロキシフェニルメタン型、テトラフェニロールエタン型等の二官能エポキシ樹脂や多官能エポキシ樹脂、又はヒダントイン型、トリスグリシジルイソシアヌレート型若しくはグリシジルアミン型等のエポキシ樹脂が用いられる。これらは単独で、又は2種以上を併用して用いることができる。これらのエポキシ樹脂のうちノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリスヒドロキシフェニルメタン型樹脂又はテトラフェニロールエタン型エポキシ樹脂が特に好ましい。これらのエポキシ樹脂は、硬化剤としてのフェノール樹脂との反応性に富み、耐熱性等に優れるからである。 The epoxy resin is not particularly limited as long as it is generally used as an adhesive composition, for example, bisphenol A type, bisphenol F type, bisphenol S type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol AF type. , Biphenyl type, naphthalene type, fluorene type, phenol novolak type, orthocresol novolak type, trishydroxyphenylmethane type, tetraphenylolethane type, etc. Type or glycidylamine type epoxy resin is used. These can be used alone or in combination of two or more. Of these epoxy resins, novolac type epoxy resins, biphenyl type epoxy resins, trishydroxyphenylmethane type resins or tetraphenylolethane type epoxy resins are particularly preferred. This is because these epoxy resins are rich in reactivity with a phenol resin as a curing agent and are excellent in heat resistance and the like.
 更に、前記フェノール樹脂は、前記エポキシ樹脂の硬化剤として作用するものであり、例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、クレゾールノボラック樹脂、tert-ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂、レゾール型フェノール樹脂、ポリパラオキシスチレン等のポリオキシスチレン等が挙げられる。これらは単独で、又は2種以上を併用して用いることができる。これらのフェノール樹脂のうちフェノールノボラック樹脂、フェノールアラルキル樹脂が特に好ましい。半導体装置の接続信頼性を向上させることができるからである。 Further, the phenol resin acts as a curing agent for the epoxy resin. Examples include resol-type phenolic resins and polyoxystyrenes such as polyparaoxystyrene. These can be used alone or in combination of two or more. Of these phenol resins, phenol novolac resins and phenol aralkyl resins are particularly preferred. This is because the connection reliability of the semiconductor device can be improved.
 前記エポキシ樹脂とフェノール樹脂の配合割合は、例えば、前記エポキシ樹脂成分中のエポキシ基1当量当たりフェノール樹脂中の水酸基が0.5~2.0当量になるように配合することが好適である。より好適なのは0.8~1.2当量である。即ち、両者の配合割合が前記範囲を外れると、十分な硬化反応が進まず、エポキシ樹脂硬化物の特性が劣化し易くなるからである。 The compounding ratio of the epoxy resin and the phenol resin is preferably such that, for example, the hydroxyl group in the phenol resin is 0.5 to 2.0 equivalents per equivalent of the epoxy group in the epoxy resin component. More preferred is 0.8 to 1.2 equivalents. That is, if the blending ratio of both is out of the above range, sufficient curing reaction does not proceed and the properties of the cured epoxy resin are likely to deteriorate.
 尚、本実施の形態に於いては、エポキシ樹脂、フェノール樹脂及びアクリル樹脂を含む接着フィルム12が特に好ましい。これらの樹脂は、イオン性不純物が少なく耐熱性が高いので、半導体チップの信頼性を確保できる。この場合の配合比は、アクリル樹脂成分100重量部に対して、エポキシ樹脂とフェノール樹脂の混合量が10~200重量部である。 In the present embodiment, the adhesive film 12 containing an epoxy resin, a phenol resin, and an acrylic resin is particularly preferable. Since these resins have few ionic impurities and high heat resistance, the reliability of the semiconductor chip can be ensured. In this case, the mixing ratio of the epoxy resin and the phenol resin is 10 to 200 parts by weight with respect to 100 parts by weight of the acrylic resin component.
 接着フィルム12は、必要に応じて、接着フィルム12の構成材料として熱硬化触媒を使用してもよい。その配合割合としては、有機成分100重量部に対し0.1~3.0重量部の範囲内が好ましく、0.15~2.0重量部の範囲内がより好ましく、0.2~1.0重量部の範囲内が特に好ましい。配合割合を0.1重量部以上にすることにより、熱硬化後の接着力を良好に発現させることができる。その一方、配合割合を3.0重量部以下にすることにより、保存性の低下を抑制することができる。 The adhesive film 12 may use a thermosetting catalyst as a constituent material of the adhesive film 12 as necessary. The blending ratio is preferably within the range of 0.1 to 3.0 parts by weight, more preferably within the range of 0.15 to 2.0 parts by weight, with respect to 100 parts by weight of the organic component, and 0.2 to 1. A range of 0 part by weight is particularly preferable. By setting the blending ratio to 0.1 parts by weight or more, the adhesive force after thermosetting can be favorably expressed. On the other hand, when the blending ratio is 3.0 parts by weight or less, it is possible to suppress a decrease in storage stability.
 前記熱硬化触媒としては特に限定されず、例えば、イミダゾール系化合物、トリフェニルフォスフィン系化合物、アミン系化合物、トリフェニルボラン系化合物、トリハロゲンボラン系化合物等が挙げられる。これらは単独で、又は2種以上を併用して用いることができる。 The thermosetting catalyst is not particularly limited, and examples thereof include imidazole compounds, triphenylphosphine compounds, amine compounds, triphenylborane compounds, and trihalogenborane compounds. These can be used alone or in combination of two or more.
 前記イミダゾール系化合物としては、2-メチルイミダゾール(商品名;2MZ)、2-ウンデシルイミダゾール(商品名;C11Z)、2-ヘプタデシルイミダゾール(商品名;C17Z)、1,2-ジメチルイミダゾール(商品名;1.2DMZ)、2-エチル-4-メチルイミダゾール(商品名;2E4MZ)、2-フェニルイミダゾール(商品名;2PZ)、2-フェニル-4-メチルイミダゾール(商品名;2P4MZ)、1-ベンジル-2-メチルイミダゾール(商品名;1B2MZ)、1-ベンジル-2-フェニルイミダゾール(商品名;1B2PZ)、1-シアノエチル-2-メチルイミダゾール(商品名;2MZ-CN)、1-シアノエチル-2-ウンデシルイミダゾール(商品名;C11Z-CN)、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト(商品名;2PZCNS-PW)、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;2MZ-A)、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;C11Z-A)、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;2E4MZ-A)、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物(商品名;2MA-OK)、2-フェニル-4,5-ジヒドロキシメチルイミダゾール(商品名;2PHZ-PW)、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(商品名;2P4MHZ-PW)等が挙げられる(いずれも四国化成(株)製)。 Examples of the imidazole compound include 2-methylimidazole (trade name; 2MZ), 2-undecylimidazole (trade name; C11Z), 2-heptadecylimidazole (trade name; C17Z), 1,2-dimethylimidazole (product). Name: 1.2 DMZ), 2-ethyl-4-methylimidazole (trade name; 2E4MZ), 2-phenylimidazole (trade name; 2PZ), 2-phenyl-4-methylimidazole (trade name; 2P4MZ), 1- Benzyl-2-methylimidazole (trade name; 1B2MZ), 1-benzyl-2-phenylimidazole (trade name; 1B2PZ), 1-cyanoethyl-2-methylimidazole (trade name; 2MZ-CN), 1-cyanoethyl-2 -Undecylimidazole (trade name; C11Z-CN), 1-cyanoethyl -2-Phenylimidazolium trimellitate (trade name; 2PZCNS-PW), 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine (trade name; 2MZ- A), 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine (trade name; C11Z-A), 2,4-diamino-6- [2 ′ -Ethyl-4'-methylimidazolyl- (1 ')]-ethyl-s-triazine (trade name; 2E4MZ-A), 2,4-diamino-6- [2'-methylimidazolyl- (1')]- Ethyl-s-triazine isocyanuric acid adduct (trade name; 2MA-OK), 2-phenyl-4,5-dihydroxymethylimidazole (trade name; 2PHZ-PW), 2-phenyl-4-methyl-5-hy B carboxymethyl-methylimidazole (trade name; 2P4MHZ-PW), and the like (all made by Shikoku Kasei Co., Ltd.).
 前記トリフェニルフォスフィン系化合物としては特に限定されず、例えば、トリフェニルフォスフィン、トリブチルフォスフィン、トリ(p-メチルフェニル)フォスフィン、トリ(ノニルフェニル)フォスフィン、ジフェニルトリルフォスフィン等のトリオルガノフォスフィン、テトラフェニルホスホニウムブロマイド(商品名;TPP-PB)、メチルトリフェニルホスホニウム(商品名;TPP-MB)、メチルトリフェニルホスホニウムクロライド(商品名;TPP-MC)、メトキシメチルトリフェニルホスホニウム(商品名;TPP-MOC)、ベンジルトリフェニルホスホニウムクロライド(商品名;TPP-ZC)等が挙げられる(いずれも北興化学社製)。また、前記トリフェニルフォスフィン系化合物としては、エポキシ樹脂に対し実質的に非溶解性を示すものであることが好ましい。エポキシ樹脂に対し非溶解性であると、熱硬化が過度に進行するのを抑制することができる。トリフェニルフォスフィン構造を有し、かつエポキシ樹脂に対し実質的に非溶解性を示す熱硬化触媒としては、例えば、メチルトリフェニルホスホニウム(商品名;TPP-MB)等が例示できる。尚、前記「非溶解性」とは、トリフェニルフォスフィン系化合物からなる熱硬化触媒がエポキシ樹脂からなる溶媒に対し不溶性であることを意味し、より詳細には、温度10~40℃の範囲において10重量%以上溶解しないことを意味する。 The triphenylphosphine compound is not particularly limited, and examples thereof include triorganophosphines such as triphenylphosphine, tributylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, and diphenyltolylphosphine. Fin, tetraphenylphosphonium bromide (trade name; TPP-PB), methyltriphenylphosphonium (trade name; TPP-MB), methyltriphenylphosphonium chloride (trade name; TPP-MC), methoxymethyltriphenylphosphonium (trade name) ; TPP-MOC), benzyltriphenylphosphonium chloride (trade name; TPP-ZC), etc. (all manufactured by Hokuko Chemical Co., Ltd.). The triphenylphosphine compound is preferably substantially insoluble in the epoxy resin. It can suppress that thermosetting progresses too much that it is insoluble with respect to an epoxy resin. Examples of the thermosetting catalyst having a triphenylphosphine structure and substantially insoluble in an epoxy resin include methyltriphenylphosphonium (trade name: TPP-MB). The “insoluble” means that the thermosetting catalyst made of a triphenylphosphine compound is insoluble in a solvent made of an epoxy resin, and more specifically, a temperature range of 10 to 40 ° C. It means that 10% by weight or more does not dissolve.
 前記トリフェニルボラン系化合物としては特に限定されず、例えば、トリ(p-メチルフェニル)フォスフィン等が挙げられる。また、トリフェニルボラン系化合物としては、更にトリフェニルフォスフィン構造を有するものも含まれる。当該トリフェニルフォスフィン構造及びトリフェニルボラン構造を有する化合物としては特に限定されず、例えば、テトラフェニルホスホニウムテトラフェニルボレート(商品名;TPP-K)、テトラフェニルホスホニウムテトラ-p-トリボレート(商品名;TPP-MK)、ベンジルトリフェニルホスホニウムテトラフェニルボレート(商品名;TPP-ZK)、トリフェニルホスフィントリフェニルボラン(商品名;TPP-S)等が挙げられる(いずれも北興化学社製)。 The triphenylborane compound is not particularly limited, and examples thereof include tri (p-methylphenyl) phosphine. The triphenylborane compound further includes those having a triphenylphosphine structure. The compound having the triphenylphosphine structure and the triphenylborane structure is not particularly limited. For example, tetraphenylphosphonium tetraphenylborate (trade name; TPP-K), tetraphenylphosphonium tetra-p-triborate (trade name; TPP-MK), benzyltriphenylphosphonium tetraphenylborate (trade name; TPP-ZK), triphenylphosphine triphenylborane (trade name; TPP-S), and the like (all manufactured by Hokuko Chemical Co., Ltd.).
 前記アミノ系化合物としては特に限定されず、例えば、モノエタノールアミントリフルオロボレート(ステラケミファ(株)製)、ジシアンジアミド(ナカライテスク(株)製)等が挙げられる。 The amino compound is not particularly limited, and examples thereof include monoethanolamine trifluoroborate (manufactured by Stella Chemifa Corporation), dicyandiamide (manufactured by Nacalai Tesque Corporation), and the like.
 前記トリハロゲンボラン系化合物としては特に限定されず、例えば、トリクロロボラン等が挙げられる。 The trihalogen borane-based compound is not particularly limited, and examples thereof include trichloroborane.
 本実施の形態に係る接着フィルム12は、予めある程度架橋をさせておくために、作製に際し、重合体の分子鎖末端の官能基等と反応する多官能性化合物を架橋剤として添加させてもよい。これにより、高温下での接着特性を向上させ、耐熱性の改善を図る。 Since the adhesive film 12 according to the present embodiment is crosslinked to some extent in advance, a polyfunctional compound that reacts with a functional group at the molecular chain end of the polymer may be added as a crosslinking agent during production. . Thereby, the adhesive property under high temperature is improved and heat resistance is improved.
 前記架橋剤としては、従来公知のものを採用することができる。特に、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、p-フェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、多価アルコールとジイソシアネートの付加物等のポリイソシアネート化合物がより好ましい。架橋剤の添加量としては、前記の重合体100重量部に対し、通常0.05~7重量部とするのが好ましい。架橋剤の量が7重量部より多いと、接着力が低下するので好ましくない。その一方、0.05重量部より少ないと、凝集力が不足するので好ましくない。また、この様なポリイソシアネート化合物と共に、必要に応じて、エポキシ樹脂等の他の多官能性化合物を一緒に含ませるようにしてもよい。 As the crosslinking agent, conventionally known crosslinking agents can be used. Particularly preferred are polyisocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, p-phenylene diisocyanate, 1,5-naphthalene diisocyanate, adducts of polyhydric alcohol and diisocyanate. The addition amount of the crosslinking agent is usually preferably 0.05 to 7 parts by weight with respect to 100 parts by weight of the polymer. When the amount of the cross-linking agent is more than 7 parts by weight, the adhesive force is lowered, which is not preferable. On the other hand, if it is less than 0.05 parts by weight, the cohesive force is insufficient, which is not preferable. Moreover, you may make it include other polyfunctional compounds, such as an epoxy resin, together with such a polyisocyanate compound as needed.
 また、接着フィルム12には、その用途に応じて無機充填剤を適宜配合することができる。無機充填剤の配合は、導電性の付与や熱伝導性の向上、弾性率の調節等を可能とする。前記無機充填剤としては、例えば、シリカ、クレー、石膏、炭酸カルシウム、硫酸バリウム、酸化アルミナ、酸化ベリリウム、炭化珪素、窒化珪素等のセラミック類、アルミニウム、銅、銀、金、ニッケル、クロム、鈴、錫、亜鉛、パラジウム、半田等の金属、又は合金類、その他カーボン等からなる種々の無機粉末が挙げられる。これらは単独で又は2種以上を併用して用いることができる。なかでも、シリカ、特に溶融シリ力が好適に用いられる。また、無機充填剤の平均粒径は0.01~80μmの範囲内であることが好ましい。 Further, an inorganic filler can be appropriately blended into the adhesive film 12 according to its use. The blending of the inorganic filler makes it possible to impart conductivity, improve thermal conductivity, adjust the elastic modulus, and the like. Examples of the inorganic filler include silica, clay, gypsum, calcium carbonate, barium sulfate, alumina oxide, beryllium oxide, silicon carbide, silicon nitride and other ceramics, aluminum, copper, silver, gold, nickel, chromium, bell And various inorganic powders made of metals such as tin, zinc, palladium, solder, or alloys, and other carbons. These can be used alone or in combination of two or more. Among these, silica, particularly a melting strength is preferably used. The average particle size of the inorganic filler is preferably in the range of 0.01 to 80 μm.
 前記無機充填剤の配合量は、有機成分100重量部に対し0~80重量部に設定することが好ましく、0~70重量部に設定することがより好ましい。 The blending amount of the inorganic filler is preferably set to 0 to 80 parts by weight, more preferably 0 to 70 parts by weight with respect to 100 parts by weight of the organic component.
 尚、接着フィルム12には、必要に応じて他の添加剤を適宜に配合することができる。他の添加剤としては、例えば難燃剤、シランカップリング剤又はイオントラップ剤等が挙げられる。前記難燃剤としては、例えば、三酸化アンチモン、五酸化アンチモン、臭素化エポキシ樹脂等が挙げられる。これらは、単独で、又は2種以上を併用して用いることができる。前記シランカップリング剤としては、例えば、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等が挙げられる。これらの化合物は、単独で又は2種以上を併用して用いることができる。前記イオントラップ剤としては、例えばハイドロタルサイト類、水酸化ビスマス等が挙げられる。これらは、単独で又は2種以上を併用して用いることができる。 The adhesive film 12 can be appropriately mixed with other additives as necessary. Examples of other additives include flame retardants, silane coupling agents, ion trapping agents, and the like. Examples of the flame retardant include antimony trioxide, antimony pentoxide, brominated epoxy resin, and the like. These can be used alone or in combination of two or more. Examples of the silane coupling agent include β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and the like. These compounds can be used alone or in combination of two or more. Examples of the ion trapping agent include hydrotalcites and bismuth hydroxide. These can be used alone or in combination of two or more.
 接着フィルム12の厚さは特に限定されないが、例えば、5~100μm程度、好ましくは5~70μm程度である。 The thickness of the adhesive film 12 is not particularly limited, but is, for example, about 5 to 100 μm, preferably about 5 to 70 μm.
 半導体装置用フィルム10には、帯電防止能を持たせることができる。これにより、その接着時及び剥離時等に於ける静電気の発生やそれによる半導体ウェハ等の帯電で回路が破壊されること等を防止することができる。帯電防止能の付与は、基材13、粘着剤層14又は接着フィルム12に帯電防止剤や導電性物質を添加する方法、基材13への電荷移動錯体や金属膜等からなる導電層の付設等、適宜な方式で行うことができる。これらの方式としては、半導体ウェハを変質させるおそれのある不純物イオンが発生しにくい方式が好ましい。導電性の付与、熱伝導性の向上等を目的として配合される導電性物質(導電フィラー)としては、銀、アルミニウム、金、銅、ニッケル、導電性合金等の球状、針状、フレーク状の金属粉、アルミナ等の金属酸化物、アモルファスカーボンブラック、グラファイト等が挙げられる。ただし、前記接着フィルム12は、非導電性であることが、電気的にリークしないようにできる点から好ましい。 The film for semiconductor device 10 can have antistatic ability. As a result, it is possible to prevent the circuit from being broken due to the generation of static electricity during the bonding and peeling, and the resulting charging of the semiconductor wafer or the like. The antistatic ability is imparted by adding an antistatic agent or a conductive material to the base material 13, the pressure-sensitive adhesive layer 14 or the adhesive film 12, and providing a conductive layer made of a charge transfer complex or a metal film on the base material 13. Etc., etc. As these methods, a method in which impurity ions that may change the quality of the semiconductor wafer are less likely to be generated is preferable. As a conductive substance (conductive filler) blended for the purpose of imparting conductivity and improving thermal conductivity, spherical, needle-like, and flaky shapes such as silver, aluminum, gold, copper, nickel, and conductive alloys Examples thereof include metal powders, metal oxides such as alumina, amorphous carbon black, and graphite. However, it is preferable that the adhesive film 12 is non-conductive because it can be prevented from electrically leaking.
 接着フィルム12は、カバーフィルム2により保護されている。カバーフィルム2は、実用に供するまで接着フィルム12を保護する保護材としての機能を有している。カバーフィルム2はダイシングシート付き接着フィルムの接着フィルム12上に半導体ウェハを貼着する際に剥がされる。カバーフィルム2としては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤等の剥離剤により表面コートされたプラスチックフィルムや紙等も使用可能である。 The adhesive film 12 is protected by the cover film 2. The cover film 2 has a function as a protective material that protects the adhesive film 12 until it is put into practical use. The cover film 2 is peeled off when a semiconductor wafer is stuck on the adhesive film 12 of the adhesive film with a dicing sheet. As the cover film 2, a plastic film or paper surface-coated with a release agent such as polyethylene terephthalate (PET), polyethylene, polypropylene, a fluorine-type release agent, or a long-chain alkyl acrylate-type release agent can be used.
 カバーフィルム2の引張貯蔵弾性率Ebは1~5000MPaの範囲内が好ましく、50~4500MPaの範囲内がより好ましく、100~4000MPaの範囲内がさらに好ましい。カバーフィルム2の引張貯蔵弾性率Ebを1MPa以上にすることにより、カバーフィルム2のダイボンドフィルム12への追従性をより向上させることができる。また、カバーフィルム2の引張貯蔵弾性率Ebを5000MPa以下にすることにより、接着フィルム12のカバーフィルム2への貼り合わせの際にカバーフィルム2に折れが発生することをより抑制することができ、接着フィルム12を傷つけたり、フィルム間に気泡が混入することを防止することができる。 The tensile storage elastic modulus Eb of the cover film 2 is preferably in the range of 1 to 5000 MPa, more preferably in the range of 50 to 4500 MPa, and further preferably in the range of 100 to 4000 MPa. By setting the tensile storage modulus Eb of the cover film 2 to 1 MPa or more, the followability of the cover film 2 to the die bond film 12 can be further improved. Further, by setting the tensile storage elastic modulus Eb of the cover film 2 to 5000 MPa or less, the cover film 2 can be further prevented from being folded when the adhesive film 12 is bonded to the cover film 2, It is possible to prevent the adhesive film 12 from being damaged or air bubbles from being mixed between the films.
 カバーフィルム2の厚さは、作業性、搬送性の観点から10~100μmが好ましく、より好ましくは、15~75μmであり、さらに好ましくは、25~50μmである。 The thickness of the cover film 2 is preferably 10 to 100 μm, more preferably 15 to 75 μm, and further preferably 25 to 50 μm from the viewpoint of workability and transportability.
 次に、本実施の形態に係る半導体装置用フィルム10の製造方法について、以下に説明する。
 本実施の形態に係る半導体装置用フィルム10の製造方法は、基材13上に粘着剤層14を形成してダイシングフィルム11を作製する工程と、基材セパレータ22上に接着フィルム12を形成する工程と、接着フィルム12を、貼り付ける半導体ウェハの形状に合わせて打ち抜く工程と、ダイシングフィルム11の粘着剤層14と接着フィルム12を貼り合わせ面として積層させる工程と、リングフレームに対応した円形状にダイシングフィルム11を打ち抜く工程と、接着フィルム12上の基材セパレータ22を剥離することによりダイシングシート付き接着フィルム1を作製する工程と、カバーフィルム2上に、所定の間隔をおいてダイシングシート付き接着フィルム1を貼り合わせる工程とを含む。
Next, the manufacturing method of the film 10 for semiconductor devices which concerns on this Embodiment is demonstrated below.
In the method for manufacturing the semiconductor device film 10 according to the present embodiment, the adhesive layer 14 is formed on the substrate 13 to form the dicing film 11, and the adhesive film 12 is formed on the substrate separator 22. A step, a step of punching the adhesive film 12 in accordance with the shape of the semiconductor wafer to be attached, a step of laminating the adhesive layer 14 of the dicing film 11 and the adhesive film 12 as a bonding surface, and a circular shape corresponding to the ring frame A step of punching the dicing film 11 on, a step of producing the adhesive film 1 with a dicing sheet by peeling the substrate separator 22 on the adhesive film 12, and a dicing sheet with a predetermined interval on the cover film 2 And a step of bonding the adhesive film 1 together.
 ダイシングフィルム11の作製工程は、例えば、次の通りにして行われる。先ず、基材13は、従来公知の製膜方法により製膜することができる。当該製膜方法としては、例えばカレンダー製膜法、有機溶媒中でのキャスティング法、密閉系でのインフレーション押出法、Tダイ押出法、共押出し法、ドライラミネート法等が例示できる。 The manufacturing process of the dicing film 11 is performed as follows, for example. First, the base material 13 can be formed by a conventionally known film forming method. Examples of the film forming method include a calendar film forming method, a casting method in an organic solvent, an inflation extrusion method in a closed system, a T-die extrusion method, a co-extrusion method, and a dry lamination method.
 次に、基材13上に粘着剤組成物溶液を塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させ(必要に応じて加熱架橋させて)、粘着剤層14を形成する。塗布方法としては特に限定されず、例えば、ロール塗工、スクリーン塗工、グラビア塗工等が挙げられる。また、乾燥条件としては塗布膜の厚さや材料等に応じて適宜設定され得る。具体的には、例えば乾燥温度80~150℃、乾燥時間0.5~5分間の範囲内で行われる。また、第1セパレータ21上に粘着剤組成物を塗布して塗布膜を形成した後、前記乾燥条件で塗布膜を乾燥させて粘着剤層14を形成してもよい。その後、基材13上に粘着剤層14を第1セパレータ21と共に貼り合わせる。これにより、第1セパレータ21で粘着剤層14が保護されたダイシングフィルム11が作製される(図3(a)参照)。作製されたダイシングフィルム11は、ロール状に巻回された長尺の形態を有していてもよい。この場合、ダイシングフィルム11に弛みや巻ズレ、位置ズレが生じない様に、その長手方向や幅方向に引張張力を加えながら巻回するのが好ましい。但し、引張張力を加えることにより、ダイシングフィルム11は引張残留歪みが残存した状態でロール状に巻回される。尚、ダイシングフィルム11の巻き取りの際に、前記引張張力が加わることによりダイシングフィルム11が延伸される場合があるが、巻き取りは延伸操作を目的とするものではない。 Next, after a pressure-sensitive adhesive composition solution is applied onto the substrate 13 to form a coating film, the coating film is dried under predetermined conditions (heat-crosslinked as necessary) to form a pressure-sensitive adhesive layer 14. Form. It does not specifically limit as a coating method, For example, roll coating, screen coating, gravure coating, etc. are mentioned. Further, the drying conditions can be appropriately set according to the thickness and material of the coating film. Specifically, for example, the drying temperature is 80 to 150 ° C. and the drying time is 0.5 to 5 minutes. Moreover, after apply | coating an adhesive composition on the 1st separator 21 and forming a coating film, the coating film may be dried on the said drying conditions, and the adhesive layer 14 may be formed. Thereafter, the pressure-sensitive adhesive layer 14 is bonded to the base material 13 together with the first separator 21. Thereby, the dicing film 11 by which the adhesive layer 14 was protected by the 1st separator 21 is produced (refer Fig.3 (a)). The produced dicing film 11 may have a long form wound in a roll shape. In this case, it is preferable to wind the dicing film 11 while applying a tensile tension in the longitudinal direction or the width direction so that no slack, winding deviation, or positional deviation occurs. However, by applying a tensile tension, the dicing film 11 is wound into a roll shape with a residual tensile strain remaining. In addition, although the dicing film 11 may be extended | stretched when the said tension | tensile_strength is added at the time of winding of the dicing film 11, winding up does not aim at extending | stretching operation.
 粘着剤層14として、紫外線硬化型粘着剤からなり、かつ、予め紫外線硬化されたものを採用する場合は、次の通りにして形成する。即ち、基材13上に紫外線硬化型の粘着剤組成物を塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させ(必要に応じて加熱架橋させて)、粘着剤層を形成する。塗布方法、塗布条件、及び乾燥条件は前記と同様に行うことができる。また、第1セパレータ21上に紫外線硬化型の粘着剤組成物を塗布して塗布膜を形成した後、前記乾燥条件で塗布膜を乾燥させて粘着剤層を形成してもよい。その後、基材13上に粘着剤層を転写する。更に、粘着剤層に所定条件下で紫外線を照射する。紫外線の照射条件としては特に限定されないが、通常は積算光量が30~1000mJ/cm2となる範囲内が好ましく、50~800mJ/cm2となる範囲内がより好ましく、100~500mJ/cm2となる範囲内がさらに好ましい。積算光量を前記数値範囲内に調節することで、接着フィルム12とダイシングフィルム11の間の剥離力F2を0.08~10N/100mmの範囲内に制御することができる。紫外線の照射が30mJ/cm2未満であると、粘着剤層14の硬化が不十分になり、接着フィルム12との剥離力が大きくなり過ぎる場合がある。その結果、接着フィルムとの密着性が増大し、ピックアップ性の低下を招来する。またピックアップ後、接着フィルムに糊残りが発生する場合がある。その一方、積算光量が1000mJ/cm2を超えると、接着フィルム12との剥離力が小さくなり過ぎる場合がある。その結果、粘着剤層14と接着フィルム12の間で界面剥離を生じる場合がある。その結果、半導体ウェハのダイシングの際に、チップ飛びが発生する場合がある。また、基材13に対し熱的ダメージを与える場合がある。更に、粘着剤層14の硬化が過度に進行して引張弾性率が大きくなりすぎ、エキスパンド性が低下する。尚、紫外線の照射は、後述の接着フィルム12との貼り合わせ工程後に行ってもよい。この場合、紫外線照射は基材13側から行うのが好ましい。 When the pressure-sensitive adhesive layer 14 is made of an ultraviolet-curing pressure-sensitive adhesive and is pre-cured with ultraviolet light, it is formed as follows. That is, after an ultraviolet curable pressure-sensitive adhesive composition is applied onto the substrate 13 to form a coating film, the coating film is dried under a predetermined condition (heat-crosslinked as necessary) to form a pressure-sensitive adhesive layer. Form. The coating method, coating conditions, and drying conditions can be performed in the same manner as described above. Alternatively, an ultraviolet curable pressure-sensitive adhesive composition may be applied onto the first separator 21 to form a coating film, and then the coating film may be dried under the drying conditions to form a pressure-sensitive adhesive layer. Thereafter, the pressure-sensitive adhesive layer is transferred onto the substrate 13. Further, the adhesive layer is irradiated with ultraviolet rays under predetermined conditions. Although the ultraviolet irradiation conditions are not particularly limited, it is usually preferably within a range where the integrated light quantity is 30 to 1000 mJ / cm 2, more preferably within a range where 50 to 800 mJ / cm 2, and within a range where 100 to 500 mJ / cm 2 is reached. Is more preferable. By adjusting the integrated light quantity within the numerical range, the peeling force F2 between the adhesive film 12 and the dicing film 11 can be controlled within a range of 0.08 to 10 N / 100 mm. If the irradiation with ultraviolet rays is less than 30 mJ / cm 2, the pressure-sensitive adhesive layer 14 may be insufficiently cured, and the peeling force from the adhesive film 12 may be excessively increased. As a result, the adhesiveness with the adhesive film is increased and the pickup property is lowered. Further, adhesive residue may occur on the adhesive film after pickup. On the other hand, if the integrated light quantity exceeds 1000 mJ / cm 2, the peeling force from the adhesive film 12 may be too small. As a result, interface peeling may occur between the pressure-sensitive adhesive layer 14 and the adhesive film 12. As a result, chip skipping may occur during dicing of the semiconductor wafer. In addition, the base material 13 may be thermally damaged. Furthermore, the curing of the pressure-sensitive adhesive layer 14 proceeds excessively, the tensile elastic modulus becomes too large, and the expandability decreases. In addition, you may perform irradiation of an ultraviolet-ray after the bonding process with the below-mentioned adhesive film 12. FIG. In this case, the ultraviolet irradiation is preferably performed from the substrate 13 side.
 接着フィルム12の作製工程は次の通りにして行われる。即ち、接着フィルム12を形成するための接着剤組成物溶液を基材セパレータ22上に所定厚みとなる様に塗布して塗布膜を形成する。その後、塗布膜を所定条件下で乾燥させ、接着フィルム12を形成する。塗布方法としては特に限定されず、例えば、ロール塗工、スクリーン塗工、グラビア塗工等が挙げられる。また、乾燥条件としては塗布膜の厚さや材料等に応じて適宜設定され得る。具体的には、例えば乾燥温度70~160℃、乾燥時間1~5分間の範囲内で行われる。また、第2セパレータ23上に粘着剤組成物を塗布して塗布膜を形成した後、前記乾燥条件で塗布膜を乾燥させて接着フィルム12を形成してもよい。その後、基材セパレータ22上に接着フィルム12を第2セパレータ23と共に貼り合わせる。これにより、基材セパレータ22上に接着フィルム12及び第2セパレータ23が順次積層された積層フィルムが作製される(図3(b)参照)。この積層フィルムは、ロール状に巻回された長尺の形態を有していてもよい。この場合、接着フィルム12に弛みや巻ズレ、位置ズレが生じない様に、その長手方向や幅方向に引張張力を加えながら巻回するのが好ましい。 The production process of the adhesive film 12 is performed as follows. That is, an adhesive composition solution for forming the adhesive film 12 is applied on the base separator 22 so as to have a predetermined thickness, thereby forming a coating film. Thereafter, the coating film is dried under predetermined conditions to form the adhesive film 12. It does not specifically limit as a coating method, For example, roll coating, screen coating, gravure coating, etc. are mentioned. Further, the drying conditions can be appropriately set according to the thickness and material of the coating film. Specifically, for example, the drying is performed within a range of 70 to 160 ° C. and a drying time of 1 to 5 minutes. Moreover, after apply | coating an adhesive composition on the 2nd separator 23 and forming a coating film, the coating film may be dried on the said drying conditions, and the adhesive film 12 may be formed. Thereafter, the adhesive film 12 is bonded together with the second separator 23 on the substrate separator 22. Thereby, the laminated | multilayer film by which the adhesive film 12 and the 2nd separator 23 were laminated | stacked sequentially on the base-material separator 22 are produced (refer FIG.3 (b)). This laminated film may have a long form wound in a roll shape. In this case, it is preferable to wind the adhesive film 12 while applying a tensile tension in the longitudinal direction or the width direction so that the adhesive film 12 is not loosened, wound or misaligned.
 次に、接着フィルム12を、貼り付ける半導体ウェハの形状に合わせて打ち抜き、ダイシングフィルム11に貼り合わせる。これにより、ダイシングシート付き接着フィルム1が得られる。即ち、ダイシングフィルム11から第1セパレータ21を剥離すると共に、打ち抜かれた接着フィルム12から第2セパレータ23を剥離し、接着フィルム12と粘着剤層14とが貼り合わせ面となる様にして両者を貼り合わせる(図3(c)参照)。このとき、ダイシングフィルム11又は接着フィルム12の少なくとも何れか一方に対し、周縁部に引張張力を加えながら圧着を行う。また、ダイシングフィルム11がロール状に巻回された長尺のものである場合、ダイシングフィルム11に対しては、その長手方向において極力引張張力を加えずに搬送するのが好ましい。フィルムの引張残留歪みを抑制するためである。但し、ダイシングフィルム11に弛みや巻ズレ、位置ズレ、ボイド(気泡)等の発生を防止する観点からは、10~25Nの範囲内で引張張力を加えてもよい。当該範囲内であれば、ダイシングフィルム11に引張残留歪みが残存していても、ダイシングフィルム11と接着フィルム12の間の界面剥離が発生するのを防止することができる。 Next, the adhesive film 12 is punched in accordance with the shape of the semiconductor wafer to be attached, and is attached to the dicing film 11. Thereby, the adhesive film 1 with a dicing sheet is obtained. That is, the first separator 21 is peeled off from the dicing film 11 and the second separator 23 is peeled off from the punched adhesive film 12 so that the adhesive film 12 and the pressure-sensitive adhesive layer 14 are bonded to each other. Paste together (see FIG. 3C). At this time, pressure bonding is performed on at least one of the dicing film 11 and the adhesive film 12 while applying a tensile tension to the peripheral edge. Moreover, when the dicing film 11 is the long thing wound by roll shape, it is preferable to convey without applying tensile tension as much as possible with respect to the dicing film 11 in the longitudinal direction. This is to suppress the residual tensile strain of the film. However, a tensile tension may be applied within a range of 10 to 25 N from the viewpoint of preventing the dicing film 11 from being loosened, wound, misaligned, or voids (bubbles). Within this range, even if tensile residual strain remains in the dicing film 11, it is possible to prevent the occurrence of interface peeling between the dicing film 11 and the adhesive film 12.
 また、ダイシングフィルム11と接着フィルム12の貼り合わせは、例えば圧着により行うことができる。このとき、ラミネート温度は特に限定されないが、通常は30~80℃が好ましく、30~60℃がより好ましく、30~50℃が特に好ましい。また、線圧は特に限定されないが、通常は0.1~20kgf/cmが好ましく、1~10kgf/cmがより好ましい。有機成分のガラス転移温度が-20~50℃の範囲内である接着フィルム12に対し、ラミネート温度及び/又は線圧を、それぞれ前記数値範囲内に調整して、ダイシングフィルム11と貼り合わせることで、接着フィルム12とダイシングフィルム11の間の剥離力F2を0.08~10N/100mmの範囲内に制御することができる。ここで、例えばラミネート温度を前記範囲内で高くすることにより、ダイシングフィルム11と接着フィルム12との間の剥離力F2を大きくすることができる。また、線圧を前記範囲内で大きくすることによっても、剥離力F2を大きくすることができる。 Also, the dicing film 11 and the adhesive film 12 can be bonded together by, for example, pressure bonding. At this time, the laminating temperature is not particularly limited, but is usually preferably 30 to 80 ° C, more preferably 30 to 60 ° C, and particularly preferably 30 to 50 ° C. Further, the linear pressure is not particularly limited, but is usually preferably 0.1 to 20 kgf / cm, and more preferably 1 to 10 kgf / cm. By adhering the dicing film 11 with the laminating temperature and / or the linear pressure adjusted within the above numerical range for the adhesive film 12 having a glass transition temperature of the organic component within the range of −20 to 50 ° C. The peeling force F2 between the adhesive film 12 and the dicing film 11 can be controlled within the range of 0.08 to 10 N / 100 mm. Here, for example, the peeling force F2 between the dicing film 11 and the adhesive film 12 can be increased by increasing the laminating temperature within the above range. Also, the peeling force F2 can be increased by increasing the linear pressure within the above range.
 次に、接着フィルム12上の基材セパレータ22を剥離し、引張り張力を加えながらカバーフィルム2を貼り合せる。続いて、所定の間隔をおいてリングフレームに対応した円形状にダイシングフィルム11を打ち抜く。これにより、プリカットされたダイシングシート付き接着フィルム1が所定の間隔をおいてカバーフィルム2に積層された半導体装置用フィルム10が作製される。 Next, the base material separator 22 on the adhesive film 12 is peeled off, and the cover film 2 is bonded while applying tensile tension. Subsequently, the dicing film 11 is punched out into a circular shape corresponding to the ring frame at a predetermined interval. Thereby, the film 10 for semiconductor devices by which the pre-cut adhesive film 1 with a dicing sheet was laminated | stacked on the cover film 2 at predetermined intervals is produced.
 ダイシングシート付き接着フィルム1における接着フィルム12のカバーフィルム2への貼り合わせは、圧着により行うことが好ましい。このとき、ラミネート温度は特に限定されないが、通常は20~80℃が好ましく、20~60℃がより好ましく、20~50℃が特に好ましい。また、線圧は特に限定されないが、通常は0.1~20kgf/cmが好ましく、0.2~10kgf/cmがより好ましい。有機成分のガラス転移温度が-20~50℃の範囲内である接着フィルム12に対し、ラミネート温度及び/又は線圧を、それぞれ前記数値範囲内に調整して、カバーフィルム2と貼り合わせることで、接着フィルム12とカバーフィルム2の間の剥離力F1を0.025~0.075N/100mmの範囲内に制御することができる。ここで、例えばラミネート温度を前記範囲内で高くすることにより、ダイシングシート付き接着フィルム1とカバーフィルム2との間の剥離力F1を大きくすることができる。また、線圧を前記範囲内で大きくすることによっても、剥離力F1を大きくすることができる。また、カバーフィルム2に対しては、その長手方向において引張張力を極力加えずに搬送するのが好ましい。カバーフィルム2の引張残留歪みを抑制するためである。但し、カバーフィルム2に弛みや巻ズレ、位置ズレ、ボイド(気泡)等の発生を防止する観点からは、10~25Nの範囲内で引張張力を加えてもよい。当該範囲内であれば、カバーフィルム2に引張残留歪みが残存していても、ダイシングシート付き接着フィルム1に対するカバーフィルム2のフィルム浮き現象が発生するのを防止することができる。 The bonding of the adhesive film 12 to the cover film 2 in the adhesive film 1 with a dicing sheet is preferably performed by pressure bonding. At this time, the lamination temperature is not particularly limited, but is usually preferably 20 to 80 ° C., more preferably 20 to 60 ° C., and particularly preferably 20 to 50 ° C. The linear pressure is not particularly limited, but is usually preferably 0.1 to 20 kgf / cm, more preferably 0.2 to 10 kgf / cm. For the adhesive film 12 in which the glass transition temperature of the organic component is in the range of −20 to 50 ° C., the laminating temperature and / or the linear pressure are adjusted within the above numerical ranges, respectively, and bonded to the cover film 2 The peeling force F1 between the adhesive film 12 and the cover film 2 can be controlled within the range of 0.025 to 0.075 N / 100 mm. Here, for example, the peeling force F1 between the adhesive film with dicing sheet 1 and the cover film 2 can be increased by increasing the laminating temperature within the above range. Also, the peeling force F1 can be increased by increasing the linear pressure within the above range. Moreover, it is preferable to convey with respect to the cover film 2, applying tension tension in the longitudinal direction as much as possible. This is for suppressing the tensile residual strain of the cover film 2. However, from the viewpoint of preventing the cover film 2 from generating slack, winding deviation, position deviation, void (bubble), etc., a tensile tension may be applied within a range of 10 to 25N. If it is in the said range, even if the tensile residual distortion remains in the cover film 2, it can prevent that the film floating phenomenon of the cover film 2 with respect to the adhesive film 1 with a dicing sheet generate | occur | produces.
 尚、ダイシングフィルム11の粘着剤層14上に貼り合わされる第1セパレータ21、接着フィルム12の基材セパレータ22、及びその接着フィルム12上に貼り合わされる第2セパレータ23としては特に限定されず、従来公知の離型処理されたフィルムを用いることができる。第1セパレータ21及び第2セパレータ23は、それぞれ保護材としての機能を有している。また、基材セパレータ22は、接着フィルム12をダイシングフィルム11の粘着剤層14上に転写する際の基材としての機能を有している。これらの各フィルムを構成する材料としては特に限定されず、従来公知のものを採用することができる。具体的には、例えばポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤等の剥離剤により表面コートされたプラスチックフィルムや紙等が挙げられる。 The first separator 21 bonded on the pressure-sensitive adhesive layer 14 of the dicing film 11, the substrate separator 22 of the adhesive film 12, and the second separator 23 bonded on the adhesive film 12 are not particularly limited. A conventionally known release-treated film can be used. The first separator 21 and the second separator 23 each have a function as a protective material. The substrate separator 22 has a function as a substrate when the adhesive film 12 is transferred onto the pressure-sensitive adhesive layer 14 of the dicing film 11. The material constituting each of these films is not particularly limited, and conventionally known materials can be employed. Specifically, for example, polyethylene terephthalate (PET), polyethylene, polypropylene, a plastic film or paper surface-coated with a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent can be used.
 本発明の接着フィルムは、ダイボンドフィルムや、フリップチップ型半導体裏面用フィルムとして用いることができる。フリップチップ型半導体裏面用フィルムとは、被着体(例えば、リードフレームや回路基板等の各種基板)上にフリップチップ接続された半導体素子(例えば、半導体チップ)の裏面に形成するために用いられるものである。 The adhesive film of the present invention can be used as a die bond film or a flip chip type semiconductor back film. The flip chip type semiconductor back film is used for forming on the back surface of a semiconductor element (for example, a semiconductor chip) flip-chip connected to an adherend (for example, various substrates such as a lead frame and a circuit board). Is.
 以下に、この発明の好適な実施例を例示的に詳しく説明する。但し、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限りは、この発明の要旨をそれらのみに限定する趣旨のものではない。また、部とあるのは、重量部を意味する。 Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in this example are not intended to limit the gist of the present invention only to those unless otherwise limited. The term “parts” means parts by weight.
 (実施例1)
 (ダイシングフィルムの粘着剤層の作製)
 冷却管、窒素導入管、温度計及び撹拌装置を備えた反応容器に、アクリル酸2-エチルヘキシル(2EHA)76部、アクリル酸2-ヒドロキシエチル(HEA)24部、及び、過酸化過酸化ベンゾイル0.2部及びトルエン60部を入れ、窒素気流中で61℃にて6時間重合処理をし、重量平均分子量75万のアクリル系ポリマーAを得た。2EHAとHEAとのモル比は、100mol対20molとした。重量平均分子量の測定は前述の通りである。
Example 1
(Preparation of adhesive layer for dicing film)
In a reaction vessel equipped with a cooling tube, a nitrogen introducing tube, a thermometer and a stirrer, 76 parts of 2-ethylhexyl acrylate (2EHA), 24 parts of 2-hydroxyethyl acrylate (HEA), and benzoyl peroxide 0 .2 parts and 60 parts of toluene were added and polymerized in a nitrogen stream at 61 ° C. for 6 hours to obtain an acrylic polymer A having a weight average molecular weight of 750,000. The molar ratio of 2EHA to HEA was 100 mol to 20 mol. The measurement of a weight average molecular weight is as above-mentioned.
 このアクリル系ポリマーAに2-メタクリロイルオキシエチルイソシアネート(以下、「MOI」という。)10部(HEAに対し80mol%)を加え、空気気流中で50℃にて48時間、付加反応処理をし、アクリル系ポリマーA’を得た。 To this acrylic polymer A, 10 parts of 2-methacryloyloxyethyl isocyanate (hereinafter referred to as “MOI”) (80 mol% with respect to HEA) was added and subjected to an addition reaction treatment at 50 ° C. for 48 hours in an air stream. An acrylic polymer A ′ was obtained.
 次に、アクリル系ポリマーA’100部に対し、イソシアネート系架橋剤(商品名「コロネートL」、日本ポリウレタン(株)製)6部、及び光重合開始剤(商品名「イルガキュア651」、チバ・スペシャルティー・ケミカルズ社製)4部を加えて、粘着剤溶液を作製した。 Next, with respect to 100 parts of acrylic polymer A ′, 6 parts of an isocyanate crosslinking agent (trade name “Coronate L”, manufactured by Nippon Polyurethane Co., Ltd.) and a photopolymerization initiator (trade name “Irgacure 651”, Ciba 4 parts) (manufactured by Specialty Chemicals) was added to prepare an adhesive solution.
 前記で調製した粘着剤溶液を、PET剥離ライナー(第1セパレータ)のシリコーン処理を施した面上に塗布し、120℃で2分間加熱架橋して、厚さ30μmの粘着剤層を形成した。次いで、低密度ポリエチレン樹脂(住友化学製スミカセンF218)をTダイ法で押し出して、厚さ40μmのシート状の基材を作成し、前記粘着剤層の表面に、貼り合わせた。その後、50℃にて24時間保存をした。 The pressure-sensitive adhesive solution prepared above was applied on the surface of the PET release liner (first separator) that had been subjected to silicone treatment, and heat-crosslinked at 120 ° C. for 2 minutes to form a pressure-sensitive adhesive layer having a thickness of 30 μm. Next, a low-density polyethylene resin (Sumitomo Chemical Sumikasen F218) was extruded by the T-die method to prepare a sheet-like base material having a thickness of 40 μm, and bonded to the surface of the pressure-sensitive adhesive layer. Thereafter, it was stored at 50 ° C. for 24 hours.
 更に、前記PET剥離ライナーを剥離し、粘着剤層の半導体ウェハ貼り付け部分(直径200mmの円形状)に相当する部分(直径220mmの円形状)にのみ紫外線を直接照射した。これにより、本実施例に係るダイシングフィルムを作製した。尚、照射条件は下記の通りである。 Furthermore, the PET release liner was peeled off, and ultraviolet rays were directly irradiated only to the portion (circular shape with a diameter of 220 mm) corresponding to the adhesive layer of the semiconductor wafer (circular shape with a diameter of 200 mm). This produced the dicing film concerning a present Example. The irradiation conditions are as follows.
  <紫外線の照射条件>
 紫外線(UV)照射装置:高圧水銀灯
 紫外線照射積算光量:500mJ/cm2
 出力:120W
 照射強度:200mW/cm2
<Ultraviolet irradiation conditions>
Ultraviolet (UV) irradiation device: high-pressure mercury lamp UV irradiation integrated light quantity: 500 mJ / cm2
Output: 120W
Irradiation intensity: 200 mW / cm2
  <接着フィルムの作製>
 エポキシ基を有するアクリルゴム(「SG80H」;ナガセケムテックス(株)製)100部に対して、エポキシ樹脂1(JER(株)製、エピコート1004)228部、エポキシ樹脂2(JER(株)製、エピコート827)206部、フェノール樹脂(三井化学(株)製、ミレックスXLC-4L)466部、無機充填剤として球状シリカ(アドマテックス(株)製、商品名;SO-25R、平均粒径0.5μm)667部、硬化触媒(四国化成(株)製、C11-Z)3部をメチルエチルケトンに溶解して濃度25重量%となるように調整した。なお23℃における接着フィルムの引張貯蔵弾性率は1421MPa、ガラス転移温度は41.5℃であった。
<Preparation of adhesive film>
Epoxy resin 1 (manufactured by JER Corporation, Epicoat 1004) 228 parts, epoxy resin 2 (manufactured by JER Corporation) with respect to 100 parts of acrylic rubber having an epoxy group ("SG80H"; manufactured by Nagase ChemteX Corporation) , Epicoat 827) 206 parts, phenol resin (Mitsui Chemicals Co., Ltd., Milex XLC-4L) 466 parts, spherical silica (manufactured by Admatex Co., Ltd., trade name; SO-25R, average particle size 0) 0.5 μm) and 667 parts of a curing catalyst (C11-Z, manufactured by Shikoku Kasei Co., Ltd.) were dissolved in methyl ethyl ketone and adjusted to a concentration of 25% by weight. The tensile storage modulus of the adhesive film at 23 ° C. was 1421 MPa, and the glass transition temperature was 41.5 ° C.
 この接着剤組成物の溶液を、離型処理フィルム(基材セパレータ)上にファウンテンコーターで塗布して塗布層を形成し、この塗布層に対し150℃、10m/sの熱風を2分間、直接噴射して乾燥させた。これにより、離型処理フィルム上に厚さ25μmの接着フィルムを作製した。なお、離型処理フィルム(基材セパレータ)として、ポリエチレンテレフタレートフィルム(厚さ50μm)にシリコーン離型処理したものを用いた。 This adhesive composition solution is applied onto a release-treated film (base separator) with a fountain coater to form a coating layer, and hot air at 150 ° C. and 10 m / s is directly applied to the coating layer for 2 minutes. Sprayed and dried. Thus, an adhesive film having a thickness of 25 μm was produced on the release treatment film. As the release treatment film (base separator), a polyethylene terephthalate film (thickness 50 μm) subjected to silicone release treatment was used.
  <ダイシングシート付き接着フィルムの作製>
 次に、前記接着フィルムを直径230mmの円形状に切り出し、前記ダイシングフィルムの粘着剤層と円形状に切り出した接着フィルムとを貼り合わせた。貼り合わせはニップロールを用い、貼り合わせ条件はラミネート温度50℃、線圧3kgf/cmにて貼り合わせ、更に、接着フィルム上の基材セパレータを剥離して離型処理フィルム(カバーフィルム)として、シリコーン離型処理されたポリエチレンテレフタレートフィルム(厚さ50μm)を貼り合せた。このとき、カバーフィルムに対し、位置ズレ、ボイド(気泡)等が発生するのを防止するため、ダンサーロールを用いて17Nの引張張力をMD方向に加えながら、ラミネート温度はかけずに、線圧2kgf/cmで貼り合せ、ダイシングシート付き接着フィルムを作製した。
<Production of adhesive film with dicing sheet>
Next, the adhesive film was cut into a circular shape having a diameter of 230 mm, and the pressure-sensitive adhesive layer of the dicing film and the adhesive film cut into a circular shape were bonded together. A nip roll is used for the bonding, and the bonding conditions are a lamination temperature of 50 ° C. and a linear pressure of 3 kgf / cm. Further, the base separator on the adhesive film is peeled off to form a release treatment film (cover film). A release-treated polyethylene terephthalate film (thickness 50 μm) was bonded. At this time, in order to prevent misalignment, voids (bubbles), etc. on the cover film, a linear pressure is applied without applying a lamination temperature while applying a tensile tension of 17 N in the MD direction using a dancer roll. Bonding was performed at 2 kgf / cm to prepare an adhesive film with a dicing sheet.
  <半導体装置用フィルムの作製>
 更に、接着フィルムが中心となるように直径270mmの円形状にダイシングフィルムを打ち抜くことにより、10mmの間隔をあけて250枚のダイシングシート付き接着フィルムが貼り合わされた本実施例に係る半導体装置用フィルムを得た。
<Preparation of film for semiconductor device>
Furthermore, the film for a semiconductor device according to this example, in which 250 dicing sheet-attached adhesive films were bonded to each other at a distance of 10 mm by punching the dicing film into a circular shape having a diameter of 270 mm so that the adhesive film is at the center. Got.
 (実施例2)
  <ダイシングフィルムの作製>
 本実施例に係るダイシングフィルムは、前記粘着剤層に、100μmのポリオレフィンフィルム(基材)を貼り合せた以外は実施例1と同様のものを使用した。
(Example 2)
<Production of dicing film>
The dicing film according to this example was the same as in Example 1 except that a 100 μm polyolefin film (base material) was bonded to the pressure-sensitive adhesive layer.
  <接着フィルムの作製>
 アクリル酸エチル-メチルメタクリレートを主成分とするアクリル酸エステル系ポリマー(根上工業(株)製、商品名;パラクロンW-197CM、Tg:18℃、重量平均分子量:40万)100部に対して、エポキシ樹脂(日本化薬(株)製、商品名;EOCN-1027)434部、フェノール樹脂(三井化学(株)製、ミレックスXLC-4L)466部、無機充填剤として球状シリカ(アドマテックス(株)製、商品名;SO-25R、平均粒径0.5μm)1500部、硬化触媒(四国化成(株)製、C11-Z)3部をメチルエチルケトンに溶解して濃度20重量%となるように調整した。なお23℃における接着フィルムの引張貯蔵弾性率は517MPa、ガラス転移温度は47.5℃であった。
<Preparation of adhesive film>
With respect to 100 parts of an acrylic acid ester-based polymer (manufactured by Negami Kogyo Co., Ltd., trade name: Paraclone W-197CM, Tg: 18 ° C., weight average molecular weight: 400,000) mainly composed of ethyl acrylate-methyl methacrylate Epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EOCN-1027) 434 parts, phenol resin (Mitsui Chemicals Co., Ltd., Milex XLC-4L) 466 parts, spherical silica as an inorganic filler (Admatex Co., Ltd.) ), Trade name: SO-25R, average particle size 0.5 μm) 1500 parts, curing catalyst (Shikoku Kasei Co., Ltd., C11-Z) 3 parts dissolved in methyl ethyl ketone to a concentration of 20% by weight. It was adjusted. The tensile storage modulus of the adhesive film at 23 ° C. was 517 MPa, and the glass transition temperature was 47.5 ° C.
 この接着剤組成物の溶液を、離型処理フィルム(基材セパレータ)上にファウンテンコーターで塗布して塗布層を形成し、この塗布層に対し150℃、10m/sの熱風を2分間、直接噴射して乾燥させた。これにより、離型処理フィルム上に厚さ25μmの接着フィルムを作製した。なお、離型処理フィルム(基材セパレータ)として、ポリエチレンテレフタレートフィルム(厚さ50μm)にシリコーン離型処理したものを用いた。 This adhesive composition solution is applied onto a release-treated film (base separator) with a fountain coater to form a coating layer, and hot air at 150 ° C. and 10 m / s is directly applied to the coating layer for 2 minutes. Sprayed and dried. Thus, an adhesive film having a thickness of 25 μm was produced on the release treatment film. As the release treatment film (base separator), a polyethylene terephthalate film (thickness 50 μm) subjected to silicone release treatment was used.
  <ダイシングシート付き接着フィルムの作製>
 前記接着フィルムを直径230mmの円形状に切り出し、前記ダイシングフィルムの粘着剤層と円形状に切り出した接着フィルムとを貼り合わせた。更に、接着フィルム上の基材セパレータを剥離して離型処理フィルム(カバーフィルム)として、シリコーン離型処理されたポリオレフィンフィルム(厚さ25μm)を貼り合せることにより、ダイシングシート付き接着フィルムを作製した。貼り合わせ条件は、実施例1と同様とした。
<Production of adhesive film with dicing sheet>
The adhesive film was cut into a circular shape having a diameter of 230 mm, and the pressure-sensitive adhesive layer of the dicing film was bonded to the adhesive film cut into a circular shape. Furthermore, the substrate separator on the adhesive film was peeled off, and a silicone release-treated polyolefin film (thickness 25 μm) was bonded as a release-treated film (cover film) to produce an adhesive film with a dicing sheet. . The bonding conditions were the same as in Example 1.
  <半導体装置用フィルムの作製>
 更に、接着フィルムが中心となるように直径270mmの円形状にダイシングフィルムを打ち抜くことにより、100mmの間隔をあけて250枚のダイシングシート付き接着フィルムが貼り合わされた本実施例に係る半導体装置用フィルムを得た。
<Preparation of film for semiconductor device>
Furthermore, the film for a semiconductor device according to this example in which 250 dicing sheet-attached adhesive films were bonded to each other at a distance of 100 mm by punching the dicing film into a circular shape having a diameter of 270 mm so that the adhesive film is centered. Got.
 (実施例3)
  <ダイシングフィルムの作製>
 本実施例に係るダイシングフィルムは、ランダムポリプロピレン樹脂(MFR:2g/10分、エチレン成分含有量:60重量%)のみからなる粘着テープ基材(厚さ100μm)を粘着剤層として使用した以外は実施例1と同様のものを使用した。なお、粘着テープ基材の一面にコロナ処理を施した。次いで、当該粘着剤層の表面に、厚さ100μmのポリオレフィンフィルム(基材)を貼り合せた。その後、50℃にて24時間保存をした。
(Example 3)
<Production of dicing film>
The dicing film according to the present example, except that an adhesive tape base material (thickness 100 μm) made only of random polypropylene resin (MFR: 2 g / 10 min, ethylene component content: 60% by weight) was used as the adhesive layer. The same one as in Example 1 was used. In addition, the corona treatment was given to one surface of the adhesive tape base material. Next, a polyolefin film (base material) having a thickness of 100 μm was bonded to the surface of the pressure-sensitive adhesive layer. Thereafter, it was stored at 50 ° C. for 24 hours.
  <接着フィルムの作製>
 アクリルゴム(ナガセケムテックス(株)製、商品名:SG-708-6)100部に対して、エポキシ樹脂(日本化薬(株)製、商品名;EOCN-1027)434部、フェノール樹脂(三井化学(株)製、ミレックスXLC-LL)466部、無機充填剤として球状シリカ(アドマテックス(株)製、商品名;SO-25R、平均粒径0.5μm)429部をメチルエチルケトンに溶解して濃度25重量%となるように調整した。なお23℃における接着フィルムの引張貯蔵弾性率は2320MPa、ガラス転移温度は38.9℃であった。
<Preparation of adhesive film>
100 parts of acrylic rubber (manufactured by Nagase ChemteX Corporation, trade name: SG-708-6), 434 parts of epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EOCN-1027), phenol resin ( 466 parts of Mitsui Chemicals Co., Ltd., Millex XLC-LL) and 429 parts of spherical silica (manufactured by Admatex Co., Ltd., trade name: SO-25R, average particle size 0.5 μm) as an inorganic filler are dissolved in methyl ethyl ketone. The concentration was adjusted to 25% by weight. The tensile storage modulus of the adhesive film at 23 ° C. was 2320 MPa, and the glass transition temperature was 38.9 ° C.
 この接着剤組成物の溶液を、離型処理フィルム(基材セパレータ)上にファウンテンコーターで塗布して塗布層を形成し、この塗布層に対し150℃、10m/sの熱風を2分間、直接噴射して乾燥させた。これにより、離型処理フィルム上に厚さ25μmの接着フィルムを作製した。なお、離型処理フィルム(基材セパレータ)として、ポリエチレンテレフタレートフィルム(厚さ50μm)にシリコーン離型処理したものを用いた。 This adhesive composition solution is applied onto a release-treated film (base separator) with a fountain coater to form a coating layer, and hot air at 150 ° C. and 10 m / s is directly applied to the coating layer for 2 minutes. Sprayed and dried. Thus, an adhesive film having a thickness of 25 μm was produced on the release treatment film. As the release treatment film (base separator), a polyethylene terephthalate film (thickness 50 μm) subjected to silicone release treatment was used.
  <ダイシングシート付き接着フィルムの作製>
 前記接着フィルムを直径230mmの円形状に切り出し、前記ダイシングフィルムの粘着剤層と円形状に切り出した接着フィルムとを貼り合わせた。更に、接着フィルム上の基材セパレータを剥離して離型処理フィルム(カバーフィルム)として、低密度ポリエチレン樹脂(住友化学製スミカセンF218)をTダイ法で押し出して、厚さ25μmのシートとしたフィルムを貼り合せることにより、ダイシングシート付き接着フィルムを作製した。貼り合わせ条件は、実施例1と同様とした。
<Production of adhesive film with dicing sheet>
The adhesive film was cut into a circular shape having a diameter of 230 mm, and the pressure-sensitive adhesive layer of the dicing film was bonded to the adhesive film cut into a circular shape. Further, the substrate separator on the adhesive film is peeled off to form a release treatment film (cover film), and a low-density polyethylene resin (Sumitomo Chemical F218) is extruded by the T-die method to form a sheet having a thickness of 25 μm. By bonding together, an adhesive film with a dicing sheet was produced. The bonding conditions were the same as in Example 1.
  <半導体装置用フィルムの作製>
 更に、接着フィルムが中心となるように直径270mmの円形状にダイシングフィルムを打ち抜くことにより、10mmの間隔をあけて250枚のダイシングシート付き接着フィルムが貼り合わされた本実施例に係る半導体装置用フィルムを得た。
<Preparation of film for semiconductor device>
Furthermore, the film for a semiconductor device according to this example, in which 250 dicing sheet-attached adhesive films were bonded to each other at a distance of 10 mm by punching the dicing film into a circular shape having a diameter of 270 mm so that the adhesive film is at the center. Got.
 (比較例1)
  <半導体装置用フィルムの作製>
 カバーフィルムとして、厚さ100μmのシリコーン離型処理されたポリエチレンテレフタレートフィルムを用いた以外は、本実施例1と同様にして、本比較例に係る半導体装置用フィルムを作製した。
(Comparative Example 1)
<Preparation of film for semiconductor device>
A film for a semiconductor device according to this comparative example was produced in the same manner as in Example 1, except that a polyethylene terephthalate film having a silicone release treatment having a thickness of 100 μm was used as the cover film.
 (比較例2)
  <ダイシングフィルムの作製>
 本比較例に係るダイシングフィルムは、ランダムポリプロピレン樹脂(MFR:1.7g/10分、エチレン成分含有量:75重量%)のみからなる粘着テープ基材130μmを粘着剤層として使用した以外は実施例1と同様のものを使用した。
(Comparative Example 2)
<Production of dicing film>
The dicing film according to this comparative example is an example except that 130 μm of an adhesive tape base material made only of a random polypropylene resin (MFR: 1.7 g / 10 minutes, ethylene component content: 75% by weight) was used as an adhesive layer. 1 was used.
  <接着フィルムの作製>
 本比較例に係る接着フィルムは、実施例3と同様の接着フィルムを用いた。
<Preparation of adhesive film>
The adhesive film similar to Example 3 was used as the adhesive film according to this comparative example.
  <ダイシングシート付き接着フィルムの作製>
 前記接着フィルムを直径230mmの円形状に切り出し、前記ダイシングフィルムの粘着剤層と円形状に切り出した接着フィルムとを貼り合わせた。更に、接着フィルム上の基材セパレータを剥離して離型処理フィルム(カバーフィルム)として、厚さ25μmのシリコーン離型処理されたポリオレフィンフィルムを貼り合せることにより、ダイシングシート付き接着フィルムを作製した。貼り合わせ条件は、実施例1と同様とした。
<Production of adhesive film with dicing sheet>
The adhesive film was cut into a circular shape having a diameter of 230 mm, and the pressure-sensitive adhesive layer of the dicing film was bonded to the adhesive film cut into a circular shape. Furthermore, the base film separator on the adhesive film was peeled off, and a 25 μm-thick polyolefin release-treated polyolefin film was bonded as a release-treated film (cover film) to produce an adhesive film with a dicing sheet. The bonding conditions were the same as in Example 1.
  <半導体装置用フィルムの作製>
 更に、接着フィルムが中心となるように直径270mmの円形状にダイシングフィルムを打ち抜くことにより、100mmの間隔をあけて250枚のダイシングシート付き接着フィルムが貼り合わされた本比較例に係る半導体装置用フィルムを得た。
<Preparation of film for semiconductor device>
Furthermore, the film for a semiconductor device according to this comparative example in which 250 dicing sheet-attached adhesive films are bonded to each other at a distance of 100 mm by punching the dicing film into a circular shape having a diameter of 270 mm so that the adhesive film is centered. Got.
 (23℃におけるダイシングフィルムの引張貯蔵弾性率Ea)
 各実施例及び比較例におけるダイシングフィルムを粘弾性測定装置(レオメトリックス社製:形式:RSA-II)を用いて、ダイシングフィルムの硬化前の23℃における引張貯蔵弾性率を測定した。より詳細には、長さ30.0mm×幅5.0mm、断面積0.125~0.9mm2の測定試料をフィルム引っ張り測定用治具にセットし、-30℃~100℃の温度域で周波数10.0Hz、歪み0.025%、昇温速度10℃/分の条件下で測定した。
(Tensile storage modulus Ea of dicing film at 23 ° C.)
The tensile storage elastic modulus at 23 ° C. before curing of the dicing film was measured for the dicing film in each Example and Comparative Example using a viscoelasticity measuring apparatus (Rheometrics: Model: RSA-II). More specifically, a measurement sample having a length of 30.0 mm × a width of 5.0 mm and a cross-sectional area of 0.125 to 0.9 mm 2 is set in a film tension measurement jig, and the frequency is in a temperature range of −30 ° C. to 100 ° C. The measurement was performed under the conditions of 10.0 Hz, a strain of 0.025%, and a heating rate of 10 ° C./min.
 (23℃におけるカバーフィルムの引張貯蔵弾性率Eb)
 各実施例及び比較例のカバーフィルムについて、粘弾性測定装置(レオメトリックス社製:形式:RSA-II)を用いて、23℃における引張弾性率を測定した。より詳細には、サンプルサイズを長さ30mm×幅5mmとし、測定試料をフィルム引っ張り測定用治具にセットし-30~280℃の温度域で周波数1.0Hz、歪み0.025%、昇温速度10℃/minの条件下で測定した。
(Tensile storage modulus Eb of cover film at 23 ° C.)
About the cover film of each Example and the comparative example, the tensile elasticity modulus in 23 degreeC was measured using the viscoelasticity measuring apparatus (Rheometrics company_made: type | formula: RSA-II). More specifically, the sample size is 30 mm long × 5 mm wide, the measurement sample is set in a film tension measuring jig, the frequency is −30 to 280 ° C., the frequency is 1.0 Hz, the strain is 0.025%, and the temperature is raised. The measurement was performed at a speed of 10 ° C./min.
 (23℃における接着フィルムの引張貯蔵弾性率)
 各実施例及び比較例の接着フィルムについて、粘弾性測定装置(レオメトリックス社製:形式:RSA-II)を用いて、23℃における引張弾性率を測定した。より詳細には、サンプルサイズを長さ30mm×幅5mmとし、測定試料をフィルム引っ張り測定用治具にセットし-30~280℃の温度域で周波数10.0Hz、歪み0.025%、昇温速度10℃/minの条件下で測定した。
(Tensile storage modulus of adhesive film at 23 ° C.)
About the adhesive film of each Example and the comparative example, the tensile elasticity modulus in 23 degreeC was measured using the viscoelasticity measuring apparatus (Rheometrics company_made: type | formula: RSA-II). More specifically, the sample size is 30 mm long × 5 mm wide, and the measurement specimen is set in a film tension measuring jig, and the frequency is 10.0 Hz, the strain is 0.025%, and the temperature is raised in the temperature range of −30 to 280 ° C. The measurement was performed at a speed of 10 ° C./min.
 (ガラス転移温度)
 各実施例及び比較例のガラス転移温度は、粘弾性測定装置(レオメトリックス社製、形式:RSA-II)を用いて、-30℃~250℃の温度域で周波数10.0Hz、歪み0.025%、昇温速度10℃/分の条件下で測定したときのTanδ(G”(損失弾性率)/G’(貯蔵弾性率))が極大値を示す温度とした。
(Glass-transition temperature)
The glass transition temperature of each of the examples and comparative examples was measured using a viscoelasticity measuring apparatus (Rheometrics, model: RSA-II) at a frequency of 10.0 Hz and a strain of 0. The temperature at which Tan δ (G ″ (loss elastic modulus) / G ′ (storage elastic modulus)) when measured under the conditions of 025% and a heating rate of 10 ° C./min was the maximum value.
 (ピックアップの評価)
 各半導体装置用フィルムからカバーフィルムをそれぞれ剥離し、接着フィルム上に半導体ウェハのマウントを行った。半導体ウェハとしては大きさが8インチ、厚さ75μmのものを使用した。半導体ウェハのマウント条件は、前記と同様にした。
(Evaluation of pickup)
The cover film was peeled off from each film for a semiconductor device, and a semiconductor wafer was mounted on the adhesive film. A semiconductor wafer having a size of 8 inches and a thickness of 75 μm was used. The semiconductor wafer mounting conditions were the same as described above.
 次に、下記の条件に従って半導体ウェハのダイシングを行い、30個の半導体チップを形成した。更に、半導体チップをダイボンドフィルムと共にピックアップした。ピックアップは30個の半導体チップ(縦5mm×横5mm)に対し行い、破損なく半導体チップのピックアップが成功した場合をカウントして成功率を算出した。結果を下記表1に示す。ピックアップ条件は下記の通りである。 Next, the semiconductor wafer was diced according to the following conditions to form 30 semiconductor chips. Furthermore, the semiconductor chip was picked up together with the die bond film. The pick-up was performed on 30 semiconductor chips (5 mm long × 5 mm wide), and the success rate was calculated by counting the cases where the semiconductor chip was successfully picked up without breakage. The results are shown in Table 1 below. The pickup conditions are as follows.
  <ダイシング条件>
 ダイシング方法:ステップカット
 ダイシング装置:DISCO DFD6361(商品名、株式会社ディスコ製)
 ダイシング速度:50mm/sec
 ダイシングブレード:Z1;ディスコ社製「NBC-ZH203O-SE27HDD」
           Z2;ディスコ社製「NBC-ZH203O-SE27HBB」 
 ダイシングブレード回転数:Z1;50,000rpm, Z2;50,000rpm
 ダイシングテープ切り込み深さ:20μm
 ウェハチップサイズ:5mm×5mm
<Dicing conditions>
Dicing method: Step cut Dicing device: DISCO DFD6361 (trade name, manufactured by DISCO Corporation)
Dicing speed: 50mm / sec
Dicing blade: Z1; “NBC-ZH203O-SE27HDD” manufactured by Disco Corporation
Z2: “NBC-ZH203O-SE27HBB” manufactured by Disco Corporation
Dicing blade rotation speed: Z1; 50,000 rpm, Z2; 50,000 rpm
Dicing tape cutting depth: 20μm
Wafer chip size: 5mm x 5mm
  <ピックアップ条件>
 ピックアップ装置:商品名「SPA―300」新川社製
 ニードル数:5本
 突き上げ量 :400μm
 突き上げ速度:10mm/秒
 引き落とし量:3mm
<Pickup conditions>
Pickup device: Product name “SPA-300” manufactured by Shinkawa Co., Ltd. Number of needles: 5 Push-up amount: 400 μm
Push-up speed: 10 mm / sec.
  <冷凍保存後の巻き跡転写によるボイド有無評価>
 各実施例、及び、比較例で得られた半導体装置用フィルムを、巻き取り張力を2kgとしてロール状に巻き取った。そして、この状態で、温度-30℃の冷蔵庫内に2週間放置した。その後、室温に戻してからロールを解き、100枚目のダイシングシート付き接着フィルムを用いて、半導体ウェハのマウントを行い、目視にてボイドの有無を確認した。半導体ウェハとしては大きさが8インチ、厚さ75μmのものを使用した。なお、貼り合わせ条件は、以下のようにした。結果を表1に示す。
<Evaluation of presence / absence of voids by transcription after freezing>
The film for a semiconductor device obtained in each Example and Comparative Example was wound into a roll shape with a winding tension of 2 kg. In this state, it was left in a refrigerator at a temperature of −30 ° C. for 2 weeks. Then, after returning to room temperature, the roll was unwound, the semiconductor wafer was mounted using the 100th adhesive film with a dicing sheet, and the presence or absence of voids was confirmed visually. A semiconductor wafer having a size of 8 inches and a thickness of 75 μm was used. The bonding conditions were as follows. The results are shown in Table 1.
  <貼り合わせ条件>
 貼り付け装置:ACC(株)製、商品名;RM-300
 貼り付け速度:20mm/sec
 貼り付け圧力:0.25MPa
 貼り付け温度:60℃
<Bonding conditions>
Pasting device: ACC Co., Ltd., trade name: RM-300
Pasting speed: 20mm / sec
Pasting pressure: 0.25 MPa
Pasting temperature: 60 ° C
  <自動貼付機での搬送性>
 日東精機(株)社製のMA-3000IIIを用い、100枚のウエハに対してダイシングシート付き接着フィルムの貼付けを行い、装置が一時停止してしまうようなトラブル回数を計測した。貼り付け条件は、貼り付け速度:20mm/sec、貼り付け圧力:0.25MPa、貼り付け温度:60℃とした。
<Transportability with automatic pasting machine>
Using MA-3000III manufactured by Nitto Seiki Co., Ltd., an adhesive film with a dicing sheet was attached to 100 wafers, and the number of troubles that caused the apparatus to pause was measured. The pasting conditions were a pasting speed of 20 mm / sec, a pasting pressure: 0.25 MPa, and a pasting temperature: 60 ° C.
  <吸湿信頼性評価>
 冷凍保存試験に用いた半導体装置用フィルムを上記条件でマウント、ダイシング、ピックアップを行った。次に、半導体素子をビスマレイミド-トリアジン樹脂基板に、120℃×500gf×1secの条件でダイボンディングした後、180℃で1時間の熱履歴をかけた。次に、モールドマシン(TOWA製,Model-Y-serise)を用いて、これらをモールドした。具体的には、エポキシ系封止樹脂(日東電工製,HC-300B6)を用い、175℃で、プレヒート設定3秒、インジェクション時間12秒、キュア時間120秒にてモールドした。その後、175℃、5時間の条件で加熱硬化して半導体パッケージを得た。このパッケージを恒温恒湿器中(30℃、60%RH)で192時間、吸湿処理した後、IRリフロー装置SAI-2604M(千住金属工業製)に3回繰り返し投入した。そのときのパッケージ表面ピーク温度は260℃になるように調整した。剥離の有無を超音波探査映像装置(日立建機ファインテック製FS-200)にて観察し、その後パッケージの中心部を切断し、切断面を研磨した後、キーエンス製光学顕微鏡を用いて、パッケージの断面を観察し、剥離の認められなかったものを○とし、剥離のあったものを×とした。
<Hygroscopic reliability evaluation>
The film for a semiconductor device used in the frozen storage test was mounted, diced, and picked up under the above conditions. Next, the semiconductor element was die-bonded to a bismaleimide-triazine resin substrate under conditions of 120 ° C. × 500 gf × 1 sec, and then subjected to a thermal history at 180 ° C. for 1 hour. Next, these were molded using a molding machine (manufactured by TOWA, Model-Y-series). Specifically, an epoxy sealing resin (manufactured by Nitto Denko, HC-300B6) was used and molded at 175 ° C. with a preheating setting of 3 seconds, an injection time of 12 seconds, and a curing time of 120 seconds. Then, it heat-hardened on 175 degreeC and the conditions for 5 hours, and obtained the semiconductor package. This package was subjected to moisture absorption treatment in a thermo-hygrostat (30 ° C., 60% RH) for 192 hours, and then repeatedly placed in an IR reflow apparatus SAI-2604M (manufactured by Senju Metal Industry) three times. The package surface peak temperature at that time was adjusted to 260 ° C. The presence or absence of peeling was observed with an ultrasonic exploration imaging device (FS-200 manufactured by Hitachi Construction Machinery Finetech Co., Ltd.), then the center of the package was cut, the cut surface was polished, and then packaged using a Keyence optical microscope. The cross section was observed, and the case where peeling was not recognized was rated as ◯, and the case where peeling was observed was marked as x.
Figure JPOXMLDOC01-appb-T000001
 
 
Figure JPOXMLDOC01-appb-T000001
 
 
 (結果)
 表1から明らかな通り、実施例1、2、3の半導体装置製造用フィルムであると、温度-30℃の冷凍庫内に2週間保存した場合でも巻き跡転写によるボイドは確認されなかった。また、装置での搬送トラブルがなく、マウント性、ダイシング性、ピックアップ性は良好であり、吸湿信頼性試験においても剥離は見られなかった。
 これに対し、比較例1の半導体装置用フィルムでは、半導体ウェハマウント時にカバーフィルムのフィルム浮きやフィルムの折れが発生した。さらに温度-30℃の冷凍庫内に2週間保存した場合、巻き跡転写によるボイドが確認された。さらに巻き跡転写されたフィルムの吸湿信頼性試験を行うと、巻き跡転写によるボイドが確認された。
 比較例2の半導体装置用フィルムでは、冷凍庫内に2週間保存した場合、巻き跡転写によるボイドが確認された。さらに、ピックアップ成功率は100%であったが、チップ飛びが発生した。さらに巻き跡転写されたフィルムの吸湿信頼性試験を行うと、巻き跡転写によるボイドが確認された。
 
 
(result)
As is clear from Table 1, in the films for manufacturing semiconductor devices of Examples 1, 2, and 3, voids due to winding transfer were not confirmed even when stored in a freezer at a temperature of −30 ° C. for 2 weeks. Further, there was no trouble in conveyance with the apparatus, the mountability, the dicing property, and the pickup property were good, and no peeling was observed in the moisture absorption reliability test.
On the other hand, in the film for a semiconductor device of Comparative Example 1, the film lift of the cover film and the film were broken at the time of mounting the semiconductor wafer. Furthermore, when stored in a freezer at a temperature of −30 ° C. for 2 weeks, voids due to winding transfer were confirmed. Further, when a moisture absorption reliability test was performed on the film transferred with the trace, voids due to the trace transfer were confirmed.
In the film for a semiconductor device of Comparative Example 2, voids due to trace transfer were confirmed when stored in a freezer for 2 weeks. In addition, the success rate of pickup was 100%, but chip skipping occurred. Further, when a moisture absorption reliability test was performed on the film transferred with the trace, voids due to the trace transfer were confirmed.

Claims (7)

  1.  ダイシングフィルム上に接着フィルムが積層されたダイシングシート付き接着フィルムが所定の間隔をおいてカバーフィルムに積層された半導体装置用フィルムであって、
     23℃におけるダイシングフィルムの引張貯蔵弾性率Eaと、23℃におけるカバーフィルムの引張貯蔵弾性率Ebとの比Ea/Ebが0.001~100の範囲内であることを特徴とする半導体装置用フィルム。
    A film for a semiconductor device in which an adhesive film with a dicing sheet in which an adhesive film is laminated on a dicing film is laminated on a cover film at a predetermined interval,
    A film for a semiconductor device, wherein a ratio Ea / Eb between a tensile storage elastic modulus Ea of a dicing film at 23 ° C. and a tensile storage elastic modulus Eb of a cover film at 23 ° C. is in a range of 0.001 to 100. .
  2.  前記接着フィルムは、ガラス転移温度が0~100℃の範囲内であり、かつ、硬化前23℃における引張貯蔵弾性率が50MPa~5000MPaの範囲であることを特徴とする請求項1に記載の半導体装置用フィルム。 2. The semiconductor according to claim 1, wherein the adhesive film has a glass transition temperature in the range of 0 to 100 ° C. and a tensile storage elastic modulus at 23 ° C. before curing of 50 MPa to 5000 MPa. Film for equipment.
  3.  前記カバーフィルムの厚みは、10~100μmであることを特徴とする請求項1又は2に記載の半導体装置用フィルム。 3. The film for a semiconductor device according to claim 1, wherein the cover film has a thickness of 10 to 100 μm.
  4.  前記ダイシングフィルムの厚みは、25~180μmであることを特徴とする請求項1~3のいずれか1に記載の半導体装置用フィルム。 4. The film for a semiconductor device according to claim 1, wherein the dicing film has a thickness of 25 to 180 μm.
  5.  23℃における前記ダイシングフィルムの引張貯蔵弾性率Eaは、1~500MPaであることを特徴とする請求項1~4のいずれか1に記載の半導体装置用フィルム。 The film for a semiconductor device according to any one of claims 1 to 4, wherein a tensile storage elastic modulus Ea of the dicing film at 23 ° C is 1 to 500 MPa.
  6.  23℃における前記カバーフィルムの引張貯蔵弾性率Ebは、1~5000MPaであることを特徴とする請求項1~5のいずれか1に記載の半導体装置用フィルム。 6. The film for a semiconductor device according to claim 1, wherein a tensile storage elastic modulus Eb of the cover film at 23 ° C. is 1 to 5000 MPa.
  7.  請求項1~6のいずれか1に記載の半導体装置用フィルムを用いて製造された半導体装置。
     
    A semiconductor device manufactured using the film for a semiconductor device according to any one of claims 1 to 6.
PCT/JP2011/069468 2010-09-06 2011-08-29 Film for semiconductor device and semiconductor device WO2012032958A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180042800.4A CN103081069B (en) 2010-09-06 2011-08-29 Film for semiconductor apparatus and semiconductor device
KR1020117027459A KR101183730B1 (en) 2010-09-06 2011-08-29 Film for semiconductor device and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-199027 2010-09-06
JP2010199027A JP4976532B2 (en) 2010-09-06 2010-09-06 Film for semiconductor devices

Publications (1)

Publication Number Publication Date
WO2012032958A1 true WO2012032958A1 (en) 2012-03-15

Family

ID=45810560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069468 WO2012032958A1 (en) 2010-09-06 2011-08-29 Film for semiconductor device and semiconductor device

Country Status (5)

Country Link
JP (1) JP4976532B2 (en)
KR (1) KR101183730B1 (en)
CN (1) CN103081069B (en)
TW (1) TWI456645B (en)
WO (1) WO2012032958A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103923573A (en) * 2013-01-10 2014-07-16 日东电工株式会社 Adhesive thin film, cutting/chip bonding thin film, manufacturing method for semiconductor device and semiconductor device
WO2015105028A1 (en) * 2014-01-08 2015-07-16 日東電工株式会社 Film-like adhesive, dicing tape with film-like adhesive, method for manufacturing semiconductor device, and semiconductor device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5997506B2 (en) * 2012-05-31 2016-09-28 リンテック株式会社 Dicing die bonding sheet
JP2015199814A (en) * 2014-04-08 2015-11-12 住友ベークライト株式会社 Resin composition, adhesive film, adhesive sheet, dicing tape integrated adhesive sheet, back grind tape integrated adhesive sheet, dicing tape and back grind tape integrated adhesive sheet and electronic device
JP2016111158A (en) * 2014-12-04 2016-06-20 古河電気工業株式会社 Tape for wafer processing
JP2016111156A (en) * 2014-12-04 2016-06-20 古河電気工業株式会社 Tape for wafer processing
JP6382088B2 (en) * 2014-12-04 2018-08-29 古河電気工業株式会社 Wafer processing tape
JP6406999B2 (en) * 2014-12-04 2018-10-17 古河電気工業株式会社 Wafer processing tape
JP6445315B2 (en) * 2014-12-12 2018-12-26 日東電工株式会社 Dicing sheet, dicing die-bonding film, and semiconductor device manufacturing method
JP6721398B2 (en) * 2016-04-22 2020-07-15 日東電工株式会社 Dicing die bonding film, dicing die bonding tape, and method for manufacturing semiconductor device
JP6295304B1 (en) * 2016-10-03 2018-03-14 日東電工株式会社 Dicing tape integrated adhesive sheet
JP6961387B2 (en) * 2017-05-19 2021-11-05 日東電工株式会社 Dicing die bond film
JP7046585B2 (en) * 2017-12-14 2022-04-04 日東電工株式会社 Adhesive film and adhesive film with dicing tape
JP2018148218A (en) * 2018-04-18 2018-09-20 日東電工株式会社 Film for semiconductor device, and manufacturing method for semiconductor device
US20220293555A1 (en) * 2019-08-26 2022-09-15 Lintec Corporation Method of manufacturing laminate
CN114762085A (en) 2020-03-27 2022-07-15 琳得科株式会社 Sheet for manufacturing semiconductor device, method for manufacturing same, and method for manufacturing semiconductor chip with film-like adhesive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011281A1 (en) * 2007-07-19 2009-01-22 Sekisui Chemical Co., Ltd. Dicing/die bonding tape and method for manufacturing semiconductor chip
JP2010135400A (en) * 2008-12-02 2010-06-17 Nitto Denko Corp Film for manufacturing semiconductor device and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6235387B1 (en) * 1998-03-30 2001-05-22 3M Innovative Properties Company Semiconductor wafer processing tapes
JP4393934B2 (en) * 2004-06-23 2010-01-06 リンテック株式会社 Adhesive sheet for semiconductor processing
JP5319993B2 (en) 2008-09-10 2013-10-16 積水化学工業株式会社 Dicing die bonding tape and semiconductor chip manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011281A1 (en) * 2007-07-19 2009-01-22 Sekisui Chemical Co., Ltd. Dicing/die bonding tape and method for manufacturing semiconductor chip
JP2010135400A (en) * 2008-12-02 2010-06-17 Nitto Denko Corp Film for manufacturing semiconductor device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103923573A (en) * 2013-01-10 2014-07-16 日东电工株式会社 Adhesive thin film, cutting/chip bonding thin film, manufacturing method for semiconductor device and semiconductor device
WO2015105028A1 (en) * 2014-01-08 2015-07-16 日東電工株式会社 Film-like adhesive, dicing tape with film-like adhesive, method for manufacturing semiconductor device, and semiconductor device

Also Published As

Publication number Publication date
JP2012059768A (en) 2012-03-22
KR101183730B1 (en) 2012-09-17
CN103081069A (en) 2013-05-01
KR20120034620A (en) 2012-04-12
TW201216343A (en) 2012-04-16
TWI456645B (en) 2014-10-11
JP4976532B2 (en) 2012-07-18
CN103081069B (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP4976532B2 (en) Film for semiconductor devices
JP4976531B2 (en) Film for semiconductor devices
JP5143196B2 (en) Film for semiconductor devices
JP4991921B2 (en) Film for semiconductor device and semiconductor device
JP4602450B2 (en) Film for manufacturing semiconductor device and method for manufacturing the same
JP4801127B2 (en) Manufacturing method of dicing die-bonding film
JP4430085B2 (en) Dicing die bond film
JP5580701B2 (en) Dicing die bond film
JP5398083B2 (en) Die bond film and its use
JP5561949B2 (en) Thermosetting die bond film
JP5322609B2 (en) Film roll for semiconductor device manufacturing
JP2011102383A (en) Thermosetting die-bonding film
JP2012222002A (en) Dicing die-bonding film and semiconductor device manufacturing method
JP2014082498A (en) Manufacturing method of dicing die-bonding film
JP2011103440A (en) Thermosetting die bonding film
JP2012186361A (en) Dicing/die-bonding film and semiconductor element
JP5219302B2 (en) Thermosetting die bond film, dicing die bond film, and semiconductor device
JP5656741B2 (en) Manufacturing method of dicing die-bonding film
JP2015103649A (en) Thermosetting die bond film, die bond film with dicing sheet, method for manufacturing semiconductor device and semiconductor device
JP5714090B1 (en) Film roll for semiconductor device, method for manufacturing semiconductor device, and semiconductor device
JP5714091B1 (en) Film roll for semiconductor device, method for manufacturing semiconductor device, and semiconductor device
JP2015103573A (en) Thermosetting die bond film, die bond film with dicing sheet and method for manufacturing semiconductor device
JP2012186360A (en) Dicing/die-bonding film and semiconductor element
JP2017098316A (en) Dicing tape integrated adhesive sheet
JP2015103581A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180042800.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20117027459

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11823434

Country of ref document: EP

Kind code of ref document: A1