WO2012029760A1 - Polyester film and method for producing same - Google Patents

Polyester film and method for producing same Download PDF

Info

Publication number
WO2012029760A1
WO2012029760A1 PCT/JP2011/069564 JP2011069564W WO2012029760A1 WO 2012029760 A1 WO2012029760 A1 WO 2012029760A1 JP 2011069564 W JP2011069564 W JP 2011069564W WO 2012029760 A1 WO2012029760 A1 WO 2012029760A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester film
ring
film
dicarboxylic acid
film according
Prior art date
Application number
PCT/JP2011/069564
Other languages
French (fr)
Japanese (ja)
Inventor
正志 中野
西川 高宏
伊藤 正道
友彦 小田川
晴紀 安田
佳幸 柚原
Original Assignee
倉敷紡績株式会社
長瀬産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 倉敷紡績株式会社, 長瀬産業株式会社 filed Critical 倉敷紡績株式会社
Priority to JP2012531883A priority Critical patent/JPWO2012029760A1/en
Publication of WO2012029760A1 publication Critical patent/WO2012029760A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a polyester film, particularly a hydrolysis-resistant polyester film, and a method for producing the same.
  • PET films are generally excellent in heat resistance and weather resistance, they are often used for solar cell back sheets and motor insulation films.
  • PET film is poor in hydrolysis resistance, for example, when used in a solar cell backsheet, there is a risk of deterioration of the filler and corrosion of the wiring due to permeation of water vapor (moisture) during long-term use. It could not be said that there was sufficient reliability.
  • PCTA polycondensation of a diol component composed of 1,4-cyclohexanedimethanol and a dicarboxylic acid component composed of terephthalic acid and isophthalic acid
  • Patent Document 1 a polyester obtained by polycondensation of a diol component composed of 1,4-cyclohexanedimethanol and a dicarboxylic acid component composed of terephthalic acid and isophthalic acid.
  • the PCTA film is superior in hydrolysis resistance to the PET film, it does not have sufficient hydrolysis resistance. Further, the PCTA film has a problem that it has poor heat resistance and weather resistance as compared with the PET film.
  • An object of the present invention is to provide a polyester film that is sufficiently excellent in hydrolysis resistance, improved in heat resistance and weather resistance, and a method for producing the same.
  • the present invention is a biaxially oriented polyester film containing a polyester resin formed by polycondensation of at least a diol component and a dicarboxylic acid component,
  • the diol component is of the general formula (I); Wherein ring A is a cyclohexane ring or a benzene ring; n1 is an integer from 0 to 4; R 1 is selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 3 carbon atoms, and n1 is 2 When the integer is from 4 to 4, the 2 to 4 R 1 are each independently selected from the group).
  • the dicarboxylic acid component is of the general formula (II); (Wherein ring B is a benzene ring when ring A is a cyclohexane ring, and is a cyclohexane ring when ring A is a benzene ring; n2 is an integer from 0 to 4; R 2 is a hydrogen atom and Selected from the group consisting of alkyl groups having 1 to 3 carbon atoms, and when n2 is an integer of 2 to 4, the 2 to 4 R 2 are each independently selected from the group; 3 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms).
  • the present invention relates to a polyester film having a tensile strength retention ratio of 50% or more after 100 hours of a pressure cooker test at 120 ° C., 100% RH and 2 atm.
  • the present invention also relates to a method for producing a polyester film in which a precursor film containing the polyester resin is produced and then the precursor film is biaxially stretched.
  • the polyester film of the present invention is sufficiently excellent in hydrolysis resistance and has good heat resistance and weather resistance.
  • FIG. 1 It is a schematic block diagram of an example of the solar cell provided with the polyester film of this invention. It is sectional drawing of the back surface protection sheet for solar cell modules of one Embodiment of the invention which concerns on the basic application (Japanese Patent Application No. 2010-192520) of this application. It is a schematic sectional drawing of the solar cell module of one Embodiment of the invention which concerns on the basic application of this application. 6 is a graph showing the change over time in the tensile strength retention rate in the pressure cooker test for the films of Examples 1 and 2 and Comparative Examples 1 to 3 according to the basic application of the present application.
  • FIG. 6 is a graph showing the change over time in the tensile elongation retention rate in the pressure cooker test for the films of Examples 1 and 2 and Comparative Examples 1 to 3 according to the basic application of the present application. It is a figure which shows the X-ray-diffraction result of the film of Examples 1 and 2 and the comparative example 2 which concern on the basic application of this application.
  • the polyester film according to the present invention is a biaxially oriented film containing a specific polyester resin.
  • Biaxial orientation means that the polymer molecules constituting the film are oriented mainly in two directions different from each other in the in-plane direction of the film, preferably in two directions substantially perpendicular to each other. For example, it can be achieved by biaxial stretching described later.
  • a film containing a specific polyester resin as a biaxially oriented film, sufficiently excellent hydrolysis resistance is exhibited as compared with a film that is not biaxially oriented, heat resistance and weather resistance. Can be improved.
  • polyester resin A The specific polyester resin contained in the polyester film of the present invention is a polyester resin obtained by polycondensation of at least a diol component and a dicarboxylic acid component, and the diol component is A diol compound represented by the general formula (I) is included, and a dicarboxylic acid component includes a dicarboxylic acid compound represented by the following general formula (II).
  • ring A is a cyclohexane ring or a benzene ring, preferably a cyclohexane ring.
  • the two methylol groups on ring A are in a 1,2-substituted, 1,3-substituted or 1,4-substituted relationship, preferably 1,3-substituted or 1,4-substituted, more preferably 1, 4-Substitutional relationship.
  • n1 is an integer of 0 to 4, preferably 0 or 1, more preferably 0.
  • R 1 is selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 3 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, an i-propyl group, and an n-propyl group.
  • R 1 is preferably a hydrogen atom or a methyl group, more preferably a hydrogen atom.
  • n1 is an integer of 2 to 4
  • the 2 to 4 R 1 s are each independently selected from the above group, and preferably are simultaneously hydrogen atoms.
  • diol compound represented by the general formula (I) examples include, for example, a cyclohexane diol compound represented by the general formula (Ia) and a benzene diol compound represented by the general formula (Ib).
  • a cyclohexane diol compound is preferred.
  • n1 and R 1 are the same as in formula (I).
  • the cyclohexane diol compound represented by the general formula (Ia) is a diol compound in which the ring A is a cyclohexane ring in the general formula (I).
  • Specific examples thereof include, for example, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,2-bis (hydroxymethyl) -3,4,5,6-tetra.
  • 1,3-cyclohexanedimethanol and 1,4-cyclohexanedimethanol are preferred, and 1,4-cyclohexanedimethanol is more preferred.
  • the benzene diol compound represented by the general formula (Ib) is a diol compound in which the ring A is a benzene ring in the general formula (I).
  • Specific examples thereof include, for example, 1,2-bis (hydroxymethyl) benzene, 1,3-bis (hydroxymethyl) benzene, 1,4-bis (hydroxymethyl) benzene, 1,2-bis (hydroxymethyl)- 3,4,5,6-tetramethyl-benzene, 1,3-bis (hydroxymethyl) -2,4,5,6-tetramethyl-benzene, 1,4-bis (hydroxymethyl) -2,3 5,6-tetramethyl-benzene) and the like.
  • 1,3-bis (hydroxymethyl) benzene and 1,4-bis (hydroxymethyl) benzene are preferable, and 1,4-bis (hydroxymethyl) benzene is more preferable.
  • the diol component may contain other diol compounds in addition to the diol compound represented by the general formula (I).
  • a diol compound used as a polyester film raw material can be used, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,2-butane.
  • Aliphatic acids such as diol, 1,3-butanediol, 2,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, polyalkylene glycol
  • diol compounds and diphenyl diol compounds such as 2,2-bis (4′- ⁇ -hydroxyethoxyphenyl) propane.
  • Polyester resin A has a diol component among the diol compounds represented by the above general formula (I) from the viewpoint of hydrolysis resistance, cost, extrusion moldability and crystallinity (stretchability).
  • the content ratio of the diol compound represented by the general formula (I) with respect to the total diol component is preferably 50 mol% or more from the viewpoint of hydrolysis resistance, cost, extrusion moldability, and crystallinity (stretchability). Preferably it is 80 mol% or more, Most preferably, it is 95 mol% or more.
  • a diol component may contain 2 or more types of diol compounds represented by the said general formula (I), and those total content ratios should just be in the said range in that case.
  • the polyester resin A contains, for example, a trifunctional or higher polyhydric alcohol component such as trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, hexanetriol as a constituent monomer. Also good.
  • a trifunctional or higher polyhydric alcohol component such as trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, hexanetriol as a constituent monomer. Also good.
  • the content ratio of the trifunctional or higher polyhydric alcohol component to the total alcohol component is usually 50 mol% or less, preferably 20 mol% or less.
  • ring B is a benzene ring when ring A is a cyclohexane ring, and is a cyclohexane ring when ring A is a benzene ring.
  • the two —COOR 3 groups on ring B are in a 1,2-substituted, 1,3-substituted or 1,4-substituted relationship, preferably 1,3-substituted or 1,4-substituted, more preferably There is a 1,4-substitution relationship.
  • n2 is an integer of 0 to 4, preferably 0 or 1, more preferably 0.
  • R 2 is selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 3 carbon atoms.
  • R 2 is preferably a hydrogen atom or a methyl group, more preferably a hydrogen atom.
  • n2 is an integer of 2 to 4
  • the 2 to 4 R 2 are each independently selected from the above group, and preferably are simultaneously hydrogen atoms.
  • Two R 3 s are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • Specific examples of the alkyl group include the same alkyl groups exemplified in the description of R 1 .
  • Preferable R 3 is each independently a hydrogen atom or a methyl group, more preferably a hydrogen atom at the same time.
  • dicarboxylic acid compound represented by the general formula (II) include, for example, a benzene dicarboxylic acid compound represented by the general formula (IIa) and a cyclohexane dicarboxylic acid compound represented by the general formula (IIb). It is done. A benzene dicarboxylic acid compound is preferred.
  • the benzene dicarboxylic acid compound represented by the general formula (IIa) is a dicarboxylic acid compound in which the ring B is a benzene ring in the general formula (II).
  • Specific examples thereof include, for example, terephthalic acid, isophthalic acid, orthophthalic acid, 5-tert-butylisophthalic acid, phthalic acid, 4,4-biphenyldicarboxylic acid, 4,4-biphenylsulfone dicarboxylic acid, methyl terephthalate, isophthalic acid Methyl, methyl phthalate, 1,2-dicarboxyl-3,4,5,6-tetramethyl-benzene, 1,3-dicarboxyl-2,4,5,6-tetramethyl-benzene, 1,4- And dicarboxyl-2,3,5,6-tetramethyl-benzene.
  • Preferred are terephthalic acid, methyl terephthalate, isophthalic acid,
  • the cyclohexane-based dicarboxylic acid compound represented by the general formula (IIb) is a dicarboxylic acid compound in which the ring B is a cyclohexane ring in the general formula (II).
  • Specific examples thereof include 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,2-dicarboxyl-3,4,5,6-tetramethyl-cyclohexane.
  • 1,3-dicarboxyl-2,4,5,6-tetramethyl-cyclohexane 1,4-dicarboxyl-2,3,5,6-tetramethyl-cyclohexane and the like.
  • 1,4-cyclohexanedicarboxylic acid is preferred.
  • the dicarboxylic acid component may contain other dicarboxylic acid compounds in addition to the dicarboxylic acid compound represented by the general formula (II).
  • dicarboxylic acid compounds used as raw materials for polyester films can be used.
  • 1,4-naphthalenedicarboxylic acid 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid
  • Naphthalene dicarboxylic acid compounds such as 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, diphenyl dicarboxylic acid compounds such as 4,4′-diphenylsulfone dicarboxylic acid, adipic acid, sebacic acid, etc.
  • Examples include aliphatic dicarboxylic acid compounds.
  • Polyester resin A has a dicarboxylic acid component among the dicarboxylic acid compounds represented by the general formula (II) from the viewpoint of hydrolysis resistance, cost, extrusion moldability, and crystallinity (stretchability).
  • the two —COOR 3 groups on ring B in (II) include a 1,4-dicarboxylic acid compound in a 1,4-substituted relationship, more preferably the 1,4-dicarboxylic acid compound and the above-mentioned Including a 1,3-dicarboxylic acid compound in which the two —COOR 3 groups on ring B in general formula (II) are in a 1,3-substituted relationship, most preferably 1,4-dicarboxylic acid compounds (especially terephthalic acid ) And a 1,3-dicarboxylic acid compound (especially isophthalic acid).
  • the content ratio of the dicarboxylic acid compound represented by the general formula (II) with respect to the total dicarboxylic acid component is preferably 50 mol% or more from the viewpoint of hydrolysis resistance, cost, extrusion moldability, and crystallinity (stretchability). More preferably, it is 80 mol% or more, and most preferably 95 mol% or more.
  • the dicarboxylic acid component contains two or more kinds of dicarboxylic acid compounds represented by the above general formula (II)
  • the total content thereof may be within the above range.
  • Polyester resin A may contain a monocarboxylic acid component and / or a trifunctional or higher polyvalent carboxylic acid component as a constituent monomer in addition to the above-described dicarboxylic acid component.
  • the polyester resin A also preferably has a glass transition temperature of 40 to 250 ° C., particularly 70 to 200 ° C.
  • the glass transition temperature can be measured based on JIS K7121.
  • the polyester resin A also preferably has a melting point of 180 to 350 ° C, particularly 200 to 300 ° C.
  • the melting point can be measured based on JIS K7121.
  • the polyester resin A can be produced by polycondensing the above-described monomer components by a known method, or can be obtained as a commercial product.
  • copolyester (copolyester) 13319 made by Eastman) etc. are mentioned, for example.
  • Copolyester 13319 (Eastman) is a polycondensate of 1,4-cyclohexanedimethanol with terephthalic acid and isophthalic acid.
  • the polyester resin A may contain two or more kinds of polyester resins A having different monomer compositions, glass transition temperatures, melting points and / or carboxyl terminal concentrations within the above-described ranges.
  • the polyester film of the present invention may contain other polymers in addition to the above-mentioned polyester resin A, but from the viewpoint of further improving hydrolysis resistance, the polymer component in the polyester film is composed only of the above-mentioned polyester resin A. Is preferred.
  • the content ratio of the polyester resin A to the polymer component in the polyester film is preferably 60% by weight or more, more preferably 80% by weight or more, and still more preferably 95% by weight or more, from the viewpoint of further improving hydrolysis resistance. And most preferably 100% by weight.
  • polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polytrimethylene terephthalate;
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • Other polymers such as polyetherimide, polyphenylene sulfite, polyether sulfone, and polyphenylene ether may be contained in the polyester film.
  • the polyester film may contain additives such as antioxidants, ultraviolet absorbers, colorants, light stabilizers, lubricants, crystal nucleating agents, and flame retardants. From the viewpoint of heat resistance, the polyester film preferably contains an antioxidant. From the viewpoint of weather resistance, the polyester film preferably contains an ultraviolet absorber.
  • antioxidant those used as an antioxidant in the polyester film field can be used, and examples thereof include a phenol-based antioxidant, a phosphorus-based antioxidant, and a sulfur-based antioxidant.
  • a phenolic antioxidant is an organic compound containing a phenolic skeleton, and a phenolic skeleton-containing organic compound conventionally used as a phenolic antioxidant in the field of polyester film can be used.
  • the phenolic antioxidant can be obtained as a commercial product.
  • Commercially available phenolic antioxidants include, for example, Sumilizer GA-80 (manufactured by Sumitomo Chemical Co., Ltd.), Adekastab AO-60, Adekastab AO-330 (both manufactured by ADEKA), Irganox 245 (manufactured by BASF), Sianox 1790 (manufactured by CYTEC).
  • the phosphorus-based antioxidant is an organic compound containing a phosphorus atom, and a phosphorus atom-containing organic compound conventionally used as a phosphorus-based antioxidant in the field of polyester film can be used.
  • Phosphorous antioxidants can be obtained as commercial products. Examples of commercially available phosphorous antioxidants include Sumilizer GP (manufactured by Sumitomo Chemical Co., Ltd.), Adeka Stub PEP-36 (manufactured by ADEKA), Irgafos 38, Irgafos 168 (both manufactured by BASF), and the like.
  • the sulfur-based antioxidant is an organic compound containing a sulfur atom, and a sulfur atom-containing organic compound conventionally used as a sulfur-based antioxidant in the polyester film field can be used.
  • the sulfur-based antioxidant can be obtained as a commercial product. Examples of commercially available sulfur-based antioxidants include Sumilyzer MB (manufactured by Sumitomo Chemical Co., Ltd.) and Adeka Stub AO-412S (manufactured by ADEKA).
  • the content of the antioxidant is preferably 0.03 to 2.5% by weight with respect to the polymer component in the polyester film from the viewpoint of heat resistance.
  • the total amount thereof may be within the above range.
  • the phenol-based antioxidant, the phosphorus-based antioxidant and the sulfur-based antioxidant are each 0.05 to 2.0% by weight, particularly 0.1 to 1%, based on the polymer component. 0.0 is preferable.
  • UV absorber those used as UV absorbers in the field of polyester film can be used, and examples thereof include benzoxazine UV absorbers, triazine UV absorbers, and benzotriazole UV absorbers.
  • the benzoxazine-based ultraviolet absorber is an organic compound containing a benzoxazine skeleton, and a benzoxazine skeleton-containing organic compound conventionally used as a benzoxazine-based ultraviolet absorber in the field of polyester film can be used.
  • a benzoxazine-based ultraviolet absorber can be obtained as a commercial product. Examples of commercially available benzoxazine-based ultraviolet absorbers include Siasorb UV-3638 (manufactured by CYTEC).
  • the triazine-based ultraviolet absorber is an organic compound containing a triazine skeleton, and a triazine skeleton-containing organic compound conventionally used as a triazine-based ultraviolet absorber in the polyester film field can be used.
  • Triazine ultraviolet absorbers can be obtained as commercial products. Examples of commercially available triazine ultraviolet absorbers include Tinuvin 1577ED and Tinuvin 479 (both manufactured by BASF).
  • the benzotriazole ultraviolet absorber is an organic compound containing a benzotriazole skeleton, and a benzotriazole skeleton-containing organic compound conventionally used as a benzotriazole ultraviolet absorber in the field of polyester films can be used.
  • a benzotriazole type ultraviolet absorber can be obtained as a commercial product. Examples of commercially available products of benzotriazole-based ultraviolet absorbers include SUMISORB 250 (manufactured by Sumitomo Chemical Co., Ltd.), ADK STAB LA-31 (manufactured by ADEKA), and Tinuvin 234 (manufactured by BASF).
  • the content of the ultraviolet absorber is preferably 0.1 to 2.0% by weight, particularly 0.15 to 1.5% by weight, based on the polymer component in the polyester film, from the viewpoint of weather resistance.
  • the total amount thereof may be within the above range.
  • a phenol-based antioxidant, a phosphorus-based antioxidant and a sulfur-based antioxidant are contained within the above ranges, and further an ultraviolet absorber, particularly benzoxazine.
  • an ultraviolet absorber particularly benzoxazine.
  • any pigment and dye used in the polyester film field can be used.
  • the content of the colorant is not particularly limited as long as the object of the present invention is achieved, and for example, 1 to 30% by weight with respect to the polymer component is preferable.
  • the polyester film of the present invention can be produced by the following method.
  • the polyester resin A and other polymers and additives contained as required are mixed in a predetermined ratio, melted and kneaded to produce a precursor film, and then the obtained precursor film is biaxially stretched. .
  • a known method can be adopted as a method for producing the precursor film. For example, a mixture of desired components may be melted and kneaded with a twin screw extruder, and the kneaded product may be extruded from a T die and then cooled.
  • the thickness of the precursor film is not particularly limited, and is, for example, 100 to 2000 ⁇ m, preferably 120 to 1000 ⁇ m.
  • Biaxial stretching may be simultaneous biaxial stretching in which stretching is performed simultaneously in the MD direction and the TD direction, or after stretching in one direction of the MD direction or the TD direction, stretching is performed in the other direction.
  • Sequential biaxial stretching may be performed.
  • simultaneous biaxial stretching is performed.
  • the sequential stretching method is generally used.
  • the film formed by simultaneous biaxial stretching has better film formability than the film subjected to sequential biaxial stretching. This is because the hydrolysis resistance is improved after the maintenance.
  • simultaneous biaxial stretching is preferred in view of the higher level of hydrolysis resistance required in the case of solar cell backsheets.
  • desired hydrolysis resistance cannot be obtained even if uniaxial stretching is performed instead of biaxial stretching.
  • the MD direction is a so-called flow direction, and means the direction (longitudinal direction) of the precursor film taken from the extruder.
  • the TD direction is a so-called width direction and means a direction orthogonal to the MD direction.
  • the stretching ratio and the stretching temperature are not particularly limited as long as the object of the present invention is achieved, but the following ranges are preferable. This is because the hydrolysis resistance is further improved.
  • the draw ratio is within a range in which breakage of 2.0 times or more does not occur in both the MD direction and the TD direction, and is preferably 2.0 to 5.0 times from the viewpoint of further improving the hydrolysis resistance, and more preferably 2.3 to 3.5 times.
  • the draw ratios in the MD direction and the TD direction are preferably approximated. Specifically, when the MD direction draw ratio is P MD and the TD direction draw ratio is P TD , “P TD ⁇ P MD ” is preferably ⁇ 0.5 to +0.5, more preferably ⁇ 0. .3 to +0.3.
  • the draw ratio of MD direction is a ratio based on MD direction length just before extending
  • the stretching temperature is usually Tg P or higher and Tg P + 40 ° C. or lower, from the viewpoint of further improving hydrolysis resistance, preferably Tg P above, Tg P + 30 ° C. or less, more preferably Tg P more or less Tg P + 25 °C.
  • the stretching temperature is the atmospheric temperature at which stretching is performed.
  • the Tg P of the polymer component is the sum of values obtained by multiplying the glass transition temperature of each polymer by the content ratio of the polymer.
  • the heat setting is a process for fixing the orientation of the polymer molecules by holding the stretched film at a temperature equal to or higher than the stretching temperature.
  • the heat setting temperature is Tg P + 50 ° C. or higher, Mp P or lower, preferably Tg P + 100 ° C. when the glass transition temperature of the polymer component constituting the film is Tg P (° C.) and the melting point is Mp P (° C.).
  • the Mp P is ⁇ 20 ° C. or lower.
  • the heat setting temperature is an atmospheric temperature for holding the film.
  • the Mp P of the polymer component is the sum of values obtained by multiplying the melting point of each polymer by the content ratio of the polymer.
  • the thickness of the polyester film of the present invention is not particularly limited, and is, for example, 20 to 150 ⁇ m, preferably 25 to 125 ⁇ m.
  • the polyester film of the present invention exhibits extremely excellent hydrolysis resistance.
  • the tensile strength retention after 100 hours of a pressure cooker test at 120 ° C., 100% RH and 2 atm is 50% or more, preferably 80% or more, and most preferably 90%. Achieve at least%.
  • the tensile strength retention rate after 150 hours of the pressure cooker test is preferably 10% or more, more preferably 40% or more, and most preferably 50% or more.
  • the pressure cooker test is an accelerated test for evaluating the hydrolysis resistance of the film, and is performed by a method described later.
  • the polyester film of the present invention has good heat resistance. For example, heat resistance is improved as compared with a precursor film before biaxial stretching.
  • the tensile strength retention after 100 hours of oven test at 200 ° C. is 5% or more, preferably 50% or more, more preferably 80% or more.
  • the tensile strength retention rate may exceed 100% and may be about 150%.
  • the oven test is an accelerated test for evaluating the heat resistance of the film, and is performed by a method described later.
  • the polyester film of the present invention has good weather resistance.
  • the weather resistance is improved as compared with the precursor film before biaxial stretching.
  • the tensile strength retention after 500 hours of the sunshine weatherometer test is 25% or more, preferably 40% or more, more preferably 50% or more.
  • the sunshine weatherometer test is an accelerated test for evaluating the weather resistance of a film, and is performed by a method described later.
  • FIG. 1 is a schematic configuration diagram of an example of a solar cell 1.
  • a solar cell 1 includes an element sealing layer 2 in which a solar cell element 22 provided with wiring 21 is embedded, a surface protective layer 3 that protects the surface side of the element sealing layer 2, and the element sealing.
  • the back sheet layer 4 that protects the back side of the stop layer 2 is provided, and a frame 5 is mounted at the end.
  • the backsheet layer 4 has, in order from the element sealing layer 2 side, a light reflecting layer 41, a gas barrier layer 42, and a hydrolysis-resistant layer 43, and the hydrolysis-resistant layer 43 is made of the polyester film of the present invention. Yes.
  • the backsheet layer 4 is not limited to the above structure as long as it has a hydrolysis-resistant layer 43 outside the gas barrier layer 42, and the hydrolysis-resistant layer 43 only needs to be made of the polyester film of the present invention. .
  • the precursor film was biaxially stretched and heat-set under the stretching conditions described in Table 1 or Table 2. The heat setting was performed by maintaining the tension during stretching at a predetermined temperature.
  • PCTA copolyester 13319 (manufactured by Eastman, polycondensate of 1,4-cyclohexanedimethanol with terephthalic acid and isophthalic acid, Tg 92 ° C., melting point 285 ° C.) was used.
  • PET polyethylene terephthalate (Mn 15000, Tg 75 ° C., melting point 265 ° C., terminal carboxyl group concentration 30 equivalent / ton) was used.
  • the film was allowed to stand for 100 hours in a hot-air circulating oven set to an atmosphere of 200 ° C.
  • the film is removed from the oven, the tensile strength was measured to determine a retention M 3 with respect to the tensile strength before the test.
  • the tensile strength was measured according to JIS K7127; 1999 in the MD direction. A; 80 ⁇ M 3 (best); ⁇ : 50 ⁇ M 3 ⁇ 80% (good); ⁇ : 30 ⁇ M 3 ⁇ 50% (no problem in practical use); ⁇ : M 3 ⁇ 30% (practical problem).
  • a sunshine weatherometer test was conducted with a weather resistance tester specified in JIS B7753.
  • the weathering tester is an accelerated weathering tester that irradiates a sample with ultraviolet light and sprays water, and the black panel temperature is 63 ° C., followed by irradiation for 102 minutes, and spraying for 18 minutes as a cycle.
  • the film was left for 500 hours.
  • the film is removed from the tester, the tensile strength was measured to determine a retention M 4 for tensile strength before the test.
  • the tensile strength was measured according to JIS K7127; 1999 in the MD direction. ⁇ ; 50 ⁇ M 4 (best); O; 40 ⁇ M 4 ⁇ 50% (good); ⁇ : 30 ⁇ M 4 ⁇ 40% (no problem in practical use); X: M 4 ⁇ 30% (practical problem).
  • Stretch ratio (MD) 3, stretch temperature 110 ° C, heat setting temperature 230 ° C.
  • Biaxial stretching (5) conditions Stretched in the MD and TD directions simultaneously. Stretch ratio (MD ⁇ TD) 1.8 ⁇ 1.8, stretch temperature 110 ° C., heat setting temperature 230 ° C.
  • the polyester film of the present invention is useful for applications requiring hydrolysis resistance, heat resistance and weather resistance, particularly hydrolysis resistance, for example, back sheets for solar cells and insulating films for motors.
  • the present invention relates to a copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate, a protective sheet for a solar cell module, and a solar cell module.
  • Solar cell power generation systems are expected as a clean energy source to replace fossil fuels.
  • a solar cell power generation system uses a solar cell module in which an element group in which several to several tens of solar cell elements are wired in series or in parallel is protected by various packages.
  • the solar cell module is generally covered with white plate tempered glass on the surface directly irradiated with sunlight, a solar cell element group is arranged below it, and the gap is filled with transparent ethylene, vinyl, acetate resin, etc.
  • the back surface is protected by a sheet made of a weather resistant plastic material or the like (for example, Patent Documents 1 and 2).
  • the solar cell module protective sheet (particularly the back surface protective sheet) is required to have weather resistance, particularly hydrolysis resistance. This is because the protective sheet may be decomposed and peeled off by moisture such as rain while being used outdoors for a long time, which may cause corrosion of the exposed wiring and affect the output of the module.
  • Patent Document 1 JP 2000-243999
  • Patent Document 2 JP 2008-235603 [Summary of Invention] [Problems to be solved by the invention]
  • a polyethylene terephthalate (PET) film or a polyethylene naphthalate (PEN) film has insufficient hydrolysis resistance and cannot be practically used as a base material for a back protective sheet for a solar cell module.
  • an object of this invention is to provide the film excellent in hydrolysis resistance, the protection sheet for solar cell modules using the same, and a solar cell module.
  • a copolymer film of specific 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate has excellent hydrolysis resistance and is used for a solar cell module.
  • the present invention has been conceived by finding it suitable for a base material for a protective sheet.
  • the present invention provides a copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a glass transition temperature measured by DMA method of 130 ° C. or higher.
  • the present invention also provides a copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a glass transition temperature measured by the TMA method of 200 ° C. or higher. .
  • the present invention provides a co-polymerization of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a maximum peak in the range of 22 ° ⁇ 2 ⁇ ⁇ 24 ° in X-ray diffraction.
  • These copolymer films of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate are excellent in hydrolysis resistance.
  • the present invention provides a protective sheet for a solar cell module, comprising at least one copolymer film of any of the above 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate.
  • a protective sheet for a solar cell module is excellent in hydrolysis resistance and can withstand long-term use of the solar cell module.
  • the protective sheet for a solar cell module is particularly preferably used as a back surface protective sheet for a solar cell module.
  • the present invention includes a filling layer including a solar cell element, a surface protection sheet disposed on the surface of the filling layer, and a back surface protection sheet disposed on the back surface of the filling layer, the surface protection sheet and the back surface protection sheet.
  • a solar cell module having a copolymer film of any of the aforementioned 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate.
  • FIG. 2 is a cross-sectional view of a back protective sheet for a solar cell module according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a solar cell module according to an embodiment of the present invention.
  • FIG. 4 is a graph showing changes with time in tensile strength retention in a pressure cooker test for the films of Examples 1 and 2 and Comparative Examples 1 to 3.
  • FIG. 5 is a graph showing the change over time in tensile elongation retention in the pressure cooker test for the films of Examples 1 and 2 and Comparative Examples 1 to 3.
  • FIG. 6 is a diagram showing the X-ray diffraction results of the films of Examples 1 and 2 and Comparative Example 2.
  • the copolymer film of 1,4-cyclohexylene dimethylene terephthalate and 1,4-cyclohexylene dimethylene isophthalate of this embodiment is composed of 1,4-cyclohexylene dimethylene terephthalate and 1,4-cyclohexylene dimethylene. It consists of a resin composition containing a copolymer with isophthalate (hereinafter referred to as “copolymer A”).
  • the molar ratio of terephthalate to isophthalate is not particularly limited, but is usually 99.9: 0.1 to 50:50, preferably about 99: 1 to 70:30.
  • the intrinsic viscosity (IV value) of the copolymer A is preferably 0.5 to 1.0 dl / g, and more preferably 0.75 to 1.0 dl / g.
  • the IV value is obtained as follows. That is, copolymer A is dissolved in a mixed solvent of 60% by mass of phenol and 40% by mass of 1,1,2,2-tetrachloroethylene so as to have a concentration of 0.5 g / 100 ml.
  • the drop time of the solution in the capillary viscometer is measured at 25 ° C., and this is taken as ts. Moreover, the drop time in the capillary viscometer only of a solvent is measured, and this is set to.
  • the content ratio of the copolymer A in the resin composition containing the copolymer A is preferably 50 to 100% by mass, more preferably 60 to 100% by mass, and 70 to 100% by mass from the viewpoint of further improving the hydrolysis resistance. % Is more preferable.
  • the resin composition containing the copolymer A may appropriately include organic substances other than the copolymer A, inorganic substances, and various additives.
  • organic substances other than the copolymer A include cyclic and linear copolymer A oligomers, monomers of the acid component and glycol component constituting the copolymer A, low molecular weight reactants derived therefrom, and other than the copolymer A And various additives.
  • resins other than the copolymer A thermoplastic polyesters such as PET, PBT, PEN, polypropylene naphthalate, polybutylene naphthalate, etc., thermosetting polyester, nylon 6, nylon 66, nylon 11, nylon 12, etc.
  • Examples thereof include polyamide, polycarbonate, polyacetal, polystyrene, ABS resin, polyurethane, fluororesin, silicon resin, polyphenylene sulfite resin, cellulose, polyphenylene ether resin, and copolymer resins thereof.
  • inorganic substances include inorganic fillers such as glass fiber, carbon fiber, talc, mica, wollastonite, kaolin clay, layered silicate, calcium carbonate, titanium dioxide, and silica dioxide, inorganic lubricants, polymerization catalyst residues, and the like.
  • inorganic fillers such as glass fiber, carbon fiber, talc, mica, wollastonite, kaolin clay, layered silicate, calcium carbonate, titanium dioxide, and silica dioxide, inorganic lubricants, polymerization catalyst residues, and the like.
  • Additives include organic and inorganic dyes and pigments, matting agents, heat stabilizers, flame retardants, antistatic agents, antifoaming agents, color adjusting agents, antioxidants, ultraviolet absorbers, crystal nucleating agents. , Whitening agents, lubricants, impurity scavengers, thickeners, surface conditioners and the like. Among these, it is preferable to include a heat stabilizer and a trapping agent for low molecular weight volatile impurities.
  • the heat stabilizer pentavalent and / or trivalent phosphorus compounds, hindered phenol compounds and the like are preferable, and as a trapping agent for low molecular weight volatile impurities, polymers and oligomers of polyamide and polyesteramide, amide groups and amine groups are preferred. Preferred are low molecular weight compounds having
  • the copolymer A film of this embodiment has a glass transition temperature measured by DMA method of 130 ° C. or higher.
  • the glass transition temperature measured by the DMA method is preferably 140 ° C. or higher, more preferably 150 ° C. or higher.
  • there is no upper limit of the glass transition temperature measured by the DMA method it is usually 200 ° C. or lower, preferably 180 ° C. or lower, preferably 170 ° C. or lower, and more preferably 160 ° C. or lower.
  • the DMA method is the following method. That is, the test piece is heated from room temperature at a rate of 5 ° C./min, the dynamic viscoelasticity and loss tangent of the test piece are measured using a viscoelasticity measuring device, and the glass transition temperature is calculated from the peak temperature of the loss tangent. Can be requested.
  • the measurement frequency is 1 Hz.
  • the copolymer A film of this embodiment has a glass transition temperature measured by the TMA method of 200 ° C. or higher.
  • the glass transition temperature measured by the TMA method is preferably 210 ° C. or higher, more preferably 220 ° C. or higher, still more preferably 230 ° C. or higher, and particularly preferably 235 ° C. or higher.
  • the glass transition temperature measured by the TMA method it is usually 260 ° C. or lower, preferably 255 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 245 ° C. or lower.
  • the TMA method is the following method. That is, the temperature of the test piece is raised from room temperature at a rate of 10 ° C./min, the amount of thermal expansion in the thickness direction is measured using a thermal analyzer, and a graph showing the relationship between the temperature and the amount of thermal expansion is drawn. . A tangent line is drawn on the curves before and after the glass transition point, and the glass transition temperature can be obtained from the intersection of the tangent lines.
  • the copolymer A film of this embodiment has a maximum peak in the range of 22 ° ⁇ 2 ⁇ ⁇ 24 ° in X-ray diffraction.
  • the copolymer A film of this embodiment is excellent in hydrolysis resistance.
  • the reason why the copolymer A film according to this embodiment has such characteristics is not clear, but one factor is as follows.
  • the characteristics relating to the glass transition temperature and the maximum peak described above are related to the fact that the copolymer A in the copolymer A film of the present embodiment is crystallized to some extent. And it is thought that hydrolysis resistance becomes high when the copolymer A is crystallized to some extent (preferably 20% or more, more preferably 30% or more in crystallinity).
  • the breaking strength of the copolymer A film of this embodiment is preferably 80 MPa or more, more preferably 90 MPa or more, and more preferably 100 MPa or more in both the MD direction and the TD direction. More preferably it is.
  • the elongation at break of the copolymer A film of this embodiment is preferably 150 MPa or less, more preferably 120 MPa or less, and more preferably 80 MPa or less in both the MD direction and the TD direction. More preferably.
  • the dielectric breakdown voltage of the present embodiment is preferably 90 kV / mm or more, more preferably 110 kV / mm or more, and further preferably 130 kV / mm or more in the measurement based on ASTM D-149. .
  • the thermal expansion coefficient (CTE) of this embodiment is preferably 80 ppm / ° C. or less, more preferably 60 ppm / ° C. or less in both the MD and TD directions, as measured by the TMA method (50 to 100 ° C.). Preferably, it is 40 ppm / ° C. or less.
  • the thickness of the copolymer A film of the present embodiment can be appropriately selected depending on the thickness of the back protective sheet for solar cell module and the required performance, but is preferably 10 ⁇ m to 500 ⁇ m, and preferably 20 ⁇ m to 300 ⁇ m. It is more preferable that the thickness is 30 ⁇ m to 200 ⁇ m. By setting it as such a range, while it becomes easy to manufacture a film, intensity
  • the thickness unevenness is preferably within ⁇ 10%, more preferably within ⁇ 7%, and further preferably within ⁇ 5%.
  • the copolymer A film according to this embodiment can be produced as follows. First, a copolymer A resin (for example, pellets) as a raw material is prepared.
  • the copolymer A resin can be produced by polycondensing 1,4-cyclohexanedimethanol, terephthalic acid, and isophthalic acid by a known method. Further, for example, the copolymer A pellet is also commercially available from Eastman, for example, under the trade name “Eastman Copolyester 13319”. And copolymer A resin is fuse
  • melt molding method in which a resin composition containing the copolymer A is extruded from a die in a molten state, a solution in which the resin composition is dissolved in a solvent is applied onto a support, and then the solvent The solution cast method etc. which dry is mentioned.
  • the melt molding method is most preferable because it is excellent in productivity and environmental suitability and can obtain a film in one step.
  • a method using a T die or an I die, a water-cooled method, and an air-cooled inflation method are preferable.
  • the above-described copolymer A film according to this embodiment can be obtained by stretching the formed unstretched copolymer A film.
  • the stretching conditions and the stretching method are not particularly limited, and may be appropriately adjusted within a range in which the above glass transition temperature is obtained or a maximum peak is obtained in a predetermined angle range in X-ray diffraction.
  • the stretching direction may be uniaxial or biaxial, but biaxial is preferred.
  • the stretching method is not particularly limited, and various methods such as roll stretching and tenter stretching can be used alone or in any combination.
  • the stretch ratio is not particularly limited. For example, it can be 2 to 5 times in the MD (machine direction) direction and 2 to 5 times in the TD (transverse direction) direction.
  • FIG. 2 shows an example of the configuration of the back surface protection sheet for solar cell modules of the present invention (hereinafter, sometimes simply referred to as “back surface protection sheet”).
  • the back surface protection sheet 11 has a configuration in which film base materials 30 and 32 having heat resistance are laminated on both surfaces of the gas barrier film 20.
  • the gas barrier film 20 is obtained by providing a vapor deposition layer 12 made of an inorganic compound on one surface of a substrate 10.
  • the base material 10 the above-mentioned copolymer A film can be used.
  • the film base materials 30 and 32 having heat resistance used in the present embodiment may be any film having heat resistance, such as a polyethylene terephthalate (PET) film or a vinyl fluoride resin (PVF) film, a vinylidene fluoride resin ( PVDF) film, trifluoroethylene chloride (PCTFE) film, ethylene-tetrafluoroethylene copolymer (ETFE) film, polytetrafluoroethylene (PTFE) film, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer Examples thereof include a fluorine-based substrate selected from (PFA) films.
  • the copolymer A film can also be used suitably as the film base materials 30 and 32 which have heat resistance.
  • the thickness of the film base materials 30 and 32 is not particularly limited, and is preferably 3 to 200 ⁇ m, and more preferably 6 to 30 ⁇ m.
  • the material of the vapor deposition layer 12 is not particularly limited, and examples thereof include aluminum oxide, silicon oxide, tin oxide, magnesium oxide, zinc oxide, and a mixture of two or more thereof.
  • the thickness of the vapor deposition layer 12 is not particularly limited, and is preferably 5 to 300 nm, for example, and more preferably 10 to 150 nm.
  • a dry lamination laminating method can be employed for laminating.
  • an adhesive for dry lamination it is necessary that the adhesive strength does not cause delamination due to deterioration when used outdoors for a long period of time, and that the adhesive does not turn yellow, etc., and is compatible with high heat resistance, moisture heat resistance, etc. Therefore, it is desirable to use a resin or the like as a main component of the vehicle constituting the adhesive which can be crosslinked or cured to form a three-dimensional network crosslinked structure.
  • the adhesive constituting the adhesive layer for laminating preferably forms a crosslinked structure by reaction energy consisting of heat or light in the presence of a curing agent or a crosslinking agent.
  • a curing agent or a crosslinking agent for example, laminating by reaction energy consisting of heat or light in the presence of an aliphatic or alicyclic isocyanate such as a two-component curable polyurethane adhesive, or an isocyanate curing agent or crosslinking agent such as an aromatic isocyanate.
  • an aliphatic or alicyclic isocyanate such as a two-component curable polyurethane adhesive
  • an isocyanate curing agent or crosslinking agent such as an aromatic isocyanate.
  • aliphatic isocyanate for example, 1,6-hexamethylene diisocyanate (HDI)
  • alicyclic isocyanate for example, isophorone diisocyanate (IPDI)
  • aromatic isocyanate for example, tri Range isocyanate (TDI), diphenylmethane diisocyanate (MDI), naphthylene diisocyanate (NDI), tolidine diisocyanate (TODI), xylylene diisocyanate (XDI), and the like can be used.
  • HDI 1,6-hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • TDI tri Range isocyanate
  • MDI diphenylmethane diisocyanate
  • NDI naphthylene diisocyanate
  • TODI tolidine diisocyanate
  • XDI xylylene diisocyanate
  • an ultraviolet absorber or a light stabilizer can be added in order to prevent ultraviolet degradation or the like.
  • the amount used varies depending on the particle shape, density, etc., but is preferably about 0.1 to 10% by weight.
  • the adhesive can be applied, for example, by a coating method such as a roll coating method, a gravure roll coating method, a kiss coating method, or the like, or a printing method, and the coating amount is 2 to 20 g / m 2 (dry state) ) Position, preferably in the range of 3 to 10 g / m 2 (dry state).
  • a coating method such as a roll coating method, a gravure roll coating method, a kiss coating method, or the like, or a printing method
  • the coating amount is 2 to 20 g / m 2 (dry state) ) Position, preferably in the range of 3 to 10 g / m 2 (dry state).
  • the back protective sheet for a solar cell module of the present invention thus obtained is particularly excellent in hydrolysis resistance because it has the above-mentioned copolymer A film. Therefore, such a back surface protection sheet for solar cells can protect the solar cells over a long period of time and is inexpensive.
  • the structure of the back surface protection sheet for solar cell modules is not limited to said structure.
  • a transparent primer layer may be provided between the vapor-deposited layer 12 and the base material 10 in order to improve their adhesion.
  • the resin for the transparent primer layer include a composite of a silane coupling agent or a hydrolyzate thereof, a polyol and an isocyanate compound.
  • silane coupling agent examples include ethyltrimethoxysilane, vinyltrimethoxysilane, ⁇ -chloropropylmethyldimethoxysilane, ⁇ -chloropropyltrimethoxysilane, glycidoxypropyltrimethoxysilane, and ⁇ -methacryloxypropyltrimethoxysilane.
  • silane couplings such as ⁇ -methacryloxypropylmethyldimethoxysilane or hydrolysates thereof can be used.
  • those containing isocyanate groups such as ⁇ -isocyanatopropyltriethoxysilane and ⁇ -isocyanatopropyltrimethoxysilane
  • those containing mercapto groups such as ⁇ -mercaptopropyltriethoxysilane
  • ⁇ -aminopropyltriethoxysilane There are those containing amino groups such as silane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltriethoxysilane, and ⁇ -phenylaminopropyltrimethoxysilane.
  • silane coupling agent may be added with alcohol or the like and added with a hydroxyl group or the like, and one or more of these may be used.
  • polystyrene examples include those obtained by polymerizing acrylic acid derivative monomers such as ethyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, and hydroxylbutyl methacrylate alone, and acrylic polyols obtained by copolymerizing with other monomers such as styrene. Is preferably used.
  • isocyanate compound examples include monomers such as aromatic tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), aliphatic xylene diisocyanate (XDI), hexadiisocyanate (HMDI), and polymers thereof. Or a derivative thereof can be used, and one or more of these can be used.
  • TDI aromatic tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • XDI aliphatic xylene diisocyanate
  • HMDI hexadiisocyanate
  • the thickness of the transparent primer layer is not particularly limited, but is preferably 0.001 to 2 ⁇ m, and preferably 0.03 to 0.5 ⁇ m.
  • an overcoat layer having a gas barrier property may be further provided between the vapor deposition layer 12 and the film substrate 32.
  • the overcoat layer includes, for example, a water-soluble polymer and one or more metal alkoxides or a hydrolyzate thereof, and a coating solution containing water or a water-alcohol mixed solution as a solvent is applied to the vapor deposition layer 12. Can be formed.
  • water-soluble polymers examples include polyvinyl alcohol, polyvinyl pyrrolidone, starch, methyl cellulose, carboxymethyl cellulose, and sodium alginate.
  • metal alkoxide examples include tetraethoxysilane and triisopropoxyaluminum.
  • the vapor deposition layer 12 may be formed on both surfaces of the base material 10. In this case, you may form the above-mentioned transparent primer layer and overcoat layer with respect to both vapor deposition surfaces.
  • the back surface protection sheet 11 for solar cell modules may not have any one or both of the film base materials 30 and 32, and may be comprised only from the above-mentioned base material 10.
  • FIG. 3 is a schematic cross-sectional view showing the layer configuration of one embodiment of the solar cell module 100 including the solar cell back surface protective sheet of the present invention.
  • the solar cell module 100 of the present embodiment includes a solar cell module surface protection sheet 60, a front surface side filler layer 51, a solar cell element 50 as a photovoltaic element provided with a wiring 52, a back surface side filler layer 53, And the film base material 30 which has the said hydrolysis resistance of the said back surface protection sheet 11 is set as the structure arrange
  • the above-described layers can be thermocompression-molded as an integrally formed body.
  • the solar cell module 100 can be mounted with, for example, an aluminum frame (not shown).
  • the normal solar cell module surface protection sheet 60 constituting the solar cell module has sunlight permeability, insulation, etc., and further has weather resistance, heat resistance, light resistance, water resistance, moisture resistance, It has various characteristics such as antifouling properties, etc., is excellent in physical or chemical strength, toughness, etc., is extremely durable, and further, because it protects solar cell elements as photovoltaic elements, It must be excellent in scratch resistance, shock absorption, and the like.
  • known glass plates and the like and further, for example, polyamide resins (various nylons), polyester resins, cyclic polyolefin resins, polystyrene resins, (meth) acrylic resins, polycarbonate resins, acetals
  • polyamide resins various nylons
  • polyester resins such as polyethylene glycol dimethacrylate resins
  • cyclic polyolefin resins such as polystyrene resins
  • (meth) acrylic resins polycarbonate resins
  • acetals Various resin films and sheets such as a resin and others can be used, and the copolymer A can also be suitably used.
  • the resin film or sheet a biaxially stretched stretched film or sheet can be used.
  • the thickness of the resin film or sheet may be a minimum thickness necessary to maintain strength, rigidity, waist, etc. If it is too thick, there is a disadvantage that the cost increases, and the thickness is thin.
  • the thickness of the resin film or sheet is preferably 12 to 200 ⁇ m, more preferably 25 to 150 ⁇ m.
  • the filler layer for example, ethylene-vinyl acetate copolymer, ionomer resin, ethylene-acrylic acid, or acid-modified polyolefin resin, polyvinyl butyral resin, silicone resin, epoxy resin , (Meth) acrylic resins, and other resins can be used as a mixture of one or more.
  • the resin constituting the filler layer is, for example, a crosslinking agent within a range that does not impair its transparency in order to improve weather resistance such as heat resistance, light resistance, and water resistance. Additives such as thermal antioxidants, light stabilizers, ultraviolet absorbers, photo-antioxidants, etc. can be arbitrarily added and mixed.
  • the filler on the sunlight incident side is preferably an ethylene-vinyl acetate resin in consideration of performance and price such as weather resistance such as light resistance, heat resistance, and water resistance. It is a material.
  • the thickness of the filler layer is preferably 200 to 1000 ⁇ m, more preferably 350 to 600 ⁇ m.
  • the solar cell element 50 as a photovoltaic element constituting the solar cell module, a conventionally known one, for example, a crystalline silicon solar electronic element such as a single crystal silicon type solar cell element or a polycrystalline silicon type solar cell element, a single Amorphous silicon solar cell elements of junction type or tandem structure type, III-V compound semiconductor solar electronic elements such as gallium arsenide (GaAs) and indium phosphorus (InP), cadmium tellurium (CdTe) and copper indium selenide (CuInSe) 2 ) Group II-VI compound semiconductor solar electronic device, organic solar cell device, etc. can be used. Furthermore, a thin film polycrystalline silicon solar cell element, a thin film microcrystalline silicon solar cell element, a hybrid element of a thin film crystalline silicon solar cell element and an amorphous silicon solar cell element, or the like can also be used.
  • a crystalline silicon solar electronic element such as a single crystal silicon type solar cell element or a polycrystalline silicon type solar cell element, a single A
  • the back-side filler layer 53 laminated under the photovoltaic element constituting the solar cell module is made of the same material as the front-side filler layer 51 laminated under the surface protection sheet for the solar cell module. Can be used. It is also necessary to have adhesiveness with the back surface protection sheet, and it has thermoplasticity to fulfill the function of maintaining the smoothness of the back surface of the solar cell element as a photovoltaic element, and further, the photovoltaic element From the viewpoint of protecting the solar cell element, it is necessary to have excellent scratch resistance, shock absorption and the like.
  • the copolymer A film is used for at least one of the above-described back surface protection sheet and the surface protection sheet, the hydrolysis resistance of the back surface protection sheet or the surface protection sheet. High nature. Therefore, compared with the case where the conventional polyethylene terephthalate (PET) film or polyethylene naphthalate (PEN) film is used, it becomes possible to maintain the power output characteristics as a solar cell over a long period of time.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • a solar cell module is not limited to said structure, Various structures are possible.
  • the back surface protection sheet 11 those having various configurations as described above can be adopted. If necessary, it includes a filling layer including the solar cell element 50, a surface protection sheet 60 disposed on the surface of the filling layer, and a back surface protection sheet 11 disposed on the back surface of the filling layer. It suffices that at least one of the back surface protection sheets 11 includes the above-mentioned copolymer A film.
  • PEN polyethylene naphthalate.
  • Copolymer A (trade name: Eastman Copolyester 13319, manufactured by Eastman)
  • PEN (manufactured by Teijin DuPont Films, trade name: Teonex Q51)
  • 1,4-cyclohexanedimethanol / 2,2,4,4-tetramethyl-1,3-cyclobutanediol / terephthalic acid polycondensate (manufactured by Eastman, trade name: Eastman Tritan Copolyester FX200) , Referred to as “Copolymer B”.)
  • Example 1 The copolymer A (in the form of pellets) was melt-extruded to form a film, and further biaxially stretched to obtain a stretched copolymer A film having a thickness of 50 ⁇ m.
  • Example 2 A copolymer A film having a thickness of 100 ⁇ m was obtained in the same manner as in Example 1 except that the thickness was changed to 100 ⁇ m by changing the draw ratio.
  • PEN pellet form
  • PEN pellet form
  • Copolymer A (pellet form) was melt-extruded to form a film, and an unstretched copolymer A film having a thickness of 110 ⁇ m was obtained.
  • Copolymer B (pellet form) was melt-extruded to form a film, and an unstretched copolymer B film having a thickness of 100 ⁇ m was obtained.
  • ⁇ Hydrolysis test> The films of Examples 1 and 2 and Comparative Examples 1 to 3 were subjected to a pressure cooker test (120 ° C., 100% RH (relative humidity), 2 atm). For each film, the tensile strength retention and tensile elongation retention after 50 hours, 100 hours, 150 hours and 200 hours were measured. The results are shown in FIGS. The films of Examples 1 and 2 had a slower decrease in tensile strength retention and tensile elongation retention than the films of Comparative Examples 1 to 3.
  • Example 1 About the film of Example 1, Example 2, and the comparative example 2, the powder X-ray diffraction by CuK (alpha) ray was performed, confirmation of the diffraction pattern and calculation of the crystallinity degree were performed.
  • the measurement method and measurement conditions are as follows.
  • FIG. 4 shows the relationship between the angle 2 ⁇ formed by the X-ray incident direction and the reflection direction and the diffraction intensity.
  • a clear sharp maximum peak was confirmed in the range of 22 ° ⁇ 2 ⁇ ⁇ 24 °, but no sharp peak was observed anywhere in the film of Comparative Example 2, and the film was amorphous. There was found.
  • the crystallinity degree of the film of Example 1 and Example 2 was calculated
  • SYMBOLS 11 Back surface protection sheet for solar cell modules, 10 ... Base material, 12 ... Deposition layer, 20 ... Gas barrier film, 30, 32 ... Film base material, 50 ... Solar cell element, 51 ... Surface side filler layer, 52 ... Wiring, 53 ... back side filler layer, 60 ... surface protection sheet for solar cell module, 100 ... solar cell module.
  • Copolymer film [Claim 4] A copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a glass transition temperature measured by TMA method of 200 ° C. or higher.
  • [Claim 5] Copolymerization of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate according to claim 4, which has a maximum peak in the range of 22 ° ⁇ 2 ⁇ 24 ° in X-ray diffraction Combined film.
  • [Claim 6] A copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a maximum peak in the range of 22 ° ⁇ 2 ⁇ ⁇ 24 ° in X-ray diffraction.
  • [Claim 7] The copolymer of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate according to any one of claims 1 to 6, which is used for protecting the front or back surface of a solar cell module. the film.
  • [Claim 8] A protective sheet for a solar cell module, comprising at least one copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate according to any one of claims 1 to 6. .
  • a back surface protection for a solar cell module comprising at least one copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate according to any one of claims 1 to 6.
  • a filling layer including a solar cell element; a surface protection sheet disposed on a surface of the filling layer; and a back surface protection sheet disposed on a back surface of the filling layer, wherein at least the surface protection sheet and the back surface protection sheet.
  • One is a solar cell module having the copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate according to any one of claims 1 to 6.

Abstract

The objective of the present invention is to provide a polyester film having a sufficiently superior hydrolysis resistance and that is improved in heat resistance and weather resistance, and to provide a method for producing the polyester film. The biaxially oriented polyester film contains an polyester resin formed by the polycondensation of an alcohol component containing the diol compound represented by general formula I (in the formula: ring A is one of either a cyclohexane ring or a benzene ring; n1 is an integer from 0 to 4; and R1 is a hydrogen atom or an alkyl group) and a carboxylic acid component containing the dicarboxylic acid compound represented by general formula II (in the formula: ring B is the other of either a cyclohexane ring or a benzene ring; n2 is an integer from 0 to 4; R2 is a hydrogen atom or an alkyl group; and R3 is a hydrogen atom or an alkyl group), and the tensile strength retention rate after 100 hours of a pressure cooker test is at least 50%. In the method for producing the polyester film, after producing a precursor film containing the polyester resin, the precursor film is biaxially stretched.

Description

ポリエステルフィルムおよびその製造方法Polyester film and method for producing the same
 本発明はポリエステルフィルム、特に耐加水分解性ポリエステルフィルム、およびその製造方法に関する。 The present invention relates to a polyester film, particularly a hydrolysis-resistant polyester film, and a method for producing the same.
 ポリエチレンテレフタレート(PET)フィルムは一般に耐熱性および耐候性に優れているため、太陽電池用バックシートやモーター用絶縁フィルムによく採用されている。しかしながら、PETフィルムは耐加水分解性に乏しいため、例えば太陽電池用バックシートに使用された場合、長期使用時において水蒸気(水分)の透過による充填材の変質や配線の腐食を起こす恐れがあり、十分な信頼性があるとはいえなかった。 Since polyethylene terephthalate (PET) films are generally excellent in heat resistance and weather resistance, they are often used for solar cell back sheets and motor insulation films. However, since the PET film is poor in hydrolysis resistance, for example, when used in a solar cell backsheet, there is a risk of deterioration of the filler and corrosion of the wiring due to permeation of water vapor (moisture) during long-term use. It could not be said that there was sufficient reliability.
 耐加水分解性フィルム材料として、1,4-シクロヘキサンジメタノールからなるジオール成分とテレフタル酸およびイソフタル酸からなるジカルボン酸成分とを重縮合させてなるポリエステル(いわゆるPCTA)が知られている(例えば、特許文献1)。しかしながらPCTAフィルムはPETフィルムよりは耐加水分解性に優れているものの、十分な耐加水分解性を有しているわけではなかった。さらにPCTAフィルムはPETフィルムと比較して耐熱性および耐候性が乏しいことも問題となっていた。 As a hydrolysis-resistant film material, a polyester (so-called PCTA) obtained by polycondensation of a diol component composed of 1,4-cyclohexanedimethanol and a dicarboxylic acid component composed of terephthalic acid and isophthalic acid is known (for example, PCTA). Patent Document 1). However, although the PCTA film is superior in hydrolysis resistance to the PET film, it does not have sufficient hydrolysis resistance. Further, the PCTA film has a problem that it has poor heat resistance and weather resistance as compared with the PET film.
特開2008-227203号公報JP 2008-227203 A
 本発明は、耐加水分解性に十分に優れ、耐熱性および耐候性が改善されたポリエステルフィルムおよびその製造方法を提供することを目的とする。 An object of the present invention is to provide a polyester film that is sufficiently excellent in hydrolysis resistance, improved in heat resistance and weather resistance, and a method for producing the same.
 本発明は、少なくともジオール成分とジカルボン酸成分とを重縮合させてなるポリエステル樹脂を含有する二軸配向ポリエステルフィルムであって、
 ジオール成分が一般式(I);
Figure JPOXMLDOC01-appb-C000003
(式中、環Aはシクロヘキサン環またはベンゼン環である;n1は0~4の整数である;Rは水素原子および炭素原子数1~3のアルキル基からなる群から選択され、n1が2~4の整数のとき、当該2~4個のRはそれぞれ独立して当該群から選択される)で表されるジオール化合物を含み、
 ジカルボン酸成分が一般式(II);
Figure JPOXMLDOC01-appb-C000004
(式中、環Bは、環Aがシクロヘキサン環のときはベンゼン環であり、環Aがベンゼン環のときはシクロヘキサン環である;n2は0~4の整数である;Rは水素原子および炭素原子数1~3のアルキル基からなる群から選択され、n2が2~4の整数のとき、当該2~4個のRはそれぞれ独立して当該群から選択される;2個のRはそれぞれ独立して水素原子または炭素原子数1~3のアルキル基である)で表されるジカルボン酸化合物を含み、
 120℃、100%RHおよび2気圧でのプレッシャークッカーテスト100時間後の引張強度保持率が50%以上であるポリエステルフィルムに関する。
The present invention is a biaxially oriented polyester film containing a polyester resin formed by polycondensation of at least a diol component and a dicarboxylic acid component,
The diol component is of the general formula (I);
Figure JPOXMLDOC01-appb-C000003
Wherein ring A is a cyclohexane ring or a benzene ring; n1 is an integer from 0 to 4; R 1 is selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 3 carbon atoms, and n1 is 2 When the integer is from 4 to 4, the 2 to 4 R 1 are each independently selected from the group).
The dicarboxylic acid component is of the general formula (II);
Figure JPOXMLDOC01-appb-C000004
(Wherein ring B is a benzene ring when ring A is a cyclohexane ring, and is a cyclohexane ring when ring A is a benzene ring; n2 is an integer from 0 to 4; R 2 is a hydrogen atom and Selected from the group consisting of alkyl groups having 1 to 3 carbon atoms, and when n2 is an integer of 2 to 4, the 2 to 4 R 2 are each independently selected from the group; 3 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms).
The present invention relates to a polyester film having a tensile strength retention ratio of 50% or more after 100 hours of a pressure cooker test at 120 ° C., 100% RH and 2 atm.
 本発明はまた、前記ポリエステル樹脂を含有する前駆体フィルムを製造した後、該前駆体フィルムを二軸延伸するポリエステルフィルムの製造方法に関する。 The present invention also relates to a method for producing a polyester film in which a precursor film containing the polyester resin is produced and then the precursor film is biaxially stretched.
 本発明のポリエステルフィルムは耐加水分解性に十分に優れ、良好な耐熱性および耐候性を有する。 The polyester film of the present invention is sufficiently excellent in hydrolysis resistance and has good heat resistance and weather resistance.
本発明のポリエステルフィルムを備えた太陽電池の一例の概略構成図である。It is a schematic block diagram of an example of the solar cell provided with the polyester film of this invention. 本願の基礎出願(特願2010-192520)に係る発明の一実施形態の太陽電池モジュール用裏面保護シートの断面図である。It is sectional drawing of the back surface protection sheet for solar cell modules of one Embodiment of the invention which concerns on the basic application (Japanese Patent Application No. 2010-192520) of this application. 本願の基礎出願に係る発明の一実施形態の太陽電池モジュールの概略断面図である。It is a schematic sectional drawing of the solar cell module of one Embodiment of the invention which concerns on the basic application of this application. 本願の基礎出願に係る実施例1、2及び比較例1~3のフィルムについて、プレッシャークッカー試験における引張強度保持率の経時変化を表すグラフである。6 is a graph showing the change over time in the tensile strength retention rate in the pressure cooker test for the films of Examples 1 and 2 and Comparative Examples 1 to 3 according to the basic application of the present application. 本願の基礎出願に係る実施例1、2及び比較例1~3のフィルムについて、プレッシャークッカー試験における引張伸び保持率の経時変化を表すグラフである。6 is a graph showing the change over time in the tensile elongation retention rate in the pressure cooker test for the films of Examples 1 and 2 and Comparative Examples 1 to 3 according to the basic application of the present application. 本願の基礎出願に係る実施例1、2及び比較例2のフィルムのX線回折結果を示す図である。It is a figure which shows the X-ray-diffraction result of the film of Examples 1 and 2 and the comparative example 2 which concern on the basic application of this application.
 本発明に係るポリエステルフィルムは特定のポリエステル樹脂を含有する二軸配向フィルムである。二軸配向とは、当該フィルムを構成するポリマー分子が当該フィルムの面内方向において、主として、互いに異なる2方向、好ましくは略直角をなす2方向で配向していることを意味するものであり、例えば後述する二軸延伸により達成することができる。本発明においては特定のポリエステル樹脂を含有するフィルムを二軸配向フィルムとすることにより、二軸配向していないフィルムと比較して、十分に優れた耐加水分解性が発現し、耐熱性および耐候性を向上させることができる。 The polyester film according to the present invention is a biaxially oriented film containing a specific polyester resin. Biaxial orientation means that the polymer molecules constituting the film are oriented mainly in two directions different from each other in the in-plane direction of the film, preferably in two directions substantially perpendicular to each other. For example, it can be achieved by biaxial stretching described later. In the present invention, by using a film containing a specific polyester resin as a biaxially oriented film, sufficiently excellent hydrolysis resistance is exhibited as compared with a film that is not biaxially oriented, heat resistance and weather resistance. Can be improved.
<ポリエステル樹脂>
 本発明のポリエステルフィルムに含有される特定のポリエステル樹脂(以下、単に「ポリエステル樹脂A」という)は、少なくともジオール成分とジカルボン酸成分とを重縮合させてなるポリエステル樹脂であって、ジオール成分が下記一般式(I)で表されるジオール化合物を含み、ジカルボン酸成分が下記一般式(II)で表されるジカルボン酸化合物を含むものである。
<Polyester resin>
The specific polyester resin (hereinafter simply referred to as “polyester resin A”) contained in the polyester film of the present invention is a polyester resin obtained by polycondensation of at least a diol component and a dicarboxylic acid component, and the diol component is A diol compound represented by the general formula (I) is included, and a dicarboxylic acid component includes a dicarboxylic acid compound represented by the following general formula (II).
(ジオール成分)
Figure JPOXMLDOC01-appb-C000005
(Diol component)
Figure JPOXMLDOC01-appb-C000005
 式(I)中、環Aはシクロヘキサン環またはベンゼン環であり、好ましくはシクロヘキサン環である。環A上の2つのメチロール基は1,2-置換、1,3-置換または1,4-置換の関係にあり、好ましくは1,3-置換または1,4-置換、より好ましくは1,4-置換の関係にある。
 n1は0~4の整数、好ましくは0または1、より好ましくは0である。
 Rは水素原子および炭素原子数1~3のアルキル基からなる群から選択される。当該アルキル基の具体例として、例えば、メチル基、エチル基、i-プロピル基およびn-プロピル基が挙げられる。好ましいRは水素原子またはメチル基であり、より好ましくは水素原子である。n1が2~4の整数のとき、当該2~4個のRはそれぞれ独立して上記群から選択され、好ましくは同時に水素原子である。
In formula (I), ring A is a cyclohexane ring or a benzene ring, preferably a cyclohexane ring. The two methylol groups on ring A are in a 1,2-substituted, 1,3-substituted or 1,4-substituted relationship, preferably 1,3-substituted or 1,4-substituted, more preferably 1, 4-Substitutional relationship.
n1 is an integer of 0 to 4, preferably 0 or 1, more preferably 0.
R 1 is selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 3 carbon atoms. Specific examples of the alkyl group include a methyl group, an ethyl group, an i-propyl group, and an n-propyl group. R 1 is preferably a hydrogen atom or a methyl group, more preferably a hydrogen atom. When n1 is an integer of 2 to 4, the 2 to 4 R 1 s are each independently selected from the above group, and preferably are simultaneously hydrogen atoms.
 一般式(I)で表されるジオール化合物の具体例として、例えば、一般式(Ia)で表されるシクロヘキサン系ジオール化合物および一般式(Ib)で表されるベンゼン系ジオール化合物が挙げられる。好ましくはシクロヘキサン系ジオール化合物である。 Specific examples of the diol compound represented by the general formula (I) include, for example, a cyclohexane diol compound represented by the general formula (Ia) and a benzene diol compound represented by the general formula (Ib). A cyclohexane diol compound is preferred.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(Ia)および(Ib)中、n1およびRは式(I)においてと同様である。 In formulas (Ia) and (Ib), n1 and R 1 are the same as in formula (I).
 一般式(Ia)で表されるシクロヘキサン系ジオール化合物は一般式(I)において環Aがシクロヘキサン環であるジオール化合物である。その具体例として、例えば、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,2-ビス(ヒドロキシメチル)-3,4,5,6-テトラメチル-シクロヘキサン、1,3-ビス(ヒドロキシメチル)-2,4,5,6-テトラメチル-シクロヘキサン、1,4-ビス(ヒドロキシメチル)-2,3,5,6-テトラメチル-シクロヘキサン等が挙げられる。好ましくは1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノールであり、より好ましくは1,4-シクロヘキサンジメタノールである。 The cyclohexane diol compound represented by the general formula (Ia) is a diol compound in which the ring A is a cyclohexane ring in the general formula (I). Specific examples thereof include, for example, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,2-bis (hydroxymethyl) -3,4,5,6-tetra. Methyl-cyclohexane, 1,3-bis (hydroxymethyl) -2,4,5,6-tetramethyl-cyclohexane, 1,4-bis (hydroxymethyl) -2,3,5,6-tetramethyl-cyclohexane, etc. Is mentioned. 1,3-cyclohexanedimethanol and 1,4-cyclohexanedimethanol are preferred, and 1,4-cyclohexanedimethanol is more preferred.
 一般式(Ib)で表されるベンゼン系ジオール化合物は一般式(I)において環Aがベンゼン環であるジオール化合物である。その具体例として、例えば、1,2-ビス(ヒドロキシメチル)ベンゼン、1,3-ビス(ヒドロキシメチル)ベンゼン、1,4-ビス(ヒドロキシメチル)ベンゼン、1,2-ビス(ヒドロキシメチル)-3,4,5,6-テトラメチル-ベンゼン、1,3-ビス(ヒドロキシメチル)-2,4,5,6-テトラメチル-ベンゼン、1,4-ビス(ヒドロキシメチル)-2,3,5,6-テトラメチル-ベンゼン)等が挙げられる。好ましくは1,3-ビス(ヒドロキシメチル)ベンゼン、1,4-ビス(ヒドロキシメチル)ベンゼンであり、より好ましくは1,4-ビス(ヒドロキシメチル)ベンゼンである。 The benzene diol compound represented by the general formula (Ib) is a diol compound in which the ring A is a benzene ring in the general formula (I). Specific examples thereof include, for example, 1,2-bis (hydroxymethyl) benzene, 1,3-bis (hydroxymethyl) benzene, 1,4-bis (hydroxymethyl) benzene, 1,2-bis (hydroxymethyl)- 3,4,5,6-tetramethyl-benzene, 1,3-bis (hydroxymethyl) -2,4,5,6-tetramethyl-benzene, 1,4-bis (hydroxymethyl) -2,3 5,6-tetramethyl-benzene) and the like. 1,3-bis (hydroxymethyl) benzene and 1,4-bis (hydroxymethyl) benzene are preferable, and 1,4-bis (hydroxymethyl) benzene is more preferable.
 ジオール成分は、前記一般式(I)で表されるジオール化合物以外に、他のジオール化合物を含有してよい。他のジオール化合物としては、ポリエステルフィルム原料として使用されるジオール化合物が使用可能であり、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ネオペンチルグリコール、1,2-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール等の脂肪族ジオール化合物、および2,2-ビス(4'-β-ヒドロキシエトキシフェニル)プロパン等のジフェニル系ジオール化合物が挙げられる。 The diol component may contain other diol compounds in addition to the diol compound represented by the general formula (I). As the other diol compound, a diol compound used as a polyester film raw material can be used, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,2-butane. Aliphatic acids such as diol, 1,3-butanediol, 2,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, polyalkylene glycol Examples thereof include diol compounds and diphenyl diol compounds such as 2,2-bis (4′-β-hydroxyethoxyphenyl) propane.
 ポリエステル樹脂Aは、耐加水分解性、コスト、押出成形性および結晶性(延伸性)の観点から、ジオール成分が、前記一般式(I)で表されるジオール化合物の中でも、前記一般式(I)における環A上の2つのメチロール基が1,4-置換の関係にある1,4-ジオール化合物を含むことが好ましく、より好ましくは当該1,4-ジオール化合物(特に1,4-シクロヘキサンジメタノール)のみからなる。 Polyester resin A has a diol component among the diol compounds represented by the above general formula (I) from the viewpoint of hydrolysis resistance, cost, extrusion moldability and crystallinity (stretchability). ) Preferably includes a 1,4-diol compound in which the two methylol groups on ring A are in a 1,4-substituted relationship, and more preferably the 1,4-diol compound (particularly 1,4-cyclohexanedi). Methanol).
 全ジオール成分に対する上記一般式(I)で表されるジオール化合物の含有割合は、耐加水分解性、コスト、押出成形性および結晶性(延伸性)の観点から、50モル%以上が好ましく、より好ましくは80モル%以上、最も好ましくは95モル%以上である。ジオール成分は上記一般式(I)で表されるジオール化合物を2種類以上で含んでよく、その場合、それらの合計含有割合が上記範囲内であればよい。 The content ratio of the diol compound represented by the general formula (I) with respect to the total diol component is preferably 50 mol% or more from the viewpoint of hydrolysis resistance, cost, extrusion moldability, and crystallinity (stretchability). Preferably it is 80 mol% or more, Most preferably, it is 95 mol% or more. A diol component may contain 2 or more types of diol compounds represented by the said general formula (I), and those total content ratios should just be in the said range in that case.
 ポリエステル樹脂Aは、上記したジオール成分以外に、例えば、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロール、ヘキサントリオールなどの3官能以上の多価アルコール成分を構成モノマーとして含有してもよい。 In addition to the diol component described above, the polyester resin A contains, for example, a trifunctional or higher polyhydric alcohol component such as trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, hexanetriol as a constituent monomer. Also good.
 全アルコール成分に対する3官能以上の多価アルコール成分の含有割合は通常、50モル%以下であり、好ましくは20モル%以下である。 The content ratio of the trifunctional or higher polyhydric alcohol component to the total alcohol component is usually 50 mol% or less, preferably 20 mol% or less.
(ジカルボン酸成分)
Figure JPOXMLDOC01-appb-C000008
(Dicarboxylic acid component)
Figure JPOXMLDOC01-appb-C000008
 式(II)中、環Bは、環Aがシクロヘキサン環のときはベンゼン環であり、環Aがベンゼン環のときはシクロヘキサン環である。環B上の2つの-COOR基は1,2-置換、1,3-置換または1,4-置換の関係にあり、好ましくは1,3-置換または1,4-置換、より好ましくは1,4-置換の関係にある。
 n2は0~4の整数、好ましくは0または1、より好ましくは0である。
 Rは水素原子および炭素原子数1~3のアルキル基からなる群から選択される。当該アルキル基の具体例として、Rの説明で例示した同様のアルキル基が挙げられる。好ましいRは水素原子またはメチル基であり、より好ましくは水素原子である。n2が2~4の整数のとき、当該2~4個のRはそれぞれ独立して上記群から選択され、好ましくは同時に水素原子である。
 2個のRはそれぞれ独立して水素原子または炭素原子数1~3のアルキル基である。当該アルキル基の具体例として、Rの説明で例示した同様のアルキル基が挙げられる。好ましいRはそれぞれ独立して水素原子またはメチル基であり、より好ましくは同時に水素原子である。
In formula (II), ring B is a benzene ring when ring A is a cyclohexane ring, and is a cyclohexane ring when ring A is a benzene ring. The two —COOR 3 groups on ring B are in a 1,2-substituted, 1,3-substituted or 1,4-substituted relationship, preferably 1,3-substituted or 1,4-substituted, more preferably There is a 1,4-substitution relationship.
n2 is an integer of 0 to 4, preferably 0 or 1, more preferably 0.
R 2 is selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 3 carbon atoms. Specific examples of the alkyl group include the same alkyl groups exemplified in the description of R 1 . R 2 is preferably a hydrogen atom or a methyl group, more preferably a hydrogen atom. When n2 is an integer of 2 to 4, the 2 to 4 R 2 are each independently selected from the above group, and preferably are simultaneously hydrogen atoms.
Two R 3 s are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Specific examples of the alkyl group include the same alkyl groups exemplified in the description of R 1 . Preferable R 3 is each independently a hydrogen atom or a methyl group, more preferably a hydrogen atom at the same time.
 一般式(II)で表されるジカルボン酸化合物の具体例として、例えば、一般式(IIa)で表されるベンゼン系ジカルボン酸化合物および一般式(IIb)で表されるシクロヘキサン系ジカルボン酸化合物が挙げられる。好ましくはベンゼン系ジカルボン酸化合物である。 Specific examples of the dicarboxylic acid compound represented by the general formula (II) include, for example, a benzene dicarboxylic acid compound represented by the general formula (IIa) and a cyclohexane dicarboxylic acid compound represented by the general formula (IIb). It is done. A benzene dicarboxylic acid compound is preferred.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(IIa)および(IIb)中、n2、RおよびRは式(II)においてと同様である。 Wherein (IIa) and (IIb), n2, R 2 and R 3 are the same as those in the formula (II).
 一般式(IIa)で表されるベンゼン系ジカルボン酸化合物は一般式(II)において環Bがベンゼン環であるジカルボン酸化合物である。その具体例として、例えば、テレフタル酸、イソフタル酸、オルソフタル酸、5-tert-ブチルイソフタル酸、フタル酸、4,4-ビフェニルジカルボン酸、4,4-ビフェニルスルホンジカルボン酸、テレフタル酸メチル、イソフタル酸メチル、フタル酸メチル、1,2-ジカルボキシル-3,4,5,6-テトラメチル-ベンゼン、1,3-ジカルボキシル-2,4,5,6-テトラメチル-ベンゼン、1,4-ジカルボキシル-2,3,5,6-テトラメチル-ベンゼン等が挙げられる。好ましくはテレフタル酸、テレフタル酸メチル、イソフタル酸、イソフタル酸メチルである。 The benzene dicarboxylic acid compound represented by the general formula (IIa) is a dicarboxylic acid compound in which the ring B is a benzene ring in the general formula (II). Specific examples thereof include, for example, terephthalic acid, isophthalic acid, orthophthalic acid, 5-tert-butylisophthalic acid, phthalic acid, 4,4-biphenyldicarboxylic acid, 4,4-biphenylsulfone dicarboxylic acid, methyl terephthalate, isophthalic acid Methyl, methyl phthalate, 1,2-dicarboxyl-3,4,5,6-tetramethyl-benzene, 1,3-dicarboxyl-2,4,5,6-tetramethyl-benzene, 1,4- And dicarboxyl-2,3,5,6-tetramethyl-benzene. Preferred are terephthalic acid, methyl terephthalate, isophthalic acid, and methyl isophthalate.
 一般式(IIb)で表されるシクロヘキサン系ジカルボン酸化合物は一般式(II)において環Bがシクロヘキサン環であるジカルボン酸化合物である。その具体例として、例えば、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2-ジカルボキシル-3,4,5,6-テトラメチル-シクロヘキサン、1,3-ジカルボキシル-2,4,5,6-テトラメチル-シクロヘキサン、1,4-ジカルボキシル-2,3,5,6-テトラメチル-シクロヘキサン等が挙げられる。好ましくは1,4-シクロヘキサンジカルボン酸である。 The cyclohexane-based dicarboxylic acid compound represented by the general formula (IIb) is a dicarboxylic acid compound in which the ring B is a cyclohexane ring in the general formula (II). Specific examples thereof include 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,2-dicarboxyl-3,4,5,6-tetramethyl-cyclohexane. 1,3-dicarboxyl-2,4,5,6-tetramethyl-cyclohexane, 1,4-dicarboxyl-2,3,5,6-tetramethyl-cyclohexane and the like. 1,4-cyclohexanedicarboxylic acid is preferred.
 ジカルボン酸成分は、前記一般式(II)で表されるジカルボン酸化合物以外に、他のジカルボン酸化合物を含有してよい。他のジカルボン酸化合物としては、ポリエステルフィルム原料として使用されるジカルボン酸化合物が使用可能であり、例えば、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸)等のナフタレン系ジカルボン酸化合物、4,4'-ジフェニルジカルボン酸、4,4'-ジフェニルエーテルジカルボン酸、4,4'-ジフェニルスルホンジカルボン酸等のジフェニル系ジカルボン酸化合物、アジピン酸、セバシン酸等の脂肪族ジカルボン酸化合物が挙げられる。 The dicarboxylic acid component may contain other dicarboxylic acid compounds in addition to the dicarboxylic acid compound represented by the general formula (II). As other dicarboxylic acid compounds, dicarboxylic acid compounds used as raw materials for polyester films can be used. For example, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid) Naphthalene dicarboxylic acid compounds such as 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, diphenyl dicarboxylic acid compounds such as 4,4′-diphenylsulfone dicarboxylic acid, adipic acid, sebacic acid, etc. Examples include aliphatic dicarboxylic acid compounds.
 ポリエステル樹脂Aは、耐加水分解性、コスト、押出成形性および結晶性(延伸性)の観点から、ジカルボン酸成分が、前記一般式(II)で表されるジカルボン酸化合物の中でも、前記一般式(II)における環B上の2つの-COOR基が1,4-置換の関係にある1,4-ジカルボン酸化合物を含むことが好ましく、より好ましくは当該1,4-ジカルボン酸化合物および前記一般式(II)における環B上の2つの-COOR基が1,3-置換の関係にある1,3-ジカルボン酸化合物を含み、最も好ましくは1,4-ジカルボン酸化合物(特にテレフタル酸)および1,3-ジカルボン酸化合物(特にイソフタル酸)のみからなる。 Polyester resin A has a dicarboxylic acid component among the dicarboxylic acid compounds represented by the general formula (II) from the viewpoint of hydrolysis resistance, cost, extrusion moldability, and crystallinity (stretchability). It is preferable that the two —COOR 3 groups on ring B in (II) include a 1,4-dicarboxylic acid compound in a 1,4-substituted relationship, more preferably the 1,4-dicarboxylic acid compound and the above-mentioned Including a 1,3-dicarboxylic acid compound in which the two —COOR 3 groups on ring B in general formula (II) are in a 1,3-substituted relationship, most preferably 1,4-dicarboxylic acid compounds (especially terephthalic acid ) And a 1,3-dicarboxylic acid compound (especially isophthalic acid).
 全ジカルボン酸成分に対する上記一般式(II)で表されるジカルボン酸化合物の含有割合は、耐加水分解性、コスト、押出成形性および結晶性(延伸性)の観点から、50モル%以上が好ましく、より好ましくは80モル%以上、最も好ましくは95モル%以上である。ジカルボン酸成分が上記一般式(II)で表されるジカルボン酸化合物を2種類以上で含む場合、それらの合計含有割合が上記範囲内であればよい。 The content ratio of the dicarboxylic acid compound represented by the general formula (II) with respect to the total dicarboxylic acid component is preferably 50 mol% or more from the viewpoint of hydrolysis resistance, cost, extrusion moldability, and crystallinity (stretchability). More preferably, it is 80 mol% or more, and most preferably 95 mol% or more. When the dicarboxylic acid component contains two or more kinds of dicarboxylic acid compounds represented by the above general formula (II), the total content thereof may be within the above range.
 ポリエステル樹脂Aは、上記したジカルボン酸成分以外に、モノカルボン酸成分および/または3官能以上の多価カルボン酸成分を構成モノマーとして含有してもよい。 Polyester resin A may contain a monocarboxylic acid component and / or a trifunctional or higher polyvalent carboxylic acid component as a constituent monomer in addition to the above-described dicarboxylic acid component.
 ポリエステル樹脂Aはまた40~250℃、特に70~200℃のガラス転移温度を有することが好ましい。
 ガラス転移温度はJIS K7121に基づいて測定することができる。
The polyester resin A also preferably has a glass transition temperature of 40 to 250 ° C., particularly 70 to 200 ° C.
The glass transition temperature can be measured based on JIS K7121.
 ポリエステル樹脂Aはまた180~350℃、特に200~300℃の融点を有することが好ましい。
 融点はJIS K7121に基づいて測定することができる。
The polyester resin A also preferably has a melting point of 180 to 350 ° C, particularly 200 to 300 ° C.
The melting point can be measured based on JIS K7121.
 ポリエステル樹脂Aは上記したモノマー成分を公知の方法により重縮合させることにより製造することもできるし、市販品として入手することもできる。
 ポリエステル樹脂Aの市販品として、例えば、コポリエステル(copolyester)13319(イーストマン社製)等が挙げられる。コポリエステル(copolyester)13319(イーストマン社製)は1,4-シクロヘキサンジメタノールとテレフタル酸およびイソフタル酸との重縮合体である。
The polyester resin A can be produced by polycondensing the above-described monomer components by a known method, or can be obtained as a commercial product.
As a commercial item of the polyester resin A, copolyester (copolyester) 13319 (made by Eastman) etc. are mentioned, for example. Copolyester 13319 (Eastman) is a polycondensate of 1,4-cyclohexanedimethanol with terephthalic acid and isophthalic acid.
 ポリエステルフィルム中、ポリエステル樹脂Aは上記した範囲内でモノマー組成、ガラス転移温度、融点および/またはカルボキシル末端濃度が異なる2種類以上のポリエステル樹脂Aが含有されてもよい。 In the polyester film, the polyester resin A may contain two or more kinds of polyester resins A having different monomer compositions, glass transition temperatures, melting points and / or carboxyl terminal concentrations within the above-described ranges.
 本発明のポリエステルフィルムは上記ポリエステル樹脂A以外に、他のポリマーを含有してもよいが、耐加水分解性のさらなる向上の観点から、ポリエステルフィルム中のポリマー成分は上記ポリエステル樹脂Aのみからなることが好ましい。 The polyester film of the present invention may contain other polymers in addition to the above-mentioned polyester resin A, but from the viewpoint of further improving hydrolysis resistance, the polymer component in the polyester film is composed only of the above-mentioned polyester resin A. Is preferred.
 ポリエステルフィルム中のポリマー成分に対するポリエステル樹脂Aの含有割合は、耐加水分解性のさらなる向上の観点から、60重量%以上が好ましく、より好ましくは80重量%以上であり、さらに好ましくは95重量%以上であり、最も好ましくは100重量%である。 The content ratio of the polyester resin A to the polymer component in the polyester film is preferably 60% by weight or more, more preferably 80% by weight or more, and still more preferably 95% by weight or more, from the viewpoint of further improving hydrolysis resistance. And most preferably 100% by weight.
 耐加水分解性等の性能や製膜性に悪影響を与えない範囲で、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリトリメチレンテレフタレート等のポリエステル樹脂;ポリエーテルイミド、ポリフェニレンサルファイト、ポリエーテルサルホン、ポリフェニレンエーテル等の他のポリマーがポリエステルフィルム中に含有されてもよい。 In a range that does not adversely affect the performance such as hydrolysis resistance and film forming property, for example, polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polytrimethylene terephthalate; Other polymers such as polyetherimide, polyphenylene sulfite, polyether sulfone, and polyphenylene ether may be contained in the polyester film.
<添加剤>
 ポリエステルフィルムは上記したポリマー以外に、酸化防止剤、紫外線吸収剤、着色剤、光安定剤、滑剤、結晶核剤、難燃剤等の添加剤を含有してもよい。耐熱性の観点から、ポリエステルフィルムは酸化防止剤を含有することが好ましい。耐候性の観点から、ポリエステルフィルムは紫外線吸収剤を含有することが好ましい。
<Additives>
In addition to the polymers described above, the polyester film may contain additives such as antioxidants, ultraviolet absorbers, colorants, light stabilizers, lubricants, crystal nucleating agents, and flame retardants. From the viewpoint of heat resistance, the polyester film preferably contains an antioxidant. From the viewpoint of weather resistance, the polyester film preferably contains an ultraviolet absorber.
 酸化防止剤はポリエステルフィルムの分野で酸化防止剤として使用されているものが使用可能であり、例えば、フェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤等が挙げられる。 As the antioxidant, those used as an antioxidant in the polyester film field can be used, and examples thereof include a phenol-based antioxidant, a phosphorus-based antioxidant, and a sulfur-based antioxidant.
 フェノール系酸化防止剤はフェノール骨格を含有する有機化合物であり、従来よりポリエステルフィルムの分野でフェノール系酸化防止剤として使用されているフェノール骨格含有有機化合物が使用できる。フェノール系酸化防止剤は市販品として入手することができる。
 フェノール系酸化防止剤の市販品として、例えば、スミライザーGA-80(住友化学社製)、アデカスタブAO-60、アデカスタブAO-330(ともにADEKA社製)、イルガノックス245(BASF社製)、サイアノックス1790(CYTEC社製)等が挙げられる。
A phenolic antioxidant is an organic compound containing a phenolic skeleton, and a phenolic skeleton-containing organic compound conventionally used as a phenolic antioxidant in the field of polyester film can be used. The phenolic antioxidant can be obtained as a commercial product.
Commercially available phenolic antioxidants include, for example, Sumilizer GA-80 (manufactured by Sumitomo Chemical Co., Ltd.), Adekastab AO-60, Adekastab AO-330 (both manufactured by ADEKA), Irganox 245 (manufactured by BASF), Sianox 1790 (manufactured by CYTEC).
 リン系酸化防止剤はリン原子を含有する有機化合物であり、従来よりポリエステルフィルムの分野でリン系酸化防止剤として使用されているリン原子含有有機化合物が使用できる。リン系酸化防止剤は市販品として入手することができる。
 リン系酸化防止剤の市販品として、例えば、スミライザーGP(住友化学社製)、アデカスタブPEP-36(ADEKA社製)、Irgafos38、Irgafos168(ともにBASF社製)等が挙げられる。
The phosphorus-based antioxidant is an organic compound containing a phosphorus atom, and a phosphorus atom-containing organic compound conventionally used as a phosphorus-based antioxidant in the field of polyester film can be used. Phosphorous antioxidants can be obtained as commercial products.
Examples of commercially available phosphorous antioxidants include Sumilizer GP (manufactured by Sumitomo Chemical Co., Ltd.), Adeka Stub PEP-36 (manufactured by ADEKA), Irgafos 38, Irgafos 168 (both manufactured by BASF), and the like.
 硫黄系酸化防止剤は硫黄原子を含有する有機化合物であり、従来よりポリエステルフィルムの分野で硫黄系酸化防止剤として使用されている硫黄原子含有有機化合物が使用できる。硫黄系酸化防止剤は市販品として入手することができる。
 硫黄系酸化防止剤の市販品として、例えば、スミライザーMB(住友化学社製)、アデカスタブAO-412S(ADEKA社製)等が挙げられる。
The sulfur-based antioxidant is an organic compound containing a sulfur atom, and a sulfur atom-containing organic compound conventionally used as a sulfur-based antioxidant in the polyester film field can be used. The sulfur-based antioxidant can be obtained as a commercial product.
Examples of commercially available sulfur-based antioxidants include Sumilyzer MB (manufactured by Sumitomo Chemical Co., Ltd.) and Adeka Stub AO-412S (manufactured by ADEKA).
 酸化防止剤の含有割合は、耐熱性の観点から、ポリエステルフィルム中のポリマー成分に対して0.03~2.5重量%が好ましい。2種類以上の酸化防止剤が含有される場合はそれらの合計量が上記範囲内であればよい。 The content of the antioxidant is preferably 0.03 to 2.5% by weight with respect to the polymer component in the polyester film from the viewpoint of heat resistance. When two or more kinds of antioxidants are contained, the total amount thereof may be within the above range.
 耐熱性のさらなる向上の観点からは、フェノール系酸化防止剤、リン系酸化防止剤および硫黄系酸化防止剤がそれぞれポリマー成分に対して0.05~2.0重量%、特に0.1~1.0で含有されることが好ましい。 From the viewpoint of further improving the heat resistance, the phenol-based antioxidant, the phosphorus-based antioxidant and the sulfur-based antioxidant are each 0.05 to 2.0% by weight, particularly 0.1 to 1%, based on the polymer component. 0.0 is preferable.
 紫外線吸収剤はポリエステルフィルムの分野で紫外線吸収剤として使用されているものが使用可能であり、例えば、ベンズオキサジン系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤等が挙げられる。 As the UV absorber, those used as UV absorbers in the field of polyester film can be used, and examples thereof include benzoxazine UV absorbers, triazine UV absorbers, and benzotriazole UV absorbers.
 ベンズオキサジン系紫外線吸収剤はベンズオキサジン骨格を含有する有機化合物であり、従来よりポリエステルフィルムの分野でベンズオキサジン系紫外線吸収剤として使用されているベンズオキサジン骨格含有有機化合物が使用できる。ベンズオキサジン系紫外線吸収剤は市販品として入手することができる。
 ベンズオキサジン系紫外線吸収剤の市販品として、例えば、サイアソーブUV-3638(CYTEC社製)等が挙げられる。
The benzoxazine-based ultraviolet absorber is an organic compound containing a benzoxazine skeleton, and a benzoxazine skeleton-containing organic compound conventionally used as a benzoxazine-based ultraviolet absorber in the field of polyester film can be used. A benzoxazine-based ultraviolet absorber can be obtained as a commercial product.
Examples of commercially available benzoxazine-based ultraviolet absorbers include Siasorb UV-3638 (manufactured by CYTEC).
 トリアジン系紫外線吸収剤はトリアジン骨格を含有する有機化合物であり、従来よりポリエステルフィルムの分野でトリアジン系紫外線吸収剤として使用されているトリアジン骨格含有有機化合物が使用できる。トリアジン系紫外線吸収剤は市販品として入手することができる。
 トリアジン系紫外線吸収剤の市販品として、例えば、チヌビン1577ED、チヌビン479(ともにBASF社製)等が挙げられる。
The triazine-based ultraviolet absorber is an organic compound containing a triazine skeleton, and a triazine skeleton-containing organic compound conventionally used as a triazine-based ultraviolet absorber in the polyester film field can be used. Triazine ultraviolet absorbers can be obtained as commercial products.
Examples of commercially available triazine ultraviolet absorbers include Tinuvin 1577ED and Tinuvin 479 (both manufactured by BASF).
 ベンゾトリアゾール系紫外線吸収剤はベンゾトリアゾール骨格を含有する有機化合物であり、従来よりポリエステルフィルムの分野でベンゾトリアゾール系紫外線吸収剤として使用されているベンゾトリアゾール骨格含有有機化合物が使用できる。ベンゾトリアゾール系紫外線吸収剤は市販品として入手することができる。
 ベンゾトリアゾール)系紫外線吸収剤の市販品として、例えば、スミソーブ250(住友化学社製)、アデカスタブLA-31(ADEKA 社製)、チヌビン234(BASF社製)等が挙げられる。
The benzotriazole ultraviolet absorber is an organic compound containing a benzotriazole skeleton, and a benzotriazole skeleton-containing organic compound conventionally used as a benzotriazole ultraviolet absorber in the field of polyester films can be used. A benzotriazole type ultraviolet absorber can be obtained as a commercial product.
Examples of commercially available products of benzotriazole-based ultraviolet absorbers include SUMISORB 250 (manufactured by Sumitomo Chemical Co., Ltd.), ADK STAB LA-31 (manufactured by ADEKA), and Tinuvin 234 (manufactured by BASF).
 紫外線吸収剤の含有割合は、耐候性の観点から、ポリエステルフィルム中のポリマー成分に対して0.1~2.0重量%、特に0.15~1.5重量%が好ましい。2種類以上の紫外線吸収剤が含有される場合はそれらの合計量が上記範囲内であればよい。 The content of the ultraviolet absorber is preferably 0.1 to 2.0% by weight, particularly 0.15 to 1.5% by weight, based on the polymer component in the polyester film, from the viewpoint of weather resistance. When 2 or more types of ultraviolet absorbers are contained, the total amount thereof may be within the above range.
 耐候性および耐熱性のさらなる向上の観点からは、フェノール系酸化防止剤、リン系酸化防止剤および硫黄系酸化防止剤をそれぞれ上記範囲内で含有させた上で、さらに紫外線吸収剤、特にベンズオキサジン系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤からなる群から選択される1種以上の紫外線吸収剤をポリマー成分に対して0.1~2.0重量%、特に0.15~1.5で含有させることが好ましい。 From the viewpoint of further improving the weather resistance and heat resistance, a phenol-based antioxidant, a phosphorus-based antioxidant and a sulfur-based antioxidant are contained within the above ranges, and further an ultraviolet absorber, particularly benzoxazine. 0.1 to 2.0% by weight, in particular, 0.1% to 2.0% by weight of one or more UV absorbers selected from the group consisting of UV-based UV absorbers, triazine-based UV absorbers, and benzotriazole-based UV absorbers. It is preferably contained at 15 to 1.5.
 着色剤はポリエステルフィルムの分野で使用される任意の顔料および染料が使用できる。着色剤の含有割合は本発明の目的が達成される限り特に制限されず、例えば、ポリマー成分に対して1~30重量%が好適である。 As the colorant, any pigment and dye used in the polyester film field can be used. The content of the colorant is not particularly limited as long as the object of the present invention is achieved, and for example, 1 to 30% by weight with respect to the polymer component is preferable.
<ポリエステルフィルムの製造方法>
 本発明のポリエステルフィルムは以下の方法により製造できる。
 例えば、前記ポリエステル樹脂Aならびに所望により含有される他のポリマーおよび添加剤を所定の割合で混合し、溶融・混練して前駆体フィルムを製造した後、得られた前駆体フィルムを二軸延伸する。
<Production method of polyester film>
The polyester film of the present invention can be produced by the following method.
For example, the polyester resin A and other polymers and additives contained as required are mixed in a predetermined ratio, melted and kneaded to produce a precursor film, and then the obtained precursor film is biaxially stretched. .
 前駆体フィルムの製造方法は公知の方法を採用できる。例えば、所望の成分からなる混合物を二軸押出機により溶融・混練し、混練物をTダイより押し出した後、冷却すればよい。 A known method can be adopted as a method for producing the precursor film. For example, a mixture of desired components may be melted and kneaded with a twin screw extruder, and the kneaded product may be extruded from a T die and then cooled.
 前駆体フィルムの厚みは特に制限されるものではなく、例えば、100~2000μmであり、好ましくは120~1000μmである。 The thickness of the precursor film is not particularly limited, and is, for example, 100 to 2000 μm, preferably 120 to 1000 μm.
 二軸延伸は、MD方向およびTD方向について同時に延伸を行う同時二軸延伸を行ってもよいし、またはMD方向もしくはTD方向のうち一方の方向に延伸を行った後、他方の方向に延伸を行う逐次二軸延伸を行ってもよい。好ましくは同時二軸延伸を行う。通常の生産性及び製造容易性を考慮すれば、逐次延伸法が一般的であるが、同時二軸延伸を行ったフィルムの方が、逐次二軸延伸を行ったフィルムよりも、成膜性を維持したうえで、耐加水分解性が向上するためである。特に、太陽電池用バックシートの場合に必要な、より高レベルな耐加水分解性を鑑みれば、同時二軸延伸が好ましい。一方で、二軸延伸の代わりに、一軸延伸を行っても、所望の耐加水分解性は得られない。本明細書中、MD方向とは、いわゆる流れ方向であって、押出機からの前駆体フィルムの引き取り方向(縦方向)を意味するものとする。TD方向とは、いわゆる幅方向であって、当該MD方向に対する直交方向を意味するものとする。 Biaxial stretching may be simultaneous biaxial stretching in which stretching is performed simultaneously in the MD direction and the TD direction, or after stretching in one direction of the MD direction or the TD direction, stretching is performed in the other direction. Sequential biaxial stretching may be performed. Preferably simultaneous biaxial stretching is performed. In consideration of normal productivity and manufacturability, the sequential stretching method is generally used. However, the film formed by simultaneous biaxial stretching has better film formability than the film subjected to sequential biaxial stretching. This is because the hydrolysis resistance is improved after the maintenance. In particular, simultaneous biaxial stretching is preferred in view of the higher level of hydrolysis resistance required in the case of solar cell backsheets. On the other hand, desired hydrolysis resistance cannot be obtained even if uniaxial stretching is performed instead of biaxial stretching. In the present specification, the MD direction is a so-called flow direction, and means the direction (longitudinal direction) of the precursor film taken from the extruder. The TD direction is a so-called width direction and means a direction orthogonal to the MD direction.
 二軸延伸を行うに際して、延伸倍率および延伸温度は本発明の目的が達成される限り特に制限されるものではないが、以下の範囲とすることが好ましい。耐加水分解性がより一層、向上するためである。 When performing biaxial stretching, the stretching ratio and the stretching temperature are not particularly limited as long as the object of the present invention is achieved, but the following ranges are preferable. This is because the hydrolysis resistance is further improved.
 延伸倍率は、MD方向およびTD方向ともに2.0倍以上の破断が起こらない範囲内であり、耐加水分解性のさらなる向上の観点からは2.0~5.0倍が好ましく、より好ましくは2.3~3.5倍である。MD方向およびTD方向の延伸倍率は近似していることが好ましい。具体的には、MD方向の延伸倍率をPMD、TD方向の延伸倍率をPTDとしたとき、「PTD-PMD」は-0.5~+0.5が好ましく、より好ましくは-0.3~+0.3である。なお、MD方向の延伸倍率は延伸直前のMD方向長さに基づく倍率である。TD方向の延伸倍率は延伸直前のTD方向長さに基づく倍率である。 The draw ratio is within a range in which breakage of 2.0 times or more does not occur in both the MD direction and the TD direction, and is preferably 2.0 to 5.0 times from the viewpoint of further improving the hydrolysis resistance, and more preferably 2.3 to 3.5 times. The draw ratios in the MD direction and the TD direction are preferably approximated. Specifically, when the MD direction draw ratio is P MD and the TD direction draw ratio is P TD , “P TD −P MD ” is preferably −0.5 to +0.5, more preferably −0. .3 to +0.3. In addition, the draw ratio of MD direction is a ratio based on MD direction length just before extending | stretching. The stretching ratio in the TD direction is a ratio based on the length in the TD direction immediately before stretching.
 延伸温度は、当該フィルムを構成するポリマー成分のガラス転移温度をTg(℃)としたとき、通常はTg以上、Tg+40℃以下であり、耐加水分解性のさらなる向上の観点から、好ましくはTg以上、Tg+30℃以下、より好ましくはTg以上、Tg+25℃以下である。なお、延伸温度は、延伸を行う雰囲気温度である。ポリマー成分が2種類以上のポリマーからなる場合、ポリマー成分のTgは、各ポリマーのガラス転移温度に当該ポリマーの含有比率を乗じた値の和である。 When the glass transition temperature of the polymer component constituting the film is Tg P (° C.), the stretching temperature is usually Tg P or higher and Tg P + 40 ° C. or lower, from the viewpoint of further improving hydrolysis resistance, preferably Tg P above, Tg P + 30 ° C. or less, more preferably Tg P more or less Tg P + 25 ℃. The stretching temperature is the atmospheric temperature at which stretching is performed. When the polymer component is composed of two or more kinds of polymers, the Tg P of the polymer component is the sum of values obtained by multiplying the glass transition temperature of each polymer by the content ratio of the polymer.
 二軸延伸を行った後は通常、熱固定を行う。熱固定は、延伸フィルムを延伸温度以上の温度で保持することにより、ポリマー分子の配向を固定する処理である。熱固定温度は、当該フィルムを構成するポリマー成分のガラス転移温度をTg(℃)、融点をMp(℃)としたとき、Tg+50℃以上、Mp以下、好ましくはTg+100℃以上、Mp-20℃以下である。なお、熱固定温度は、フィルム保持を行う雰囲気温度である。ポリマー成分が2種類以上のポリマーからなる場合、ポリマー成分のMpは、各ポリマーの融点に当該ポリマーの含有比率を乗じた値の和である。 After biaxial stretching, heat setting is usually performed. The heat setting is a process for fixing the orientation of the polymer molecules by holding the stretched film at a temperature equal to or higher than the stretching temperature. The heat setting temperature is Tg P + 50 ° C. or higher, Mp P or lower, preferably Tg P + 100 ° C. when the glass transition temperature of the polymer component constituting the film is Tg P (° C.) and the melting point is Mp P (° C.). The Mp P is −20 ° C. or lower. The heat setting temperature is an atmospheric temperature for holding the film. When the polymer component is composed of two or more types of polymers, the Mp P of the polymer component is the sum of values obtained by multiplying the melting point of each polymer by the content ratio of the polymer.
<ポリエステルフィルム>
 本発明のポリエステルフィルムの厚みは特に制限されるものではなく、例えば、20~150μmであり、好ましくは25~125μmである。
<Polyester film>
The thickness of the polyester film of the present invention is not particularly limited, and is, for example, 20 to 150 μm, preferably 25 to 125 μm.
 本発明のポリエステルフィルムには著しく優れた耐加水分解性が発現する。具体的には本発明のポリエステルフィルムにおいて、例えば、120℃、100%RHおよび2気圧でのプレッシャークッカーテスト100時間後の引張強度保持率は50%以上、好ましくは80%以上、最も好ましくは90%以上を達成する。
 本発明のポリエステルフィルムにおいて、特に同プレッシャークッカーテスト150時間後の引張強度保持率は好ましくは10%以上、より好ましくは40%以上、最も好ましくは50%以上を達成する。
 プレッシャークッカーテストは、フィルムの耐加水分解性を評価するための加速試験であり、後述する方法によって行われる。
The polyester film of the present invention exhibits extremely excellent hydrolysis resistance. Specifically, in the polyester film of the present invention, for example, the tensile strength retention after 100 hours of a pressure cooker test at 120 ° C., 100% RH and 2 atm is 50% or more, preferably 80% or more, and most preferably 90%. Achieve at least%.
In the polyester film of the present invention, the tensile strength retention rate after 150 hours of the pressure cooker test is preferably 10% or more, more preferably 40% or more, and most preferably 50% or more.
The pressure cooker test is an accelerated test for evaluating the hydrolysis resistance of the film, and is performed by a method described later.
 また本発明のポリエステルフィルムは良好な耐熱性を有する。例えば二軸延伸前の前駆体フィルムと比較して耐熱性が改善される。具体的には本発明のポリエステルフィルムにおいて、200℃でのオーブンテスト100時間後の引張強度保持率は5%以上、好ましくは50%以上、より好ましくは80%以上を達成する。なお、本発明においては二軸配向フィルムにおける前記ポリエステル樹脂Aに特有の分子挙動に基づいて、当該引張強度保持率は100%を超えることがあり、150%程度となる場合もあり得る。
 オーブンテストは、フィルムの耐熱性を評価するための加速試験であり、後述する方法によって行われる。
The polyester film of the present invention has good heat resistance. For example, heat resistance is improved as compared with a precursor film before biaxial stretching. Specifically, in the polyester film of the present invention, the tensile strength retention after 100 hours of oven test at 200 ° C. is 5% or more, preferably 50% or more, more preferably 80% or more. In the present invention, based on the molecular behavior specific to the polyester resin A in the biaxially oriented film, the tensile strength retention rate may exceed 100% and may be about 150%.
The oven test is an accelerated test for evaluating the heat resistance of the film, and is performed by a method described later.
 さらに本発明のポリエステルフィルムは良好な耐候性を有する。例えば二軸延伸前の前駆体フィルムと比較して耐候性が改善される。具体的には本発明のポリエステルフィルムにおいて、サンシャインウェザオメーターテスト500時間後の引張強度保持率は25%以上、好ましくは40%以上、より好ましくは50%以上を達成する。
 サンシャインウェザオメーターテストは、フィルムの耐候性を評価するための加速試験であり、後述する方法によって行われる。
Furthermore, the polyester film of the present invention has good weather resistance. For example, the weather resistance is improved as compared with the precursor film before biaxial stretching. Specifically, in the polyester film of the present invention, the tensile strength retention after 500 hours of the sunshine weatherometer test is 25% or more, preferably 40% or more, more preferably 50% or more.
The sunshine weatherometer test is an accelerated test for evaluating the weather resistance of a film, and is performed by a method described later.
 本発明のポリエステルフィルムは、耐加水分解性、耐熱性および耐候性、特に耐加水分解性を要する用途、例えば、太陽電池用バックシート、モーター用絶縁フィルムに有用である。
 本発明のポリエステルフィルムは、太陽電池用バックシートに用いられる場合、例えば、図1に示す太陽電池において使用される。図1は太陽電池1の一例の概略構成図である。図1において、太陽電池1は、配線21を配設した太陽電池素子22が埋設されてなる素子封止層2、該素子封止層2の表面側を保護する表面保護層3、該素子封止層2の裏面側を保護するバックシート層4を有し、端部で枠体5が装着されている。バックシート層4は、素子封止層2側から順に、光反射層41、ガスバリア層42および耐加水分解性層43を有し、該耐加水分解性層43が本発明のポリエステルフィルムからなっている。バックシート層4はガスバリア層42の外側に耐加水分解性層43を有する限り、上記構造に限定されるものではなく、当該耐加水分解性層43が本発明のポリエステルフィルムからなっていればよい。
The polyester film of the present invention is useful for applications requiring hydrolysis resistance, heat resistance and weather resistance, particularly hydrolysis resistance, such as back sheets for solar cells and insulating films for motors.
The polyester film of the present invention is used, for example, in the solar cell shown in FIG. 1 when used in a solar cell backsheet. FIG. 1 is a schematic configuration diagram of an example of a solar cell 1. In FIG. 1, a solar cell 1 includes an element sealing layer 2 in which a solar cell element 22 provided with wiring 21 is embedded, a surface protective layer 3 that protects the surface side of the element sealing layer 2, and the element sealing. The back sheet layer 4 that protects the back side of the stop layer 2 is provided, and a frame 5 is mounted at the end. The backsheet layer 4 has, in order from the element sealing layer 2 side, a light reflecting layer 41, a gas barrier layer 42, and a hydrolysis-resistant layer 43, and the hydrolysis-resistant layer 43 is made of the polyester film of the present invention. Yes. The backsheet layer 4 is not limited to the above structure as long as it has a hydrolysis-resistant layer 43 outside the gas barrier layer 42, and the hydrolysis-resistant layer 43 only needs to be made of the polyester film of the present invention. .
 実施例/比較例
 表1または表2に記載の成分からなる混合物を二軸押出機により溶融・混練し、混練物をTダイより押し出した後、冷却し、前駆体フィルムを得た。前駆体フィルムを、表1または表2に記載の延伸条件で2軸延伸および熱固定を行った。熱固定は所定の温度で延伸時の張力を保持して行った。
 PCTAはコポリエステル13319(イーストマン社製、1,4-シクロヘキサンジメタノールとテレフタル酸およびイソフタル酸との重縮合体、Tg92℃、融点285℃)を使用した。
 PETはポリエチレンテレフタレート(Mn15000、Tg75℃、融点265℃、末端カルボキシル基濃度30当量/ton)を使用した。
Example / Comparative Example A mixture comprising the components shown in Table 1 or Table 2 was melted and kneaded by a twin screw extruder, and the kneaded product was extruded from a T die and then cooled to obtain a precursor film. The precursor film was biaxially stretched and heat-set under the stretching conditions described in Table 1 or Table 2. The heat setting was performed by maintaining the tension during stretching at a predetermined temperature.
As PCTA, copolyester 13319 (manufactured by Eastman, polycondensate of 1,4-cyclohexanedimethanol with terephthalic acid and isophthalic acid, Tg 92 ° C., melting point 285 ° C.) was used.
As the PET, polyethylene terephthalate (Mn 15000, Tg 75 ° C., melting point 265 ° C., terminal carboxyl group concentration 30 equivalent / ton) was used.
 耐加水分解性(条件1)
 120℃、100%RHおよび2気圧の高温高湿高圧槽内にフィルムを100時間放置した(プレッシャークッカーテスト)。フィルムを槽から取り出し、引張強度を測定し、当該テスト前の引張強度に対する保持率Mを求めた。引張強度はMD方向についてJIS K7127;1999に従って測定した。
 ◎;90%≦M(最良);
 ○;80≦M<90%(良);
 △;50≦M<80%(実用上問題なし);
 ×;M<50%(実用上問題あり)。
Hydrolysis resistance (Condition 1)
The film was allowed to stand for 100 hours in a high-temperature, high-humidity and high-pressure tank at 120 ° C., 100% RH and 2 atm (pressure cooker test). The film is removed from the bath, the tensile strength was measured to determine a retention M 1 with respect to the tensile strength before the test. The tensile strength was measured according to JIS K7127; 1999 in the MD direction.
◎; 90% ≦ M 1 (best);
○: 80 ≦ M 1 <90% (good);
Δ: 50 ≦ M 1 <80% (no problem in practical use);
X: M 1 <50% (practical problem).
 耐加水分解性(条件2)
 高温高湿高圧槽内でのフィルムの放置時間を150時間に変更したこと以外、上記耐加水分解性(条件1)の評価方法と同様の方法により、プレッシャークッカーテストを行い、当該テスト前の引張強度に対する保持率Mを求めた。当該条件2は前記条件1と比較して極めて苛酷な評価条件であるため、本発明において耐加水分解性は、前記条件1で測定された保持率Mがランク「△」以上であれば、当該条件2の評価結果に関係なく、許容範囲内である。また当該条件2で測定された保持率Mがランク「△」以上であれば著しく優れた達成レベルであるものと認められる。しかし、M=0のとき、著しく優れているとは認められない。
 ◎;50≦M
 ○;40≦M<50%;
 △;10≦M<40%。
 ×;M<10%。
Hydrolysis resistance (Condition 2)
A pressure cooker test was conducted in the same manner as the evaluation method for hydrolysis resistance (Condition 1) except that the film was left in the high-temperature, high-humidity, high-pressure tank for 150 hours. It was determined retention M 2 with respect to the intensity. Since the condition 2 is a very severe evaluation conditions as compared with the condition 1, the hydrolysis resistance in the present invention, retention M 1 measured at the conditions 1 is equal rank "△" or more, Regardless of the evaluation result of Condition 2, it is within the allowable range. Also recognized as retention M 2 measured in the condition 2 is significantly better achieved level if rank "△" or more. However, when M 2 = 0, it is not recognized that it is extremely excellent.
◎; 50 ≦ M 2
O; 40 ≦ M 2 <50%;
Δ: 10 ≦ M 2 <40%.
X: M 2 <10%.
 耐熱性
 200℃の雰囲気に設定された熱風循環式のオーブン内にフィルムを100時間放置した。フィルムをオーブンから取り出し、引張強度を測定し、当該テスト前の引張強度に対する保持率Mを求めた。引張強度はMD方向についてJIS K7127;1999に従って測定した。
 ◎;80≦M(最良);
 ○;50≦M<80%(良);
 △;30≦M<50%(実用上問題なし);
 ×;M<30%(実用上問題あり)。
Heat resistance The film was allowed to stand for 100 hours in a hot-air circulating oven set to an atmosphere of 200 ° C. The film is removed from the oven, the tensile strength was measured to determine a retention M 3 with respect to the tensile strength before the test. The tensile strength was measured according to JIS K7127; 1999 in the MD direction.
A; 80 ≦ M 3 (best);
○: 50 ≦ M 3 <80% (good);
Δ: 30 ≦ M 3 <50% (no problem in practical use);
×: M 3 <30% (practical problem).
 耐候性
 JIS B7753に規定の耐候試験機にてサンシャインウェザオメーターテストを行った。当該耐候試験機は、試料に対して紫外線を照射し、かつ水を噴霧する促進耐候試験機であり、ブラックパネル温度63℃、102分の照射後続いて18分の噴霧をサイクルとして当該試験機内にフィルムを500時間放置した。フィルムを試験機から取り出し、引張強度を測定し、当該テスト前の引張強度に対する保持率Mを求めた。引張強度はMD方向についてJIS K7127;1999に従って測定した。
 ◎;50≦M(最良);
 ○;40≦M<50%(良);
 △;30≦M<40%(実用上問題なし);
 ×;M<30%(実用上問題あり)。
Weather resistance A sunshine weatherometer test was conducted with a weather resistance tester specified in JIS B7753. The weathering tester is an accelerated weathering tester that irradiates a sample with ultraviolet light and sprays water, and the black panel temperature is 63 ° C., followed by irradiation for 102 minutes, and spraying for 18 minutes as a cycle. The film was left for 500 hours. The film is removed from the tester, the tensile strength was measured to determine a retention M 4 for tensile strength before the test. The tensile strength was measured according to JIS K7127; 1999 in the MD direction.
◎; 50 ≦ M 4 (best);
O; 40 ≦ M 4 <50% (good);
Δ: 30 ≦ M 4 <40% (no problem in practical use);
X: M 4 <30% (practical problem).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表1および表2中、延伸条件は以下の通りであった。
 二軸延伸(1)の条件:MD方向およびTD方向について同時に延伸した。延伸倍率(MD×TD)3×3,延伸温度110℃,熱固定温度230℃。
 二軸延伸(2)の条件:MD方向およびTD方向について同時に延伸した。延伸倍率(MD×TD)2.1×2.1,延伸温度110℃,熱固定温度230℃。
 二軸延伸(3)の条件:MD方向で延伸した後、TD方向で延伸した。延伸倍率(MD×TD)2.8×2.8,延伸温度115℃,熱固定温度230℃。
 一軸延伸(4)の条件:MD方向のみについて延伸した。延伸倍率(MD)3,延伸温度110℃,熱固定温度230℃。
 二軸延伸(5)の条件:MD方向およびTD方向について同時に延伸した。延伸倍率(MD×TD)1.8×1.8,延伸温度110℃,熱固定温度230℃。
In Table 1 and Table 2, the stretching conditions were as follows.
Biaxial stretching (1) conditions: Stretched in the MD and TD directions simultaneously. Stretch ratio (MD × TD) 3 × 3, stretch temperature 110 ° C., heat setting temperature 230 ° C.
Biaxial stretching (2) conditions: Stretched simultaneously in the MD and TD directions. Stretch ratio (MD × TD) 2.1 × 2.1, stretch temperature 110 ° C., heat setting temperature 230 ° C.
Biaxial stretching (3) conditions: After stretching in the MD direction, stretching was performed in the TD direction. Stretch ratio (MD × TD) 2.8 × 2.8, stretch temperature 115 ° C., heat setting temperature 230 ° C.
Uniaxial stretching (4) condition: Stretched only in the MD direction. Stretch ratio (MD) 3, stretch temperature 110 ° C, heat setting temperature 230 ° C.
Biaxial stretching (5) conditions: Stretched in the MD and TD directions simultaneously. Stretch ratio (MD × TD) 1.8 × 1.8, stretch temperature 110 ° C., heat setting temperature 230 ° C.
 本発明のポリエステルフィルムは、耐加水分解性、耐熱性および耐候性、特に耐加水分解性を要する用途、例えば、太陽電池用バックシート、モーター用絶縁フィルムに有用である。 The polyester film of the present invention is useful for applications requiring hydrolysis resistance, heat resistance and weather resistance, particularly hydrolysis resistance, for example, back sheets for solar cells and insulating films for motors.
 1:太陽電池
 2:素子封止層
 3:表面保護層
 4:バックシート層
 5:枠体
 21:配線
 22:太陽電池素子
 41:光反射層
 42:ガスバリア層
 43:耐加水分解性層
1: Solar cell 2: Element sealing layer 3: Surface protective layer 4: Back sheet layer 5: Frame body 21: Wiring 22: Solar cell element 41: Light reflecting layer 42: Gas barrier layer 43: Hydrolysis resistant layer
 本願の基礎出願(特願2010-192520)の全内容を、本願明細書の一部として以下に引用する。 The entire content of the basic application (Japanese Patent Application No. 2010-192520) of the present application is cited below as a part of the present specification.
明細書の内容
[発明の名称]1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム、太陽電池モジュール用保護シート、及び、太陽電池モジュール
[技術分野]
Description [Title of Invention] Copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate, protective sheet for solar cell module, and solar cell module [Technology] Field]
 本発明は、1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム、太陽電池モジュール用保護シート、及び、太陽電池モジュールに関する。
[背景技術]
The present invention relates to a copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate, a protective sheet for a solar cell module, and a solar cell module.
[Background technology]
 化石燃料に替わるクリーンなエネルギー源として、太陽電池発電システムが期待されている。一般的に、太陽電池発電システムでは、数~数十個の太陽電池素子を直列又は並列に配線した素子群を種々のパッケージで保護した、太陽電池モジュールを用いる。太陽電池モジュールは一般的に、太陽光が直接照射される面が白板強化ガラスで覆われ、その下に太陽電池素子群が配置され、透明なエチレン・ビニル・アセテート樹脂等で間隙が埋められ、裏面が耐候性プラスチック材料等のシートで保護された構成になっている(例えば、特許文献1及び2)。 Solar cell power generation systems are expected as a clean energy source to replace fossil fuels. In general, a solar cell power generation system uses a solar cell module in which an element group in which several to several tens of solar cell elements are wired in series or in parallel is protected by various packages. The solar cell module is generally covered with white plate tempered glass on the surface directly irradiated with sunlight, a solar cell element group is arranged below it, and the gap is filled with transparent ethylene, vinyl, acetate resin, etc. The back surface is protected by a sheet made of a weather resistant plastic material or the like (for example, Patent Documents 1 and 2).
 太陽電池モジュールは屋外で使用されるため、その構成、材質構造等において、十分な耐久性、耐候性が要求される。特に、太陽電池モジュールの保護シート(特に裏面保護シート)には、耐候性、中でも耐加水分解性が要求される。これは長時間にわたって屋外で使用されるうちに保護シートが雨等の水分によって分解・剥離し、これによって剥き出しとなった配線が腐蝕を起こしてモジュールの出力が影響を受ける恐れがあるためである。
[先行技術文献]
[特許文献]
Since the solar cell module is used outdoors, sufficient durability and weather resistance are required in its configuration, material structure, and the like. In particular, the solar cell module protective sheet (particularly the back surface protective sheet) is required to have weather resistance, particularly hydrolysis resistance. This is because the protective sheet may be decomposed and peeled off by moisture such as rain while being used outdoors for a long time, which may cause corrosion of the exposed wiring and affect the output of the module. .
[Prior art documents]
[Patent Literature]
  [特許文献1]特開2000-243999号公報
  [特許文献2]特開2008-235603号公報
[発明の概要]
[発明が解決しようとする課題]
[Patent Document 1] JP 2000-243999 [Patent Document 2] JP 2008-235603 [Summary of Invention]
[Problems to be solved by the invention]
 太陽電池モジュール用裏面保護シートの基材として、種々のフィルム材料が検討されているが、耐加水分解性が良好なフィルム材料は未だ提供されていない。 Although various film materials have been studied as a base material for the back surface protection sheet for solar cell modules, film materials having good hydrolysis resistance have not yet been provided.
 たとえば、ポリエチレンテレフタレート(PET)フィルムやポリエチレンナフタレート(PEN)フィルムは、耐加水分解性が不十分であり、太陽電池モジュール用裏面保護シートの基材として実用に耐えないものであった。 For example, a polyethylene terephthalate (PET) film or a polyethylene naphthalate (PEN) film has insufficient hydrolysis resistance and cannot be practically used as a base material for a back protective sheet for a solar cell module.
 そこで本発明は、耐加水分解性に優れたフィルム、これを用いた太陽電池モジュール用保護シート、及び、太陽電池モジュールを提供することを目的とする。
[課題を解決するための手段]
Then, an object of this invention is to provide the film excellent in hydrolysis resistance, the protection sheet for solar cell modules using the same, and a solar cell module.
[Means for solving problems]
 本発明者らは鋭意検討したところ、特定の1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムが耐加水分解性に優れ、太陽電池モジュール用保護シートの基材に適することを見いだして本発明に想到した。 As a result of intensive studies, the present inventors have found that a copolymer film of specific 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate has excellent hydrolysis resistance and is used for a solar cell module. The present invention has been conceived by finding it suitable for a base material for a protective sheet.
 本発明は、DMA法で測定したガラス転移温度が130℃以上である、1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムを提供する。 The present invention provides a copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a glass transition temperature measured by DMA method of 130 ° C. or higher.
 また、本発明は、TMA法で測定したガラス転移温度が200℃以上である、1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムを提供する。 The present invention also provides a copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a glass transition temperature measured by the TMA method of 200 ° C. or higher. .
 また、本発明は、X線回折において、22°≦2θ≦24°の範囲に最大ピークを有する、1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムを提供する。
 これらの1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムは、耐加水分解性に優れる。
In addition, the present invention provides a co-polymerization of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a maximum peak in the range of 22 ° ≦ 2θ ≦ 24 ° in X-ray diffraction. Provide a coalesced film.
These copolymer films of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate are excellent in hydrolysis resistance.
 本発明は、上記いずれかの1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムを少なくとも一層含む、太陽電池モジュール用保護シートを提供する。このような太陽電池モジュール用保護シートは、耐加水分解性に優れ、太陽電池モジュールの長期間の使用に耐え得る。太陽電池モジュール用保護シートは特に、太陽電池モジュール用裏面保護シートとして使用することがより好ましい。 The present invention provides a protective sheet for a solar cell module, comprising at least one copolymer film of any of the above 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate. Such a protective sheet for a solar cell module is excellent in hydrolysis resistance and can withstand long-term use of the solar cell module. The protective sheet for a solar cell module is particularly preferably used as a back surface protective sheet for a solar cell module.
 本発明は、太陽電池素子を含む充填層と、前記充填層の表面に配置された表面保護シートと、前記充填層の裏面に配置された裏面保護シートとを備え、表面保護シート及び裏面保護シートの少なくとも一方は、上述のいずれかの1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムを有する太陽電池モジュールを提供する。
[発明の効果]
The present invention includes a filling layer including a solar cell element, a surface protection sheet disposed on the surface of the filling layer, and a back surface protection sheet disposed on the back surface of the filling layer, the surface protection sheet and the back surface protection sheet. At least one of the above provides a solar cell module having a copolymer film of any of the aforementioned 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate.
[The invention's effect]
 本発明によれば、耐加水分解性に優れたフィルム、太陽電池モジュール用保護シート、及び、太陽電池用モジュールを提供することができる。
[図面の簡単な説明]
ADVANTAGE OF THE INVENTION According to this invention, the film excellent in hydrolysis resistance, the protection sheet for solar cell modules, and the module for solar cells can be provided.
[Brief description of drawings]
  [図2]本発明の一実施形態の太陽電池モジュール用裏面保護シートの断面図である。
  [図3]本発明の一実施形態の太陽電池モジュールの概略断面図である。
  [図4]実施例1、2及び比較例1~3のフィルムについて、プレッシャークッカー試験における引張強度保持率の経時変化を表すグラフである。
  [図5]実施例1、2及び比較例1~3のフィルムについて、プレッシャークッカー試験における引張伸び保持率の経時変化を表すグラフである。
  [図6]実施例1、2及び比較例2のフィルムのX線回折結果を示す図である。
[発明を実施するための形態]
FIG. 2 is a cross-sectional view of a back protective sheet for a solar cell module according to an embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view of a solar cell module according to an embodiment of the present invention.
FIG. 4 is a graph showing changes with time in tensile strength retention in a pressure cooker test for the films of Examples 1 and 2 and Comparative Examples 1 to 3.
FIG. 5 is a graph showing the change over time in tensile elongation retention in the pressure cooker test for the films of Examples 1 and 2 and Comparative Examples 1 to 3.
FIG. 6 is a diagram showing the X-ray diffraction results of the films of Examples 1 and 2 and Comparative Example 2.
[Mode for Carrying Out the Invention]
 以下、本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
 本実施形態の1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムは、1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体(以下、「共重合体A」と呼ぶ。)を含む樹脂組成物からなる。 The copolymer film of 1,4-cyclohexylene dimethylene terephthalate and 1,4-cyclohexylene dimethylene isophthalate of this embodiment is composed of 1,4-cyclohexylene dimethylene terephthalate and 1,4-cyclohexylene dimethylene. It consists of a resin composition containing a copolymer with isophthalate (hereinafter referred to as “copolymer A”).
 テレフタレートとイソフタレートとのモル比は、特に限定されないが、通常、99.9:0.1~50:50、好ましくは、99:1~70:30程度である。また、共重合体Aの固有粘度(IV値)は、0.5~1.0dl/gであることが好ましく、0.75~1.0dl/gであることがより好ましい。IV値は、次のようにして求められる。すなわち、フェノール60質量%と1,1,2,2-テトラクロロエチレン40質量%との混合溶媒に対し、共重合体Aを0.5g/100mlの濃度となるように溶解させる。細管粘度計を用いて、25℃にて溶液の細管粘度計中の落下時間を測定し、これをtsとする。また、溶媒のみの細管粘度計中の落下時間を測定し、これをtoとする。IV値=[ln(ts/to)]/0.5の計算式により、IV値が求められる。なお、「ln」は自然対数の底を表す。 The molar ratio of terephthalate to isophthalate is not particularly limited, but is usually 99.9: 0.1 to 50:50, preferably about 99: 1 to 70:30. The intrinsic viscosity (IV value) of the copolymer A is preferably 0.5 to 1.0 dl / g, and more preferably 0.75 to 1.0 dl / g. The IV value is obtained as follows. That is, copolymer A is dissolved in a mixed solvent of 60% by mass of phenol and 40% by mass of 1,1,2,2-tetrachloroethylene so as to have a concentration of 0.5 g / 100 ml. Using a capillary viscometer, the drop time of the solution in the capillary viscometer is measured at 25 ° C., and this is taken as ts. Moreover, the drop time in the capillary viscometer only of a solvent is measured, and this is set to. The IV value is obtained by the formula of IV value = [ln (ts / to)] / 0.5. “Ln” represents the base of the natural logarithm.
 共重合体Aを含む樹脂組成物における共重合体Aの含有割合は、耐加水分解性をより高める観点から、50~100質量%が好ましく、60~100質量%がより好ましく、70~100質量%が更に好ましい。 The content ratio of the copolymer A in the resin composition containing the copolymer A is preferably 50 to 100% by mass, more preferably 60 to 100% by mass, and 70 to 100% by mass from the viewpoint of further improving the hydrolysis resistance. % Is more preferable.
 共重合体Aを含む樹脂組成物は、共重合体A以外の有機物、無機物及び各種添加剤を適宜含んでもよい。共重合体A以外の有機物としては、環状や線状の共重合体Aオリゴマー、共重合体Aを構成する酸成分やグリコール成分のモノマー及びこれらに由来する低分子量反応物、共重合体A以外の樹脂、及び、各種添加剤が挙げられる。共重合体A以外の樹脂としてはPET、PBT、PEN、ポリプロピレンナフタレート、ポリブチレンナフタレート等の熱可塑性ポリエステル、熱硬化性のポリエステル、ナイロン6、ナイロン66、ナイロン11、ナイロン12等の熱可塑性ポリアミド、ポリカーボネート、ポリアセタール、ポリスチレン、ABS樹脂、ポリウレタン、フッ素樹脂、シリコン樹脂、ポリフェニレンサルファイト樹脂、セルロース、ポリフェニレンエーテル樹脂等、及び、これらの共重合樹脂等が挙げられる。 The resin composition containing the copolymer A may appropriately include organic substances other than the copolymer A, inorganic substances, and various additives. Examples of organic substances other than the copolymer A include cyclic and linear copolymer A oligomers, monomers of the acid component and glycol component constituting the copolymer A, low molecular weight reactants derived therefrom, and other than the copolymer A And various additives. As resins other than the copolymer A, thermoplastic polyesters such as PET, PBT, PEN, polypropylene naphthalate, polybutylene naphthalate, etc., thermosetting polyester, nylon 6, nylon 66, nylon 11, nylon 12, etc. Examples thereof include polyamide, polycarbonate, polyacetal, polystyrene, ABS resin, polyurethane, fluororesin, silicon resin, polyphenylene sulfite resin, cellulose, polyphenylene ether resin, and copolymer resins thereof.
 無機物としては、ガラス繊維、カーボン繊維、タルク、マイカ、ワラストナイト、カオリンクレー、層状珪酸塩、炭酸カルシウム、二酸化チタン、二酸化シリカ等の無機充填剤や無機滑剤、重合触媒残渣等が挙げられる。 Examples of inorganic substances include inorganic fillers such as glass fiber, carbon fiber, talc, mica, wollastonite, kaolin clay, layered silicate, calcium carbonate, titanium dioxide, and silica dioxide, inorganic lubricants, polymerization catalyst residues, and the like.
 また、添加剤としては、有機や無機の染料や顔料、艶消し剤、熱安定剤、難燃剤、帯電防止剤、消泡剤、整色剤、酸化防止剤、紫外線吸収剤、結晶造核剤、増白剤、滑剤、不純物の捕捉剤、増粘剤、表面調整剤等が挙げられる。このうち、熱安定剤や、低分子量の揮発性不純物の捕捉剤を含むことが好ましい。熱安定剤として5価及び/又は3価のリン化合物やヒンダードフェノール系化合物等が好ましく、低分子量の揮発性不純物の捕捉剤としては、ポリアミドやポリエステルアミドのポリマーやオリゴマー、アミド基やアミン基を有した低分子量化合物等が好ましい。 Additives include organic and inorganic dyes and pigments, matting agents, heat stabilizers, flame retardants, antistatic agents, antifoaming agents, color adjusting agents, antioxidants, ultraviolet absorbers, crystal nucleating agents. , Whitening agents, lubricants, impurity scavengers, thickeners, surface conditioners and the like. Among these, it is preferable to include a heat stabilizer and a trapping agent for low molecular weight volatile impurities. As the heat stabilizer, pentavalent and / or trivalent phosphorus compounds, hindered phenol compounds and the like are preferable, and as a trapping agent for low molecular weight volatile impurities, polymers and oligomers of polyamide and polyesteramide, amide groups and amine groups are preferred. Preferred are low molecular weight compounds having
 本実施形態の共重合体Aフィルムは、DMA法で測定したガラス転移温度が130℃以上である。DMA法で測定したガラス転移温度は、好ましくは140℃以上であり、より好ましくは150℃以上である。DMA法で測定したガラス転移温度の上限は特にないが、通常、200℃以下であり、180℃以下が好ましく、170℃以下が好ましく、160℃以下が更に好ましい。 The copolymer A film of this embodiment has a glass transition temperature measured by DMA method of 130 ° C. or higher. The glass transition temperature measured by the DMA method is preferably 140 ° C. or higher, more preferably 150 ° C. or higher. Although there is no upper limit of the glass transition temperature measured by the DMA method, it is usually 200 ° C. or lower, preferably 180 ° C. or lower, preferably 170 ° C. or lower, and more preferably 160 ° C. or lower.
 DMA法とは以下の方法である。すなわち、試験片を室温から5℃/分の割合で昇温させ、粘弾性測定装置を使用して試験片の動的粘弾性と損失正接とを測定し、損失正接のピーク温度からガラス転移温度を求めることができる。なお、測定周波数は1Hzとする。 The DMA method is the following method. That is, the test piece is heated from room temperature at a rate of 5 ° C./min, the dynamic viscoelasticity and loss tangent of the test piece are measured using a viscoelasticity measuring device, and the glass transition temperature is calculated from the peak temperature of the loss tangent. Can be requested. The measurement frequency is 1 Hz.
 また、本実施形態の共重合体Aフィルムは、TMA法で測定したガラス転移温度が200℃以上である。TMA法で測定したガラス転移温度は、好ましくは210℃以上、より好ましくは220℃以上、更に好ましくは230℃以上であり、特に好ましくは235℃以上である。TMA法で測定したガラス転移温度の上限は特にないが、通常、260℃以下であり、255℃以下が好ましく、250℃以下がより好ましく、245℃以下が更に好ましい。 Further, the copolymer A film of this embodiment has a glass transition temperature measured by the TMA method of 200 ° C. or higher. The glass transition temperature measured by the TMA method is preferably 210 ° C. or higher, more preferably 220 ° C. or higher, still more preferably 230 ° C. or higher, and particularly preferably 235 ° C. or higher. Although there is no upper limit of the glass transition temperature measured by the TMA method, it is usually 260 ° C. or lower, preferably 255 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 245 ° C. or lower.
 TMA法とは以下の方法である。すなわち、試験片を室温から10℃/分の割合で昇温させ、熱分析装置を使用して厚さ方向の熱膨張量を測定し、温度と熱膨張量との関係を示すグラフを作図する。そして、ガラス転移点の前後の曲線に接線を引き、この接線の交点からガラス転移温度を求めることができる。 The TMA method is the following method. That is, the temperature of the test piece is raised from room temperature at a rate of 10 ° C./min, the amount of thermal expansion in the thickness direction is measured using a thermal analyzer, and a graph showing the relationship between the temperature and the amount of thermal expansion is drawn. . A tangent line is drawn on the curves before and after the glass transition point, and the glass transition temperature can be obtained from the intersection of the tangent lines.
 また、本実施形態の共重合体Aフィルムは、X線回折において、22°≦2θ≦24°の範囲に最大ピークを有する。 Further, the copolymer A film of this embodiment has a maximum peak in the range of 22 ° ≦ 2θ ≦ 24 ° in X-ray diffraction.
 本実施形態の共重合体Aフィルムは、耐加水分解性に優れる。本実施形態にかかる共重合体Aフィルムがこのような特性を有する理由は明らかではないが、その一つの要因として以下のことが挙げられる。
 上述のガラス転移温度、及び、最大ピークに関する特性は、本実施形態の共重合体Aフィルム中の共重合体Aがある程度以上結晶化していることと関連している。そして、共重合体Aがある程度以上(好ましくは結晶化度で20%以上、より好ましくは30%以上)結晶化していることにより耐加水分解性が高くなるものと考えられる。
The copolymer A film of this embodiment is excellent in hydrolysis resistance. The reason why the copolymer A film according to this embodiment has such characteristics is not clear, but one factor is as follows.
The characteristics relating to the glass transition temperature and the maximum peak described above are related to the fact that the copolymer A in the copolymer A film of the present embodiment is crystallized to some extent. And it is thought that hydrolysis resistance becomes high when the copolymer A is crystallized to some extent (preferably 20% or more, more preferably 30% or more in crystallinity).
 本実施形態の共重合体Aフィルムの破断強度は、JIS-K7127に基づいた測定において、MD方向・TD方向ともに、80MPa以上であることが好ましく、90MPa以上であることがより好ましく、100MPa以上であることが更に好ましい。 In the measurement based on JIS-K7127, the breaking strength of the copolymer A film of this embodiment is preferably 80 MPa or more, more preferably 90 MPa or more, and more preferably 100 MPa or more in both the MD direction and the TD direction. More preferably it is.
 本実施形態の共重合体Aフィルムの破断伸度は、JIS-K7127に基づいた測定において、MD方向・TD方向ともに、150MPa以下であることが好ましく、120MPa以下であることがより好ましく、80MPa以下であることが更に好ましい。 In the measurement based on JIS-K7127, the elongation at break of the copolymer A film of this embodiment is preferably 150 MPa or less, more preferably 120 MPa or less, and more preferably 80 MPa or less in both the MD direction and the TD direction. More preferably.
 本実施形態の絶縁破壊電圧は、ASTM D-149に基づいた測定において、90kV/mm以上であることが好ましく、110kV/mm以上であることがより好ましく、130kV/mm以上であることが更に好ましい。 The dielectric breakdown voltage of the present embodiment is preferably 90 kV / mm or more, more preferably 110 kV / mm or more, and further preferably 130 kV / mm or more in the measurement based on ASTM D-149. .
 本実施形態の熱膨張係数(CTE)は、TMA法(50~100℃)による測定において、MD方向・TD方向ともに、80ppm/℃以下であることが好ましく、60ppm/℃以下であることがより好ましく、40ppm/℃以下であることが更に好ましい。 The thermal expansion coefficient (CTE) of this embodiment is preferably 80 ppm / ° C. or less, more preferably 60 ppm / ° C. or less in both the MD and TD directions, as measured by the TMA method (50 to 100 ° C.). Preferably, it is 40 ppm / ° C. or less.
 本実施形態の共重合体Aフィルムの厚みは、太陽電池モジュール用裏面保護シートの厚みと要求される性能によって適宜選択することができるが、10μm~500μmであることが好ましく、20μm~300μmであることがより好ましく、30μm~200μmであることが更に好ましい。このような範囲とすることでフィルムを製造することが容易になるとともに、強度・剛性が高まって取扱い性や後加工性が容易になる。厚みムラは±10%以内であることが好ましく、±7%以内であることがより好ましく、±5%以内であることが更に好ましい。 The thickness of the copolymer A film of the present embodiment can be appropriately selected depending on the thickness of the back protective sheet for solar cell module and the required performance, but is preferably 10 μm to 500 μm, and preferably 20 μm to 300 μm. It is more preferable that the thickness is 30 μm to 200 μm. By setting it as such a range, while it becomes easy to manufacture a film, intensity | strength and rigidity increase and handling property and post-processability become easy. The thickness unevenness is preferably within ± 10%, more preferably within ± 7%, and further preferably within ± 5%.
 本実施形態にかかる共重合体Aフィルムは、以下のようにして製造することができる。
 まず、原料となる共重合体A樹脂(たとえばペレット)を用意する。共重合体A樹脂は、1,4-シクロヘキサンジメタノール、テレフタル酸、及び、イソフタル酸を公知の方法で重縮合することによって製造することができる。また、たとえば、共重合体Aペレットは、イーストマン社から、たとえば、商品名「Eastman Copolyester 13319」等として市販もされている。
 そして、共重合体A樹脂を加熱により溶融し、必要に応じて添加剤を添加し、共重合体Aを含む樹脂組成物を得る。そして、この樹脂組成物をフィルムに成形する。フィルムに成形する方法としては、共重合体Aを含む樹脂組成物を溶融状態にてダイより押出して成形する溶融成形法、樹脂組成物を溶媒に溶解した溶液を支持体上に塗布しその後溶媒を乾燥させる溶液キャスト法等が挙げられる。これらのうち、生産性、環境適性が優れ、一工程でフィルムを得ることができる溶融成形法が最も好ましい。溶融成形法としてはTダイやIダイを用いる方式、水冷式及び空冷式のインフレーション法が好ましい。
The copolymer A film according to this embodiment can be produced as follows.
First, a copolymer A resin (for example, pellets) as a raw material is prepared. The copolymer A resin can be produced by polycondensing 1,4-cyclohexanedimethanol, terephthalic acid, and isophthalic acid by a known method. Further, for example, the copolymer A pellet is also commercially available from Eastman, for example, under the trade name “Eastman Copolyester 13319”.
And copolymer A resin is fuse | melted by heating, an additive is added as needed and the resin composition containing the copolymer A is obtained. Then, this resin composition is formed into a film. As a method for forming into a film, a melt molding method in which a resin composition containing the copolymer A is extruded from a die in a molten state, a solution in which the resin composition is dissolved in a solvent is applied onto a support, and then the solvent The solution cast method etc. which dry is mentioned. Of these, the melt molding method is most preferable because it is excellent in productivity and environmental suitability and can obtain a film in one step. As the melt molding method, a method using a T die or an I die, a water-cooled method, and an air-cooled inflation method are preferable.
 続いて、成形された未延伸の共重合体Aフィルムを延伸することにより、本実施形態にかかる上述の共重合体Aフィルムを得ることができる。 Subsequently, the above-described copolymer A film according to this embodiment can be obtained by stretching the formed unstretched copolymer A film.
 延伸条件や延伸方法は特に限定されず、上述のガラス転移温度が得られる範囲やX線回折における所定の角度範囲に最大ピークが得られる範囲で適宜調節すればよい。 The stretching conditions and the stretching method are not particularly limited, and may be appropriately adjusted within a range in which the above glass transition temperature is obtained or a maximum peak is obtained in a predetermined angle range in X-ray diffraction.
 たとえば、延伸方向は、一軸でも二軸でもよいが、二軸が好ましい。 For example, the stretching direction may be uniaxial or biaxial, but biaxial is preferred.
 延伸方法も特に限定されず、ロール延伸、テンター延伸等の種々の方法を、単独で、また、任意に組み合わせて使用できる。 The stretching method is not particularly limited, and various methods such as roll stretching and tenter stretching can be used alone or in any combination.
 延伸倍率も特に限定されない。たとえば、MD(machine direction)方向に2倍~5倍、TD(transverse direction)方向に2倍~5倍とすることができる。 The stretch ratio is not particularly limited. For example, it can be 2 to 5 times in the MD (machine direction) direction and 2 to 5 times in the TD (transverse direction) direction.
 本発明の太陽電池モジュール用裏面保護シート(以下、単に「裏面保護シート」という場合がある。)の構成の一実施例を図2に示す。裏面保護シート11は、ガスバリア性フィルム20の両面に、耐熱性を有するフィルム基材30,32を積層してなる構成を有している。ガスバリア性フィルム20は、基材10の片面に無機化合物からなる蒸着層12を設けたものである。基材10として、上述の共重合体Aフィルムを使用することができる。 FIG. 2 shows an example of the configuration of the back surface protection sheet for solar cell modules of the present invention (hereinafter, sometimes simply referred to as “back surface protection sheet”). The back surface protection sheet 11 has a configuration in which film base materials 30 and 32 having heat resistance are laminated on both surfaces of the gas barrier film 20. The gas barrier film 20 is obtained by providing a vapor deposition layer 12 made of an inorganic compound on one surface of a substrate 10. As the base material 10, the above-mentioned copolymer A film can be used.
 本実施形態で用いられる耐熱性を有するフィルム基材30,32としては、耐熱性を有するものであればよく、ポリエチレンテレフタレート(PET)フィルムもしくはフッ化ビニル樹脂(PVF)フィルム、フッ化ビニリデン樹脂(PVDF)フィルム、三フッ化塩化エチレン樹脂(PCTFE)フィルム、エチレン・四フッ化エチレン共重合体(ETFE)フィルム、ポリテトラフルオロエチレン(PTFE)フィルム、四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)フィルムから選ばれるフッ素系基材が挙げられる。また、耐熱性を有するフィルム基材30,32として共重合体Aフィルムも好適に使用することができる。 The film base materials 30 and 32 having heat resistance used in the present embodiment may be any film having heat resistance, such as a polyethylene terephthalate (PET) film or a vinyl fluoride resin (PVF) film, a vinylidene fluoride resin ( PVDF) film, trifluoroethylene chloride (PCTFE) film, ethylene-tetrafluoroethylene copolymer (ETFE) film, polytetrafluoroethylene (PTFE) film, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer Examples thereof include a fluorine-based substrate selected from (PFA) films. Moreover, the copolymer A film can also be used suitably as the film base materials 30 and 32 which have heat resistance.
 フィルム基材30、32の厚みは特に限定されず、たとえば、3~200μmとすることが好ましく、6~30μmとすることがより好ましい。 The thickness of the film base materials 30 and 32 is not particularly limited, and is preferably 3 to 200 μm, and more preferably 6 to 30 μm.
 蒸着層12の材料も特に限定されず、酸化アルミニウム、酸化ケイ素、酸化スズ、酸化マグネシウム、酸化亜鉛、これらの2以上の混合物が挙げられる。蒸着層12の厚みは特に限定されず、たとえば、5~300nmが好ましく、10~150nmがより好ましい。 The material of the vapor deposition layer 12 is not particularly limited, and examples thereof include aluminum oxide, silicon oxide, tin oxide, magnesium oxide, zinc oxide, and a mixture of two or more thereof. The thickness of the vapor deposition layer 12 is not particularly limited, and is preferably 5 to 300 nm, for example, and more preferably 10 to 150 nm.
 本実施形態のガスバリア性フィルム20と耐熱性を有するフィルム基材30,32とを積層する方法としては、例えば、ドライラミネーション積層方式を採用して積層することができる。ドライラミネーション用接着剤としては、接着強度が長期間の屋外使用で劣化によるデラミネーション等を生じないこと、更に接着剤が黄変しないこと等が必要であり、高耐熱性、耐湿熱性等に対応するために、接着剤を構成するビヒクルの主成分としての樹脂等が、架橋ないし硬化して三次元網目状の架橋構造等を形成し得るものを使用することが望ましい。具体的には、上記のラミネート用接着剤層を構成する接着剤が、硬化剤又は架橋剤の存在下、熱又は光等からなる反応エネルギーにより架橋構造を形成することが好ましい。例えば、2液硬化型ポリウレタン系接着剤等脂肪族系・脂環系イソシアネート、あるいは、芳香族系イソシアネート等のイソシアネート系の硬化剤又は架橋剤の存在下、熱、又は光からなる反応エネルギーによりラミネート用接着剤が架橋構造を形成することにより、耐熱性、耐候性、耐湿熱性等に優れた太陽電池モジュール用裏面保護シートを製造し得る。 As a method of laminating the gas barrier film 20 of this embodiment and the heat-resistant film base materials 30 and 32, for example, a dry lamination laminating method can be employed for laminating. As an adhesive for dry lamination, it is necessary that the adhesive strength does not cause delamination due to deterioration when used outdoors for a long period of time, and that the adhesive does not turn yellow, etc., and is compatible with high heat resistance, moisture heat resistance, etc. Therefore, it is desirable to use a resin or the like as a main component of the vehicle constituting the adhesive which can be crosslinked or cured to form a three-dimensional network crosslinked structure. Specifically, the adhesive constituting the adhesive layer for laminating preferably forms a crosslinked structure by reaction energy consisting of heat or light in the presence of a curing agent or a crosslinking agent. For example, laminating by reaction energy consisting of heat or light in the presence of an aliphatic or alicyclic isocyanate such as a two-component curable polyurethane adhesive, or an isocyanate curing agent or crosslinking agent such as an aromatic isocyanate. When the adhesive for adhesive forms a crosslinked structure, a back protective sheet for a solar cell module excellent in heat resistance, weather resistance, moist heat resistance and the like can be produced.
 上記接着剤において、脂肪族系イソシアネートとしては、例えば、1,6-ヘキサメチレンジイソシアネート(HDI)、脂環系イソシアネートとしては、例えば、イソホロンジイソシアネート(IPDI)、芳香族系イソシアネートとしては、例えば、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフチレンジイソシアネート(NDI)、トリジンジイソシアネート(TODI)、キシリレンジイソシアネート(XDI)等を使用することができる。 In the above adhesive, as the aliphatic isocyanate, for example, 1,6-hexamethylene diisocyanate (HDI), as the alicyclic isocyanate, for example, isophorone diisocyanate (IPDI), as the aromatic isocyanate, for example, tri Range isocyanate (TDI), diphenylmethane diisocyanate (MDI), naphthylene diisocyanate (NDI), tolidine diisocyanate (TODI), xylylene diisocyanate (XDI), and the like can be used.
 なお、上記接着剤中には、紫外線劣化等を防止するために、紫外線吸収剤あるいは光安定化剤を添加することができる。その使用量としては、その粒子形状、密度等によって異なるが、約0.1~10重量%位が好ましい。 In the adhesive, an ultraviolet absorber or a light stabilizer can be added in order to prevent ultraviolet degradation or the like. The amount used varies depending on the particle shape, density, etc., but is preferably about 0.1 to 10% by weight.
 上記接着剤は、例えば、ロールコート法、グラビアロールコート法、キスコート法、その他等のコート法、あるいは、印刷法等によって施すことができ、その塗布量としては2~20g/m(乾燥状態)位、好ましくは3~10g/m(乾燥状態)の範囲が望ましい。 The adhesive can be applied, for example, by a coating method such as a roll coating method, a gravure roll coating method, a kiss coating method, or the like, or a printing method, and the coating amount is 2 to 20 g / m 2 (dry state) ) Position, preferably in the range of 3 to 10 g / m 2 (dry state).
 このようにして得られる本発明の太陽電池モジュール用裏面保護シートは、上述の共重合体Aフィルムを有していることから、特に耐加水分解性に優れている。したがって、このような太陽電池用裏面保護シートは、太陽電池を長期間にわたり保護することが可能であり、かつ、安価である。 The back protective sheet for a solar cell module of the present invention thus obtained is particularly excellent in hydrolysis resistance because it has the above-mentioned copolymer A film. Therefore, such a back surface protection sheet for solar cells can protect the solar cells over a long period of time and is inexpensive.
 なお、太陽電池モジュール用裏面保護シートの構成は上記の構成に限定されない。 In addition, the structure of the back surface protection sheet for solar cell modules is not limited to said structure.
 たとえば、蒸着層12と基材10との間に、これらの密着性を高めるべく透明プライマー層を設けてもよい。透明プライマー層の樹脂としては、シランカップリング剤やその加水分解物と、ポリオール及びイソシアネート化合物との複合物が挙げられる。 For example, a transparent primer layer may be provided between the vapor-deposited layer 12 and the base material 10 in order to improve their adhesion. Examples of the resin for the transparent primer layer include a composite of a silane coupling agent or a hydrolyzate thereof, a polyol and an isocyanate compound.
 シランカップリング剤としては、例えばエチルトリメトキシシラン、ビニルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルトリメトキシシラン、グリシドオキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン等のシランカップリングあるいはその加水分解物の1種ないしは2種以上を用いることができる。また、例えばγ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルトリメトキシシランのようなイソシアネート基を含むもの、γ-メルカプトプロピルトリエトキシシランのようなメルカプト基を含むものや、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-フェニルアミノプロピルトリメトキシシランのようなアミノ基を含むものがある。更にγ-グリシドオキシプロピルトリメトキシシランやβ-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン等のようにエポキシ基を含むものや、ビニルトリメトキシシラン、ビニル(β-メトキシエトキシ)シラン等のようなシランカップリング剤にアルコール等を付加し水酸基等を付加したものでも良く、これら1種ないしは2種以上を用いることができる。 Examples of the silane coupling agent include ethyltrimethoxysilane, vinyltrimethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-chloropropyltrimethoxysilane, glycidoxypropyltrimethoxysilane, and γ-methacryloxypropyltrimethoxysilane. One or two or more of silane couplings such as γ-methacryloxypropylmethyldimethoxysilane or hydrolysates thereof can be used. Further, for example, those containing isocyanate groups such as γ-isocyanatopropyltriethoxysilane and γ-isocyanatopropyltrimethoxysilane, those containing mercapto groups such as γ-mercaptopropyltriethoxysilane, and γ-aminopropyltriethoxysilane There are those containing amino groups such as silane, γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltriethoxysilane, and γ-phenylaminopropyltrimethoxysilane. Further, those containing an epoxy group such as γ-glycidoxypropyltrimethoxysilane and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltrimethoxysilane, vinyl (β-methoxyethoxy) silane, etc. Such a silane coupling agent may be added with alcohol or the like and added with a hydroxyl group or the like, and one or more of these may be used.
 ポリオールとしては、たとえば、エチルメタクリレート、ヒドロキシエチルメタクリレートやヒドロキシプロピルメタクリレート、ヒドロキシルブチルメタクリレート等のアクリル酸誘導体モノマーを単独で重合させたものや、スチレン等のその他のモノマーを加え共重合させたアクリルポリオール等が好ましく用いられる。 Examples of the polyol include those obtained by polymerizing acrylic acid derivative monomers such as ethyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, and hydroxylbutyl methacrylate alone, and acrylic polyols obtained by copolymerizing with other monomers such as styrene. Is preferably used.
 イソシアネート化合物としては、たとえば、芳香族系のトリレンジイソシアネート(TDI)やジフェニルメタンジイソシアネート(MDI)、脂肪族系のキシレンジイソシアネート(XDI)やヘキサレンジイソシアネート(HMDI)等のモノマー類と、これらの重合体や誘導体等が用いられ、これらを1種又は2種以上用いることができる。 Examples of the isocyanate compound include monomers such as aromatic tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), aliphatic xylene diisocyanate (XDI), hexadiisocyanate (HMDI), and polymers thereof. Or a derivative thereof can be used, and one or more of these can be used.
 透明プライマー層の厚みは特に限定されないが、0.001~2μmであることが好ましく、0.03~0.5μmであることが好ましい。 The thickness of the transparent primer layer is not particularly limited, but is preferably 0.001 to 2 μm, and preferably 0.03 to 0.5 μm.
 また、蒸着層12とフィルム基材32との間に、更にガスバリア性を有するオーバーコート層を設けてもよい。オーバーコート層は、たとえば、水溶性高分子と、一種以上の金属アルコキシド又はその加水分解物と、を含み、水又は水-アルコール混合液を溶媒とするコーティング液を蒸着層12に塗布することにより形成することができる。 Further, an overcoat layer having a gas barrier property may be further provided between the vapor deposition layer 12 and the film substrate 32. The overcoat layer includes, for example, a water-soluble polymer and one or more metal alkoxides or a hydrolyzate thereof, and a coating solution containing water or a water-alcohol mixed solution as a solvent is applied to the vapor deposition layer 12. Can be formed.
 水溶性高分子としては、ポリビニルアルコール、ポリビニルピロリドン、デンプン、メチルセルロース、カルボキシルメチルセルロース、アルギン酸ナトリウム等が挙げられる。 Examples of water-soluble polymers include polyvinyl alcohol, polyvinyl pyrrolidone, starch, methyl cellulose, carboxymethyl cellulose, and sodium alginate.
 金属アルコキシドとしては、テトラエトキシシラン、トリイソプロポキシアルミニウム等が挙げられる。 Examples of the metal alkoxide include tetraethoxysilane and triisopropoxyaluminum.
 また、蒸着層12を基材10の両面に形成してもよい。この場合、両方の蒸着面に対して上述の透明プライマー層やオーバーコート層を形成してもよい。 Further, the vapor deposition layer 12 may be formed on both surfaces of the base material 10. In this case, you may form the above-mentioned transparent primer layer and overcoat layer with respect to both vapor deposition surfaces.
 また、太陽電池モジュール用裏面保護シート11は、フィルム基材30、32のいずれか一方又は両方を有さないこともでき、更に、上述の基材10のみから構成されていてもよい。 Moreover, the back surface protection sheet 11 for solar cell modules may not have any one or both of the film base materials 30 and 32, and may be comprised only from the above-mentioned base material 10.
 次に、本発明の太陽電池用裏面保護シートを使用した太陽電池モジュールについて説明する。図3は、本発明の太陽電池用裏面保護シートを備える太陽電池モジュール100についてその一実施形態の層構成を示す概略断面図である。 Next, a solar cell module using the solar cell back surface protective sheet of the present invention will be described. FIG. 3 is a schematic cross-sectional view showing the layer configuration of one embodiment of the solar cell module 100 including the solar cell back surface protective sheet of the present invention.
 本実施形態の太陽電池モジュール100は、太陽電池モジュール用表面保護シート60、表面側充填材層51、配線52を配設した光起電力素子としての太陽電池素子50、裏面側充填材層53、及び、上記裏面保護シート11の上記耐加水分解性を有するフィルム基材30が太陽電池モジュール100の裏面側充填材層53側に配置した構成とされている。これらの各部材に対し、例えば真空吸引等により一体化して加熱圧着するラミネーション法等の成形法を利用し、上記の各層を一体成形体として加熱圧着成形することができる。更に、太陽電池モジュール100は、例えばアルミニウム製の枠体(図示せず)を装着することもできる。 The solar cell module 100 of the present embodiment includes a solar cell module surface protection sheet 60, a front surface side filler layer 51, a solar cell element 50 as a photovoltaic element provided with a wiring 52, a back surface side filler layer 53, And the film base material 30 which has the said hydrolysis resistance of the said back surface protection sheet 11 is set as the structure arrange | positioned at the back surface side filler layer 53 side of the solar cell module 100. FIG. For each of these members, for example, by using a molding method such as a lamination method in which the members are integrated by, for example, vacuum suction, and heat-pressed, the above-described layers can be thermocompression-molded as an integrally formed body. Furthermore, the solar cell module 100 can be mounted with, for example, an aluminum frame (not shown).
 上記太陽電池モジュールを構成する通常の太陽電池モジュール用表面保護シート60としては、太陽光の透過性、絶縁性等を有し、更に、耐候性、耐熱性、耐光性、耐水性、防湿性、防汚性、その他等の諸特性を有し、物理的あるいは化学的強度性、強靱性等に優れ、極めて耐久性に富み、更に、光起電力素子としての太陽電池素子の保護ということから、耐スクラッチ性、衝撃吸収性等に優れていることが必要である。 As the normal solar cell module surface protection sheet 60 constituting the solar cell module, it has sunlight permeability, insulation, etc., and further has weather resistance, heat resistance, light resistance, water resistance, moisture resistance, It has various characteristics such as antifouling properties, etc., is excellent in physical or chemical strength, toughness, etc., is extremely durable, and further, because it protects solar cell elements as photovoltaic elements, It must be excellent in scratch resistance, shock absorption, and the like.
 具体的には、公知のガラス板等、更には、例えば、ポリアミド系樹脂(各種のナイロン)、ポリエステル系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、(メタ)アクリル系樹脂、ポリカーボネート系樹脂、アセタール系樹脂、その他等の各種の樹脂フィルムないしシートを使用することができ、更に、共重合体Aも好適に使用することができる。上記樹脂のフィルムないしシートとしては、二軸延伸した延伸フィルムないしシートを使用することができる。また、その樹脂のフィルムないしシートの厚さとしては、強度、剛性、腰等を保持するに必要な最低限の厚さであればよく、厚すぎると、コストを上昇するという欠点もあり、薄すぎると、強度、剛性、腰等が低下して好ましくない。本実施形態においては、上記のような理由から、樹脂のフィルムないしシートの厚さは12~200μmが好ましく、25μm~150μmがより好ましい。 Specifically, known glass plates and the like, and further, for example, polyamide resins (various nylons), polyester resins, cyclic polyolefin resins, polystyrene resins, (meth) acrylic resins, polycarbonate resins, acetals Various resin films and sheets such as a resin and others can be used, and the copolymer A can also be suitably used. As the resin film or sheet, a biaxially stretched stretched film or sheet can be used. Further, the thickness of the resin film or sheet may be a minimum thickness necessary to maintain strength, rigidity, waist, etc. If it is too thick, there is a disadvantage that the cost increases, and the thickness is thin. If it is too high, strength, rigidity, waist and the like are lowered, which is not preferable. In the present embodiment, for the reasons described above, the thickness of the resin film or sheet is preferably 12 to 200 μm, more preferably 25 to 150 μm.
 太陽電池モジュールを構成する太陽電池モジュール用表面保護シート60の下に積層する充填材層51としては、表面保護シート60を介して太陽光が入射し、これを透過して吸収することから透明性を有することが必要であり、また、表面保護シート及び裏面保護シートとの接着性を有することも必要である。また、光起電力素子としての太陽電池素子の表面の平滑性を保持する機能を果たすために熱可塑性を有すること、更には、光起電力素子としての太陽電池素子を保護する観点から、耐スクラッチ性、衝撃吸収性等に優れていることが必要である。 As the filler layer 51 laminated under the surface protection sheet 60 for the solar cell module constituting the solar cell module, sunlight enters through the surface protection sheet 60 and transmits and absorbs the transparency. It is necessary to have adhesiveness with a surface protection sheet and a back surface protection sheet. In addition, from the viewpoint of protecting the solar cell element as the photovoltaic element from having thermoplasticity in order to achieve the function of maintaining the smoothness of the surface of the solar cell element as the photovoltaic element. It is necessary to have excellent properties and shock absorption.
 具体的には、上記の充填剤層としては、例えば、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-アクリル酸、又は、酸変性ポリオレフィン系樹脂、ポリビニルブチラール樹脂、シリコーン系樹脂、エポキシ系樹脂、(メタ)アクリル系樹脂、その他等の樹脂の1種ないし2種以上の混合物を使用することができる。本実施形態においては、上記の充填材層を構成する樹脂には、耐熱性、耐光性、耐水性等の耐候性等を向上させるために、その透明性を損なわない範囲で、例えば、架橋剤、熱酸化防止剤、光安定剤、紫外線吸収剤、光酸化防止剤、その他等の添加剤を任意に添加し、混合することができるものである。なお、本実施形態においては、太陽光の入射側の充填材としては、耐光性、耐熱性、耐水性等の耐候性等の性能面と価格面を考慮すると、エチレン-酢酸ビニル系樹脂が望ましい素材である。なお、上記の充填材層の厚さとしては、200~1000μmが好ましく、350~600μmがより好ましい。 Specifically, as the filler layer, for example, ethylene-vinyl acetate copolymer, ionomer resin, ethylene-acrylic acid, or acid-modified polyolefin resin, polyvinyl butyral resin, silicone resin, epoxy resin , (Meth) acrylic resins, and other resins can be used as a mixture of one or more. In the present embodiment, the resin constituting the filler layer is, for example, a crosslinking agent within a range that does not impair its transparency in order to improve weather resistance such as heat resistance, light resistance, and water resistance. Additives such as thermal antioxidants, light stabilizers, ultraviolet absorbers, photo-antioxidants, etc. can be arbitrarily added and mixed. In the present embodiment, the filler on the sunlight incident side is preferably an ethylene-vinyl acetate resin in consideration of performance and price such as weather resistance such as light resistance, heat resistance, and water resistance. It is a material. The thickness of the filler layer is preferably 200 to 1000 μm, more preferably 350 to 600 μm.
 太陽電池モジュールを構成する光起電力素子としての太陽電池素子50としては、従来公知のもの、例えば、単結晶シリコン型太陽電池素子、多結晶シリコン型太陽電池素子等の結晶シリコン太陽電子素子、シングル接合型あるいはタンデム構造型等からなるアモルファスシリコン太陽電池素子、ガリウムヒ素(GaAs)やインジウム燐(InP)等のIII-V族化合物半導体太陽電子素子、カドミウムテルル(CdTe)や銅インジウムセレナイド(CuInSe)等のII-VI族化合物半導体太陽電子素子、有機太陽電池素子、その他等を使用することができる。更に、薄膜多結晶性シリコン太陽電池素子、薄膜微結晶性シリコン太陽電池素子、薄膜結晶シリコン太陽電池素子とアモルファスシリコン太陽電池素子とのハイブリット素子等も使用することができる。 As the solar cell element 50 as a photovoltaic element constituting the solar cell module, a conventionally known one, for example, a crystalline silicon solar electronic element such as a single crystal silicon type solar cell element or a polycrystalline silicon type solar cell element, a single Amorphous silicon solar cell elements of junction type or tandem structure type, III-V compound semiconductor solar electronic elements such as gallium arsenide (GaAs) and indium phosphorus (InP), cadmium tellurium (CdTe) and copper indium selenide (CuInSe) 2 ) Group II-VI compound semiconductor solar electronic device, organic solar cell device, etc. can be used. Furthermore, a thin film polycrystalline silicon solar cell element, a thin film microcrystalline silicon solar cell element, a hybrid element of a thin film crystalline silicon solar cell element and an amorphous silicon solar cell element, or the like can also be used.
 上記太陽電池モジュールを構成する光起電力素子の下に積層する裏面側充填材層53としては、上記の太陽電池モジュール用表面保護シートの下に積層する表面側充填材層51と同材質のものが使用できる。裏面保護シートとの接着性を有することも必要であり、光起電力素子としての太陽電池素子の裏面の平滑性を保持する機能を果たすために熱可塑性を有すること、更には、光起電力素子としての太陽電池素子を保護する観点から、耐スクラッチ性、衝撃吸収性等に優れていることが必要である。 The back-side filler layer 53 laminated under the photovoltaic element constituting the solar cell module is made of the same material as the front-side filler layer 51 laminated under the surface protection sheet for the solar cell module. Can be used. It is also necessary to have adhesiveness with the back surface protection sheet, and it has thermoplasticity to fulfill the function of maintaining the smoothness of the back surface of the solar cell element as a photovoltaic element, and further, the photovoltaic element From the viewpoint of protecting the solar cell element, it is necessary to have excellent scratch resistance, shock absorption and the like.
 上記の本発明の太陽電池モジュールによれば、上述の裏面保護シート及び表面保護シートの少なくとも一方に上述の共重合体Aフィルムを使用しているので、裏面保護シートや表面保護シートの耐加水分解性が高い。したがって、従来のポリエチレンテレフタレート(PET)フィルムやポリエチレンナフタレート(PEN)フィルムを使用した場合に比して、太陽電池としての電力出力特性を長期にわたり維持することが可能となる。 According to the solar cell module of the present invention, since the copolymer A film is used for at least one of the above-described back surface protection sheet and the surface protection sheet, the hydrolysis resistance of the back surface protection sheet or the surface protection sheet. High nature. Therefore, compared with the case where the conventional polyethylene terephthalate (PET) film or polyethylene naphthalate (PEN) film is used, it becomes possible to maintain the power output characteristics as a solar cell over a long period of time.
 なお、太陽電池モジュールも上記の構成には限定されず、種々の構成が可能である。たとえば、裏面保護シート11としては、上述のような種々の構成のものを採用することができる。要すれば、太陽電池素子50を含む充填層と、この充填層の表面に配置された表面保護シート60と、充填層の裏面に配置された裏面保護シート11とを備え、表面保護シート60及び裏面保護シート11の少なくとも一方が上述の共重合体Aフィルムを含むものであればよい。
[実施例]
In addition, a solar cell module is not limited to said structure, Various structures are possible. For example, as the back surface protection sheet 11, those having various configurations as described above can be adopted. If necessary, it includes a filling layer including the solar cell element 50, a surface protection sheet 60 disposed on the surface of the filling layer, and a back surface protection sheet 11 disposed on the back surface of the filling layer. It suffices that at least one of the back surface protection sheets 11 includes the above-mentioned copolymer A film.
[Example]
 以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to the following Example.
 フィルムの原料として、以下の樹脂ペレットを使用した。なお、PENは、ポリエチレンナフタレートである。
 (1)共重合体A(イーストマン社製、商品名:Eastman Copolyester 13319)
 (2)PEN(帝人デュポンフィルム社製、商品名:テオネックスQ51)
 (3)1,4-シクロヘキサンジメタノール・2,2,4,4-テトラメチル-1,3-シクロブタンジオール・テレフタル酸重縮合物(イーストマン社製、商品名:Eastman Tritan Copolyester FX200)(以下、「共重合体B」と呼ぶ。)
The following resin pellets were used as raw materials for the film. PEN is polyethylene naphthalate.
(1) Copolymer A (trade name: Eastman Copolyester 13319, manufactured by Eastman)
(2) PEN (manufactured by Teijin DuPont Films, trade name: Teonex Q51)
(3) 1,4-cyclohexanedimethanol / 2,2,4,4-tetramethyl-1,3-cyclobutanediol / terephthalic acid polycondensate (manufactured by Eastman, trade name: Eastman Tritan Copolyester FX200) , Referred to as “Copolymer B”.)
[実施例1]
 共重合体A(ペレット状)を溶融押し出しすることによりフィルム化し、更に二軸延伸することにより、厚さ50μmの延伸共重合体Aフィルムを得た。
[Example 1]
The copolymer A (in the form of pellets) was melt-extruded to form a film, and further biaxially stretched to obtain a stretched copolymer A film having a thickness of 50 μm.
[実施例2]
 延伸倍率を変えて厚みを100μmとした以外は実施例1と同様にして、厚さ100μmの共重合体Aフィルムを得た。
[Example 2]
A copolymer A film having a thickness of 100 μm was obtained in the same manner as in Example 1 except that the thickness was changed to 100 μm by changing the draw ratio.
[比較例1]
 PEN(ペレット状)を溶融押し出しすることによりフィルム化し、更に二軸延伸することにより、厚さ25μmの延伸PENフィルムを得た。
[Comparative Example 1]
PEN (pellet form) was melt-extruded to form a film, and further biaxially stretched to obtain a stretched PEN film having a thickness of 25 μm.
[比較例2]
 共重合体A(ペレット状)を溶融押し出しすることによりフィルム化し、厚さ110μmの未延伸共重合体Aフィルムを得た。
[Comparative Example 2]
Copolymer A (pellet form) was melt-extruded to form a film, and an unstretched copolymer A film having a thickness of 110 μm was obtained.
[比較例3]
 共重合体B(ペレット状)を溶融押し出しすることによりフィルム化し、厚さ100μmの未延伸共重合体Bフィルムを得た。
[Comparative Example 3]
Copolymer B (pellet form) was melt-extruded to form a film, and an unstretched copolymer B film having a thickness of 100 μm was obtained.
<各種物性>
 実施例1及び2並びに比較例1~3のフィルムについて、破断強度、破断伸度、ガラス転移温度、融点、絶縁破壊電圧、比重及び熱膨張係数を測定した。各測定の測定方法及び測定値を表3に示す。
<Various physical properties>
With respect to the films of Examples 1 and 2 and Comparative Examples 1 to 3, the breaking strength, breaking elongation, glass transition temperature, melting point, dielectric breakdown voltage, specific gravity and thermal expansion coefficient were measured. Table 3 shows measurement methods and measurement values for each measurement.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
<加水分解性試験>
 実施例1及び2並びに比較例1~3のフィルムについて、プレッシャークッカー試験(120℃、100%RH(相対湿度)、2気圧)を行った。各フィルムについて、50時間後、100時間後、150時間後及び200時間後の引張強度保持率及び引張伸び保持率を測定した。結果を図4及び図5に示す。実施例1及び2のフィルムは、比較例1~3のフィルムに比べて、引張強度保持率及び引張伸び保持率の低下が遅かった。
<Hydrolysis test>
The films of Examples 1 and 2 and Comparative Examples 1 to 3 were subjected to a pressure cooker test (120 ° C., 100% RH (relative humidity), 2 atm). For each film, the tensile strength retention and tensile elongation retention after 50 hours, 100 hours, 150 hours and 200 hours were measured. The results are shown in FIGS. The films of Examples 1 and 2 had a slower decrease in tensile strength retention and tensile elongation retention than the films of Comparative Examples 1 to 3.
<結晶化度の測定>
 実施例1、実施例2、及び比較例2のフィルムについて、CuKα線による粉末X線回折を行い、回折パターンの確認及び結晶化度の算出を行った。測定方法及び測定条件は、次のとおりである。ターゲット:Cu、X線管電流:40mA、X線管電圧:45kV、走査範囲:2θ=4~65°、ステップ:2θ=0.01671°、平均時間/ステップ:10.160s、固定発散スリット:1/2°、回転速度:毎分60回転、結晶化度解析:ハーマンス法、前処理:なし。
<Measurement of crystallinity>
About the film of Example 1, Example 2, and the comparative example 2, the powder X-ray diffraction by CuK (alpha) ray was performed, confirmation of the diffraction pattern and calculation of the crystallinity degree were performed. The measurement method and measurement conditions are as follows. Target: Cu, X-ray tube current: 40 mA, X-ray tube voltage: 45 kV, scanning range: 2θ = 4 to 65 °, step: 2θ = 0.01671 °, average time / step: 10.160 s, fixed diverging slit: 1/2 °, rotation speed: 60 rotations per minute, crystallinity analysis: Hermans method, pretreatment: none.
 X線の入射方向と反射方向とのなす角度2θと回折強度との関係を図4に示す。実施例1、2のフィルムには、22°≦2θ≦24°の範囲に明確な鋭い最大ピークが確認されたが、比較例2のフィルムでは鋭いピークはどこにも確認されず、アモルファスであることが判明した。また、図4に基づいて実施例1及び実施例2のフィルムの結晶化度を求めたところ、それぞれ42.8%、39.7%であった。
 また、実施例1、2において、二番目の強さのピークは2θ=16~17°に出現し、三番目の強さのピークは2θ=19~20°に出現した。ピーク強度比は、2番目の強さのピーク/最大ピーク=0.1~0.2程度であった。
[符号の説明]
FIG. 4 shows the relationship between the angle 2θ formed by the X-ray incident direction and the reflection direction and the diffraction intensity. In the films of Examples 1 and 2, a clear sharp maximum peak was confirmed in the range of 22 ° ≦ 2θ ≦ 24 °, but no sharp peak was observed anywhere in the film of Comparative Example 2, and the film was amorphous. There was found. Moreover, when the crystallinity degree of the film of Example 1 and Example 2 was calculated | required based on FIG. 4, they were 42.8% and 39.7%, respectively.
In Examples 1 and 2, the second intensity peak appeared at 2θ = 16 to 17 °, and the third intensity peak appeared at 2θ = 19 to 20 °. The peak intensity ratio was about the second intensity peak / maximum peak = 0.1 to 0.2.
[Explanation of symbols]
 11…太陽電池モジュール用裏面保護シート、10…基材、12…蒸着層、20…ガスバリア性フィルム、30,32…フィルム基材、50…太陽電池素子、51…表面側充填材層、52…配線、53…裏面側充填材層、60…太陽電池モジュール用表面保護シート、100…太陽電池モジュール。 DESCRIPTION OF SYMBOLS 11 ... Back surface protection sheet for solar cell modules, 10 ... Base material, 12 ... Deposition layer, 20 ... Gas barrier film, 30, 32 ... Film base material, 50 ... Solar cell element, 51 ... Surface side filler layer, 52 ... Wiring, 53 ... back side filler layer, 60 ... surface protection sheet for solar cell module, 100 ... solar cell module.
特許請求の範囲の内容
[請求項1]
 DMA法で測定したガラス転移温度が130℃以上である、1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム。
[請求項2]
 TMA法で測定したガラス転移温度が200℃以上である、請求項1に記載の1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム。
[請求項3]
 X線回折において、22°≦2θ≦24°の範囲に最大ピークを有する、請求項1又は2に記載の1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム。
[請求項4]
 TMA法で測定したガラス転移温度が200℃以上である、1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム。
[請求項5]
 X線回折において、22°≦2θ≦24°の範囲に最大ピークを有する、請求項4に記載の1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム。
[請求項6]
 X線回折において、22°≦2θ≦24°の範囲に最大ピークを有する、1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム。
[請求項7]
 太陽電池モジュールの表面又は裏面保護用である、請求項1~6のいずれか一項に記載の1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム。
[請求項8]
 請求項1~6のいずれか一項に記載の1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムを少なくとも一層含む、太陽電池モジュール用保護シート。
[請求項9]
 請求項1~6のいずれか一項に記載の1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムを少なくとも一層含む、太陽電池モジュール用裏面保護シート。
[請求項10]
 太陽電池素子を含む充填層と、前記充填層の表面に配置された表面保護シートと、前記充填層の裏面に配置された裏面保護シートとを備え、前記表面保護シート及び前記裏面保護シートの少なくとも一方は、請求項1~6のいずれか一項に記載の1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルムを有する、太陽電池モジュール。
Contents of Claims [Claim 1]
A copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate, having a glass transition temperature measured by DMA method of 130 ° C. or higher.
[Claim 2]
The copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate according to claim 1, having a glass transition temperature measured by TMA method of 200 ° C or higher.
[Claim 3]
3. The 1,4-cyclohexylenedimethylene terephthalate and the 1,4-cyclohexylenedimethylene isophthalate according to claim 1 or 2 having a maximum peak in a range of 22 ° ≦ 2θ ≦ 24 ° in X-ray diffraction. Copolymer film.
[Claim 4]
A copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a glass transition temperature measured by TMA method of 200 ° C. or higher.
[Claim 5]
Copolymerization of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate according to claim 4, which has a maximum peak in the range of 22 ° ≤2θ≤24 ° in X-ray diffraction Combined film.
[Claim 6]
A copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate having a maximum peak in the range of 22 ° ≦ 2θ ≦ 24 ° in X-ray diffraction.
[Claim 7]
The copolymer of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate according to any one of claims 1 to 6, which is used for protecting the front or back surface of a solar cell module. the film.
[Claim 8]
A protective sheet for a solar cell module, comprising at least one copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate according to any one of claims 1 to 6. .
[Claim 9]
A back surface protection for a solar cell module, comprising at least one copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate according to any one of claims 1 to 6. Sheet.
[Claim 10]
A filling layer including a solar cell element; a surface protection sheet disposed on a surface of the filling layer; and a back surface protection sheet disposed on a back surface of the filling layer, wherein at least the surface protection sheet and the back surface protection sheet. One is a solar cell module having the copolymer film of 1,4-cyclohexylenedimethylene terephthalate and 1,4-cyclohexylenedimethylene isophthalate according to any one of claims 1 to 6.

Claims (17)

  1.  少なくともジオール成分とジカルボン酸成分とを重縮合させてなるポリエステル樹脂を含有する二軸配向ポリエステルフィルムであって、
     ジオール成分が一般式(I);
    Figure JPOXMLDOC01-appb-C000001
    (式中、環Aはシクロヘキサン環またはベンゼン環である;n1は0~4の整数である;Rは水素原子および炭素原子数1~3のアルキル基からなる群から選択され、n1が2~4の整数のとき、当該2~4個のRはそれぞれ独立して当該群から選択される)で表されるジオール化合物を含み、
     ジカルボン酸成分が一般式(II);
    Figure JPOXMLDOC01-appb-C000002
    (式中、環Bは、環Aがシクロヘキサン環のときはベンゼン環であり、環Aがベンゼン環のときはシクロヘキサン環である;n2は0~4の整数である;Rは水素原子および炭素原子数1~3のアルキル基からなる群から選択され、n2が2~4の整数のとき、当該2~4個のRはそれぞれ独立して当該群から選択される;2個のRはそれぞれ独立して水素原子または炭素原子数1~3のアルキル基である)で表されるジカルボン酸化合物を含み、
     120℃、100%RHおよび2気圧でのプレッシャークッカーテスト100時間後の引張強度保持率が50%以上であるポリエステルフィルム。
    A biaxially oriented polyester film containing a polyester resin obtained by polycondensation of at least a diol component and a dicarboxylic acid component,
    The diol component is of the general formula (I);
    Figure JPOXMLDOC01-appb-C000001
    Wherein ring A is a cyclohexane ring or a benzene ring; n1 is an integer from 0 to 4; R 1 is selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 3 carbon atoms, and n1 is 2 When the integer is from 4 to 4, the 2 to 4 R 1 are each independently selected from the group).
    The dicarboxylic acid component is of the general formula (II);
    Figure JPOXMLDOC01-appb-C000002
    (Wherein ring B is a benzene ring when ring A is a cyclohexane ring, and is a cyclohexane ring when ring A is a benzene ring; n2 is an integer from 0 to 4; R 2 is a hydrogen atom and Selected from the group consisting of alkyl groups having 1 to 3 carbon atoms, and when n2 is an integer of 2 to 4, the 2 to 4 R 2 are each independently selected from the group; 3 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms).
    A polyester film having a tensile strength retention of 50% or more after 100 hours of a pressure cooker test at 120 ° C., 100% RH and 2 atm.
  2.  環Aがシクロヘキサン環であり、環Bがベンゼン環である請求項1に記載のポリエステルフィルム。 The polyester film according to claim 1, wherein ring A is a cyclohexane ring and ring B is a benzene ring.
  3.  環A上の2つのメチロール基が1,3-置換または1,4-置換の関係にあり、
     環B上の2つの-COOR基が1,3-置換または1,4-置換の関係にある請求項1または2に記載のポリエステルフィルム。
    The two methylol groups on ring A are in a 1,3-substituted or 1,4-substituted relationship;
    3. The polyester film according to claim 1, wherein the two —COOR 3 groups on ring B are in a 1,3-substituted or 1,4-substituted relationship.
  4.  前記ジオール成分が、前記一般式(I)における環A上の2つのメチロール基が1,4-置換の関係にある1,4-ジオール化合物を含み、
     前記ジカルボン酸成分が、前記一般式(II)における環B上の2つの-COOR基が1,4-置換の関係にある1,4-ジカルボン酸化合物および該環B上の2つの-COOR基が1,3-置換の関係にある1,3-ジカルボン酸化合物を含む請求項1~3のいずれかに記載のポリエステルフィルム。
    The diol component includes a 1,4-diol compound in which the two methylol groups on ring A in the general formula (I) are in a 1,4-substituted relationship;
    The dicarboxylic acid component includes a 1,4-dicarboxylic acid compound in which the two —COOR 3 groups on the ring B in the general formula (II) are in a 1,4-substituted relationship, and two —COOR on the ring B. The polyester film according to any one of claims 1 to 3, comprising a 1,3-dicarboxylic acid compound in which three groups are 1,3-substituted.
  5.  前記ジオール成分が前記1,4-ジオール化合物からなり、
     前記ジカルボン酸成分が前記1,4-ジカルボン酸化合物および前記1,3-ジカルボン酸化合物からなる請求項4に記載のポリエステルフィルム。
    The diol component comprises the 1,4-diol compound;
    The polyester film according to claim 4, wherein the dicarboxylic acid component comprises the 1,4-dicarboxylic acid compound and the 1,3-dicarboxylic acid compound.
  6.  前記1,4-ジオール化合物が1,4-シクロヘキサンジメタノールであり、
     前記1,4-ジカルボン酸化合物がテレフタル酸であり、
     前記1,3-ジカルボン酸化合物がイソフタル酸である請求項4または5に記載のポリエステルフィルム。
    The 1,4-diol compound is 1,4-cyclohexanedimethanol;
    The 1,4-dicarboxylic acid compound is terephthalic acid,
    The polyester film according to claim 4 or 5, wherein the 1,3-dicarboxylic acid compound is isophthalic acid.
  7.  1,4-シクロヘキサンジメタノールとテレフタル酸およびイソフタル酸とを重縮合させてなるポリエステル樹脂を含有する二軸配向ポリエステルフィルムであって、
     120℃、100%RHおよび2気圧でのプレッシャークッカーテスト100時間後の引張強度保持率が50%以上であるポリエステルフィルム。
    A biaxially oriented polyester film containing a polyester resin obtained by polycondensation of 1,4-cyclohexanedimethanol with terephthalic acid and isophthalic acid,
    A polyester film having a tensile strength retention of 50% or more after 100 hours of a pressure cooker test at 120 ° C., 100% RH and 2 atm.
  8.  二軸配向ポリエステルフィルムが前記ポリエステル樹脂を含有するフィルムを二軸延伸してなる請求項1~7のいずれかに記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 7, wherein the biaxially oriented polyester film is obtained by biaxially stretching a film containing the polyester resin.
  9.  二軸延伸が同時二軸延伸である請求項8に記載のポリエステルフィルム。 The polyester film according to claim 8, wherein the biaxial stretching is simultaneous biaxial stretching.
  10.  プレッシャークッカーテスト150時間後の引張強度保持率が10%以上である請求項1~9のいずれかに記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 9, wherein the tensile strength retention after 150 hours of the pressure cooker test is 10% or more.
  11.  200℃でのオーブンテスト100時間後の引張強度保持率が50%以上である請求項1~10のいずれかに記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 10, which has a tensile strength retention of 50% or more after 100 hours of an oven test at 200 ° C.
  12.  サンシャインウェザオメーターテスト500時間後の引張強度保持率が40%以上である請求項1~11のいずれかに記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 11, which has a tensile strength retention of 40% or more after 500 hours of a sunshine weatherometer test.
  13.  酸化防止剤および紫外線吸収剤がさらに含有される請求項1~12のいずれかに記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 12, further comprising an antioxidant and an ultraviolet absorber.
  14.  酸化防止剤がフェノール系酸化防止剤、リン系酸化防止剤および硫黄系酸化防止剤からなる群から選択され、
     紫外線吸収剤がベンズオキサジン系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤からなる群から選択される請求項13に記載のポリエステルフィルム。
    The antioxidant is selected from the group consisting of phenolic antioxidants, phosphorus antioxidants and sulfur antioxidants;
    The polyester film according to claim 13, wherein the ultraviolet absorber is selected from the group consisting of benzoxazine-based ultraviolet absorbers, triazine-based ultraviolet absorbers, and benzotriazole-based ultraviolet absorbers.
  15.  フェノール系酸化防止剤、リン系酸化防止剤および硫黄系酸化防止剤がそれぞれポリマー成分に対して0.05~2.0重量%で含有され、
     ベンズオキサジン系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤からなる群から選択される1種以上の紫外線吸収剤がポリマー成分に対して0.1~2.0重量%で含有される請求項14に記載のポリエステルフィルム。
    A phenolic antioxidant, a phosphorus antioxidant and a sulfur antioxidant are each contained in an amount of 0.05 to 2.0% by weight based on the polymer component,
    Contains one or more UV absorbers selected from the group consisting of benzoxazine UV absorbers, triazine UV absorbers, and benzotriazole UV absorbers in an amount of 0.1 to 2.0% by weight based on the polymer component The polyester film according to claim 14.
  16.  太陽電池用バックシートまたはモーター用絶縁フィルムとして使用される請求項1~15のいずれかに記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 15, which is used as a solar cell back sheet or a motor insulating film.
  17.  請求項1~16のいずれかに記載のポリエステルフィルムの製造方法であって、
     前記ポリエステル樹脂を含有する前駆体フィルムを製造した後、該前駆体フィルムを二軸延伸するポリエステルフィルムの製造方法。
    A method for producing a polyester film according to any one of claims 1 to 16,
    The manufacturing method of the polyester film which biaxially stretches this precursor film, after manufacturing the precursor film containing the said polyester resin.
PCT/JP2011/069564 2010-08-30 2011-08-30 Polyester film and method for producing same WO2012029760A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012531883A JPWO2012029760A1 (en) 2010-08-30 2011-08-30 Polyester film and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-192520 2010-08-30
JP2010192520 2010-08-30

Publications (1)

Publication Number Publication Date
WO2012029760A1 true WO2012029760A1 (en) 2012-03-08

Family

ID=45772604

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2011/067967 WO2012029499A1 (en) 2010-08-30 2011-08-05 1,4-cyclohexylenedimethylene terephthalate/1,4-cyclohexylene­dimethylene isophthalate copolymer films, protective sheets for a solar cell module, and solar cell module
PCT/JP2011/069564 WO2012029760A1 (en) 2010-08-30 2011-08-30 Polyester film and method for producing same
PCT/JP2011/069565 WO2012029761A1 (en) 2010-08-30 2011-08-30 Polyester film and method for producing same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067967 WO2012029499A1 (en) 2010-08-30 2011-08-05 1,4-cyclohexylenedimethylene terephthalate/1,4-cyclohexylene­dimethylene isophthalate copolymer films, protective sheets for a solar cell module, and solar cell module

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069565 WO2012029761A1 (en) 2010-08-30 2011-08-30 Polyester film and method for producing same

Country Status (3)

Country Link
JP (2) JPWO2012029760A1 (en)
TW (3) TW201221544A (en)
WO (3) WO2012029499A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051233A (en) * 2010-09-01 2012-03-15 Toyobo Co Ltd Weather-resistant polyester film
WO2013153978A1 (en) * 2012-04-13 2013-10-17 富士フイルム株式会社 Polyester film, backsheet for solar cell module, and solar cell module
JP2016204668A (en) * 2012-04-13 2016-12-08 富士フイルム株式会社 Polyester film, back sheet for solar cell module and solar cell module
CN115536992A (en) * 2021-06-29 2022-12-30 Skc株式会社 Polyester resin composition, polyester film and flexible flat cable

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5918604B2 (en) * 2012-04-09 2016-05-18 倉敷紡績株式会社 Transfer film using release film
KR101647475B1 (en) * 2014-12-26 2016-08-10 에스케이씨 주식회사 Polyester film having high heat resistance
KR101605413B1 (en) 2014-02-12 2016-03-22 에스케이씨 주식회사 Polyester film having high heat resistance
KR101594542B1 (en) * 2013-12-30 2016-02-16 에스케이씨 주식회사 Transparent biaxially oriented polyester film and preparation method thereof
KR101605411B1 (en) 2014-02-21 2016-03-22 에스케이씨 주식회사 Polyester film having high heat resistance
KR101647470B1 (en) * 2014-01-14 2016-08-10 에스케이씨 주식회사 Polyester film having high heat resistance
KR102426418B1 (en) * 2014-09-17 2022-07-28 닛산 가가쿠 가부시키가이샤 Film-forming composition including thermosetting resin
US20170355128A1 (en) * 2014-10-28 2017-12-14 Zeon Corporation Resin film and production method for resin film
JP6467927B2 (en) * 2015-01-10 2019-02-13 三菱ケミカル株式会社 Double-sided metal laminated film
JP6467928B2 (en) * 2015-01-10 2019-02-13 三菱ケミカル株式会社 Double-sided metal laminated film
KR102001374B1 (en) * 2015-01-10 2019-07-18 미쯔비시 케미컬 주식회사 Double-sided metal laminated film
JP6467942B2 (en) * 2015-01-24 2019-02-13 三菱ケミカル株式会社 Double-sided metal laminated film
KR102216456B1 (en) * 2015-09-30 2021-02-17 미쯔비시 케미컬 주식회사 Film for laminating metal film
JP6763126B2 (en) * 2015-09-30 2020-09-30 三菱ケミカル株式会社 Metal laminated film
JP6763125B2 (en) * 2015-09-30 2020-09-30 三菱ケミカル株式会社 Metal laminated film
JP6805520B2 (en) * 2016-03-29 2020-12-23 三菱ケミカル株式会社 Manufacturing method of polyester film with metal layer
CN111433262A (en) * 2017-11-22 2020-07-17 Sk化学株式会社 Polyester resin composition and biaxially stretched polyester film comprising same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164627A (en) * 1990-10-29 1992-06-10 Diafoil Co Ltd Biaxially oriented polyester film for capacitor
JP2000178349A (en) * 1998-12-18 2000-06-27 Mitsubishi Chemicals Corp Preparation of polycyclohexanedimethylene terephthalete
JP2003041106A (en) * 2001-05-18 2003-02-13 Mitsubishi Chemicals Corp Copolyester resin composition and stretched film
JP2007150084A (en) * 2005-11-29 2007-06-14 Dainippon Printing Co Ltd Solar cell module, rear face protection sheet therefor and rear face lamination therefor
JP2007184402A (en) * 2006-01-06 2007-07-19 Teijin Dupont Films Japan Ltd Polyester film for protecting rear surface of solar cell
JP2008524396A (en) * 2004-12-16 2008-07-10 イーストマン ケミカル カンパニー Biaxially stretched copolyester film and laminate comprising copper
JP2008227203A (en) * 2007-03-14 2008-09-25 Toppan Printing Co Ltd Rear face protection sheet for solar cell module and solar cell module using the same
JP2009200385A (en) * 2008-02-25 2009-09-03 Toppan Printing Co Ltd Protective sheet for solar cell and solar cell module using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10126149A1 (en) * 2001-05-30 2002-12-05 Mitsubishi Polyester Film Gmbh Opaque colored, hydrolysis-resistant, biaxially oriented film made of a crystallizable thermoplastic and process for its production
US7147927B2 (en) * 2002-06-26 2006-12-12 Eastman Chemical Company Biaxially oriented polyester film and laminates thereof with copper
JP2008266600A (en) * 2007-03-23 2008-11-06 Toray Ind Inc Biaxially oriented film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164627A (en) * 1990-10-29 1992-06-10 Diafoil Co Ltd Biaxially oriented polyester film for capacitor
JP2000178349A (en) * 1998-12-18 2000-06-27 Mitsubishi Chemicals Corp Preparation of polycyclohexanedimethylene terephthalete
JP2003041106A (en) * 2001-05-18 2003-02-13 Mitsubishi Chemicals Corp Copolyester resin composition and stretched film
JP2008524396A (en) * 2004-12-16 2008-07-10 イーストマン ケミカル カンパニー Biaxially stretched copolyester film and laminate comprising copper
JP2007150084A (en) * 2005-11-29 2007-06-14 Dainippon Printing Co Ltd Solar cell module, rear face protection sheet therefor and rear face lamination therefor
JP2007184402A (en) * 2006-01-06 2007-07-19 Teijin Dupont Films Japan Ltd Polyester film for protecting rear surface of solar cell
JP2008227203A (en) * 2007-03-14 2008-09-25 Toppan Printing Co Ltd Rear face protection sheet for solar cell module and solar cell module using the same
JP2009200385A (en) * 2008-02-25 2009-09-03 Toppan Printing Co Ltd Protective sheet for solar cell and solar cell module using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051233A (en) * 2010-09-01 2012-03-15 Toyobo Co Ltd Weather-resistant polyester film
WO2013153978A1 (en) * 2012-04-13 2013-10-17 富士フイルム株式会社 Polyester film, backsheet for solar cell module, and solar cell module
JP2013233781A (en) * 2012-04-13 2013-11-21 Fujifilm Corp Polyester film, backsheet for solar cell module, and solar cell module
JP2016204668A (en) * 2012-04-13 2016-12-08 富士フイルム株式会社 Polyester film, back sheet for solar cell module and solar cell module
CN115536992A (en) * 2021-06-29 2022-12-30 Skc株式会社 Polyester resin composition, polyester film and flexible flat cable

Also Published As

Publication number Publication date
TW201229102A (en) 2012-07-16
JPWO2012029760A1 (en) 2013-10-28
JP5914339B2 (en) 2016-05-11
WO2012029499A1 (en) 2012-03-08
JPWO2012029761A1 (en) 2013-10-28
TW201223995A (en) 2012-06-16
TW201221544A (en) 2012-06-01
WO2012029761A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
WO2012029760A1 (en) Polyester film and method for producing same
JP5804326B2 (en) Back surface protection sheet for solar cell module and solar cell module using the same
JP5951645B2 (en) MULTILAYER WHITE POLYESTER FILM, METHOD FOR PRODUCING FILM, AND USE OF FILM AS PART OF SOLAR CELL BACK SHEET
JP2007177136A (en) Back surface-protecting sheet for solar cell
TWI641482B (en) Backsheet for solar cell module and manufacturing method thereof
US20110297221A1 (en) Solar cell back sheet and method for preparing same
KR101511201B1 (en) Solar cell backsheet, method of manufacturing same, and solar cell module
JP2006253264A (en) Rear face protection sheet for solar cell, and solar cell module using the same
JP2010003900A (en) Polyester film for protecting backside of solar cell
JP5286643B2 (en) Solar cell back surface protection sheet and solar cell module using the same
JP4881464B2 (en) Polyester film for solar cell back surface protective film
KR102544688B1 (en) Backsheet for pv module and manufacturing method thereof
JP2009158778A (en) Solar cell module backsheet laminate
WO2012111749A1 (en) Protective sheet for back surface of solar cell module, process for production of the protective sheet, and solar cell module
JP5691314B2 (en) Polyester film and solar cell using the same
JP5551973B2 (en) Polyester film laminate and method for producing the same
JP2011192790A (en) Polyester film for solar cells, and method of manufacturing the same
JP2015188015A (en) Laminate polyester film for solar battery backside protection, solar battery backside protective sheet, and solar battery module
JP2011139036A (en) Easily bondable white polyester film for solar cell, and back sheet using the same
JP5614298B2 (en) Laminated polyester film for solar battery backsheet
JP2017212438A (en) Back sheet for solar battery module and solar battery module
JP2016111037A (en) Solar battery back protection sheet, and solar cell using the same
JP2013159682A (en) Biaxially oriented polyester film, solar cell module backing sheet, and solar cell module
JP2012176608A (en) Surface protective material for solar cell, and solar cell module produced using same
JP2013028058A (en) Laminated polyester film for solar battery back sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012531883

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821776

Country of ref document: EP

Kind code of ref document: A1