WO2012029317A1 - Battery system, electrically driven vehicle provided with same, moving body, power storage apparatus, power supply apparatus, and electrical equipment - Google Patents

Battery system, electrically driven vehicle provided with same, moving body, power storage apparatus, power supply apparatus, and electrical equipment Download PDF

Info

Publication number
WO2012029317A1
WO2012029317A1 PCT/JP2011/004893 JP2011004893W WO2012029317A1 WO 2012029317 A1 WO2012029317 A1 WO 2012029317A1 JP 2011004893 W JP2011004893 W JP 2011004893W WO 2012029317 A1 WO2012029317 A1 WO 2012029317A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
circuit
circuit board
communication
power
Prior art date
Application number
PCT/JP2011/004893
Other languages
French (fr)
Japanese (ja)
Inventor
智徳 國光
由知 西原
岸本 圭司
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012029317A1 publication Critical patent/WO2012029317A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a battery system including a battery module, an electric vehicle, a moving body, a power storage device, a power supply device, and an electric device.
  • a battery system including a plurality of battery modules is mounted on an electric vehicle such as an electric bicycle.
  • Each battery module includes a communication unit.
  • the battery module is communicably connected to other battery modules and other devices via the communication unit.
  • a termination resistor is attached to the communication network in order to prevent unnecessary reflection of signals at the end of the communication network. Therefore, complicated wiring work is required to attach the terminal resistor to the communication network of the vehicle power supply device, and the wiring structure of the vehicle power supply device is complicated.
  • An object of the present invention is to provide a battery system capable of good communication without requiring complicated wiring work and without complicating the wiring structure, an electric vehicle equipped with the battery system, a moving body, a power storage device, and a power supply device And to provide electrical equipment.
  • a battery system includes a first battery module including a plurality of first battery cells and a first circuit board, a communication bus, and a communication device connectable to the communication bus.
  • the board is connected to the first voltage detection unit for detecting the voltage of each first battery cell, the first communication unit connected to the first voltage detection unit and connectable to the communication bus, and the communication bus A possible first termination resistor.
  • FIG. 1 is a block diagram showing the configuration of the battery system according to the first embodiment.
  • FIG. 2 is an explanatory view showing the connection of the main circuit board and the plurality of sub circuit boards of FIG.
  • FIG. 3 is a diagram showing connections between a plurality of battery cells and a main circuit board in the battery module.
  • FIG. 4 is a diagram showing the connection between the plurality of battery cells and the sub circuit board in the battery module.
  • FIG. 5 is a block diagram showing the configuration of the low potential side first circuit and the third circuit.
  • FIG. 6 is a block diagram showing the configuration of the second circuit.
  • FIG. 7 is an external perspective view of the battery module.
  • FIG. 8 is a plan view of the battery module.
  • FIG. 9 is an end view of the battery module.
  • FIG. 10 is an external perspective view of the bus bar.
  • FIG. 11 is an external perspective view showing a state where a plurality of bus bars and a plurality of PTC elements are attached to the FPC board.
  • FIG. 12 is a schematic plan view for explaining the connection between the bus bar, the low potential side first circuit, and the high potential side first circuit in the battery module.
  • FIG. 13 is an enlarged plan view showing the voltage / current bus bar and the FPC board.
  • FIG. 14 is a schematic plan view showing one configuration example of the main circuit board and the sub circuit board.
  • FIG. 15 is a schematic plan view showing an example of the arrangement of the battery system.
  • FIG. 16 is a schematic plan view showing the configuration of the contactor of FIG. FIG.
  • FIG. 17 is a schematic plan view showing one configuration example of the main circuit board and the sub circuit board in the second embodiment.
  • FIG. 18 is an explanatory view showing the connection of the main circuit board and the plurality of sub circuit boards of FIG.
  • FIG. 19 is a schematic plan view showing an example of the arrangement of the battery system according to the second embodiment.
  • FIG. 20 is a block diagram illustrating a configuration of an electric vehicle including a battery system.
  • FIG. 21 is a block diagram illustrating a configuration of a power supply device including a battery system.
  • FIG. 22 is an external perspective view showing the configuration of the battery module according to the first modification.
  • FIG. 25 is a view of a plurality of bus bars and two FPC boards in the first modification as viewed from above.
  • FIG. 26 is a view of the main circuit board in the first modification as viewed from above.
  • FIG. 27 is a schematic cross-sectional view showing a connection structure between the FPC board and the main circuit board in the first modification.
  • FIG. 28 is an external perspective view showing a configuration of a battery module according to a second modification.
  • FIG. 29 is a perspective view of the lid member of FIG. 28 as viewed obliquely from below.
  • 30 is a perspective view of the lid member of FIG. 28 as viewed obliquely from above.
  • FIG. 31 is a block diagram showing a configuration of a battery system according to another embodiment.
  • the battery system according to the present embodiment is mounted on an electric vehicle (for example, an electric automobile) that uses electric power as a drive source.
  • FIG. 1 is a block diagram showing the configuration of the battery system according to the first embodiment.
  • the battery system 500 includes a plurality of battery modules 100M and 100 and a contactor 102.
  • the battery system 500 includes one battery module 100M as a first battery module and three battery modules 100 as second battery modules.
  • the battery system 500 includes a battery ECU (Electronic Control Unit) 101 as a communication device and a control unit.
  • ECU Electronic Control Unit
  • the plurality of battery modules 100M and 100 of the battery system 500 are connected to each other through a power line 501.
  • the battery module 100M has a plurality (18 in this example) of battery cells 10 as first battery cells, and a plurality (5 in this example) of thermistors 11.
  • the battery module 100 includes a plurality (18 in this example) of battery cells 10 as second battery cells, and a plurality (5 in this example) of thermistors 11.
  • each of the battery modules 100M and 100 the plurality of battery cells 10 are integrally arranged so as to be adjacent to each other, and are connected in series by a plurality of bus bars 40.
  • Each battery cell 10 is a secondary battery such as a lithium ion battery or a nickel metal hydride battery.
  • the battery cells 10 arranged at both ends are connected to the power line 501 through the bus bar 40a. Thereby, in the battery system 500, all the battery cells 10 of the plurality of battery modules 100M and 100 are connected in series.
  • the battery module 100M has a main circuit board 21 made of a rigid printed circuit board as a first circuit board.
  • the main circuit board 21 includes a plurality of first circuits 30 as first voltage detection units, a second circuit 24 as a first communication unit, and a third circuit as a circuit unit that operates differently from the voltage detection unit. 80 is implemented.
  • the circuit unit is a current detection unit. That is, the third circuit 80 that is a circuit unit operates as a functional unit that realizes a function different from that of the voltage detection unit.
  • Each battery module 100 has a sub circuit board 21a made of a rigid printed circuit board as a second circuit board.
  • a plurality of first circuits 30 as second voltage detection units and a second circuit 24 as a second communication unit are mounted on the sub circuit board 21a, and the third circuit 80 is not mounted.
  • each first circuit 30 has a function of detecting a terminal voltage of each battery cell 10.
  • the second circuit 24 has a function of performing serial communication with the battery ECU 101 or another battery module 100.
  • the third circuit 80 has a function of detecting the current flowing through the plurality of battery cells 10 in the form of voltage.
  • the second circuit 24 is connected to the first circuit 30 and the third circuit 80. Thereby, the second circuit 24 acquires the terminal voltage of each battery cell 10 of the battery module 100M and the current flowing through the plurality of battery cells 10.
  • the second circuit 24 is electrically connected to each thermistor 11 of the battery module 100M. Thereby, the second circuit 24 acquires the temperature of the battery module 100M.
  • each first circuit 30 has a function of detecting a terminal voltage of each battery cell 10.
  • the second circuit 24 has a function of performing serial communication with the battery ECU 101 or other battery modules 100M and 100.
  • the second circuit 24 is connected to the first circuit 30. Thereby, the second circuit 24 acquires the terminal voltage of each battery cell 10 of the battery module 100.
  • the second circuit 24 is electrically connected to each thermistor 11 of the battery module 100. Thereby, the second circuit 24 detects the temperature of the battery module 100.
  • the second circuit 24 of the battery module 100M and the second circuits 24 of the plurality of battery modules 100 are connected to the battery ECU 101 via a serial communication bus 103 that is a communication bus.
  • a terminal resistance RT of 100 ⁇ is attached to both ends of the bus 103.
  • One termination resistor RT is mounted as a first termination resistor on the main circuit board 21 of the battery module 100M.
  • the other termination resistor RT is provided in the battery ECU 101 as a second termination resistor.
  • the temperature of the battery modules 100M and 100, the terminal voltage of each battery cell 10, and the current flowing through the plurality of battery cells 10 are referred to as cell information.
  • Each second circuit 24 transmits cell information to the battery ECU 101 via the bus 103.
  • the battery ECU 101 is connected to the non-power battery 12.
  • the non-power battery 12 is a lead storage battery.
  • the battery ECU 101 calculates the charge amount of each battery cell 10 based on the cell information given from each second circuit 24. Further, the battery ECU 101 detects an abnormality in each of the battery modules 100M and 100 based on the cell information given from each second circuit 24.
  • the abnormality of the battery modules 100M and 100 is, for example, overdischarge, overcharge, or temperature abnormality of the battery cell 10.
  • the power supply line 501 connected to the highest potential positive electrode and the power supply line 501 connected to the lowest potential negative electrode of the plurality of battery modules 100M, 100 are connected to a load such as a motor of an electric vehicle via the contactor 102. Connected. When the battery ECU 101 detects an abnormality in the battery modules 100M and 100, the contactor 102 is turned off. Thereby, when an abnormality occurs, no current flows through the plurality of battery cells 10, and thus abnormal heat generation of the battery modules 100M and 100 is prevented.
  • the battery ECU 101 is connected to the main control unit 300 via the bus 104.
  • the battery ECU 101 gives the main control unit 300 the amount of charge of each battery module 100M, 100 (the amount of charge of the battery cell 10).
  • the main control unit 300 controls the power of the electric vehicle (for example, the rotational speed of the motor) based on the amount of charge. Further, when the charging amount of each battery module 100M, 100 decreases, main controller 300 controls a power generator (not shown) connected to power supply line 501 to charge each battery module 100M, 100.
  • FIG. 2 is an explanatory diagram showing connections between the main circuit board 21 and the plurality of sub circuit boards 21a in FIG. Details of the main circuit board 21 and the sub circuit board 21a will be described later with reference to FIG.
  • a plurality of first circuits 30, a common second circuit 24, a third circuit 80, insulating elements 25 and 27, and connectors 23a and 23b are mounted on the main circuit board 21.
  • two first circuits 30 are mounted on the main circuit board 21.
  • One first circuit 30 is called a low potential side first circuit 30L
  • the other first circuit 30 is called a high potential side first circuit 30H.
  • the low-potential-side first circuit 30L and the second circuit 24 are communicatively connected while being electrically insulated from each other by the insulating element 25.
  • the high potential side first circuit 30H is connected to the low potential side first circuit 30L.
  • the third circuit 80 and the second circuit 24 are communicably connected to each other while being electrically insulated from each other by the insulating element 27.
  • the connector 23a is connected to the second circuit 24 by a pair of connection lines L1 and L2.
  • the connector 23b is connected to the second circuit 24 by a pair of connection lines L3 and L4.
  • the plurality of battery cells 10 of the battery module 100M are used as power sources for the low potential side first circuit 30L, the high potential side first circuit 30H, and the third circuit 80.
  • the non-power battery 12 is used as a power source for the second circuit 24.
  • the connector 23b of the main circuit board 21 is not connected to either.
  • a termination resistor RT is connected between the pair of connection lines L3 and L4 of the main circuit board 21.
  • the low potential side first circuit 30L On the sub-circuit board 21a, the low potential side first circuit 30L, the high potential side first circuit 30H, the common second circuit 24, the insulating element 25, and the connectors 23a and 23b are mounted.
  • the low-potential-side first circuit 30L and the second circuit 24 are communicatively connected while being electrically insulated from each other by the insulating element 25.
  • the high potential side first circuit 30H is connected to the low potential side first circuit 30L.
  • the connector 23a is connected to the second circuit 24 by a pair of connection lines L1 and L2.
  • the connector 23b is connected to the second circuit 24 by a pair of connection lines L3 and L4.
  • the plurality of battery cells 10 of the battery module 100 are used as a power source for the low potential side first circuit 30L and the high potential side first circuit 30H.
  • the non-power battery 12 is used as a power source for the second circuit 24.
  • the connector 23a of the main circuit board 21 is connected to the connector 23b of one sub circuit board 21a through a pair of communication lines PA1 and PB1.
  • the connector 23a of one sub circuit board 21a is connected to the connector 23b of another sub circuit board 21a via a pair of communication lines PA2 and PB2.
  • the connector 23a of the other sub circuit board 21a is further connected to the connector 23b of the other sub circuit board 21a through a pair of communication lines PA3 and PB3.
  • connector 23a of other sub circuit board 21a is connected to battery ECU 101 via a pair of communication lines PA4 and PB4.
  • the battery ECU 101 has a printed circuit board 105 made of a rigid printed circuit board.
  • An MPU (microprocessor) 106, a switch circuit 107, and a connector 108 are mounted on the printed circuit board 105.
  • the printed circuit board 105 is also mounted with other circuits such as a power supply circuit for stepping down the voltage supplied by the non-power battery 12 and a contactor control circuit for turning on and off the contactor 102 of FIG.
  • the connector 108 is connected to the MPU 106 by a pair of connection lines L5 and L6.
  • the MPU 106 and the switch circuit 107 are supplied with power by the non-power battery 12 as indicated by the dotted arrows.
  • the on / off of the switch circuit 107 is controlled by the MPU 106.
  • the switch circuit 107 When the switch circuit 107 is on, the power from the non-power battery 12 is supplied to the main circuit board 21 and the second circuits 24 of the plurality of sub circuit boards 21a via the switch circuit 107. Thereby, each second circuit 24 operates.
  • the connector 108 of the printed circuit board 105 is connected to the connector 23a of the sub circuit board 21a through a pair of communication lines PA4 and PB4. Further, for example, a terminal resistance RT of 100 ⁇ is connected between the pair of connection lines L5 and L6.
  • MPU106 of battery ECU101 and the 2nd circuit 24 of each battery module 100M and 100 are connected so that communication is possible.
  • the MPU 106 is communicably connected to the main control unit 300 of the electric automobile 600 via the bus 104.
  • a communication cable P1 of FIG. 15 described later is formed by the communication lines PA1 and PB1.
  • a communication cable P2 of FIG. 15 described later is formed by the communication lines PA2 and PB2.
  • a communication cable P3 of FIG. 15 described later is formed by the communication lines PA3 and PB3.
  • a communication cable P4 shown in FIG. 15, which will be described later, is formed by the communication lines PA4 and PB4.
  • the bus 103 in FIG. 1 is configured by the communication cables P1 to P4.
  • FIG. 3 is a diagram showing the connection between the plurality of battery cells 10 and the main circuit board 21 in the battery module 100M.
  • the low potential side first circuit 30L corresponds to half (9 in this example) battery cells 10 (hereinafter referred to as a low potential side battery cell group 10L) of the plurality of battery cells 10 on the low potential side.
  • the high potential side first circuit 30H corresponds to half (9 in this example) of battery cells 10 (hereinafter referred to as a high potential side battery cell group 10H) among the plurality of battery cells 10.
  • the low potential side first circuit 30L detects the terminal voltage of each of the plurality of battery cells 10 in the low potential side battery cell group 10L.
  • the high potential side first circuit 30H detects the terminal voltage of each of the plurality of battery cells 10 in the high potential side battery cell group 10H.
  • the low potential side first circuit 30L is electrically connected to the bus bars 40, 40a of the low potential side battery cell group 10L via a plurality of conductor lines 52 and PTC (Positive Temperature Coefficient) elements 60.
  • the high potential side first circuit 30H is electrically connected to the bus bars 40, 40a of the high potential side battery cell group 10H via the plurality of conductor lines 52 and the PTC element 60.
  • the PTC element 60 has a resistance temperature characteristic in which the resistance value rapidly increases when the temperature exceeds a certain value. Therefore, when a short circuit occurs in the low potential side first circuit 30L, the high potential side first circuit 30H, the conductor line 52, or the like, if the temperature of the PTC element 60 rises due to the current flowing through the short circuit path, The resistance value increases. This prevents a large current from flowing through the short circuit path including the PTC element 60.
  • the negative electrode of the battery cell 10 having the lowest potential of the low potential side battery cell group 10L is the highest of the high potential side battery cell group 10H included in one battery module 100 (see FIG. 4 described later) via the shunt resistor RS. It is connected to the positive electrode of the battery cell 10 having a potential.
  • the shunt resistor RS is an element that generates a voltage corresponding to the current.
  • the third circuit 80 is connected to both ends of the shunt resistor RS via two conductor lines 52.
  • FIG. 4 is a diagram showing connections between the plurality of battery cells 10 and the sub circuit board 21a in the battery module 100.
  • the battery module 100 is the same as the battery module 100M except that the battery module 100 has a sub circuit board 21a instead of the main circuit board 21 of FIG. 3 and does not have the shunt resistor RS of FIG. It has the composition of.
  • the sub circuit board 21a has the same configuration as that of the main circuit board 21 except that the sub circuit board 21a does not have the third circuit 80, the insulating element 27, and the termination resistor RT shown in FIG.
  • FIG. 5 is a block diagram showing the configuration of the low potential side first circuit 30L and the third circuit 80.
  • the low-potential-side first circuit 30L is composed of, for example, an ASIC (Application Specific Integrated Circuit).
  • the detection unit 20 includes a multiplexer 20a, an A / D (analog / digital) converter 20b, and a plurality of differential amplifiers 20c.
  • Each differential amplifier 20c of the detection unit 20 has two input terminals and an output terminal.
  • Each differential amplifier 20c differentially amplifies the voltage input to the two input terminals, and outputs the amplified voltage from the output terminal.
  • each differential amplifier 20c Two input terminals of each differential amplifier 20c are electrically connected between two adjacent bus bars 40 of a plurality of corresponding battery cells 10 or two adjacent bus bars 40, 40a via a conductor line 52 and a PTC element 60. Connected. A voltage between two adjacent bus bars 40 or a voltage between two adjacent bus bars 40 and 40a is differentially amplified by each differential amplifier 20c. The output voltage of each differential amplifier 20c corresponds to the terminal voltage of each battery cell 10 in the low potential side battery cell group 10L. Terminal voltages output from the plurality of differential amplifiers 20c are applied to the multiplexer 20a. The multiplexer 20a sequentially outputs the terminal voltages supplied from the plurality of differential amplifiers 20c to the A / D converter 20b. The A / D converter 20b converts the terminal voltage output from the multiplexer 20a into a digital value.
  • the communication circuit 32 has a communication function and is communicably connected to the second circuit 24 of FIG. 2 via the insulating element 25 of FIG. In addition, the communication circuit 32 is communicably connected to the high potential side first circuit 30H of FIG. 3 or FIG.
  • the communication circuit 32 acquires the digital value of the terminal voltage of each battery cell 10 in the low potential side battery cell group 10L from the A / D converter 20b of the detection unit 20. Further, as will be described later, the communication circuit 32 acquires the digital value of the terminal voltage of each battery cell 10 of the high potential side battery cell group 10H from the high potential side first circuit 30H. Further, the communication circuit 32 converts the digital value of the terminal voltage of each battery cell 10 of the low-potential side battery cell group 10L and the digital value of the terminal voltage of each battery cell 10 of the high-potential side battery cell group 10H into the insulating element 25 (FIG. 2) to the second circuit 24.
  • the third circuit 80 is made of, for example, an ASIC.
  • the third circuit 80 includes a detection unit 81 and a communication circuit 82.
  • the detection unit 81 includes a differential amplifier 81a and an A / D converter 81b.
  • the differential amplifier 81a of the detection unit 81 has two input terminals and an output terminal.
  • the differential amplifier 81a differentially amplifies voltages input to the two input terminals, and outputs the amplified voltage from the output terminal.
  • the two input terminals of the differential amplifier 81a are electrically connected to both ends of the shunt resistor RS of the battery module 100M (see FIG. 1) via the conductor wire 52.
  • the voltage across the shunt resistor RS is differentially amplified by the differential amplifier 81a.
  • the output voltage of the differential amplifier 81 a is proportional to the current flowing through the plurality of battery cells 10.
  • the differential amplifier 81a outputs a voltage proportional to the current to the A / D converter 81b.
  • the A / D converter 81b converts the voltage output from the differential amplifier 81a into a digital value.
  • the communication circuit 82 has a communication function and is communicably connected to the second circuit 24 of FIG. 2 via the insulating element 27 of FIG.
  • the communication circuit 82 acquires the digital value of the voltage across the shunt resistor RS from the A / D converter 81b. Further, the communication circuit 82 transmits the digital value of the voltage across the shunt resistor RS to the second circuit 24 via the insulating element 27.
  • the communication circuit 32 of the high potential side first circuit 30H is communicably connected to the communication circuit 32 (see FIG. 5) of the low potential side first circuit 30L.
  • the communication circuit 32 of the high potential side first circuit 30H is connected to each battery cell of the high potential side battery cell group 10H via the communication circuit 32 of the low potential side first circuit 30L and the insulating element 25 (see FIG. 2).
  • Ten terminal voltage digital values can be transmitted to the second circuit 24.
  • FIG. 6 is a block diagram showing a configuration of the second circuit 24.
  • the second circuit 24 includes a processing unit 241, a storage unit 242, and a communication interface 244.
  • the reference potential (ground potential) of the processing unit 241, the storage unit 242, and the communication interface 244 of the second circuit 24 is held at the lowest potential of the non-power battery 12 of FIG.
  • Each part of the second circuit 24 operates with a voltage output from the power supply circuit 245 (see FIG. 14 described later).
  • the processing unit 241 includes a CPU (Central Processing Unit), for example, and is connected to the storage unit 242.
  • the processing unit 241 is connected to the plurality of thermistors 11 shown in FIG. Thereby, the processing unit 241 acquires the temperature of the battery module 100.
  • CPU Central Processing Unit
  • the processing unit 241 also detects the terminal voltage detected by the detection unit 20 (see FIGS. 3 to 5) of the low potential side first circuit 30L and the high potential side first circuit 30H and the voltage detected by the third circuit 80. It has a function to process information about. In the present embodiment, the processing unit 241 calculates the charge amount of each battery cell 10, the current flowing through the plurality of battery cells 10, and the like. Details of the current calculation will be described later.
  • the storage unit 242 includes a non-volatile memory such as an EEPROM (electrically erasable and programmable read-only memory).
  • the processing unit 241 includes a communication circuit 246 having a communication function.
  • the processing unit 241 is communicably connected to the communication circuit 32 (see FIG. 5) of the low potential side first circuit 30L via the insulating element 25 (see FIG. 2).
  • the communication circuit 32 (see FIG. 6) of the third circuit 80 is communicably connected via the insulating element 27 (see FIG. 2).
  • the processing unit 241 is communicably connected to the communication circuit 32 (see FIG. 5) of the low potential side first circuit 30L via the insulating element 25 (see FIG. 2).
  • a communication interface 244 is connected to the processing unit 241.
  • the communication interface 244 is an RS-485 standard serial communication interface, for example.
  • the communication interface 244 is connected to the connectors 23a and 23b in FIG.
  • the communication circuit 246 performs serial communication with the battery ECU 101 of FIG. 2 in accordance with the RS-485 standard, but is not limited thereto.
  • the communication circuit 246 may perform serial communication according to other standards with the battery ECU 101, and may perform CAN (Controller Area Network) communication with the battery ECU 101.
  • CAN Controller Area Network
  • Cell information is transmitted to the battery ECU 101 by the communication circuit 246 of the second circuit 24. Thereby, even when the voltage of the battery cell 10 of any one of the battery modules 100M and 100 of the battery system 500 decreases, the battery modules 100M and 100 can communicate with the battery ECU 101.
  • the battery ECU 101 of FIG. 2 calculates the charge amount of each battery cell 10 or detects overdischarge, overcharge, temperature abnormality, etc. of the battery cell 10, but is not limited to this.
  • the second circuit 24 of each of the battery modules 100M and 100 may calculate the charge amount of each battery cell 10. Further, the second circuit 24 of each of the battery modules 100M and 100 may detect overdischarge, overcharge, temperature abnormality, and the like of the battery cell 10. In this case, each second circuit 24 provides the battery ECU 101 with a calculation result of the charge amount of each battery cell 10 and detection results such as overdischarge, overcharge and temperature abnormality of the battery cell 10.
  • FIG. 7 is an external perspective view of the battery module 100M
  • FIG. 8 is a plan view of the battery module 100M
  • FIG. 9 is an end view of the battery module 100M.
  • the battery module 100 has the same configuration as the battery module 100M except that the battery module 100 has a sub circuit board 21a instead of the main circuit board 21 and does not have a shunt resistor RS.
  • X, Y, and Z three directions orthogonal to each other are defined as an X direction, a Y direction, and a Z direction.
  • the X direction and the Y direction are directions parallel to the horizontal plane
  • the Z direction is a direction orthogonal to the horizontal plane.
  • the upward direction is the direction in which the arrow Z faces.
  • a plurality of battery cells 10 having a flat, substantially rectangular parallelepiped shape are arranged so as to be arranged in the X direction.
  • the plurality of battery cells 10 are integrally fixed by a pair of end face frames 92, a pair of upper end frames 93 and a pair of lower end frames 94.
  • the plurality of battery cells 10, the pair of end face frames 92, the pair of upper end frames 93, and the pair of lower end frames 94 constitute a substantially rectangular parallelepiped battery block 10BB.
  • Battery block 10BB has an upper surface parallel to the XY plane.
  • the pair of end face frames 92 have a substantially plate shape and are arranged in parallel to the YZ plane.
  • the pair of upper end frames 93 and the pair of lower end frames 94 are arranged so as to extend in the X direction.
  • Connection portions for connecting the pair of upper end frames 93 and the pair of lower end frames 94 are formed at the four corners of the pair of end face frames 92.
  • the pair of upper end frames 93 are attached to the upper connection portions of the pair of end surface frames 92, and the lower connection of the pair of end surface frames 92 is performed.
  • a pair of lower end frames 94 are attached to the part.
  • the some battery cell 10 is fixed integrally in the state arrange
  • the main circuit board 21 is attached to one end face frame 92 with an interval on the outer surface.
  • each battery cell 10 has a plus electrode 10a and a minus electrode 10b on the upper surface portion so as to be arranged along the Y direction.
  • Each electrode 10a, 10b is provided to be inclined so as to protrude upward (see FIG. 9).
  • the battery cells 10 adjacent to one end face frame 92 to the battery cells 10 adjacent to the other end face frame 92 are referred to as first to eighteenth battery cells 10.
  • the plurality of battery cells 10 have a gas vent valve 10v at the center of the upper surface portion.
  • the gas inside the battery cell 10 is discharged from the gas vent valve 10v. Thereby, the excessive pressure rise inside the battery cell 10 is prevented.
  • each battery cell 10 is arranged so that the positional relationship between the plus electrode 10a and the minus electrode 10b in the Y direction is opposite between the adjacent battery cells 10. Further, one electrode 10a, 10b of the plurality of battery cells 10 is arranged in a line along the X direction, and the other electrode 10a, 10b of the plurality of battery cells 10 is arranged in a line along the X direction. Thereby, between two adjacent battery cells 10, the plus electrode 10a of one battery cell 10 and the minus electrode 10b of the other battery cell 10 are close to each other, and the minus electrode 10b of one battery cell 10 and the other electrode are The positive electrode 10a of the battery cell 10 is in close proximity. In this state, the bus bar 40 is attached to two adjacent electrodes. Thereby, the some battery cell 10 is connected in series.
  • a common bus bar 40 is attached to the plus electrode 10 a of the first battery cell 10 and the minus electrode 10 b of the second battery cell 10.
  • a common bus bar 40 is attached to the plus electrode 10 a of the second battery cell 10 and the minus electrode 10 b of the third battery cell 10.
  • a common bus bar 40 is attached to the plus electrode 10a of each odd-numbered battery cell 10 and the minus electrode 10b of the even-numbered battery cell 10 adjacent thereto.
  • a common bus bar 40 is attached to the plus electrode 10a of each even-numbered battery cell 10 and the minus electrode 10b of the odd-numbered battery cell 10 adjacent thereto.
  • a bus bar 40a for connecting a power line 501 (see FIG. 1) from the outside is attached to the negative electrode 10b of the first battery cell 10 and the positive electrode 10a of the 18th battery cell 10, respectively.
  • power line 501 is connected to bus bar 40a attached to negative electrode 10b of first battery cell 10 via shunt resistor RS.
  • the power line 501 is directly connected to the bus bar 40a attached to the negative electrode 10b of the first battery cell 10.
  • a long flexible printed circuit board (hereinafter abbreviated as FPC board) 50 extending in the X direction is commonly connected to the plurality of bus bars 40 on one end side of the plurality of battery cells 10 in the Y direction.
  • a long FPC board 50 extending in the X direction is commonly connected to the plurality of bus bars 40 and 40a on the other end side of the plurality of battery cells 10 in the Y direction.
  • the FPC board 50 has a configuration in which a plurality of conductor wires 51 and 52 shown in FIG. 12, which will be described later, are mainly formed on an insulating layer, and has flexibility and flexibility.
  • polyimide is used as the material of the insulating layer constituting the FPC board 50
  • copper is used as the material of the conductor wires 51 and 52, for example.
  • the PTC elements 60 are arranged so as to be close to the bus bars 40, 40a.
  • Each FPC board 50 is folded at a right angle toward the inside at the upper end portion of the end face frame 92 (end face frame 92 to which the main circuit board 21 is attached), and further folded downward to be connected to the main circuit board 21. .
  • bus bar 40 for connecting the plus electrode 10a and the minus electrode 10b of the two adjacent battery cells 10 is referred to as a bus bar 40 for two electrodes, and the plus electrode 10a or the minus electrode 10b of one battery cell 10 is called.
  • the bus bar 40a for connecting the power line 501 and the power line 501 is referred to as a one-electrode bus bar 40a.
  • FIG. 10A is an external perspective view of the bus bar 40 for two electrodes
  • FIG. 10B is an external perspective view of the bus bar 40a for one electrode.
  • the two-electrode bus bar 40 includes a base portion 41 having a substantially rectangular shape and a pair of attachment pieces 42 that are bent and extended from one side of the base portion 41 to the one surface side.
  • a pair of electrode connection holes 43 are formed in the base portion 41.
  • the bus bar 40a for one electrode includes a base portion 45 having a substantially square shape and a mounting piece 46 that is bent and extends from one side of the base portion 45 to one side thereof.
  • An electrode connection hole 47 is formed in the base portion 45.
  • the bus bars 40, 40a have a configuration in which, for example, nickel plating is applied to the surface of tough pitch copper.
  • FIG. 11 is an external perspective view showing a state in which a plurality of bus bars 40, 40a and a plurality of PTC elements 60 are attached to the FPC board 50.
  • FIG. 11 mounting pieces 42 and 46 of a plurality of bus bars 40 and 40a are attached to the two FPC boards 50 at predetermined intervals along the X direction. Further, the plurality of PTC elements 60 are respectively attached to the two FPC boards 50 at the same interval as the interval between the plurality of bus bars 40, 40a.
  • a member in which the FPC board 50 and the plurality of bus bars 40, 40a are integrally coupled in this manner is hereinafter referred to as a wiring member 110.
  • the plurality of bus bars 40 are formed on the plurality of battery cells 10 integrally fixed by the end face frame 92, the upper end frame 93, and the lower end frame 94 of FIG.
  • Two FPC boards 50 to which 40a and a plurality of PTC elements 60 are attached are attached.
  • a shunt resistor RS is attached to one of the two FPC boards 50 attached to the plurality of battery cells 10 of the battery module 100M.
  • the plus electrode 10a and the minus electrode 10b of the adjacent battery cell 10 are fitted into the electrode connection holes 43 and 47 formed in the bus bars 40 and 40a.
  • Male screws are formed on the plus electrode 10a and the minus electrode 10b.
  • Nuts (not shown) are screwed into male threads of the plus electrode 10a and the minus electrode 10b in a state where the bus bars 40, 40a are fitted in the plus electrode 10a and the minus electrode 10b of the adjacent battery cell 10.
  • the plurality of bus bars 40, 40a are attached to the plurality of battery cells 10, and the FPC board 50 is held in a substantially horizontal posture by the plurality of bus bars 40, 40a.
  • FIG. 12 is a schematic plan view for explaining the connection between the bus bars 40, 40a, the low potential side first circuit 30L, and the high potential side first circuit 30H in the battery module 100M.
  • battery module 100 has sub circuit board 21a instead of main circuit board 21 and does not have shunt resistor RS, bus bars 40 and 40a, low potential side first circuit 30L and high potential in battery module 100
  • the connection with the first side circuit 30H is the same as the connection between the bus bars 40, 40a, the low potential side first circuit 30L, and the high potential side first circuit 30H in the battery module 100M.
  • the FPC board 50 is provided with a plurality of conductor lines 51 and 52 so as to correspond to the plurality of bus bars 40 and 40a.
  • Each conductor wire 51 is provided so as to extend in parallel in the Y direction between the mounting pieces 42 and 46 of the bus bars 40 and 40a and the PTC element 60 disposed in the vicinity of the bus bars 40 and 40a.
  • each conductor wire 51 is provided so as to be exposed on the lower surface side of the FPC board 50.
  • One end of each conductor wire 51 exposed on the lower surface side is electrically connected to the mounting pieces 42 and 46 of each bus bar 40 and 40a, for example, by soldering or welding. Thereby, the FPC board 50 is fixed to each bus bar 40, 40a.
  • each conductor line 51 and one end of each conductor line 52 are provided so as to be exposed on the upper surface side of the FPC board 50.
  • a pair of terminals (not shown) of the PTC element 60 are connected to the other end of each conductor wire 51 and one end of each conductor wire 52 by, for example, soldering.
  • the main circuit board 21 is provided with a plurality of connection terminals 22 corresponding to the plurality of conductor lines 52 of the FPC board 50.
  • the plurality of connection terminals 22, the low potential side first circuit 30 ⁇ / b> L, and the high potential side first circuit 30 ⁇ / b> H are electrically connected on the main circuit board 21.
  • the other end of each conductor wire 52 of the FPC board 50 is connected to the corresponding connection terminal 22 by, for example, soldering or welding.
  • the connection between the main circuit board 21 and the FPC board 50 is not limited to soldering or welding, and may be performed using a connector.
  • bus bars 40, 40a are electrically connected to the low potential side first circuit 30L and the high potential side first circuit 30H via the PTC element 60. Thereby, the terminal voltage of each battery cell 10 is detected.
  • the shunt resistor RS of the battery module 100M is provided in the bus bar 40 of FIG.
  • the bus bar 40 provided with the shunt resistor is referred to as a voltage / current bus bar 40y.
  • FIG. 13 is an enlarged plan view showing the voltage / current bus bar 40y and the FPC board 50.
  • solder patterns H1 and H2 are formed in parallel to each other at regular intervals.
  • the solder pattern H1 is disposed between the two electrode connection holes 43 in the vicinity of one electrode connection hole 43
  • the solder pattern H2 is disposed between the electrode connection holes 43 in the vicinity of the other electrode connection hole 43.
  • the resistance formed between the solder patterns H1 and H2 in the voltage / current bus bar 40y becomes a shunt resistance for current detection.
  • the solder pattern H1 of the voltage / current bus bar 40y is connected to one input terminal of the differential amplifier 81a (see FIG. 6) of the third circuit 80 via the conductor line 51, the conductor line 52, and the connection terminal 22 of the main circuit board 21. Connected. Similarly, the solder pattern H2 of the voltage / current bus bar 40y is input to the other input of the differential amplifier 81a (see FIG. 6) of the third circuit 80 via the conductor wire 51, the conductor wire 52, and the connection terminal 22 of the main circuit board 21. Connected to the terminal. Thereby, the third circuit 80 detects a voltage between the solder patterns H1 and H2. The voltage between the solder patterns H1 and H2 detected by the third circuit 80 is applied to the second circuit 24 of FIG.
  • solder pattern H1 is connected to a bus bar 40a (see FIGS. 3 and 8) attached to the negative electrode 10b of the first battery cell 10 of the battery module 100M via a conductor line on the FPC board 50.
  • the solder pattern H2 is connected to the bus bar 40a (see FIGS. 4 and 8) attached to the plus electrode 10a of the 18th battery cell 10 of the adjacent battery module 100 via the power line 501 of FIG.
  • the battery module 100M and the adjacent battery module 100 are connected in series via the shunt resistor RS of the voltage / current bus bar 40y.
  • the value of the shunt resistance RS between the solder patterns H1 and H2 in the voltage / current bus bar 40y is stored in advance in the storage unit 242 of the second circuit 24 in FIG.
  • the processing unit 241 of the second circuit 24 in FIG. 6 divides the voltage between the solder patterns H1 and H2 given from the third circuit 80 by the value of the shunt resistor RS stored in the storage unit 242 to thereby obtain a voltage / current bus bar.
  • the value of the current flowing through 40y is calculated. In this way, the value of the current flowing through the plurality of battery cells 10 is detected.
  • FIG. 14A is a schematic plan view showing a configuration example of the main circuit board 21
  • FIG. 14B is a schematic plan view showing a configuration example of the sub circuit board 21a.
  • the main circuit board 21 includes a low potential side first circuit 30L, a high potential side first circuit 30H, a second circuit 24, a third circuit 80, insulating elements 25 and 27, a power source.
  • a circuit 245, connectors 23a, 23b, and 23c and a terminating resistor RT are mounted.
  • a plurality of connection terminals 22 are formed on the main circuit board 21.
  • the main circuit board 21 includes a first mounting region 10G, a second mounting region 12G, and a strip-shaped insulating region 26.
  • the second mounting region 12G is formed at one corner of the main circuit board 21.
  • the insulating region 26 is formed so as to extend along the second mounting region 12G.
  • the first mounting region 10G is formed in the remaining part of the main circuit board 21.
  • the first mounting region 10G and the second mounting region 12G are separated from each other by the insulating region 26. Thereby, the first mounting region 10G and the second mounting region 12G are electrically insulated by the insulating region 26.
  • the low potential side first circuit 30L, the high potential side first circuit 30H, and the third circuit 80 are mounted, and a plurality of connection terminals 22 are formed.
  • the low potential side first circuit 30L, the high potential side first circuit 30H and the plurality of connection terminals 22 are electrically connected to each other on the main circuit board 21 by connection lines.
  • the third circuit 80 and the plurality of connection terminals 22 are electrically connected on the main circuit board 21 by connection lines.
  • a plurality of battery cells 10 (see FIG. 1) of the battery module 100M are connected to the low potential side first circuit 30L, the high potential side.
  • the first circuit 30H and the third circuit 80 are connected.
  • the low potential side first circuit 30L is supplied with power from the plurality of battery cells 10 of the low potential side battery cell group 10L of FIG. Electric power is supplied to the high potential side first circuit 30H from the plurality of battery cells 10 in the high potential side battery cell group 10H of FIG. Electric power is supplied to the third circuit 80 from the plurality of battery cells 10 in the low potential side battery cell group 10L of FIG.
  • the ground pattern GND1L is formed around the mounting region of the low potential side first circuit 30L except for the mounting region of the low potential side first circuit 30L and the connection line forming region.
  • the ground pattern GND1L is held at the lowest potential of the plurality of battery cells 10 in the low potential side battery cell group 10L.
  • a ground pattern GND1H is formed around the mounting region of the high potential side first circuit 30H, except for the mounting region of the high potential side first circuit 30H and the connection line forming region.
  • the ground pattern GND1H is held at the lowest potential of the plurality of battery cells 10 in the high potential side battery cell group 10H.
  • a ground pattern GND3 is formed around the mounting region of the third circuit 80 except for the mounting region of the third circuit 80 and the connection line forming region. The ground pattern GND3 is held at the lowest potential of the plurality of battery cells 10 in the low potential side battery cell group 10L.
  • the second circuit 24, the power supply circuit 245, and the connectors 23a to 23c are mounted in the second mounting area 12G.
  • the second circuit 24 and the connector 23a are electrically connected on the main circuit board 21 by a pair of connection lines L3 and L4.
  • the second circuit 24 and the connector 23b are electrically connected on the main circuit board 21 by a pair of connection lines L1 and L2.
  • the power supply circuit 245 and the connector 23c are electrically connected to each other on the main circuit board 21 by connection lines.
  • the insulating element 25 and the power supply circuit 245 are electrically connected on the main circuit board 21 by connection lines.
  • a termination resistor RT is mounted between the pair of connection lines L3 and L4.
  • the non-power battery 12 As a power source for the second circuit 24, the non-power battery 12 (see FIG. 2) provided in the electric vehicle is connected to the second circuit 24 via the switch circuit 107, the connector 23c, and the power circuit 245 of FIG.
  • the power supply circuit 245 steps down the voltage supplied from the non-power battery 12 and supplies it to the power supply circuit 245.
  • a ground pattern GND2 is formed in the second mounting region 12G except for the mounting region of the second circuit 24, the power supply circuit 245 and the connectors 23a to 23c and the formation region of a plurality of connection lines.
  • the ground pattern GND2 is held at the reference potential (ground potential) of the non-power battery 12.
  • the insulating element 25 is mounted so as to straddle the insulating region 26.
  • the insulating element 25 transmits a signal between the first circuit 30L on the low potential side and the second circuit 24 while electrically insulating the ground pattern GND1L and the ground pattern GND2 from each other.
  • the insulating element 27 is mounted so as to straddle the insulating region 26.
  • the insulating element 27 transmits a signal between the third circuit 80 and the second circuit 24 while electrically insulating the ground pattern GND3 and the ground pattern GND2.
  • a digital isolator or a photocoupler can be used as the insulating elements 25 and 27.
  • the sub circuit board 21a has the same configuration as the main circuit board 21 except that it does not have the third circuit 80, the insulating element 27, the termination resistor RT, and the ground pattern GND3.
  • the low-potential side first circuit 30L, the high-potential side first circuit 30H, the second circuit 24, the insulating element 25, the power supply circuit 245, the connectors 23a to 23c, and the connection terminals 22 on the sub circuit board 21a are connected to the main circuit board.
  • 21 is the same as the connection of the low potential side first circuit 30L, the high potential side first circuit 30H, the second circuit 24, the insulating element 25, the power supply circuit 245, the connectors 23a to 23c, and the connection terminal 22.
  • the low potential side first circuit 30L and the second circuit 24 are connected so as to be able to communicate while being electrically insulated by the insulating element 25.
  • the high potential side first circuit 30H and the second circuit 24 are connected to each other via the low potential side first circuit 30L while being electrically insulated.
  • the third circuit 80 and the second circuit 24 are communicably connected while being electrically insulated by the insulating element 27.
  • a plurality of battery cells 10 can be used as the power source for the low potential side first circuit 30L, the high potential side first circuit 30H, and the third circuit 80, and the non-power battery 12 ( FIG. 2) can be used.
  • the second circuit 24 can be stably operated independently from the low potential side first circuit 30L, the high potential side first circuit 30H, and the third circuit 80.
  • FIG. 15 is a schematic plan view showing an example of arrangement of the battery system 500.
  • the battery system 500 further includes an HV (High Voltage) connector 520 and a service plug 530 in addition to the battery module 100M, the three battery modules 100, the battery ECU 101, and the contactor 102 of FIG. .
  • HV High Voltage
  • the three battery modules 100 are referred to as battery modules 100a, 100b, and 100c, respectively.
  • the end face frame 92 to which the main circuit board 21 is not attached is called an end face frame 92a
  • the end face frame 92 to which the main circuit board 21 is attached is called an end face frame 92b.
  • the end face frame 92 to which the sub circuit board 21a is not attached is called an end face frame 92a
  • the end face frame 92 to which the sub circuit board 21a is attached is the end face This is called a frame 92b.
  • the end face frame 92b is hatched.
  • Battery modules 100a to 100c, 100M, battery ECU 101, contactor 102, HV connector 520 and service plug 530 are housed in box-shaped casing 550.
  • Casing 550 has side portions 550a, 550b, 550c, and 550d.
  • the side surface portions 550a and 550c are parallel to each other, and the side surface portions 550b and 550d are parallel to each other and perpendicular to the side surface portions 550a and 550c.
  • the battery modules 100a and 100b are arranged so as to be arranged at a predetermined interval.
  • the battery modules 100a and 100b are arranged so that the end face frame 92b of the battery module 100a and the end face frame 92a of the battery module 100b face each other.
  • the battery modules 100c and 100M are arranged so as to be arranged at a predetermined interval.
  • the battery modules 100c and 100M are arranged so that the end face frame 92a of the battery module 100c and the end face frame 92b of the battery module 100M face each other.
  • the battery modules 100a and 100b arranged so as to be aligned with each other are referred to as a module row T1
  • the battery modules 100c and 100M arranged so as to be aligned with each other are referred to as a module row T2.
  • the module row T1 is arranged along the side surface portion 550a, and the module row T2 is arranged in parallel with the module row T1.
  • the end surface frame 92a of the battery module 100a in the module row T1 is directed to the side surface portion 550d, and the end surface frame 92b of the battery module 100b is directed to the side surface portion 550b.
  • the end surface frame 92b of the battery module 100c in the module row T2 is directed to the side surface portion 550d, and the end surface frame 92a of the battery module 100M is directed to the side surface portion 550b.
  • the service plug 530, the battery ECU 101, the HV connector 520, and the contactor 102 are arranged in this order from the side surface portion 550d to the side surface portion 550b.
  • the potential of the positive electrode 10a (see FIG. 8) of the battery cell 10 (18th battery cell 10) adjacent to the end face frame 92a is the highest, and the battery adjacent to the end face frame 92b.
  • the potential of the negative electrode 10b (see FIG. 8) of the cell 10 (first battery cell 10) is the lowest.
  • the positive electrode 10a having the highest potential in each of the battery modules 100a to 100c and 100M is referred to as a high potential electrode 10A
  • the negative electrode 10b having the lowest potential in each of the battery modules 100a to 100c and 100M is referred to as a low potential electrode 10B.
  • the low potential electrode 10B of the battery module 100a and the high potential electrode 10A of the battery module 100b are connected to each other via the power supply line Q7 as the power supply line 501 in FIG.
  • the shunt resistor RS (see FIG. 1) connected to the high potential electrode 10A of the battery module 100c and the low potential electrode 10B of the battery module 100M is connected to each other via the power line Q8 as the power line 501 in FIG.
  • the high potential electrode 10A of the battery module 100a is connected to the service plug 530 via the power supply line Q1 as the power supply line 501 of FIG. 1, and the low potential electrode 10B of the battery module 100c is connected via the power supply line Q2 as the power supply line 501 of FIG. To the service plug 530.
  • the battery modules 100a to 100c and 100M are connected in series. In this case, the potential of the high potential electrode 10A of the battery module 100M is the highest, and the potential of the low potential electrode 10B of the battery module 100b is the lowest.
  • the service plug 530 has a built-in fuse.
  • the service plug 530 is turned off by an operator during maintenance of the battery system 500, for example.
  • the series circuit composed of the battery modules 100a and 100b and the series circuit composed of the battery modules 100c and 100M are electrically separated.
  • the total voltage of the series circuit including the battery modules 100a and 100b is equal to the total voltage of the series circuit including the battery modules 100c and 100M. This prevents a high voltage from being generated in the battery system 500 during maintenance.
  • the low potential electrode 10B of the battery module 100b is connected to the contactor 102 via the power supply line Q3 as the power supply line 501 of FIG. 1, and the high potential electrode 10A of the battery module 100M is connected via the power supply line Q4 as the power supply line 501 of FIG. Connected to contactor 102.
  • Contactor 102 is connected to HV connector 520 via power supply lines Q5 and Q6 as power supply line 501 in FIG.
  • the HV connector 520 is connected to a load such as a motor of an electric vehicle.
  • the battery module 100b is connected to the HV connector 520 via the power supply lines Q3 and Q6, and the battery module 100M is connected to the HV connector 520 via the power supply lines Q4 and Q5. Thereby, electric power is supplied from the battery modules 100a to 100c and 100M to the load.
  • the contactor 102 When the contactor 102 is turned off, the connection between the battery module 100b and the HV connector 520 and the connection between the battery module 100M and the HV connector 520 are cut off.
  • the connector 23a of the sub circuit board 21a of the battery module 100a and the connector 23b of the sub circuit board 21a of the battery module 100b are connected to each other via a communication cable P3.
  • the connector 23b of the sub circuit board 21a of the battery module 100a and the connector 23a of the sub circuit board 21a of the battery module 100c are connected to each other via the communication cable P2.
  • the connector 23b of the sub circuit board 21a of the battery module 100c and the connector 23a of the main circuit board 21 of the battery module 100M are connected to each other via the communication cable P1.
  • the connector 23a of the sub circuit board 21a of the battery module 100b is connected to the battery ECU 101 via the communication cable P4.
  • the bus 103 in FIG. 1 is configured by the communication cables P1 to P4.
  • cell information is detected by the second circuit 24 (see FIG. 6) in each of the battery modules 100a to 100c and 100M.
  • the cell information detected by the second circuit 24 of the battery module 100a is given to the battery ECU 101 via the communication cables P3 and P4.
  • the cell information detected by the second circuit 24 of the battery module 100b is given to the battery ECU 101 via the communication cable P4.
  • the cell information detected by the second circuit 24 of the battery module 100c is given to the battery ECU 101 via the communication cables P2, P3, P4.
  • Cell information detected by the second circuit 24 of the battery module 100M is given to the battery ECU 101 via the communication cables P1, P2, P3, and P4.
  • FIG. 16 is a schematic plan view showing the configuration of the contactor 102 of FIG.
  • contactor 102 includes switching elements SW1, SW2, SW3 and a resistor R.
  • the switching element SW1 has terminals t1 and t2, the switching element SW2 has terminals t3 and t4, and the switching element SW3 has terminals t5 and t6.
  • the power supply line Q4 is connected to the terminal t1, and the power supply line Q4 is connected to the terminal t3.
  • a power supply line Q3 is connected to the terminal t5.
  • a power supply line Q5 is connected to the terminal t2 via a resistor R, and a power supply line Q5 is connected to the terminal t4.
  • a power supply line Q6 is connected to the terminal t6.
  • Switching element SW1 is turned on and off based on the control of battery ECU 101 in FIG.
  • Switching element SW2 is turned on and off based on the control of battery ECU 101.
  • Switching element SW3 is turned on and off based on the control of battery ECU 101.
  • the battery ECU 101 When the battery system 500 in FIG. 15 starts to supply power to the load of the electric vehicle via the HV connector 520, the battery ECU 101 turns on the switching element SW1 and the switching element SW3. In this case, electric power is supplied from the battery system 500 to the load of the electric vehicle via the resistor R. Thereafter, the battery ECU 101 turns off the switching element SW1 and turns on the switching element SW2. Thereby, when starting supply of electric power to the load of an electric vehicle, it can prevent that an excessive inrush current flows into load.
  • the termination resistor RT is mounted on the main circuit board 21 of the battery module 100M.
  • a termination resistor RT is mounted on the printed circuit board 105 of the battery ECU 101.
  • the terminal resistor RT of the main circuit board 21 is connected to the bus 103 by connecting the communication cable P1 to the connector 23a of the main circuit board 21. Thereby, impedance matching of one end of the bus 103 can be performed with a simple configuration.
  • the termination resistor RT of the printed circuit board 105 is connected to the bus 103 by connecting the communication cable P4 to the connector 108 of the printed circuit board 105. Thereby, impedance matching of the other end of the bus 103 can be performed with a simple configuration.
  • the third circuit 80 and the insulating element 27 are provided on the main circuit board 21.
  • the voltage across the shunt resistor RS is detected by the third circuit 80.
  • the voltage across the shunt resistor RS is proportional to the current flowing through the plurality of battery cells 10. Thereby, it becomes possible to calculate the current flowing through the plurality of battery cells 10 based on the voltage across the shunt resistor RS with a simple configuration. Further, the calculated current is transmitted to the second circuit 24 of the battery module 100 or the battery ECU 101 via the bus 103.
  • the termination resistor RT and the third circuit 80 are provided on the main circuit board 21, it is not necessary to provide the termination resistor RT and the third circuit 80 on the sub circuit board 21a. That is, three types of circuit boards are prepared: a circuit board on which the first circuit 30 and the termination resistor RT are provided, a circuit board on which the first circuit 30 and the third circuit 80 are provided, and a circuit board on which only the first circuit 30 is provided. There is no need.
  • the battery system 500 can be configured by two types of circuit boards, that is, the main circuit board 21 provided with the first circuit 30, the termination resistor RT and the third circuit 80, and the sub circuit board 21a provided only with the first circuit 30. Thereby, the number of types of circuit boards of the battery system 500 can be reduced. As a result, the production yield of the battery system 500 can be improved and the production cost can be reduced.
  • the battery system includes a first battery module including a plurality of first battery cells and a first circuit board, and a communication bus.
  • the first circuit board includes a first voltage detection unit that detects a voltage of each first battery cell, a first communication unit that is connected to the first voltage detection unit and that can be connected to a communication bus, And a first termination resistor connectable to the communication bus.
  • the voltage of each first battery cell of the first battery module is detected by the first voltage detector of the first circuit board.
  • the detected voltage of each first battery cell can be transmitted to an external device by the first communication unit of the first circuit board.
  • the first termination resistor of the first circuit board is connected to the communication bus. Thereby, impedance matching of the communication bus is performed. As a result, good communication can be performed between the first battery module and the external device without requiring complicated wiring work and without complicating the wiring structure.
  • the battery system according to the present embodiment further includes a communication device that can be connected to the communication bus.
  • a communication device that can be connected to the communication bus. In this case, good communication can be performed between the first battery module and the communication device without requiring complicated wiring work and without complicating the wiring structure.
  • the battery system according to the present embodiment further includes a second battery module including a plurality of second battery cells and a second circuit board, and the second circuit board is provided for each second battery cell.
  • the communication device includes a second voltage detection unit that detects the voltage and a second communication unit that is connected to the second voltage detection unit and is connectable to the communication bus.
  • a control unit that performs an operation related to the control of the first and second battery modules. That is, the communication device operates as a control unit including a second termination resistor connectable to the communication bus and having a function related to the control of the first and second battery modules.
  • the voltage of each second battery cell of the second battery module is detected by the second voltage detection unit of the second circuit board.
  • the detected voltage of each second battery cell can be transmitted to the first communication unit, the control unit, or the external device of the first battery module via the communication bus by the second communication unit of the second circuit board. It is.
  • the control unit can communicate with the first communication unit of the first battery module and the second communication unit of the second battery module via the communication bus.
  • the control unit can control the first battery module based on the voltage detected by the first voltage detection unit, and can control the first battery module based on the voltage detected by the second voltage detection unit. 2 battery modules can be controlled.
  • the second termination resistor of the control unit is connected to the communication bus. Thereby, impedance matching of the communication bus is performed. As a result, good communication can be performed between the first and second battery modules and the control unit without requiring complicated wiring work and without complicating the wiring structure.
  • the first circuit board further includes a circuit unit that performs an operation different from that of the first voltage detection unit. That is, the circuit unit operates as a functional unit that realizes a function different from that of the first voltage detection unit. In this case, it is not necessary to provide a circuit portion on the second circuit board. Thereby, the structure of the second circuit board can be simplified.
  • the circuit unit includes a current detection unit configured to detect information related to the current flowing through the plurality of first battery cells and to transmit the detected information through the communication bus.
  • a current detection unit configured to detect information related to the current flowing through the plurality of first battery cells and to transmit the detected information through the communication bus.
  • the first battery module further includes an element that generates a voltage corresponding to the current flowing through the plurality of first battery cells, and the current detection unit of the first circuit board includes the element. By detecting the generated voltage, the current flowing through the plurality of first battery cells is detected in the form of voltage as information.
  • the current detection unit of the first circuit board detects the voltage corresponding to the current flowing through the plurality of first battery cells, and the detected voltage is the second of the second battery module via the communication bus. To the communication unit or external device. Thereby, it is possible to calculate the current flowing through the plurality of first battery cells based on the voltage generated in the element with a simple configuration.
  • the communication bus includes a communication cable
  • the first circuit board further includes a connector that is electrically connected to the first communication unit and is connectable to the communication cable.
  • the termination resistor is electrically connected to the connector.
  • the first termination resistor is electrically connected to the communication bus by connecting the communication cable to the connector of the first circuit board.
  • FIG. 17A is a schematic plan view showing a configuration example of the main circuit board in the second embodiment
  • FIG. 17B shows a configuration example of the sub circuit board in the second embodiment. It is a schematic plan view to show.
  • the main circuit board 21b in the present embodiment is mounted with a power supply circuit 243, which is a circuit unit that performs an operation different from the voltage detection unit, instead of the power supply circuit 245. Except that the connector 23d is further mounted on the second mounting region 12G, it has the same configuration as the main circuit board 21 of FIG.
  • the power supply circuit 243 and the connector 23c are electrically connected by a connection line on the main circuit board 21b, and the power supply circuit 243 and the connector 23d are electrically connected by a connection line on the main circuit board 21b.
  • the voltage input to the connector 23 c is stepped down by the power supply circuit 243 and applied to the second circuit 24. Thereby, the second circuit 24 operates.
  • the voltage input to the connector 23c is stepped down by the power supply circuit 243 and applied to the connector 23d. Thereby, the voltage stepped down by the power supply circuit 243 is output from the connector 23d.
  • the sub circuit board 21c in the present embodiment is similar to that shown in FIG. 14 except that the power supply circuit 245 is not mounted and the connector 23d is further mounted in the second mounting region 12G. It has the same configuration as the sub circuit board 21a of (b).
  • the connector 23c and the second circuit 24 are electrically connected by a connection line on the sub circuit board 21c, and the connector 23c and the connector 23d are electrically connected by a connection line on the sub circuit board 21c.
  • the voltage input to the connector 23c is applied to the second circuit 24. Thereby, the second circuit 24 operates.
  • the voltage input to the connector 23c is given to the connector 23d. Thereby, the voltage input to the connector 23c is output from the connector 23d.
  • FIG. 18 is an explanatory view showing the connection of the main circuit board 21b and the plurality of sub circuit boards 21c of FIG. 17, and FIG. It is.
  • FIG. 18 shows a simplified configuration of the main circuit board 21b and the sub circuit board 21c.
  • the connection terminals 22 and the insulating regions 26 in FIG. 17A are not shown.
  • the connection terminals 22 and the insulating regions 26 of FIG. 17B are not shown.
  • switch circuit 107 of battery ECU 101 and connector 23c of main circuit board 21b of battery module 100M are connected to each other via power line S1.
  • Connector 23d of main circuit board 21b of battery module 100M and connector 23c of sub circuit board 21c of battery module 100c are connected to each other via power line S2.
  • the connector 23d of the sub circuit board 21c of the battery module 100c and the connector 23c of the sub circuit board 21c of the battery module 100a are connected to each other via the power line S3.
  • the connector 23d of the sub circuit board 21c of the battery module 100a and the connector 23c of the sub circuit board 21c of the battery module 100b are connected to each other via the power line S4.
  • the voltage of the non-power battery 12 is applied to the power supply circuit 243 of the battery module 100M through the switch circuit 107 of the battery ECU 101.
  • the voltage of the non-power battery 12 is stepped down by the power supply circuit 243 and applied to the second circuit 24 of the battery module 100M and also to the second circuits 24 of the battery modules 100a to 100c. That is, the power supply circuit 243 that is a circuit unit operates as a functional unit that realizes a function different from that of the voltage detection unit.
  • the power supply circuit 243 of the main circuit board 21 of the battery module 100M supplies power to the second circuits 24 of the battery modules 100M and 100a to 100c.
  • the structure of the sub circuit board 21a can be further simplified.
  • each second circuit 24 can be stably operated by the non-power battery 12 while suppressing an increase in cost.
  • the electric vehicle according to the present embodiment includes battery system 500 according to the first or second embodiment.
  • an electric vehicle will be described as an example of an electric vehicle.
  • FIG. 20 is a block diagram illustrating a configuration of an electric vehicle including the battery system 500.
  • electric vehicle 600 according to the present embodiment includes a vehicle body 610 as a moving main body.
  • the vehicle body 610 includes the non-power battery 12 of FIG. 1, the main control unit 300 and the battery system 500, the power conversion unit 601, the motor 602, the drive wheels 603, the accelerator device 604, the brake device 605, and the rotation speed sensor 606.
  • the motor 602 and the drive wheel 603 are power sources.
  • power conversion unit 601 includes an inverter circuit.
  • the non-power battery 12 is connected to the battery system 500.
  • the battery system 500 is connected to the motor 602 via the power conversion unit 601 and also connected to the main control unit 300.
  • the main controller 300 has the amount of charge of each battery cell 10 (see FIG. 1) and the value of the current flowing through the plurality of battery cells 10 from the battery ECU 101 (see FIG. 1) constituting the battery system 500. Given.
  • Accelerator device 604, brake device 605 and rotation speed sensor 606 are connected to main controller 300.
  • the main control unit 300 includes, for example, a CPU and a memory, or a microcomputer.
  • a non-power battery 12 is connected to the main controller 300. The electric power output from the non-power battery 12 is supplied to some electrical components of the electric automobile 600 based on the control by the main control unit 300.
  • the accelerator device 604 includes an accelerator pedal 604a included in the electric automobile 600 and an accelerator detection unit 604b that detects an operation amount (depression amount) of the accelerator pedal 604a.
  • the accelerator detector 604b detects the operation amount of the accelerator pedal 604a based on a state where the driver is not operated. The detected operation amount of the accelerator pedal 604a is given to the main controller 300.
  • the brake device 605 includes a brake pedal 605a included in the electric automobile 600 and a brake detection unit 605b that detects an operation amount (depression amount) of the brake pedal 605a by the driver.
  • the operation amount is detected by the brake detection unit 605b.
  • the detected operation amount of the brake pedal 605a is given to the main control unit 300.
  • Rotational speed sensor 606 detects the rotational speed of motor 602. The detected rotation speed is given to the main control unit 300.
  • the main control unit 300 includes the charge amount of each battery cell 10, the value of the current flowing through the plurality of battery cells 10, the operation amount of the accelerator pedal 604a, the operation amount of the brake pedal 605a, and the rotation of the motor 602. Speed is given.
  • the main control unit 300 performs charge / discharge control of the battery modules 100M and 100 and power conversion control of the power conversion unit 601 based on these pieces of information.
  • the power of the battery modules 100M and 100 is supplied from the battery system 500 to the power conversion unit 601.
  • the main control unit 300 calculates a rotational force (command torque) to be transmitted to the drive wheels 603 based on the given operation amount of the accelerator pedal 604a, and outputs a control signal based on the command torque to the power conversion unit 601. To give.
  • the power conversion unit 601 that has received the control signal converts the power supplied from the battery system 500 into power (drive power) necessary for driving the drive wheels 603. As a result, the driving power converted by the power converter 601 is supplied to the motor 602, and the rotational force of the motor 602 based on the driving power is transmitted to the driving wheels 603.
  • the motor 602 functions as a power generator.
  • the power conversion unit 601 converts the regenerative power generated by the motor 602 into power suitable for charging the battery modules 100M and 100, and provides the power to the battery modules 100M and 100. Thereby, the battery modules 100M and 100 are charged.
  • the battery system 500 may be mounted on another mobile body such as a ship, an aircraft, an elevator, or a walking robot.
  • a ship equipped with the battery system 500 includes, for example, a hull instead of the vehicle body 610 in FIG. 20, a screw instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605.
  • a deceleration input unit is provided.
  • the driver operates the acceleration input unit instead of the accelerator device 604 when accelerating the hull, and operates the deceleration input unit instead of the brake device 605 when decelerating the hull.
  • the hull corresponds to the moving main body
  • the motor corresponds to the power source
  • the screw corresponds to the drive unit.
  • the ship does not have to include a deceleration input unit.
  • the motor receives electric power from the battery system 500 and converts the electric power into power, and the hull moves by rotating the screw with the converted power.
  • An aircraft equipped with the battery system 500 includes, for example, a fuselage instead of the vehicle body 610 in FIG. 20, a propeller instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. Instead, a deceleration input unit is provided. Ships and aircraft do not have to include a deceleration input unit. In this case, when the driver operates the acceleration input unit to stop acceleration, the airframe is decelerated due to water resistance or air resistance.
  • An elevator equipped with the battery system 500 includes, for example, a saddle instead of the vehicle body 610 in FIG. 20, a lifting rope attached to the saddle instead of the driving wheel 603, and an acceleration input unit instead of the accelerator device 604. And a deceleration input unit instead of the brake device 605.
  • a walking robot equipped with the battery system 500 includes, for example, a torso instead of the vehicle body 610 in FIG. 20, a foot instead of the drive wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605.
  • a deceleration input unit is provided instead of.
  • the motor corresponds to the power source
  • the hull, the fuselage, the anchor and the fuselage correspond to the main body
  • the screw, the propeller, the lifting rope and the foot correspond to the drive unit.
  • the power source receives electric power from the battery system 500 and converts the electric power into motive power
  • the drive unit moves the moving main body portion with the motive power converted by the motive power source.
  • each battery system 500 may have the same function as the battery ECU 101 instead of the battery ECU 101 provided in each battery system 500. Good.
  • the power supply device includes battery system 500 according to the first or second embodiment.
  • FIG. 21 is a block diagram illustrating a configuration of a power supply device including the battery system 500.
  • the power supply device 700 includes a power storage device 710 and a power conversion device 720.
  • the power storage device 710 includes a battery system group 711 and a system controller 712 as a system control unit.
  • the battery system group 711 includes the battery system 500 according to the first or second embodiment. Between the plurality of battery systems 500, the plurality of battery cells 10 may be connected to each other in parallel, or may be connected to each other in series.
  • the system controller 712 is an example of a system control unit, and includes, for example, a CPU and a memory, or a microcomputer.
  • the system controller 712 is connected to the battery ECU 101 (see FIG. 1) of each battery system 500.
  • the battery ECU 101 of each battery system 500 calculates the charge amount of each battery cell 10 based on the terminal voltage of each battery cell 10 (see FIG. 1), and gives the calculated charge amount to the system controller 712.
  • the system controller 712 controls the power conversion device 720 based on the charge amount of each battery cell 10 given from each battery ECU 101, thereby controlling the discharge or charging of the plurality of battery cells 10 included in each battery system 500. I do.
  • the power converter 720 includes a DC / DC (DC / DC) converter 721 and a DC / AC (DC / AC) inverter 722.
  • the DC / DC converter 721 has input / output terminals 721a and 721b, and the DC / AC inverter 722 has input / output terminals 722a and 722b.
  • the input / output terminal 721 a of the DC / DC converter 721 is connected to the battery system group 711 of the power storage device 710.
  • the input / output terminal 721b of the DC / DC converter 721 and the input / output terminal 722a of the DC / AC inverter 722 are connected to each other and to the power output unit PU1.
  • the input / output terminal 722b of the DC / AC inverter 722 is connected to the power output unit PU2 and to another power system.
  • the power output units PU1, PU2 include, for example, outlets.
  • various loads are connected to the power output units PU1 and PU2.
  • Other power systems include, for example, commercial power sources or solar cells. This is an external example in which power output units PU1, PU2 and another power system are connected to a power supply device.
  • the DC / DC converter 721 and the DC / AC inverter 722 are controlled by the system controller 712, whereby the plurality of battery cells 10 included in the battery system group 711 are discharged and charged.
  • DC / DC direct current / direct current
  • DC / AC direct current / alternating current
  • the power DC / DC converted by the DC / DC converter 721 is supplied to the power output unit PU1.
  • the power DC / AC converted by the DC / AC inverter 722 is supplied to the power output unit PU2.
  • DC power is output to the outside from the power output unit PU1, and AC power is output to the outside from the power output unit PU2.
  • the electric power converted into alternating current by the DC / AC inverter 722 may be supplied to another electric power system.
  • the system controller 712 performs the following control as an example of control related to the discharge of the plurality of battery cells 10 included in each battery system 500.
  • the system controller 712 determines whether to stop discharging based on the charge amount of each battery cell 10 given from each battery ECU 101 (see FIG. 1), and based on the determination result.
  • the power converter 720 is controlled. Specifically, when the charge amount of any one of the plurality of battery cells 10 (see FIG. 1) included in the battery system group 711 becomes smaller than a predetermined threshold, the system controller 712
  • the DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the discharge is stopped or the discharge current (or discharge power) is limited. Thereby, overdischarge of each battery cell 10 is prevented.
  • AC power supplied from another power system is AC / DC (AC / DC) converted by the DC / AC inverter 722, and further DC / DC (DC) is converted by the DC / DC converter 721. / DC) converted.
  • AC / DC AC / DC
  • DC DC / DC
  • the system controller 712 performs the following control as an example of control related to charging of the plurality of battery cells 10 included in each battery system 500.
  • the system controller 712 determines whether or not to stop charging based on the charge amount of each battery cell 10 given from each battery ECU 101 (see FIG. 1), and based on the determination result.
  • the power converter 720 is controlled. Specifically, when the charge amount of any one of the plurality of battery cells 10 included in the battery system group 711 exceeds a predetermined threshold value, the system controller 712 stops charging. Or the DC / DC converter 721 and the DC / AC inverter 722 are controlled such that the charging current (or charging power) is limited. Thereby, overcharge of each battery cell 10 is prevented.
  • the system controller 712 may have the same function as the battery ECU 101 instead of providing the battery ECU 101 in each battery system 500.
  • the power conversion apparatus 720 may include only one of the DC / DC converter 721 and the DC / AC inverter 722. Further, the power conversion device 720 may not be provided as long as power can be supplied between the power supply device 700 and the outside.
  • 21 includes a plurality of battery systems 500, but is not limited thereto, and only one battery system 500 may be provided.
  • the battery module 100M is arranged on the highest potential side, but the present invention is not limited to this.
  • the battery module 100M may be disposed on the lowest potential side.
  • the second circuit 24 of the battery module 100 arranged on the highest potential side and the battery ECU 101 are connected by a communication cable.
  • the battery module 100M and the battery ECU 101 are connected so that the termination resistor RT is located at the end of the bus 103, but is not limited thereto.
  • the battery module 100M and the battery ECU 101 do not have to be connected so that the termination resistor RT is located at the end of the bus 103.
  • the battery module 100M has the shunt resistor RS as an element that generates a voltage corresponding to the current flowing through the plurality of battery cells 10, but is not limited thereto.
  • the battery module 100M may include other elements such as a Hall element that generates a voltage corresponding to the current flowing through the plurality of battery cells 10.
  • the third circuit 80 detects the current flowing through the plurality of battery cells 10 in the form of voltage by detecting the voltage generated in the Hall element.
  • the battery system 500 includes the battery ECU 101, but is not limited thereto.
  • the battery system 500 may not have the battery ECU 101.
  • the battery system 500 includes one battery module 100M, but is not limited thereto.
  • the battery system 500 may include two battery modules 100M.
  • the two battery modules 100M are connected so that the termination resistor RT is located at the end of the bus 103.
  • one battery module 100M may include the shunt resistor RS, the third circuit 80, and the insulating element 27.
  • the voltage / current bus bar 40y having substantially the same shape as the bus bar 40 is used as the shunt resistor RS, but the present invention is not limited to this.
  • Another resistive element may be used as the shunt resistor RS.
  • the voltage / current bus bar 40y is connected to the battery cell 10 arranged at the end of the battery module 100M, but the present invention is not limited to this.
  • the voltage / current bus bar 40y may be connected in place of one of the plurality of bus bars 40 connecting the plus electrode 10a and the minus electrode 10b of two adjacent battery cells 10.
  • the ground pattern GND1L and the ground pattern GND3 are separately formed on the main circuit board 21, but the present invention is not limited to this. Since the potentials of the ground pattern GND1L and the ground pattern GND3 are equal, the ground pattern GND1L and the ground pattern GND3 may be integrally formed.
  • the ground pattern GND1H and the ground pattern GND3 are separately formed on the main circuit board 21, but the present invention is not limited to this.
  • the voltage / current bus bar 40y is used as the bus bar 40 that connects the plus electrode 10a of the ninth battery cell 10 and the minus electrode 10b of the tenth battery cell 10
  • the potentials of the ground pattern GND1H and the ground pattern GND3 are equal.
  • the ground pattern GND1H and the ground pattern GND3 may be integrally formed.
  • the main circuit boards 21 and 21b of the battery module 100M may be attached to the upper surface of the battery block 10BB of the battery module 100M without being attached to the end face frame 92.
  • the sub circuit boards 21a and 21c of the battery module 100 may be attached to the upper surface of the battery block 10BB of the battery module 100 without being attached to the end face frame 92.
  • FIG. 22 is an exploded perspective view showing the configuration of the battery module 100M according to the first modification.
  • the battery module 100M according to the first modification is disposed in a casing (housing) CA having an open top.
  • the battery module 100M further includes a gas duct 111 and a lid member 70.
  • the lid member 70 is made of an insulating material such as resin and has a rectangular plate shape.
  • the gas duct 111, the wiring member 110, the lid member 70, and the main circuit board 21 are sequentially arranged on the upper surface of the battery block 10BB.
  • the wiring member 110 and the gas duct 111 are attached to the lower surface of the lid member 70, and the main circuit board 21 is attached to the upper surface of the lid member 70.
  • Battery block 10BB is accommodated in casing CA, and lid member 70 is fitted in casing CA so as to close the opening of casing CA.
  • the battery box BB that houses the battery module 100M is formed.
  • the lid member 70 may be attached to the casing CA by screwing or an adhesive. Thereby, the lid member 70 can be reliably fixed to the casing CA. Further, the lid member 70 may not be fitted into the casing CA.
  • FIG. 23 is a perspective view of the lid member 70 of FIG. 22 as viewed obliquely from below.
  • 24 is a perspective view of the lid member 70 of FIG. 22 as viewed obliquely from above.
  • the side 70a of the lid member 70 is along a side E1 (see FIG. 22) in one direction of the battery block 10BB (see FIG. 22). See).
  • the surface of the lid member 70 facing the battery block 10BB is called a back surface
  • the surface of the lid member 70 on the opposite side is called a front surface. In this example, the surface of the lid member 70 is directed upward.
  • FPC fitting portions 74 are formed on the back surface of the lid member 70 so as to extend along the side side 70a and the side side 70b of the lid member 70, respectively.
  • the FPC board 50 of the wiring member 110 is fitted into the FPC fitting portion 74.
  • the FPC fitting portions 74 provided along the side 70a and the side 70b of the lid member 70 are referred to as the FPC fitting 74 74 on the side 70a side and the side 70b side, respectively.
  • a plurality of concave portions 71 and 72 are provided along the FPC fitting portions 74 on the side side 70a side and the side side 70b side.
  • nine concave portions 71 are provided along the FPC fitting portion 74 on the side 70a side.
  • One recess 72, eight recesses 71, and another one recess 72 are provided along the side edge 70 b of the lid member 70.
  • the recesses 71 and 72 have a substantially rectangular shape, and the length of the recess 71 in the X direction is larger than the length of the recess 72 in the X direction.
  • the shape and length of the recess 71 are approximately equal to the shape and length of the bus bar 40, and the shape and length of the recess 72 are approximately equal to the shape and length of the bus bar 40a.
  • a plurality of openings 73 are formed so as to penetrate from the bottom surfaces of the plurality of recesses 71 and 72 to the surface of the lid member 70 (see FIG. 24). Two openings 73 (see FIG. 24) are formed in each recess 71, and one opening 73 (see FIG. 24) is formed in each recess 72.
  • the recess 71 and the opening 73 provided along the side 70a of the lid member 70 are referred to as the recess 71 on the side 70a and the opening 73 on the side 70a, respectively, and are along the side 70b of the lid 70.
  • the recesses 71 and 72 and the opening 73 thus provided are referred to as the recesses 71 and 72 on the side 70b side and the opening 73 on the side 70b side, respectively.
  • the bus bar 40 of the wiring member 110 is fitted into the recess 71 of the lid member 70, and the bus bar 40 a of the wiring member 110 is fitted into the recess 72.
  • the electrode connection hole 43 of the bus bar 40 is exposed to the surface side of the lid member 70 in the opening 73.
  • the electrode connection hole 47 of the bus bar 40 a is exposed to the surface side of the lid member 70 in the opening 73 in a state where the bus bar 40 a is fitted in the recess 72.
  • the duct fitting portion 77 is formed so as to extend in the X direction between the plurality of recesses 71 on the side 70a side and the plurality of recesses 71 and 72 on the side 70b side.
  • the gas duct 111 is fitted in the duct fitting portion 77.
  • a plurality of pairs of connection grooves 75 are formed so as to extend from the plurality of recesses 71 on the side 70a side to the FPC fitting portion 74 on the side 70a side.
  • a plurality of pairs of connection grooves 75 are formed so as to extend from the plurality of recesses 71 on the side 70b side to the FPC fitting portion 74 on the side 70b side.
  • a plurality of connection grooves 76 are formed to extend from the plurality of recesses 72 on the side 70b side to the FPC fitting portion 74 on the side 70b side.
  • a pair of attachment pieces 42 of the plurality of bus bars 40 are respectively disposed in the plurality of pairs of connection grooves 75. In the plurality of connection grooves 76, the attachment pieces 46 of the plurality of bus bars 40a are respectively arranged.
  • FIG. 25 is a view of the plurality of bus bars 40, 40a and the two FPC boards 50 in the first modification as viewed from above.
  • the FPC board 50 of FIG. 25 has the same configuration as the FPC board 50 of FIG. 12 except for the following points.
  • each FPC board 50 further includes a plurality of connection terminals 22a corresponding to a plurality of conductor lines 52.
  • the plurality of connection terminals 22a are arranged so as to be aligned in the X direction along one side of each FPC board 50.
  • Each conductor line 52 is provided to extend parallel to the Y direction between the corresponding PTC element 60 and the connection terminal 22a.
  • the connection terminals 22a and the bus bars 40, 40a are electrically connected by the conductor wires 51, 52 and the PTC element 60.
  • FIG. 26 is a view of the main circuit board 21 in the first modification as viewed from above.
  • the main circuit board 21 of FIG. 26 has the same configuration as the main circuit board 21 of FIG. 12 except for the following points.
  • the main circuit board 21 has a rectangular plate shape.
  • the plurality of connection terminals 22 of the main circuit board 21 are arranged along the one side and the other side of the main circuit board 21 in the X direction.
  • the plurality of connection terminals 22 correspond to the plurality of connection terminals 22a (see FIG. 25) of the FPC board 50.
  • FIG. 27 is a schematic cross-sectional view showing a connection structure between the FPC board 50 and the main circuit board 21 in the first modification.
  • FIG. 27 shows a connection structure between one connection terminal 22 a of the FPC board 50 and one connection terminal 22 of the main circuit board 21.
  • connection member PH is attached between each connection terminal 22 a and each connection terminal 22.
  • a pin header is used as the connection member PH.
  • the connection member PH has a pin PN1 protruding downward and a pin PN2 protruding upward.
  • the pins PN1 and PN2 are formed of one pin integrally with each other. Note that the pins PN1 and PN2 may be separate if the pins PN1 and PN2 are electrically connected.
  • the pin PN1 of the connecting member PH is inserted into the hole 53 of the FPC board 50 from above the FPC board 50, and the pin PN2 of the connecting member PH is inserted into the hole 78 of the lid member 70 and the main circuit board 21 from below the lid member 70. It is inserted into the hole 23.
  • connection terminal 22a of the FPC board 50 is connected to the connection terminal 22a of the FPC board 50 by the solder SO, and the pin PN2 is connected to the connection terminal 22 of the main circuit board 21.
  • each connection terminal 22 a of the FPC board 50 is electrically connected to the corresponding connection terminal 22 of the main circuit board 21.
  • the shunt resistor RS is provided on one FPC board 50 as in the battery module 100M of FIG. 7, but the present invention is not limited to this.
  • the shunt resistor RS may be provided on the main circuit board 21 so as to be connected in series with the plurality of battery cells 10 of the battery module 100M.
  • another resistance element different from the voltage / current bus bar 40y may be provided as the shunt resistor RS.
  • the gas duct 111, the wiring member 110, and the main circuit board 21 are attached to the lid member 70.
  • the lid member 70 is attached to the upper surface of the battery block 10BB.
  • the plus electrodes 10a (see FIG. 22) and the minus electrodes 10b (see FIG. 22) of the plurality of battery cells 10 are fitted into the electrode connection holes 43 of the plurality of bus bars 40.
  • the positive electrodes 10a or the negative electrodes 10b of the plurality of battery cells 10 are inserted into the electrode connection holes 47 of the plurality of bus bars 40a.
  • the gas duct 111 is disposed on the upper surface of the battery block 10BB so as to cover the gas vent valves 10v of the plurality of battery cells 10.
  • a nut (not shown) is screwed into the male threads of the plus electrode 10a and the minus electrode 10b.
  • adjacent battery cells 10 are electrically connected via the bus bar 40.
  • the plurality of battery cells 10 are connected in series.
  • a plurality of bus bars 40, 40a are connected to the low potential abnormality detection unit 30L and the high potential abnormality detection unit 30H (see FIG. 26) on the main circuit board 21 through the FPC board 50.
  • the gas duct 111, the wiring member 110, and the main circuit board 21 are integrally provided on the lid member 70. Therefore, battery module 100M can be easily assembled by attaching lid member 70 to battery block 10BB. Further, the gas discharged from the gas vent valve 10v of the battery cell 10 can be efficiently discharged to the outside through the gas duct 111.
  • the main circuit board 21 larger than the main circuit board 21 of FIG. 7 can be disposed on the upper surface of the battery block 10BB of FIG. Therefore, a larger number of circuits can be mounted on the main circuit board 21.
  • the strength of the battery module 100M is improved by forming the battery box BB that houses the battery module 100M. Further, since the battery block 10BB of the battery module 100M is fixed to the casing CA of the battery box BB and the lid member 70 is fitted to the casing CA, the battery block 10BB and the lid member 70 can be reliably fixed. .
  • the opening of the casing CA is closed by the lid member 70. Therefore, the inside of the battery box BB may be molded with resin. In this case, condensation of the battery cell 10 can be prevented. Further, the resin molded in the battery box BB can affect the heat conduction characteristics of the battery module 100M. For example, by molding the inside of the battery box BB with a resin having a higher thermal conductivity than air, the heat in the battery box BB can be released to the outside. On the other hand, by molding the inside of the battery box BB with a resin having a thermal conductivity lower than that of air, the inflow of heat from the outside into the battery box BB can be blocked.
  • the inside of the battery box BB can be exhausted by providing a hole in at least one of the casing CA and the lid member 70.
  • the gas duct 111 may not be provided in the battery module 100M.
  • FIG. 28 is an exploded perspective view showing a configuration of a battery module 100M according to the second modification. Differences of the battery module 100M according to the second modification from the battery module 100M according to the first modification will be described.
  • the gas duct 111, the lid member 70, the wiring member 110, and the main circuit board 21 are sequentially arranged on the upper surface of the battery block 10BB.
  • the battery module 100M according to the second modification and the battery module 100M according to the first modification have different positional relationships between the lid member 70 and the FPC board 50.
  • the gas duct 111 is attached to the lower surface of the lid member 70, and the wiring member 110 and the main circuit board 21 are attached to the upper surface of the lid member 70.
  • FIG. 29 is a perspective view of the lid member 70 of FIG. 28 as viewed obliquely from below.
  • FIG. 30 is a perspective view of the lid member 70 of FIG. 28 as viewed obliquely from above.
  • the back surface of the lid member 70 has the same configuration as the surface of the lid member 70 in FIG. 29 except that a duct fitting portion 77 is formed.
  • the surface of the lid member 70 has the same configuration as the back surface of the lid member 70 of FIG. 28 except that the duct fitting portion 77 is not formed.
  • connection between the FPC board 50 and the main circuit board 21 is the same as the connection between the FPC board 50 and the main circuit board 21 in the first modification.
  • the lid member 70 is not disposed between the FPC board 50 and the main circuit board 21, and thus the hole 78 of FIG. 27 is not provided in the lid member 70.
  • the gas duct 111, the wiring member 110, and the main circuit board 21 are attached to the lid member 70.
  • the bus bars 40, 40 a of the wiring member 110 are attached to the surface of the lid member 70.
  • the plurality of bus bars 40, 40a are connected to the plus electrode 10a and the minus electrode 10b of the plurality of battery cells 10 in the same manner as the battery module 100M according to the first modification.
  • the gas duct 111, the wiring member 110, and the main circuit board 21 are integrally provided on the lid member 70. Therefore, battery module 100M can be easily assembled by attaching lid member 70 to battery block 10BB. Further, the gas discharged from the gas vent valve 10v of the battery cell 10 can be efficiently discharged to the outside through the gas duct 111.
  • the area of the upper surface of the battery block 10BB is larger than the area of the end face frame 92 (see FIG. 28). Therefore, the main circuit board 21 larger than the main circuit board 21 of FIG. 7 can be disposed on the upper surface of the battery block 10BB of FIG. Therefore, a larger number of circuits can be mounted on the main circuit board 21.
  • the lid member 70 is attached to the casing CA, but is not limited thereto.
  • the lid member 70 may be attached to the battery block 10BB for each of the battery modules 100M and 100.
  • nuts are connected to the plus electrodes 10 a and the minus electrodes of the plurality of battery cells 10 in the openings 73 of FIGS. 23 and 28.
  • the lid member 70 can be easily attached to the battery block 10BB.
  • the battery modules 100M and 100 can be easily assembled.
  • FIG. 31 is a block diagram showing a configuration of a battery system 500 according to another embodiment. As shown in FIG. 31, in the battery system 500 according to the present embodiment, the battery ECU 101 is connected to a bus 103 between the battery modules 100M and 100c. In this case, a termination resistor RT as a second termination resistor is provided in the battery module 100b as a communication device connected to one end of the bus 103.
  • the termination resistance RT of the main circuit boards 21 and 21b of the battery module 100M is connected to one end of the bus 103, and the termination resistance RT of the sub circuit boards 21a and 21c of the battery module 100b is connected to the other end of the bus 103.
  • impedance matching of the bus 103 is performed.
  • good communication can be performed between the battery modules 100M, 100a to 100c and the battery ECU 101 without requiring complicated wiring work and without complicating the wiring structure.
  • the communication device is a second battery module that includes a plurality of second battery cells and a second circuit board, and the second circuit board detects the voltage of each second battery cell. And a second communication unit connected to the communication bus and connected to the second voltage detection unit.
  • the voltage of each second battery cell of the second battery module is detected by the second voltage detection unit of the second circuit board.
  • the detected voltage of each second battery cell can be transmitted to the first communication unit of the first battery module or the external device via the communication bus by the second communication unit of the second circuit board.
  • the second termination resistor of the second circuit board is connected to the communication bus. Thereby, impedance matching of the communication bus is performed. As a result, good communication can be performed between the first and second battery modules without requiring complicated wiring work and without complicating the wiring structure.
  • the mobile body such as the electric automobile 600 or the ship according to the above embodiment is an electric device including the battery system 500 and the motor 602 as a load.
  • the electric device according to the present invention is not limited to a moving body such as the electric automobile 600 and a ship, and may be a washing machine, a refrigerator, an air conditioner, or the like.
  • a washing machine is an electric device including a motor as a load
  • a refrigerator or an air conditioner is an electric device including a compressor as a load.
  • the electrical apparatus includes the battery system and a load driven by electric power from the battery system.
  • the load is driven by power from the battery system.
  • the battery cell 10 of the battery module 100M is an example of the first battery cell
  • the main circuit boards 21 and 21b are examples of the first circuit board
  • the battery module 100M is the first battery. It is an example of a module.
  • the battery cell 10 of the battery module b is an example of the second battery cell
  • the sub circuit boards 21a and 21c are examples of the second circuit board
  • the battery module 100b is an example of the second battery module.
  • the bus 103 is an example of a communication bus
  • the first circuit 30 of the main circuit boards 21 and 21b is an example of a first voltage detection unit
  • the second circuit 24 of the main circuit boards 21 and 21b is a first communication unit.
  • the first circuit 30 of the sub circuit boards 21a and 21c is an example of the second voltage detection unit
  • the second circuit 24 of the sub circuit boards 21a and 21c is an example of the second communication unit.
  • the battery module 100b or the battery ECU 101 is an example of a communication device
  • the termination resistance RT of the main circuit boards 21 and 21b is an example of a first termination resistance
  • the termination resistance RT of the battery module 100b or the battery ECU 101 is a second termination resistance. It is an example of resistance
  • battery ECU101 is an example of a control part.
  • the third circuit 80 or the power supply circuit 243 is an example of a circuit unit
  • the third circuit 80 is an example of a current detection unit
  • the shunt resistor RS or the Hall element is an example of an element.
  • the communication cable P1 is an example of a communication cable
  • the connectors 23a and 23b of the main circuit boards 21 and 21b are examples of connectors
  • the battery system 500 is an example of a battery system
  • the motor 602 is an example of a motor
  • driving The wheel 603 is an example of a drive wheel
  • the electric automobile 600 is an example of an electric vehicle.
  • a body 610, a ship hull, an aircraft fuselage, an elevator cage, or a torso of a walking robot are examples of the moving main body.
  • Motors 602, drive wheels 603, screws, propellers, hoisting motors for elevating ropes, or walking robot legs are examples of power sources.
  • An electric vehicle 600, a ship, an aircraft, an elevator, or a walking robot are examples of moving objects.
  • the system controller 712 is an example of a system control unit
  • the power storage device 710 is an example of a power storage device
  • the power conversion device 720 is an example of a power conversion device
  • the power supply device 700 is an example of a power supply device.
  • the motor 602 or the compressor is an example of a load
  • the electric automobile 600, a ship, an aircraft, an elevator, a walking robot, a washing machine, a refrigerator, or an air conditioner is an example of an electric device.
  • the present invention can be effectively used for various mobile objects using electric power as a drive source, power storage devices, mobile devices, and the like.

Abstract

A battery system is provided with battery modules and a bus. Each of the battery modules comprises a plurality of battery cells and a main circuit board. The main circuit board comprises first circuits, a second circuit, and a terminator. Voltages of the battery cells of the battery module are detected by the first circuits of the main circuit board. The terminator of the main circuit board is connected to the bus. The voltages of the battery cells detected by the first circuits of the main circuit board can be transmitted to an external device via the bus, by the second circuit of the main circuit board.

Description

バッテリシステム、それを備えた電動車両、移動体、電力貯蔵装置、電源装置および電気機器BATTERY SYSTEM, ELECTRIC VEHICLE EQUIPPED WITH THE SAME, MOBILE BODY, POWER STORAGE DEVICE, POWER SUPPLY DEVICE, AND ELECTRIC DEVICE
 本発明は、バッテリモジュールを含むバッテリシステム、電動車両、移動体、電力貯蔵装置、電源装置および電気機器に関する。 The present invention relates to a battery system including a battery module, an electric vehicle, a moving body, a power storage device, a power supply device, and an electric device.
 電動自転車等の電動車両には、複数のバッテリモジュールを備えたバッテリシステムが搭載される。各バッテリモジュールは通信部を含む。バッテリモジュールは、通信部を介して他のバッテリモジュールおよび他の装置と通信可能に接続される。 A battery system including a plurality of battery modules is mounted on an electric vehicle such as an electric bicycle. Each battery module includes a communication unit. The battery module is communicably connected to other battery modules and other devices via the communication unit.
 特許文献1に記載された車両用電源装置においては、複数のバッテリモジュール(キャパシタセルモジュール)、ハイブリッドECU(電子制御ユニット)、車両の電動機およびインバータの間で各種の情報を送受信するため、通信ネットワークが構築される。これにより、各バッテリモジュールの情報は、ハイブリッドECUへ通信ネットワークを介して伝達され、ハイブリッドECUの情報は、通信ネットワークを介して各バッテリモジュールへ伝達される。
特開2002-281690号公報
In the vehicle power supply device described in Patent Literature 1, various types of information are transmitted and received between a plurality of battery modules (capacitor cell modules), a hybrid ECU (electronic control unit), a motor of the vehicle, and an inverter. Is built. Thereby, information on each battery module is transmitted to the hybrid ECU via the communication network, and information on the hybrid ECU is transmitted to each battery module via the communication network.
JP 2002-281690 A
 特許文献1の車両用電源装置においては、通信ネットワークの末端での信号の不要な反射を防ぐために、通信ネットワークに終端抵抗が取り付けられる。そのため、車両用電源装置の通信ネットワークに終端抵抗を取り付けるために煩雑な配線作業が必要になるとともに、車両用電源装置の配線構造が複雑化する。 In the vehicle power supply device disclosed in Patent Document 1, a termination resistor is attached to the communication network in order to prevent unnecessary reflection of signals at the end of the communication network. Therefore, complicated wiring work is required to attach the terminal resistor to the communication network of the vehicle power supply device, and the wiring structure of the vehicle power supply device is complicated.
 本発明の目的は、煩雑な配線作業を必要とすることなくかつ配線構造を複雑にすることなく良好な通信が可能なバッテリシステム、それを備えた電動車両、移動体、電力貯蔵装置、電源装置および電気機器を提供することである。 An object of the present invention is to provide a battery system capable of good communication without requiring complicated wiring work and without complicating the wiring structure, an electric vehicle equipped with the battery system, a moving body, a power storage device, and a power supply device And to provide electrical equipment.
 本発明に係るバッテリシステムは、複数の第1のバッテリセルおよび第1の回路基板を含む第1のバッテリモジュールと、通信バスと、通信バスに接続可能な通信機器とを備え、第1の回路基板は、各第1のバッテリセルの電圧を検出する第1の電圧検出部と、第1の電圧検出部に接続されるとともに通信バスに接続可能な第1の通信部と、通信バスに接続可能な第1の終端抵抗とを含むものである。 A battery system according to the present invention includes a first battery module including a plurality of first battery cells and a first circuit board, a communication bus, and a communication device connectable to the communication bus. The board is connected to the first voltage detection unit for detecting the voltage of each first battery cell, the first communication unit connected to the first voltage detection unit and connectable to the communication bus, and the communication bus A possible first termination resistor.
 本発明によれば、煩雑な配線作業を必要とすることなくかつ配線構造を複雑にすることなく良好な通信が可能になる。 According to the present invention, good communication is possible without requiring complicated wiring work and without complicating the wiring structure.
図1は第1の実施の形態に係るバッテリシステムの構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of the battery system according to the first embodiment. 図2は図1の主回路基板および複数の副回路基板の接続を示す説明図である。FIG. 2 is an explanatory view showing the connection of the main circuit board and the plurality of sub circuit boards of FIG. 図3はバッテリモジュールにおける複数のバッテリセルと主回路基板との接続を示す図である。FIG. 3 is a diagram showing connections between a plurality of battery cells and a main circuit board in the battery module. 図4はバッテリモジュールにおける複数のバッテリセルと副回路基板との接続を示す図である。FIG. 4 is a diagram showing the connection between the plurality of battery cells and the sub circuit board in the battery module. 図5は低電位側第1回路および第3回路の構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of the low potential side first circuit and the third circuit. 図6は第2回路の構成を示すブロック図である。FIG. 6 is a block diagram showing the configuration of the second circuit. 図7はバッテリモジュールの外観斜視図である。FIG. 7 is an external perspective view of the battery module. 図8はバッテリモジュールの平面図である。FIG. 8 is a plan view of the battery module. 図9はバッテリモジュールの端面図である。FIG. 9 is an end view of the battery module. 図10はバスバーの外観斜視図である。FIG. 10 is an external perspective view of the bus bar. 図11はFPC基板に複数のバスバーおよび複数のPTC素子が取り付けられた状態を示す外観斜視図である。FIG. 11 is an external perspective view showing a state where a plurality of bus bars and a plurality of PTC elements are attached to the FPC board. 図12はバッテリモジュールにおけるバスバーと低電位側第1回路および高電位側第1回路との接続について説明するための模式的平面図である。FIG. 12 is a schematic plan view for explaining the connection between the bus bar, the low potential side first circuit, and the high potential side first circuit in the battery module. 図13は電圧電流バスバーおよびFPC基板を示す拡大平面図である。FIG. 13 is an enlarged plan view showing the voltage / current bus bar and the FPC board. 図14は主回路基板および副回路基板の一構成例を示す模式的平面図である。FIG. 14 is a schematic plan view showing one configuration example of the main circuit board and the sub circuit board. 図15はバッテリシステムの配置の例を示す模式的平面図である。FIG. 15 is a schematic plan view showing an example of the arrangement of the battery system. 図16は図15のコンタクタの構成を示す模式的平面図である。FIG. 16 is a schematic plan view showing the configuration of the contactor of FIG. 図17は第2の実施の形態における主回路基板および副回路基板の一構成例を示す模式的平面図である。FIG. 17 is a schematic plan view showing one configuration example of the main circuit board and the sub circuit board in the second embodiment. 図18は図17の主回路基板および複数の副回路基板の接続を示す説明図である。FIG. 18 is an explanatory view showing the connection of the main circuit board and the plurality of sub circuit boards of FIG. 図19は第2の実施の形態に係るバッテリシステムの配置の例を示す模式的平面図である。FIG. 19 is a schematic plan view showing an example of the arrangement of the battery system according to the second embodiment. 図20はバッテリシステムを備える電動自動車の構成を示すブロック図である。FIG. 20 is a block diagram illustrating a configuration of an electric vehicle including a battery system. 図21はバッテリシステムを備える電源装置の構成を示すブロック図である。FIG. 21 is a block diagram illustrating a configuration of a power supply device including a battery system. 図22は第1の変形例に係るバッテリモジュールの構成を示す外観斜視図である。FIG. 22 is an external perspective view showing the configuration of the battery module according to the first modification. 図23は図22の蓋部材を斜め下方から見た斜視図である。23 is a perspective view of the lid member of FIG. 22 as viewed obliquely from below. 図24は図22の蓋部材を斜め上方から見た斜視図である。24 is a perspective view of the lid member of FIG. 22 as viewed obliquely from above. 図25は第1の変形例における複数のバスバーおよび2枚のFPC基板を上方から見た図である。FIG. 25 is a view of a plurality of bus bars and two FPC boards in the first modification as viewed from above. 図26は第1の変形例における主回路基板を上方から見た図である。FIG. 26 is a view of the main circuit board in the first modification as viewed from above. 図27は第1の変形例におけるFPC基板と主回路基板との接続構造を示す模式的断面図である。FIG. 27 is a schematic cross-sectional view showing a connection structure between the FPC board and the main circuit board in the first modification. 図28は第2の変形例に係るバッテリモジュールの構成を示す外観斜視図である。FIG. 28 is an external perspective view showing a configuration of a battery module according to a second modification. 図29は図28の蓋部材を斜め下方から見た斜視図である。FIG. 29 is a perspective view of the lid member of FIG. 28 as viewed obliquely from below. 図30は図28の蓋部材を斜め上方から見た斜視図である。30 is a perspective view of the lid member of FIG. 28 as viewed obliquely from above. 図31は他の実施の形態に係るバッテリシステムの構成を示すブロック図である。FIG. 31 is a block diagram showing a configuration of a battery system according to another embodiment.
 [1]第1の実施の形態
 以下、第1の実施の形態に係るバッテリシステムについて図面を参照しながら説明する。なお、本実施の形態に係るバッテリシステムは、電力を駆動源とする電動車両(例えば電動自動車)に搭載される。
[1] First Embodiment A battery system according to a first embodiment will be described below with reference to the drawings. The battery system according to the present embodiment is mounted on an electric vehicle (for example, an electric automobile) that uses electric power as a drive source.
 (1)バッテリシステムの構成
 図1は、第1の実施の形態に係るバッテリシステムの構成を示すブロック図である。図1に示すように、バッテリシステム500は、複数のバッテリモジュール100M,100およびコンタクタ102を含む。本実施の形態では、バッテリシステム500は第1のバッテリモジュールとして1つのバッテリモジュール100Mおよび第2のバッテリモジュールとして3つのバッテリモジュール100を含む。また、バッテリシステム500は、バッテリECU(Electronic Control Unit:電子制御ユニット)101を通信機器および制御部として含む。
(1) Configuration of Battery System FIG. 1 is a block diagram showing the configuration of the battery system according to the first embodiment. As shown in FIG. 1, the battery system 500 includes a plurality of battery modules 100M and 100 and a contactor 102. In the present embodiment, the battery system 500 includes one battery module 100M as a first battery module and three battery modules 100 as second battery modules. The battery system 500 includes a battery ECU (Electronic Control Unit) 101 as a communication device and a control unit.
 バッテリシステム500の複数のバッテリモジュール100M,100は、電源線501を通して互いに接続されている。バッテリモジュール100Mは、第1のバッテリセルとして複数(本例では18個)のバッテリセル10を有し、複数(本例では5個)のサーミスタ11を有する。バッテリモジュール100は、第2のバッテリセルとして複数(本例では18個)のバッテリセル10を有し、複数(本例では5個)のサーミスタ11を有する。 The plurality of battery modules 100M and 100 of the battery system 500 are connected to each other through a power line 501. The battery module 100M has a plurality (18 in this example) of battery cells 10 as first battery cells, and a plurality (5 in this example) of thermistors 11. The battery module 100 includes a plurality (18 in this example) of battery cells 10 as second battery cells, and a plurality (5 in this example) of thermistors 11.
 各バッテリモジュール100M,100において、複数のバッテリセル10は互いに隣接するように一体的に配置され、複数のバスバー40により直列接続されている。各バッテリセル10は、例えばリチウムイオン電池またはニッケル水素電池等の二次電池である。 In each of the battery modules 100M and 100, the plurality of battery cells 10 are integrally arranged so as to be adjacent to each other, and are connected in series by a plurality of bus bars 40. Each battery cell 10 is a secondary battery such as a lithium ion battery or a nickel metal hydride battery.
 両端部に配置されるバッテリセル10は、バスバー40aを介して電源線501に接続されている。これにより、バッテリシステム500においては、複数のバッテリモジュール100M,100の全てのバッテリセル10が直列接続されている。 The battery cells 10 arranged at both ends are connected to the power line 501 through the bus bar 40a. Thereby, in the battery system 500, all the battery cells 10 of the plurality of battery modules 100M and 100 are connected in series.
 バッテリモジュール100Mは、第1の回路基板としてのリジッドプリント回路基板からなる主回路基板21を有する。主回路基板21には、第1の電圧検出部としての複数の第1回路30、第1の通信部としての第2回路24および電圧検出部とは異なる動作を行う回路部としての第3回路80が実装される。本実施の形態では、回路部は電流検出部である。すなわち、回路部である第3回路80は、電圧検出部とは異なる機能を実現する機能部として動作する。各バッテリモジュール100は、第2の回路基板としてのリジッドプリント回路基板からなる副回路基板21aを有する。副回路基板21aには、第2の電圧検出部としての複数の第1回路30および第2の通信部としての第2回路24が実装され、第3回路80は実装されない。 The battery module 100M has a main circuit board 21 made of a rigid printed circuit board as a first circuit board. The main circuit board 21 includes a plurality of first circuits 30 as first voltage detection units, a second circuit 24 as a first communication unit, and a third circuit as a circuit unit that operates differently from the voltage detection unit. 80 is implemented. In the present embodiment, the circuit unit is a current detection unit. That is, the third circuit 80 that is a circuit unit operates as a functional unit that realizes a function different from that of the voltage detection unit. Each battery module 100 has a sub circuit board 21a made of a rigid printed circuit board as a second circuit board. A plurality of first circuits 30 as second voltage detection units and a second circuit 24 as a second communication unit are mounted on the sub circuit board 21a, and the third circuit 80 is not mounted.
 主回路基板21において、各第1回路30は各バッテリセル10の端子電圧を検出する機能を有する。第2回路24はバッテリECU101または他のバッテリモジュール100とシリアル通信を行う機能を有する。第3回路80は複数のバッテリセル10に流れる電流を電圧の形態で検出する機能を有する。 In the main circuit board 21, each first circuit 30 has a function of detecting a terminal voltage of each battery cell 10. The second circuit 24 has a function of performing serial communication with the battery ECU 101 or another battery module 100. The third circuit 80 has a function of detecting the current flowing through the plurality of battery cells 10 in the form of voltage.
 第2回路24は、第1回路30および第3回路80に接続される。これにより、第2回路24は、バッテリモジュール100Mの各バッテリセル10の端子電圧および複数のバッテリセル10に流れる電流を取得する。また、第2回路24は、バッテリモジュール100Mの各サーミスタ11に電気的に接続される。これにより、第2回路24は、バッテリモジュール100Mの温度を取得する。 The second circuit 24 is connected to the first circuit 30 and the third circuit 80. Thereby, the second circuit 24 acquires the terminal voltage of each battery cell 10 of the battery module 100M and the current flowing through the plurality of battery cells 10. The second circuit 24 is electrically connected to each thermistor 11 of the battery module 100M. Thereby, the second circuit 24 acquires the temperature of the battery module 100M.
 各副回路基板21aにおいて、各第1回路30は各バッテリセル10の端子電圧を検出する機能を有する。第2回路24はバッテリECU101または他のバッテリモジュール100M,100とシリアル通信を行う機能を有する。 In each sub circuit board 21a, each first circuit 30 has a function of detecting a terminal voltage of each battery cell 10. The second circuit 24 has a function of performing serial communication with the battery ECU 101 or other battery modules 100M and 100.
 第2回路24は、第1回路30に接続される。これにより、第2回路24は、バッテリモジュール100の各バッテリセル10の端子電圧を取得する。また、第2回路24は、バッテリモジュール100の各サーミスタ11に電気的に接続される。これにより、第2回路24は、バッテリモジュール100の温度を検出する。 The second circuit 24 is connected to the first circuit 30. Thereby, the second circuit 24 acquires the terminal voltage of each battery cell 10 of the battery module 100. The second circuit 24 is electrically connected to each thermistor 11 of the battery module 100. Thereby, the second circuit 24 detects the temperature of the battery module 100.
 バッテリモジュール100Mの第2回路24および複数のバッテリモジュール100の第2回路24は、通信バスであるシリアル通信用のバス103を介してバッテリECU101に接続されている。バス103の両端には、例えば100Ωの終端抵抗RTが取り付けられる。一方の終端抵抗RTは、バッテリモジュール100Mの主回路基板21に第1の終端抵抗として実装される。また、他方の終端抵抗RTは、バッテリECU101内に第2の終端抵抗として設けられる。上記のバッテリモジュール100M,100の温度、各バッテリセル10の端子電圧および複数のバッテリセル10に流れる電流をセル情報と呼ぶ。各第2回路24は、セル情報をバス103を介してバッテリECU101に送信する。 The second circuit 24 of the battery module 100M and the second circuits 24 of the plurality of battery modules 100 are connected to the battery ECU 101 via a serial communication bus 103 that is a communication bus. For example, a terminal resistance RT of 100Ω is attached to both ends of the bus 103. One termination resistor RT is mounted as a first termination resistor on the main circuit board 21 of the battery module 100M. The other termination resistor RT is provided in the battery ECU 101 as a second termination resistor. The temperature of the battery modules 100M and 100, the terminal voltage of each battery cell 10, and the current flowing through the plurality of battery cells 10 are referred to as cell information. Each second circuit 24 transmits cell information to the battery ECU 101 via the bus 103.
 バッテリECU101は、非動力用バッテリ12に接続される。なお、本実施の形態において、非動力用バッテリ12は鉛蓄電池である。バッテリECU101は、各第2回路24から与えられたセル情報に基づいて各バッテリセル10の充電量を算出する。また、バッテリECU101は、各第2回路24から与えられたセル情報に基づいて各バッテリモジュール100M,100の異常を検出する。バッテリモジュール100M,100の異常とは、例えば、バッテリセル10の過放電、過充電または温度異常等である。 The battery ECU 101 is connected to the non-power battery 12. In the present embodiment, the non-power battery 12 is a lead storage battery. The battery ECU 101 calculates the charge amount of each battery cell 10 based on the cell information given from each second circuit 24. Further, the battery ECU 101 detects an abnormality in each of the battery modules 100M and 100 based on the cell information given from each second circuit 24. The abnormality of the battery modules 100M and 100 is, for example, overdischarge, overcharge, or temperature abnormality of the battery cell 10.
 複数のバッテリモジュール100M,100の最も高電位のプラス電極に接続される電源線501および最も低電位のマイナス電極に接続される電源線501は、コンタクタ102を介して電動車両のモータ等の負荷に接続される。バッテリECU101は、バッテリモジュール100M,100の異常を検出した場合、コンタクタ102をオフする。これにより、異常時には、複数のバッテリセル10に電流が流れないので、バッテリモジュール100M,100の異常発熱が防止される。 The power supply line 501 connected to the highest potential positive electrode and the power supply line 501 connected to the lowest potential negative electrode of the plurality of battery modules 100M, 100 are connected to a load such as a motor of an electric vehicle via the contactor 102. Connected. When the battery ECU 101 detects an abnormality in the battery modules 100M and 100, the contactor 102 is turned off. Thereby, when an abnormality occurs, no current flows through the plurality of battery cells 10, and thus abnormal heat generation of the battery modules 100M and 100 is prevented.
 バッテリECU101は、バス104を介して主制御部300に接続される。バッテリECU101から主制御部300に各バッテリモジュール100M,100の充電量(バッテリセル10の充電量)が与えられる。主制御部300は、その充電量に基づいて電動車両の動力(例えばモータの回転速度)を制御する。また、各バッテリモジュール100M,100の充電量が少なくなると、主制御部300は、電源線501に接続された図示しない発電装置を制御して各バッテリモジュール100M,100を充電する。 The battery ECU 101 is connected to the main control unit 300 via the bus 104. The battery ECU 101 gives the main control unit 300 the amount of charge of each battery module 100M, 100 (the amount of charge of the battery cell 10). The main control unit 300 controls the power of the electric vehicle (for example, the rotational speed of the motor) based on the amount of charge. Further, when the charging amount of each battery module 100M, 100 decreases, main controller 300 controls a power generator (not shown) connected to power supply line 501 to charge each battery module 100M, 100.
 図2は、図1の主回路基板21および複数の副回路基板21aの接続を示す説明図である。主回路基板21および副回路基板21aの詳細は図14で後述する。主回路基板21には、複数の第1回路30、共通の第2回路24、第3回路80、絶縁素子25,27およびコネクタ23a,23bが実装される。本実施の形態において、主回路基板21に2個の第1回路30が実装される。一方の第1回路30を低電位側第1回路30Lと呼び、他方の第1回路30を高電位側第1回路30Hと呼ぶ。低電位側第1回路30Lと第2回路24とは、絶縁素子25により互いに電気的に絶縁されつつ通信可能に接続される。低電位側第1回路30Lには高電位側第1回路30Hが接続される。第3回路80と第2回路24とは、絶縁素子27により互いに電気的に絶縁されつつ通信可能に接続される。 FIG. 2 is an explanatory diagram showing connections between the main circuit board 21 and the plurality of sub circuit boards 21a in FIG. Details of the main circuit board 21 and the sub circuit board 21a will be described later with reference to FIG. A plurality of first circuits 30, a common second circuit 24, a third circuit 80, insulating elements 25 and 27, and connectors 23a and 23b are mounted on the main circuit board 21. In the present embodiment, two first circuits 30 are mounted on the main circuit board 21. One first circuit 30 is called a low potential side first circuit 30L, and the other first circuit 30 is called a high potential side first circuit 30H. The low-potential-side first circuit 30L and the second circuit 24 are communicatively connected while being electrically insulated from each other by the insulating element 25. The high potential side first circuit 30H is connected to the low potential side first circuit 30L. The third circuit 80 and the second circuit 24 are communicably connected to each other while being electrically insulated from each other by the insulating element 27.
 コネクタ23aは、一対の接続線L1,L2により第2回路24に接続される。コネクタ23bは、一対の接続線L3,L4により第2回路24に接続される。バッテリモジュール100Mの複数のバッテリセル10は、低電位側第1回路30L、高電位側第1回路30Hおよび第3回路80の電源として用いられる。非動力用バッテリ12は、第2回路24の電源として用いられる。 The connector 23a is connected to the second circuit 24 by a pair of connection lines L1 and L2. The connector 23b is connected to the second circuit 24 by a pair of connection lines L3 and L4. The plurality of battery cells 10 of the battery module 100M are used as power sources for the low potential side first circuit 30L, the high potential side first circuit 30H, and the third circuit 80. The non-power battery 12 is used as a power source for the second circuit 24.
 主回路基板21のコネクタ23bは、いずれにも接続されない。また、主回路基板21の一対の接続線L3,L4の間に終端抵抗RTが接続される。 The connector 23b of the main circuit board 21 is not connected to either. A termination resistor RT is connected between the pair of connection lines L3 and L4 of the main circuit board 21.
 副回路基板21aには、低電位側第1回路30L、高電位側第1回路30H、共通の第2回路24、絶縁素子25およびコネクタ23a,23bが実装される。低電位側第1回路30Lと第2回路24とは、絶縁素子25により互いに電気的に絶縁されつつ通信可能に接続される。低電位側第1回路30Lには高電位側第1回路30Hが接続される。 On the sub-circuit board 21a, the low potential side first circuit 30L, the high potential side first circuit 30H, the common second circuit 24, the insulating element 25, and the connectors 23a and 23b are mounted. The low-potential-side first circuit 30L and the second circuit 24 are communicatively connected while being electrically insulated from each other by the insulating element 25. The high potential side first circuit 30H is connected to the low potential side first circuit 30L.
 コネクタ23aは、一対の接続線L1,L2により第2回路24に接続される。コネクタ23bは、一対の接続線L3,L4により第2回路24に接続される。バッテリモジュール100の複数のバッテリセル10は、低電位側第1回路30Lおよび高電位側第1回路30Hの電源として用いられる。非動力用バッテリ12は、第2回路24の電源として用いられる。 The connector 23a is connected to the second circuit 24 by a pair of connection lines L1 and L2. The connector 23b is connected to the second circuit 24 by a pair of connection lines L3 and L4. The plurality of battery cells 10 of the battery module 100 are used as a power source for the low potential side first circuit 30L and the high potential side first circuit 30H. The non-power battery 12 is used as a power source for the second circuit 24.
 主回路基板21のコネクタ23aは、一対の通信線PA1,PB1を介して一の副回路基板21aのコネクタ23bに接続される。一の副回路基板21aのコネクタ23aは、一対の通信線PA2,PB2を介して他の副回路基板21aのコネクタ23bに接続される。他の副回路基板21aのコネクタ23aは、一対の通信線PA3,PB3を介してさらに他の副回路基板21aのコネクタ23bに接続される。さらに他の副回路基板21aのコネクタ23aは、一対の通信線PA4,PB4を介してバッテリECU101に接続される。 The connector 23a of the main circuit board 21 is connected to the connector 23b of one sub circuit board 21a through a pair of communication lines PA1 and PB1. The connector 23a of one sub circuit board 21a is connected to the connector 23b of another sub circuit board 21a via a pair of communication lines PA2 and PB2. The connector 23a of the other sub circuit board 21a is further connected to the connector 23b of the other sub circuit board 21a through a pair of communication lines PA3 and PB3. Furthermore, connector 23a of other sub circuit board 21a is connected to battery ECU 101 via a pair of communication lines PA4 and PB4.
 バッテリECU101は、リジッドプリント回路基板からなるプリント回路基板105を有する。プリント回路基板105には、MPU(マイクロプロセッサ)106、スイッチ回路107およびコネクタ108が実装される。プリント回路基板105には、非動力用バッテリ12により供給される電圧を降圧する電源回路および図1のコンタクタ102をオンおよびオフするコンタクタ制御回路等の他の回路も実装されている。コネクタ108は、一対の接続線L5,L6によりMPU106に接続される。MPU106およびスイッチ回路107には、点線の矢印で示すように、非動力用バッテリ12により電力が供給される。 The battery ECU 101 has a printed circuit board 105 made of a rigid printed circuit board. An MPU (microprocessor) 106, a switch circuit 107, and a connector 108 are mounted on the printed circuit board 105. The printed circuit board 105 is also mounted with other circuits such as a power supply circuit for stepping down the voltage supplied by the non-power battery 12 and a contactor control circuit for turning on and off the contactor 102 of FIG. The connector 108 is connected to the MPU 106 by a pair of connection lines L5 and L6. The MPU 106 and the switch circuit 107 are supplied with power by the non-power battery 12 as indicated by the dotted arrows.
 スイッチ回路107のオンおよびオフは、MPU106により制御される。スイッチ回路107がオンである場合、非動力用バッテリ12による電力は、スイッチ回路107を介して主回路基板21および複数の副回路基板21aの第2回路24に与えられる。これにより、各第2回路24が動作する。 The on / off of the switch circuit 107 is controlled by the MPU 106. When the switch circuit 107 is on, the power from the non-power battery 12 is supplied to the main circuit board 21 and the second circuits 24 of the plurality of sub circuit boards 21a via the switch circuit 107. Thereby, each second circuit 24 operates.
 プリント回路基板105のコネクタ108は、一対の通信線PA4,PB4を介して副回路基板21aのコネクタ23aに接続される。また、一対の接続線L5,L6の間に例えば100Ωの終端抵抗RTが接続される。これにより、バッテリECU101のMPU106と各バッテリモジュール100M,100の第2回路24とは通信可能に接続される。また、MPU106は、バス104を介して電動自動車600の主制御部300に通信可能に接続される。 The connector 108 of the printed circuit board 105 is connected to the connector 23a of the sub circuit board 21a through a pair of communication lines PA4 and PB4. Further, for example, a terminal resistance RT of 100Ω is connected between the pair of connection lines L5 and L6. Thereby, MPU106 of battery ECU101 and the 2nd circuit 24 of each battery module 100M and 100 are connected so that communication is possible. The MPU 106 is communicably connected to the main control unit 300 of the electric automobile 600 via the bus 104.
 なお、通信線PA1,PB1により後述する図15の通信ケーブルP1が形成される。通信線PA2,PB2により後述する図15の通信ケーブルP2が形成される。通信線PA3,PB3により後述する図15の通信ケーブルP3が形成される。通信線PA4,PB4により後述する図15の通信ケーブルP4が形成される。通信ケーブルP1~P4により、図1のバス103が構成される。 Note that a communication cable P1 of FIG. 15 described later is formed by the communication lines PA1 and PB1. A communication cable P2 of FIG. 15 described later is formed by the communication lines PA2 and PB2. A communication cable P3 of FIG. 15 described later is formed by the communication lines PA3 and PB3. A communication cable P4 shown in FIG. 15, which will be described later, is formed by the communication lines PA4 and PB4. The bus 103 in FIG. 1 is configured by the communication cables P1 to P4.
 図3は、バッテリモジュール100Mにおける複数のバッテリセル10と主回路基板21との接続を示す図である。低電位側第1回路30Lは、複数のバッテリセル10のうち低電位側の半数(本例では9個)のバッテリセル10(以下、低電位側バッテリセル群10Lと呼ぶ。)に対応する。高電位側第1回路30Hは、複数のバッテリセル10のうち高電位側の半数(本例では9個)のバッテリセル10(以下、高電位側バッテリセル群10Hと呼ぶ。)に対応する。 FIG. 3 is a diagram showing the connection between the plurality of battery cells 10 and the main circuit board 21 in the battery module 100M. The low potential side first circuit 30L corresponds to half (9 in this example) battery cells 10 (hereinafter referred to as a low potential side battery cell group 10L) of the plurality of battery cells 10 on the low potential side. The high potential side first circuit 30H corresponds to half (9 in this example) of battery cells 10 (hereinafter referred to as a high potential side battery cell group 10H) among the plurality of battery cells 10.
 低電位側第1回路30Lは、低電位側バッテリセル群10Lの複数のバッテリセル10の各々の端子電圧を検出する。高電位側第1回路30Hは、高電位側バッテリセル群10Hの複数のバッテリセル10の各々の端子電圧を検出する。 The low potential side first circuit 30L detects the terminal voltage of each of the plurality of battery cells 10 in the low potential side battery cell group 10L. The high potential side first circuit 30H detects the terminal voltage of each of the plurality of battery cells 10 in the high potential side battery cell group 10H.
 低電位側第1回路30Lは、複数の導体線52およびPTC(Positive Temperature Coefficient:正温度係数)素子60を介して低電位側バッテリセル群10Lのバスバー40,40aに電気的に接続される。同様に、高電位側第1回路30Hは、複数の導体線52およびPTC素子60を介して高電位側バッテリセル群10Hのバスバー40,40aに電気的に接続される。 The low potential side first circuit 30L is electrically connected to the bus bars 40, 40a of the low potential side battery cell group 10L via a plurality of conductor lines 52 and PTC (Positive Temperature Coefficient) elements 60. Similarly, the high potential side first circuit 30H is electrically connected to the bus bars 40, 40a of the high potential side battery cell group 10H via the plurality of conductor lines 52 and the PTC element 60.
 ここで、PTC素子60は、温度がある値を超えると抵抗値が急激に増加する抵抗温度特性を有する。そのため、低電位側第1回路30L、高電位側第1回路30Hまたは導体線52等で短絡が生じた場合に、その短絡経路を流れる電流によりPTC素子60の温度が上昇すると、PTC素子60の抵抗値が大きくなる。これにより、PTC素子60を含む短絡経路に大電流が流れることが防止される。 Here, the PTC element 60 has a resistance temperature characteristic in which the resistance value rapidly increases when the temperature exceeds a certain value. Therefore, when a short circuit occurs in the low potential side first circuit 30L, the high potential side first circuit 30H, the conductor line 52, or the like, if the temperature of the PTC element 60 rises due to the current flowing through the short circuit path, The resistance value increases. This prevents a large current from flowing through the short circuit path including the PTC element 60.
 低電位側バッテリセル群10Lの最低電位を有するバッテリセル10のマイナス電極は、シャント抵抗RSを介して一のバッテリモジュール100(後述する図4参照)に含まれる高電位側バッテリセル群10Hの最高電位を有するバッテリセル10のプラス電極に接続される。シャント抵抗RSは、電流に応じた電圧を発生させる素子である。第3回路80は、2つの導体線52を介してシャント抵抗RSの両端に接続される。 The negative electrode of the battery cell 10 having the lowest potential of the low potential side battery cell group 10L is the highest of the high potential side battery cell group 10H included in one battery module 100 (see FIG. 4 described later) via the shunt resistor RS. It is connected to the positive electrode of the battery cell 10 having a potential. The shunt resistor RS is an element that generates a voltage corresponding to the current. The third circuit 80 is connected to both ends of the shunt resistor RS via two conductor lines 52.
 図4は、バッテリモジュール100における複数のバッテリセル10と副回路基板21aとの接続を示す図である。図4に示すように、バッテリモジュール100は、図3の主回路基板21の代わりに副回路基板21aを有する点および図3のシャント抵抗RSを有さない点を除いて、バッテリモジュール100Mと同様の構成を有する。副回路基板21aは、図3の第3回路80、絶縁素子27および終端抵抗RTを有さない点を除いて、主回路基板21と同様の構成を有する。 FIG. 4 is a diagram showing connections between the plurality of battery cells 10 and the sub circuit board 21a in the battery module 100. As shown in FIG. 4, the battery module 100 is the same as the battery module 100M except that the battery module 100 has a sub circuit board 21a instead of the main circuit board 21 of FIG. 3 and does not have the shunt resistor RS of FIG. It has the composition of. The sub circuit board 21a has the same configuration as that of the main circuit board 21 except that the sub circuit board 21a does not have the third circuit 80, the insulating element 27, and the termination resistor RT shown in FIG.
 図5は、低電位側第1回路30Lおよび第3回路80の構成を示すブロック図である。低電位側第1回路30Lは、例えばASIC(Application Specific Integrated Circuit:特定用途向け集積回路)からなる。検出部20は、マルチプレクサ20a、A/D(アナログ/デジタル)変換器20bおよび複数の差動増幅器20cを含む。検出部20の各差動増幅器20cは2つの入力端子および出力端子を有する。各差動増幅器20cは、2つの入力端子に入力された電圧を差動増幅し、増幅された電圧を出力端子から出力する。 FIG. 5 is a block diagram showing the configuration of the low potential side first circuit 30L and the third circuit 80. As shown in FIG. The low-potential-side first circuit 30L is composed of, for example, an ASIC (Application Specific Integrated Circuit). The detection unit 20 includes a multiplexer 20a, an A / D (analog / digital) converter 20b, and a plurality of differential amplifiers 20c. Each differential amplifier 20c of the detection unit 20 has two input terminals and an output terminal. Each differential amplifier 20c differentially amplifies the voltage input to the two input terminals, and outputs the amplified voltage from the output terminal.
 各差動増幅器20cの2つの入力端子は、導体線52およびPTC素子60を介して対応する複数のバッテリセル10の隣り合う2つのバスバー40間または隣り合う2つのバスバー40,40aに電気的に接続される。隣り合う2つのバスバー40間の電圧または隣り合う2つのバスバー40,40aの電圧が各差動増幅器20cにより差動増幅される。各差動増幅器20cの出力電圧は低電位側バッテリセル群10Lの各バッテリセル10の端子電圧に相当する。複数の差動増幅器20cから出力される端子電圧はマルチプレクサ20aに与えられる。マルチプレクサ20aは、複数の差動増幅器20cから与えられる端子電圧を順次A/D変換器20bに出力する。A/D変換器20bは、マルチプレクサ20aから出力される端子電圧をデジタル値に変換する。 Two input terminals of each differential amplifier 20c are electrically connected between two adjacent bus bars 40 of a plurality of corresponding battery cells 10 or two adjacent bus bars 40, 40a via a conductor line 52 and a PTC element 60. Connected. A voltage between two adjacent bus bars 40 or a voltage between two adjacent bus bars 40 and 40a is differentially amplified by each differential amplifier 20c. The output voltage of each differential amplifier 20c corresponds to the terminal voltage of each battery cell 10 in the low potential side battery cell group 10L. Terminal voltages output from the plurality of differential amplifiers 20c are applied to the multiplexer 20a. The multiplexer 20a sequentially outputs the terminal voltages supplied from the plurality of differential amplifiers 20c to the A / D converter 20b. The A / D converter 20b converts the terminal voltage output from the multiplexer 20a into a digital value.
 通信回路32は、通信機能を有し、図2の絶縁素子25を介して図2の第2回路24と通信可能に接続される。また、通信回路32は、図3または図4の高電位側第1回路30Hと通信可能に接続される。 The communication circuit 32 has a communication function and is communicably connected to the second circuit 24 of FIG. 2 via the insulating element 25 of FIG. In addition, the communication circuit 32 is communicably connected to the high potential side first circuit 30H of FIG. 3 or FIG.
 通信回路32は、検出部20のA/D変換器20bから低電位側バッテリセル群10Lの各バッテリセル10の端子電圧のデジタル値を取得する。また、後述するように、通信回路32は、高電位側第1回路30Hから高電位側バッテリセル群10Hの各バッテリセル10の端子電圧のデジタル値を取得する。さらに、通信回路32は、低電位側バッテリセル群10Lの各バッテリセル10の端子電圧のデジタル値および高電位側バッテリセル群10Hの各バッテリセル10の端子電圧のデジタル値を絶縁素子25(図2参照)を介して第2回路24に送信する。 The communication circuit 32 acquires the digital value of the terminal voltage of each battery cell 10 in the low potential side battery cell group 10L from the A / D converter 20b of the detection unit 20. Further, as will be described later, the communication circuit 32 acquires the digital value of the terminal voltage of each battery cell 10 of the high potential side battery cell group 10H from the high potential side first circuit 30H. Further, the communication circuit 32 converts the digital value of the terminal voltage of each battery cell 10 of the low-potential side battery cell group 10L and the digital value of the terminal voltage of each battery cell 10 of the high-potential side battery cell group 10H into the insulating element 25 (FIG. 2) to the second circuit 24.
 第3回路80は、例えばASICからなる。第3回路80は、検出部81および通信回路82を含む。検出部81は、差動増幅器81aおよびA/D変換器81bを含む。検出部81の差動増幅器81aは2つの入力端子および出力端子を有する。差動増幅器81aは、2つの入力端子に入力された電圧を差動増幅し、増幅された電圧を出力端子から出力する。 The third circuit 80 is made of, for example, an ASIC. The third circuit 80 includes a detection unit 81 and a communication circuit 82. The detection unit 81 includes a differential amplifier 81a and an A / D converter 81b. The differential amplifier 81a of the detection unit 81 has two input terminals and an output terminal. The differential amplifier 81a differentially amplifies voltages input to the two input terminals, and outputs the amplified voltage from the output terminal.
 差動増幅器81aの2つの入力端子は、導体線52を介してバッテリモジュール100M(図1参照)のシャント抵抗RSの両端に電気的に接続される。シャント抵抗RSの両端の電圧が差動増幅器81aにより差動増幅される。差動増幅器81aの出力電圧は、複数のバッテリセル10に流れる電流に比例する。差動増幅器81aは、電流に比例する電圧をA/D変換器81bに出力する。A/D変換器81bは、差動増幅器81aから出力される電圧をデジタル値に変換する。 The two input terminals of the differential amplifier 81a are electrically connected to both ends of the shunt resistor RS of the battery module 100M (see FIG. 1) via the conductor wire 52. The voltage across the shunt resistor RS is differentially amplified by the differential amplifier 81a. The output voltage of the differential amplifier 81 a is proportional to the current flowing through the plurality of battery cells 10. The differential amplifier 81a outputs a voltage proportional to the current to the A / D converter 81b. The A / D converter 81b converts the voltage output from the differential amplifier 81a into a digital value.
 通信回路82は、通信機能を有し、図2の絶縁素子27を介して図2の第2回路24と通信可能に接続される。通信回路82は、A/D変換器81bからシャント抵抗RSの両端の電圧のデジタル値を取得する。また、通信回路82は、シャント抵抗RSの両端の電圧のデジタル値を絶縁素子27を介して第2回路24に送信する。 The communication circuit 82 has a communication function and is communicably connected to the second circuit 24 of FIG. 2 via the insulating element 27 of FIG. The communication circuit 82 acquires the digital value of the voltage across the shunt resistor RS from the A / D converter 81b. Further, the communication circuit 82 transmits the digital value of the voltage across the shunt resistor RS to the second circuit 24 via the insulating element 27.
 図3および図4の高電位側第1回路30Hは、以下の点を除いて図5の低電位側第1回路30Lと同様の構成を有する。高電位側第1回路30Hの通信回路32は、低電位側第1回路30Lの通信回路32(図5参照)と通信可能に接続される。これにより、高電位側第1回路30Hの通信回路32は、低電位側第1回路30Lの通信回路32および絶縁素子25(図2参照)を介して高電位側バッテリセル群10Hの各バッテリセル10の端子電圧のデジタル値を第2回路24に送信することができる。 3 and 4 has the same configuration as the low potential side first circuit 30L in FIG. 5 except for the following points. The communication circuit 32 of the high potential side first circuit 30H is communicably connected to the communication circuit 32 (see FIG. 5) of the low potential side first circuit 30L. Thus, the communication circuit 32 of the high potential side first circuit 30H is connected to each battery cell of the high potential side battery cell group 10H via the communication circuit 32 of the low potential side first circuit 30L and the insulating element 25 (see FIG. 2). Ten terminal voltage digital values can be transmitted to the second circuit 24.
 図6は、第2回路24の構成を示すブロック図である。図6に示すように、第2回路24は、処理部241、記憶部242および通信インタフェース244を含む。第2回路24の処理部241、記憶部242および通信インタフェース244の基準電位(グランド電位)は、図2の非動力用バッテリ12の最低電位に保持される。第2回路24の各部は、電源回路245(後述する図14参照)により出力される電圧で動作する。 FIG. 6 is a block diagram showing a configuration of the second circuit 24. As illustrated in FIG. 6, the second circuit 24 includes a processing unit 241, a storage unit 242, and a communication interface 244. The reference potential (ground potential) of the processing unit 241, the storage unit 242, and the communication interface 244 of the second circuit 24 is held at the lowest potential of the non-power battery 12 of FIG. Each part of the second circuit 24 operates with a voltage output from the power supply circuit 245 (see FIG. 14 described later).
 処理部241は、例えばCPU(中央演算処理装置)を含み、記憶部242と接続される。また、処理部241は図1の複数のサーミスタ11に接続される。これにより、処理部241はバッテリモジュール100の温度を取得する。 The processing unit 241 includes a CPU (Central Processing Unit), for example, and is connected to the storage unit 242. The processing unit 241 is connected to the plurality of thermistors 11 shown in FIG. Thereby, the processing unit 241 acquires the temperature of the battery module 100.
 また、処理部241は、低電位側第1回路30Lおよび高電位側第1回路30Hの検出部20(図3~図5参照)により検出される端子電圧ならびに第3回路80により検出される電圧に関する情報を処理する機能を有する。本実施の形態において、処理部241は、各バッテリセル10の充電量および複数のバッテリセル10に流れる電流等を算出する。電流の算出の詳細は後述する。 The processing unit 241 also detects the terminal voltage detected by the detection unit 20 (see FIGS. 3 to 5) of the low potential side first circuit 30L and the high potential side first circuit 30H and the voltage detected by the third circuit 80. It has a function to process information about. In the present embodiment, the processing unit 241 calculates the charge amount of each battery cell 10, the current flowing through the plurality of battery cells 10, and the like. Details of the current calculation will be described later.
 記憶部242は、例えばEEPROM(電気的消去およびプログラム可能リードオンリーメモリ)等の不揮発性メモリを含む。処理部241は、通信機能を有する通信回路246を含む。主回路基板21(図2参照)において、処理部241は、絶縁素子25(図2参照)を介して低電位側第1回路30Lの通信回路32(図5参照)と通信可能に接続されるとともに、絶縁素子27(図2参照)を介して第3回路80の通信回路32(図6参照)と通信可能に接続される。副回路基板21a(図2参照)において、処理部241は、絶縁素子25(図2参照)を介して低電位側第1回路30Lの通信回路32(図5参照)と通信可能に接続される。 The storage unit 242 includes a non-volatile memory such as an EEPROM (electrically erasable and programmable read-only memory). The processing unit 241 includes a communication circuit 246 having a communication function. In the main circuit board 21 (see FIG. 2), the processing unit 241 is communicably connected to the communication circuit 32 (see FIG. 5) of the low potential side first circuit 30L via the insulating element 25 (see FIG. 2). In addition, the communication circuit 32 (see FIG. 6) of the third circuit 80 is communicably connected via the insulating element 27 (see FIG. 2). In the sub circuit board 21a (see FIG. 2), the processing unit 241 is communicably connected to the communication circuit 32 (see FIG. 5) of the low potential side first circuit 30L via the insulating element 25 (see FIG. 2). .
 処理部241には通信インタフェース244が接続される。通信インタフェース244は、例えばRS-485規格のシリアル通信インタフェースである。通信インタフェース244は、図2のコネクタ23a,23bに接続される。本実施の形態において、通信回路246は、図2のバッテリECU101とRS-485規格に従うシリアル通信を行うが、これに限定されない。例えば、通信回路246は、バッテリECU101と他の規格に従うシリアル通信を行ってもよく、バッテリECU101とCAN(Controller Area Network)通信を行ってもよい。 A communication interface 244 is connected to the processing unit 241. The communication interface 244 is an RS-485 standard serial communication interface, for example. The communication interface 244 is connected to the connectors 23a and 23b in FIG. In the present embodiment, the communication circuit 246 performs serial communication with the battery ECU 101 of FIG. 2 in accordance with the RS-485 standard, but is not limited thereto. For example, the communication circuit 246 may perform serial communication according to other standards with the battery ECU 101, and may perform CAN (Controller Area Network) communication with the battery ECU 101.
 第2回路24の通信回路246によりセル情報がバッテリECU101に送信される。それにより、バッテリシステム500のいずれかのバッテリモジュール100M,100のバッテリセル10の電圧が低下した場合でも、バッテリモジュール100M,100はバッテリECU101と通信を行うことができる。 Cell information is transmitted to the battery ECU 101 by the communication circuit 246 of the second circuit 24. Thereby, even when the voltage of the battery cell 10 of any one of the battery modules 100M and 100 of the battery system 500 decreases, the battery modules 100M and 100 can communicate with the battery ECU 101.
 本実施の形態では、図2のバッテリECU101が、各バッテリセル10の充電量の算出またはバッテリセル10の過放電、過充電および温度異常等の検出を行うが、これに限定されない。バッテリECU101に代えて、各バッテリモジュール100M,100の第2回路24が各バッテリセル10の充電量を算出してもよい。また、各バッテリモジュール100M,100の第2回路24がバッテリセル10の過放電、過充電および温度異常等の検出を行ってもよい。この場合、各第2回路24は、各バッテリセル10の充電量の算出結果ならびにバッテリセル10の過放電、過充電および温度異常等の検出結果をバッテリECU101に与える。 In the present embodiment, the battery ECU 101 of FIG. 2 calculates the charge amount of each battery cell 10 or detects overdischarge, overcharge, temperature abnormality, etc. of the battery cell 10, but is not limited to this. Instead of the battery ECU 101, the second circuit 24 of each of the battery modules 100M and 100 may calculate the charge amount of each battery cell 10. Further, the second circuit 24 of each of the battery modules 100M and 100 may detect overdischarge, overcharge, temperature abnormality, and the like of the battery cell 10. In this case, each second circuit 24 provides the battery ECU 101 with a calculation result of the charge amount of each battery cell 10 and detection results such as overdischarge, overcharge and temperature abnormality of the battery cell 10.
 (2)バッテリモジュールの詳細
 バッテリモジュール100M,100の詳細について説明する。図7はバッテリモジュール100Mの外観斜視図であり、図8はバッテリモジュール100Mの平面図であり、図9はバッテリモジュール100Mの端面図である。バッテリモジュール100は、主回路基板21の代わりに副回路基板21aを有する点およびシャント抵抗RSを有さない点を除いて、バッテリモジュール100Mと同様の構成を有する。
(2) Details of Battery Module Details of the battery modules 100M and 100 will be described. 7 is an external perspective view of the battery module 100M, FIG. 8 is a plan view of the battery module 100M, and FIG. 9 is an end view of the battery module 100M. The battery module 100 has the same configuration as the battery module 100M except that the battery module 100 has a sub circuit board 21a instead of the main circuit board 21 and does not have a shunt resistor RS.
 なお、図7~図9ならびに後述する図11~図13および図22~図30においては、矢印X,Y,Zで示すように、互いに直交する三方向をX方向、Y方向およびZ方向と定義する。なお、本例では、X方向およびY方向が水平面に平行な方向であり、Z方向が水平面に直交する方向である。また、上方向は矢印Zが向く方向である。 In FIGS. 7 to 9 and FIGS. 11 to 13 and FIGS. 22 to 30 described later, as indicated by arrows X, Y, and Z, three directions orthogonal to each other are defined as an X direction, a Y direction, and a Z direction. Define. In this example, the X direction and the Y direction are directions parallel to the horizontal plane, and the Z direction is a direction orthogonal to the horizontal plane. Further, the upward direction is the direction in which the arrow Z faces.
 図7~図9に示すように、バッテリモジュール100Mにおいては、扁平な略直方体形状を有する複数のバッテリセル10がX方向に並ぶように配置される。この状態で、複数のバッテリセル10は、一対の端面枠92、一対の上端枠93および一対の下端枠94により一体的に固定される。このように、複数のバッテリセル10、一対の端面枠92、一対の上端枠93および一対の下端枠94により略直方体形状のバッテリブロック10BBが構成される。バッテリブロック10BBは、XY平面に平行な上面を有する。 7 to 9, in the battery module 100M, a plurality of battery cells 10 having a flat, substantially rectangular parallelepiped shape are arranged so as to be arranged in the X direction. In this state, the plurality of battery cells 10 are integrally fixed by a pair of end face frames 92, a pair of upper end frames 93 and a pair of lower end frames 94. As described above, the plurality of battery cells 10, the pair of end face frames 92, the pair of upper end frames 93, and the pair of lower end frames 94 constitute a substantially rectangular parallelepiped battery block 10BB. Battery block 10BB has an upper surface parallel to the XY plane.
 一対の端面枠92は略板形状を有し、YZ平面に平行に配置される。一対の上端枠93および一対の下端枠94は、X方向に延びるように配置される。 The pair of end face frames 92 have a substantially plate shape and are arranged in parallel to the YZ plane. The pair of upper end frames 93 and the pair of lower end frames 94 are arranged so as to extend in the X direction.
 一対の端面枠92の四隅には、一対の上端枠93および一対の下端枠94を接続するための接続部が形成される。一対の端面枠92の間に複数のバッテリセル10が配置された状態で、一対の端面枠92の上側の接続部に一対の上端枠93が取り付けられ、一対の端面枠92の下側の接続部に一対の下端枠94が取り付けられる。これにより、複数のバッテリセル10が、X方向に並ぶように配置された状態で一体的に固定される。一方の端面枠92には、外側の面に間隔を隔てて主回路基板21が取り付けられる。 Connection portions for connecting the pair of upper end frames 93 and the pair of lower end frames 94 are formed at the four corners of the pair of end face frames 92. In a state where the plurality of battery cells 10 are disposed between the pair of end surface frames 92, the pair of upper end frames 93 are attached to the upper connection portions of the pair of end surface frames 92, and the lower connection of the pair of end surface frames 92 is performed. A pair of lower end frames 94 are attached to the part. Thereby, the some battery cell 10 is fixed integrally in the state arrange | positioned so that it may rank with a X direction. The main circuit board 21 is attached to one end face frame 92 with an interval on the outer surface.
 ここで、各バッテリセル10は、Y方向に沿って並ぶように上面部分にプラス電極10aおよびマイナス電極10bを有する。各電極10a,10bは、上方に向かって突出するように傾斜して設けられる(図9参照)。以下の説明においては、一方の端面枠92に隣接するバッテリセル10から他方の端面枠92に隣接するバッテリセル10までを1番目~18番目のバッテリセル10と呼ぶ。 Here, each battery cell 10 has a plus electrode 10a and a minus electrode 10b on the upper surface portion so as to be arranged along the Y direction. Each electrode 10a, 10b is provided to be inclined so as to protrude upward (see FIG. 9). In the following description, the battery cells 10 adjacent to one end face frame 92 to the battery cells 10 adjacent to the other end face frame 92 are referred to as first to eighteenth battery cells 10.
 複数のバッテリセル10は、上面部分の中央にガス抜き弁10vを有する。バッテリセル10内部の圧力が所定の値まで上昇した場合、バッテリセル10内部のガスがガス抜き弁10vから排出される。これにより、バッテリセル10内部の過度な圧力上昇が防止される。 The plurality of battery cells 10 have a gas vent valve 10v at the center of the upper surface portion. When the pressure inside the battery cell 10 rises to a predetermined value, the gas inside the battery cell 10 is discharged from the gas vent valve 10v. Thereby, the excessive pressure rise inside the battery cell 10 is prevented.
 図8に示すように、バッテリモジュール100Mにおいて、各バッテリセル10は、隣接するバッテリセル10間でY方向におけるプラス電極10aおよびマイナス電極10bの位置関係が互いに逆になるように配置される。また、複数のバッテリセル10の一方の電極10a,10bがX方向に沿って一列に並び、複数のバッテリセル10の他方の電極10a,10bがX方向に沿って一列に並ぶ。それにより、隣接する2個のバッテリセル10間では、一方のバッテリセル10のプラス電極10aと他方のバッテリセル10のマイナス電極10bとが近接し、一方のバッテリセル10のマイナス電極10bと他方のバッテリセル10のプラス電極10aとが近接する。この状態で、近接する2個の電極にバスバー40が取り付けられる。これにより、複数のバッテリセル10が直列接続される。 As shown in FIG. 8, in the battery module 100M, each battery cell 10 is arranged so that the positional relationship between the plus electrode 10a and the minus electrode 10b in the Y direction is opposite between the adjacent battery cells 10. Further, one electrode 10a, 10b of the plurality of battery cells 10 is arranged in a line along the X direction, and the other electrode 10a, 10b of the plurality of battery cells 10 is arranged in a line along the X direction. Thereby, between two adjacent battery cells 10, the plus electrode 10a of one battery cell 10 and the minus electrode 10b of the other battery cell 10 are close to each other, and the minus electrode 10b of one battery cell 10 and the other electrode are The positive electrode 10a of the battery cell 10 is in close proximity. In this state, the bus bar 40 is attached to two adjacent electrodes. Thereby, the some battery cell 10 is connected in series.
 具体的には、1番目のバッテリセル10のプラス電極10aと2番目のバッテリセル10のマイナス電極10bとに共通のバスバー40が取り付けられる。また、2番目のバッテリセル10のプラス電極10aと3番目のバッテリセル10のマイナス電極10bとに共通のバスバー40が取り付けられる。同様にして、各奇数番目のバッテリセル10のプラス電極10aとそれに隣接する偶数番目のバッテリセル10のマイナス電極10bとに共通のバスバー40が取り付けられる。各偶数番目のバッテリセル10のプラス電極10aとそれに隣接する奇数番目のバッテリセル10のマイナス電極10bとに共通のバスバー40が取り付けられる。 Specifically, a common bus bar 40 is attached to the plus electrode 10 a of the first battery cell 10 and the minus electrode 10 b of the second battery cell 10. A common bus bar 40 is attached to the plus electrode 10 a of the second battery cell 10 and the minus electrode 10 b of the third battery cell 10. Similarly, a common bus bar 40 is attached to the plus electrode 10a of each odd-numbered battery cell 10 and the minus electrode 10b of the even-numbered battery cell 10 adjacent thereto. A common bus bar 40 is attached to the plus electrode 10a of each even-numbered battery cell 10 and the minus electrode 10b of the odd-numbered battery cell 10 adjacent thereto.
 また、1番目のバッテリセル10のマイナス電極10bおよび18番目のバッテリセル10のプラス電極10aには、外部から電源線501(図1参照)を接続するためのバスバー40aがそれぞれ取り付けられる。なお、バッテリモジュール100Mにおいては、1番目のバッテリセル10のマイナス電極10bに取り付けられたバスバー40aには、シャント抵抗RSを介して電源線501が接続される。一方、バッテリモジュール100においては、1番目のバッテリセル10のマイナス電極10bに取り付けられたバスバー40aに、電源線501が直接接続される。 Further, a bus bar 40a for connecting a power line 501 (see FIG. 1) from the outside is attached to the negative electrode 10b of the first battery cell 10 and the positive electrode 10a of the 18th battery cell 10, respectively. In battery module 100M, power line 501 is connected to bus bar 40a attached to negative electrode 10b of first battery cell 10 via shunt resistor RS. On the other hand, in the battery module 100, the power line 501 is directly connected to the bus bar 40a attached to the negative electrode 10b of the first battery cell 10.
 Y方向における複数のバッテリセル10の一端部側には、X方向に延びる長尺状のフレキシブルプリント回路基板(以下、FPC基板と略記する。)50が複数のバスバー40に共通して接続される。同様に、Y方向における複数のバッテリセル10の他端部側には、X方向に延びる長尺状のFPC基板50が複数のバスバー40,40aに共通して接続される。 A long flexible printed circuit board (hereinafter abbreviated as FPC board) 50 extending in the X direction is commonly connected to the plurality of bus bars 40 on one end side of the plurality of battery cells 10 in the Y direction. . Similarly, a long FPC board 50 extending in the X direction is commonly connected to the plurality of bus bars 40 and 40a on the other end side of the plurality of battery cells 10 in the Y direction.
 FPC基板50は、主として絶縁層上に後述する図12の複数の導体線51,52が形成された構成を有し、屈曲性および可撓性を有する。FPC基板50を構成する絶縁層の材料としては例えばポリイミドが用いられ、導体線51,52の材料としては例えば銅が用いられる。FPC基板50上において、各バスバー40,40aに近接するように各PTC素子60が配置される。 The FPC board 50 has a configuration in which a plurality of conductor wires 51 and 52 shown in FIG. 12, which will be described later, are mainly formed on an insulating layer, and has flexibility and flexibility. For example, polyimide is used as the material of the insulating layer constituting the FPC board 50, and copper is used as the material of the conductor wires 51 and 52, for example. On the FPC board 50, the PTC elements 60 are arranged so as to be close to the bus bars 40, 40a.
 各FPC基板50は、端面枠92(主回路基板21が取り付けられる端面枠92)の上端部分で内側に向かって直角に折り返され、さらに下方に向かって折り返され、主回路基板21に接続される。 Each FPC board 50 is folded at a right angle toward the inside at the upper end portion of the end face frame 92 (end face frame 92 to which the main circuit board 21 is attached), and further folded downward to be connected to the main circuit board 21. .
 (3)バスバーおよびFPC基板の構造
 次に、バスバー40,40aおよびFPC基板50の構造の詳細を説明する。以下、隣接する2個のバッテリセル10のプラス電極10aとマイナス電極10bとを接続するためのバスバー40を2電極用のバスバー40と呼び、1個のバッテリセル10のプラス電極10aまたはマイナス電極10bと電源線501とを接続するためのバスバー40aを1電極用のバスバー40aと呼ぶ。
(3) Structure of Bus Bar and FPC Board Next, details of the structure of the bus bars 40 and 40a and the FPC board 50 will be described. Hereinafter, the bus bar 40 for connecting the plus electrode 10a and the minus electrode 10b of the two adjacent battery cells 10 is referred to as a bus bar 40 for two electrodes, and the plus electrode 10a or the minus electrode 10b of one battery cell 10 is called. The bus bar 40a for connecting the power line 501 and the power line 501 is referred to as a one-electrode bus bar 40a.
 図10(a)は2電極用のバスバー40の外観斜視図であり、図10(b)は1電極用のバスバー40aの外観斜視図である。 FIG. 10A is an external perspective view of the bus bar 40 for two electrodes, and FIG. 10B is an external perspective view of the bus bar 40a for one electrode.
 図10(a)に示すように、2電極用のバスバー40は、略長方形状を有するベース部41およびそのベース部41の一辺からその一面側に屈曲して延びる一対の取付片42を備える。ベース部41には、一対の電極接続孔43が形成される。 As shown in FIG. 10A, the two-electrode bus bar 40 includes a base portion 41 having a substantially rectangular shape and a pair of attachment pieces 42 that are bent and extended from one side of the base portion 41 to the one surface side. A pair of electrode connection holes 43 are formed in the base portion 41.
 図10(b)に示すように、1電極用のバスバー40aは、略正方形状を有するベース部45およびそのベース部45の一辺からその一面側に屈曲して延びる取付片46を備える。ベース部45には、電極接続孔47が形成される。 As shown in FIG. 10B, the bus bar 40a for one electrode includes a base portion 45 having a substantially square shape and a mounting piece 46 that is bent and extends from one side of the base portion 45 to one side thereof. An electrode connection hole 47 is formed in the base portion 45.
 本実施の形態において、バスバー40,40aは、例えばタフピッチ銅の表面にニッケルめっきが施された構成を有する。 In the present embodiment, the bus bars 40, 40a have a configuration in which, for example, nickel plating is applied to the surface of tough pitch copper.
 図11は、FPC基板50に複数のバスバー40,40aおよび複数のPTC素子60が取り付けられた状態を示す外観斜視図である。図11に示すように、2枚のFPC基板50には、X方向に沿って所定の間隔で複数のバスバー40,40aの取付片42,46が取り付けられる。また、複数のPTC素子60は、複数のバスバー40,40aの間隔と同じ間隔で2枚のFPC基板50にそれぞれ取り付けられる。このように、FPC基板50と複数のバスバー40,40aとが一体的に結合された部材を以下、配線部材110と呼ぶ。 FIG. 11 is an external perspective view showing a state in which a plurality of bus bars 40, 40a and a plurality of PTC elements 60 are attached to the FPC board 50. FIG. As shown in FIG. 11, mounting pieces 42 and 46 of a plurality of bus bars 40 and 40a are attached to the two FPC boards 50 at predetermined intervals along the X direction. Further, the plurality of PTC elements 60 are respectively attached to the two FPC boards 50 at the same interval as the interval between the plurality of bus bars 40, 40a. A member in which the FPC board 50 and the plurality of bus bars 40, 40a are integrally coupled in this manner is hereinafter referred to as a wiring member 110.
 バッテリモジュール100M,100を作製する際には、図7の端面枠92、上端枠93および下端枠94により一体的に固定された複数のバッテリセル10上に、上記のように複数のバスバー40,40aおよび複数のPTC素子60が取り付けられた2枚のFPC基板50が取り付けられる。また、バッテリモジュール100Mの複数のバッテリセル10に取り付けられる2枚のFPC基板50のうち一方には、シャント抵抗RSが取り付けられる。 When the battery modules 100M and 100 are manufactured, the plurality of bus bars 40, as described above are formed on the plurality of battery cells 10 integrally fixed by the end face frame 92, the upper end frame 93, and the lower end frame 94 of FIG. Two FPC boards 50 to which 40a and a plurality of PTC elements 60 are attached are attached. A shunt resistor RS is attached to one of the two FPC boards 50 attached to the plurality of battery cells 10 of the battery module 100M.
 この取り付け時においては、隣接するバッテリセル10のプラス電極10aおよびマイナス電極10bが各バスバー40,40aに形成された電極接続孔43,47に嵌め込まれる。プラス電極10aおよびマイナス電極10bには雄ねじが形成される。各バスバー40,40aが隣接するバッテリセル10のプラス電極10aおよびマイナス電極10bに嵌め込まれた状態で図示しないナットがプラス電極10aおよびマイナス電極10bの雄ねじに螺合される。 At the time of attachment, the plus electrode 10a and the minus electrode 10b of the adjacent battery cell 10 are fitted into the electrode connection holes 43 and 47 formed in the bus bars 40 and 40a. Male screws are formed on the plus electrode 10a and the minus electrode 10b. Nuts (not shown) are screwed into male threads of the plus electrode 10a and the minus electrode 10b in a state where the bus bars 40, 40a are fitted in the plus electrode 10a and the minus electrode 10b of the adjacent battery cell 10.
 このようにして、複数のバッテリセル10に複数のバスバー40,40aが取り付けられるとともに、複数のバスバー40,40aによりFPC基板50が略水平姿勢で保持される。 Thus, the plurality of bus bars 40, 40a are attached to the plurality of battery cells 10, and the FPC board 50 is held in a substantially horizontal posture by the plurality of bus bars 40, 40a.
 (4)バスバーと低電位側第1回路および高電位側第1回路との接続
 次に、バスバー40,40aと低電位側第1回路30Lおよび高電位側第1回路30Hとの接続について説明する。図12は、バッテリモジュール100Mにおけるバスバー40,40aと低電位側第1回路30Lおよび高電位側第1回路30Hとの接続について説明するための模式的平面図である。バッテリモジュール100が主回路基板21の代わりに副回路基板21aを有し、シャント抵抗RSを有さない点を除いて、バッテリモジュール100におけるバスバー40,40aと低電位側第1回路30Lおよび高電位側第1回路30Hとの接続は、バッテリモジュール100Mにおけるバスバー40,40aと低電位側第1回路30Lおよび高電位側第1回路30Hとの接続と同様である。
(4) Connection between bus bar and low potential side first circuit and high potential side first circuit Next, connection between bus bars 40, 40a, low potential side first circuit 30L and high potential side first circuit 30H will be described. . FIG. 12 is a schematic plan view for explaining the connection between the bus bars 40, 40a, the low potential side first circuit 30L, and the high potential side first circuit 30H in the battery module 100M. Except for the point that battery module 100 has sub circuit board 21a instead of main circuit board 21 and does not have shunt resistor RS, bus bars 40 and 40a, low potential side first circuit 30L and high potential in battery module 100 The connection with the first side circuit 30H is the same as the connection between the bus bars 40, 40a, the low potential side first circuit 30L, and the high potential side first circuit 30H in the battery module 100M.
 図12に示すように、FPC基板50には、複数のバスバー40,40aに対応するように複数の導体線51,52が設けられる。各導体線51は、バスバー40,40aの取付片42,46とそのバスバー40,40aの近傍に配置されたPTC素子60との間でY方向に平行に延びるように設けられ、各導体線52は、PTC素子60とFPC基板50の一端部との間でX方向に平行に延びるように設けられる。 As shown in FIG. 12, the FPC board 50 is provided with a plurality of conductor lines 51 and 52 so as to correspond to the plurality of bus bars 40 and 40a. Each conductor wire 51 is provided so as to extend in parallel in the Y direction between the mounting pieces 42 and 46 of the bus bars 40 and 40a and the PTC element 60 disposed in the vicinity of the bus bars 40 and 40a. Are provided so as to extend parallel to the X direction between the PTC element 60 and one end of the FPC board 50.
 各導体線51の一端部は、FPC基板50の下面側に露出するように設けられる。下面側に露出する各導体線51の一端部が、例えば半田付けまたは溶接により各バスバー40,40aの取付片42,46に電気的に接続される。それにより、FPC基板50が各バスバー40,40aに固定される。 One end of each conductor wire 51 is provided so as to be exposed on the lower surface side of the FPC board 50. One end of each conductor wire 51 exposed on the lower surface side is electrically connected to the mounting pieces 42 and 46 of each bus bar 40 and 40a, for example, by soldering or welding. Thereby, the FPC board 50 is fixed to each bus bar 40, 40a.
 各導体線51の他端部および各導体線52の一端部は、FPC基板50の上面側に露出するように設けられる。PTC素子60の一対の端子(図示せず)が、例えば半田付けにより各導体線51の他端部および各導体線52の一端部に接続される。 The other end of each conductor line 51 and one end of each conductor line 52 are provided so as to be exposed on the upper surface side of the FPC board 50. A pair of terminals (not shown) of the PTC element 60 are connected to the other end of each conductor wire 51 and one end of each conductor wire 52 by, for example, soldering.
 主回路基板21には、FPC基板50の複数の導体線52に対応した複数の接続端子22が設けられる。複数の接続端子22と低電位側第1回路30Lおよび高電位側第1回路30Hとは主回路基板21上で電気的に接続されている。FPC基板50の各導体線52の他端部は、例えば半田付けまたは溶接により対応する接続端子22に接続される。なお、主回路基板21とFPC基板50との接続は、半田付けまたは溶接に限らずコネクタを用いて行われてもよい。 The main circuit board 21 is provided with a plurality of connection terminals 22 corresponding to the plurality of conductor lines 52 of the FPC board 50. The plurality of connection terminals 22, the low potential side first circuit 30 </ b> L, and the high potential side first circuit 30 </ b> H are electrically connected on the main circuit board 21. The other end of each conductor wire 52 of the FPC board 50 is connected to the corresponding connection terminal 22 by, for example, soldering or welding. The connection between the main circuit board 21 and the FPC board 50 is not limited to soldering or welding, and may be performed using a connector.
 このようにして、各バスバー40,40aがPTC素子60を介して低電位側第1回路30Lおよび高電位側第1回路30Hに電気的に接続される。これにより、各バッテリセル10の端子電圧が検出される。 In this way, the bus bars 40, 40a are electrically connected to the low potential side first circuit 30L and the high potential side first circuit 30H via the PTC element 60. Thereby, the terminal voltage of each battery cell 10 is detected.
 本実施の形態において、バッテリモジュール100Mのシャント抵抗RSは図10のバスバー40に設けられる。シャント抵抗が設けられるバスバー40を電圧電流バスバー40yと呼ぶ。図13は、電圧電流バスバー40yおよびFPC基板50を示す拡大平面図である。 In the present embodiment, the shunt resistor RS of the battery module 100M is provided in the bus bar 40 of FIG. The bus bar 40 provided with the shunt resistor is referred to as a voltage / current bus bar 40y. FIG. 13 is an enlarged plan view showing the voltage / current bus bar 40y and the FPC board 50. FIG.
 図13に示すように、電圧電流バスバー40yのベース部41上には、一対のはんだパターンH1,H2が一定間隔で互いに平行に形成されている。はんだパターンH1は2つの電極接続孔43間で一方の電極接続孔43の近傍に配置され、はんだパターンH2は電極接続孔43間で他方の電極接続孔43の近傍に配置される。電圧電流バスバー40yにおけるはんだパターンH1,H2間に形成される抵抗が電流検出用のシャント抵抗となる。 As shown in FIG. 13, on the base part 41 of the voltage / current bus bar 40y, a pair of solder patterns H1 and H2 are formed in parallel to each other at regular intervals. The solder pattern H1 is disposed between the two electrode connection holes 43 in the vicinity of one electrode connection hole 43, and the solder pattern H2 is disposed between the electrode connection holes 43 in the vicinity of the other electrode connection hole 43. The resistance formed between the solder patterns H1 and H2 in the voltage / current bus bar 40y becomes a shunt resistance for current detection.
 電圧電流バスバー40yのはんだパターンH1は、導体線51、導体線52および主回路基板21の接続端子22を介して、第3回路80の差動増幅器81a(図6参照)の一方の入力端子に接続される。同様に、電圧電流バスバー40yのはんだパターンH2は、導体線51、導体線52および主回路基板21の接続端子22を介して第3回路80の差動増幅器81a(図6参照)の他方の入力端子に接続される。これにより、第3回路80は、はんだパターンH1,H2間の電圧を検出する。第3回路80により検出されたはんだパターンH1,H2間の電圧は図6の第2回路24に与えられる。 The solder pattern H1 of the voltage / current bus bar 40y is connected to one input terminal of the differential amplifier 81a (see FIG. 6) of the third circuit 80 via the conductor line 51, the conductor line 52, and the connection terminal 22 of the main circuit board 21. Connected. Similarly, the solder pattern H2 of the voltage / current bus bar 40y is input to the other input of the differential amplifier 81a (see FIG. 6) of the third circuit 80 via the conductor wire 51, the conductor wire 52, and the connection terminal 22 of the main circuit board 21. Connected to the terminal. Thereby, the third circuit 80 detects a voltage between the solder patterns H1 and H2. The voltage between the solder patterns H1 and H2 detected by the third circuit 80 is applied to the second circuit 24 of FIG.
 また、はんだパターンH1は、FPC基板50上の導体線を介してバッテリモジュール100Mの1番目のバッテリセル10のマイナス電極10bに取り付けられたバスバー40a(図3および図8参照)に接続される。はんだパターンH2は、図1の電源線501を介して、隣接するバッテリモジュール100の18番目のバッテリセル10のプラス電極10aに取り付けられたバスバー40a(図4および図8参照)に接続される。これにより、バッテリモジュール100Mと隣接するバッテリモジュール100とは、電圧電流バスバー40yのシャント抵抗RSを介して直列接続される。 Also, the solder pattern H1 is connected to a bus bar 40a (see FIGS. 3 and 8) attached to the negative electrode 10b of the first battery cell 10 of the battery module 100M via a conductor line on the FPC board 50. The solder pattern H2 is connected to the bus bar 40a (see FIGS. 4 and 8) attached to the plus electrode 10a of the 18th battery cell 10 of the adjacent battery module 100 via the power line 501 of FIG. Thereby, the battery module 100M and the adjacent battery module 100 are connected in series via the shunt resistor RS of the voltage / current bus bar 40y.
 本実施の形態において、図6の第2回路24の記憶部242には、予め電圧電流バスバー40yにおけるはんだパターンH1,H2間のシャント抵抗RSの値が記憶されている。図6の第2回路24の処理部241は、第3回路80から与えられたはんだパターンH1,H2間の電圧を記憶部242に記憶されたシャント抵抗RSの値で除算することにより電圧電流バスバー40yに流れる電流の値を算出する。このようにして、複数のバッテリセル10に流れる電流の値が検出される。 In the present embodiment, the value of the shunt resistance RS between the solder patterns H1 and H2 in the voltage / current bus bar 40y is stored in advance in the storage unit 242 of the second circuit 24 in FIG. The processing unit 241 of the second circuit 24 in FIG. 6 divides the voltage between the solder patterns H1 and H2 given from the third circuit 80 by the value of the shunt resistor RS stored in the storage unit 242 to thereby obtain a voltage / current bus bar. The value of the current flowing through 40y is calculated. In this way, the value of the current flowing through the plurality of battery cells 10 is detected.
 (5)主回路基板および副回路基板の一構成例
 次に、主回路基板21および副回路基板21aの一構成例について説明する。図14(a)は主回路基板21の一構成例を示す模式的平面図であり、図14(b)は副回路基板21aの一構成例を示す模式的平面図である。
(5) One Configuration Example of Main Circuit Board and Sub Circuit Board Next, one configuration example of the main circuit board 21 and the sub circuit board 21a will be described. FIG. 14A is a schematic plan view showing a configuration example of the main circuit board 21, and FIG. 14B is a schematic plan view showing a configuration example of the sub circuit board 21a.
 図14(a)に示すように、主回路基板21には、低電位側第1回路30L、高電位側第1回路30H、第2回路24、第3回路80、絶縁素子25,27、電源回路245、コネクタ23a,23b,23cおよび終端抵抗RTが実装される。また、主回路基板21には、複数の接続端子22が形成される。主回路基板21は、第1の実装領域10G、第2の実装領域12Gおよび帯状の絶縁領域26を有する。 As shown in FIG. 14A, the main circuit board 21 includes a low potential side first circuit 30L, a high potential side first circuit 30H, a second circuit 24, a third circuit 80, insulating elements 25 and 27, a power source. A circuit 245, connectors 23a, 23b, and 23c and a terminating resistor RT are mounted. A plurality of connection terminals 22 are formed on the main circuit board 21. The main circuit board 21 includes a first mounting region 10G, a second mounting region 12G, and a strip-shaped insulating region 26.
 第2の実装領域12Gは、主回路基板21の1つの角部に形成される。絶縁領域26は、第2の実装領域12Gに沿って延びるように形成される。第1の実装領域10Gは、主回路基板21の残りの部分に形成される。第1の実装領域10Gと第2の実装領域12Gとは絶縁領域26により互いに分離される。それにより、第1の実装領域10Gと第2の実装領域12Gとは絶縁領域26により電気的に絶縁される。 The second mounting region 12G is formed at one corner of the main circuit board 21. The insulating region 26 is formed so as to extend along the second mounting region 12G. The first mounting region 10G is formed in the remaining part of the main circuit board 21. The first mounting region 10G and the second mounting region 12G are separated from each other by the insulating region 26. Thereby, the first mounting region 10G and the second mounting region 12G are electrically insulated by the insulating region 26.
 第1の実装領域10Gには、低電位側第1回路30L、高電位側第1回路30Hおよび第3回路80が実装されるとともに複数の接続端子22が形成される。低電位側第1回路30Lおよび高電位側第1回路30Hと複数の接続端子22とは主回路基板21上で接続線により電気的に接続される。また、第3回路80と複数の接続端子22とは主回路基板21上で接続線により電気的に接続される。 In the first mounting region 10G, the low potential side first circuit 30L, the high potential side first circuit 30H, and the third circuit 80 are mounted, and a plurality of connection terminals 22 are formed. The low potential side first circuit 30L, the high potential side first circuit 30H and the plurality of connection terminals 22 are electrically connected to each other on the main circuit board 21 by connection lines. The third circuit 80 and the plurality of connection terminals 22 are electrically connected on the main circuit board 21 by connection lines.
 低電位側第1回路30L、高電位側第1回路30Hおよび第3回路80の電源として、バッテリモジュール100Mの複数のバッテリセル10(図1参照)が低電位側第1回路30L、高電位側第1回路30Hおよび第3回路80に接続される。低電位側第1回路30Lには、図3の低電位側バッテリセル群10Lの複数のバッテリセル10から電力が供給される。高電位側第1回路30Hには、図3の高電位側バッテリセル群10Hの複数のバッテリセル10から電力が供給される。第3回路80には、図3の低電位側バッテリセル群10Lの複数のバッテリセル10から電力が供給される。 As a power source for the low potential side first circuit 30L, the high potential side first circuit 30H, and the third circuit 80, a plurality of battery cells 10 (see FIG. 1) of the battery module 100M are connected to the low potential side first circuit 30L, the high potential side. The first circuit 30H and the third circuit 80 are connected. The low potential side first circuit 30L is supplied with power from the plurality of battery cells 10 of the low potential side battery cell group 10L of FIG. Electric power is supplied to the high potential side first circuit 30H from the plurality of battery cells 10 in the high potential side battery cell group 10H of FIG. Electric power is supplied to the third circuit 80 from the plurality of battery cells 10 in the low potential side battery cell group 10L of FIG.
 低電位側第1回路30Lの実装領域および接続線の形成領域を除いて、低電位側第1回路30Lの実装領域の周囲にグランドパターンGND1Lが形成される。グランドパターンGND1Lは、低電位側バッテリセル群10Lの複数のバッテリセル10の最低電位に保持される。高電位側第1回路30Hの実装領域および接続線の形成領域を除いて、高電位側第1回路30Hの実装領域の周囲にグランドパターンGND1Hが形成される。グランドパターンGND1Hは、高電位側バッテリセル群10Hの複数のバッテリセル10の最低電位に保持される。第3回路80の実装領域および接続線の形成領域を除いて、第3回路80の実装領域の周囲にグランドパターンGND3が形成される。グランドパターンGND3は、低電位側バッテリセル群10Lの複数のバッテリセル10の最低電位に保持される。 The ground pattern GND1L is formed around the mounting region of the low potential side first circuit 30L except for the mounting region of the low potential side first circuit 30L and the connection line forming region. The ground pattern GND1L is held at the lowest potential of the plurality of battery cells 10 in the low potential side battery cell group 10L. A ground pattern GND1H is formed around the mounting region of the high potential side first circuit 30H, except for the mounting region of the high potential side first circuit 30H and the connection line forming region. The ground pattern GND1H is held at the lowest potential of the plurality of battery cells 10 in the high potential side battery cell group 10H. A ground pattern GND3 is formed around the mounting region of the third circuit 80 except for the mounting region of the third circuit 80 and the connection line forming region. The ground pattern GND3 is held at the lowest potential of the plurality of battery cells 10 in the low potential side battery cell group 10L.
 第2の実装領域12Gには、第2回路24、電源回路245およびコネクタ23a~23cが実装される。第2回路24とコネクタ23aとは主回路基板21上で一対の接続線L3,L4により電気的に接続される。第2回路24とコネクタ23bとは主回路基板21上で一対の接続線L1,L2により電気的に接続される。電源回路245とコネクタ23cとは主回路基板21上で接続線により電気的に接続される。絶縁素子25と電源回路245とは主回路基板21上で接続線により電気的に接続される。一対の接続線L3,L4の間には終端抵抗RTが実装される。 The second circuit 24, the power supply circuit 245, and the connectors 23a to 23c are mounted in the second mounting area 12G. The second circuit 24 and the connector 23a are electrically connected on the main circuit board 21 by a pair of connection lines L3 and L4. The second circuit 24 and the connector 23b are electrically connected on the main circuit board 21 by a pair of connection lines L1 and L2. The power supply circuit 245 and the connector 23c are electrically connected to each other on the main circuit board 21 by connection lines. The insulating element 25 and the power supply circuit 245 are electrically connected on the main circuit board 21 by connection lines. A termination resistor RT is mounted between the pair of connection lines L3 and L4.
 第2回路24の電源として、電動車両が備える非動力用バッテリ12(図2参照)が図2のスイッチ回路107、コネクタ23cおよび電源回路245を介して第2回路24に接続される。電源回路245は、非動力用バッテリ12により供給される電圧を降圧して電源回路245に与える。第2回路24、電源回路245およびコネクタ23a~23cの実装領域ならびに複数の接続線の形成領域を除いて、第2の実装領域12GにグランドパターンGND2が形成される。グランドパターンGND2は非動力用バッテリ12の基準電位(グランド電位)に保持される。 As a power source for the second circuit 24, the non-power battery 12 (see FIG. 2) provided in the electric vehicle is connected to the second circuit 24 via the switch circuit 107, the connector 23c, and the power circuit 245 of FIG. The power supply circuit 245 steps down the voltage supplied from the non-power battery 12 and supplies it to the power supply circuit 245. A ground pattern GND2 is formed in the second mounting region 12G except for the mounting region of the second circuit 24, the power supply circuit 245 and the connectors 23a to 23c and the formation region of a plurality of connection lines. The ground pattern GND2 is held at the reference potential (ground potential) of the non-power battery 12.
 絶縁素子25は、絶縁領域26をまたぐように実装される。絶縁素子25は、グランドパターンGND1LとグランドパターンGND2とを互いに電気的に絶縁しつつ低電位側第1回路30Lと第2回路24との間で信号を伝送する。絶縁素子27は、絶縁領域26をまたぐように実装される。絶縁素子27は、グランドパターンGND3とグランドパターンGND2とを互いに電気的に絶縁しつつ第3回路80と第2回路24との間で信号を伝送する。絶縁素子25,27としては、例えばデジタルアイソレータまたはフォトカプラ等を用いることができる。本実施の形態においては、絶縁素子25,27としてデジタルアイソレータを用いる。 The insulating element 25 is mounted so as to straddle the insulating region 26. The insulating element 25 transmits a signal between the first circuit 30L on the low potential side and the second circuit 24 while electrically insulating the ground pattern GND1L and the ground pattern GND2 from each other. The insulating element 27 is mounted so as to straddle the insulating region 26. The insulating element 27 transmits a signal between the third circuit 80 and the second circuit 24 while electrically insulating the ground pattern GND3 and the ground pattern GND2. As the insulating elements 25 and 27, for example, a digital isolator or a photocoupler can be used. In the present embodiment, digital isolators are used as the insulating elements 25 and 27.
 図14(b)に示すように、副回路基板21aは、第3回路80、絶縁素子27、終端抵抗RTおよびグランドパターンGND3を有さない点を除いて、主回路基板21と同様の構成を有する。副回路基板21a上の低電位側第1回路30L、高電位側第1回路30H、第2回路24、絶縁素子25、電源回路245、コネクタ23a~23cおよび接続端子22の接続は、主回路基板21上の低電位側第1回路30L、高電位側第1回路30H、第2回路24、絶縁素子25、電源回路245、コネクタ23a~23cおよび接続端子22の接続と同様である。 As shown in FIG. 14B, the sub circuit board 21a has the same configuration as the main circuit board 21 except that it does not have the third circuit 80, the insulating element 27, the termination resistor RT, and the ground pattern GND3. Have. The low-potential side first circuit 30L, the high-potential side first circuit 30H, the second circuit 24, the insulating element 25, the power supply circuit 245, the connectors 23a to 23c, and the connection terminals 22 on the sub circuit board 21a are connected to the main circuit board. 21 is the same as the connection of the low potential side first circuit 30L, the high potential side first circuit 30H, the second circuit 24, the insulating element 25, the power supply circuit 245, the connectors 23a to 23c, and the connection terminal 22.
 このように、低電位側第1回路30Lと第2回路24とは、絶縁素子25により電気的に絶縁されつつ通信可能に接続される。また、高電位側第1回路30Hと第2回路24とは、電気的に絶縁されつつ低電位側第1回路30Lを介して通信可能に接続される。さらに、第3回路80と第2回路24とは、絶縁素子27により電気的に絶縁されつつ通信可能に接続される。これにより、低電位側第1回路30L、高電位側第1回路30Hおよび第3回路80の電源として複数のバッテリセル10を用いることができ、第2回路24の電源として非動力用バッテリ12(図2参照)を用いることができる。その結果、第2回路24を低電位側第1回路30L、高電位側第1回路30Hおよび第3回路80から独立に安定して動作させることができる。 Thus, the low potential side first circuit 30L and the second circuit 24 are connected so as to be able to communicate while being electrically insulated by the insulating element 25. The high potential side first circuit 30H and the second circuit 24 are connected to each other via the low potential side first circuit 30L while being electrically insulated. Further, the third circuit 80 and the second circuit 24 are communicably connected while being electrically insulated by the insulating element 27. Thereby, a plurality of battery cells 10 can be used as the power source for the low potential side first circuit 30L, the high potential side first circuit 30H, and the third circuit 80, and the non-power battery 12 ( FIG. 2) can be used. As a result, the second circuit 24 can be stably operated independently from the low potential side first circuit 30L, the high potential side first circuit 30H, and the third circuit 80.
 (6)バッテリシステムの配置の例
 図15は、バッテリシステム500の配置の例を示す模式的平面図である。図15に示すように、バッテリシステム500は、図1のバッテリモジュール100M、3個のバッテリモジュール100、バッテリECU101およびコンタクタ102に加え、HV(High Voltage;高圧)コネクタ520およびサービスプラグ530をさらに備える。
(6) Example of Arrangement of Battery System FIG. 15 is a schematic plan view showing an example of arrangement of the battery system 500. As shown in FIG. 15, the battery system 500 further includes an HV (High Voltage) connector 520 and a service plug 530 in addition to the battery module 100M, the three battery modules 100, the battery ECU 101, and the contactor 102 of FIG. .
 以下の説明において、3個のバッテリモジュール100をそれぞれバッテリモジュール100a,100b,100cと呼ぶ。バッテリモジュール100Mにそれぞれ設けられる一対の端面枠92のうち、主回路基板21が取り付けられない端面枠92を端面枠92aと呼び、主回路基板21が取り付けられる端面枠92を端面枠92bと呼ぶ。同様に、バッテリモジュール100a~100cにそれぞれ設けられる一対の端面枠92のうち、副回路基板21aが取り付けられない端面枠92を端面枠92aと呼び、副回路基板21aが取り付けられる端面枠92を端面枠92bと呼ぶ。図15においては、端面枠92bにハッチングが付されている。 In the following description, the three battery modules 100 are referred to as battery modules 100a, 100b, and 100c, respectively. Of the pair of end face frames 92 provided in the battery module 100M, the end face frame 92 to which the main circuit board 21 is not attached is called an end face frame 92a, and the end face frame 92 to which the main circuit board 21 is attached is called an end face frame 92b. Similarly, of the pair of end face frames 92 provided in each of the battery modules 100a to 100c, the end face frame 92 to which the sub circuit board 21a is not attached is called an end face frame 92a, and the end face frame 92 to which the sub circuit board 21a is attached is the end face This is called a frame 92b. In FIG. 15, the end face frame 92b is hatched.
 バッテリモジュール100a~100c,100M、バッテリECU101、コンタクタ102、HVコネクタ520およびサービスプラグ530は、箱型のケーシング550内に収容される。 Battery modules 100a to 100c, 100M, battery ECU 101, contactor 102, HV connector 520 and service plug 530 are housed in box-shaped casing 550.
 ケーシング550は、側面部550a,550b,550c,550dを有する。側面部550a,550cは互いに平行であり、側面部550b,550dは互いに平行でありかつ側面部550a,550cに対して垂直である。 Casing 550 has side portions 550a, 550b, 550c, and 550d. The side surface portions 550a and 550c are parallel to each other, and the side surface portions 550b and 550d are parallel to each other and perpendicular to the side surface portions 550a and 550c.
 ケーシング550内において、バッテリモジュール100a,100bは、所定の間隔で並ぶように配置される。この場合、バッテリモジュール100aの端面枠92bとバッテリモジュール100bの端面枠92aとが互いに向き合うように、バッテリモジュール100a,100bが配置される。バッテリモジュール100c,100Mは、所定の間隔で並ぶように配置される。この場合、バッテリモジュール100cの端面枠92aとバッテリモジュール100Mの端面枠92bとが互いに向き合うように、バッテリモジュール100c,100Mが配置される。以下、互いに並ぶように配置されたバッテリモジュール100a,100bをモジュール列T1と呼び、互いに並ぶように配置されたバッテリモジュール100c,100Mをモジュール列T2と呼ぶ。 In the casing 550, the battery modules 100a and 100b are arranged so as to be arranged at a predetermined interval. In this case, the battery modules 100a and 100b are arranged so that the end face frame 92b of the battery module 100a and the end face frame 92a of the battery module 100b face each other. The battery modules 100c and 100M are arranged so as to be arranged at a predetermined interval. In this case, the battery modules 100c and 100M are arranged so that the end face frame 92a of the battery module 100c and the end face frame 92b of the battery module 100M face each other. Hereinafter, the battery modules 100a and 100b arranged so as to be aligned with each other are referred to as a module row T1, and the battery modules 100c and 100M arranged so as to be aligned with each other are referred to as a module row T2.
 ケーシング550内において、側面部550aに沿ってモジュール列T1が配置され、モジュール列T1と並列にモジュール列T2が配置される。モジュール列T1のバッテリモジュール100aの端面枠92aが側面部550dに向けられ、バッテリモジュール100bの端面枠92bが側面部550bに向けられる。また、モジュール列T2のバッテリモジュール100cの端面枠92bが側面部550dに向けられ、バッテリモジュール100Mの端面枠92aが側面部550bに向けられる。 In the casing 550, the module row T1 is arranged along the side surface portion 550a, and the module row T2 is arranged in parallel with the module row T1. The end surface frame 92a of the battery module 100a in the module row T1 is directed to the side surface portion 550d, and the end surface frame 92b of the battery module 100b is directed to the side surface portion 550b. Further, the end surface frame 92b of the battery module 100c in the module row T2 is directed to the side surface portion 550d, and the end surface frame 92a of the battery module 100M is directed to the side surface portion 550b.
 モジュール列T1と側面部550aとの間の領域にサービスプラグ530、バッテリECU101、HVコネクタ520およびコンタクタ102がこの順で側面部550dから側面部550bへ並ぶように配置される。 In the region between the module row T1 and the side surface portion 550a, the service plug 530, the battery ECU 101, the HV connector 520, and the contactor 102 are arranged in this order from the side surface portion 550d to the side surface portion 550b.
 バッテリモジュール100a~100c,100Mの各々において、端面枠92aに隣り合うバッテリセル10(18番目のバッテリセル10)のプラス電極10a(図8参照)の電位が最も高く、端面枠92bに隣り合うバッテリセル10(1番目のバッテリセル10)のマイナス電極10b(図8参照)の電位が最も低い。以下、各バッテリモジュール100a~100c,100Mにおいて最も電位が高いプラス電極10aを高電位電極10Aと呼び、各バッテリモジュール100a~100c,100Mにおいて最も電位が低いマイナス電極10bを低電位電極10Bと呼ぶ。 In each of the battery modules 100a to 100c, 100M, the potential of the positive electrode 10a (see FIG. 8) of the battery cell 10 (18th battery cell 10) adjacent to the end face frame 92a is the highest, and the battery adjacent to the end face frame 92b. The potential of the negative electrode 10b (see FIG. 8) of the cell 10 (first battery cell 10) is the lowest. Hereinafter, the positive electrode 10a having the highest potential in each of the battery modules 100a to 100c and 100M is referred to as a high potential electrode 10A, and the negative electrode 10b having the lowest potential in each of the battery modules 100a to 100c and 100M is referred to as a low potential electrode 10B.
 バッテリモジュール100aの低電位電極10Bとバッテリモジュール100bの高電位電極10Aとは、図1の電源線501として電源線Q7を介して互いに接続される。バッテリモジュール100cの高電位電極10Aとバッテリモジュール100Mの低電位電極10Bに接続されたシャント抵抗RS(図1参照)とは、図1の電源線501として電源線Q8を介して互いに接続される。 The low potential electrode 10B of the battery module 100a and the high potential electrode 10A of the battery module 100b are connected to each other via the power supply line Q7 as the power supply line 501 in FIG. The shunt resistor RS (see FIG. 1) connected to the high potential electrode 10A of the battery module 100c and the low potential electrode 10B of the battery module 100M is connected to each other via the power line Q8 as the power line 501 in FIG.
 バッテリモジュール100aの高電位電極10Aは図1の電源線501として電源線Q1を介してサービスプラグ530に接続され、バッテリモジュール100cの低電位電極10Bは図1の電源線501として電源線Q2を介してサービスプラグ530に接続される。サービスプラグ530がオンされた状態では、バッテリモジュール100a~100c,100Mが直列接続される。この場合、バッテリモジュール100Mの高電位電極10Aの電位が最も高く、バッテリモジュール100bの低電位電極10Bの電位が最も低い。 The high potential electrode 10A of the battery module 100a is connected to the service plug 530 via the power supply line Q1 as the power supply line 501 of FIG. 1, and the low potential electrode 10B of the battery module 100c is connected via the power supply line Q2 as the power supply line 501 of FIG. To the service plug 530. When the service plug 530 is turned on, the battery modules 100a to 100c and 100M are connected in series. In this case, the potential of the high potential electrode 10A of the battery module 100M is the highest, and the potential of the low potential electrode 10B of the battery module 100b is the lowest.
 サービスプラグ530にはヒューズが内蔵されている。サービスプラグ530は、例えばバッテリシステム500のメンテナンス時に作業者によりオフされる。サービスプラグ530がオフされた場合には、バッテリモジュール100a,100bからなる直列回路とバッテリモジュール100c,100Mからなる直列回路とが電気的に分離される。この場合、バッテリモジュール100a,100bからなる直列回路の総電圧とバッテリモジュール100c,100Mからなる直列回路の総電圧とが等しくなる。これにより、メンテナンス時にバッテリシステム500内に高い電圧が発生することが防止される。 The service plug 530 has a built-in fuse. The service plug 530 is turned off by an operator during maintenance of the battery system 500, for example. When the service plug 530 is turned off, the series circuit composed of the battery modules 100a and 100b and the series circuit composed of the battery modules 100c and 100M are electrically separated. In this case, the total voltage of the series circuit including the battery modules 100a and 100b is equal to the total voltage of the series circuit including the battery modules 100c and 100M. This prevents a high voltage from being generated in the battery system 500 during maintenance.
 バッテリモジュール100bの低電位電極10Bは図1の電源線501として電源線Q3を介してコンタクタ102に接続され、バッテリモジュール100Mの高電位電極10Aは図1の電源線501として電源線Q4を介してコンタクタ102に接続される。コンタクタ102は、図1の電源線501として電源線Q5,Q6を介してHVコネクタ520に接続される。HVコネクタ520は、電動車両のモータ等の負荷に接続される。 The low potential electrode 10B of the battery module 100b is connected to the contactor 102 via the power supply line Q3 as the power supply line 501 of FIG. 1, and the high potential electrode 10A of the battery module 100M is connected via the power supply line Q4 as the power supply line 501 of FIG. Connected to contactor 102. Contactor 102 is connected to HV connector 520 via power supply lines Q5 and Q6 as power supply line 501 in FIG. The HV connector 520 is connected to a load such as a motor of an electric vehicle.
 コンタクタ102がオンされた状態では、バッテリモジュール100bが電源線Q3,Q6を介してHVコネクタ520に接続されるとともに、バッテリモジュール100Mが電源線Q4,Q5を介してHVコネクタ520に接続される。それにより、バッテリモジュール100a~100c,100Mから負荷に電力が供給される。 In the state where the contactor 102 is turned on, the battery module 100b is connected to the HV connector 520 via the power supply lines Q3 and Q6, and the battery module 100M is connected to the HV connector 520 via the power supply lines Q4 and Q5. Thereby, electric power is supplied from the battery modules 100a to 100c and 100M to the load.
 コンタクタ102がオフされると、バッテリモジュール100bとHVコネクタ520との接続およびバッテリモジュール100MとHVコネクタ520との接続が遮断される。 When the contactor 102 is turned off, the connection between the battery module 100b and the HV connector 520 and the connection between the battery module 100M and the HV connector 520 are cut off.
 バッテリモジュール100aの副回路基板21aのコネクタ23aとバッテリモジュール100bの副回路基板21aのコネクタ23bとは、通信ケーブルP3を介して互いに接続される。バッテリモジュール100aの副回路基板21aのコネクタ23bとバッテリモジュール100cの副回路基板21aのコネクタ23aとは、通信ケーブルP2を介して互いに接続される。バッテリモジュール100cの副回路基板21aのコネクタ23bとバッテリモジュール100Mの主回路基板21のコネクタ23aとは、通信ケーブルP1を介して互いに接続される。バッテリモジュール100bの副回路基板21aのコネクタ23aは通信ケーブルP4を介してバッテリECU101に接続される。通信ケーブルP1~P4により図1のバス103が構成される。 The connector 23a of the sub circuit board 21a of the battery module 100a and the connector 23b of the sub circuit board 21a of the battery module 100b are connected to each other via a communication cable P3. The connector 23b of the sub circuit board 21a of the battery module 100a and the connector 23a of the sub circuit board 21a of the battery module 100c are connected to each other via the communication cable P2. The connector 23b of the sub circuit board 21a of the battery module 100c and the connector 23a of the main circuit board 21 of the battery module 100M are connected to each other via the communication cable P1. The connector 23a of the sub circuit board 21a of the battery module 100b is connected to the battery ECU 101 via the communication cable P4. The bus 103 in FIG. 1 is configured by the communication cables P1 to P4.
 上記のように、バッテリモジュール100a~100c,100Mの各々においてセル情報が第2回路24(図6参照)により検出される。バッテリモジュール100aの第2回路24により検出されたセル情報は、通信ケーブルP3,P4を介してバッテリECU101に与えられる。バッテリモジュール100bの第2回路24により検出されたセル情報は、通信ケーブルP4を介してバッテリECU101に与えられる。バッテリモジュール100cの第2回路24により検出されたセル情報は、通信ケーブルP2,P3,P4を介してバッテリECU101に与えられる。バッテリモジュール100Mの第2回路24により検出されたセル情報は、通信ケーブルP1,P2,P3,P4を介してバッテリECU101に与えられる。 As described above, cell information is detected by the second circuit 24 (see FIG. 6) in each of the battery modules 100a to 100c and 100M. The cell information detected by the second circuit 24 of the battery module 100a is given to the battery ECU 101 via the communication cables P3 and P4. The cell information detected by the second circuit 24 of the battery module 100b is given to the battery ECU 101 via the communication cable P4. The cell information detected by the second circuit 24 of the battery module 100c is given to the battery ECU 101 via the communication cables P2, P3, P4. Cell information detected by the second circuit 24 of the battery module 100M is given to the battery ECU 101 via the communication cables P1, P2, P3, and P4.
 図16は、図15のコンタクタ102の構成を示す模式的平面図である。図16に示すように、コンタクタ102は、スイッチング素子SW1,SW2,SW3および抵抗Rを含む。スイッチング素子SW1は端子t1,t2を有し、スイッチング素子SW2は端子t3,t4を有し、スイッチング素子SW3は端子t5,t6を有する。端子t1には電源線Q4が接続されるとともに、端子t3には電源線Q4が接続される。端子t5には電源線Q3が接続される。端子t2には抵抗Rを介して電源線Q5が接続されるとともに、端子t4には電源線Q5が接続される。端子t6には電源線Q6が接続される。 FIG. 16 is a schematic plan view showing the configuration of the contactor 102 of FIG. As shown in FIG. 16, contactor 102 includes switching elements SW1, SW2, SW3 and a resistor R. The switching element SW1 has terminals t1 and t2, the switching element SW2 has terminals t3 and t4, and the switching element SW3 has terminals t5 and t6. The power supply line Q4 is connected to the terminal t1, and the power supply line Q4 is connected to the terminal t3. A power supply line Q3 is connected to the terminal t5. A power supply line Q5 is connected to the terminal t2 via a resistor R, and a power supply line Q5 is connected to the terminal t4. A power supply line Q6 is connected to the terminal t6.
 スイッチング素子SW1は、図15のバッテリECU101の制御に基づいてオンおよびオフする。スイッチング素子SW2は、バッテリECU101の制御に基づいてオンおよびオフする。スイッチング素子SW3は、バッテリECU101の制御に基づいてオンおよびオフする。 Switching element SW1 is turned on and off based on the control of battery ECU 101 in FIG. Switching element SW2 is turned on and off based on the control of battery ECU 101. Switching element SW3 is turned on and off based on the control of battery ECU 101.
 図15のバッテリシステム500がHVコネクタ520を介して電動車両の負荷に電力の供給を始める際には、バッテリECU101は、スイッチング素子SW1およびスイッチング素子SW3をオンする。この場合、バッテリシステム500から抵抗Rを介して電動車両の負荷に電力が供給される。その後、バッテリECU101はスイッチング素子SW1をオフにするとともに、スイッチング素子SW2をオンにする。これにより、電動車両の負荷に電力の供給を始める際に、負荷に過大な突入電流が流れることを防止することができる。 When the battery system 500 in FIG. 15 starts to supply power to the load of the electric vehicle via the HV connector 520, the battery ECU 101 turns on the switching element SW1 and the switching element SW3. In this case, electric power is supplied from the battery system 500 to the load of the electric vehicle via the resistor R. Thereafter, the battery ECU 101 turns off the switching element SW1 and turns on the switching element SW2. Thereby, when starting supply of electric power to the load of an electric vehicle, it can prevent that an excessive inrush current flows into load.
 (7)実施の形態の効果
 上記実施の形態においては、バッテリモジュール100Mの主回路基板21に終端抵抗RTが実装される。また、バッテリECU101のプリント回路基板105に終端抵抗RTが実装される。
(7) Effects of Embodiment In the above embodiment, the termination resistor RT is mounted on the main circuit board 21 of the battery module 100M. A termination resistor RT is mounted on the printed circuit board 105 of the battery ECU 101.
 通信ケーブルP1を主回路基板21のコネクタ23aに接続することにより、主回路基板21の終端抵抗RTがバス103に接続される。これにより、簡単な構成でバス103の一端のインピーダンス整合を行うことができる。同様に、通信ケーブルP4をプリント回路基板105のコネクタ108に接続することにより、プリント回路基板105の終端抵抗RTがバス103に接続される。これにより、簡単な構成でバス103の他端のインピーダンス整合を行うことができる。 The terminal resistor RT of the main circuit board 21 is connected to the bus 103 by connecting the communication cable P1 to the connector 23a of the main circuit board 21. Thereby, impedance matching of one end of the bus 103 can be performed with a simple configuration. Similarly, the termination resistor RT of the printed circuit board 105 is connected to the bus 103 by connecting the communication cable P4 to the connector 108 of the printed circuit board 105. Thereby, impedance matching of the other end of the bus 103 can be performed with a simple configuration.
 その結果、煩雑な配線作業を必要とすることなくかつ配線構造を複雑にすることなくバッテリモジュール100M,100およびバッテリECU101間で良好な通信を行うことができる。 As a result, good communication can be performed between the battery modules 100M and 100 and the battery ECU 101 without requiring complicated wiring work and without complicating the wiring structure.
 また、主回路基板21に第3回路80および絶縁素子27が設けられる。この場合、第3回路80によりシャント抵抗RSの両端の電圧が検出される。シャント抵抗RSの両端の電圧は複数のバッテリセル10に流れる電流に比例する。これにより、簡単な構成で、シャント抵抗RSの両端の電圧に基づいて複数のバッテリセル10に流れる電流を算出することが可能になる。さらに、算出された電流はバス103を介してバッテリモジュール100の第2回路24またはバッテリECU101に送信される。 Further, the third circuit 80 and the insulating element 27 are provided on the main circuit board 21. In this case, the voltage across the shunt resistor RS is detected by the third circuit 80. The voltage across the shunt resistor RS is proportional to the current flowing through the plurality of battery cells 10. Thereby, it becomes possible to calculate the current flowing through the plurality of battery cells 10 based on the voltage across the shunt resistor RS with a simple configuration. Further, the calculated current is transmitted to the second circuit 24 of the battery module 100 or the battery ECU 101 via the bus 103.
 この構成においては、副回路基板21aには第3回路80を設ける必要がない。これにより、副回路基板21aの構造を単純化することができる。また、バッテリシステム500に別個に電流検出装置を設ける必要がない。その結果、コストの増加を抑制しつつ複数のバッテリセル10に流れる電流を検出することが可能になる。 In this configuration, it is not necessary to provide the third circuit 80 on the sub circuit board 21a. Thereby, the structure of the sub circuit board 21a can be simplified. Further, it is not necessary to separately provide a current detection device in the battery system 500. As a result, it is possible to detect the current flowing through the plurality of battery cells 10 while suppressing an increase in cost.
 このように、主回路基板21には、終端抵抗RTおよび第3回路80が設けられるので、副回路基板21aには終端抵抗RTおよび第3回路80を設ける必要がない。すなわち、第1回路30および終端抵抗RTが設けられる回路基板、第1回路30および第3回路80が設けられる回路基板ならびに第1回路30のみが設けられる回路基板の3種類の回路基板を用意する必要がない。第1回路30、終端抵抗RTおよび第3回路80が設けられる主回路基板21ならびに第1回路30のみが設けられる副回路基板21aの2種類の回路基板によりバッテリシステム500を構成することができる。これにより、バッテリシステム500の回路基板の種類の数を削減することができる。その結果、バッテリシステム500の生産の歩留まりを向上させ、生産コストを削減することができる。 Thus, since the termination resistor RT and the third circuit 80 are provided on the main circuit board 21, it is not necessary to provide the termination resistor RT and the third circuit 80 on the sub circuit board 21a. That is, three types of circuit boards are prepared: a circuit board on which the first circuit 30 and the termination resistor RT are provided, a circuit board on which the first circuit 30 and the third circuit 80 are provided, and a circuit board on which only the first circuit 30 is provided. There is no need. The battery system 500 can be configured by two types of circuit boards, that is, the main circuit board 21 provided with the first circuit 30, the termination resistor RT and the third circuit 80, and the sub circuit board 21a provided only with the first circuit 30. Thereby, the number of types of circuit boards of the battery system 500 can be reduced. As a result, the production yield of the battery system 500 can be improved and the production cost can be reduced.
 (8)実施の形態の特徴
 このように、本実施の形態に係るバッテリシステムは、複数の第1のバッテリセルおよび第1の回路基板を含む第1のバッテリモジュールと、通信バスとを備え、第1の回路基板は、各第1のバッテリセルの電圧を検出する第1の電圧検出部と、第1の電圧検出部に接続されるとともに通信バスに接続可能な第1の通信部と、通信バスに接続可能な第1の終端抵抗とを含む。
(8) Features of Embodiment As described above, the battery system according to the present embodiment includes a first battery module including a plurality of first battery cells and a first circuit board, and a communication bus. The first circuit board includes a first voltage detection unit that detects a voltage of each first battery cell, a first communication unit that is connected to the first voltage detection unit and that can be connected to a communication bus, And a first termination resistor connectable to the communication bus.
 このバッテリシステムにおいては、第1の回路基板の第1の電圧検出部により第1のバッテリモジュールの各第1のバッテリセルの電圧が検出される。検出された各第1のバッテリセルの電圧は、第1の回路基板の第1の通信部により外部装置に送信可能である。 In this battery system, the voltage of each first battery cell of the first battery module is detected by the first voltage detector of the first circuit board. The detected voltage of each first battery cell can be transmitted to an external device by the first communication unit of the first circuit board.
 第1の回路基板の第1の終端抵抗は通信バスに接続される。これにより、通信バスのインピーダンス整合が行われる。その結果、煩雑な配線作業を必要とすることなくかつ配線構造を複雑にすることなく第1のバッテリモジュールおよび外部装置の間で良好な通信を行うことができる。 The first termination resistor of the first circuit board is connected to the communication bus. Thereby, impedance matching of the communication bus is performed. As a result, good communication can be performed between the first battery module and the external device without requiring complicated wiring work and without complicating the wiring structure.
 また、本実施の形態に係るバッテリシステムは、通信バスに接続可能な通信機器をさらに備える。この場合、煩雑な配線作業を必要とすることなくかつ配線構造を複雑にすることなく第1のバッテリモジュールおよび通信機器の間で良好な通信を行うことができる。 The battery system according to the present embodiment further includes a communication device that can be connected to the communication bus. In this case, good communication can be performed between the first battery module and the communication device without requiring complicated wiring work and without complicating the wiring structure.
 また、本実施の形態に係るバッテリシステムは、複数の第2のバッテリセルおよび第2の回路基板を含む第2のバッテリモジュールをさらに備え、第2の回路基板は、各第2のバッテリセルの電圧を検出する第2の電圧検出部と、第2の電圧検出部に接続されるとともに通信バスに接続可能な第2の通信部とを含み、通信機器は、通信バスに接続可能な第2の終端抵抗を含むとともに第1および第2のバッテリモジュールの制御に関連する動作を行う制御部である。すなわち、通信機器は、通信バスに接続可能な第2の終端抵抗を含むとともに第1および第2のバッテリモジュールの制御に関連する機能を有する制御部として動作する。 The battery system according to the present embodiment further includes a second battery module including a plurality of second battery cells and a second circuit board, and the second circuit board is provided for each second battery cell. The communication device includes a second voltage detection unit that detects the voltage and a second communication unit that is connected to the second voltage detection unit and is connectable to the communication bus. A control unit that performs an operation related to the control of the first and second battery modules. That is, the communication device operates as a control unit including a second termination resistor connectable to the communication bus and having a function related to the control of the first and second battery modules.
 この場合、第2の回路基板の第2の電圧検出部により第2のバッテリモジュールの各第2のバッテリセルの電圧が検出される。検出された各第2のバッテリセルの電圧は、第2の回路基板の第2の通信部により通信バスを介して第1のバッテリモジュールの第1の通信部、制御部または外部装置に送信可能である。 In this case, the voltage of each second battery cell of the second battery module is detected by the second voltage detection unit of the second circuit board. The detected voltage of each second battery cell can be transmitted to the first communication unit, the control unit, or the external device of the first battery module via the communication bus by the second communication unit of the second circuit board. It is.
 制御部は、通信バスを介して第1のバッテリモジュールの第1の通信部および第2のバッテリモジュールの第2の通信部と通信可能である。これにより、制御部は、第1の電圧検出部により検出される電圧に基づいて第1のバッテリモジュールの制御を行うことができるとともに、第2の電圧検出部により検出される電圧に基づいて第2のバッテリモジュールの制御を行うことができる。 The control unit can communicate with the first communication unit of the first battery module and the second communication unit of the second battery module via the communication bus. Thus, the control unit can control the first battery module based on the voltage detected by the first voltage detection unit, and can control the first battery module based on the voltage detected by the second voltage detection unit. 2 battery modules can be controlled.
 また、制御部の第2の終端抵抗は通信バスに接続される。これにより、通信バスのインピーダンス整合が行われる。その結果、煩雑な配線作業を必要とすることなくかつ配線構造を複雑にすることなく第1および第2のバッテリモジュールならびに制御部の間で良好な通信を行うことができる。 Also, the second termination resistor of the control unit is connected to the communication bus. Thereby, impedance matching of the communication bus is performed. As a result, good communication can be performed between the first and second battery modules and the control unit without requiring complicated wiring work and without complicating the wiring structure.
 また、本実施の形態において、第1の回路基板は、第1の電圧検出部とは異なる動作を行う回路部をさらに含む。すなわち、回路部は、第1の電圧検出部とは異なる機能を実現する機能部として動作する。この場合、第2の回路基板には回路部を設ける必要がない。これにより、第2の回路基板の構造を単純化することができる。 In the present embodiment, the first circuit board further includes a circuit unit that performs an operation different from that of the first voltage detection unit. That is, the circuit unit operates as a functional unit that realizes a function different from that of the first voltage detection unit. In this case, it is not necessary to provide a circuit portion on the second circuit board. Thereby, the structure of the second circuit board can be simplified.
 また、本実施の形態において、回路部は、複数の第1のバッテリセルに流れる電流に関する情報を検出するとともに、検出された情報を通信バスを通して送信可能に構成された電流検出部を含む。この場合、バッテリシステムに別個に電流検出装置を設ける必要がない。その結果、コストの増加を抑制しつつ複数の第1のバッテリセルに流れる電流を検出することが可能になる。 In the present embodiment, the circuit unit includes a current detection unit configured to detect information related to the current flowing through the plurality of first battery cells and to transmit the detected information through the communication bus. In this case, it is not necessary to separately provide a current detection device in the battery system. As a result, it is possible to detect the current flowing through the plurality of first battery cells while suppressing an increase in cost.
 また、本実施の形態において、第1のバッテリモジュールは、複数の第1のバッテリセルに流れる電流に応じた電圧を発生する素子をさらに含み、第1の回路基板の電流検出部は、素子に発生する電圧を検出することにより、複数の第1のバッテリセルに流れる電流を情報として電圧の形態で検出する。 In the present embodiment, the first battery module further includes an element that generates a voltage corresponding to the current flowing through the plurality of first battery cells, and the current detection unit of the first circuit board includes the element. By detecting the generated voltage, the current flowing through the plurality of first battery cells is detected in the form of voltage as information.
 この場合、第1の回路基板の電流検出部により、複数の第1のバッテリセルに流れる電流に応じた電圧が検出され、検出された電圧が通信バスを介して第2のバッテリモジュールの第2の通信部または外部装置に送信される。これにより、簡単な構成で、素子に発生する電圧に基づいて複数の第1のバッテリセルに流れる電流を算出することが可能になる。 In this case, the current detection unit of the first circuit board detects the voltage corresponding to the current flowing through the plurality of first battery cells, and the detected voltage is the second of the second battery module via the communication bus. To the communication unit or external device. Thereby, it is possible to calculate the current flowing through the plurality of first battery cells based on the voltage generated in the element with a simple configuration.
 また、本実施の形態において、通信バスは通信ケーブルを含み、第1の回路基板は、第1の通信部に電気的に接続されるとともに通信ケーブルに接続可能なコネクタをさらに含み、第1の終端抵抗はコネクタに電気的に接続される。 In the present embodiment, the communication bus includes a communication cable, and the first circuit board further includes a connector that is electrically connected to the first communication unit and is connectable to the communication cable. The termination resistor is electrically connected to the connector.
 この場合、通信ケーブルを第1の回路基板のコネクタに接続することにより、第1の終端抵抗が通信バスに電気的に接続される。これにより、簡単な構成で通信バスのインピーダンス整合を行うことができる。 In this case, the first termination resistor is electrically connected to the communication bus by connecting the communication cable to the connector of the first circuit board. Thereby, impedance matching of the communication bus can be performed with a simple configuration.
 [2]第2の実施の形態
 第2の実施の形態に係るバッテリシステム500について、第1の実施の形態に係るバッテリシステム500と異なる点を説明する。
[2] Second Embodiment A battery system 500 according to a second embodiment will be described while referring to differences from the battery system 500 according to the first embodiment.
 図17(a)は第2の実施の形態における主回路基板の一構成例を示す模式的平面図であり、図17(b)は第2の実施の形態における副回路基板の一構成例を示す模式的平面図である。 FIG. 17A is a schematic plan view showing a configuration example of the main circuit board in the second embodiment, and FIG. 17B shows a configuration example of the sub circuit board in the second embodiment. It is a schematic plan view to show.
 図17(a)に示すように、本実施の形態における主回路基板21bは、電源回路245に代えて電圧検出部とは異なる動作を行う回路部である電源回路243が実装される点および第2の実装領域12Gにコネクタ23dがさらに実装される点を除いて、図14(a)の主回路基板21と同様の構成を有する。電源回路243とコネクタ23cとは主回路基板21b上で接続線により電気的に接続されるとともに、電源回路243とコネクタ23dとは主回路基板21b上で接続線により電気的に接続される。 As shown in FIG. 17A, the main circuit board 21b in the present embodiment is mounted with a power supply circuit 243, which is a circuit unit that performs an operation different from the voltage detection unit, instead of the power supply circuit 245. Except that the connector 23d is further mounted on the second mounting region 12G, it has the same configuration as the main circuit board 21 of FIG. The power supply circuit 243 and the connector 23c are electrically connected by a connection line on the main circuit board 21b, and the power supply circuit 243 and the connector 23d are electrically connected by a connection line on the main circuit board 21b.
 コネクタ23cに入力される電圧は、電源回路243により降圧され、第2回路24に与えられる。これにより、第2回路24が動作する。また、コネクタ23cに入力される電圧は、電源回路243により降圧され、コネクタ23dに与えられる。これにより、電源回路243により降圧された電圧がコネクタ23dから出力される。 The voltage input to the connector 23 c is stepped down by the power supply circuit 243 and applied to the second circuit 24. Thereby, the second circuit 24 operates. In addition, the voltage input to the connector 23c is stepped down by the power supply circuit 243 and applied to the connector 23d. Thereby, the voltage stepped down by the power supply circuit 243 is output from the connector 23d.
 図17(b)に示すように、本実施の形態における副回路基板21cは、電源回路245が実装されない点および第2の実装領域12Gにコネクタ23dがさらに実装される点を除いて、図14(b)の副回路基板21aと同様の構成を有する。コネクタ23cと第2回路24とは副回路基板21c上で接続線により電気的に接続されるとともに、コネクタ23cとコネクタ23dとは副回路基板21c上で接続線により電気的に接続される。 As shown in FIG. 17B, the sub circuit board 21c in the present embodiment is similar to that shown in FIG. 14 except that the power supply circuit 245 is not mounted and the connector 23d is further mounted in the second mounting region 12G. It has the same configuration as the sub circuit board 21a of (b). The connector 23c and the second circuit 24 are electrically connected by a connection line on the sub circuit board 21c, and the connector 23c and the connector 23d are electrically connected by a connection line on the sub circuit board 21c.
 コネクタ23cに入力される電圧は、第2回路24に与えられる。これにより、第2回路24が動作する。また、コネクタ23cに入力される電圧は、コネクタ23dに与えられる。これにより、コネクタ23cに入力される電圧がコネクタ23dから出力される。 The voltage input to the connector 23c is applied to the second circuit 24. Thereby, the second circuit 24 operates. The voltage input to the connector 23c is given to the connector 23d. Thereby, the voltage input to the connector 23c is output from the connector 23d.
 図18は図17の主回路基板21bおよび複数の副回路基板21cの接続を示す説明図であり、図19は第2の実施の形態に係るバッテリシステム500の配置の例を示す模式的平面図である。図18では、主回路基板21bおよび副回路基板21cの構成を簡略化して示している。例えば、図18の主回路基板21bでは、図17(a)の接続端子22および絶縁領域26の図示を省略している。また、図18の副回路基板21cでは、図17(b)の接続端子22および絶縁領域26の図示を省略している。 FIG. 18 is an explanatory view showing the connection of the main circuit board 21b and the plurality of sub circuit boards 21c of FIG. 17, and FIG. It is. FIG. 18 shows a simplified configuration of the main circuit board 21b and the sub circuit board 21c. For example, in the main circuit board 21b in FIG. 18, the connection terminals 22 and the insulating regions 26 in FIG. 17A are not shown. Further, in the sub circuit board 21c of FIG. 18, the connection terminals 22 and the insulating regions 26 of FIG. 17B are not shown.
 図18および図19に示すように、本実施の形態においては、バッテリECU101のスイッチ回路107とバッテリモジュール100Mの主回路基板21bのコネクタ23cとは、電力線S1を介して互いに接続される。バッテリモジュール100Mの主回路基板21bのコネクタ23dとバッテリモジュール100cの副回路基板21cのコネクタ23cとは、電力線S2を介して互いに接続される。バッテリモジュール100cの副回路基板21cのコネクタ23dとバッテリモジュール100aの副回路基板21cのコネクタ23cとは、電力線S3を介して互いに接続される。バッテリモジュール100aの副回路基板21cのコネクタ23dとバッテリモジュール100bの副回路基板21cのコネクタ23cとは、電力線S4を介して互いに接続される。 As shown in FIGS. 18 and 19, in the present embodiment, switch circuit 107 of battery ECU 101 and connector 23c of main circuit board 21b of battery module 100M are connected to each other via power line S1. Connector 23d of main circuit board 21b of battery module 100M and connector 23c of sub circuit board 21c of battery module 100c are connected to each other via power line S2. The connector 23d of the sub circuit board 21c of the battery module 100c and the connector 23c of the sub circuit board 21c of the battery module 100a are connected to each other via the power line S3. The connector 23d of the sub circuit board 21c of the battery module 100a and the connector 23c of the sub circuit board 21c of the battery module 100b are connected to each other via the power line S4.
 これにより、非動力用バッテリ12の電圧がバッテリECU101のスイッチ回路107を通してバッテリモジュール100Mの電源回路243に与えられる。非動力用バッテリ12の電圧は、電源回路243により降圧され、バッテリモジュール100Mの第2回路24に与えられるとともに、バッテリモジュール100a~100cの各第2回路24に与えられる。すなわち、回路部である電源回路243は、電圧検出部とは異なる機能を実現する機能部として動作する。 Thereby, the voltage of the non-power battery 12 is applied to the power supply circuit 243 of the battery module 100M through the switch circuit 107 of the battery ECU 101. The voltage of the non-power battery 12 is stepped down by the power supply circuit 243 and applied to the second circuit 24 of the battery module 100M and also to the second circuits 24 of the battery modules 100a to 100c. That is, the power supply circuit 243 that is a circuit unit operates as a functional unit that realizes a function different from that of the voltage detection unit.
 このように、本実施の形態においては、バッテリモジュール100Mの主回路基板21の電源回路243がバッテリモジュール100M,100a~100cの各第2回路24に電力を供給する。この構成においては、副回路基板21cには電源回路243および図14(b)の電源回路245を設ける必要がない。これにより、副回路基板21aの構造をさらに単純化することができる。その結果、コストの増加を抑制しつつ各第2回路24を非動力用バッテリ12により安定に動作させることが可能になる。 As described above, in the present embodiment, the power supply circuit 243 of the main circuit board 21 of the battery module 100M supplies power to the second circuits 24 of the battery modules 100M and 100a to 100c. In this configuration, it is not necessary to provide the power circuit 243 and the power circuit 245 of FIG. 14B on the sub circuit board 21c. Thereby, the structure of the sub circuit board 21a can be further simplified. As a result, each second circuit 24 can be stably operated by the non-power battery 12 while suppressing an increase in cost.
 [3]第3の実施の形態
 以下、第3の実施の形態に係る移動体として、電動車両およびその他の移動体について説明する。本実施の形態に係る電動車両は、第1または第2の実施の形態に係るバッテリシステム500を備える。なお、以下では、電動車両の一例として電動自動車を説明する。
[3] Third Embodiment Hereinafter, an electric vehicle and other moving bodies will be described as moving bodies according to a third embodiment. The electric vehicle according to the present embodiment includes battery system 500 according to the first or second embodiment. In the following, an electric vehicle will be described as an example of an electric vehicle.
 (1)電動車両の構成および動作
 図20は、バッテリシステム500を備える電動自動車の構成を示すブロック図である。図20に示すように、本実施の形態に係る電動自動車600は、移動本体部として車体610を備える。車体610に、図1の非動力用バッテリ12、主制御部300およびバッテリシステム500、電力変換部601、モータ602、駆動輪603、アクセル装置604、ブレーキ装置605、ならびに回転速度センサ606を含む。モータ602および駆動輪603は動力源である。モータ602が交流(AC)モータである場合には、電力変換部601はインバータ回路を含む。
(1) Configuration and Operation of Electric Vehicle FIG. 20 is a block diagram illustrating a configuration of an electric vehicle including the battery system 500. As shown in FIG. 20, electric vehicle 600 according to the present embodiment includes a vehicle body 610 as a moving main body. The vehicle body 610 includes the non-power battery 12 of FIG. 1, the main control unit 300 and the battery system 500, the power conversion unit 601, the motor 602, the drive wheels 603, the accelerator device 604, the brake device 605, and the rotation speed sensor 606. The motor 602 and the drive wheel 603 are power sources. When motor 602 is an alternating current (AC) motor, power conversion unit 601 includes an inverter circuit.
 本実施の形態において、バッテリシステム500には、非動力用バッテリ12が接続される。また、バッテリシステム500は、電力変換部601を介してモータ602に接続されるとともに、主制御部300に接続される。上述のように、主制御部300には、バッテリシステム500を構成するバッテリECU101(図1参照)から各バッテリセル10(図1参照)の充電量および複数のバッテリセル10に流れる電流の値が与えられる。 In the present embodiment, the non-power battery 12 is connected to the battery system 500. The battery system 500 is connected to the motor 602 via the power conversion unit 601 and also connected to the main control unit 300. As described above, the main controller 300 has the amount of charge of each battery cell 10 (see FIG. 1) and the value of the current flowing through the plurality of battery cells 10 from the battery ECU 101 (see FIG. 1) constituting the battery system 500. Given.
 主制御部300には、アクセル装置604、ブレーキ装置605および回転速度センサ606が接続される。主制御部300は、例えばCPUおよびメモリ、またはマイクロコンピュータからなる。主制御部300には、非動力用バッテリ12が接続される。非動力用バッテリ12から出力される電力は、主制御部300による制御に基づいて電動自動車600の一部の電装部品に供給される。 Accelerator device 604, brake device 605 and rotation speed sensor 606 are connected to main controller 300. The main control unit 300 includes, for example, a CPU and a memory, or a microcomputer. A non-power battery 12 is connected to the main controller 300. The electric power output from the non-power battery 12 is supplied to some electrical components of the electric automobile 600 based on the control by the main control unit 300.
 アクセル装置604は、電動自動車600が備えるアクセルペダル604aと、アクセルペダル604aの操作量(踏み込み量)を検出するアクセル検出部604bとを含む。運転者によりアクセルペダル604aが操作されると、アクセル検出部604bは、運転者により操作されていない状態を基準としてアクセルペダル604aの操作量を検出する。検出されたアクセルペダル604aの操作量が主制御部300に与えられる。 The accelerator device 604 includes an accelerator pedal 604a included in the electric automobile 600 and an accelerator detection unit 604b that detects an operation amount (depression amount) of the accelerator pedal 604a. When the accelerator pedal 604a is operated by the driver, the accelerator detector 604b detects the operation amount of the accelerator pedal 604a based on a state where the driver is not operated. The detected operation amount of the accelerator pedal 604a is given to the main controller 300.
 ブレーキ装置605は、電動自動車600が備えるブレーキペダル605aと、運転者によるブレーキペダル605aの操作量(踏み込み量)を検出するブレーキ検出部605bとを含む。運転者によりブレーキペダル605aが操作されると、ブレーキ検出部605bによりその操作量が検出される。検出されたブレーキペダル605aの操作量が主制御部300に与えられる。 The brake device 605 includes a brake pedal 605a included in the electric automobile 600 and a brake detection unit 605b that detects an operation amount (depression amount) of the brake pedal 605a by the driver. When the brake pedal 605a is operated by the driver, the operation amount is detected by the brake detection unit 605b. The detected operation amount of the brake pedal 605a is given to the main control unit 300.
 回転速度センサ606は、モータ602の回転速度を検出する。検出された回転速度は、主制御部300に与えられる。 Rotational speed sensor 606 detects the rotational speed of motor 602. The detected rotation speed is given to the main control unit 300.
 上記のように、主制御部300には、各バッテリセル10の充電量、複数のバッテリセル10に流れる電流の値、アクセルペダル604aの操作量、ブレーキペダル605aの操作量、およびモータ602の回転速度が与えられる。主制御部300は、これらの情報に基づいて、バッテリモジュール100M,100の充放電制御および電力変換部601の電力変換制御を行う。 As described above, the main control unit 300 includes the charge amount of each battery cell 10, the value of the current flowing through the plurality of battery cells 10, the operation amount of the accelerator pedal 604a, the operation amount of the brake pedal 605a, and the rotation of the motor 602. Speed is given. The main control unit 300 performs charge / discharge control of the battery modules 100M and 100 and power conversion control of the power conversion unit 601 based on these pieces of information.
 例えば、アクセル操作に基づく電動自動車600の発進時および加速時には、バッテリシステム500から電力変換部601にバッテリモジュール100M,100の電力が供給される。 For example, when the electric vehicle 600 is started and accelerated based on the accelerator operation, the power of the battery modules 100M and 100 is supplied from the battery system 500 to the power conversion unit 601.
 さらに、主制御部300は、与えられたアクセルペダル604aの操作量に基づいて、駆動輪603に伝達すべき回転力(指令トルク)を算出し、その指令トルクに基づく制御信号を電力変換部601に与える。 Further, the main control unit 300 calculates a rotational force (command torque) to be transmitted to the drive wheels 603 based on the given operation amount of the accelerator pedal 604a, and outputs a control signal based on the command torque to the power conversion unit 601. To give.
 上記の制御信号を受けた電力変換部601は、バッテリシステム500から供給された電力を、駆動輪603を駆動するために必要な電力(駆動電力)に変換する。これにより、電力変換部601により変換された駆動電力がモータ602に供給され、その駆動電力に基づくモータ602の回転力が駆動輪603に伝達される。 The power conversion unit 601 that has received the control signal converts the power supplied from the battery system 500 into power (drive power) necessary for driving the drive wheels 603. As a result, the driving power converted by the power converter 601 is supplied to the motor 602, and the rotational force of the motor 602 based on the driving power is transmitted to the driving wheels 603.
 一方、ブレーキ操作に基づく電動自動車600の減速時には、モータ602は発電装置として機能する。この場合、電力変換部601は、モータ602により発生された回生電力をバッテリモジュール100M,100の充電に適した電力に変換し、バッテリモジュール100M,100に与える。それにより、バッテリモジュール100M,100が充電される。 On the other hand, when the electric automobile 600 is decelerated based on the brake operation, the motor 602 functions as a power generator. In this case, the power conversion unit 601 converts the regenerative power generated by the motor 602 into power suitable for charging the battery modules 100M and 100, and provides the power to the battery modules 100M and 100. Thereby, the battery modules 100M and 100 are charged.
 (2)電動車両における効果
 上記のように、本実施の形態に係る電動自動車600には、第1または第2の実施の形態に係るバッテリシステム500が設けられるので、電動自動車600の配線作業がおよび配線構造が単純化される。
(2) Effects in the Electric Vehicle As described above, since the electric vehicle 600 according to the present embodiment is provided with the battery system 500 according to the first or second embodiment, the wiring work of the electric vehicle 600 is performed. And the wiring structure is simplified.
 (3)他の移動体の構成および動作
 バッテリシステム500が船、航空機、エレベータまたは歩行ロボット等の他の移動体に搭載されてもよい。
(3) Configuration and Operation of Other Mobile Body The battery system 500 may be mounted on another mobile body such as a ship, an aircraft, an elevator, or a walking robot.
 バッテリシステム500が搭載された船は、例えば、図20の車体610の代わりに船体を備え、駆動輪603の代わりにスクリューを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。運転者は、船体を加速させる際にアクセル装置604の代わりに加速入力部を操作し、船体を減速させる際にブレーキ装置605の代わりに減速入力部を操作する。この場合、船体が移動本体部に相当し、モータが動力源に相当し、スクリューが駆動部に相当する。なお、船は、減速入力部を備えなくてもよい。この場合、運転者が加速入力部を操作して船体の加速を停止することにより、水の抵抗によって船体が減速する。このような構成において、モータがバッテリシステム500からの電力を受けてその電力を動力に変換し、変換された動力によってスクリューが回転されることにより船体が移動する。 A ship equipped with the battery system 500 includes, for example, a hull instead of the vehicle body 610 in FIG. 20, a screw instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. Instead, a deceleration input unit is provided. The driver operates the acceleration input unit instead of the accelerator device 604 when accelerating the hull, and operates the deceleration input unit instead of the brake device 605 when decelerating the hull. In this case, the hull corresponds to the moving main body, the motor corresponds to the power source, and the screw corresponds to the drive unit. The ship does not have to include a deceleration input unit. In this case, when the driver operates the acceleration input unit to stop the acceleration of the hull, the hull is decelerated due to the resistance of water. In such a configuration, the motor receives electric power from the battery system 500 and converts the electric power into power, and the hull moves by rotating the screw with the converted power.
 バッテリシステム500が搭載された航空機は、例えば、図20の車体610の代わりに機体を備え、駆動輪603の代わりにプロペラを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。なお、船および航空機は、減速入力部を備えなくてもよい。この場合、運転者が加速入力部を操作して加速を停止することにより、水の抵抗または空気抵抗によって機体が減速する。 An aircraft equipped with the battery system 500 includes, for example, a fuselage instead of the vehicle body 610 in FIG. 20, a propeller instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. Instead, a deceleration input unit is provided. Ships and aircraft do not have to include a deceleration input unit. In this case, when the driver operates the acceleration input unit to stop acceleration, the airframe is decelerated due to water resistance or air resistance.
 バッテリシステム500が搭載されたエレベータは、例えば、図20の車体610の代わりに籠を備え、駆動輪603の代わりに籠に取り付けられる昇降用ロープを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。 An elevator equipped with the battery system 500 includes, for example, a saddle instead of the vehicle body 610 in FIG. 20, a lifting rope attached to the saddle instead of the driving wheel 603, and an acceleration input unit instead of the accelerator device 604. And a deceleration input unit instead of the brake device 605.
 バッテリシステム500が搭載された歩行ロボットは、例えば、図20の車体610の代わりに胴体を備え、駆動輪603の代わりに足を備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。 A walking robot equipped with the battery system 500 includes, for example, a torso instead of the vehicle body 610 in FIG. 20, a foot instead of the drive wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. A deceleration input unit is provided instead of.
 これらの移動体においては、モータが動力源に相当し、船体、機体、籠および胴体が本体部に相当し、スクリュー、プロペラ、昇降用ロープおよび足が駆動部に相当する。動力源がバッテリシステム500からの電力を受けてその電力を動力に変換し、駆動部が動力源により変換された動力により移動本体部を移動させる。 In these moving bodies, the motor corresponds to the power source, the hull, the fuselage, the anchor and the fuselage correspond to the main body, and the screw, the propeller, the lifting rope and the foot correspond to the drive unit. The power source receives electric power from the battery system 500 and converts the electric power into motive power, and the drive unit moves the moving main body portion with the motive power converted by the motive power source.
 (4)他の移動体における効果
 このような種々の移動体においても、第1または第2の実施の形態に係るバッテリシステム500が用いられるので、移動体の配線作業がおよび配線構造が単純化される。
(4) Effects in other moving bodies Since the battery system 500 according to the first or second embodiment is used in such various moving bodies, the wiring work of the moving body and the wiring structure are simplified. Is done.
 (5)移動体の変形例
 図20の電動自動車600または他の移動体において、各バッテリシステム500にバッテリECU101が設けられる代わりに、主制御部300がバッテリECU101と同様の機能を有してもよい。
(5) Modified Example of Moving Body In the electric vehicle 600 of FIG. 20 or another moving body, each battery system 500 may have the same function as the battery ECU 101 instead of the battery ECU 101 provided in each battery system 500. Good.
 [4]第4の実施の形態
 第4の実施の形態に係る電源装置について説明する。本実施の形態に係る電源装置は、第1または第2の実施の形態に係るバッテリシステム500を備える。
[4] Fourth Embodiment A power supply device according to a fourth embodiment will be described. The power supply device according to the present embodiment includes battery system 500 according to the first or second embodiment.
 (1)構成および動作
 図21は、バッテリシステム500を備える電源装置の構成を示すブロック図である。図21に示すように、電源装置700は、電力貯蔵装置710および電力変換装置720を備える。電力貯蔵装置710は、バッテリシステム群711およびシステム制御部としてシステムコントローラ712を備える。バッテリシステム群711は、第1または第2の実施の形態に係るバッテリシステム500を含む。複数のバッテリシステム500間において、複数のバッテリセル10は互いに並列に接続されてもよく、または互いに直列に接続されてもよい。
(1) Configuration and Operation FIG. 21 is a block diagram illustrating a configuration of a power supply device including the battery system 500. As illustrated in FIG. 21, the power supply device 700 includes a power storage device 710 and a power conversion device 720. The power storage device 710 includes a battery system group 711 and a system controller 712 as a system control unit. The battery system group 711 includes the battery system 500 according to the first or second embodiment. Between the plurality of battery systems 500, the plurality of battery cells 10 may be connected to each other in parallel, or may be connected to each other in series.
 システムコントローラ712は、システム制御部の例であり、例えばCPUおよびメモリ、またはマイクロコンピュータからなる。システムコントローラ712は、各バッテリシステム500のバッテリECU101(図1参照)に接続される。各バッテリシステム500のバッテリECU101は、各バッテリセル10(図1参照)の端子電圧に基づいて各バッテリセル10の充電量を算出し、算出された充電量をシステムコントローラ712に与える。システムコントローラ712は、各バッテリECU101から与えられた各バッテリセル10の充電量に基づいて電力変換装置720を制御することにより、各バッテリシステム500に含まれる複数のバッテリセル10の放電または充電に関する制御を行う。 The system controller 712 is an example of a system control unit, and includes, for example, a CPU and a memory, or a microcomputer. The system controller 712 is connected to the battery ECU 101 (see FIG. 1) of each battery system 500. The battery ECU 101 of each battery system 500 calculates the charge amount of each battery cell 10 based on the terminal voltage of each battery cell 10 (see FIG. 1), and gives the calculated charge amount to the system controller 712. The system controller 712 controls the power conversion device 720 based on the charge amount of each battery cell 10 given from each battery ECU 101, thereby controlling the discharge or charging of the plurality of battery cells 10 included in each battery system 500. I do.
 電力変換装置720は、DC/DC(直流/直流)コンバータ721およびDC/AC(直流/交流)インバータ722を含む。DC/DCコンバータ721は入出力端子721a,721bを有し、DC/ACインバータ722は入出力端子722a,722bを有する。DC/DCコンバータ721の入出力端子721aは電力貯蔵装置710のバッテリシステム群711に接続される。DC/DCコンバータ721の入出力端子721bおよびDC/ACインバータ722の入出力端子722aは互いに接続されるとともに電力出力部PU1に接続される。DC/ACインバータ722の入出力端子722bは電力出力部PU2に接続されるとともに他の電力系統に接続される。電力出力部PU1,PU2は例えばコンセントを含む。電力出力部PU1,PU2には、例えば種々の負荷が接続される。他の電力系統は、例えば商用電源または太陽電池を含む。電力出力部PU1,PU2および他の電力系統が電源装置に接続される外部の例である。 The power converter 720 includes a DC / DC (DC / DC) converter 721 and a DC / AC (DC / AC) inverter 722. The DC / DC converter 721 has input / output terminals 721a and 721b, and the DC / AC inverter 722 has input / output terminals 722a and 722b. The input / output terminal 721 a of the DC / DC converter 721 is connected to the battery system group 711 of the power storage device 710. The input / output terminal 721b of the DC / DC converter 721 and the input / output terminal 722a of the DC / AC inverter 722 are connected to each other and to the power output unit PU1. The input / output terminal 722b of the DC / AC inverter 722 is connected to the power output unit PU2 and to another power system. The power output units PU1, PU2 include, for example, outlets. For example, various loads are connected to the power output units PU1 and PU2. Other power systems include, for example, commercial power sources or solar cells. This is an external example in which power output units PU1, PU2 and another power system are connected to a power supply device.
 DC/DCコンバータ721およびDC/ACインバータ722がシステムコントローラ712によって制御されることにより、バッテリシステム群711に含まれる複数のバッテリセル10の放電および充電が行われる。 The DC / DC converter 721 and the DC / AC inverter 722 are controlled by the system controller 712, whereby the plurality of battery cells 10 included in the battery system group 711 are discharged and charged.
 バッテリシステム群711の放電時には、バッテリシステム群711から与えられる電力がDC/DCコンバータ721によりDC/DC(直流/直流)変換され、さらにDC/ACインバータ722によりDC/AC(直流/交流)変換される。 When the battery system group 711 is discharged, power supplied from the battery system group 711 is DC / DC (direct current / direct current) converted by the DC / DC converter 721, and further DC / AC (direct current / alternating current) conversion is performed by the DC / AC inverter 722. Is done.
 DC/DCコンバータ721によりDC/DC変換された電力が電力出力部PU1に供給される。DC/ACインバータ722によりDC/AC変換された電力が電力出力部PU2に供給される。電力出力部PU1から外部に直流の電力が出力され、電力出力部PU2から外部に交流の電力が出力される。DC/ACインバータ722により交流に変換された電力が他の電力系統に供給されてもよい。 The power DC / DC converted by the DC / DC converter 721 is supplied to the power output unit PU1. The power DC / AC converted by the DC / AC inverter 722 is supplied to the power output unit PU2. DC power is output to the outside from the power output unit PU1, and AC power is output to the outside from the power output unit PU2. The electric power converted into alternating current by the DC / AC inverter 722 may be supplied to another electric power system.
 システムコントローラ712は、各バッテリシステム500に含まれる複数のバッテリセル10の放電に関する制御の一例として、次の制御を行う。バッテリシステム群711の放電時に、システムコントローラ712は、各バッテリECU101(図1参照)から与えられる各バッテリセル10の充電量に基づいて放電を停止するか否かを判定し、判定結果に基づいて電力変換装置720を制御する。具体的には、バッテリシステム群711に含まれる複数のバッテリセル10(図1参照)のうちいずれかのバッテリセル10の充電量が予め定められたしきい値よりも小さくなると、システムコントローラ712は、放電が停止されるまたは放電電流(または放電電力)が制限されるようにDC/DCコンバータ721およびDC/ACインバータ722を制御する。これにより、各バッテリセル10の過放電が防止される。 The system controller 712 performs the following control as an example of control related to the discharge of the plurality of battery cells 10 included in each battery system 500. When the battery system group 711 is discharged, the system controller 712 determines whether to stop discharging based on the charge amount of each battery cell 10 given from each battery ECU 101 (see FIG. 1), and based on the determination result. The power converter 720 is controlled. Specifically, when the charge amount of any one of the plurality of battery cells 10 (see FIG. 1) included in the battery system group 711 becomes smaller than a predetermined threshold, the system controller 712 The DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the discharge is stopped or the discharge current (or discharge power) is limited. Thereby, overdischarge of each battery cell 10 is prevented.
 一方、バッテリシステム群711の充電時には、他の電力系統から与えられる交流の電力がDC/ACインバータ722によりAC/DC(交流/直流)変換され、さらにDC/DCコンバータ721によりDC/DC(直流/直流)変換される。DC/DCコンバータ721からバッテリシステム群711に電力が与えられることにより、バッテリシステム群711に含まれる複数のバッテリセル10(図1参照)が充電される。 On the other hand, when the battery system group 711 is charged, AC power supplied from another power system is AC / DC (AC / DC) converted by the DC / AC inverter 722, and further DC / DC (DC) is converted by the DC / DC converter 721. / DC) converted. When power is supplied from the DC / DC converter 721 to the battery system group 711, the plurality of battery cells 10 (see FIG. 1) included in the battery system group 711 are charged.
 システムコントローラ712は、各バッテリシステム500に含まれる複数のバッテリセル10の充電に関する制御の一例として、次の制御を行う。バッテリシステム群711の充電時に、システムコントローラ712は、各バッテリECU101(図1参照)から与えられる各バッテリセル10の充電量に基づいて充電を停止するか否かを判定し、判定結果に基づいて電力変換装置720を制御する。具体的には、バッテリシステム群711に含まれる複数のバッテリセル10のうちいずれかのバッテリセル10の充電量が予め定められたしきい値よりも大きくなると、システムコントローラ712は、充電が停止されるまたは充電電流(または充電電力)が制限されるようにDC/DCコンバータ721およびDC/ACインバータ722を制御する。これにより、各バッテリセル10の過充電が防止される。 The system controller 712 performs the following control as an example of control related to charging of the plurality of battery cells 10 included in each battery system 500. When charging the battery system group 711, the system controller 712 determines whether or not to stop charging based on the charge amount of each battery cell 10 given from each battery ECU 101 (see FIG. 1), and based on the determination result. The power converter 720 is controlled. Specifically, when the charge amount of any one of the plurality of battery cells 10 included in the battery system group 711 exceeds a predetermined threshold value, the system controller 712 stops charging. Or the DC / DC converter 721 and the DC / AC inverter 722 are controlled such that the charging current (or charging power) is limited. Thereby, overcharge of each battery cell 10 is prevented.
 (2)効果
 上記のように、本実施の形態に係る電源装置700には、第1または第2の実施の形態に係るバッテリシステム500が設けられるので、電源装置700の配線作業がおよび配線構造が単純化される。
(2) Effect As described above, since the power supply device 700 according to the present embodiment is provided with the battery system 500 according to the first or second embodiment, the wiring work of the power supply device 700 and the wiring structure are performed. Is simplified.
 (3)電源装置の変形例
 図21の電源装置700において、各バッテリシステム500にバッテリECU101が設けられる代わりに、システムコントローラ712がバッテリECU101と同様の機能を有してもよい。
(3) Modified Example of Power Supply Device In the power supply device 700 of FIG. 21, the system controller 712 may have the same function as the battery ECU 101 instead of providing the battery ECU 101 in each battery system 500.
 電源装置700と外部との間で互いに電力を供給可能であれば、電力変換装置720がDC/DCコンバータ721およびDC/ACインバータ722のうちいずれか一方のみを有してもよい。また、電源装置700と外部との間で互いに電力を供給可能であれば、電力変換装置720が設けられなくてもよい。 As long as power can be supplied between the power supply apparatus 700 and the outside, the power conversion apparatus 720 may include only one of the DC / DC converter 721 and the DC / AC inverter 722. Further, the power conversion device 720 may not be provided as long as power can be supplied between the power supply device 700 and the outside.
 図21の電源装置700においては、複数のバッテリシステム500が設けられるが、これに限らず、1つのバッテリシステム500のみが設けられてもよい。 21 includes a plurality of battery systems 500, but is not limited thereto, and only one battery system 500 may be provided.
 [5]他の実施の形態
 (1)上記実施の形態において、直列接続された複数のバッテリモジュール100M,100のうち、バッテリモジュール100Mが最も高電位側に配置されるが、これに限定されない。バッテリモジュール100Mは最も低電位側に配置されてもよい。この場合、最も高電位側に配置されるバッテリモジュール100の第2回路24とバッテリECU101とが通信ケーブルにより接続される。
[5] Other Embodiments (1) In the above embodiment, among the plurality of battery modules 100M, 100 connected in series, the battery module 100M is arranged on the highest potential side, but the present invention is not limited to this. The battery module 100M may be disposed on the lowest potential side. In this case, the second circuit 24 of the battery module 100 arranged on the highest potential side and the battery ECU 101 are connected by a communication cable.
 (2)上記実施の形態において、バッテリモジュール100MおよびバッテリECU101は、終端抵抗RTがバス103の端部に位置するように接続されるが、これに限定されない。バス103の末端での信号の反射が小さい場合、バッテリモジュール100MおよびバッテリECU101は、終端抵抗RTがバス103の端部に位置するように接続されなくてもよい。 (2) In the above embodiment, the battery module 100M and the battery ECU 101 are connected so that the termination resistor RT is located at the end of the bus 103, but is not limited thereto. When the signal reflection at the end of the bus 103 is small, the battery module 100M and the battery ECU 101 do not have to be connected so that the termination resistor RT is located at the end of the bus 103.
 (3)上記実施の形態において、バッテリモジュール100Mは、複数のバッテリセル10に流れる電流に応じた電圧を発生する素子としてシャント抵抗RSを有するが、これに限定されない。例えば、バッテリモジュール100Mは、複数のバッテリセル10に流れる電流に応じた電圧を発生するホール素子等の他の素子を有してもよい。この場合、第3回路80は、ホール素子に発生する電圧を検出することにより、複数のバッテリセル10に流れる電流を電圧の形態で検出する。 (3) In the above embodiment, the battery module 100M has the shunt resistor RS as an element that generates a voltage corresponding to the current flowing through the plurality of battery cells 10, but is not limited thereto. For example, the battery module 100M may include other elements such as a Hall element that generates a voltage corresponding to the current flowing through the plurality of battery cells 10. In this case, the third circuit 80 detects the current flowing through the plurality of battery cells 10 in the form of voltage by detecting the voltage generated in the Hall element.
 (4)上記実施の形態において、バッテリシステム500はバッテリECU101を有するが、これに限定されない。第2回路24がバッテリECU101の機能を有する場合、バッテリシステム500はバッテリECU101を有さなくてもよい。 (4) In the above embodiment, the battery system 500 includes the battery ECU 101, but is not limited thereto. When the second circuit 24 has the function of the battery ECU 101, the battery system 500 may not have the battery ECU 101.
 (5)上記実施の形態において、バッテリシステム500は1個のバッテリモジュール100Mを有するが、これに限定されない。バッテリシステム500がバッテリECU101を有さない場合、バッテリシステム500は2個のバッテリモジュール100Mを有してもよい。この場合、2個のバッテリモジュール100Mは、終端抵抗RTがバス103の端部に位置するように接続される。また、バッテリシステム500が2個のバッテリモジュール100Mを有する場合、一方のバッテリモジュール100Mがシャント抵抗RS、第3回路80および絶縁素子27を有すればよい。 (5) In the above embodiment, the battery system 500 includes one battery module 100M, but is not limited thereto. When the battery system 500 does not include the battery ECU 101, the battery system 500 may include two battery modules 100M. In this case, the two battery modules 100M are connected so that the termination resistor RT is located at the end of the bus 103. In addition, when the battery system 500 includes two battery modules 100M, one battery module 100M may include the shunt resistor RS, the third circuit 80, and the insulating element 27.
 (6)上記実施の形態において、シャント抵抗RSとしてバスバー40と略同形状の電圧電流バスバー40yが用いられるが、これに限定されない。シャント抵抗RSとして他の抵抗素子が用いられてもよい。 (6) In the above embodiment, the voltage / current bus bar 40y having substantially the same shape as the bus bar 40 is used as the shunt resistor RS, but the present invention is not limited to this. Another resistive element may be used as the shunt resistor RS.
 (7)上記実施の形態において、電圧電流バスバー40yがバッテリモジュール100Mの端部に配置されるバッテリセル10に接続されるが、これに限定されない。電圧電流バスバー40yは、隣接する2個のバッテリセル10のプラス電極10aとマイナス電極10bとを接続する複数のバスバー40の1つに代えて接続されてもよい。 (7) In the above embodiment, the voltage / current bus bar 40y is connected to the battery cell 10 arranged at the end of the battery module 100M, but the present invention is not limited to this. The voltage / current bus bar 40y may be connected in place of one of the plurality of bus bars 40 connecting the plus electrode 10a and the minus electrode 10b of two adjacent battery cells 10.
 (8)上記実施の形態において、主回路基板21上にグランドパターンGND1LとグランドパターンGND3とが別個に形成されるが、これに限定されない。グランドパターンGND1LおよびグランドパターンGND3の電位は等しいので、グランドパターンGND1LとグランドパターンGND3とが一体的に形成されてもよい。 (8) In the above embodiment, the ground pattern GND1L and the ground pattern GND3 are separately formed on the main circuit board 21, but the present invention is not limited to this. Since the potentials of the ground pattern GND1L and the ground pattern GND3 are equal, the ground pattern GND1L and the ground pattern GND3 may be integrally formed.
 (9)上記実施の形態において、主回路基板21上にグランドパターンGND1HとグランドパターンGND3とが別個に形成されるが、これに限定されない。例えば、9番目のバッテリセル10のプラス電極10aと10番目のバッテリセル10のマイナス電極10bとを接続するバスバー40として電圧電流バスバー40yが用いられる場合、グランドパターンGND1HおよびグランドパターンGND3の電位が等しくなる。この場合、グランドパターンGND1HとグランドパターンGND3とが一体的に形成されてもよい。 (9) In the above embodiment, the ground pattern GND1H and the ground pattern GND3 are separately formed on the main circuit board 21, but the present invention is not limited to this. For example, when the voltage / current bus bar 40y is used as the bus bar 40 that connects the plus electrode 10a of the ninth battery cell 10 and the minus electrode 10b of the tenth battery cell 10, the potentials of the ground pattern GND1H and the ground pattern GND3 are equal. Become. In this case, the ground pattern GND1H and the ground pattern GND3 may be integrally formed.
 (10)バッテリモジュールの第1の変形例
 バッテリモジュール100Mの主回路基板21,21bは、端面枠92に取り付けられずにバッテリモジュール100Mのバッテリブロック10BBの上面に取り付けられてもよい。同様に、バッテリモジュール100の副回路基板21a,21cは、端面枠92に取り付けられずにバッテリモジュール100のバッテリブロック10BBの上面に取り付けられてもよい。
(10) First Modification of Battery Module The main circuit boards 21 and 21b of the battery module 100M may be attached to the upper surface of the battery block 10BB of the battery module 100M without being attached to the end face frame 92. Similarly, the sub circuit boards 21a and 21c of the battery module 100 may be attached to the upper surface of the battery block 10BB of the battery module 100 without being attached to the end face frame 92.
 図22は、第1の変形例に係るバッテリモジュール100Mの構成を示す分解斜視図である。図22に示すように、第1の変形例に係るバッテリモジュール100Mは、上部が開口したケーシング(筺体)CA内に配置される。バッテリモジュール100Mは、ガスダクト111および蓋部材70をさらに備える。蓋部材70は、樹脂等の絶縁性材料からなり、矩形板状を有する。バッテリブロック10BBの上面に、ガスダクト111、配線部材110、蓋部材70および主回路基板21が順に配置される。配線部材110およびガスダクト111は蓋部材70の下面に取り付けられ、主回路基板21は蓋部材70の上面に取り付けられる。ケーシングCA内にバッテリブロック10BBが収納されるとともに、ケーシングCAの開口を閉塞するように蓋部材70がケーシングCAに嵌合された状態で取り付けられる。これにより、バッテリモジュール100Mを収納するバッテリボックスBBが形成される。ここで、蓋部材70は、ねじ止めまたは接着剤等によりケーシングCAに取り付けられてもよい。これにより、蓋部材70をケーシングCAに確実に固定することができる。また、蓋部材70はケーシングCAに嵌合されなくてもよい。 FIG. 22 is an exploded perspective view showing the configuration of the battery module 100M according to the first modification. As shown in FIG. 22, the battery module 100M according to the first modification is disposed in a casing (housing) CA having an open top. The battery module 100M further includes a gas duct 111 and a lid member 70. The lid member 70 is made of an insulating material such as resin and has a rectangular plate shape. The gas duct 111, the wiring member 110, the lid member 70, and the main circuit board 21 are sequentially arranged on the upper surface of the battery block 10BB. The wiring member 110 and the gas duct 111 are attached to the lower surface of the lid member 70, and the main circuit board 21 is attached to the upper surface of the lid member 70. Battery block 10BB is accommodated in casing CA, and lid member 70 is fitted in casing CA so as to close the opening of casing CA. Thereby, the battery box BB that houses the battery module 100M is formed. Here, the lid member 70 may be attached to the casing CA by screwing or an adhesive. Thereby, the lid member 70 can be reliably fixed to the casing CA. Further, the lid member 70 may not be fitted into the casing CA.
 図23は、図22の蓋部材70を斜め下方から見た斜視図である。図24は、図22の蓋部材70を斜め上方から見た斜視図である。以下、X方向に沿った蓋部材70の一辺および他辺をそれぞれ側辺70aおよび側辺70bと呼ぶ。蓋部材70の側辺70aはバッテリブロック10BB(図22参照)の一方向の側面E1(図22参照)に沿い、蓋部材70の側辺70bはバッテリブロック10BBの他方向の側面E2(図22参照)に沿う。また、バッテリブロック10BBに対向する蓋部材70の面を裏面と呼び、その反対側の蓋部材70の面を表面と呼ぶ。本例では、蓋部材70の表面が上方に向けられる。 FIG. 23 is a perspective view of the lid member 70 of FIG. 22 as viewed obliquely from below. 24 is a perspective view of the lid member 70 of FIG. 22 as viewed obliquely from above. Hereinafter, one side and the other side of the lid member 70 along the X direction are referred to as a side side 70a and a side side 70b, respectively. The side 70a of the lid member 70 is along a side E1 (see FIG. 22) in one direction of the battery block 10BB (see FIG. 22). See). Further, the surface of the lid member 70 facing the battery block 10BB is called a back surface, and the surface of the lid member 70 on the opposite side is called a front surface. In this example, the surface of the lid member 70 is directed upward.
 図23に示すように、蓋部材70の裏面には、蓋部材70の側辺70aおよび側辺70bに沿って延びるように、FPC嵌合部74がそれぞれ形成される。FPC嵌合部74内に、配線部材110のFPC基板50が嵌合される。以下、蓋部材70の側辺70aおよび側辺70bに沿うように設けられたFPC嵌合部74をそれぞれ側辺70a側および側辺70b側のFPC嵌合部74と呼ぶ。 23, FPC fitting portions 74 are formed on the back surface of the lid member 70 so as to extend along the side side 70a and the side side 70b of the lid member 70, respectively. The FPC board 50 of the wiring member 110 is fitted into the FPC fitting portion 74. Hereinafter, the FPC fitting portions 74 provided along the side 70a and the side 70b of the lid member 70 are referred to as the FPC fitting 74 74 on the side 70a side and the side 70b side, respectively.
 側辺70a側および側辺70b側のFPC嵌合部74に沿うように、複数の凹部71,72が設けられる。本例では、側辺70a側のFPC嵌合部74に沿うように9つの凹部71が設けられる。蓋部材70の側辺70bに沿うように1つの凹部72、8つの凹部71および他の1つの凹部72が設けられる。 A plurality of concave portions 71 and 72 are provided along the FPC fitting portions 74 on the side side 70a side and the side side 70b side. In this example, nine concave portions 71 are provided along the FPC fitting portion 74 on the side 70a side. One recess 72, eight recesses 71, and another one recess 72 are provided along the side edge 70 b of the lid member 70.
 凹部71,72は略矩形状を有し、凹部71のX方向における長さは凹部72のX方向における長さよりも大きい。凹部71の形状および長さはバスバー40の形状および長さとほぼ等しく、凹部72の形状および長さはバスバー40aの形状および長さとほぼ等しい。複数の凹部71,72の底面から蓋部材70の表面に貫通するように、複数の開口73が形成される(図24参照)。各凹部71内には2つの開口73(図24参照)が形成され、各凹部72内には1つの開口73(図24参照)が形成される。以下、蓋部材70の側辺70aに沿うように設けられた凹部71および開口73をそれぞれ側辺70a側の凹部71および側辺70a側の開口73と呼び、蓋部材70の側辺70bに沿うように設けられた凹部71,72および開口73をそれぞれ側辺70b側の凹部71,72および側辺70b側の開口73と呼ぶ。 The recesses 71 and 72 have a substantially rectangular shape, and the length of the recess 71 in the X direction is larger than the length of the recess 72 in the X direction. The shape and length of the recess 71 are approximately equal to the shape and length of the bus bar 40, and the shape and length of the recess 72 are approximately equal to the shape and length of the bus bar 40a. A plurality of openings 73 are formed so as to penetrate from the bottom surfaces of the plurality of recesses 71 and 72 to the surface of the lid member 70 (see FIG. 24). Two openings 73 (see FIG. 24) are formed in each recess 71, and one opening 73 (see FIG. 24) is formed in each recess 72. Hereinafter, the recess 71 and the opening 73 provided along the side 70a of the lid member 70 are referred to as the recess 71 on the side 70a and the opening 73 on the side 70a, respectively, and are along the side 70b of the lid 70. The recesses 71 and 72 and the opening 73 thus provided are referred to as the recesses 71 and 72 on the side 70b side and the opening 73 on the side 70b side, respectively.
 蓋部材70の凹部71には配線部材110のバスバー40が嵌合され、凹部72には配線部材110のバスバー40aが嵌合される。バスバー40が凹部71に嵌合された状態で、バスバー40の電極接続孔43は開口73内で蓋部材70の表面側に露出する。同様に、バスバー40aが凹部72に嵌合された状態で、バスバー40aの電極接続孔47は開口73内で蓋部材70の表面側に露出する。 The bus bar 40 of the wiring member 110 is fitted into the recess 71 of the lid member 70, and the bus bar 40 a of the wiring member 110 is fitted into the recess 72. In a state where the bus bar 40 is fitted in the recess 71, the electrode connection hole 43 of the bus bar 40 is exposed to the surface side of the lid member 70 in the opening 73. Similarly, the electrode connection hole 47 of the bus bar 40 a is exposed to the surface side of the lid member 70 in the opening 73 in a state where the bus bar 40 a is fitted in the recess 72.
 側辺70a側の複数の複数の凹部71と側辺70b側の複数の凹部71,72との間でX方向に延びるようにダクト嵌合部77が形成される。ダクト嵌合部77内に、ガスダクト111が嵌合される。 The duct fitting portion 77 is formed so as to extend in the X direction between the plurality of recesses 71 on the side 70a side and the plurality of recesses 71 and 72 on the side 70b side. The gas duct 111 is fitted in the duct fitting portion 77.
 側辺70a側の複数の凹部71から側辺70a側のFPC嵌合部74にそれぞれ延びるように複数対の接続溝75が形成される。側辺70b側の複数の凹部71から側辺70b側のFPC嵌合部74にそれぞれ延びるように複数対の接続溝75が形成される。側辺70b側の複数の凹部72から側辺70b側のFPC嵌合部74にそれぞれ延びるように複数の接続溝76が形成される。複数対の接続溝75内には、複数のバスバー40の一対の取付片42がそれぞれ配置される。複数の接続溝76内には、複数のバスバー40aの取付片46がそれぞれ配置される。 A plurality of pairs of connection grooves 75 are formed so as to extend from the plurality of recesses 71 on the side 70a side to the FPC fitting portion 74 on the side 70a side. A plurality of pairs of connection grooves 75 are formed so as to extend from the plurality of recesses 71 on the side 70b side to the FPC fitting portion 74 on the side 70b side. A plurality of connection grooves 76 are formed to extend from the plurality of recesses 72 on the side 70b side to the FPC fitting portion 74 on the side 70b side. A pair of attachment pieces 42 of the plurality of bus bars 40 are respectively disposed in the plurality of pairs of connection grooves 75. In the plurality of connection grooves 76, the attachment pieces 46 of the plurality of bus bars 40a are respectively arranged.
 次に、FPC基板50と主回路基板21との接続について説明する。図25は、第1の変形例における複数のバスバー40,40aおよび2枚のFPC基板50を上方から見た図である。図25のFPC基板50は、以下の点を除いて図12のFPC基板50と同様の構成を有する。 Next, the connection between the FPC board 50 and the main circuit board 21 will be described. FIG. 25 is a view of the plurality of bus bars 40, 40a and the two FPC boards 50 in the first modification as viewed from above. The FPC board 50 of FIG. 25 has the same configuration as the FPC board 50 of FIG. 12 except for the following points.
 図25に示すように、各FPC基板50は、複数の導体線52に対応する複数の接続端子22aをさらに有する。複数の接続端子22aは、各FPC基板50の一方側の側辺に沿ってX方向に並ぶように配置される。各導体線52は、対応するPTC素子60と接続端子22aとの間でY方向に平行に延びるように設けられる。導体線51,52およびPTC素子60により、接続端子22aとバスバー40,40aとが電気的に接続される。 As shown in FIG. 25, each FPC board 50 further includes a plurality of connection terminals 22a corresponding to a plurality of conductor lines 52. The plurality of connection terminals 22a are arranged so as to be aligned in the X direction along one side of each FPC board 50. Each conductor line 52 is provided to extend parallel to the Y direction between the corresponding PTC element 60 and the connection terminal 22a. The connection terminals 22a and the bus bars 40, 40a are electrically connected by the conductor wires 51, 52 and the PTC element 60.
 図26は、第1の変形例における主回路基板21を上方から見た図である。図26の主回路基板21は、以下の点を除いて図12の主回路基板21と同様の構成を有する。 FIG. 26 is a view of the main circuit board 21 in the first modification as viewed from above. The main circuit board 21 of FIG. 26 has the same configuration as the main circuit board 21 of FIG. 12 except for the following points.
 図26に示すように、主回路基板21は矩形板状を有する。主回路基板21の複数の接続端子22は、主回路基板21の一方側および他方側の側辺に沿ってX方向に並ぶように配置される。複数の接続端子22はFPC基板50の複数の接続端子22a(図25参照)に対応する。 As shown in FIG. 26, the main circuit board 21 has a rectangular plate shape. The plurality of connection terminals 22 of the main circuit board 21 are arranged along the one side and the other side of the main circuit board 21 in the X direction. The plurality of connection terminals 22 correspond to the plurality of connection terminals 22a (see FIG. 25) of the FPC board 50.
 図27は、第1の変形例におけるFPC基板50と主回路基板21との接続構造を示す模式的断面図である。図27には、FPC基板50の一の接続端子22aと主回路基板21の一の接続端子22との接続構造が示される。 FIG. 27 is a schematic cross-sectional view showing a connection structure between the FPC board 50 and the main circuit board 21 in the first modification. FIG. 27 shows a connection structure between one connection terminal 22 a of the FPC board 50 and one connection terminal 22 of the main circuit board 21.
 図27に示すように、FPC基板50の各接続端子22aには孔部53が形成され、主回路基板21の各接続端子22には孔部23が形成される。また、各接続端子22aと各接続端子22との間における蓋部材70の部分には孔部78が形成される。各接続端子22aと各接続端子22との間に接続部材PHが取り付けられる。第1の変形例では、接続部材PHとしてピンヘッダが用いられる。 27, a hole 53 is formed in each connection terminal 22a of the FPC board 50, and a hole 23 is formed in each connection terminal 22 of the main circuit board 21. Further, a hole 78 is formed in the portion of the lid member 70 between each connection terminal 22a and each connection terminal 22. A connection member PH is attached between each connection terminal 22 a and each connection terminal 22. In the first modification, a pin header is used as the connection member PH.
 接続部材PHは、下方に突出するピンPN1および上方に突出するピンPN2を有する。ピンPN1,PN2は互いに一体に1本のピンで構成される。なお、ピンPN1,PN2が電気的に接続されていれば、ピンPN1,PN2が別体であってもよい。接続部材PHのピンPN1がFPC基板50の上方からFPC基板50の孔部53に挿入され、接続部材PHのピンPN2が蓋部材70の下方から蓋部材70の孔部78および主回路基板21の孔部23に挿入される。 The connection member PH has a pin PN1 protruding downward and a pin PN2 protruding upward. The pins PN1 and PN2 are formed of one pin integrally with each other. Note that the pins PN1 and PN2 may be separate if the pins PN1 and PN2 are electrically connected. The pin PN1 of the connecting member PH is inserted into the hole 53 of the FPC board 50 from above the FPC board 50, and the pin PN2 of the connecting member PH is inserted into the hole 78 of the lid member 70 and the main circuit board 21 from below the lid member 70. It is inserted into the hole 23.
 その状態で、半田SOによって接続部材PHのピンPN1がFPC基板50の接続端子22aに接続され、ピンPN2が主回路基板21の接続端子22に接続される。これにより、FPC基板50の各接続端子22aが主回路基板21の対応する接続端子22に電気的に接続される。 In this state, the pin PN1 of the connection member PH is connected to the connection terminal 22a of the FPC board 50 by the solder SO, and the pin PN2 is connected to the connection terminal 22 of the main circuit board 21. Thereby, each connection terminal 22 a of the FPC board 50 is electrically connected to the corresponding connection terminal 22 of the main circuit board 21.
 変形例2に係るバッテリモジュール100Mにおいては、図7のバッテリモジュール100Mと同様にシャント抵抗RSが一方のFPC基板50に設けられるが、これに限定されない。シャント抵抗RSはバッテリモジュール100Mの複数のバッテリセル10と直列に接続されるように主回路基板21に設けられてもよい。この場合、シャント抵抗RSとしては、電圧電流バスバー40yとは異なる他の抵抗素子が設けられてもよい。 In the battery module 100M according to the second modification, the shunt resistor RS is provided on one FPC board 50 as in the battery module 100M of FIG. 7, but the present invention is not limited to this. The shunt resistor RS may be provided on the main circuit board 21 so as to be connected in series with the plurality of battery cells 10 of the battery module 100M. In this case, as the shunt resistor RS, another resistance element different from the voltage / current bus bar 40y may be provided.
 このようにして、ガスダクト111、配線部材110および主回路基板21が蓋部材70に取り付けられる。その状態で、蓋部材70がバッテリブロック10BBの上面に取り付けられる。複数のバスバー40の電極接続孔43には、複数のバッテリセル10のプラス電極10a(図22参照)およびマイナス電極10b(図22参照)が嵌め込まれる。複数のバスバー40aの電極接続孔47には、複数のバッテリセル10のプラス電極10aまたはマイナス電極10bが挿入される。ガスダクト111は、複数のバッテリセル10のガス抜き弁10vを覆うようにバッテリブロック10BBの上面に配置される。 In this way, the gas duct 111, the wiring member 110, and the main circuit board 21 are attached to the lid member 70. In this state, the lid member 70 is attached to the upper surface of the battery block 10BB. The plus electrodes 10a (see FIG. 22) and the minus electrodes 10b (see FIG. 22) of the plurality of battery cells 10 are fitted into the electrode connection holes 43 of the plurality of bus bars 40. The positive electrodes 10a or the negative electrodes 10b of the plurality of battery cells 10 are inserted into the electrode connection holes 47 of the plurality of bus bars 40a. The gas duct 111 is disposed on the upper surface of the battery block 10BB so as to cover the gas vent valves 10v of the plurality of battery cells 10.
 蓋部材70の各開口73(図24参照)内において、図示しないナットがプラス電極10aおよびマイナス電極10bの雄ねじに螺合される。これにより、隣り合うバッテリセル10がバスバー40を介して電気的に接続される。その結果、複数のバッテリセル10が直列接続される。また、複数のバスバー40,40aがFPC基板50を介して主回路基板21上の低電位異常検出部30Lおよび高電位異常検出部30H(図26参照)に接続される。 In each opening 73 (see FIG. 24) of the lid member 70, a nut (not shown) is screwed into the male threads of the plus electrode 10a and the minus electrode 10b. Thereby, adjacent battery cells 10 are electrically connected via the bus bar 40. As a result, the plurality of battery cells 10 are connected in series. A plurality of bus bars 40, 40a are connected to the low potential abnormality detection unit 30L and the high potential abnormality detection unit 30H (see FIG. 26) on the main circuit board 21 through the FPC board 50.
 このように、このバッテリモジュール100Mにおいては、ガスダクト111、配線部材110および主回路基板21が蓋部材70に一体的に設けられる。そのため、蓋部材70をバッテリブロック10BBに取り付けることにより、バッテリモジュール100Mを容易に組み立てることが可能となる。また、バッテリセル10のガス抜き弁10vから排出されたガスを、ガスダクト111を通して効率よく外部に放出することができる。 Thus, in the battery module 100M, the gas duct 111, the wiring member 110, and the main circuit board 21 are integrally provided on the lid member 70. Therefore, battery module 100M can be easily assembled by attaching lid member 70 to battery block 10BB. Further, the gas discharged from the gas vent valve 10v of the battery cell 10 can be efficiently discharged to the outside through the gas duct 111.
 また、バッテリブロック10BBに含まれるバッテリセル10の数が多い場合、バッテリブロック10BBの上面の面積は端面枠92(図22参照)の面積よりも大きくなる。そのため、図22のバッテリブロック10BBの上面には、図7の主回路基板21よりも大きい主回路基板21を配置することができる。そのため、主回路基板21にはより多数の回路を実装することができる。 Further, when the number of battery cells 10 included in the battery block 10BB is large, the area of the upper surface of the battery block 10BB is larger than the area of the end face frame 92 (see FIG. 22). Therefore, the main circuit board 21 larger than the main circuit board 21 of FIG. 7 can be disposed on the upper surface of the battery block 10BB of FIG. Therefore, a larger number of circuits can be mounted on the main circuit board 21.
 本例においては、バッテリモジュール100Mを収納するバッテリボックスBBが形成されることにより、バッテリモジュール100Mの強度が向上する。また、バッテリモジュール100Mのバッテリブロック10BBがバッテリボックスBBのケーシングCAに固定されるとともに、蓋部材70がケーシングCAに嵌合するので、バッテリブロック10BBと蓋部材70とを確実に固定することができる。 In this example, the strength of the battery module 100M is improved by forming the battery box BB that houses the battery module 100M. Further, since the battery block 10BB of the battery module 100M is fixed to the casing CA of the battery box BB and the lid member 70 is fitted to the casing CA, the battery block 10BB and the lid member 70 can be reliably fixed. .
 本例において、ケーシングCAの開口が蓋部材70により閉塞されている。そのため、バッテリボックスBB内が樹脂によりモールドされてもよい。この場合、バッテリセル10の結露を防止することができる。また、バッテリボックスBB内にモールドされた樹脂は、バッテリモジュール100Mの熱伝導特性に影響を及ぼすことができる。例えば、バッテリボックスBB内を空気よりも高い熱伝導率を有する樹脂でモールドすることにより、バッテリボックスBB内の熱を外部に放出することができる。一方、バッテリボックスBB内を空気よりも低い熱伝導率を有する樹脂でモールドすることにより、外部からバッテリボックスBB内への熱の流入を遮断することができる。 In this example, the opening of the casing CA is closed by the lid member 70. Therefore, the inside of the battery box BB may be molded with resin. In this case, condensation of the battery cell 10 can be prevented. Further, the resin molded in the battery box BB can affect the heat conduction characteristics of the battery module 100M. For example, by molding the inside of the battery box BB with a resin having a higher thermal conductivity than air, the heat in the battery box BB can be released to the outside. On the other hand, by molding the inside of the battery box BB with a resin having a thermal conductivity lower than that of air, the inflow of heat from the outside into the battery box BB can be blocked.
 また、バッテリボックスBB内は、閉鎖されているため、ケーシングCAおよび蓋部材70の少なくとも一方に孔部を設けることにより、バッテリボックスBB内の排気を行うことができる。この場合、バッテリモジュール100Mにガスダクト111が設けられなくてもよい。 Further, since the inside of the battery box BB is closed, the inside of the battery box BB can be exhausted by providing a hole in at least one of the casing CA and the lid member 70. In this case, the gas duct 111 may not be provided in the battery module 100M.
 (11)バッテリモジュールの第2の変形例
 図28は、第2の変形例に係るバッテリモジュール100Mの構成を示す分解斜視図である。第2の変形例に係るバッテリモジュール100Mについて、第1の変形例に係るバッテリモジュール100Mと異なる点を説明する。
(11) Second Modification of Battery Module FIG. 28 is an exploded perspective view showing a configuration of a battery module 100M according to the second modification. Differences of the battery module 100M according to the second modification from the battery module 100M according to the first modification will be described.
 図28に示すように、バッテリブロック10BBの上面に、ガスダクト111、蓋部材70、配線部材110および主回路基板21が順に配置される。第2の変形例に係るバッテリモジュール100Mと第1の変形例に係るバッテリモジュール100Mとでは、蓋部材70とFPC基板50との位置関係が異なる。ガスダクト111は蓋部材70の下面に取り付けられ、配線部材110および主回路基板21は蓋部材70の上面に取り付けられる。 As shown in FIG. 28, the gas duct 111, the lid member 70, the wiring member 110, and the main circuit board 21 are sequentially arranged on the upper surface of the battery block 10BB. The battery module 100M according to the second modification and the battery module 100M according to the first modification have different positional relationships between the lid member 70 and the FPC board 50. The gas duct 111 is attached to the lower surface of the lid member 70, and the wiring member 110 and the main circuit board 21 are attached to the upper surface of the lid member 70.
 図29は、図28の蓋部材70を斜め下方から見た斜視図である。図30は、図28の蓋部材70を斜め上方から見た斜視図である。図29に示すように、蓋部材70の裏面は、ダクト嵌合部77が形成される点を除いて図29の蓋部材70の表面と同じ構成を有する。図30に示すように、蓋部材70の表面は、ダクト嵌合部77が形成されない点を除いて図28の蓋部材70の裏面と同じ構成を有する。 FIG. 29 is a perspective view of the lid member 70 of FIG. 28 as viewed obliquely from below. FIG. 30 is a perspective view of the lid member 70 of FIG. 28 as viewed obliquely from above. As shown in FIG. 29, the back surface of the lid member 70 has the same configuration as the surface of the lid member 70 in FIG. 29 except that a duct fitting portion 77 is formed. As shown in FIG. 30, the surface of the lid member 70 has the same configuration as the back surface of the lid member 70 of FIG. 28 except that the duct fitting portion 77 is not formed.
 FPC基板50と主回路基板21との接続については、第1の変形例におけるFPC基板50と主回路基板21との接続と同様である。第2の変形例においてはFPC基板50と主回路基板21との間に蓋部材70が配置されないので、蓋部材70に図27の孔部78が設けられない。 The connection between the FPC board 50 and the main circuit board 21 is the same as the connection between the FPC board 50 and the main circuit board 21 in the first modification. In the second modification, the lid member 70 is not disposed between the FPC board 50 and the main circuit board 21, and thus the hole 78 of FIG. 27 is not provided in the lid member 70.
 ガスダクト111、配線部材110および主回路基板21が蓋部材70に取り付けられる。この場合、配線部材110のバスバー40,40aが蓋部材70の表面に取り付けられる。複数のバスバー40,40aは、第1の変形例に係るバッテリモジュール100Mと同様の方法で、複数のバッテリセル10のプラス電極10aおよびマイナス電極10bに接続される。 The gas duct 111, the wiring member 110, and the main circuit board 21 are attached to the lid member 70. In this case, the bus bars 40, 40 a of the wiring member 110 are attached to the surface of the lid member 70. The plurality of bus bars 40, 40a are connected to the plus electrode 10a and the minus electrode 10b of the plurality of battery cells 10 in the same manner as the battery module 100M according to the first modification.
 このように、このバッテリモジュール100Mにおいても、ガスダクト111、配線部材110および主回路基板21が蓋部材70に一体的に設けられる。そのため、蓋部材70をバッテリブロック10BBに取り付けることにより、バッテリモジュール100Mを容易に組み立てることが可能となる。また、バッテリセル10のガス抜き弁10vから排出されたガスを、ガスダクト111を通して効率よく外部に放出することができる。 Thus, also in this battery module 100M, the gas duct 111, the wiring member 110, and the main circuit board 21 are integrally provided on the lid member 70. Therefore, battery module 100M can be easily assembled by attaching lid member 70 to battery block 10BB. Further, the gas discharged from the gas vent valve 10v of the battery cell 10 can be efficiently discharged to the outside through the gas duct 111.
 また、バッテリブロック10BBに含まれるバッテリセル10の数が多い場合、バッテリブロック10BBの上面の面積は端面枠92(図28参照)の面積よりも大きくなる。そのため、図28のバッテリブロック10BBの上面には、図7の主回路基板21よりも大きい主回路基板21を配置することができる。そのため、主回路基板21にはより多数の回路を実装することができる。 When the number of battery cells 10 included in the battery block 10BB is large, the area of the upper surface of the battery block 10BB is larger than the area of the end face frame 92 (see FIG. 28). Therefore, the main circuit board 21 larger than the main circuit board 21 of FIG. 7 can be disposed on the upper surface of the battery block 10BB of FIG. Therefore, a larger number of circuits can be mounted on the main circuit board 21.
 (12)上記のバッテリモジュール100M,100の第1の変形例および第2の変形例において、蓋部材70はケーシングCAに取り付けられるが、これに限定されない。例えば、バッテリモジュール100M,100はケーシングCAに収納されない場合、あるいは1つのケーシングに複数のバッテリモジュール100が収納される場合、蓋部材70はバッテリモジュール100M,100ごとにバッテリブロック10BBに取り付けられてもよい。特に、ガスダクト111および配線部材110が蓋部材70に一体的に設けられる場合には、図23および図28の各開口73内において、図示しないナットを複数のバッテリセル10のプラス電極10aおよびマイナス電極10bの雄ねじに螺合することにより、バスバー40,40aとこれらの電極10a,10bとの間の電気的な接続を行うとともに蓋部材70をバッテリブロック10BBに容易に取り付けることができる。このように、配線部材110、ガスダクト111および蓋部材70を一体的に取り扱うことにより、バッテリモジュール100M,100を容易に組み立てることが可能となる。 (12) In the first modification and the second modification of the battery modules 100M and 100 described above, the lid member 70 is attached to the casing CA, but is not limited thereto. For example, when the battery modules 100M and 100 are not accommodated in the casing CA, or when a plurality of battery modules 100 are accommodated in one casing, the lid member 70 may be attached to the battery block 10BB for each of the battery modules 100M and 100. Good. In particular, when the gas duct 111 and the wiring member 110 are provided integrally with the lid member 70, nuts (not shown) are connected to the plus electrodes 10 a and the minus electrodes of the plurality of battery cells 10 in the openings 73 of FIGS. 23 and 28. By screwing into the male screw 10b, electrical connection between the bus bars 40, 40a and these electrodes 10a, 10b can be made and the lid member 70 can be easily attached to the battery block 10BB. As described above, by integrally handling the wiring member 110, the gas duct 111, and the lid member 70, the battery modules 100M and 100 can be easily assembled.
 (13)上記実施の形態に係るバッテリシステム500において、図1に示すように、バッテリECU101がバス103の一端に接続されるが、これに限定されない。図1のバッテリECU101がバス103の一端に接続されなくてもよい。図31は、他の実施の形態に係るバッテリシステム500の構成を示すブロック図である。図31に示すように、本実施の形態に係るバッテリシステム500において、バッテリECU101はバッテリモジュール100M,100c間のバス103に接続される。この場合、バス103の一端に接続される通信機器としてバッテリモジュール100bに第2の終端抵抗であるの終端抵抗RTが設けられる。 (13) In the battery system 500 according to the above embodiment, as shown in FIG. 1, the battery ECU 101 is connected to one end of the bus 103, but is not limited thereto. The battery ECU 101 in FIG. 1 may not be connected to one end of the bus 103. FIG. 31 is a block diagram showing a configuration of a battery system 500 according to another embodiment. As shown in FIG. 31, in the battery system 500 according to the present embodiment, the battery ECU 101 is connected to a bus 103 between the battery modules 100M and 100c. In this case, a termination resistor RT as a second termination resistor is provided in the battery module 100b as a communication device connected to one end of the bus 103.
 したがって、バッテリモジュール100Mの主回路基板21,21bの終端抵抗RTがバス103の一端に接続され、バッテリモジュール100bの副回路基板21a,21cの終端抵抗RTがバス103の他端に接続される。これにより、バス103のインピーダンス整合が行われる。その結果、煩雑な配線作業を必要とすることなくかつ配線構造を複雑にすることなくバッテリモジュール100M,100a~100cおよびバッテリECU101の間で良好な通信を行うことができる。 Therefore, the termination resistance RT of the main circuit boards 21 and 21b of the battery module 100M is connected to one end of the bus 103, and the termination resistance RT of the sub circuit boards 21a and 21c of the battery module 100b is connected to the other end of the bus 103. Thereby, impedance matching of the bus 103 is performed. As a result, good communication can be performed between the battery modules 100M, 100a to 100c and the battery ECU 101 without requiring complicated wiring work and without complicating the wiring structure.
 このように、通信機器は、複数の第2のバッテリセルおよび第2の回路基板を含む第2のバッテリモジュールであり、第2の回路基板は、各第2のバッテリセルの電圧を検出する第2の電圧検出部と、第2の電圧検出部に接続されるとともに通信バスに接続可能な第2の通信部とを含む。 Thus, the communication device is a second battery module that includes a plurality of second battery cells and a second circuit board, and the second circuit board detects the voltage of each second battery cell. And a second communication unit connected to the communication bus and connected to the second voltage detection unit.
 この場合、第2の回路基板の第2の電圧検出部により第2のバッテリモジュールの各第2のバッテリセルの電圧が検出される。検出された各第2のバッテリセルの電圧は、第2の回路基板の第2の通信部により通信バスを介して第1のバッテリモジュールの第1の通信部または外部装置に送信可能である。 In this case, the voltage of each second battery cell of the second battery module is detected by the second voltage detection unit of the second circuit board. The detected voltage of each second battery cell can be transmitted to the first communication unit of the first battery module or the external device via the communication bus by the second communication unit of the second circuit board.
 第2の回路基板の第2の終端抵抗は通信バスに接続される。これにより、通信バスのインピーダンス整合が行われる。その結果、煩雑な配線作業を必要とすることなくかつ配線構造を複雑にすることなく第1および第2のバッテリモジュールの間で良好な通信を行うことができる。 The second termination resistor of the second circuit board is connected to the communication bus. Thereby, impedance matching of the communication bus is performed. As a result, good communication can be performed between the first and second battery modules without requiring complicated wiring work and without complicating the wiring structure.
 (14)上記実施の形態に係る電動自動車600または船舶等の移動体はバッテリシステム500を備えるとともに、負荷としてモータ602を備える電気機器である。本発明に係る電気機器は、電動自動車600および船舶等の移動体に限定されず、洗濯機、冷蔵庫またはエアコンディショナ等であってもよい。例えば、洗濯機は負荷としてモータを備える電気機器であり、冷蔵庫またはエアコンディショナは負荷としてコンプレッサを備える電気機器である。 (14) The mobile body such as the electric automobile 600 or the ship according to the above embodiment is an electric device including the battery system 500 and the motor 602 as a load. The electric device according to the present invention is not limited to a moving body such as the electric automobile 600 and a ship, and may be a washing machine, a refrigerator, an air conditioner, or the like. For example, a washing machine is an electric device including a motor as a load, and a refrigerator or an air conditioner is an electric device including a compressor as a load.
 このように、本実施の形態に係る電気機器は、上記バッテリシステムと、バッテリシステムからの電力により駆動される負荷とを備える。 As described above, the electrical apparatus according to the present embodiment includes the battery system and a load driven by electric power from the battery system.
 この電気機器においては、負荷がバッテリシステムからの電力により駆動される。 In this electrical device, the load is driven by power from the battery system.
 この電気機器には、上記バッテリシステムが用いられるので、電気機器の配線作業および配線構造が単純化される。 Since the battery system is used for this electrical device, the wiring work and wiring structure of the electrical device are simplified.
 [6]請求項の各構成要素と実施の形態の各部との対応関係
 以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが、本発明は下記の例に限定されない。
[6] Correspondence relationship between each constituent element of claim and each part of the embodiment Hereinafter, an example of correspondence between each constituent element of the claim and each part of the embodiment will be described. It is not limited.
 上記実施の形態においては、バッテリモジュール100Mのバッテリセル10が第1のバッテリセルの例であり、主回路基板21,21bが第1の回路基板の例であり、バッテリモジュール100Mが第1のバッテリモジュールの例である。バッテリモジュールbのバッテリセル10が第2のバッテリセルの例であり、副回路基板21a,21cが第2の回路基板の例であり、バッテリモジュール100bが第2のバッテリモジュールの例である。バス103が通信バスの例であり、主回路基板21,21bの第1回路30が第1の電圧検出部の例であり、主回路基板21,21bの第2回路24が第1の通信部の例であり、副回路基板21a,21cの第1回路30が第2の電圧検出部の例であり、副回路基板21a,21cの第2回路24が第2の通信部の例である。 In the above embodiment, the battery cell 10 of the battery module 100M is an example of the first battery cell, the main circuit boards 21 and 21b are examples of the first circuit board, and the battery module 100M is the first battery. It is an example of a module. The battery cell 10 of the battery module b is an example of the second battery cell, the sub circuit boards 21a and 21c are examples of the second circuit board, and the battery module 100b is an example of the second battery module. The bus 103 is an example of a communication bus, the first circuit 30 of the main circuit boards 21 and 21b is an example of a first voltage detection unit, and the second circuit 24 of the main circuit boards 21 and 21b is a first communication unit. The first circuit 30 of the sub circuit boards 21a and 21c is an example of the second voltage detection unit, and the second circuit 24 of the sub circuit boards 21a and 21c is an example of the second communication unit.
 バッテリモジュール100bまたはバッテリECU101が通信機器の例であり、主回路基板21,21bの終端抵抗RTが第1の終端抵抗の例であり、バッテリモジュール100bまたはバッテリECU101の終端抵抗RTが第2の終端抵抗の例であり、バッテリECU101が制御部の例である。第3回路80または電源回路243が回路部の例であり、第3回路80が電流検出部の例であり、シャント抵抗RSまたはホール素子が素子の例である。通信ケーブルP1が通信ケーブルの例であり、主回路基板21,21bのコネクタ23a,23bがコネクタの例であり、バッテリシステム500がバッテリシステムの例であり、モータ602がモータの例であり、駆動輪603が駆動輪の例であり、電動自動車600が電動車両の例である。 The battery module 100b or the battery ECU 101 is an example of a communication device, the termination resistance RT of the main circuit boards 21 and 21b is an example of a first termination resistance, and the termination resistance RT of the battery module 100b or the battery ECU 101 is a second termination resistance. It is an example of resistance, and battery ECU101 is an example of a control part. The third circuit 80 or the power supply circuit 243 is an example of a circuit unit, the third circuit 80 is an example of a current detection unit, and the shunt resistor RS or the Hall element is an example of an element. The communication cable P1 is an example of a communication cable, the connectors 23a and 23b of the main circuit boards 21 and 21b are examples of connectors, the battery system 500 is an example of a battery system, the motor 602 is an example of a motor, and driving The wheel 603 is an example of a drive wheel, and the electric automobile 600 is an example of an electric vehicle.
 車体610、船舶の船体、航空機の機体、エレベータの籠または歩行ロボットの胴体が移動本体部の例である。モータ602、駆動輪603、スクリュー、プロペラ、昇降用ロープの巻上モータまたは歩行ロボットの足が動力源の例である。電動自動車600、船舶、航空機、エレベーターまたは歩行ロボットが移動体の例である。システムコントローラ712がシステム制御部の例であり、電力貯蔵装置710が電力貯蔵装置の例であり、電力変換装置720が電力変換装置の例であり、電源装置700が電源装置の例である。モータ602またはコンプレッサが負荷の例であり、電動自動車600、船舶、航空機、エレベータ、歩行ロボット、洗濯機、冷蔵庫またはエアコンディショナが電気機器の例である。 A body 610, a ship hull, an aircraft fuselage, an elevator cage, or a torso of a walking robot are examples of the moving main body. Motors 602, drive wheels 603, screws, propellers, hoisting motors for elevating ropes, or walking robot legs are examples of power sources. An electric vehicle 600, a ship, an aircraft, an elevator, or a walking robot are examples of moving objects. The system controller 712 is an example of a system control unit, the power storage device 710 is an example of a power storage device, the power conversion device 720 is an example of a power conversion device, and the power supply device 700 is an example of a power supply device. The motor 602 or the compressor is an example of a load, and the electric automobile 600, a ship, an aircraft, an elevator, a walking robot, a washing machine, a refrigerator, or an air conditioner is an example of an electric device.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。 As the constituent elements of the claims, various other elements having configurations or functions described in the claims can be used.
 本発明は、電力を駆動源とする種々の移動体、電力の貯蔵装置またはモバイル機器等に有効に利用することができる。 The present invention can be effectively used for various mobile objects using electric power as a drive source, power storage devices, mobile devices, and the like.

Claims (13)

  1. 複数の第1のバッテリセルおよび第1の回路基板を含む第1のバッテリモジュールと、
     通信バスとを備え、
     前記第1の回路基板は、
     各第1のバッテリセルの電圧を検出する第1の電圧検出部と、
     前記第1の電圧検出部に接続されるとともに前記通信バスに接続可能な第1の通信部と、
     前記通信バスに接続可能な第1の終端抵抗とを含む、バッテリシステム。
    A first battery module including a plurality of first battery cells and a first circuit board;
    A communication bus,
    The first circuit board is:
    A first voltage detector for detecting the voltage of each first battery cell;
    A first communication unit connected to the first voltage detection unit and connectable to the communication bus;
    A battery system comprising: a first termination resistor connectable to the communication bus.
  2. 前記通信バスに接続可能な通信機器をさらに備える、バッテリシステム。 A battery system further comprising a communication device connectable to the communication bus.
  3. 前記通信機器は、複数の第2のバッテリセルおよび第2の回路基板を含む第2のバッテリモジュールであり、
     前記第2の回路基板は、
     各第2のバッテリセルの電圧を検出する第2の電圧検出部と、
     前記第2の電圧検出部に接続されるとともに前記通信バスに接続可能な第2の通信部とを含む、請求項2記載のバッテリシステム。
    The communication device is a second battery module including a plurality of second battery cells and a second circuit board,
    The second circuit board is:
    A second voltage detector for detecting the voltage of each second battery cell;
    The battery system according to claim 2, further comprising a second communication unit connected to the second voltage detection unit and connectable to the communication bus.
  4. 複数の第2のバッテリセルおよび第2の回路基板を含む第2のバッテリモジュールをさらに備え、
     前記第2の回路基板は、
     各第2のバッテリセルの電圧を検出する第2の電圧検出部と、
     前記第2の電圧検出部に接続されるとともに前記通信バスに接続可能な第2の通信部とを含み、
     前記通信機器は、前記通信バスに接続可能な第2の終端抵抗を含むとともに前記第1および第2のバッテリモジュールの制御に関連する動作を行う制御部である、請求項2記載のバッテリシステム。
    A second battery module including a plurality of second battery cells and a second circuit board;
    The second circuit board is:
    A second voltage detector for detecting the voltage of each second battery cell;
    A second communication unit connected to the second voltage detection unit and connectable to the communication bus,
    The battery system according to claim 2, wherein the communication device is a control unit that includes a second terminal resistor connectable to the communication bus and performs an operation related to control of the first and second battery modules.
  5. 前記第1の回路基板は、前記第1の電圧検出部とは異なる動作を行う回路部をさらに含む、請求項1~4のいずれか一項に記載のバッテリシステム。 The battery system according to any one of claims 1 to 4, wherein the first circuit board further includes a circuit unit that performs an operation different from that of the first voltage detection unit.
  6. 前記回路部は、前記複数の第1のバッテリセルに流れる電流に関する情報を検出するとともに、検出された前記情報を前記通信バスを通して送信可能に構成された電流検出部を含む、請求項5記載のバッテリシステム。 6. The circuit unit according to claim 5, wherein the circuit unit includes a current detection unit configured to detect information related to a current flowing through the plurality of first battery cells and to transmit the detected information through the communication bus. Battery system.
  7. 前記第1のバッテリモジュールは、前記複数の第1のバッテリセルに流れる電流に応じた電圧を発生する素子をさらに含み、
     前記第1の回路基板の前記電流検出部は、前記素子に発生する電圧を検出することにより、前記複数の第1のバッテリセルに流れる電流を前記情報として電圧の形態で検出する、請求項6記載のバッテリシステム。
    The first battery module further includes an element that generates a voltage corresponding to a current flowing through the plurality of first battery cells,
    The current detection unit of the first circuit board detects a current flowing in the plurality of first battery cells in the form of a voltage as the information by detecting a voltage generated in the element. The described battery system.
  8. 前記通信バスは通信ケーブルを含み、
     前記第1の回路基板は、前記第1の通信部に電気的に接続されるとともに前記通信ケーブルに接続可能なコネクタをさらに含み、
     前記第1の終端抵抗は前記コネクタに電気的に接続される、請求項1~7のいずれか一項に記載のバッテリシステム。
    The communication bus includes a communication cable;
    The first circuit board further includes a connector electrically connected to the first communication unit and connectable to the communication cable,
    The battery system according to any one of claims 1 to 7, wherein the first termination resistor is electrically connected to the connector.
  9. 請求項1~8のいずれか一項に記載のバッテリシステムと、
     前記バッテリシステムからの電力により駆動されるモータと、
     前記モータの回転力により回転する駆動輪とを備える、電動車両。
    The battery system according to any one of claims 1 to 8,
    A motor driven by power from the battery system;
    An electric vehicle comprising drive wheels that are rotated by the rotational force of the motor.
  10. 請求項1~8のいずれか一項に記載のバッテリシステムと、
     移動本体部と、
     前記バッテリシステムからの電力を前記移動本体部を移動させるための動力に変換する動力源とを備える、移動体。
    The battery system according to any one of claims 1 to 8,
    A moving body,
    A moving body comprising: a power source that converts electric power from the battery system into power for moving the moving main body.
  11. 請求項1~8のいずれか一項に記載のバッテリシステムと、
     前記バッテリシステムの放電または充電に関する制御を行うシステム制御部とを備える、電力貯蔵装置。
    The battery system according to any one of claims 1 to 8,
    A power storage device comprising: a system control unit that performs control related to discharging or charging of the battery system.
  12. 外部に接続可能であり、
     請求項11記載の電力貯蔵装置と、
     前記電力貯蔵装置の前記バッテリシステムと前記外部との間で電力変換を行う電力変換装置とを備え、
     前記システム制御部は、前記電力変換装置を制御する、電源装置。
    Can be connected to the outside,
    A power storage device according to claim 11;
    A power conversion device that performs power conversion between the battery system of the power storage device and the outside;
    The said system control part is a power supply device which controls the said power converter device.
  13. 請求項1~8のいずれか一項に記載のバッテリシステムと、
     前記バッテリシステムからの電力により駆動される負荷とを備える、電気機器。
    The battery system according to any one of claims 1 to 8,
    An electric device comprising a load driven by electric power from the battery system.
PCT/JP2011/004893 2010-08-31 2011-08-31 Battery system, electrically driven vehicle provided with same, moving body, power storage apparatus, power supply apparatus, and electrical equipment WO2012029317A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010194406 2010-08-31
JP2010-194406 2010-08-31

Publications (1)

Publication Number Publication Date
WO2012029317A1 true WO2012029317A1 (en) 2012-03-08

Family

ID=45772439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004893 WO2012029317A1 (en) 2010-08-31 2011-08-31 Battery system, electrically driven vehicle provided with same, moving body, power storage apparatus, power supply apparatus, and electrical equipment

Country Status (1)

Country Link
WO (1) WO2012029317A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012053426A1 (en) * 2010-10-19 2014-02-24 三洋電機株式会社 Power supply device, vehicle using the same, and power storage device
CN104009517A (en) * 2013-02-27 2014-08-27 蔡富生 Battery system for performing balance control with aid of reference voltage and balance control method
CN104205555A (en) * 2012-03-21 2014-12-10 罗伯特·博世有限公司 Storage means for electrical energy and holding apparatus for at least one storage means for a vehicle which can be electrically driven
JP2018054334A (en) * 2016-09-26 2018-04-05 矢崎総業株式会社 Battery state detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080332A1 (en) * 2001-03-30 2002-10-10 Designline Limited Battery management unit, system and method
WO2006130199A1 (en) * 2005-03-14 2006-12-07 Auto Meter Products, Inc. System and method of modular vehicle gauge system and illumination
WO2011132434A1 (en) * 2010-04-22 2011-10-27 三洋電機株式会社 Battery module, electric vehicle provided with same, mobile body, power storage device, power source device, and electric equipment
WO2011135868A1 (en) * 2010-04-28 2011-11-03 三洋電機株式会社 Battery module, mobile body provided with same, power storage device, power supply device, and electric apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080332A1 (en) * 2001-03-30 2002-10-10 Designline Limited Battery management unit, system and method
WO2006130199A1 (en) * 2005-03-14 2006-12-07 Auto Meter Products, Inc. System and method of modular vehicle gauge system and illumination
WO2011132434A1 (en) * 2010-04-22 2011-10-27 三洋電機株式会社 Battery module, electric vehicle provided with same, mobile body, power storage device, power source device, and electric equipment
WO2011135868A1 (en) * 2010-04-28 2011-11-03 三洋電機株式会社 Battery module, mobile body provided with same, power storage device, power supply device, and electric apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012053426A1 (en) * 2010-10-19 2014-02-24 三洋電機株式会社 Power supply device, vehicle using the same, and power storage device
US8878492B2 (en) 2010-10-19 2014-11-04 Sanyo Electric Co., Ltd. Power source apparatus, vehicle and power storage system using the power source apparatus
JP5937011B2 (en) * 2010-10-19 2016-06-22 三洋電機株式会社 Power supply device, vehicle using the same, and power storage device
CN104205555A (en) * 2012-03-21 2014-12-10 罗伯特·博世有限公司 Storage means for electrical energy and holding apparatus for at least one storage means for a vehicle which can be electrically driven
JP2015514382A (en) * 2012-03-21 2015-05-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Power storage device for electrical energy and housing device for at least one power storage device for electrically drivable vehicles
US9669725B2 (en) 2012-03-21 2017-06-06 Robert Bosch Gmbh Store for electrical energy, and holding device for at least one store for an electrically drivable vehicle
CN104009517A (en) * 2013-02-27 2014-08-27 蔡富生 Battery system for performing balance control with aid of reference voltage and balance control method
JP2014166139A (en) * 2013-02-27 2014-09-08 Fu-Sheng Tsai Method and device performing balancing control with aid of reference voltage information
JP2018054334A (en) * 2016-09-26 2018-04-05 矢崎総業株式会社 Battery state detection device

Similar Documents

Publication Publication Date Title
JP6160729B2 (en) Battery module
WO2012011237A1 (en) Battery module, battery system, electric vehicle, mobile body, power storage device, and power source device
EP2541641A1 (en) Battery module, battery system, electric vehicle, mobile body, power storage device, power supply device, and electric apparatus
US9329239B2 (en) Battery system, electric-powered vehicle, movable equipment, power storage device, and power source apparatus
US8975774B2 (en) HV-battery, in particular traction battery for a vehicle
WO2011024477A1 (en) Battery module, battery system and electrically driven vehicle
JP2011155829A (en) Battery system and electric vehicle including the same
WO2012042913A1 (en) Battery module, battery system comprising same, electric vehicle, mobile body, electric power storage device, electric power supply device, and electric device
WO2011089910A1 (en) Battery module, electric vehicle provided with same, mobile object, battery system, power storage device, and power source device
WO2011093105A1 (en) Battery module, battery system provided with same, electric drive vehicle, mobile unit, power storage device, power supply device, and electric equipment
WO2012131808A1 (en) Battery system, electric-powered vehicle, mobile object, power storage device, power supply device
US11682797B2 (en) Systems and methods for providing individual battery cell circuit protection
US20110104521A1 (en) Battery system and electric vehicle including the same
JP2011049155A (en) Battery system and electric vehicle including the same
WO2011132434A1 (en) Battery module, electric vehicle provided with same, mobile body, power storage device, power source device, and electric equipment
JP2012028186A (en) Battery module, battery system, and electric vehicle
WO2012023249A1 (en) Battery system, and electric vehicle, mobile body, electric power storage device and power supply device each equipped with same
WO2012026093A1 (en) Battery module, battery system, electric vehicle, mobile body, electric power storage device, and electric power supply device
WO2012029317A1 (en) Battery system, electrically driven vehicle provided with same, moving body, power storage apparatus, power supply apparatus, and electrical equipment
WO2012132177A1 (en) Battery module, battery system, electric vehicle, mobile body, power storage device, and power source device
WO2012029319A1 (en) Battery module, battery system, electric vehicle, moving object, power storage device, power supply device, and electrical apparatus
WO2012026064A1 (en) Detection circuit, battery module, battery system, electrically-driven vehicle, moving body, power storage device, and power supply device
JP2011119235A (en) Battery system and electric vehicle comprising same
WO2012042912A1 (en) Battery system, electric vehicle provided therewith, mobile body, electric-power storage apparatus, power-supply apparatus, and electrical device
WO2012014407A1 (en) Battery module, battery system, electric vehicle, mobile body, power storage device and power source device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP