WO2012029499A1 - 1,4-cyclohexylenedimethylene terephthalate/1,4-cyclohexylene­dimethylene isophthalate copolymer films, protective sheets for a solar cell module, and solar cell module - Google Patents

1,4-cyclohexylenedimethylene terephthalate/1,4-cyclohexylene­dimethylene isophthalate copolymer films, protective sheets for a solar cell module, and solar cell module Download PDF

Info

Publication number
WO2012029499A1
WO2012029499A1 PCT/JP2011/067967 JP2011067967W WO2012029499A1 WO 2012029499 A1 WO2012029499 A1 WO 2012029499A1 JP 2011067967 W JP2011067967 W JP 2011067967W WO 2012029499 A1 WO2012029499 A1 WO 2012029499A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
film
cell module
cyclohexylenedimethylene
copolymer
Prior art date
Application number
PCT/JP2011/067967
Other languages
French (fr)
Japanese (ja)
Inventor
佳幸 柚原
Original Assignee
長瀬産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長瀬産業株式会社 filed Critical 長瀬産業株式会社
Priority to TW100131060A priority Critical patent/TW201223995A/en
Priority to TW100131059A priority patent/TW201229102A/en
Publication of WO2012029499A1 publication Critical patent/WO2012029499A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate, a protective sheet for a solar cell module, and a solar cell module.
  • Solar cell power generation systems are expected as a clean energy source to replace fossil fuels.
  • a solar cell power generation system uses a solar cell module in which an element group in which several to several tens of solar cell elements are wired in series or in parallel is protected by various packages.
  • the solar cell module is generally covered with white plate tempered glass on the surface directly irradiated with sunlight, a solar cell element group is arranged below it, and the gap is filled with transparent ethylene, vinyl, acetate resin, etc.
  • the back surface is protected by a sheet made of a weather resistant plastic material or the like (for example, Patent Documents 1 and 2).
  • the solar cell module protective sheet (particularly the back surface protective sheet) is required to have weather resistance, particularly hydrolysis resistance. This is because the protective sheet may be decomposed and peeled off by moisture such as rain while being used outdoors for a long time, which may cause corrosion of the exposed wiring and affect the output of the module. .
  • a polyethylene terephthalate (PET) film or a polyethylene naphthalate (PEN) film has insufficient hydrolysis resistance and cannot be practically used as a base material for a back protective sheet for a solar cell module.
  • an object of the present invention is to provide a film excellent in hydrolysis resistance, a protective sheet for a solar cell module using the film, and a solar cell module.
  • a copolymer film of specific 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate has excellent hydrolysis resistance and is used for a solar cell module.
  • the present invention has been conceived by finding it suitable for a base material for a protective sheet.
  • the present invention provides a copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a glass transition temperature measured by DMA method of 130 ° C. or higher.
  • the present invention also provides a copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a glass transition temperature measured by the TMA method of 200 ° C. or higher. .
  • the present invention provides a co-polymerization of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a maximum peak in the range of 22 ° ⁇ 2 ⁇ ⁇ 24 ° in X-ray diffraction.
  • These copolymer films of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate are excellent in hydrolysis resistance.
  • the present invention provides a protective sheet for a solar cell module, comprising at least one copolymer film of any of the above 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate.
  • a protective sheet for a solar cell module is excellent in hydrolysis resistance and can withstand long-term use of the solar cell module.
  • the protective sheet for a solar cell module is particularly preferably used as a back surface protective sheet for a solar cell module.
  • the present invention includes a filling layer including a solar cell element, a surface protection sheet disposed on the surface of the filling layer, and a back surface protection sheet disposed on the back surface of the filling layer, the surface protection sheet and the back surface protection sheet.
  • a solar cell module having a copolymer film of any of the aforementioned 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate.
  • the present invention it is possible to provide a film excellent in hydrolysis resistance, a solar cell module protective sheet, and a solar cell module.
  • the copolymer film of 1,4-cyclohexylene dimethylene terephthalate and 1,4-cyclohexylene dimethylene isophthalate of this embodiment is composed of 1,4-cyclohexylene dimethylene terephthalate and 1,4-cyclohexylene dimethylene. It consists of a resin composition containing a copolymer with isophthalate (hereinafter referred to as “copolymer A”).
  • the molar ratio of terephthalate to isophthalate is not particularly limited, but is usually 99.9: 0.1 to 50:50, preferably about 99: 1 to 70:30.
  • the intrinsic viscosity (IV value) of the copolymer A is preferably 0.5 to 1.0 dl / g, and more preferably 0.75 to 1.0 dl / g.
  • the IV value is obtained as follows. That is, copolymer A is dissolved in a mixed solvent of 60% by mass of phenol and 40% by mass of 1,1,2,2-tetrachloroethylene so as to have a concentration of 0.5 g / 100 ml.
  • the drop time of the solution in the capillary viscometer is measured at 25 ° C., and this is taken as ts. Moreover, the drop time in the capillary viscometer only of a solvent is measured, and this is set to.
  • the content ratio of the copolymer A in the resin composition containing the copolymer A is preferably 50 to 100% by mass, more preferably 60 to 100% by mass, and 70 to 100% by mass from the viewpoint of further improving the hydrolysis resistance. % Is more preferable.
  • the resin composition containing the copolymer A may appropriately include organic substances other than the copolymer A, inorganic substances, and various additives.
  • organic substances other than the copolymer A include cyclic and linear copolymer A oligomers, monomers of the acid component and glycol component constituting the copolymer A, low molecular weight reactants derived therefrom, and other than the copolymer A And various additives.
  • thermoplastic polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polypropylene naphthalate, polybutylene naphthalate, thermosetting polyester, nylon 6, thermoplastic polyamides such as nylon 66, nylon 11 and nylon 12, polycarbonate, polyacetal, polystyrene, ABS resin, polyurethane, fluororesin, silicone resin, polyphenylene sulfite resin, cellulose, polyphenylene ether resin, etc. Polymerized resin etc. are mentioned.
  • inorganic substances include inorganic fillers such as glass fiber, carbon fiber, talc, mica, wollastonite, kaolin clay, layered silicate, calcium carbonate, titanium dioxide, and silica dioxide, inorganic lubricants, polymerization catalyst residues, and the like.
  • inorganic fillers such as glass fiber, carbon fiber, talc, mica, wollastonite, kaolin clay, layered silicate, calcium carbonate, titanium dioxide, and silica dioxide, inorganic lubricants, polymerization catalyst residues, and the like.
  • Additives include organic and inorganic dyes and pigments, matting agents, heat stabilizers, flame retardants, antistatic agents, antifoaming agents, color adjusting agents, antioxidants, ultraviolet absorbers, crystal nucleating agents. , Whitening agents, lubricants, impurity scavengers, thickeners, surface conditioners and the like. Among these, it is preferable to include a heat stabilizer and a trapping agent for low molecular weight volatile impurities.
  • the heat stabilizer pentavalent and / or trivalent phosphorus compounds, hindered phenol compounds and the like are preferable, and as a trapping agent for low molecular weight volatile impurities, polymers and oligomers of polyamide and polyesteramide, amide groups and amine groups are preferred. Preferred are low molecular weight compounds having
  • the copolymer A film of this embodiment has a glass transition temperature measured by DMA method of 130 ° C. or higher.
  • the glass transition temperature measured by the DMA method is preferably 140 ° C. or higher, more preferably 150 ° C. or higher.
  • there is no upper limit of the glass transition temperature measured by the DMA method it is usually 200 ° C. or lower, preferably 180 ° C. or lower, preferably 170 ° C. or lower, and more preferably 160 ° C. or lower.
  • the DMA method is the following method. That is, the test piece is heated from room temperature at a rate of 5 ° C./min, the dynamic viscoelasticity and loss tangent of the test piece are measured using a viscoelasticity measuring device, and the glass transition temperature is calculated from the peak temperature of the loss tangent. Can be requested.
  • the measurement frequency is 1 Hz.
  • the copolymer A film of this embodiment has a glass transition temperature measured by the TMA method of 200 ° C. or higher.
  • the glass transition temperature measured by the TMA method is preferably 210 ° C. or higher, more preferably 220 ° C. or higher, still more preferably 230 ° C. or higher, and particularly preferably 235 ° C. or higher.
  • the glass transition temperature measured by the TMA method it is usually 260 ° C. or lower, preferably 255 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 245 ° C. or lower.
  • the TMA method is the following method. That is, the temperature of the test piece is raised from room temperature at a rate of 10 ° C./min, the amount of thermal expansion in the thickness direction is measured using a thermal analyzer, and a graph showing the relationship between the temperature and the amount of thermal expansion is drawn. . A tangent line is drawn on the curves before and after the glass transition point, and the glass transition temperature can be obtained from the intersection of the tangent lines.
  • the copolymer A film of this embodiment has a maximum peak in the range of 22 ° ⁇ 2 ⁇ ⁇ 24 ° in X-ray diffraction.
  • the copolymer A film of this embodiment is excellent in hydrolysis resistance.
  • the reason why the copolymer A film according to this embodiment has such characteristics is not clear, but one factor is as follows.
  • the characteristics relating to the glass transition temperature and the maximum peak described above are related to the fact that the copolymer A in the copolymer A film of the present embodiment is crystallized to some extent. And it is thought that hydrolysis resistance becomes high when the copolymer A is crystallized to some extent (preferably 20% or more, more preferably 30% or more in crystallinity).
  • the breaking strength of the copolymer A film of this embodiment is preferably 80 MPa or more, more preferably 90 MPa or more, and more preferably 100 MPa or more in both the MD direction and the TD direction. More preferably it is.
  • the elongation at break of the copolymer A film of this embodiment is preferably 150 MPa or less, more preferably 120 MPa or less, and more preferably 80 MPa or less in both the MD direction and the TD direction. More preferably.
  • the dielectric breakdown voltage of the present embodiment is preferably 90 kV / mm or more, more preferably 110 kV / mm or more, and further preferably 130 kV / mm or more in the measurement based on ASTM D-149. .
  • the thermal expansion coefficient (CTE) of this embodiment is preferably 80 ppm / ° C. or less, more preferably 60 ppm / ° C. or less in both the MD and TD directions, as measured by the TMA method (50 to 100 ° C.). Preferably, it is 40 ppm / ° C. or less.
  • the thickness of the copolymer A film of the present embodiment can be appropriately selected depending on the thickness of the back protective sheet for solar cell module and the required performance, but is preferably 10 ⁇ m to 500 ⁇ m, and preferably 20 ⁇ m to 300 ⁇ m. It is more preferable that the thickness is 30 ⁇ m to 200 ⁇ m. By setting it as such a range, while it becomes easy to manufacture a film, intensity
  • the thickness unevenness is preferably within ⁇ 10%, more preferably within ⁇ 7%, and further preferably within ⁇ 5%.
  • the copolymer A film according to this embodiment can be produced as follows. First, a copolymer A resin (for example, pellets) as a raw material is prepared.
  • the copolymer A resin can be produced by polycondensing 1,4-cyclohexanedimethanol, terephthalic acid, and isophthalic acid by a known method.
  • the copolymer A pellet is commercially available from Eastman Corporation under the trade name “Eastman Copolymerester 13319”, for example.
  • copolymer A resin is fuse
  • melt molding method in which a resin composition containing the copolymer A is extruded from a die in a molten state, a solution in which the resin composition is dissolved in a solvent is applied onto a support, and then the solvent The solution cast method etc. which dry is mentioned.
  • the melt molding method is most preferable because it is excellent in productivity and environmental suitability and can obtain a film in one step.
  • a method using a T die or an I die, a water-cooled method, and an air-cooled inflation method are preferable.
  • the above-described copolymer A film according to this embodiment can be obtained by stretching the formed unstretched copolymer A film.
  • the stretching conditions and the stretching method are not particularly limited, and may be appropriately adjusted within a range in which the above glass transition temperature is obtained or a maximum peak is obtained in a predetermined angle range in X-ray diffraction.
  • the stretching direction may be uniaxial or biaxial, but biaxial is preferred.
  • the stretching method is not particularly limited, and various methods such as roll stretching and tenter stretching can be used alone or in any combination.
  • the stretch ratio is not particularly limited. For example, it can be 2 to 5 times in the MD (machine direction) direction and 2 to 5 times in the TD (transverse direction) direction.
  • FIG. 1 shows an example of the configuration of the back surface protection sheet for solar cell modules of the present invention (hereinafter, sometimes simply referred to as “back surface protection sheet”).
  • the back surface protection sheet 1 has a configuration in which film base materials 30 and 32 having heat resistance are laminated on both surfaces of the gas barrier film 20.
  • the gas barrier film 20 is obtained by providing a vapor deposition layer 12 made of an inorganic compound on one surface of a substrate 10.
  • the base material 10 the above-mentioned copolymer A film can be used.
  • the film base materials 30 and 32 having heat resistance used in the present embodiment may be any film having heat resistance, such as a polyethylene terephthalate (PET) film or a vinyl fluoride resin (PVF) film, a vinylidene fluoride resin ( PVDF) film, trifluoroethylene chloride (PCTFE) film, ethylene-tetrafluoroethylene copolymer (ETFE) film, polytetrafluoroethylene (PTFE) film, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer Examples thereof include a fluorine-based substrate selected from (PFA) films.
  • the copolymer A film can also be used suitably as the film base materials 30 and 32 which have heat resistance.
  • the thickness of the film base materials 30 and 32 is not particularly limited, and is preferably 3 to 200 ⁇ m, and more preferably 6 to 30 ⁇ m.
  • the material of the vapor deposition layer 12 is not particularly limited, and examples thereof include aluminum oxide, silicon oxide, tin oxide, magnesium oxide, zinc oxide, and a mixture of two or more thereof.
  • the thickness of the vapor deposition layer 12 is not particularly limited, and is preferably 5 to 300 nm, for example, and more preferably 10 to 150 nm.
  • the gas barrier film 20 and the heat-resistant film base materials 30 and 32 may be adhesive if necessary. It is possible to perform lamination by adopting a dry lamination lamination method in which the layers are bonded together.
  • a dry lamination lamination method it is necessary that the adhesive strength does not cause delamination due to deterioration when used outdoors for a long period of time, and that the adhesive does not turn yellow, etc., and is compatible with high heat resistance, moisture heat resistance, etc. Therefore, it is desirable to use a resin or the like as a main component of the vehicle constituting the adhesive which can be crosslinked or cured to form a three-dimensional network crosslinked structure.
  • the adhesive constituting the adhesive layer for laminating preferably forms a crosslinked structure by reaction energy consisting of heat or light in the presence of a curing agent or a crosslinking agent.
  • a curing agent or a crosslinking agent for example, laminating by reaction energy consisting of heat or light in the presence of an aliphatic or alicyclic isocyanate such as a two-component curable polyurethane adhesive, or an isocyanate curing agent or crosslinking agent such as an aromatic isocyanate.
  • an aliphatic or alicyclic isocyanate such as a two-component curable polyurethane adhesive
  • an isocyanate curing agent or crosslinking agent such as an aromatic isocyanate.
  • aliphatic isocyanate for example, 1,6-hexamethylene diisocyanate (HDI)
  • alicyclic isocyanate for example, isophorone diisocyanate (IPDI)
  • aromatic isocyanate for example, tri Range isocyanate (TDI), diphenylmethane diisocyanate (MDI), naphthylene diisocyanate (NDI), tolidine diisocyanate (TODI), xylylene diisocyanate (XDI), and the like can be used.
  • HDI 1,6-hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • TDI tri Range isocyanate
  • MDI diphenylmethane diisocyanate
  • NDI naphthylene diisocyanate
  • TODI tolidine diisocyanate
  • XDI xylylene diisocyanate
  • an ultraviolet absorber or a light stabilizer can be added in order to prevent ultraviolet degradation or the like.
  • the amount used varies depending on the particle shape, density, etc., but is preferably about 0.1 to 10% by weight.
  • the adhesive can be applied, for example, by a coating method such as a roll coating method, a gravure roll coating method, a kiss coating method, or the like, or a printing method, and the coating amount is 2 to 20 g / m 2 (dry state) ) Position, preferably in the range of 3 to 10 g / m 2 (dry state).
  • a coating method such as a roll coating method, a gravure roll coating method, a kiss coating method, or the like, or a printing method
  • the coating amount is 2 to 20 g / m 2 (dry state) ) Position, preferably in the range of 3 to 10 g / m 2 (dry state).
  • the film base material 30 and 32 which has heat resistance showed the aspect which laminates
  • a coating method such as a roll coating method, a gravure roll coating method, a kiss coating method, or the like, a printing method, or the like can be applied.
  • the coating amount is desirably in the range where the thickness of the coated film after curing is 1 to 100 ⁇ m (dry state), preferably 5 to 50 ⁇ m (dry state).
  • the back protective sheet for a solar cell module of the present invention thus obtained is particularly excellent in hydrolysis resistance because it has the above-mentioned copolymer A film. Therefore, such a back surface protection sheet for solar cells can protect the solar cells over a long period of time and is inexpensive.
  • the structure of the back surface protection sheet for solar cell modules is not limited to said structure.
  • a transparent primer layer may be provided between the vapor-deposited layer 12 and the base material 10 in order to improve their adhesion.
  • the resin for the transparent primer layer include a composite of a silane coupling agent or a hydrolyzate thereof, a polyol and an isocyanate compound.
  • silane coupling agent examples include ethyltrimethoxysilane, vinyltrimethoxysilane, ⁇ -chloropropylmethyldimethoxysilane, ⁇ -chloropropyltrimethoxysilane, glycidoxypropyltrimethoxysilane, and ⁇ -methacryloxypropyltrimethoxysilane.
  • silane couplings such as ⁇ -methacryloxypropylmethyldimethoxysilane or hydrolysates thereof can be used.
  • those containing isocyanate groups such as ⁇ -isocyanatopropyltriethoxysilane and ⁇ -isocyanatopropyltrimethoxysilane
  • those containing mercapto groups such as ⁇ -mercaptopropyltriethoxysilane
  • ⁇ -aminopropyltriethoxysilane There are those containing amino groups such as silane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltriethoxysilane, and ⁇ -phenylaminopropyltrimethoxysilane.
  • silane coupling agent may be added with alcohol or the like and added with a hydroxyl group or the like, and one or more of these may be used.
  • polystyrene examples include those obtained by polymerizing acrylic acid derivative monomers such as ethyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, and hydroxylbutyl methacrylate alone, and acrylic polyols obtained by copolymerizing with other monomers such as styrene. Is preferably used.
  • isocyanate compound examples include monomers such as aromatic tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), aliphatic xylene diisocyanate (XDI), hexadiisocyanate (HMDI), and polymers thereof. Or a derivative thereof can be used, and one or more of these can be used.
  • TDI aromatic tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • XDI aliphatic xylene diisocyanate
  • HMDI hexadiisocyanate
  • the thickness of the transparent primer layer is not particularly limited, but is preferably 0.001 to 2 ⁇ m, and preferably 0.03 to 0.5 ⁇ m.
  • an overcoat layer having a gas barrier property may be further provided between the vapor deposition layer 12 and the film substrate 32.
  • the overcoat layer includes, for example, a water-soluble polymer and one or more metal alkoxides or a hydrolyzate thereof, and a coating solution containing water or a water-alcohol mixed solution as a solvent is applied to the vapor deposition layer 12. Can be formed.
  • water-soluble polymers examples include polyvinyl alcohol, polyvinyl pyrrolidone, starch, methyl cellulose, carboxymethyl cellulose, and sodium alginate.
  • metal alkoxide examples include tetraethoxysilane and triisopropoxyaluminum.
  • the vapor deposition layer 12 may be formed on both surfaces of the base material 10. In this case, you may form the above-mentioned transparent primer layer and overcoat layer with respect to both vapor deposition surfaces.
  • the back protection sheet for solar cell modules when the back protection sheet for solar cell modules is applied to a solar cell module having a low necessity for gas barrier properties, the back protection sheet for solar cell modules may not have the vapor deposition layer 12.
  • the film base materials 30 and 32 having heat resistance are formed on one side or both sides of the base material 10.
  • the back surface protection sheet 1 for solar cell modules may not have any one or both of the film base materials 30 and 32, and may be comprised only from the above-mentioned base material 10.
  • FIG. 2 is a schematic cross-sectional view showing a layer configuration of one embodiment of the solar cell module 100 including the solar cell back surface protective sheet of the present invention.
  • the solar cell module 100 of the present embodiment includes a solar cell module surface protection sheet 60, a front surface side filler layer 51, a solar cell element 50 as a photovoltaic element provided with a wiring 52, a back surface side filler layer 53, And the film base material 30 which has the said hydrolysis resistance of the said back surface protection sheet 1 is set as the structure arrange
  • the above-described layers can be thermocompression-molded as an integrally formed body.
  • the solar cell module 100 can be mounted with, for example, an aluminum frame (not shown).
  • the normal solar cell module surface protection sheet 60 constituting the solar cell module has sunlight permeability, insulation, etc., and further has weather resistance, heat resistance, light resistance, water resistance, moisture resistance, It has various characteristics such as antifouling properties, etc., is excellent in physical or chemical strength, toughness, etc., is extremely durable, and further, because it protects solar cell elements as photovoltaic elements, It must be excellent in scratch resistance, shock absorption, and the like.
  • known glass plates and the like and further, for example, polyamide resins (various nylons), polyester resins, cyclic polyolefin resins, polystyrene resins, (meth) acrylic resins, polycarbonate resins, acetals
  • polyamide resins various nylons
  • polyester resins such as polyethylene glycol dimethacrylate resins
  • cyclic polyolefin resins such as polystyrene resins
  • (meth) acrylic resins polycarbonate resins
  • acetals Various resin films and sheets such as a resin and others can be used, and the copolymer A can also be suitably used.
  • the resin film or sheet a biaxially stretched stretched film or sheet can be used.
  • the thickness of the resin film or sheet may be a minimum thickness necessary to maintain strength, rigidity, waist, etc. If it is too thick, there is a disadvantage that the cost increases, and the thickness is thin.
  • the thickness of the resin film or sheet is preferably 12 to 200 ⁇ m, more preferably 25 to 150 ⁇ m.
  • the filler layer for example, ethylene-vinyl acetate copolymer, ionomer resin, ethylene-acrylic acid, or acid-modified polyolefin resin, polyvinyl butyral resin, silicone resin, epoxy resin , (Meth) acrylic resins, and other resins can be used as a mixture of one or more.
  • the resin constituting the filler layer is, for example, a crosslinking agent within a range that does not impair its transparency in order to improve weather resistance such as heat resistance, light resistance, and water resistance. Additives such as thermal antioxidants, light stabilizers, ultraviolet absorbers, photo-antioxidants, etc. can be arbitrarily added and mixed.
  • the filler on the sunlight incident side is preferably an ethylene-vinyl acetate resin in consideration of performance and price such as weather resistance such as light resistance, heat resistance, and water resistance. It is a material.
  • the thickness of the filler layer is preferably 200 to 1000 ⁇ m, more preferably 350 to 600 ⁇ m.
  • the solar cell element 50 as a photovoltaic element constituting the solar cell module, a conventionally known one, for example, a crystalline silicon solar electronic element such as a single crystal silicon type solar cell element or a polycrystalline silicon type solar cell element, a single Amorphous silicon solar cell elements of junction type or tandem structure type, III-V compound semiconductor solar electronic elements such as gallium arsenide (GaAs) and indium phosphorus (InP), cadmium tellurium (CdTe) and copper indium selenide (CuInSe) 2 ) Group II-VI compound semiconductor solar electronic device, organic solar cell device, etc. can be used. Furthermore, a thin film polycrystalline silicon solar cell element, a thin film microcrystalline silicon solar cell element, a hybrid element of a thin film crystalline silicon solar cell element and an amorphous silicon solar cell element, or the like can also be used.
  • a crystalline silicon solar electronic element such as a single crystal silicon type solar cell element or a polycrystalline silicon type solar cell element, a single A
  • the back-side filler layer 53 laminated under the photovoltaic element constituting the solar cell module is made of the same material as the front-side filler layer 51 laminated under the surface protection sheet for the solar cell module. Can be used. It is also necessary to have adhesiveness with the back surface protection sheet, and it has thermoplasticity to fulfill the function of maintaining the smoothness of the back surface of the solar cell element as a photovoltaic element, and further, the photovoltaic element From the viewpoint of protecting the solar cell element, it is necessary to have excellent scratch resistance, shock absorption and the like.
  • the copolymer A film is used for at least one of the above-described back surface protection sheet and the surface protection sheet, the hydrolysis resistance of the back surface protection sheet or the surface protection sheet. High nature. Therefore, compared with the case where the conventional polyethylene terephthalate (PET) film or polyethylene naphthalate (PEN) film is used, it becomes possible to maintain the power output characteristics as a solar cell over a long period of time.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the solar cell module is not limited to the above configuration, and various configurations are possible.
  • the back surface protection sheet 1 those having various configurations as described above can be adopted. If necessary, it is provided with a filling layer including the solar cell element 50, a surface protection sheet 60 disposed on the surface of the filling layer, and a back surface protection sheet 1 disposed on the back surface of the filling layer. It suffices that at least one of the back surface protective sheets 1 includes the above-mentioned copolymer A film.
  • PEN polyethylene naphthalate.
  • Copolymer A Eastman Co., Ltd., trade name: Eastman Copolyester 13319
  • PEN manufactured by Teijin DuPont Films, trade name: Teonex Q51
  • 1,4-cyclohexanedimethanol / 2,2,4,4-tetramethyl-1,3-cyclobutanediol / terephthalic acid polycondensate (manufactured by Eastman, trade name: Eastman Tritan Copolyester FX200) , Referred to as “Copolymer B”.)
  • Example 1 The copolymer A (in the form of pellets) was melt-extruded to form a film, and further biaxially stretched to obtain a stretched copolymer A film having a thickness of 50 ⁇ m.
  • Example 2 A copolymer A film having a thickness of 100 ⁇ m was obtained in the same manner as in Example 1 except that the thickness was changed to 100 ⁇ m by changing the draw ratio.
  • PEN pellet form
  • PEN pellet form
  • Copolymer A (pellet form) was melt-extruded to form a film, and an unstretched copolymer A film having a thickness of 110 ⁇ m was obtained.
  • Copolymer B (pellet form) was melt-extruded to form a film, and an unstretched copolymer B film having a thickness of 100 ⁇ m was obtained.
  • ⁇ Hydrolysis test> The films of Examples 1 and 2 and Comparative Examples 1 to 3 were subjected to a pressure cooker test (120 ° C., 100% RH (relative humidity), 2 atm). For each film, the tensile strength retention and tensile elongation retention after 50 hours, 100 hours, 150 hours and 200 hours were measured. The results are shown in FIGS. The films of Examples 1 and 2 had a slower decrease in tensile strength retention and tensile elongation retention than the films of Comparative Examples 1 to 3.
  • Example 1 About the film of Example 1, Example 2, and the comparative example 2, the powder X-ray diffraction by CuK (alpha) ray was performed, confirmation of the diffraction pattern and calculation of the crystallinity degree were performed.
  • the measurement method and measurement conditions are as follows.
  • FIG. 5 shows the relationship between the angle 2 ⁇ formed by the X-ray incident direction and the reflection direction and the diffraction intensity.
  • a clear sharp maximum peak was confirmed in the range of 22 ° ⁇ 2 ⁇ ⁇ 24 °, but no sharp peak was observed anywhere in the film of Comparative Example 2, and the film was amorphous. There was found.
  • the crystallinity degree of the film of Example 1 and Example 2 was calculated
  • SYMBOLS 1 Back surface protection sheet for solar cell modules, 10 ... Base material, 12 ... Deposition layer, 20 ... Gas barrier film, 30, 32 ... Film base material, 50 ... Solar cell element, 51 ... Surface side filler layer, 52 ... Wiring, 53 ... back side filler layer, 60 ... surface protection sheet for solar cell module, 100 ... solar cell module.

Abstract

Film of a copolymer of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylene­dimethylene isophthalate having a glass transition point of at least 130°C measured using DMA Film of a copolymer of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylene­dimethylene isophthalate having a glass transition point of at least 200°C measured using TMA. Film of a copolymer of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylene­dimethylene isophthalate having a maximum peak in X-ray diffraction in the range 22° ≤ 2θ≦ 24°.

Description

1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム、太陽電池モジュール用保護シート、及び、太陽電池モジュールCopolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate, protective sheet for solar cell module, and solar cell module
 本発明は、1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム、太陽電池モジュール用保護シート、及び、太陽電池モジュールに関する。 The present invention relates to a copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate, a protective sheet for a solar cell module, and a solar cell module.
 化石燃料に替わるクリーンなエネルギー源として、太陽電池発電システムが期待されている。一般的に、太陽電池発電システムでは、数~数十個の太陽電池素子を直列又は並列に配線した素子群を種々のパッケージで保護した、太陽電池モジュールを用いる。太陽電池モジュールは一般的に、太陽光が直接照射される面が白板強化ガラスで覆われ、その下に太陽電池素子群が配置され、透明なエチレン・ビニル・アセテート樹脂等で間隙が埋められ、裏面が耐候性プラスチック材料等のシートで保護された構成になっている(例えば、特許文献1及び2)。 Solar cell power generation systems are expected as a clean energy source to replace fossil fuels. In general, a solar cell power generation system uses a solar cell module in which an element group in which several to several tens of solar cell elements are wired in series or in parallel is protected by various packages. The solar cell module is generally covered with white plate tempered glass on the surface directly irradiated with sunlight, a solar cell element group is arranged below it, and the gap is filled with transparent ethylene, vinyl, acetate resin, etc. The back surface is protected by a sheet made of a weather resistant plastic material or the like (for example, Patent Documents 1 and 2).
 太陽電池モジュールは屋外で使用されるため、その構成、材質構造等において、十分な耐久性、耐候性が要求される。特に、太陽電池モジュールの保護シート(特に裏面保護シート)には、耐候性、中でも耐加水分解性が要求される。これは長時間にわたって屋外で使用されるうちに保護シートが雨等の水分によって分解・剥離し、これによって剥き出しとなった配線が腐蝕を起こしてモジュールの出力が影響を受ける恐れがあるためである。 Since solar cell modules are used outdoors, they are required to have sufficient durability and weather resistance in terms of their configuration and material structure. In particular, the solar cell module protective sheet (particularly the back surface protective sheet) is required to have weather resistance, particularly hydrolysis resistance. This is because the protective sheet may be decomposed and peeled off by moisture such as rain while being used outdoors for a long time, which may cause corrosion of the exposed wiring and affect the output of the module. .
特開2000-243999号公報JP 2000-243999 A 特開2008-235603号公報JP 2008-235603 A
 太陽電池モジュール用裏面保護シートの基材として、種々のフィルム材料が検討されているが、耐加水分解性が良好なフィルム材料は未だ提供されていない。 Although various film materials have been studied as a base material for the back surface protection sheet for solar cell modules, film materials having good hydrolysis resistance have not yet been provided.
 たとえば、ポリエチレンテレフタレート(PET)フィルムやポリエチレンナフタレート(PEN)フィルムは、耐加水分解性が不十分であり、太陽電池モジュール用裏面保護シートの基材として実用に耐えないものであった。 For example, a polyethylene terephthalate (PET) film or a polyethylene naphthalate (PEN) film has insufficient hydrolysis resistance and cannot be practically used as a base material for a back protective sheet for a solar cell module.
 そこで本発明は、耐加水分解性に優れたフィルム、これを用いた太陽電池モジュール用保護シート、及び、太陽電池モジュールを提供することを目的とする。 Therefore, an object of the present invention is to provide a film excellent in hydrolysis resistance, a protective sheet for a solar cell module using the film, and a solar cell module.
 本発明者らは鋭意検討したところ、特定の1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムが耐加水分解性に優れ、太陽電池モジュール用保護シートの基材に適することを見いだして本発明に想到した。 As a result of intensive studies, the present inventors have found that a copolymer film of specific 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate has excellent hydrolysis resistance and is used for a solar cell module. The present invention has been conceived by finding it suitable for a base material for a protective sheet.
 本発明は、DMA法で測定したガラス転移温度が130℃以上である、1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムを提供する。 The present invention provides a copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a glass transition temperature measured by DMA method of 130 ° C. or higher.
 また、本発明は、TMA法で測定したガラス転移温度が200℃以上である、1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムを提供する。 The present invention also provides a copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a glass transition temperature measured by the TMA method of 200 ° C. or higher. .
 また、本発明は、X線回折において、22°≦2θ≦24°の範囲に最大ピークを有する、1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムを提供する。
 これらの1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムは、耐加水分解性に優れる。
In addition, the present invention provides a co-polymerization of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a maximum peak in the range of 22 ° ≦ 2θ ≦ 24 ° in X-ray diffraction. Provide a coalesced film.
These copolymer films of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate are excellent in hydrolysis resistance.
 本発明は、上記いずれかの1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムを少なくとも一層含む、太陽電池モジュール用保護シートを提供する。このような太陽電池モジュール用保護シートは、耐加水分解性に優れ、太陽電池モジュールの長期間の使用に耐え得る。太陽電池モジュール用保護シートは特に、太陽電池モジュール用裏面保護シートとして使用することがより好ましい。 The present invention provides a protective sheet for a solar cell module, comprising at least one copolymer film of any of the above 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate. Such a protective sheet for a solar cell module is excellent in hydrolysis resistance and can withstand long-term use of the solar cell module. The protective sheet for a solar cell module is particularly preferably used as a back surface protective sheet for a solar cell module.
 本発明は、太陽電池素子を含む充填層と、前記充填層の表面に配置された表面保護シートと、前記充填層の裏面に配置された裏面保護シートとを備え、表面保護シート及び裏面保護シートの少なくとも一方は、上述のいずれかの1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムを有する太陽電池モジュールを提供する。 The present invention includes a filling layer including a solar cell element, a surface protection sheet disposed on the surface of the filling layer, and a back surface protection sheet disposed on the back surface of the filling layer, the surface protection sheet and the back surface protection sheet. At least one of the above provides a solar cell module having a copolymer film of any of the aforementioned 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate.
 本発明によれば、耐加水分解性に優れたフィルム、太陽電池モジュール用保護シート、及び、太陽電池用モジュールを提供することができる。 According to the present invention, it is possible to provide a film excellent in hydrolysis resistance, a solar cell module protective sheet, and a solar cell module.
本発明の一実施形態の太陽電池モジュール用裏面保護シートの断面図である。It is sectional drawing of the back surface protection sheet for solar cell modules of one Embodiment of this invention. 本発明の一実施形態の太陽電池モジュールの概略断面図である。It is a schematic sectional drawing of the solar cell module of one Embodiment of this invention. 実施例1、2及び比較例1~3のフィルムについて、プレッシャークッカー試験における引張強度保持率の経時変化を表すグラフである。6 is a graph showing the change over time in tensile strength retention in a pressure cooker test for the films of Examples 1 and 2 and Comparative Examples 1 to 3. 実施例1、2及び比較例1~3のフィルムについて、プレッシャークッカー試験における引張伸び保持率の経時変化を表すグラフである。6 is a graph showing the change over time in tensile elongation retention in the pressure cooker test for the films of Examples 1 and 2 and Comparative Examples 1 to 3. 実施例1、2及び比較例2のフィルムのX線回折結果を示す図である。It is a figure which shows the X-ray-diffraction result of the film of Examples 1, 2 and Comparative Example 2.
 以下、本発明の好適な実施形態について詳細に説明する。本発明は、以下の実施形態に限定されない。 Hereinafter, preferred embodiments of the present invention will be described in detail. The present invention is not limited to the following embodiments.
 本実施形態の1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムは、1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体(以下、「共重合体A」と呼ぶ。)を含む樹脂組成物からなる。 The copolymer film of 1,4-cyclohexylene dimethylene terephthalate and 1,4-cyclohexylene dimethylene isophthalate of this embodiment is composed of 1,4-cyclohexylene dimethylene terephthalate and 1,4-cyclohexylene dimethylene. It consists of a resin composition containing a copolymer with isophthalate (hereinafter referred to as “copolymer A”).
 テレフタレートとイソフタレートとのモル比は、特に限定されないが、通常、99.9:0.1~50:50、好ましくは、99:1~70:30程度である。また、共重合体Aの固有粘度(IV値)は、0.5~1.0dl/gであることが好ましく、0.75~1.0dl/gであることがより好ましい。IV値は、次のようにして求められる。すなわち、フェノール60質量%と1,1,2,2-テトラクロロエチレン40質量%との混合溶媒に対し、共重合体Aを0.5g/100mlの濃度となるように溶解させる。細管粘度計を用いて、25℃にて溶液の細管粘度計中の落下時間を測定し、これをtsとする。また、溶媒のみの細管粘度計中の落下時間を測定し、これをtoとする。IV値=[ln(ts/to)]/0.5の計算式により、IV値が求められる。なお、「ln」は自然対数の底を表す。 The molar ratio of terephthalate to isophthalate is not particularly limited, but is usually 99.9: 0.1 to 50:50, preferably about 99: 1 to 70:30. The intrinsic viscosity (IV value) of the copolymer A is preferably 0.5 to 1.0 dl / g, and more preferably 0.75 to 1.0 dl / g. The IV value is obtained as follows. That is, copolymer A is dissolved in a mixed solvent of 60% by mass of phenol and 40% by mass of 1,1,2,2-tetrachloroethylene so as to have a concentration of 0.5 g / 100 ml. Using a capillary viscometer, the drop time of the solution in the capillary viscometer is measured at 25 ° C., and this is taken as ts. Moreover, the drop time in the capillary viscometer only of a solvent is measured, and this is set to. The IV value is obtained by the formula of IV value = [ln (ts / to)] / 0.5. “Ln” represents the base of the natural logarithm.
 共重合体Aを含む樹脂組成物における共重合体Aの含有割合は、耐加水分解性をより高める観点から、50~100質量%が好ましく、60~100質量%がより好ましく、70~100質量%が更に好ましい。 The content ratio of the copolymer A in the resin composition containing the copolymer A is preferably 50 to 100% by mass, more preferably 60 to 100% by mass, and 70 to 100% by mass from the viewpoint of further improving the hydrolysis resistance. % Is more preferable.
 共重合体Aを含む樹脂組成物は、共重合体A以外の有機物、無機物及び各種添加剤を適宜含んでもよい。共重合体A以外の有機物としては、環状や線状の共重合体Aオリゴマー、共重合体Aを構成する酸成分やグリコール成分のモノマー及びこれらに由来する低分子量反応物、共重合体A以外の樹脂、及び、各種添加剤が挙げられる。共重合体A以外の樹脂としてはポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリプロピレンナフタレート、ポリブチレンナフタレート等の熱可塑性ポリエステル、熱硬化性のポリエステル、ナイロン6、ナイロン66、ナイロン11、ナイロン12等の熱可塑性ポリアミド、ポリカーボネート、ポリアセタール、ポリスチレン、ABS樹脂、ポリウレタン、フッ素樹脂、シリコン樹脂、ポリフェニレンサルファイト樹脂、セルロース、ポリフェニレンエーテル樹脂等、及び、これらの共重合樹脂等が挙げられる。 The resin composition containing the copolymer A may appropriately include organic substances other than the copolymer A, inorganic substances, and various additives. Examples of organic substances other than the copolymer A include cyclic and linear copolymer A oligomers, monomers of the acid component and glycol component constituting the copolymer A, low molecular weight reactants derived therefrom, and other than the copolymer A And various additives. As resins other than the copolymer A, thermoplastic polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polypropylene naphthalate, polybutylene naphthalate, thermosetting polyester, nylon 6, thermoplastic polyamides such as nylon 66, nylon 11 and nylon 12, polycarbonate, polyacetal, polystyrene, ABS resin, polyurethane, fluororesin, silicone resin, polyphenylene sulfite resin, cellulose, polyphenylene ether resin, etc. Polymerized resin etc. are mentioned.
 無機物としては、ガラス繊維、カーボン繊維、タルク、マイカ、ワラストナイト、カオリンクレー、層状珪酸塩、炭酸カルシウム、二酸化チタン、二酸化シリカ等の無機充填剤や無機滑剤、重合触媒残渣等が挙げられる。 Examples of inorganic substances include inorganic fillers such as glass fiber, carbon fiber, talc, mica, wollastonite, kaolin clay, layered silicate, calcium carbonate, titanium dioxide, and silica dioxide, inorganic lubricants, polymerization catalyst residues, and the like.
 また、添加剤としては、有機や無機の染料や顔料、艶消し剤、熱安定剤、難燃剤、帯電防止剤、消泡剤、整色剤、酸化防止剤、紫外線吸収剤、結晶造核剤、増白剤、滑剤、不純物の捕捉剤、増粘剤、表面調整剤等が挙げられる。このうち、熱安定剤や、低分子量の揮発性不純物の捕捉剤を含むことが好ましい。熱安定剤として5価及び/又は3価のリン化合物やヒンダードフェノール系化合物等が好ましく、低分子量の揮発性不純物の捕捉剤としては、ポリアミドやポリエステルアミドのポリマーやオリゴマー、アミド基やアミン基を有した低分子量化合物等が好ましい。 Additives include organic and inorganic dyes and pigments, matting agents, heat stabilizers, flame retardants, antistatic agents, antifoaming agents, color adjusting agents, antioxidants, ultraviolet absorbers, crystal nucleating agents. , Whitening agents, lubricants, impurity scavengers, thickeners, surface conditioners and the like. Among these, it is preferable to include a heat stabilizer and a trapping agent for low molecular weight volatile impurities. As the heat stabilizer, pentavalent and / or trivalent phosphorus compounds, hindered phenol compounds and the like are preferable, and as a trapping agent for low molecular weight volatile impurities, polymers and oligomers of polyamide and polyesteramide, amide groups and amine groups are preferred. Preferred are low molecular weight compounds having
 本実施形態の共重合体Aフィルムは、DMA法で測定したガラス転移温度が130℃以上である。DMA法で測定したガラス転移温度は、好ましくは140℃以上であり、より好ましくは150℃以上である。DMA法で測定したガラス転移温度の上限は特にないが、通常、200℃以下であり、180℃以下が好ましく、170℃以下が好ましく、160℃以下が更に好ましい。 The copolymer A film of this embodiment has a glass transition temperature measured by DMA method of 130 ° C. or higher. The glass transition temperature measured by the DMA method is preferably 140 ° C. or higher, more preferably 150 ° C. or higher. Although there is no upper limit of the glass transition temperature measured by the DMA method, it is usually 200 ° C. or lower, preferably 180 ° C. or lower, preferably 170 ° C. or lower, and more preferably 160 ° C. or lower.
 DMA法とは以下の方法である。すなわち、試験片を室温から5℃/分の割合で昇温させ、粘弾性測定装置を使用して試験片の動的粘弾性と損失正接とを測定し、損失正接のピーク温度からガラス転移温度を求めることができる。なお、測定周波数は1Hzとする。 The DMA method is the following method. That is, the test piece is heated from room temperature at a rate of 5 ° C./min, the dynamic viscoelasticity and loss tangent of the test piece are measured using a viscoelasticity measuring device, and the glass transition temperature is calculated from the peak temperature of the loss tangent. Can be requested. The measurement frequency is 1 Hz.
 また、本実施形態の共重合体Aフィルムは、TMA法で測定したガラス転移温度が200℃以上である。TMA法で測定したガラス転移温度は、好ましくは210℃以上、より好ましくは220℃以上、更に好ましくは230℃以上であり、特に好ましくは235℃以上である。TMA法で測定したガラス転移温度の上限は特にないが、通常、260℃以下であり、255℃以下が好ましく、250℃以下がより好ましく、245℃以下が更に好ましい。 Further, the copolymer A film of this embodiment has a glass transition temperature measured by the TMA method of 200 ° C. or higher. The glass transition temperature measured by the TMA method is preferably 210 ° C. or higher, more preferably 220 ° C. or higher, still more preferably 230 ° C. or higher, and particularly preferably 235 ° C. or higher. Although there is no upper limit of the glass transition temperature measured by the TMA method, it is usually 260 ° C. or lower, preferably 255 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 245 ° C. or lower.
 TMA法とは以下の方法である。すなわち、試験片を室温から10℃/分の割合で昇温させ、熱分析装置を使用して厚さ方向の熱膨張量を測定し、温度と熱膨張量との関係を示すグラフを作図する。そして、ガラス転移点の前後の曲線に接線を引き、この接線の交点からガラス転移温度を求めることができる。 The TMA method is the following method. That is, the temperature of the test piece is raised from room temperature at a rate of 10 ° C./min, the amount of thermal expansion in the thickness direction is measured using a thermal analyzer, and a graph showing the relationship between the temperature and the amount of thermal expansion is drawn. . A tangent line is drawn on the curves before and after the glass transition point, and the glass transition temperature can be obtained from the intersection of the tangent lines.
 また、本実施形態の共重合体Aフィルムは、X線回折において、22°≦2θ≦24°の範囲に最大ピークを有する。 Further, the copolymer A film of this embodiment has a maximum peak in the range of 22 ° ≦ 2θ ≦ 24 ° in X-ray diffraction.
 本実施形態の共重合体Aフィルムは、耐加水分解性に優れる。本実施形態にかかる共重合体Aフィルムがこのような特性を有する理由は明らかではないが、その一つの要因として以下のことが挙げられる。
 上述のガラス転移温度、及び、最大ピークに関する特性は、本実施形態の共重合体Aフィルム中の共重合体Aがある程度以上結晶化していることと関連している。そして、共重合体Aがある程度以上(好ましくは結晶化度で20%以上、より好ましくは30%以上)結晶化していることにより耐加水分解性が高くなるものと考えられる。
The copolymer A film of this embodiment is excellent in hydrolysis resistance. The reason why the copolymer A film according to this embodiment has such characteristics is not clear, but one factor is as follows.
The characteristics relating to the glass transition temperature and the maximum peak described above are related to the fact that the copolymer A in the copolymer A film of the present embodiment is crystallized to some extent. And it is thought that hydrolysis resistance becomes high when the copolymer A is crystallized to some extent (preferably 20% or more, more preferably 30% or more in crystallinity).
 本実施形態の共重合体Aフィルムの破断強度は、JIS-K7127に基づいた測定において、MD方向・TD方向ともに、80MPa以上であることが好ましく、90MPa以上であることがより好ましく、100MPa以上であることが更に好ましい。 In the measurement based on JIS-K7127, the breaking strength of the copolymer A film of this embodiment is preferably 80 MPa or more, more preferably 90 MPa or more, and more preferably 100 MPa or more in both the MD direction and the TD direction. More preferably it is.
 本実施形態の共重合体Aフィルムの破断伸度は、JIS-K7127に基づいた測定において、MD方向・TD方向ともに、150MPa以下であることが好ましく、120MPa以下であることがより好ましく、80MPa以下であることが更に好ましい。 In the measurement based on JIS-K7127, the elongation at break of the copolymer A film of this embodiment is preferably 150 MPa or less, more preferably 120 MPa or less, and more preferably 80 MPa or less in both the MD direction and the TD direction. More preferably.
 本実施形態の絶縁破壊電圧は、ASTM D-149に基づいた測定において、90kV/mm以上であることが好ましく、110kV/mm以上であることがより好ましく、130kV/mm以上であることが更に好ましい。 The dielectric breakdown voltage of the present embodiment is preferably 90 kV / mm or more, more preferably 110 kV / mm or more, and further preferably 130 kV / mm or more in the measurement based on ASTM D-149. .
 本実施形態の熱膨張係数(CTE)は、TMA法(50~100℃)による測定において、MD方向・TD方向ともに、80ppm/℃以下であることが好ましく、60ppm/℃以下であることがより好ましく、40ppm/℃以下であることが更に好ましい。 The thermal expansion coefficient (CTE) of this embodiment is preferably 80 ppm / ° C. or less, more preferably 60 ppm / ° C. or less in both the MD and TD directions, as measured by the TMA method (50 to 100 ° C.). Preferably, it is 40 ppm / ° C. or less.
 本実施形態の共重合体Aフィルムの厚みは、太陽電池モジュール用裏面保護シートの厚みと要求される性能によって適宜選択することができるが、10μm~500μmであることが好ましく、20μm~300μmであることがより好ましく、30μm~200μmであることが更に好ましい。このような範囲とすることでフィルムを製造することが容易になるとともに、強度・剛性が高まって取扱い性や後加工性が容易になる。厚みムラは±10%以内であることが好ましく、±7%以内であることがより好ましく、±5%以内であることが更に好ましい。 The thickness of the copolymer A film of the present embodiment can be appropriately selected depending on the thickness of the back protective sheet for solar cell module and the required performance, but is preferably 10 μm to 500 μm, and preferably 20 μm to 300 μm. It is more preferable that the thickness is 30 μm to 200 μm. By setting it as such a range, while it becomes easy to manufacture a film, intensity | strength and rigidity increase and handling property and post-processability become easy. The thickness unevenness is preferably within ± 10%, more preferably within ± 7%, and further preferably within ± 5%.
 本実施形態にかかる共重合体Aフィルムは、以下のようにして製造することができる。
 まず、原料となる共重合体A樹脂(たとえばペレット)を用意する。共重合体A樹脂は、1,4-シクロヘキサンジメタノール、テレフタル酸、及び、イソフタル酸を公知の方法で重縮合することによって製造することができる。また、たとえば、共重合体Aペレットは、イーストマン社から、たとえば、商品名「Eastman Copolyester 13319」等として市販もされている。
 そして、共重合体A樹脂を加熱により溶融し、必要に応じて添加剤を添加し、共重合体Aを含む樹脂組成物を得る。そして、この樹脂組成物をフィルムに成形する。フィルムに成形する方法としては、共重合体Aを含む樹脂組成物を溶融状態にてダイより押出して成形する溶融成形法、樹脂組成物を溶媒に溶解した溶液を支持体上に塗布しその後溶媒を乾燥させる溶液キャスト法等が挙げられる。これらのうち、生産性、環境適性が優れ、一工程でフィルムを得ることができる溶融成形法が最も好ましい。溶融成形法としてはTダイやIダイを用いる方式、水冷式及び空冷式のインフレーション法が好ましい。
The copolymer A film according to this embodiment can be produced as follows.
First, a copolymer A resin (for example, pellets) as a raw material is prepared. The copolymer A resin can be produced by polycondensing 1,4-cyclohexanedimethanol, terephthalic acid, and isophthalic acid by a known method. In addition, for example, the copolymer A pellet is commercially available from Eastman Corporation under the trade name “Eastman Copolymerester 13319”, for example.
And copolymer A resin is fuse | melted by heating, an additive is added as needed and the resin composition containing the copolymer A is obtained. Then, this resin composition is formed into a film. As a method for forming into a film, a melt molding method in which a resin composition containing the copolymer A is extruded from a die in a molten state, a solution in which the resin composition is dissolved in a solvent is applied onto a support, and then the solvent The solution cast method etc. which dry is mentioned. Of these, the melt molding method is most preferable because it is excellent in productivity and environmental suitability and can obtain a film in one step. As the melt molding method, a method using a T die or an I die, a water-cooled method, and an air-cooled inflation method are preferable.
 続いて、成形された未延伸の共重合体Aフィルムを延伸することにより、本実施形態にかかる上述の共重合体Aフィルムを得ることができる。 Subsequently, the above-described copolymer A film according to this embodiment can be obtained by stretching the formed unstretched copolymer A film.
 延伸条件や延伸方法は特に限定されず、上述のガラス転移温度が得られる範囲やX線回折における所定の角度範囲に最大ピークが得られる範囲で適宜調節すればよい。 The stretching conditions and the stretching method are not particularly limited, and may be appropriately adjusted within a range in which the above glass transition temperature is obtained or a maximum peak is obtained in a predetermined angle range in X-ray diffraction.
 たとえば、延伸方向は、一軸でも二軸でもよいが、二軸が好ましい。 For example, the stretching direction may be uniaxial or biaxial, but biaxial is preferred.
 延伸方法も特に限定されず、ロール延伸、テンター延伸等の種々の方法を、単独で、また、任意に組み合わせて使用できる。 The stretching method is not particularly limited, and various methods such as roll stretching and tenter stretching can be used alone or in any combination.
 延伸倍率も特に限定されない。たとえば、MD(machine direction)方向に2倍~5倍、TD(transverse direction)方向に2倍~5倍とすることができる。 The stretch ratio is not particularly limited. For example, it can be 2 to 5 times in the MD (machine direction) direction and 2 to 5 times in the TD (transverse direction) direction.
 本発明の太陽電池モジュール用裏面保護シート(以下、単に「裏面保護シート」という場合がある。)の構成の一実施例を図1に示す。裏面保護シート1は、ガスバリア性フィルム20の両面に、耐熱性を有するフィルム基材30,32を積層してなる構成を有している。ガスバリア性フィルム20は、基材10の片面に無機化合物からなる蒸着層12を設けたものである。基材10として、上述の共重合体Aフィルムを使用することができる。 FIG. 1 shows an example of the configuration of the back surface protection sheet for solar cell modules of the present invention (hereinafter, sometimes simply referred to as “back surface protection sheet”). The back surface protection sheet 1 has a configuration in which film base materials 30 and 32 having heat resistance are laminated on both surfaces of the gas barrier film 20. The gas barrier film 20 is obtained by providing a vapor deposition layer 12 made of an inorganic compound on one surface of a substrate 10. As the base material 10, the above-mentioned copolymer A film can be used.
 本実施形態で用いられる耐熱性を有するフィルム基材30,32としては、耐熱性を有するものであればよく、ポリエチレンテレフタレート(PET)フィルムもしくはフッ化ビニル樹脂(PVF)フィルム、フッ化ビニリデン樹脂(PVDF)フィルム、三フッ化塩化エチレン樹脂(PCTFE)フィルム、エチレン・四フッ化エチレン共重合体(ETFE)フィルム、ポリテトラフルオロエチレン(PTFE)フィルム、四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)フィルムから選ばれるフッ素系基材が挙げられる。また、耐熱性を有するフィルム基材30,32として共重合体Aフィルムも好適に使用することができる。 The film base materials 30 and 32 having heat resistance used in the present embodiment may be any film having heat resistance, such as a polyethylene terephthalate (PET) film or a vinyl fluoride resin (PVF) film, a vinylidene fluoride resin ( PVDF) film, trifluoroethylene chloride (PCTFE) film, ethylene-tetrafluoroethylene copolymer (ETFE) film, polytetrafluoroethylene (PTFE) film, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer Examples thereof include a fluorine-based substrate selected from (PFA) films. Moreover, the copolymer A film can also be used suitably as the film base materials 30 and 32 which have heat resistance.
 フィルム基材30、32の厚みは特に限定されず、たとえば、3~200μmとすることが好ましく、6~30μmとすることがより好ましい。 The thickness of the film base materials 30 and 32 is not particularly limited, and is preferably 3 to 200 μm, and more preferably 6 to 30 μm.
 蒸着層12の材料も特に限定されず、酸化アルミニウム、酸化ケイ素、酸化スズ、酸化マグネシウム、酸化亜鉛、これらの2以上の混合物が挙げられる。蒸着層12の厚みは特に限定されず、たとえば、5~300nmが好ましく、10~150nmがより好ましい。 The material of the vapor deposition layer 12 is not particularly limited, and examples thereof include aluminum oxide, silicon oxide, tin oxide, magnesium oxide, zinc oxide, and a mixture of two or more thereof. The thickness of the vapor deposition layer 12 is not particularly limited, and is preferably 5 to 300 nm, for example, and more preferably 10 to 150 nm.
 本実施形態のガスバリア性フィルム20と耐熱性を有するフィルム基材30,32とを積層する方法としては、例えば、ガスバリア性フィルム20と耐熱性を有するフィルム基材30,32とを必要により接着剤を介して貼り合わせるドライラミネーション積層方式を採用して積層することができる。ドライラミネーション用接着剤としては、接着強度が長期間の屋外使用で劣化によるデラミネーション等を生じないこと、更に接着剤が黄変しないこと等が必要であり、高耐熱性、耐湿熱性等に対応するために、接着剤を構成するビヒクルの主成分としての樹脂等が、架橋ないし硬化して三次元網目状の架橋構造等を形成し得るものを使用することが望ましい。具体的には、上記のラミネート用接着剤層を構成する接着剤が、硬化剤又は架橋剤の存在下、熱又は光等からなる反応エネルギーにより架橋構造を形成することが好ましい。例えば、2液硬化型ポリウレタン系接着剤等脂肪族系・脂環系イソシアネート、あるいは、芳香族系イソシアネート等のイソシアネート系の硬化剤又は架橋剤の存在下、熱、又は光からなる反応エネルギーによりラミネート用接着剤が架橋構造を形成することにより、耐熱性、耐候性、耐湿熱性等に優れた太陽電池モジュール用裏面保護シートを製造し得る。 As a method of laminating the gas barrier film 20 and the heat-resistant film base materials 30 and 32 according to the present embodiment, for example, the gas barrier film 20 and the heat-resistant film base materials 30 and 32 may be adhesive if necessary. It is possible to perform lamination by adopting a dry lamination lamination method in which the layers are bonded together. As an adhesive for dry lamination, it is necessary that the adhesive strength does not cause delamination due to deterioration when used outdoors for a long period of time, and that the adhesive does not turn yellow, etc., and is compatible with high heat resistance, moisture heat resistance, etc. Therefore, it is desirable to use a resin or the like as a main component of the vehicle constituting the adhesive which can be crosslinked or cured to form a three-dimensional network crosslinked structure. Specifically, the adhesive constituting the adhesive layer for laminating preferably forms a crosslinked structure by reaction energy consisting of heat or light in the presence of a curing agent or a crosslinking agent. For example, laminating by reaction energy consisting of heat or light in the presence of an aliphatic or alicyclic isocyanate such as a two-component curable polyurethane adhesive, or an isocyanate curing agent or crosslinking agent such as an aromatic isocyanate. When the adhesive for adhesive forms a crosslinked structure, a back protective sheet for a solar cell module excellent in heat resistance, weather resistance, moist heat resistance and the like can be produced.
 上記接着剤において、脂肪族系イソシアネートとしては、例えば、1,6-ヘキサメチレンジイソシアネート(HDI)、脂環系イソシアネートとしては、例えば、イソホロンジイソシアネート(IPDI)、芳香族系イソシアネートとしては、例えば、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフチレンジイソシアネート(NDI)、トリジンジイソシアネート(TODI)、キシリレンジイソシアネート(XDI)等を使用することができる。 In the above adhesive, as the aliphatic isocyanate, for example, 1,6-hexamethylene diisocyanate (HDI), as the alicyclic isocyanate, for example, isophorone diisocyanate (IPDI), as the aromatic isocyanate, for example, tri Range isocyanate (TDI), diphenylmethane diisocyanate (MDI), naphthylene diisocyanate (NDI), tolidine diisocyanate (TODI), xylylene diisocyanate (XDI), and the like can be used.
 なお、上記接着剤中には、紫外線劣化等を防止するために、紫外線吸収剤あるいは光安定化剤を添加することができる。その使用量としては、その粒子形状、密度等によって異なるが、約0.1~10重量%位が好ましい。 In the adhesive, an ultraviolet absorber or a light stabilizer can be added in order to prevent ultraviolet degradation or the like. The amount used varies depending on the particle shape, density, etc., but is preferably about 0.1 to 10% by weight.
 上記接着剤は、例えば、ロールコート法、グラビアロールコート法、キスコート法、その他等のコート法、あるいは、印刷法等によって施すことができ、その塗布量としては2~20g/m(乾燥状態)位、好ましくは3~10g/m(乾燥状態)の範囲が望ましい。 The adhesive can be applied, for example, by a coating method such as a roll coating method, a gravure roll coating method, a kiss coating method, or the like, or a printing method, and the coating amount is 2 to 20 g / m 2 (dry state) ) Position, preferably in the range of 3 to 10 g / m 2 (dry state).
 また、上記の構成では、耐熱性を有するフィルム基材30,32について、あらかじめフィルム状に成形された樹脂をガスバリア性フィルム20に積層する態様を示したが、これに代えて、耐熱性を有する樹脂を含む塗工液をガスバリア性フィルム20に塗布し、必要により乾燥することによりガスバリア性フィルム20に積層されたフィルム基材30,32を形成する態様としてもよい。塗布する方法としては、ロールコート法、グラビアロールコート法、キスコート法、その他等のコート法、あるいは、印刷法等を適用することができる。その塗布量としては硬化後の塗工膜の厚さが1~100μm(乾燥状態)、好ましくは5~50μm(乾燥状態)となる範囲であることが望ましい。 Moreover, in said structure, although the film base material 30 and 32 which has heat resistance showed the aspect which laminates | stacks resin previously shape | molded on the gas barrier property film 20 instead, it has heat resistance instead of this. It is good also as an aspect which forms the film base materials 30 and 32 laminated | stacked on the gas barrier film 20 by apply | coating the coating liquid containing resin to the gas barrier film 20, and drying as needed. As a coating method, a coating method such as a roll coating method, a gravure roll coating method, a kiss coating method, or the like, a printing method, or the like can be applied. The coating amount is desirably in the range where the thickness of the coated film after curing is 1 to 100 μm (dry state), preferably 5 to 50 μm (dry state).
 このようにして得られる本発明の太陽電池モジュール用裏面保護シートは、上述の共重合体Aフィルムを有していることから、特に耐加水分解性に優れている。したがって、このような太陽電池用裏面保護シートは、太陽電池を長期間にわたり保護することが可能であり、かつ、安価である。 The back protective sheet for a solar cell module of the present invention thus obtained is particularly excellent in hydrolysis resistance because it has the above-mentioned copolymer A film. Therefore, such a back surface protection sheet for solar cells can protect the solar cells over a long period of time and is inexpensive.
 なお、太陽電池モジュール用裏面保護シートの構成は上記の構成に限定されない。 In addition, the structure of the back surface protection sheet for solar cell modules is not limited to said structure.
 たとえば、蒸着層12と基材10との間に、これらの密着性を高めるべく透明プライマー層を設けてもよい。透明プライマー層の樹脂としては、シランカップリング剤やその加水分解物と、ポリオール及びイソシアネート化合物との複合物が挙げられる。 For example, a transparent primer layer may be provided between the vapor-deposited layer 12 and the base material 10 in order to improve their adhesion. Examples of the resin for the transparent primer layer include a composite of a silane coupling agent or a hydrolyzate thereof, a polyol and an isocyanate compound.
 シランカップリング剤としては、例えばエチルトリメトキシシラン、ビニルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルトリメトキシシラン、グリシドオキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン等のシランカップリングあるいはその加水分解物の1種ないしは2種以上を用いることができる。また、例えばγ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルトリメトキシシランのようなイソシアネート基を含むもの、γ-メルカプトプロピルトリエトキシシランのようなメルカプト基を含むものや、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-フェニルアミノプロピルトリメトキシシランのようなアミノ基を含むものがある。更にγ-グリシドオキシプロピルトリメトキシシランやβ-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン等のようにエポキシ基を含むものや、ビニルトリメトキシシラン、ビニル(β-メトキシエトキシ)シラン等のようなシランカップリング剤にアルコール等を付加し水酸基等を付加したものでも良く、これら1種ないしは2種以上を用いることができる。 Examples of the silane coupling agent include ethyltrimethoxysilane, vinyltrimethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-chloropropyltrimethoxysilane, glycidoxypropyltrimethoxysilane, and γ-methacryloxypropyltrimethoxysilane. One or two or more of silane couplings such as γ-methacryloxypropylmethyldimethoxysilane or hydrolysates thereof can be used. Further, for example, those containing isocyanate groups such as γ-isocyanatopropyltriethoxysilane and γ-isocyanatopropyltrimethoxysilane, those containing mercapto groups such as γ-mercaptopropyltriethoxysilane, and γ-aminopropyltriethoxysilane There are those containing amino groups such as silane, γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltriethoxysilane, and γ-phenylaminopropyltrimethoxysilane. Further, those containing an epoxy group such as γ-glycidoxypropyltrimethoxysilane and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltrimethoxysilane, vinyl (β-methoxyethoxy) silane, etc. Such a silane coupling agent may be added with alcohol or the like and added with a hydroxyl group or the like, and one or more of these may be used.
 ポリオールとしては、たとえば、エチルメタクリレート、ヒドロキシエチルメタクリレートやヒドロキシプロピルメタクリレート、ヒドロキシルブチルメタクリレート等のアクリル酸誘導体モノマーを単独で重合させたものや、スチレン等のその他のモノマーを加え共重合させたアクリルポリオール等が好ましく用いられる。 Examples of the polyol include those obtained by polymerizing acrylic acid derivative monomers such as ethyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, and hydroxylbutyl methacrylate alone, and acrylic polyols obtained by copolymerizing with other monomers such as styrene. Is preferably used.
 イソシアネート化合物としては、たとえば、芳香族系のトリレンジイソシアネート(TDI)やジフェニルメタンジイソシアネート(MDI)、脂肪族系のキシレンジイソシアネート(XDI)やヘキサレンジイソシアネート(HMDI)等のモノマー類と、これらの重合体や誘導体等が用いられ、これらを1種又は2種以上用いることができる。 Examples of the isocyanate compound include monomers such as aromatic tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), aliphatic xylene diisocyanate (XDI), hexadiisocyanate (HMDI), and polymers thereof. Or a derivative thereof can be used, and one or more of these can be used.
 透明プライマー層の厚みは特に限定されないが、0.001~2μmであることが好ましく、0.03~0.5μmであることが好ましい。 The thickness of the transparent primer layer is not particularly limited, but is preferably 0.001 to 2 μm, and preferably 0.03 to 0.5 μm.
 また、蒸着層12とフィルム基材32との間に、更にガスバリア性を有するオーバーコート層を設けてもよい。オーバーコート層は、たとえば、水溶性高分子と、一種以上の金属アルコキシド又はその加水分解物と、を含み、水又は水-アルコール混合液を溶媒とするコーティング液を蒸着層12に塗布することにより形成することができる。 Further, an overcoat layer having a gas barrier property may be further provided between the vapor deposition layer 12 and the film substrate 32. The overcoat layer includes, for example, a water-soluble polymer and one or more metal alkoxides or a hydrolyzate thereof, and a coating solution containing water or a water-alcohol mixed solution as a solvent is applied to the vapor deposition layer 12. Can be formed.
 水溶性高分子としては、ポリビニルアルコール、ポリビニルピロリドン、デンプン、メチルセルロース、カルボキシルメチルセルロース、アルギン酸ナトリウム等が挙げられる。 Examples of water-soluble polymers include polyvinyl alcohol, polyvinyl pyrrolidone, starch, methyl cellulose, carboxymethyl cellulose, and sodium alginate.
 金属アルコキシドとしては、テトラエトキシシラン、トリイソプロポキシアルミニウム等が挙げられる。 Examples of the metal alkoxide include tetraethoxysilane and triisopropoxyaluminum.
 また、蒸着層12を基材10の両面に形成してもよい。この場合、両方の蒸着面に対して上述の透明プライマー層やオーバーコート層を形成してもよい。 Further, the vapor deposition layer 12 may be formed on both surfaces of the base material 10. In this case, you may form the above-mentioned transparent primer layer and overcoat layer with respect to both vapor deposition surfaces.
 また、例えば、太陽電池モジュール用裏面保護シートをガスバリア性の必要性が低い太陽電池モジュールに適用する場合は、当該太陽電池モジュール用裏面保護シートを蒸着層12を有しない態様としてもよい。この場合、基材10の片面又は両面に耐熱性を有するフィルム基材30,32を形成する。 In addition, for example, when the back protection sheet for solar cell modules is applied to a solar cell module having a low necessity for gas barrier properties, the back protection sheet for solar cell modules may not have the vapor deposition layer 12. In this case, the film base materials 30 and 32 having heat resistance are formed on one side or both sides of the base material 10.
 また、太陽電池モジュール用裏面保護シート1は、フィルム基材30、32のいずれか一方又は両方を有さないこともでき、更に、上述の基材10のみから構成されていてもよい。 Moreover, the back surface protection sheet 1 for solar cell modules may not have any one or both of the film base materials 30 and 32, and may be comprised only from the above-mentioned base material 10.
 次に、本発明の太陽電池用裏面保護シートを使用した太陽電池モジュールについて説明する。図2は、本発明の太陽電池用裏面保護シートを備える太陽電池モジュール100についてその一実施形態の層構成を示す概略断面図である。 Next, a solar cell module using the solar cell back surface protective sheet of the present invention will be described. FIG. 2 is a schematic cross-sectional view showing a layer configuration of one embodiment of the solar cell module 100 including the solar cell back surface protective sheet of the present invention.
 本実施形態の太陽電池モジュール100は、太陽電池モジュール用表面保護シート60、表面側充填材層51、配線52を配設した光起電力素子としての太陽電池素子50、裏面側充填材層53、及び、上記裏面保護シート1の上記耐加水分解性を有するフィルム基材30が太陽電池モジュール100の裏面側充填材層53側に配置した構成とされている。これらの各部材に対し、例えば真空吸引等により一体化して加熱圧着するラミネーション法等の成形法を利用し、上記の各層を一体成形体として加熱圧着成形することができる。更に、太陽電池モジュール100は、例えばアルミニウム製の枠体(図示せず)を装着することもできる。 The solar cell module 100 of the present embodiment includes a solar cell module surface protection sheet 60, a front surface side filler layer 51, a solar cell element 50 as a photovoltaic element provided with a wiring 52, a back surface side filler layer 53, And the film base material 30 which has the said hydrolysis resistance of the said back surface protection sheet 1 is set as the structure arrange | positioned at the back surface side filler layer 53 side of the solar cell module 100. FIG. For each of these members, for example, by using a molding method such as a lamination method in which the members are integrated by, for example, vacuum suction, and heat-pressed, the above-described layers can be thermocompression-molded as an integrally formed body. Furthermore, the solar cell module 100 can be mounted with, for example, an aluminum frame (not shown).
 上記太陽電池モジュールを構成する通常の太陽電池モジュール用表面保護シート60としては、太陽光の透過性、絶縁性等を有し、更に、耐候性、耐熱性、耐光性、耐水性、防湿性、防汚性、その他等の諸特性を有し、物理的あるいは化学的強度性、強靱性等に優れ、極めて耐久性に富み、更に、光起電力素子としての太陽電池素子の保護ということから、耐スクラッチ性、衝撃吸収性等に優れていることが必要である。 As the normal solar cell module surface protection sheet 60 constituting the solar cell module, it has sunlight permeability, insulation, etc., and further has weather resistance, heat resistance, light resistance, water resistance, moisture resistance, It has various characteristics such as antifouling properties, etc., is excellent in physical or chemical strength, toughness, etc., is extremely durable, and further, because it protects solar cell elements as photovoltaic elements, It must be excellent in scratch resistance, shock absorption, and the like.
 具体的には、公知のガラス板等、更には、例えば、ポリアミド系樹脂(各種のナイロン)、ポリエステル系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、(メタ)アクリル系樹脂、ポリカーボネート系樹脂、アセタール系樹脂、その他等の各種の樹脂フィルムないしシートを使用することができ、更に、共重合体Aも好適に使用することができる。上記樹脂のフィルムないしシートとしては、二軸延伸した延伸フィルムないしシートを使用することができる。また、その樹脂のフィルムないしシートの厚さとしては、強度、剛性、腰等を保持するに必要な最低限の厚さであればよく、厚すぎると、コストを上昇するという欠点もあり、薄すぎると、強度、剛性、腰等が低下して好ましくない。本実施形態においては、上記のような理由から、樹脂のフィルムないしシートの厚さは12~200μmが好ましく、25μm~150μmがより好ましい。 Specifically, known glass plates and the like, and further, for example, polyamide resins (various nylons), polyester resins, cyclic polyolefin resins, polystyrene resins, (meth) acrylic resins, polycarbonate resins, acetals Various resin films and sheets such as a resin and others can be used, and the copolymer A can also be suitably used. As the resin film or sheet, a biaxially stretched stretched film or sheet can be used. Further, the thickness of the resin film or sheet may be a minimum thickness necessary to maintain strength, rigidity, waist, etc. If it is too thick, there is a disadvantage that the cost increases, and the thickness is thin. If it is too high, strength, rigidity, waist and the like are lowered, which is not preferable. In the present embodiment, for the reasons described above, the thickness of the resin film or sheet is preferably 12 to 200 μm, more preferably 25 to 150 μm.
 太陽電池モジュールを構成する太陽電池モジュール用表面保護シート60の下に積層する充填材層51としては、表面保護シート60を介して太陽光が入射し、これを透過して吸収することから透明性を有することが必要であり、また、表面保護シート及び裏面保護シートとの接着性を有することも必要である。また、光起電力素子としての太陽電池素子の表面の平滑性を保持する機能を果たすために熱可塑性を有すること、更には、光起電力素子としての太陽電池素子を保護する観点から、耐スクラッチ性、衝撃吸収性等に優れていることが必要である。 As the filler layer 51 laminated under the surface protection sheet 60 for the solar cell module constituting the solar cell module, sunlight enters through the surface protection sheet 60 and transmits and absorbs the transparency. It is necessary to have adhesiveness with a surface protection sheet and a back surface protection sheet. In addition, from the viewpoint of protecting the solar cell element as the photovoltaic element from having thermoplasticity in order to achieve the function of maintaining the smoothness of the surface of the solar cell element as the photovoltaic element. It is necessary to have excellent properties and shock absorption.
 具体的には、上記の充填剤層としては、例えば、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-アクリル酸、又は、酸変性ポリオレフィン系樹脂、ポリビニルブチラール樹脂、シリコーン系樹脂、エポキシ系樹脂、(メタ)アクリル系樹脂、その他等の樹脂の1種ないし2種以上の混合物を使用することができる。本実施形態においては、上記の充填材層を構成する樹脂には、耐熱性、耐光性、耐水性等の耐候性等を向上させるために、その透明性を損なわない範囲で、例えば、架橋剤、熱酸化防止剤、光安定剤、紫外線吸収剤、光酸化防止剤、その他等の添加剤を任意に添加し、混合することができるものである。なお、本実施形態においては、太陽光の入射側の充填材としては、耐光性、耐熱性、耐水性等の耐候性等の性能面と価格面を考慮すると、エチレン-酢酸ビニル系樹脂が望ましい素材である。なお、上記の充填材層の厚さとしては、200~1000μmが好ましく、350~600μmがより好ましい。 Specifically, as the filler layer, for example, ethylene-vinyl acetate copolymer, ionomer resin, ethylene-acrylic acid, or acid-modified polyolefin resin, polyvinyl butyral resin, silicone resin, epoxy resin , (Meth) acrylic resins, and other resins can be used as a mixture of one or more. In the present embodiment, the resin constituting the filler layer is, for example, a crosslinking agent within a range that does not impair its transparency in order to improve weather resistance such as heat resistance, light resistance, and water resistance. Additives such as thermal antioxidants, light stabilizers, ultraviolet absorbers, photo-antioxidants, etc. can be arbitrarily added and mixed. In the present embodiment, the filler on the sunlight incident side is preferably an ethylene-vinyl acetate resin in consideration of performance and price such as weather resistance such as light resistance, heat resistance, and water resistance. It is a material. The thickness of the filler layer is preferably 200 to 1000 μm, more preferably 350 to 600 μm.
 太陽電池モジュールを構成する光起電力素子としての太陽電池素子50としては、従来公知のもの、例えば、単結晶シリコン型太陽電池素子、多結晶シリコン型太陽電池素子等の結晶シリコン太陽電子素子、シングル接合型あるいはタンデム構造型等からなるアモルファスシリコン太陽電池素子、ガリウムヒ素(GaAs)やインジウム燐(InP)等のIII-V族化合物半導体太陽電子素子、カドミウムテルル(CdTe)や銅インジウムセレナイド(CuInSe)等のII-VI族化合物半導体太陽電子素子、有機太陽電池素子、その他等を使用することができる。更に、薄膜多結晶性シリコン太陽電池素子、薄膜微結晶性シリコン太陽電池素子、薄膜結晶シリコン太陽電池素子とアモルファスシリコン太陽電池素子とのハイブリット素子等も使用することができる。 As the solar cell element 50 as a photovoltaic element constituting the solar cell module, a conventionally known one, for example, a crystalline silicon solar electronic element such as a single crystal silicon type solar cell element or a polycrystalline silicon type solar cell element, a single Amorphous silicon solar cell elements of junction type or tandem structure type, III-V compound semiconductor solar electronic elements such as gallium arsenide (GaAs) and indium phosphorus (InP), cadmium tellurium (CdTe) and copper indium selenide (CuInSe) 2 ) Group II-VI compound semiconductor solar electronic device, organic solar cell device, etc. can be used. Furthermore, a thin film polycrystalline silicon solar cell element, a thin film microcrystalline silicon solar cell element, a hybrid element of a thin film crystalline silicon solar cell element and an amorphous silicon solar cell element, or the like can also be used.
 上記太陽電池モジュールを構成する光起電力素子の下に積層する裏面側充填材層53としては、上記の太陽電池モジュール用表面保護シートの下に積層する表面側充填材層51と同材質のものが使用できる。裏面保護シートとの接着性を有することも必要であり、光起電力素子としての太陽電池素子の裏面の平滑性を保持する機能を果たすために熱可塑性を有すること、更には、光起電力素子としての太陽電池素子を保護する観点から、耐スクラッチ性、衝撃吸収性等に優れていることが必要である。 The back-side filler layer 53 laminated under the photovoltaic element constituting the solar cell module is made of the same material as the front-side filler layer 51 laminated under the surface protection sheet for the solar cell module. Can be used. It is also necessary to have adhesiveness with the back surface protection sheet, and it has thermoplasticity to fulfill the function of maintaining the smoothness of the back surface of the solar cell element as a photovoltaic element, and further, the photovoltaic element From the viewpoint of protecting the solar cell element, it is necessary to have excellent scratch resistance, shock absorption and the like.
 上記の本発明の太陽電池モジュールによれば、上述の裏面保護シート及び表面保護シートの少なくとも一方に上述の共重合体Aフィルムを使用しているので、裏面保護シートや表面保護シートの耐加水分解性が高い。したがって、従来のポリエチレンテレフタレート(PET)フィルムやポリエチレンナフタレート(PEN)フィルムを使用した場合に比して、太陽電池としての電力出力特性を長期にわたり維持することが可能となる。 According to the solar cell module of the present invention, since the copolymer A film is used for at least one of the above-described back surface protection sheet and the surface protection sheet, the hydrolysis resistance of the back surface protection sheet or the surface protection sheet. High nature. Therefore, compared with the case where the conventional polyethylene terephthalate (PET) film or polyethylene naphthalate (PEN) film is used, it becomes possible to maintain the power output characteristics as a solar cell over a long period of time.
 なお、太陽電池モジュールも上記の構成には限定されず、種々の構成が可能である。たとえば、裏面保護シート1としては、上述のような種々の構成のものを採用することができる。要すれば、太陽電池素子50を含む充填層と、この充填層の表面に配置された表面保護シート60と、充填層の裏面に配置された裏面保護シート1とを備え、表面保護シート60及び裏面保護シート1の少なくとも一方が上述の共重合体Aフィルムを含むものであればよい。 In addition, the solar cell module is not limited to the above configuration, and various configurations are possible. For example, as the back surface protection sheet 1, those having various configurations as described above can be adopted. If necessary, it is provided with a filling layer including the solar cell element 50, a surface protection sheet 60 disposed on the surface of the filling layer, and a back surface protection sheet 1 disposed on the back surface of the filling layer. It suffices that at least one of the back surface protective sheets 1 includes the above-mentioned copolymer A film.
 以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to the following Example.
 フィルムの原料として、以下の樹脂ペレットを使用した。なお、PENは、ポリエチレンナフタレートである。
 (1)共重合体A(イーストマン社製、商品名:Eastman Copolyester 13319)
 (2)PEN(帝人デュポンフィルム社製、商品名:テオネックスQ51)
 (3)1,4-シクロヘキサンジメタノール・2,2,4,4-テトラメチル-1,3-シクロブタンジオール・テレフタル酸重縮合物(イーストマン社製、商品名:Eastman Tritan Copolyester FX200)(以下、「共重合体B」と呼ぶ。)
The following resin pellets were used as raw materials for the film. PEN is polyethylene naphthalate.
(1) Copolymer A (Eastman Co., Ltd., trade name: Eastman Copolyester 13319)
(2) PEN (manufactured by Teijin DuPont Films, trade name: Teonex Q51)
(3) 1,4-cyclohexanedimethanol / 2,2,4,4-tetramethyl-1,3-cyclobutanediol / terephthalic acid polycondensate (manufactured by Eastman, trade name: Eastman Tritan Copolyester FX200) , Referred to as “Copolymer B”.)
[実施例1]
 共重合体A(ペレット状)を溶融押し出しすることによりフィルム化し、更に二軸延伸することにより、厚さ50μmの延伸共重合体Aフィルムを得た。
[Example 1]
The copolymer A (in the form of pellets) was melt-extruded to form a film, and further biaxially stretched to obtain a stretched copolymer A film having a thickness of 50 μm.
[実施例2]
 延伸倍率を変えて厚みを100μmとした以外は実施例1と同様にして、厚さ100μmの共重合体Aフィルムを得た。
[Example 2]
A copolymer A film having a thickness of 100 μm was obtained in the same manner as in Example 1 except that the thickness was changed to 100 μm by changing the draw ratio.
[比較例1]
 PEN(ペレット状)を溶融押し出しすることによりフィルム化し、更に二軸延伸することにより、厚さ25μmの延伸PENフィルムを得た。
[Comparative Example 1]
PEN (pellet form) was melt-extruded to form a film, and further biaxially stretched to obtain a stretched PEN film having a thickness of 25 μm.
[比較例2]
 共重合体A(ペレット状)を溶融押し出しすることによりフィルム化し、厚さ110μmの未延伸共重合体Aフィルムを得た。
[Comparative Example 2]
Copolymer A (pellet form) was melt-extruded to form a film, and an unstretched copolymer A film having a thickness of 110 μm was obtained.
[比較例3]
 共重合体B(ペレット状)を溶融押し出しすることによりフィルム化し、厚さ100μmの未延伸共重合体Bフィルムを得た。
[Comparative Example 3]
Copolymer B (pellet form) was melt-extruded to form a film, and an unstretched copolymer B film having a thickness of 100 μm was obtained.
<各種物性>
 実施例1及び2並びに比較例1~3のフィルムについて、破断強度、破断伸度、ガラス転移温度、融点、絶縁破壊電圧、比重及び熱膨張係数を測定した。各測定の測定方法及び測定値を表1に示す。
<Various physical properties>
With respect to the films of Examples 1 and 2 and Comparative Examples 1 to 3, the breaking strength, breaking elongation, glass transition temperature, melting point, dielectric breakdown voltage, specific gravity and thermal expansion coefficient were measured. Table 1 shows the measurement method and measurement values for each measurement.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<加水分解性試験>
 実施例1及び2並びに比較例1~3のフィルムについて、プレッシャークッカー試験(120℃、100%RH(相対湿度)、2気圧)を行った。各フィルムについて、50時間後、100時間後、150時間後及び200時間後の引張強度保持率及び引張伸び保持率を測定した。結果を図3及び図4に示す。実施例1及び2のフィルムは、比較例1~3のフィルムに比べて、引張強度保持率及び引張伸び保持率の低下が遅かった。
<Hydrolysis test>
The films of Examples 1 and 2 and Comparative Examples 1 to 3 were subjected to a pressure cooker test (120 ° C., 100% RH (relative humidity), 2 atm). For each film, the tensile strength retention and tensile elongation retention after 50 hours, 100 hours, 150 hours and 200 hours were measured. The results are shown in FIGS. The films of Examples 1 and 2 had a slower decrease in tensile strength retention and tensile elongation retention than the films of Comparative Examples 1 to 3.
<結晶化度の測定>
 実施例1、実施例2、及び比較例2のフィルムについて、CuKα線による粉末X線回折を行い、回折パターンの確認及び結晶化度の算出を行った。測定方法及び測定条件は、次のとおりである。ターゲット:Cu、X線管電流:40mA、X線管電圧:45kV、走査範囲:2θ=4~65°、ステップ:2θ=0.01671°、平均時間/ステップ:10.160s、固定発散スリット:1/2°、回転速度:毎分60回転、結晶化度解析:ハーマンス法、前処理:なし。
<Measurement of crystallinity>
About the film of Example 1, Example 2, and the comparative example 2, the powder X-ray diffraction by CuK (alpha) ray was performed, confirmation of the diffraction pattern and calculation of the crystallinity degree were performed. The measurement method and measurement conditions are as follows. Target: Cu, X-ray tube current: 40 mA, X-ray tube voltage: 45 kV, scanning range: 2θ = 4 to 65 °, step: 2θ = 0.01671 °, average time / step: 10.160 s, fixed diverging slit: 1/2 °, rotation speed: 60 rotations per minute, crystallinity analysis: Hermans method, pretreatment: none.
 X線の入射方向と反射方向とのなす角度2θと回折強度との関係を図5に示す。実施例1、2のフィルムには、22°≦2θ≦24°の範囲に明確な鋭い最大ピークが確認されたが、比較例2のフィルムでは鋭いピークはどこにも確認されず、アモルファスであることが判明した。また、図5に基づいて実施例1及び実施例2のフィルムの結晶化度を求めたところ、それぞれ42.8%、39.7%であった。
 また、実施例1、2において、二番目の強さのピークは2θ=16~17°に出現し、三番目の強さのピークは2θ=19~20°に出現した。ピーク強度比は、2番目の強さのピーク/最大ピーク=0.1~0.2程度であった。
FIG. 5 shows the relationship between the angle 2θ formed by the X-ray incident direction and the reflection direction and the diffraction intensity. In the films of Examples 1 and 2, a clear sharp maximum peak was confirmed in the range of 22 ° ≦ 2θ ≦ 24 °, but no sharp peak was observed anywhere in the film of Comparative Example 2, and the film was amorphous. There was found. Moreover, when the crystallinity degree of the film of Example 1 and Example 2 was calculated | required based on FIG. 5, they were 42.8% and 39.7%, respectively.
In Examples 1 and 2, the second intensity peak appeared at 2θ = 16 to 17 °, and the third intensity peak appeared at 2θ = 19 to 20 °. The peak intensity ratio was about the second intensity peak / maximum peak = 0.1 to 0.2.
 1…太陽電池モジュール用裏面保護シート、10…基材、12…蒸着層、20…ガスバリア性フィルム、30,32…フィルム基材、50…太陽電池素子、51…表面側充填材層、52…配線、53…裏面側充填材層、60…太陽電池モジュール用表面保護シート、100…太陽電池モジュール。 DESCRIPTION OF SYMBOLS 1 ... Back surface protection sheet for solar cell modules, 10 ... Base material, 12 ... Deposition layer, 20 ... Gas barrier film, 30, 32 ... Film base material, 50 ... Solar cell element, 51 ... Surface side filler layer, 52 ... Wiring, 53 ... back side filler layer, 60 ... surface protection sheet for solar cell module, 100 ... solar cell module.

Claims (10)

  1.  DMA法で測定したガラス転移温度が130℃以上である、1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム。 A copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a glass transition temperature measured by DMA method of 130 ° C. or higher.
  2.  TMA法で測定したガラス転移温度が200℃以上である、請求項1に記載の1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム。 The copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate according to claim 1, having a glass transition temperature measured by the TMA method of 200 ° C or higher.
  3.  X線回折において、22°≦2θ≦24°の範囲に最大ピークを有する、請求項1又は2に記載の1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム。 3. The 1,4-cyclohexylenedimethylene terephthalate and the 1,4-cyclohexylenedimethylene isophthalate according to claim 1 or 2 having a maximum peak in a range of 22 ° ≦ 2θ ≦ 24 ° in X-ray diffraction. Copolymer film.
  4.  TMA法で測定したガラス転移温度が200℃以上である、1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム。 A copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a glass transition temperature measured by the TMA method of 200 ° C. or higher.
  5.  X線回折において、22°≦2θ≦24°の範囲に最大ピークを有する、請求項4に記載の1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム。 Copolymerization of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate according to claim 4, which has a maximum peak in the range of 22 ° ≤2θ≤24 ° in X-ray diffraction Combined film.
  6.  X線回折において、22°≦2θ≦24°の範囲に最大ピークを有する、1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム。 A copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a maximum peak in the range of 22 ° ≦ 2θ ≦ 24 ° in X-ray diffraction.
  7.  太陽電池モジュールの表面又は裏面保護用である、請求項1~6のいずれか一項に記載の1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム。 The copolymer of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate according to any one of claims 1 to 6, which is used for protecting the front or back surface of a solar cell module. the film.
  8.  請求項1~6のいずれか一項に記載の1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムを少なくとも一層含む、太陽電池モジュール用保護シート。 A protective sheet for a solar cell module, comprising at least one copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate according to any one of claims 1 to 6. .
  9.  請求項1~6のいずれか一項に記載の1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムを少なくとも一層含む、太陽電池モジュール用裏面保護シート。 A back surface protection for a solar cell module, comprising at least one copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate according to any one of claims 1 to 6. Sheet.
  10.  太陽電池素子を含む充填層と、前記充填層の表面に配置された表面保護シートと、前記充填層の裏面に配置された裏面保護シートとを備え、前記表面保護シート及び前記裏面保護シートの少なくとも一方は、請求項1~6のいずれか一項に記載の1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムを有する、太陽電池モジュール。 A filling layer including a solar cell element; a surface protection sheet disposed on a surface of the filling layer; and a back surface protection sheet disposed on a back surface of the filling layer, wherein at least the surface protection sheet and the back surface protection sheet. One is a solar cell module having the copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate according to any one of claims 1 to 6.
PCT/JP2011/067967 2010-08-30 2011-08-05 1,4-cyclohexylenedimethylene terephthalate/1,4-cyclohexylene­dimethylene isophthalate copolymer films, protective sheets for a solar cell module, and solar cell module WO2012029499A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100131060A TW201223995A (en) 2010-08-30 2011-08-30 Polyester film and method for producing same
TW100131059A TW201229102A (en) 2010-08-30 2011-08-30 Polyester film and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010192520 2010-08-30
JP2010-192520 2010-08-30

Publications (1)

Publication Number Publication Date
WO2012029499A1 true WO2012029499A1 (en) 2012-03-08

Family

ID=45772604

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2011/067967 WO2012029499A1 (en) 2010-08-30 2011-08-05 1,4-cyclohexylenedimethylene terephthalate/1,4-cyclohexylene­dimethylene isophthalate copolymer films, protective sheets for a solar cell module, and solar cell module
PCT/JP2011/069565 WO2012029761A1 (en) 2010-08-30 2011-08-30 Polyester film and method for producing same
PCT/JP2011/069564 WO2012029760A1 (en) 2010-08-30 2011-08-30 Polyester film and method for producing same

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/069565 WO2012029761A1 (en) 2010-08-30 2011-08-30 Polyester film and method for producing same
PCT/JP2011/069564 WO2012029760A1 (en) 2010-08-30 2011-08-30 Polyester film and method for producing same

Country Status (3)

Country Link
JP (2) JPWO2012029760A1 (en)
TW (3) TW201221544A (en)
WO (3) WO2012029499A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5598178B2 (en) * 2010-09-01 2014-10-01 東洋紡株式会社 Weather resistant polyester film
JP5918604B2 (en) * 2012-04-09 2016-05-18 倉敷紡績株式会社 Transfer film using release film
JP5993613B2 (en) * 2012-04-13 2016-09-14 富士フイルム株式会社 Polyester film, back sheet for solar cell module, and solar cell module
JP6306109B2 (en) * 2012-04-13 2018-04-04 富士フイルム株式会社 Polyester film, back sheet for solar cell module, and solar cell module
KR101594542B1 (en) * 2013-12-30 2016-02-16 에스케이씨 주식회사 Transparent biaxially oriented polyester film and preparation method thereof
KR101647475B1 (en) * 2014-12-26 2016-08-10 에스케이씨 주식회사 Polyester film having high heat resistance
KR101605413B1 (en) 2014-02-12 2016-03-22 에스케이씨 주식회사 Polyester film having high heat resistance
KR101605411B1 (en) 2014-02-21 2016-03-22 에스케이씨 주식회사 Polyester film having high heat resistance
KR101647470B1 (en) * 2014-01-14 2016-08-10 에스케이씨 주식회사 Polyester film having high heat resistance
JP7109159B2 (en) * 2014-09-17 2022-07-29 日産化学株式会社 Film-forming composition containing thermosetting resin
KR102478419B1 (en) * 2014-10-28 2022-12-15 니폰 제온 가부시키가이샤 Resin film and production method for resin film
JP6467928B2 (en) * 2015-01-10 2019-02-13 三菱ケミカル株式会社 Double-sided metal laminated film
KR102001374B1 (en) * 2015-01-10 2019-07-18 미쯔비시 케미컬 주식회사 Double-sided metal laminated film
JP6467942B2 (en) * 2015-01-24 2019-02-13 三菱ケミカル株式会社 Double-sided metal laminated film
JP6467927B2 (en) * 2015-01-10 2019-02-13 三菱ケミカル株式会社 Double-sided metal laminated film
JP6763126B2 (en) * 2015-09-30 2020-09-30 三菱ケミカル株式会社 Metal laminated film
JP6763125B2 (en) * 2015-09-30 2020-09-30 三菱ケミカル株式会社 Metal laminated film
WO2017056523A1 (en) * 2015-09-30 2017-04-06 三菱樹脂株式会社 Film for laminating metal film
JP6805520B2 (en) * 2016-03-29 2020-12-23 三菱ケミカル株式会社 Manufacturing method of polyester film with metal layer
WO2019103370A1 (en) * 2017-11-22 2019-05-31 에스케이케미칼주식회사 Polyester resin composition and biaxially oriented polyester film comprising same
KR102527488B1 (en) * 2021-06-29 2023-05-04 에스케이마이크로웍스 주식회사 Polyester resin composition, polyester film, and laminate for an electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164627A (en) * 1990-10-29 1992-06-10 Diafoil Co Ltd Biaxially oriented polyester film for capacitor
JP2000178349A (en) * 1998-12-18 2000-06-27 Mitsubishi Chemicals Corp Preparation of polycyclohexanedimethylene terephthalete
JP2003041106A (en) * 2001-05-18 2003-02-13 Mitsubishi Chemicals Corp Copolyester resin composition and stretched film
JP2007150084A (en) * 2005-11-29 2007-06-14 Dainippon Printing Co Ltd Solar cell module, rear face protection sheet therefor and rear face lamination therefor
JP2007184402A (en) * 2006-01-06 2007-07-19 Teijin Dupont Films Japan Ltd Polyester film for protecting rear surface of solar cell
JP2008524396A (en) * 2004-12-16 2008-07-10 イーストマン ケミカル カンパニー Biaxially stretched copolyester film and laminate comprising copper
JP2009200385A (en) * 2008-02-25 2009-09-03 Toppan Printing Co Ltd Protective sheet for solar cell and solar cell module using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10126149A1 (en) * 2001-05-30 2002-12-05 Mitsubishi Polyester Film Gmbh Opaque colored, hydrolysis-resistant, biaxially oriented film made of a crystallizable thermoplastic and process for its production
US7147927B2 (en) * 2002-06-26 2006-12-12 Eastman Chemical Company Biaxially oriented polyester film and laminates thereof with copper
JP2008227203A (en) * 2007-03-14 2008-09-25 Toppan Printing Co Ltd Rear face protection sheet for solar cell module and solar cell module using the same
JP2008266600A (en) * 2007-03-23 2008-11-06 Toray Ind Inc Biaxially oriented film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164627A (en) * 1990-10-29 1992-06-10 Diafoil Co Ltd Biaxially oriented polyester film for capacitor
JP2000178349A (en) * 1998-12-18 2000-06-27 Mitsubishi Chemicals Corp Preparation of polycyclohexanedimethylene terephthalete
JP2003041106A (en) * 2001-05-18 2003-02-13 Mitsubishi Chemicals Corp Copolyester resin composition and stretched film
JP2008524396A (en) * 2004-12-16 2008-07-10 イーストマン ケミカル カンパニー Biaxially stretched copolyester film and laminate comprising copper
JP2007150084A (en) * 2005-11-29 2007-06-14 Dainippon Printing Co Ltd Solar cell module, rear face protection sheet therefor and rear face lamination therefor
JP2007184402A (en) * 2006-01-06 2007-07-19 Teijin Dupont Films Japan Ltd Polyester film for protecting rear surface of solar cell
JP2009200385A (en) * 2008-02-25 2009-09-03 Toppan Printing Co Ltd Protective sheet for solar cell and solar cell module using same

Also Published As

Publication number Publication date
JP5914339B2 (en) 2016-05-11
WO2012029761A1 (en) 2012-03-08
TW201229102A (en) 2012-07-16
JPWO2012029761A1 (en) 2013-10-28
JPWO2012029760A1 (en) 2013-10-28
TW201221544A (en) 2012-06-01
TW201223995A (en) 2012-06-16
WO2012029760A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
WO2012029499A1 (en) 1,4-cyclohexylenedimethylene terephthalate/1,4-cyclohexylene­dimethylene isophthalate copolymer films, protective sheets for a solar cell module, and solar cell module
EP1898470B1 (en) Use of a back sheet for photovoltaic modules and resulting photovoltaic module
JP5594959B2 (en) Solar cell element sealing material
JP4968065B2 (en) Solar cell back surface protection sheet and solar cell module using the same
JP2006253264A (en) Rear face protection sheet for solar cell, and solar cell module using the same
JP2008227203A (en) Rear face protection sheet for solar cell module and solar cell module using the same
US20120006388A1 (en) Back protective sheet for solar cell module and solar cell module
KR20120116846A (en) Polymer composition, multi-layered film and photovoltaic modules comprising the same
JP2008270238A (en) Backside protective sheet for solar cell and solar cell module using the same
WO2012091122A1 (en) Laminated moisture-proof film
JP2009289945A (en) Solar battery back sheet and solar battery module
JP2006175764A (en) Polyester film for solar battery
JP5895661B2 (en) Back surface protection sheet for solar cell module and solar cell module
JP6035818B2 (en) Back surface protection sheet for solar cell module and solar cell module
WO2012105512A1 (en) Surface protective material for solar cell, and solar cell module produced using same
JP5286643B2 (en) Solar cell back surface protection sheet and solar cell module using the same
JP2008270685A (en) Rear surface protective sheet for solar cell
JP2009188072A (en) Layered product and rear surface protective sheet for solar cell
JP2010212356A (en) Solar cell module sealing sheet and solar cell module
JP2013199066A (en) Gas barrier film, back surface protective sheet for solar cell module and front surface protective sheet for solar cell using the same
US20140360581A1 (en) Protective material for solar cells
JP2012064927A (en) Easily adhesive black polyester film for solar battery and back sheet using the same
JP2012148561A (en) Laminated moisture-proof film
JP2012054276A (en) Rear surface protective sheet for solar cell and solar cell module using it
JP2012213937A (en) Moisture-proof laminate sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP