WO2011132434A1 - Battery module, electric vehicle provided with same, mobile body, power storage device, power source device, and electric equipment - Google Patents

Battery module, electric vehicle provided with same, mobile body, power storage device, power source device, and electric equipment Download PDF

Info

Publication number
WO2011132434A1
WO2011132434A1 PCT/JP2011/002378 JP2011002378W WO2011132434A1 WO 2011132434 A1 WO2011132434 A1 WO 2011132434A1 JP 2011002378 W JP2011002378 W JP 2011002378W WO 2011132434 A1 WO2011132434 A1 WO 2011132434A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
battery
unit
power
battery module
Prior art date
Application number
PCT/JP2011/002378
Other languages
French (fr)
Japanese (ja)
Inventor
智徳 國光
由知 西原
浩也 村尾
計美 大倉
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2011132434A1 publication Critical patent/WO2011132434A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/10Control circuit supply, e.g. means for supplying power to the control circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery module, and an electric vehicle, a moving body, a power storage device, a power supply device, and an electric device including the battery module.
  • a battery module that can be charged and discharged is used as a drive source for a moving body such as an electric vehicle.
  • a battery module has a configuration in which, for example, a plurality of batteries (battery cells) are connected in series.
  • the battery system described in Patent Document 1 includes a plurality of battery modules, a plurality of battery cell controllers, and a battery controller.
  • Each battery module consists of a group of a plurality of battery cells.
  • Each battery cell controller includes a plurality of integrated circuits corresponding to a plurality of battery groups.
  • the plurality of integrated circuits of each battery cell controller detects the voltage of each battery cell belonging to the corresponding plurality of battery groups.
  • the battery controller acquires data such as voltage of each battery cell from a plurality of battery cell controllers by communication, and controls the state of each battery cell via the plurality of battery cell controllers.
  • Each battery cell controller is supplied with power from the battery cells of the corresponding battery module. On the other hand, power is supplied to the battery controller from another power system mounted on the vehicle.
  • JP 2010-16928 A JP 2010-16928 A
  • the battery controller can operate even when the voltage of the battery cell of any battery module drops. Thereby, data, such as the voltage of each battery cell of another battery module, can be acquired.
  • the battery controller controls the state of the plurality of battery cells by processing data acquired from the plurality of battery cell controllers. Therefore, the processing burden on the battery controller is large. As a result, when an abnormality occurs in the battery controller, it becomes impossible to acquire and process data of all the battery cells included in all the battery modules of the battery system, so that the entire function of the battery system is stopped. . As a result, it is difficult to ensure a stable operation of the battery system.
  • An object of the present invention is to provide a battery module that makes it possible to ensure a stable operation of a battery system, and an electric vehicle, a moving body, a power storage device, a power supply device, and an electric device including the battery module.
  • a battery module is a battery module connectable to an external power supply, and includes a plurality of battery cells, and a first circuit unit including a detection unit that detects a voltage of each battery cell; A second circuit unit including a processing unit that processes information on the voltage detected by the detection unit of the first circuit unit, and a common circuit board on which the first circuit unit and the second circuit unit are mounted.
  • the first circuit unit is configured to be operable with power supplied from at least a part of the plurality of battery cells, and the second circuit unit is configured to be operable with power supplied from an external power source. Is.
  • the detection unit of the first circuit unit information on the voltage of each battery cell is detected by the detection unit of the first circuit unit. Further, information regarding the voltage of each battery cell detected by the detection unit of the first circuit unit is processed by the processing unit of the second circuit unit.
  • the first circuit unit and the second circuit unit are mounted on a common circuit board. The first circuit unit operates with electric power supplied from at least a part of the plurality of battery cells, and the second circuit unit operates with electric power supplied from an external power source.
  • the operation of the second circuit unit does not stop due to a decrease in the voltage of the plurality of battery cells.
  • the process part of a 2nd circuit part can continue the process of information. Therefore, in a battery system including a plurality of battery modules, it is possible to prevent the entire function of the battery system from being stopped due to a decrease in the voltage of the battery cell in any one of the battery modules. As a result, stable operation of the battery system is ensured.
  • the processing unit of the battery module has a function of processing information regarding the detected voltage. Therefore, in a battery system including a plurality of battery modules, the number and type of battery modules can be easily changed. Thereby, it is possible to easily change the specifications of the battery system.
  • the first circuit unit including the detection unit and the second circuit unit including the processing unit are mounted on a common circuit board, it is possible to easily add and replace the battery module.
  • first circuit unit and the second circuit unit are operated by independent power supplies, even if an abnormality occurs in one of the operations of the first circuit unit and the second circuit unit, the other is normal. Can work. Therefore, it is possible to easily determine which of the first circuit portion and the second circuit portion is abnormal.
  • the first circuit unit further includes a first power supply circuit that obtains an operating voltage of the detection unit based on electric power supplied by two or more predetermined number of battery cells among the plurality of battery cells, and the detection unit May be connected to operate at an operating voltage obtained by the first power supply circuit.
  • the detection unit operates with electric power supplied from a predetermined number of battery cells of two or more of the plurality of battery cells. Therefore, it is possible to prevent the power consumption of one battery cell from becoming significantly larger than the power consumption of other battery cells. As a result, it is possible to alleviate variations in the voltages of the plurality of battery cells.
  • the battery module is provided separately from the plurality of voltage detection lines for voltage detection that connect the electrode terminals of the plurality of battery cells and the detection unit, and the plurality of voltage detection lines. You may further provide the internal power supply line which connects the electrode terminal of the battery cell which has the highest electric potential, and the 1st power supply circuit of a 1st circuit part.
  • the voltage of each battery cell is detected by connecting the electrode terminals of the plurality of battery cells and the detection units through a plurality of voltage detection lines.
  • the electrode terminal of the battery cell having the highest potential among the predetermined number of battery cells and the first power supply circuit of the first circuit unit are connected by the internal power supply line, whereby power is supplied to the first power supply circuit. Supplied. This prevents a voltage drop due to a current flowing when power is supplied to the first circuit unit from occurring in the voltage detection line. As a result, it is possible to reduce information detection errors related to voltage by the detection unit.
  • the battery module further includes a connection member that electrically connects the circuit board and another circuit, and the processing unit of the second circuit unit includes a communication circuit that communicates with the outside, and the second circuit unit Further includes a second power supply circuit that obtains the operating voltage of the processing unit based on power supplied from an external power supply, and the connection member is connected to the first connection terminal connected to the second power supply circuit and the communication circuit.
  • a connector having a second connection terminal, an external power line connected to the first connection terminal of the connector, and a communication line connected to the second connection terminal of the connector, and communicating with the external power line The wire may be bound together.
  • the external power supply line of the connection member is connected to the second power supply circuit of the second circuit unit via the first connection terminal of the connector.
  • the communication line of the connection member is connected to the communication circuit of the processing unit of the second circuit unit via the second connection terminal of the connector. Further, the external power supply line and the communication line are bound together.
  • the external power supply line and the communication line are connected to the second power supply circuit and the communication circuit, respectively, using a common connector. Therefore, the communication circuit of the battery module can be connected to another circuit by simple wiring, and the second power supply circuit of the battery module can be connected to the external power supply. As a result, it is possible to simplify the wiring of a battery system including a plurality of battery modules and reduce the size of the battery system.
  • information on the voltage or information processed by the communication circuit of the second circuit unit is transmitted to another circuit, or information is received from the other circuit. Thereby, even when the voltage of the battery cell of any battery module of the battery system is lowered, the battery module can communicate information with other circuits.
  • the first power supply circuit includes a boosting unit that boosts a voltage obtained from a predetermined number of battery cells, and a step-down unit that steps down a voltage obtained from the predetermined number of battery cells.
  • the step-down unit supplies the operating voltage to the detecting unit, and when the voltage obtained by a predetermined number of battery cells is lower than the operating voltage, the operating unit detects the operating voltage. May be supplied to the unit.
  • the detection unit When the voltage obtained by the predetermined number of battery cells is equal to or higher than the operating voltage, the detection unit operates with the power supplied by the step-down unit, and when the voltage is lower than the voltage obtained by the predetermined number of battery cells, the detection unit is Operates with supplied power. Thereby, even if the voltage of a predetermined number of battery cells falls, a fixed voltage is given to a detection part from the 1st power supply circuit. As a result, the detection unit can detect the voltage of each battery cell stably and with high accuracy.
  • the battery module further includes an equalization circuit that equalizes the charge states of the plurality of battery cells, and the first circuit unit includes a charge state of any one of the battery cells based on a voltage detected by the detection unit. It may further include an equalization stop unit that determines whether or not the battery has exceeded an allowable value and stops equalization by the equalization circuit when the state of charge of any of the battery cells exceeds the allowable value.
  • the charge state of the plurality of battery cells is equalized by the equalization circuit.
  • the equalization stop unit of the first circuit unit stops the equalization in the equalization circuit. Therefore, overcharge and overdischarge of each battery cell can be reliably prevented.
  • the battery module further includes an equalization circuit that equalizes the state of charge of the plurality of battery cells, and the second circuit unit transmits a control signal for controlling the operation of the equalization circuit to the first circuit unit.
  • the first circuit unit includes an equalization control unit that controls the operation of the equalization circuit based on the control signal transmitted by the second circuit unit, and the second circuit unit. It may further include an equalization stop unit that determines whether or not communication is disabled and stops equalization by the equalization circuit when communication is disabled.
  • the operation of the equalization circuit is controlled by the equalization control unit of the first circuit unit based on the control signal transmitted by the second circuit unit. Therefore, a plurality of charge states are equalized by the equalization circuit.
  • the operation of the equalization circuit is not controlled. Even in such a case, equalization in the equalization circuit is stopped by the equalization stop unit of the first circuit unit. Therefore, even when an abnormality occurs in the operation of the second circuit unit, overcharge and overdischarge of each battery cell can be reliably prevented.
  • An electric vehicle includes a battery module according to one aspect of the present invention, a motor driven by electric power from the battery module, and drive wheels that rotate by the rotational force of the motor. is there.
  • the motor is driven by the electric power from the battery module.
  • the drive wheel is rotated by the rotational force of the motor, so that the electric vehicle moves.
  • the battery module according to one aspect of the present invention is used for this electric vehicle, stable operation of the battery system included in the electric vehicle is ensured. Thereby, the stable operation
  • a moving body includes a battery module according to one aspect of the present invention, a moving main body, and a power source that converts electric power from the battery module into power for moving the moving main body. are provided.
  • the battery module according to one aspect of the present invention is used for this moving body, stable operation of the battery system included in the moving body is ensured. Thereby, the stable operation
  • a power storage device includes a battery module according to one aspect of the present invention and a system control unit that performs control related to discharging or charging of the battery module.
  • control related to charging or discharging of the battery module according to one aspect of the present invention is performed by the system control unit. Thereby, deterioration, overdischarge, and overcharge of the battery module can be prevented.
  • the battery module according to one aspect of the present invention is used for this power storage device, stable operation of the battery system included in the power storage device is ensured. Thereby, the stable operation
  • a power supply device is a power supply device connectable to the outside, and is controlled by a power storage device according to still another aspect of the present invention and a system control unit of the power storage device, And a power conversion device that performs power conversion between the battery module of the power storage device and the outside.
  • this power supply device power conversion is performed between the battery module and the outside by the power conversion device.
  • Control related to charging or discharging of the battery module is performed by controlling the power conversion device by the system control unit of the power storage device. Thereby, deterioration, overdischarge, and overcharge of the battery module can be prevented.
  • the battery module according to one aspect of the present invention is used for this power supply device, stable operation of the battery system included in the power supply device is ensured. Thereby, a stable operation of the power supply device is ensured.
  • An electric device includes a battery module according to one aspect of the present invention and a load driven by electric power from the battery module.
  • the load is driven by the power from the battery module. Since the battery module according to one aspect of the present invention is used for this electric device, stable operation of the battery system included in the electric device is ensured. Thereby, the stable operation
  • movement of an electric equipment is ensured.
  • FIG. 1 is a block diagram showing a configuration of a battery system using the battery module according to the first embodiment.
  • FIG. 2 is an explanatory view showing connection of the printed circuit board of FIG.
  • FIG. 3 is a block diagram showing the configuration of the printed circuit board of FIG.
  • FIG. 4 is a block diagram showing the configuration of the first circuit on the low potential side.
  • FIG. 7 is an external perspective view of the battery module.
  • FIG. 8 is a plan view of the battery module.
  • FIG. 9 is an end view of the battery module.
  • FIG. 10 is an external perspective view of the bus bar.
  • FIG. 1 is a block diagram showing a configuration of a battery system using the battery module according to the first embodiment.
  • FIG. 2 is an explanatory view showing connection of the printed circuit board of FIG.
  • FIG. 3 is a
  • FIG. 11 is an external perspective view showing a state where a plurality of bus bars and a plurality of PTC elements are attached to the FPC board.
  • FIG. 12 is a schematic plan view for explaining the connection between the bus bar, the low potential side first circuit, and the high potential side first circuit.
  • FIG. 13 is an enlarged plan view showing the voltage / current bus bar and the FPC board.
  • FIG. 14 is a schematic plan view showing a configuration example of a printed circuit board.
  • FIG. 15 is a flowchart showing an overdischarge prevention process in the battery cell equalization process by the control unit of the low potential side first circuit and the high potential side first circuit.
  • FIG. 16 is a flowchart showing an overdischarge prevention process in the battery cell equalization process by the control unit of the low potential side first circuit and the high potential side first circuit according to the second embodiment.
  • FIG. 17 is a block diagram illustrating a configuration of an electric automobile including a battery system.
  • FIG. 18 is a block diagram showing the configuration of the power supply apparatus.
  • the battery module according to the present embodiment is mounted on an electric vehicle (for example, an electric automobile) that uses electric power as a drive source.
  • FIG. 1 is a block diagram showing a configuration of a battery system using the battery module according to the first embodiment.
  • the battery system 500 includes a plurality of battery modules 100 (four in this example), a battery ECU 101 and a contactor 102.
  • the plurality of battery modules 100 are connected to the battery ECU 101 via the bus 103.
  • the battery ECU 101 of the battery system 500 is connected to the main control unit 300 of the electric vehicle via the bus 104.
  • Each battery module 100 of the battery system 500 is connected to each other through the power line 501.
  • Each battery module 100 includes a plurality (18 in this example) of battery cells 10, a plurality (4 in this example) of thermistors 11 and a rigid printed circuit board (hereinafter abbreviated as a printed circuit board) 21.
  • each battery module 100 the plurality of battery cells 10 are integrally arranged so as to be adjacent to each other, and are connected in series by a plurality of bus bars 40.
  • Each battery cell 10 is a secondary battery such as a lithium ion battery or a nickel metal hydride battery.
  • the battery cells 10 arranged at both ends are connected to the power line 501 through the bus bar 40a. Thereby, in the battery system 500, all the battery cells 10 of the plurality of battery modules 100 are connected in series.
  • a power line 501 drawn from the battery system 500 is connected to a load such as a motor of an electric vehicle. Details of the battery module 100 will be described later.
  • the contactor 102 is inserted in the power supply line 501 connected to the battery module 100 at one end.
  • the battery ECU 101 detects an abnormality in the battery module 100, the battery ECU 101 turns off the contactor 102. Thereby, when an abnormality occurs, no current flows through each battery module 100, and thus abnormal heat generation of the battery module 100 is prevented.
  • the battery ECU 101 gives the main controller 300 the amount of charge of each battery module 100 (the amount of charge of the battery cell 10).
  • the main control unit 300 controls the power of the electric vehicle (for example, the rotational speed of the motor) based on the amount of charge.
  • the main control unit 300 controls a power generation device (not shown) connected to the power line 501 to charge each battery module 100.
  • the power generation device is a motor connected to the power supply line 501 described above, for example.
  • the motor converts the electric power supplied from the battery system 500 during acceleration of the electric vehicle into motive power for driving drive wheels (not shown).
  • the motor generates regenerative power when the electric vehicle is decelerated. Each battery module 100 is charged by this regenerative power.
  • FIG. 2 is an explanatory view showing the connection of the plurality of printed circuit boards 21 of FIG.
  • a plurality of first circuits 30, a common second circuit 24 and a connector 23 are mounted on each printed circuit board 21.
  • the one first circuit 30 and the second circuit 24 are connected so as to be communicable while being electrically insulated from each other by the insulating element 25.
  • Another first circuit 30 is connected to one first circuit 30.
  • the 1st circuit 30 has the detection part 20 which detects the terminal voltage of each battery cell 10.
  • FIG. The plurality of battery cells 10 of the battery module 100 are used as a power source for the first circuit 30.
  • the second circuit 24 includes a processing unit 241 that processes the terminal voltage detected by the detection unit 20 and other information.
  • a non-power battery 12 mounted on an electric vehicle 600 described later is used as a power source for the second circuit 24.
  • the non-power battery 12 is a lead storage battery.
  • the connector 23 is connected to the second circuit 24.
  • the connector 23 is connected to the bus 103 via a plurality of conductor wires 53 of an input / output harness H described later.
  • the battery ECU 101 has a printed circuit board 105.
  • a microprocessor (MPU) 106, a switch circuit 107, and a plurality of connectors 108 are mounted on the printed circuit board 105.
  • the printed circuit board 105 is also mounted with other circuits such as a power supply circuit for stepping down the voltage supplied by the non-power battery 12 and a contactor control circuit for turning on and off the contactor 102 of FIG. Electric power is supplied to the MPU 106 and the switch circuit 107 by the non-power battery 12.
  • the plurality of connectors 108 of the printed circuit board 105 and the connectors 23 of the plurality of printed circuit boards 21 are connected by a plurality of conductor wires 54 of a plurality of input / output harnesses H described later.
  • the on / off of the switch circuit 107 is controlled by the MPU 106.
  • the switch circuit 107 When the switch circuit 107 is on, power from the non-power battery 12 is supplied to the plurality of printed circuit boards via the switch circuit 107, the plurality of connectors 108, the plurality of conductor wires 54, and the connectors 23 of the plurality of printed circuit boards 21. 21 to the second circuit 24. Thereby, each second circuit 24 operates.
  • the MPU 106 is connected to the bus 103. Thereby, MPU106 of battery ECU101 and the 2nd circuit 24 of each battery module 100 are connected so that communication is possible.
  • the MPU 106 is communicably connected to the main control unit 300 of the electric automobile 600 via the bus 104.
  • FIG. 3 is a block diagram showing the configuration of the printed circuit board 21 of FIG.
  • a plurality of series circuits SC including a resistor R and a switching element SW are mounted on the printed circuit board 21 together with the plurality of first circuits 30, the second circuit 24, and the insulating elements 25 described above.
  • two first circuits 30 are mounted on the printed circuit board 21.
  • One of the first circuits 30 (hereinafter referred to as the low potential side first circuit 30L) is half the low potential side (9 in this example) of the plurality of battery cells 10 (hereinafter referred to as the low potential).
  • the other first circuit 30 (hereinafter, referred to as a high potential side first circuit 30H) has half (9 in this example) of battery cells 10 (hereinafter referred to as high potential) among the plurality of battery cells 10.
  • the low potential side first circuit 30L detects the terminal voltage of each of the plurality of battery cells 10 in the low potential side battery cell group 10L.
  • the high potential side first circuit 30H detects the terminal voltage of each of the plurality of battery cells 10 in the high potential side battery cell group 10H.
  • the low potential side first circuit 30L is electrically connected to the bus bars 40, 40a of the low potential side battery cell group 10L via a plurality of conductor lines 52 and PTC (Positive Temperature Coefficient) elements 60.
  • the high potential side first circuit 30H is electrically connected to the bus bars 40, 40a of the high potential side battery cell group 10H via the plurality of conductor lines 52 and the PTC element 60.
  • the PTC element 60 has a resistance temperature characteristic in which the resistance value rapidly increases when the temperature exceeds a certain value. Therefore, when a short circuit occurs in the low potential side first circuit 30L, the high potential side first circuit 30H, the conductor line 52, or the like, if the temperature of the PTC element 60 rises due to the current flowing through the short circuit path, The resistance value increases. Thereby, it is suppressed that a large current flows through the short circuit path including the PTC element 60.
  • the low potential side first circuit 30L is electrically connected to the bus bar 40 of the battery cell 10 having the highest potential among the battery cells 10 of the low potential side battery cell group 10L through the conductor line 55L. Further, the reference potential (ground potential) of the low potential side first circuit 30L is held at the lowest potential of the plurality of battery cells 10 in the low potential side battery cell group 10L. Thereby, electric power is supplied to the low potential side first circuit 30L from the plurality of battery cells 10 of the low potential side battery cell group 10L.
  • the high potential side first circuit 30H is electrically connected to the bus bar 40a of the battery cell 10 having the highest potential among the battery cells 10 of the high potential side battery cell group 10H via the conductor line 55H.
  • the reference potential (ground potential) of the high potential side first circuit 30H is held at the lowest potential of the plurality of battery cells 10 in the high potential side battery cell group 10H. Thereby, electric power is supplied to the high potential side first circuit 30H from the plurality of battery cells 10 of the high potential side battery cell group 10H.
  • a series circuit SC composed of a resistor R and a switching element SW is connected between each two adjacent bus bars 40.
  • a series circuit SC composed of a resistor R and a switching element SW is also connected between each two adjacent bus bars 40, 40a.
  • the switching element SW is turned on and off by the corresponding high potential side first circuit 30H or low potential side first circuit 30L. In the normal state, the switching element SW is turned off.
  • FIG. 4 is a block diagram showing a configuration of the low potential side first circuit 30L.
  • the low-potential-side first circuit 30L is composed of, for example, an ASIC (Application Specific Integrated Circuit).
  • the low potential side first circuit 30 ⁇ / b> L includes a control unit 31, a communication circuit 32, an equalization control circuit 33, a timer 34, and a power supply circuit 35 along with the detection unit 20.
  • the reference of the detection unit 20, the control unit 31, the communication circuit 32, the equalization control circuit 33, the timer 34, and the power supply circuit 35 (hereinafter referred to as each unit of the low potential side first circuit 30L) of the low potential side first circuit 30L.
  • the potential (ground potential) is held at the lowest potential of the plurality of battery cells 10 in the low potential side battery cell group 10L.
  • the detection unit 20 includes a multiplexer 20a, an A / D (analog / digital) converter 20b, and a plurality of differential amplifiers 20c.
  • Each differential amplifier 20c of the detection unit 20 has two input terminals and an output terminal.
  • Each differential amplifier 20c differentially amplifies the voltage input to the two input terminals, and outputs the amplified voltage from the output terminal.
  • each differential amplifier 20c Two input terminals of each differential amplifier 20c are electrically connected between two adjacent bus bars 40 of a plurality of corresponding battery cells 10 or two adjacent bus bars 40, 40a via a conductor line 52 and a PTC element 60. Connected. A voltage between two adjacent bus bars 40 or a voltage between two adjacent bus bars 40 and 40a is differentially amplified by each differential amplifier 20c. The output voltage of each differential amplifier 20c corresponds to the terminal voltage of each battery cell 10 in the low potential side battery cell group 10L. Terminal voltages output from the plurality of differential amplifiers 20c are applied to the multiplexer 20a. The multiplexer 20a sequentially outputs the terminal voltages supplied from the plurality of differential amplifiers 20c to the A / D converter 20b. The A / D converter 20b converts the terminal voltage output from the multiplexer 20a into a digital value.
  • the control unit 31 is connected to the detection unit 20, the communication circuit 32, the equalization control circuit 33, the timer 34, and the power supply circuit 35.
  • the communication circuit 32 has a communication function and is communicably connected to the second circuit 24 of FIG. 2 via the insulating element 25 of FIG.
  • the communication circuit 32 is connected to be communicable with the high potential side first circuit 30H of FIG.
  • the control unit 31 acquires the digital value of the terminal voltage of each battery cell 10 of the low potential side battery cell group 10L from the A / D converter 20b of the detection unit 20. Further, as will be described later, the control unit 31 acquires the digital value of the terminal voltage of each battery cell 10 of the high potential side battery cell group 10H from the high potential side first circuit 30H via the communication circuit 32. Further, the control unit 31 isolates the digital value of the terminal voltage of each battery cell 10 of the low potential side battery cell group 10L and the digital value of the terminal voltage of each battery cell 10 of the high potential side battery cell group 10H from the communication circuit 32. It transmits to the 2nd circuit 24 through the element 25 (refer FIG. 2). The control unit 31 receives a command for equalization processing, which will be described later, transmitted from the second circuit 24 via the insulating element 25 and the communication circuit 32, and gives the command to the equalization control circuit 33.
  • the equalization control circuit 33 performs the equalization process of the state of charge of the battery cell 10 by turning on and off the switching element SW based on a command from the second circuit 24.
  • the control unit 31 controls the stop of the equalization process by the equalization control circuit 33.
  • Timer 34 measures elapsed time.
  • the timer 34 is controlled by the control unit 31. Details will be described later.
  • the power supply circuit 35 includes a step-down unit 35a, a step-up unit 35b, and a switching circuit 35c.
  • the step-down unit 35a steps down the input voltage to a predetermined voltage (for example, 5V) and outputs it.
  • the booster 35b boosts the input voltage to a predetermined voltage (for example, 5V) and outputs the boosted voltage.
  • Each part of the low potential side first circuit 30L operates with the voltage output from the step-down unit 35a or the step-up unit 35b.
  • the switching circuit 35c includes a plurality of terminals CP0, CP1, CP2, CP3.
  • the terminal CP0 is electrically connected to the bus bar 40 of the battery cell 10 having the highest potential among the plurality of battery cells 10 of the low potential side battery cell group 10L through the conductor line 55L.
  • Terminals CP1 and CP2 are electrically connected to step-down unit 35a and step-up unit 35b, respectively.
  • Terminal CP3 is not electrically connected to any of them.
  • the switching circuit 35c is switched by the control unit 31 so that one of the plurality of terminals CP1 to CP3 is connected to the terminal CP0.
  • the control unit 31 switches the switching circuit 35c so that the terminal CP0 is connected to the terminal CP3 when stopping the operation of each unit of the low potential side first circuit 30L. In this case, since the power supply circuit 35 does not output a voltage, the operation of each part of the low potential side first circuit 30L is stopped. Here, before the operation of each part of the low potential side first circuit 30L stops, the control unit 31 turns off the switching element SW of the series circuit SC by the equalization control circuit 33.
  • the control unit 31 calculates the total voltage of the low-potential side battery cell group 10L based on the terminal voltage of each battery cell 10 detected by the detection unit 20.
  • the total voltage of the low potential side battery cell group 10L is the highest potential of the low potential side battery cell group 10L (the potential of the conductor line 55L) and the lowest potential of the low potential side battery cell group 10L (the potential of the bus bar 40a). This is equivalent to the difference.
  • the control unit 31 compares the total voltage of the low-potential side battery cell group 10L with a predetermined operating voltage (for example, 5V) of the low-potential side first circuit 30L.
  • a predetermined operating voltage for example, 5V
  • the control unit 31 switches the switching circuit 35c so that the terminal CP0 is connected to the terminal CP1.
  • the total voltage of the low potential side battery cell group 10L is stepped down to a predetermined voltage equal to the operating voltage and output by the step-down unit 35a.
  • the control unit 31 switches the switching circuit 35c so that the terminal CP0 is connected to the terminal CP2.
  • the booster 35b boosts and outputs the total voltage of the low potential side battery cell group 10L to a predetermined voltage equal to the operating voltage.
  • each part of the low potential side first circuit 30L operates at a constant operating voltage.
  • the detection unit 20 can detect the terminal voltage of each battery cell 10 of the low-potential side battery cell group 10L stably and with high accuracy.
  • the power consumption of the battery cells 10 of the low potential side battery cell group 10L is reduced. Can be approximately equal.
  • the power supply conductor line 55L is provided separately from the voltage detection conductor line 52, a voltage drop is generated in the conductor line 52 due to the current that flows when power is supplied to the low potential side first circuit 30L. Is prevented. As a result, the detection error of the terminal voltage by the detection unit 20 can be reduced.
  • the high potential side first circuit 30H in FIG. 3 has the same configuration as the low potential side first circuit 30L in FIG. 4 except for the following points.
  • each unit of the high potential side first circuit 30H The reference of the detection unit 20, the control unit 31, the communication circuit 32, the equalization control circuit 33, the timer 34, and the power supply circuit 35 (hereinafter referred to as each unit of the high potential side first circuit 30H) of the high potential side first circuit 30H.
  • the potential (ground potential) is held at the lowest potential of the plurality of battery cells 10 in the high potential side battery cell group 10H.
  • the terminal CP0 of the switching circuit 35c is electrically connected to the bus bar 40a of the battery cell 10 having the highest potential among the plurality of battery cells 10 of the high potential side battery cell group 10H by the conductor line 55H instead of the conductor line 55L of FIG. Connected.
  • each part of the high potential side first circuit 30H operates at a constant operating voltage.
  • the detection unit 20 can stably and accurately detect the terminal voltage of each battery cell 10 in the high potential side battery cell group 10H.
  • the power consumption of the battery cells 10 in the high potential side battery cell group 10H is reduced. Can be approximately equal.
  • the power supply conductor wire 55H is provided separately from the voltage detection conductor wire 52, a voltage drop is generated in the conductor wire 52 due to the current flowing when power is supplied to the high potential side first circuit 30H. Is prevented. As a result, the detection error of the terminal voltage by the detection unit 20 can be reduced.
  • the communication circuit 32 of the high potential side first circuit 30H is communicably connected to the communication circuit 32 (see FIG. 4) of the low potential side first circuit 30L.
  • the control unit 31 of the high potential side first circuit 30H includes the high potential side battery cell group 10H via the communication circuit 32 of the high potential side first circuit 30H and the communication circuit 32 of the low potential side first circuit 30L.
  • the digital value of the terminal voltage of each battery cell 10 is given to the control unit 31 (see FIG. 4) of the low potential side first circuit 30L.
  • the digital value of the terminal voltage of each battery cell 10 of the high potential side battery cell group 10H can be transmitted to the second circuit 24 as described above.
  • FIG. 5 is a block diagram showing the configuration of the second circuit 24.
  • the second circuit 24 includes a storage unit 242, a communication interface 244, and a power supply circuit 245 along with the processing unit 241.
  • the processing unit 241 includes a CPU (Central Processing Unit), for example, and is connected to the storage unit 242.
  • the processing unit 241 is connected to the plurality of thermistors 11 shown in FIG. Thereby, the processing unit 241 acquires the temperature of the battery module 100.
  • the processing unit 241 has a function of processing the terminal voltage and other information detected by the detection unit 20 (see FIGS. 3 and 4) of the low potential side first circuit 30L and the high potential side first circuit 30H. .
  • the processing unit 241 calculates the charge amount of each battery cell 10, the current flowing through the plurality of battery cells 10, and the like.
  • the terminal voltage of the battery cell, the current flowing through the plurality of battery cells 10 and the temperature of the battery module 100 are referred to as cell information. Details of the current calculation will be described later.
  • the storage unit 242 includes a non-volatile memory such as an EEPROM (electrically erasable and programmable read-only memory).
  • the processing unit 241 includes a communication circuit 246 having a communication function.
  • the processing unit 241 is communicably connected to the communication circuit 32 (see FIG. 4) of the low potential side first circuit 30L via the insulating element 25 (see FIG. 2).
  • the processing unit 241 gives various commands for equalization processing to be described later to the control unit 31 (see FIGS. 3 and 4) of the low potential side first circuit 30L and the high potential side first circuit 30H.
  • a communication interface 244 is connected to the processing unit 241.
  • the communication interface 244 is an RS-485 standard serial communication interface, for example.
  • the communication interface 244 is connected to the connector 23 in FIG.
  • the communication circuit 246 performs RS-485 standard serial communication with the battery ECU 101 of FIG. 2, but is not limited thereto.
  • the communication circuit 246 may perform serial communication of other standards with the battery ECU 101, and may perform CAN (Controller Area Network) communication with the battery ECU 101.
  • the power supply circuit 245 includes a step-down unit (not shown).
  • the power supply circuit 245 is connected to the non-power battery 12 of the electric automobile 600 through the connector 23 of FIG.
  • the voltage of the non-power battery 12 is stepped down to a predetermined voltage (for example, 5 V) by the step-down unit of the power supply circuit 245 and output.
  • the processing unit 241, the storage unit 242, the communication interface 244, the power supply circuit 245 and the communication circuit 246 of the second circuit 24 operate with the voltage output from the power supply circuit 245.
  • FIG. 6 is a schematic plan view of the input / output harness H connected to the connector 23 of the printed circuit board 21 of FIG.
  • the input / output harness H includes a connector 23 a, a connector 103 a, a connector 108 a, and a plurality of conductor wires 53 and 54.
  • the connector 23a has a plurality of connection terminals 23b and 23c.
  • the connector 103a has a plurality of connection terminals 103b.
  • the connector 108a has a plurality of connection terminals 108b.
  • the plurality of connection terminals 23 b of the connector 23 a and the plurality of connection terminals 103 b of the connector 103 a are connected by a plurality of conductor wires 53. Further, the plurality of connection terminals 23 c of the connector 23 a and the plurality of connection terminals 108 b of the connector 108 a are connected by a plurality of conductor wires 54. In the present embodiment, the plurality of conductor wires 53 and 54 are united together.
  • the connector 23a is connected to the connector 23 of the printed circuit board 21 in FIG. Thereby, the connection terminal 23b of the connector 23a is connected to the communication circuit 246 of the second circuit 24 of FIG. 5, and the connection terminal 23c of the connector 23a is connected to the power supply circuit 245 of the second circuit 24 of FIG.
  • the connector 103a is connected to the bus 103 in FIG.
  • the connector 108a is connected to the connector 108 of the printed circuit board 105 in FIG.
  • the power supply circuit 245 of the second circuit 24 of FIG. 5 and the non-power battery 12 of the electric automobile 600 are connected via the switch circuit 107 of the printed circuit board 105 (see FIG. 2).
  • the communication circuit 246 of the second circuit 24 and the MPU 106 of the battery ECU 101 are communicably connected via the bus 103 (see FIG. 2).
  • the communication circuit 246 of the battery module 100 can be connected to the battery ECU 101 and the power circuit 245 of the battery module 100 can be connected to the non-power battery 12 by simple wiring.
  • the wiring of the battery system 500 can be simplified and the battery system 500 can be miniaturized.
  • cell information is transmitted to the battery ECU 101 by the communication circuit 246 of the second circuit 24, or various information and commands are received from the battery ECU 101. Thereby, even when the voltage of the battery cell 10 of any battery module 100 of the battery system 500 is lowered, the battery module 100 can communicate with the battery ECU 101.
  • the second circuit 24 of each battery module 100 calculates the charge amount of each battery cell 10 based on the cell information.
  • the second circuit 24 performs charge / discharge control of each battery cell 10 based on the terminal voltage of each battery cell 10. Details of charge / discharge control of each battery cell 10 will be described later.
  • the second circuit 24 of each battery module 100 detects an abnormality of each battery module 100 based on the cell information.
  • the abnormality of the battery module 100 is, for example, overdischarge, overcharge, or temperature abnormality of the battery cell 10.
  • each second circuit 24 provides the battery ECU 101 with a calculation result of the charge amount of each battery cell 10 and detection results such as overdischarge, overcharge, and temperature abnormality of the battery cell 10.
  • the second circuit 24 of each battery module 100 calculates the amount of charge of each battery cell 10 and detects the overdischarge, overcharge, temperature abnormality, etc. of the battery cell 10. It is not limited to.
  • the battery ECU 101 may calculate the amount of charge of each battery cell 10 or detect overdischarge, overcharge, temperature abnormality, and the like of the battery cell 10.
  • FIG. 7 is an external perspective view of the battery module 100
  • FIG. 8 is a plan view of the battery module 100
  • FIG. 9 is an end view of the battery module 100.
  • FIGS. 7 to 9 and FIGS. 11 to 13 to be described later as shown by arrows X, Y, and Z, three directions orthogonal to each other are defined as an X direction, a Y direction, and a Z direction.
  • the X direction and the Y direction are directions parallel to the horizontal plane
  • the Z direction is a direction orthogonal to the horizontal plane.
  • a plurality of battery cells 10 having a flat, substantially rectangular parallelepiped shape are arranged in the X direction.
  • the plurality of battery cells 10 are integrally fixed by a pair of end face frames 92, a pair of upper end frames 93 and a pair of lower end frames 94.
  • the pair of end face frames 92 have a substantially plate shape and are arranged in parallel to the YZ plane.
  • the pair of upper end frames 93 and the pair of lower end frames 94 are arranged so as to extend in the X direction.
  • Connection portions for connecting the pair of upper end frames 93 and the pair of lower end frames 94 are formed at the four corners of the pair of end face frames 92.
  • the pair of upper end frames 93 are attached to the upper connection portions of the pair of end surface frames 92, and the lower connection of the pair of end surface frames 92 is performed.
  • a pair of lower end frames 94 are attached to the part.
  • the some battery cell 10 is fixed integrally in the state arrange
  • the printed circuit board 21 is attached to one end face frame 92 with an interval on the outer surface.
  • the plurality of battery cells 10 have a plus electrode 10a on the upper surface portion on one end side and the other end side in the Y direction, and a minus electrode 10b on the upper surface portion on the opposite side.
  • Each electrode 10a, 10b is provided to be inclined so as to protrude upward (see FIG. 9).
  • each battery cell 10 is arranged so that the positional relationship between the plus electrode 10 a and the minus electrode 10 b in the Y direction is opposite between adjacent battery cells 10.
  • the plus electrode 10a of one battery cell 10 and the minus electrode 10b of the other battery cell 10 are close to each other, and the minus electrode 10b of one battery cell 10 and the other electrode are The positive electrode 10a of the battery cell 10 is in close proximity.
  • the bus bar 40 is attached to two adjacent electrodes. Thereby, the some battery cell 10 is connected in series.
  • a common bus bar 40 is attached to the negative electrode 10b of the first battery cell 10 and the positive electrode 10a of the second battery cell 10.
  • a common bus bar 40 is attached to the negative electrode 10b of the second battery cell 10 and the positive electrode 10a of the third battery cell 10.
  • a common bus bar 40 is attached to the minus electrode 10b of each odd-numbered battery cell 10 and the plus electrode 10a of the even-numbered battery cell 10 adjacent thereto.
  • a common bus bar 40 is attached to the minus electrode 10b of each even-numbered battery cell 10 and the plus electrode 10a of the odd-numbered battery cell 10 adjacent thereto.
  • a bus bar 40a for connecting a power line 501 (see FIG. 1) from the outside is attached to the plus electrode 10a of the first battery cell 10 and the minus electrode 10b of the 18th battery cell 10, respectively.
  • a long flexible printed circuit board (hereinafter abbreviated as FPC board) 50 extending in the X direction is commonly connected to the plurality of bus bars 40 on one end side of the plurality of battery cells 10 in the Y direction.
  • a long FPC board 50 extending in the X direction is commonly connected to the plurality of bus bars 40 and 40a on the other end side of the plurality of battery cells 10 in the Y direction.
  • the FPC board 50 has a configuration in which a plurality of conductor wires 51 and 52 shown in FIG. 12, which will be described later, are mainly formed on an insulating layer, and has flexibility and flexibility.
  • polyimide is used as the material of the insulating layer constituting the FPC board 50
  • copper is used as the material of the conductor wires 51 and 52, for example.
  • the PTC elements 60 are arranged so as to be close to the bus bars 40, 40a.
  • Each FPC board 50 is folded at a right angle toward the inside at the upper end portion of the end face frame 92 (end face frame 92 to which the printed circuit board 21 is attached), and is further folded downward to be connected to the printed circuit board 21. .
  • bus bar 40 for connecting the plus electrode 10a and the minus electrode 10b of the two adjacent battery cells 10 is referred to as a bus bar 40 for two electrodes, and the plus electrode 10a or the minus electrode 10b of one battery cell 10 is called.
  • the bus bar 40a for connecting the power line 501 and the power line 501 is referred to as a one-electrode bus bar 40a.
  • FIG. 10A is an external perspective view of the bus bar 40 for two electrodes
  • FIG. 10B is an external perspective view of the bus bar 40a for one electrode.
  • the two-electrode bus bar 40 includes a base portion 41 having a substantially rectangular shape and a pair of attachment pieces 42 that are bent and extended from one side of the base portion 41 to the one surface side.
  • a pair of electrode connection holes 43 are formed in the base portion 41.
  • the bus bar 40a for one electrode includes a base portion 45 having a substantially square shape and a mounting piece 46 that is bent and extends from one side of the base portion 45 to one side thereof.
  • An electrode connection hole 47 is formed in the base portion 45.
  • the bus bars 40, 40a have a configuration in which, for example, nickel plating is applied to the surface of tough pitch copper.
  • FIG. 11 is an external perspective view showing a state in which a plurality of bus bars 40, 40a and a plurality of PTC elements 60 are attached to the FPC board 50.
  • FIG. 11 mounting pieces 42 and 46 of a plurality of bus bars 40 and 40a are attached to the two FPC boards 50 at predetermined intervals along the X direction. Further, the plurality of PTC elements 60 are respectively attached to the two FPC boards 50 at the same interval as the interval between the plurality of bus bars 40, 40a.
  • the plurality of bus bars 40, 40a and the plurality of bus bars 40, 40a and the plurality of battery cells 10 integrally fixed by the end face frame 92, the upper end frame 93, and the lower end frame 94 of FIG.
  • Two FPC boards 50 to which a plurality of PTC elements 60 are attached are attached.
  • the plus electrode 10a and the minus electrode 10b of the adjacent battery cell 10 are fitted into the electrode connection holes 43 and 47 formed in the bus bars 40 and 40a.
  • Male screws are formed on the plus electrode 10a and the minus electrode 10b.
  • Nuts (not shown) are screwed into male threads of the plus electrode 10a and the minus electrode 10b in a state where the bus bars 40, 40a are fitted in the plus electrode 10a and the minus electrode 10b of the adjacent battery cell 10.
  • the plurality of bus bars 40, 40a are attached to the plurality of battery cells 10, and the FPC board 50 is held in a substantially horizontal posture by the plurality of bus bars 40, 40a.
  • FIG. 12 is a schematic plan view for explaining the connection between the bus bars 40, 40a, the low potential side first circuit 30L, and the high potential side first circuit 30H.
  • the FPC board 50 is provided with a plurality of conductor wires 51 and 52 so as to correspond to each of the plurality of bus bars 40 and 40a.
  • Each conductor wire 51 is provided so as to extend in parallel in the Y direction between the mounting pieces 42 and 46 of the bus bars 40 and 40a and the PTC element 60 disposed in the vicinity of the bus bars 40 and 40a.
  • each conductor wire 51 is provided so as to be exposed on the lower surface side of the FPC board 50.
  • One end of each conductor wire 51 exposed on the lower surface side is electrically connected to the mounting pieces 42 and 46 of each bus bar 40 and 40a, for example, by soldering or welding. Thereby, the FPC board 50 is fixed to each bus bar 40, 40a.
  • each conductor line 51 and one end of each conductor line 52 are provided so as to be exposed on the upper surface side of the FPC board 50.
  • a pair of terminals (not shown) of the PTC element 60 are connected to the other end of each conductor wire 51 and one end of each conductor wire 52 by, for example, soldering.
  • Each PTC element 60 is preferably arranged in a region between both ends of the corresponding bus bar 40, 40a in the X direction.
  • the area of the FPC board 50 between the adjacent bus bars 40, 40a is easily bent, but the area of the FPC board 50 between both ends of each bus bar 40, 40a is fixed to the bus bars 40, 40a. Therefore, it is kept relatively flat. Therefore, each PTC element 60 is disposed in the region of the FPC board 50 between both ends of each bus bar 40, 40a, so that the connectivity between the PTC element 60 and the conductor wires 51, 52 is sufficiently ensured. Moreover, the influence (for example, change of the resistance value of the PTC element 60) on each PTC element 60 by the bending of the FPC board 50 is suppressed.
  • the printed circuit board 21 is provided with a plurality of connection terminals 22 corresponding to the plurality of conductor lines 52 of the FPC board 50.
  • the plurality of connection terminals 22, the low potential side first circuit 30 ⁇ / b> L, and the high potential side first circuit 30 ⁇ / b> H are electrically connected on the printed circuit board 21.
  • the other end of each conductor wire 52 of the FPC board 50 is connected to the corresponding connection terminal 22 by, for example, soldering or welding.
  • the connection between the printed circuit board 21 and the FPC board 50 is not limited to soldering or welding, and may be performed using a connector.
  • bus bars 40, 40a are electrically connected to the low potential side first circuit 30L and the high potential side first circuit 30H via the PTC element 60. Thereby, the terminal voltage of each battery cell 10 is detected.
  • One of the plurality of bus bars 40 in at least one battery module 100 is used as a shunt resistor for current detection.
  • the bus bar 40 used as the shunt resistor is referred to as a voltage / current bus bar 40y.
  • FIG. 13 is an enlarged plan view showing the voltage / current bus bar 40y and the FPC board 50.
  • the printed circuit board 21 further includes an amplifier circuit 410.
  • solder patterns H1 and H2 are formed in parallel with each other at regular intervals.
  • the solder pattern H1 is disposed between the two electrode connection holes 43 in the vicinity of one electrode connection hole 43
  • the solder pattern H2 is disposed between the electrode connection holes 43 in the vicinity of the other electrode connection hole 43.
  • the resistance formed between the solder patterns H1 and H2 in the voltage / current bus bar 40y is referred to as a current detection shunt resistance RS.
  • the solder pattern H1 of the voltage / current bus bar 40y is connected to one input terminal of the amplifier circuit 410 via the conductor line 51, the PTC element 60, the conductor line 52, and the connection terminal 22.
  • the solder pattern H2 of the voltage / current bus bar 40y is connected to the other input terminal of the amplifier circuit 410 via the conductor line 51, the PTC element 60, the conductor line 52, and the connection terminal 22.
  • the output terminal of the amplifier circuit 410 is connected to the connection terminal 22 by a conductor line.
  • the low potential side first circuit 30L or the high potential side first circuit 30H detects the voltage between the solder patterns H1 and H2 based on the output voltage of the amplifier circuit 410.
  • the voltage between the solder patterns H1, H2 detected by the low potential side first circuit 30L or the high potential side first circuit 30H is applied to the second circuit 24 of FIG.
  • the value of the shunt resistance RS between the solder patterns H1 and H2 in the voltage / current bus bar 40y is stored in advance in the storage unit 242 of the second circuit 24 in FIG.
  • the processing unit 241 of the second circuit 24 in FIG. 5 includes a shunt resistor in which the voltage between the solder patterns H1 and H2 given from the low potential side first circuit 30L or the high potential side first circuit 30H is stored in the storage unit 242.
  • FIG. 14 is a schematic plan view showing a configuration example of the printed circuit board 21.
  • the printed circuit board 21 has a substantially rectangular shape and has one side and the other side.
  • 14A and 14B show one surface and the other surface of the printed circuit board 21, respectively.
  • the low potential side first circuit 30L, the high potential side first circuit 30H, the second circuit 24, the insulating element 25, and the connector 23 are mounted on one surface of the printed circuit board 21.
  • the A plurality of connection terminals 22 are formed on the printed circuit board 21.
  • the printed circuit board 21 has a first mounting region 10G, a second mounting region 12G, and a strip-shaped insulating region 26 on one surface.
  • the second mounting region 12G is formed at one corner of the printed circuit board 21.
  • the insulating region 26 is formed so as to extend along the second mounting region 12G.
  • the first mounting region 10G is formed in the remaining part of the printed circuit board 21.
  • the first mounting region 10G and the second mounting region 12G are separated from each other by the insulating region 26. Thereby, the first mounting region 10G and the second mounting region 12G are electrically insulated by the insulating region 26.
  • the low potential side first circuit 30L and the high potential side first circuit 30H are mounted and a plurality of connection terminals 22 are formed, and the low potential side first circuit 30L and the high potential side first circuit One circuit 30H and the plurality of connection terminals 22 are electrically connected on the printed circuit board 21 by connection lines.
  • the plurality of battery cells 10 (see FIG. 1) of the battery module 100 include the low potential side first circuit 30L and the high potential side first circuit. Connected to 30H.
  • the ground pattern GND1L is formed around the mounting region of the low potential side first circuit 30L except for the mounting region of the low potential side first circuit 30L and the connection line forming region.
  • the ground pattern GND1L is held at the lowest potential of the plurality of battery cells 10 in the low potential side battery cell group 10L (see FIG. 3).
  • a ground pattern GND1H is formed around the mounting region of the high potential side first circuit 30H, except for the mounting region of the high potential side first circuit 30H and the connection line forming region.
  • the ground pattern GND1H is held at the lowest potential of the plurality of battery cells 10 in the high potential side battery cell group 10H (see FIG. 3).
  • the second circuit 24 and the connector 23 are mounted in the second mounting region 12G, and the second circuit 24 and the connector 23 are electrically connected on the printed circuit board 21 by a plurality of connection lines. Further, as a power source for the second circuit 24, the non-power battery 12 (see FIG. 1) provided in the electric vehicle is connected to the second circuit 24 via the connector 23.
  • a ground pattern GND2 is formed in the second mounting region 12G except for the mounting region of the second circuit 24 and the connector 23 and the formation region of a plurality of connection lines. The ground pattern GND2 is held at the reference potential (ground potential) of the non-power battery 12.
  • the insulating element 25 is mounted so as to straddle the insulating region 26.
  • the insulating element 25 transmits a signal between the first circuit 30L on the low potential side and the second circuit 24 while electrically insulating the ground pattern GND1L and the ground pattern GND2 from each other.
  • a digital isolator or a photocoupler can be used as the insulating element 25.
  • a digital isolator is used as the insulating element 25.
  • the low potential side first circuit 30L and the second circuit 24 are connected so as to be able to communicate while being electrically insulated by the insulating element 25.
  • the high potential side first circuit 30H and the second circuit 24 are connected to each other via the low potential side first circuit 30L while being electrically insulated.
  • a plurality of battery cells 10 can be used as the power source of the low potential side first circuit 30L and the high potential side first circuit 30H, and the non-power battery 12 (see FIG. 1) is used as the power source of the second circuit 24.
  • the second circuit 24 can be stably operated independently from the low potential side first circuit 30L and the high potential side first circuit 30H.
  • a plurality of resistors R and a plurality of switching elements SW are mounted, and a connection terminal 22 is formed.
  • the plurality of resistors R on the other surface of the printed circuit board 21 are arranged at positions above positions corresponding to the low potential side first circuit 30L, the high potential side first circuit 30H, and the second circuit 24.
  • the heat generated from the resistor R can be efficiently dissipated.
  • the heat generated from the resistor R can be prevented from being conducted to the low potential side first circuit 30L, the high potential side first circuit 30H, and the second circuit 24.
  • Battery cell equalization process The charge state equalization process of the battery cell 10 is demonstrated.
  • the terminal voltage equalization process will be described as an example of the charge state of the plurality of battery cells 10, but instead of this, other charge states such as the charge amounts of the plurality of battery cells 10 may be equalized. Good.
  • the processing unit 241 (see FIG. 5) of the second circuit 24 receives the terminal voltage of each battery cell 10 from the detection unit 20 (see FIGS. 3 and 4) of the low potential side first circuit 30L and the high potential side first circuit 30H. To get.
  • the processing unit 241 determines that the terminal voltage of a certain battery cell 10 is higher than the terminal voltage of another battery cell 10 (when equalization processing is necessary)
  • the low-potential-side first circuit 30L or A command (ON command) for turning on the switching element SW (see FIG. 3) corresponding to the battery cell 10 to the equalization control circuit 33 through the control unit 31 (see FIGS. 3 and 4) of the first circuit 30H on the high potential side.
  • the equalization control circuit 33 turns on the switching element SW.
  • the charge charged in the battery cell 10 is discharged through the resistor R (see FIG. 3).
  • the low-potential-side first circuit 30L When the processing unit 241 determines that the terminal voltage of the battery cell 10 has decreased to be substantially equal to the terminal voltage of the other battery cell 10 (when equalization processing is not necessary), the low-potential-side first circuit 30L. Alternatively, a command (off command) for turning off the switching element SW corresponding to the battery cell 10 is given to the equalization control circuit 33 through the control unit 31 of the first circuit 30H on the high potential side. Thereby, the equalization control circuit 33 turns off the switching element SW. In this way, the terminal voltages of all the battery cells 10 are kept substantially equal. Thereby, the overcharge and overdischarge of some battery cells 10 can be prevented. As a result, deterioration of the battery cell 10 can be prevented.
  • the second circuit 24 compares the terminal voltages of the respective battery cells 10 and transmits the ON command and the OFF command of the switching element SW, but is not limited thereto.
  • the battery ECU 101 in FIG. 1 may detect the terminal voltage of each battery cell 10 and transmit an ON command and an OFF command for the switching element SW.
  • Overdischarge prevention process in equalization process It is possible to perform the equalization process of the battery cell 10 even when the electric vehicle 600 of FIG. While the electric automobile 600 is stopped, the processing unit 241 of the second circuit 24 enters a resting state at regular intervals. Therefore, after the equalization process is started, when the processing unit 241 is in a dormant state when the equalization of the battery cells 10 is completed, an off command is not transmitted from the processing unit 241.
  • the following overdischarge prevention process is performed in order to prevent the battery cell 10 from being overdischarged by continuing the equalization process.
  • FIG. 15 is a flowchart showing an overdischarge prevention process in the equalization process of the battery cells 10 by the control unit 31 of the low potential side first circuit 30L and the high potential side first circuit 30H.
  • the control unit 31 see FIGS. 3 and 4
  • An on command to turn on the switching element SW (see FIG. 3) corresponding to the battery cell 10 that needs equalization processing is received from the processing unit 241 (see FIG. 5), and the on command is given to the equalization control circuit 33.
  • Step S1 the electric charge charged in the battery cell 10 is discharged through the resistor R (see FIG. 3).
  • the processing unit 241 of the second circuit 24 shifts to a dormant state. In this case, the power consumed by the second circuit 24 is reduced. Thereby, the power consumption of the non-power battery 12 of FIG. 1 is suppressed.
  • the processing unit 241 shifts from the hibernation state to the operation state after elapse of a preset pause time. Here, the processing unit 241 determines whether or not the above equalization processing is necessary. When the equalization process is necessary, the processing unit 241 shifts to the sleep state again. On the other hand, when there is no need for equalization processing, the processing unit 241 transmits an equalization end command indicating that the equalization processing is to be ended to the control unit 31, and then shifts to the sleep state again.
  • the control unit 31 determines whether or not an equalization end command has been received (step S2). When the processing unit 241 is in the dormant state, the equalization end command is not transmitted from the processing unit 241.
  • step S6 When the equalization end command is received in step S2, the control unit 31 proceeds to the process of step S6.
  • the control unit 31 gives an off command to turn off the switching element SW in the on state to the equalization control circuit 33 (step S6). Thereby, the equalization process of the battery cell 10 is complete
  • the time required for the processing in steps S2 to S5 is shorter than the pause time of the processing unit 241.
  • the detection unit 20 of the first circuit 30 detects the terminal voltage of each battery cell 10. Further, based on the terminal voltage of each battery cell 10 detected by the detection unit 20 of the first circuit 30, the processing unit 241 of the second circuit 24 transmits a command related to the equalization processing of the battery cell 10 and calculates cell information. Information processing such as transmission of cell information is performed.
  • the first circuit 30 operates with electric power supplied from the plurality of battery cells 10, and the second circuit 24 operates with electric power supplied from the non-power battery 12.
  • the operation of the second circuit 24 does not stop due to the voltage drop of the plurality of battery cells 10.
  • the process part 241 of the 2nd circuit 24 can continue the process of information. Therefore, in the battery system 500, it is possible to prevent the entire function of the battery system 500 from being stopped due to a decrease in the voltage of the battery cell 10 in any one of the battery modules 100. As a result, stable operation of the battery system 500 is ensured.
  • the processing unit 241 of the battery module 100 has a function of processing information regarding the detected terminal voltage. Therefore, in battery system 500, the number and type of battery modules 100 can be easily changed without changing the configuration of battery ECU 101. Thereby, the specification of the battery system 500 can be easily changed.
  • the battery module 100 can be easily added and replaced. .
  • first circuit 30 and the second circuit 24 operate with independent power supplies, even if an abnormality occurs in one of the operations of the first circuit 30 and the second circuit 24, the other operates normally. Can do. Therefore, it is possible to easily determine which of the first circuit 30 and the second circuit 24 is abnormal.
  • FIG. 16 is a flowchart illustrating an overdischarge prevention process in the equalization process of the battery cells 10 by the control unit 31 of the low potential side first circuit 30L and the high potential side first circuit 30H according to the second embodiment.
  • Step S11 the control unit 31 (see FIGS. 3 and 4) of the low potential side first circuit 30L and the high potential side first circuit 30H
  • An on command to turn on the switching element SW (see FIG. 3) corresponding to the battery cell 10 that needs equalization processing is received from the processing unit 241 (see FIG. 5), and the on command is given to the equalization control circuit 33.
  • Step S11 the electric charge charged in the battery cell 10 is discharged through the resistor R (see FIG. 3).
  • the control unit 31 resets the timer 34 (see FIGS. 3 and 4) of the low potential side first circuit 30L and the high potential side first circuit 30H based on the control from the processing unit 241 (step S12). ), The operation of the timer 34 is started (step S13).
  • the processing unit 241 transmits to the control unit 31 a reset command for instructing resetting of the timer 34 every preset time (hereinafter referred to as reset time).
  • the control unit 31 determines whether or not a reset command has been received (step S14). When the reset command is not received, the control unit 31 continues the operation of the timer 34 (step S15). Thereafter, the control unit 31 determines whether or not the time measured by the timer 34 is shorter than a preset time (hereinafter referred to as equalization end time) (step S16). If the measurement time is shorter than the end of equalization, the control unit 31 returns to the process of step S14.
  • step S14 when the equalization end command is received, the control unit 31 returns to the process of step S12.
  • step S16 when the measurement time is equal to or greater than the equalization end time, the control unit 31 gives an off command to turn off the switching element SW in the on state to the equalization control circuit 33 (step S17). Thereby, the equalization process of the battery cell 10 is complete
  • the reset time is shorter than the equalization end time.
  • the control unit 31 determines that all of the battery cells 10 are all based on a command from the processing unit 241.
  • the switching element SW is turned off. This completes the equalization process.
  • the control unit 31 turns off the switching element SW of each battery cell 10. Thereby, discharge of each battery cell 10 stops. As a result, even when communication between the control unit 31 and the processing unit 241 (see FIG. 2) of the second circuit 24 is disabled after the equalization processing is started, overcharge and overdischarge of some battery cells 10 are performed. Can be reliably prevented.
  • the electric vehicle according to the present embodiment includes a battery system 500 including the battery module 100 according to the first or second embodiment.
  • a battery system 500 including the battery module 100 according to the first or second embodiment.
  • an electric vehicle will be described as an example of an electric vehicle.
  • FIG. 17 is a block diagram illustrating a configuration of an electric vehicle including the battery system 500.
  • the electric automobile 600 according to the present embodiment includes a vehicle body 610.
  • the vehicle body 610 includes the non-power battery 12 of FIG. 1, the main control unit 300 and the battery system 500, the power conversion unit 601, the motor 602, the drive wheels 603, the accelerator device 604, the brake device 605, and the rotation speed sensor 606.
  • motor 602 is an alternating current (AC) motor
  • power conversion unit 601 includes an inverter circuit.
  • the non-power battery 12 is connected to the battery system 500.
  • the battery system 500 is connected to the motor 602 via the power conversion unit 601 and also connected to the main control unit 300.
  • the main controller 300 has the amount of charge of each battery cell 10 (see FIG. 1) and the value of the current flowing through the plurality of battery cells 10 from the battery ECU 101 (see FIG. 1) constituting the battery system 500. Given.
  • Accelerator device 604, brake device 605 and rotation speed sensor 606 are connected to main controller 300.
  • the main control unit 300 includes, for example, a CPU and a memory, or a microcomputer.
  • a non-power battery 12 is connected to the main controller 300. The electric power output from the non-power battery 12 is supplied to some electrical components of the electric automobile 600 based on the control by the main control unit 300.
  • the accelerator device 604 includes an accelerator pedal 604a included in the electric automobile 600 and an accelerator detection unit 604b that detects an operation amount (depression amount) of the accelerator pedal 604a.
  • the accelerator detector 604b detects the operation amount of the accelerator pedal 604a based on a state where the driver is not operated. The detected operation amount of the accelerator pedal 604a is given to the main controller 300.
  • the brake device 605 includes a brake pedal 605a included in the electric automobile 600 and a brake detection unit 605b that detects an operation amount (depression amount) of the brake pedal 605a by the driver.
  • the operation amount is detected by the brake detection unit 605b.
  • the detected operation amount of the brake pedal 605a is given to the main control unit 300.
  • Rotational speed sensor 606 detects the rotational speed of motor 602. The detected rotation speed is given to the main control unit 300.
  • the main control unit 300 includes the charge amount of each battery cell 10, the value of the current flowing through the plurality of battery cells 10, the operation amount of the accelerator pedal 604a, the operation amount of the brake pedal 605a, and the rotation of the motor 602. Speed is given.
  • the main control unit 300 performs charge / discharge control of the battery module 100 and power conversion control of the power conversion unit 601 based on these pieces of information.
  • the battery module 100 supplies power to the power conversion unit 601.
  • the main control unit 300 calculates a rotational force (command torque) to be transmitted to the drive wheels 603 based on the given operation amount of the accelerator pedal 604a, and outputs a control signal based on the command torque to the power conversion unit 601. To give.
  • the power conversion unit 601 that has received the control signal converts the power supplied from the battery system 500 into power (drive power) necessary for driving the drive wheels 603. As a result, the driving power converted by the power converter 601 is supplied to the motor 602, and the rotational force of the motor 602 based on the driving power is transmitted to the driving wheels 603.
  • the motor 602 functions as a power generator.
  • the power conversion unit 601 converts the regenerative power generated by the motor 602 into power suitable for charging the battery module 100 and supplies the power to the battery module 100. Thereby, the battery module 100 is charged.
  • the electric vehicle 600 according to the present embodiment is provided with the battery system 500 including the battery module 100 according to the first or second embodiment. Stable operation of the battery system 500 is ensured. Thereby, the stable operation of the electric automobile 600 is ensured.
  • the battery system 500 including the battery module 100 according to the first or second embodiment is mounted on an electric vehicle.
  • the battery system 500 is a ship, an aircraft, You may mount in other moving bodies, such as an elevator or a walking robot.
  • a ship equipped with the battery system 500 includes, for example, a hull instead of the vehicle body 610 in FIG. 17, a screw instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605.
  • a deceleration input unit is provided.
  • the driver operates the acceleration input unit instead of the accelerator device 604 when accelerating the hull, and operates the deceleration input unit instead of the brake device 605 when decelerating the hull.
  • the hull corresponds to the moving main body
  • the motor corresponds to the power source
  • the screw corresponds to the drive unit.
  • the motor receives electric power from the battery system 500 and converts the electric power into motive power, and the hull moves as the screw is rotated by the motive power.
  • an aircraft equipped with the battery system 500 includes, for example, a fuselage instead of the vehicle body 610 in FIG. 17, a propeller instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake.
  • a deceleration input unit is provided instead of the device 605.
  • the airframe corresponds to the moving main body
  • the motor corresponds to the power source
  • the propeller corresponds to the drive unit.
  • the motor receives electric power from the battery system 500 and converts the electric power into motive power, and the propeller is rotated by the motive power, so that the aircraft moves.
  • the elevator equipped with the battery system 500 includes, for example, a saddle instead of the vehicle body 610 in FIG. 17, a lifting rope attached to the saddle instead of the driving wheel 603, and an acceleration input unit instead of the accelerator device 604. And a deceleration input unit instead of the brake device 605.
  • the kite corresponds to the moving main body
  • the motor corresponds to the power source
  • the lifting rope corresponds to the drive unit.
  • the motor receives electric power from the battery system 500 and converts the electric power into motive power, and the elevating rope is wound up by the motive power, so that the kite moves up and down.
  • a walking robot equipped with the battery system 500 includes, for example, a torso instead of the vehicle body 610 in FIG. 17, a foot instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605.
  • a deceleration input unit is provided instead of.
  • the body corresponds to the moving main body
  • the motor corresponds to the power source
  • the foot corresponds to the drive unit.
  • the motor receives electric power from the battery system 500, converts the electric power into power, and the torso moves by driving the foot with the power.
  • the power source receives power from the battery system 500 and converts the power into power, and the drive unit is moved by the power converted by the power source. Move.
  • other moving bodies such as a ship, an aircraft, an elevator, or a walking robot equipped with the battery system 500 include a second circuit battery different from the battery module 100 instead of the non-power battery 12 of FIG.
  • the second circuit battery is a secondary battery such as a lead storage battery.
  • the second circuit battery can be charged by the same charging system as the charging system for charging the battery module 100.
  • the second circuit battery may be charged by a charging system different from the charging system for charging the battery module 100.
  • the second circuit battery is connected to the switch circuit 107 of the battery ECU 101 of FIG.
  • the switch circuit 107 When the switch circuit 107 is turned on, the second circuit of the plurality of printed circuit boards 21 is connected by the second circuit battery via the plurality of connectors 108, the plurality of conductor lines 54, and the connectors 23 of the plurality of printed circuit boards 21 in FIG. 24 is supplied with power. Thereby, each second circuit 24 operates.
  • the power supply device includes a battery system 500 including the battery module 100 according to the first or second embodiment.
  • FIG. 18 is a block diagram showing the configuration of the power supply device.
  • the power supply device 700 includes a power storage device 710 and a power conversion device 720.
  • the power storage device 710 includes a battery system group 711, a controller 712, and a second circuit battery 713.
  • the battery system group 711 includes a plurality of battery systems 500.
  • the plurality of battery systems 500 may be connected in parallel with each other, or may be connected in series with each other.
  • the second circuit battery 713 is a secondary battery such as a lead storage battery.
  • the second circuit battery 713 is connected to the switch circuit 107 of the battery ECU 101 of FIG.
  • the switch circuit 107 When the switch circuit 107 is turned on, the second circuit battery 713 causes the second of the plurality of printed circuit boards 21 to pass through the plurality of connectors 108, the plurality of conductor wires 54, and the connectors 23 of the plurality of printed circuit boards 21 of FIG. Power is applied to the circuit 24. Thereby, each second circuit 24 operates.
  • the controller 712 includes, for example, a CPU and a memory, or a microcomputer.
  • the controller 712 is connected to a battery ECU 101 (see FIG. 1) included in each battery system 500.
  • the controller 712 controls the power conversion device 720 based on the charge amount of each battery cell 10 given from each battery ECU 101.
  • the controller 712 performs later-described control as control related to discharging or charging of the battery module 100 of the battery system 500.
  • the power converter 720 includes a DC / DC (DC / DC) converter 721 and a DC / AC (DC / AC) inverter 722.
  • the DC / DC converter 721 has input / output terminals 721a and 721b, and the DC / AC inverter 722 has input / output terminals 722a and 722b.
  • the input / output terminal 721 a of the DC / DC converter 721 is connected to the battery system group 711 and the second circuit battery 713 of the power storage device 710.
  • the second circuit battery 713 is charged by the DC / DC converter 721.
  • the input / output terminal 721b of the DC / DC converter 721 and the input / output terminal 722a of the DC / AC inverter 722 are connected to each other and to the power output unit PU1.
  • the input / output terminal 722b of the DC / AC inverter 722 is connected to the power output unit PU2 and to another power system.
  • the power output units PU1 and PU2 include, for example, outlets. For example, various loads are connected to the power output units PU1 and PU2.
  • Other power systems include, for example, commercial power sources or solar cells. This is an external example in which power output units PU1, PU2 and another power system are connected to a power supply device.
  • the solar cell When a solar cell is used as the power system, the solar cell is connected to the input / output terminal 721b of the DC / DC converter 721.
  • the AC output unit of the power conditioner of the solar power generation system is connected to the input / output terminal 722 b of the DC / AC inverter 722.
  • the battery system group 711 When the DC / DC converter 721 and the DC / AC inverter 722 are controlled by the controller 712, the battery system group 711 is discharged and charged. When the battery system group 711 is discharged, power supplied from the battery system group 711 is DC / DC (direct current / direct current) converted by the DC / DC converter 721, and further DC / AC (direct current / alternating current) conversion is performed by the DC / AC inverter 722. Is done.
  • the power supply device 700 When the power supply device 700 is used as a DC power supply, the power DC / DC converted by the DC / DC converter 721 is supplied to the power output unit PU1. When the power supply device 700 is used as an AC power supply, the power that is DC / AC converted by the DC / AC inverter 722 is supplied to the power output unit PU2. Moreover, the electric power converted into alternating current by the DC / AC inverter 722 can also be supplied to another electric power system.
  • the controller 712 performs the following control as an example of control related to the discharge of the battery module 100 of the battery system group 711.
  • the controller 712 determines whether to stop discharging the battery system group 711 based on the calculated charge amount or whether to limit the discharge current (or discharge power),
  • the power conversion device 720 is controlled based on the determination result. Specifically, when the charge amount of any one of the plurality of battery cells 10 (see FIG. 1) included in the battery system group 711 is smaller than a predetermined threshold value, the controller 712
  • the DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the discharge of the battery system group 711 is stopped or the discharge current (or discharge power) is limited. Thereby, overdischarge of each battery cell 10 is prevented.
  • the discharge current (or discharge power) is limited by limiting the voltage of the battery system group 711 to a constant reference voltage.
  • the reference voltage is set by the controller 712 based on the charge amount of the battery cell 10.
  • AC power supplied from another power system is AC / DC (AC / DC) converted by the DC / AC inverter 722, and further DC / DC (DC) is converted by the DC / DC converter 721. / DC) converted.
  • AC / DC AC / DC
  • DC DC / DC
  • the controller 712 performs the following control as an example of control related to the charging of the battery module 100 of the battery system group 711.
  • the controller 712 determines whether to stop charging the battery system group 711 or limit the charging current (or charging power) based on the calculated charge amount
  • the power conversion device 720 is controlled based on the determination result. Specifically, when the charge amount of any one of the plurality of battery cells 10 (see FIG. 1) included in the battery system group 711 is greater than a predetermined threshold, the controller 712
  • the DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the charging of the battery system group 711 is stopped or the charging current (or charging power) is limited. Thereby, overcharge of each battery cell 10 is prevented.
  • the charging current (or charging power) is limited by limiting the voltage of the battery system group 711 to a constant reference voltage.
  • the reference voltage is set by the controller 712 based on the charge amount of the battery cell 10.
  • the power conversion device 720 may include only one of the DC / DC converter 721 and the DC / AC inverter 722 as long as power can be supplied between the power supply device 700 and the outside. Further, the power conversion device 720 may not be provided as long as power can be supplied between the power supply device 700 and the outside.
  • the controller 712 controls the power supply between the battery system group 711 and the outside. Thereby, overdischarge and overcharge of each battery cell 10 included in the battery system group 711 are prevented.
  • the power supply apparatus 700 according to the present embodiment is provided with the battery system 500 including the battery module 100 according to the first or second embodiment. Therefore, the battery system 500 included in the power supply apparatus 700 is provided. Stable operation is ensured. Thereby, stable operation of the power supply device 700 is ensured.
  • the two first circuits 30 are mounted on the printed circuit board 21.
  • the withstand voltage of the first circuit 30 is sufficiently large, one first circuit 30 may be mounted on the printed circuit board 21.
  • one first circuit 30 may be mounted on the printed circuit board 21.
  • three or more first circuits 30 may be mounted on the printed circuit board 21.
  • the first circuit 30 is supplied with power from all the battery cells 10, but the present invention is not limited to this. Electric power may be supplied from two or more predetermined number of battery cells 10. In this case, it is possible to prevent the power consumption of one battery cell 10 from becoming significantly larger than the power consumption of other battery cells 10. Thereby, the dispersion
  • the second circuit 24 of the plurality of battery modules 100 and the battery ECU 101 are connected by the bus 103, but the present invention is not limited to this.
  • the second circuit 24 and the battery ECU 101 of the plurality of battery modules 100 may be connected in series.
  • step S17 of the second embodiment the control unit 31 of the low potential side first circuit 30L and the high potential side first circuit 30H turns off the switching element SW of the series circuit SC.
  • the control unit 31 may switch the switching circuit 35c so that the terminals CP0 and CP3 in FIG. 4 are connected.
  • the switching element SW of the series circuit SC is turned off, and the operation of each part of the low potential side first circuit 30L and each part of the high potential side first circuit 30H is stopped.
  • power is not consumed in the low-potential side first circuit 30L and the high-potential side first circuit 30H, so that the charge amounts of the plurality of battery cells 10 are prevented from becoming uneven.
  • the control unit 31 switches the switching circuit 35c so that the terminal CP0 of FIG. 4 is connected to the terminal CP3, so that each part of the low potential side first circuit 30L and the high potential side first circuit 30H
  • the present invention is not limited to this.
  • a switching element is provided between the step-down unit 35a and step-up unit 35b of FIG. 4 and each part of the low potential side first circuit 30L, and the control unit 31 of the low potential side first circuit 30L turns off the switching element. Also good. Thereby, operation
  • a switching element may be provided between the step-down unit 35a and step-up unit 35b and each part of the high potential side first circuit 30H, and the control unit 31 of the high potential side first circuit 30H may turn off the switching element. . Thereby, the operation of each part of the high potential side first circuit 30H can be stopped.
  • a moving body such as the electric automobile 600, a ship, an aircraft, an elevator, or a walking robot is an electric device including the battery module 100 and a motor 602 as a load.
  • the electric device according to the present invention is not limited to a moving body such as an electric automobile 600, a ship, an aircraft, an elevator, or a walking robot, and may be a washing machine, a refrigerator, an air conditioner, or the like.
  • a washing machine is an electric device including a motor as a load
  • a refrigerator or an air conditioner is an electric device including a compressor as a load.
  • An electric device such as a washing machine, a refrigerator, or an air conditioner includes a second circuit battery different from the battery module 100 in place of the non-power battery 12 of FIG.
  • the second circuit battery is a secondary battery such as a lead storage battery.
  • the second circuit battery can be charged by the same charging system as the charging system for charging the battery module 100.
  • the second circuit battery may be charged by a charging system different from the charging system for charging the battery module 100.
  • the second circuit battery is connected to the switch circuit 107 of the battery ECU 101 of FIG. When the switch circuit 107 is turned on, the second circuit of the plurality of printed circuit boards 21 is connected by the second circuit battery via the plurality of connectors 108, the plurality of conductor lines 54, and the connectors 23 of the plurality of printed circuit boards 21 in FIG. 24 is supplied with power. Thereby, each second circuit 24 operates.
  • the non-power battery 12 or the second circuit battery 713 is an example of an external power source
  • the battery module 100 is an example of a battery module
  • the battery cell 10 is an example of a battery cell
  • detection The unit 20 is an example of a detection unit.
  • the first circuit 30 (the low potential side first circuit 30L and the high potential side first circuit 30H) is an example of the first circuit unit
  • the processing unit 241 is an example of the processing unit
  • the second circuit 24 is the second circuit unit.
  • the printed circuit board 21 is an example of a circuit board.
  • the power supply circuit 35 is an example of a first power supply circuit
  • the plus electrode 10a and the minus electrode 10b are examples of electrode terminals
  • the conductor line 52 is an example of a voltage detection line
  • the conductor lines 55L and 55H are internal power supply lines.
  • the input / output harness H is an example of a connection member.
  • the communication circuit 246 is an example of a communication circuit
  • the power supply circuit 245 is an example of a second power supply circuit
  • the connection terminal 23c is an example of a first connection terminal
  • the connection terminal 23b is an example of a second connection terminal.
  • the connector 23a is an example of a connector
  • the conductor line 54 is an example of an external power supply line.
  • the conductor line 53 is an example of a communication line
  • the step-up unit 35b is an example of a step-up unit
  • the step-down unit 35a is an example of a step-down unit
  • the series circuit SC is an example of an equalization circuit
  • the control unit 31 is equal. This is an example of the equalization stop unit
  • the equalization control circuit 33 is an example of the equalization control unit.
  • the motor 602 is an example of a motor
  • the driving wheel 603 is an example of a driving wheel
  • the electric automobile 600 is an example of an electric vehicle.
  • the body 610, the ship hull, the aircraft fuselage, the elevator cage or the body of the walking robot are examples of the moving main body, and the motor 602, the drive wheel 603, the screw, the propeller, the hoisting motor of the lifting rope or the walking robot.
  • a foot is an example of a power source.
  • An electric vehicle 600, a ship, an aircraft, an elevator, or a walking robot are examples of moving objects.
  • the controller 712 is an example of a system control unit
  • the power storage device 710 is an example of a power storage device
  • the power supply device 700 is an example of a power supply device
  • the power conversion device 720 is an example of a power conversion device.
  • the motor 602 or the compressor is an example of a load
  • the electric automobile 600, a ship, an aircraft, an elevator, a walking robot, a washing machine, a refrigerator, or an air conditioner is an example of an electric device.
  • the present invention can be effectively used for various mobile objects using electric power as a drive source, power storage devices, mobile devices, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

The disclosed battery module is provided with a plurality of battery cells, a first circuit, a second circuit, and a printed circuit board. The first circuit contains a detection unit that detects the voltage of each battery cell. The second circuit contains a processing unit that processes information relating to the voltages detected by the detection unit of the first circuit. The first circuit and the second circuit are mounted to a common printed circuit board. Power is supplied to the first circuit from the plurality of battery cells of the battery module. Power is supplied to the second circuit from a battery for the second circuit or a battery that is not for motive power in an electric vehicle.

Description

バッテリモジュール、それを備えた電動車両、移動体、電力貯蔵装置、電源装置および電気機器BATTERY MODULE, ELECTRIC VEHICLE WITH THE SAME, MOBILE BODY, POWER STORAGE DEVICE, POWER SUPPLY DEVICE, AND ELECTRIC DEVICE
 本発明は、バッテリモジュールならびにそれを備えた電動車両、移動体、電力貯蔵装置、電源装置および電気機器に関する。 The present invention relates to a battery module, and an electric vehicle, a moving body, a power storage device, a power supply device, and an electric device including the battery module.
 電動自動車等の移動体の駆動源として、充放電が可能なバッテリモジュールが用いられる。このようなバッテリモジュールは、例えば複数の電池(バッテリセル)が直列に接続された構成を有する。 A battery module that can be charged and discharged is used as a drive source for a moving body such as an electric vehicle. Such a battery module has a configuration in which, for example, a plurality of batteries (battery cells) are connected in series.
 特許文献1に記載されている電池システムは、複数の電池モジュール、複数の電池セルコントローラおよびバッテリコントローラを有する。各電池モジュールは複数の電池セルのグループからなる。各電池セルコントローラは複数の電池グループに対応する複数の集積回路を含む。各電池セルコントローラの複数の集積回路は、対応する複数の電池グループに属する各電池セルの電圧を検出する。バッテリコントローラは複数の電池セルコントローラから各電池セルの電圧等のデータを通信により取得するとともに複数の電池セルコントローラを介して各電池セルの状態を制御する。各電池セルコントローラには、対応する電池モジュールの電池セルから電力が供給される。一方、バッテリコントローラには、車両に搭載される他の電力系統から電力が供給される。
特開2010-16928号公報
The battery system described in Patent Document 1 includes a plurality of battery modules, a plurality of battery cell controllers, and a battery controller. Each battery module consists of a group of a plurality of battery cells. Each battery cell controller includes a plurality of integrated circuits corresponding to a plurality of battery groups. The plurality of integrated circuits of each battery cell controller detects the voltage of each battery cell belonging to the corresponding plurality of battery groups. The battery controller acquires data such as voltage of each battery cell from a plurality of battery cell controllers by communication, and controls the state of each battery cell via the plurality of battery cell controllers. Each battery cell controller is supplied with power from the battery cells of the corresponding battery module. On the other hand, power is supplied to the battery controller from another power system mounted on the vehicle.
JP 2010-16928 A
 特許文献1に記載された電池システムにおいては、いずれかの電池モジュールの電池セルの電圧が低下した場合でも、バッテリコントローラは動作することができる。それにより、他の電池モジュールの各電池セルの電圧等のデータを取得することができる。 In the battery system described in Patent Document 1, the battery controller can operate even when the voltage of the battery cell of any battery module drops. Thereby, data, such as the voltage of each battery cell of another battery module, can be acquired.
 しかしながら、上記の電池システムにおいては、バッテリコントローラが複数の電池セルコントローラから取得したデータを処理することにより複数の電池セルの状態を制御する。そのため、バッテリコントローラにおける処理の負担が大きい。それにより、バッテリコントローラに異常が発生した場合には、電池システムの全ての電池モジュールに含まれる全ての電池セルのデータの取得および処理が不可能になるため、電池システムの全体の機能が停止する。その結果、電池システムの安定な動作を確保することが難しい。 However, in the battery system described above, the battery controller controls the state of the plurality of battery cells by processing data acquired from the plurality of battery cell controllers. Therefore, the processing burden on the battery controller is large. As a result, when an abnormality occurs in the battery controller, it becomes impossible to acquire and process data of all the battery cells included in all the battery modules of the battery system, so that the entire function of the battery system is stopped. . As a result, it is difficult to ensure a stable operation of the battery system.
 本発明の目的は、バッテリシステムの安定な動作を確保することを可能にするバッテリモジュールならびにそれを備えた電動車両、移動体、電力貯蔵装置、電源装置および電気機器を提供することである。 An object of the present invention is to provide a battery module that makes it possible to ensure a stable operation of a battery system, and an electric vehicle, a moving body, a power storage device, a power supply device, and an electric device including the battery module.
 (1)本発明の一局面に従うバッテリモジュールは、外部電源と接続可能なバッテリモジュールであって、複数のバッテリセルと、各バッテリセルの電圧を検出する検出部を含む第1の回路部と、第1の回路部の検出部により検出される電圧に関する情報を処理する処理部を含む第2の回路部と、第1の回路部および第2の回路部が実装される共通の回路基板とを備え、第1の回路部は、複数のバッテリセルの少なくとも一部から供給される電力により動作可能に構成され、第2の回路部は、外部電源から供給される電力により動作可能に構成されるものである。 (1) A battery module according to one aspect of the present invention is a battery module connectable to an external power supply, and includes a plurality of battery cells, and a first circuit unit including a detection unit that detects a voltage of each battery cell; A second circuit unit including a processing unit that processes information on the voltage detected by the detection unit of the first circuit unit, and a common circuit board on which the first circuit unit and the second circuit unit are mounted. The first circuit unit is configured to be operable with power supplied from at least a part of the plurality of battery cells, and the second circuit unit is configured to be operable with power supplied from an external power source. Is.
 このバッテリモジュールにおいては、第1の回路部の検出部により各バッテリセルの電圧に関する情報が検出される。また、第1の回路部の検出部により検出される各バッテリセルの電圧に関する情報が第2の回路部の処理部により処理される。第1の回路部および第2の回路部は共通の回路基板に実装される。第1の回路部は、複数のバッテリセルの少なくとも一部から供給される電力により動作し、第2の回路部は、外部電源から供給される電力により動作する。 In this battery module, information on the voltage of each battery cell is detected by the detection unit of the first circuit unit. Further, information regarding the voltage of each battery cell detected by the detection unit of the first circuit unit is processed by the processing unit of the second circuit unit. The first circuit unit and the second circuit unit are mounted on a common circuit board. The first circuit unit operates with electric power supplied from at least a part of the plurality of battery cells, and the second circuit unit operates with electric power supplied from an external power source.
 この場合、第2の回路部の動作は、複数のバッテリセルの電圧の低下により停止することがない。それにより、複数のバッテリセルの電圧が低下した場合でも、第2の回路部の処理部は情報の処理を続行することができる。したがって、複数のバッテリモジュールを含むバッテリシステムにおいて、いずれかのバッテリモジュールにおけるバッテリセルの電圧の低下によりバッテリシステムの全体の機能が停止することが防止される。その結果、バッテリシステムの安定な動作が確保される。 In this case, the operation of the second circuit unit does not stop due to a decrease in the voltage of the plurality of battery cells. Thereby, even when the voltage of a some battery cell falls, the process part of a 2nd circuit part can continue the process of information. Therefore, in a battery system including a plurality of battery modules, it is possible to prevent the entire function of the battery system from being stopped due to a decrease in the voltage of the battery cell in any one of the battery modules. As a result, stable operation of the battery system is ensured.
 また、バッテリモジュールの処理部が、検出された電圧に関する情報の処理を行う機能を有する。そのため、複数のバッテリモジュールを含むバッテリシステムにおいて、バッテリモジュールの数および種類を容易に変更することができる。それにより、バッテリシステムの仕様の変更を容易に行うことが可能となる。 Also, the processing unit of the battery module has a function of processing information regarding the detected voltage. Therefore, in a battery system including a plurality of battery modules, the number and type of battery modules can be easily changed. Thereby, it is possible to easily change the specifications of the battery system.
 さらに、検出部を含む第1の回路部と処理部を含む第2の回路部とが共通の回路基板上に実装されるので、バッテリモジュールの増設および交換を容易に行うことができる。 Furthermore, since the first circuit unit including the detection unit and the second circuit unit including the processing unit are mounted on a common circuit board, it is possible to easily add and replace the battery module.
 また、第1の回路部と第2の回路部とがそれぞれ独立した電源により動作するので、第1の回路部および第2の回路部の一方の動作に異常が発生した場合でも、他方は正常に動作することができる。したがって、第1の回路部および第2の回路部のいずれに異常が発生したかを容易に判別することができる。 In addition, since the first circuit unit and the second circuit unit are operated by independent power supplies, even if an abnormality occurs in one of the operations of the first circuit unit and the second circuit unit, the other is normal. Can work. Therefore, it is possible to easily determine which of the first circuit portion and the second circuit portion is abnormal.
 (2)第1の回路部は、複数のバッテリセルのうち二以上の所定数のバッテリセルにより供給される電力に基づいて検出部の動作電圧を得る第1の電源回路をさらに含み、検出部は、第1の電源回路により得られる動作電圧で動作するように接続されてもよい。 (2) The first circuit unit further includes a first power supply circuit that obtains an operating voltage of the detection unit based on electric power supplied by two or more predetermined number of battery cells among the plurality of battery cells, and the detection unit May be connected to operate at an operating voltage obtained by the first power supply circuit.
 この場合、検出部は、複数のバッテリセルのうち二以上の所定数のバッテリセルにより供給される電力により動作する。そのため、1つのバッテリセルの電力消費量が他のバッテリセルの電力消費量に比べて著しく多くなることが防止される。その結果、複数のバッテリセルの電圧のばらつきを緩和することができる。 In this case, the detection unit operates with electric power supplied from a predetermined number of battery cells of two or more of the plurality of battery cells. Therefore, it is possible to prevent the power consumption of one battery cell from becoming significantly larger than the power consumption of other battery cells. As a result, it is possible to alleviate variations in the voltages of the plurality of battery cells.
 (3)バッテリモジュールは、複数のバッテリセルの電極端子と検出部とを接続する電圧検出用の複数の電圧検出線と、複数の電圧検出線とは別個に設けられ、所定数のバッテリセルのうち最高電位を有するバッテリセルの電極端子と第1の回路部の第1の電源回路とを接続する内部電源線とをさらに備えてもよい。 (3) The battery module is provided separately from the plurality of voltage detection lines for voltage detection that connect the electrode terminals of the plurality of battery cells and the detection unit, and the plurality of voltage detection lines. You may further provide the internal power supply line which connects the electrode terminal of the battery cell which has the highest electric potential, and the 1st power supply circuit of a 1st circuit part.
 この場合、複数のバッテリセルの電極端子と検出部とが複数の電圧検出線により接続されることにより、各バッテリセルの電圧が検出される。また、所定数のバッテリセルのうち最高電位を有するバッテリセルの電極端子と第1の回路部の第1の電源回路とが内部電源線により接続されることにより、第1の電源回路に電力が供給される。それにより、第1の回路部に電力が供給される際に流れる電流による電圧降下が電圧検出線に発生することが防止される。その結果、検出部による電圧に関する情報の検出誤差を低減することが可能となる。 In this case, the voltage of each battery cell is detected by connecting the electrode terminals of the plurality of battery cells and the detection units through a plurality of voltage detection lines. In addition, the electrode terminal of the battery cell having the highest potential among the predetermined number of battery cells and the first power supply circuit of the first circuit unit are connected by the internal power supply line, whereby power is supplied to the first power supply circuit. Supplied. This prevents a voltage drop due to a current flowing when power is supplied to the first circuit unit from occurring in the voltage detection line. As a result, it is possible to reduce information detection errors related to voltage by the detection unit.
 (4)バッテリモジュールは、回路基板と他の回路とを電気的に接続する接続部材をさらに備え、第2の回路部の処理部は外部と通信を行う通信回路を含み、第2の回路部は外部電源により供給される電力に基づいて処理部の動作電圧を得る第2の電源回路をさらに含み、接続部材は、第2の電源回路に接続される第1の接続端子および通信回路に接続される第2の接続端子を有するコネクタと、コネクタの第1の接続端子に接続される外部電源線と、コネクタの第2の接続端子に接続される通信線とを含み、外部電源線と通信線とが一体的に結束されてもよい。 (4) The battery module further includes a connection member that electrically connects the circuit board and another circuit, and the processing unit of the second circuit unit includes a communication circuit that communicates with the outside, and the second circuit unit Further includes a second power supply circuit that obtains the operating voltage of the processing unit based on power supplied from an external power supply, and the connection member is connected to the first connection terminal connected to the second power supply circuit and the communication circuit. Including a connector having a second connection terminal, an external power line connected to the first connection terminal of the connector, and a communication line connected to the second connection terminal of the connector, and communicating with the external power line The wire may be bound together.
 この場合、接続部材の外部電源線は、コネクタの第1の接続端子を介して第2の回路部の第2の電源回路に接続される。接続部材の通信線は、コネクタの第2の接続端子を介して第2の回路部の処理部の通信回路に接続される。また、外部電源線と通信線とは一体的に結束される。これにより、共通のコネクタを用いて、外部電源線および通信線がそれぞれ第2の電源回路および通信回路に接続される。したがって、単純な配線によりバッテリモジュールの通信回路を他の回路に接続するとともにバッテリモジュールの第2の電源回路を外部電源に接続することができる。その結果、複数のバッテリモジュールを含むバッテリシステムの配線を単純化するとともにバッテリシステムを小型化することが可能となる。 In this case, the external power supply line of the connection member is connected to the second power supply circuit of the second circuit unit via the first connection terminal of the connector. The communication line of the connection member is connected to the communication circuit of the processing unit of the second circuit unit via the second connection terminal of the connector. Further, the external power supply line and the communication line are bound together. Thus, the external power supply line and the communication line are connected to the second power supply circuit and the communication circuit, respectively, using a common connector. Therefore, the communication circuit of the battery module can be connected to another circuit by simple wiring, and the second power supply circuit of the battery module can be connected to the external power supply. As a result, it is possible to simplify the wiring of a battery system including a plurality of battery modules and reduce the size of the battery system.
 また、第2の回路部の通信回路により電圧に関する情報または処理された情報が他の回路に送信され、または他の回路から情報が受信される。それにより、バッテリシステムのいずれかのバッテリモジュールのバッテリセルの電圧が低下した場合でも、バッテリモジュールは他の回路と情報の通信を行うことができる。 Also, information on the voltage or information processed by the communication circuit of the second circuit unit is transmitted to another circuit, or information is received from the other circuit. Thereby, even when the voltage of the battery cell of any battery module of the battery system is lowered, the battery module can communicate information with other circuits.
 (5)第1の電源回路は、所定数のバッテリセルにより得られる電圧を昇圧する昇圧部と、所定数のバッテリセルにより得られる電圧を降圧する降圧部とを含み、所定数のバッテリセルにより得られる電圧が動作電圧以上の場合には、降圧部により動作電圧が検出部に供給され、所定数のバッテリセルにより得られる電圧が動作電圧よりも低い場合には、昇圧部により動作電圧が検出部に供給されてもよい。 (5) The first power supply circuit includes a boosting unit that boosts a voltage obtained from a predetermined number of battery cells, and a step-down unit that steps down a voltage obtained from the predetermined number of battery cells. When the obtained voltage is equal to or higher than the operating voltage, the step-down unit supplies the operating voltage to the detecting unit, and when the voltage obtained by a predetermined number of battery cells is lower than the operating voltage, the operating unit detects the operating voltage. May be supplied to the unit.
 所定数のバッテリセルにより得られる電圧が動作電圧以上の場合、検出部は降圧部により供給される電力で動作し、所定数のバッテリセルにより得られる電圧よりも低い場合、検出部は昇圧部により供給される電力で動作する。これにより、所定数のバッテリセルの電圧が低下しても、第1の電源回路から、検出部に一定の電圧が与えられる。その結果、検出部が安定かつ高精度に各バッテリセルの電圧を検出することが可能となる。 When the voltage obtained by the predetermined number of battery cells is equal to or higher than the operating voltage, the detection unit operates with the power supplied by the step-down unit, and when the voltage is lower than the voltage obtained by the predetermined number of battery cells, the detection unit is Operates with supplied power. Thereby, even if the voltage of a predetermined number of battery cells falls, a fixed voltage is given to a detection part from the 1st power supply circuit. As a result, the detection unit can detect the voltage of each battery cell stably and with high accuracy.
 (6)バッテリモジュールは、複数のバッテリセルの充電状態を均等化する均等化回路をさらに備え、第1の回路部は、検出部により検出される電圧に基づいていずれかのバッテリセルの充電状態が許容値を超えたか否かを判定し、いずれかのバッテリセルの充電状態が許容値を超えた場合に均等化回路による均等化を停止させる均等化停止部をさらに含んでもよい。 (6) The battery module further includes an equalization circuit that equalizes the charge states of the plurality of battery cells, and the first circuit unit includes a charge state of any one of the battery cells based on a voltage detected by the detection unit. It may further include an equalization stop unit that determines whether or not the battery has exceeded an allowable value and stops equalization by the equalization circuit when the state of charge of any of the battery cells exceeds the allowable value.
 この場合、均等化回路により複数のバッテリセルの充電状態が均等化される。均等化の際に、いずれかのバッテリセルの充電状態が許容値を超えた場合、第1の回路部の均等化停止部により均等化回路における均等化が停止される。したがって、各バッテリセルの過充電および過放電を確実に防止することができる。 In this case, the charge state of the plurality of battery cells is equalized by the equalization circuit. During the equalization, if the state of charge of any battery cell exceeds the allowable value, the equalization stop unit of the first circuit unit stops the equalization in the equalization circuit. Therefore, overcharge and overdischarge of each battery cell can be reliably prevented.
 (7)バッテリモジュールは、複数のバッテリセルの充電状態を均等化する均等化回路をさらに備え、第2の回路部は、均等化回路の動作を制御するための制御信号を第1の回路部に送信する通信機能を有し、第1の回路部は、第2の回路部により送信された制御信号に基づいて均等化回路の動作を制御する均等化制御部と、第2の回路部による通信が不能になったか否かを判定し、通信が不能になった場合に均等化回路による均等化を停止させる均等化停止部をさらに含んでもよい。 (7) The battery module further includes an equalization circuit that equalizes the state of charge of the plurality of battery cells, and the second circuit unit transmits a control signal for controlling the operation of the equalization circuit to the first circuit unit. The first circuit unit includes an equalization control unit that controls the operation of the equalization circuit based on the control signal transmitted by the second circuit unit, and the second circuit unit. It may further include an equalization stop unit that determines whether or not communication is disabled and stops equalization by the equalization circuit when communication is disabled.
 この場合、均等化回路の動作が第2の回路部により送信された制御信号に基づいて第1の回路部の均等化制御部により制御される。そのため、均等化回路により複数の充電状態が均等化される。第2の回路部による通信が不能になった場合、均等化回路の動作が制御されない。このような場合でも、第1の回路部の均等化停止部により均等化回路における均等化が停止される。したがって、第2の回路部の動作に異常が発生した場合でも、各バッテリセルの過充電および過放電を確実に防止することができる。 In this case, the operation of the equalization circuit is controlled by the equalization control unit of the first circuit unit based on the control signal transmitted by the second circuit unit. Therefore, a plurality of charge states are equalized by the equalization circuit. When communication by the second circuit unit is disabled, the operation of the equalization circuit is not controlled. Even in such a case, equalization in the equalization circuit is stopped by the equalization stop unit of the first circuit unit. Therefore, even when an abnormality occurs in the operation of the second circuit unit, overcharge and overdischarge of each battery cell can be reliably prevented.
 (8)本発明の他の局面に従う電動車両は、本発明の一局面に従うバッテリモジュールと、バッテリモジュールからの電力により駆動されるモータと、モータの回転力により回転する駆動輪とを備えるものである。 (8) An electric vehicle according to another aspect of the present invention includes a battery module according to one aspect of the present invention, a motor driven by electric power from the battery module, and drive wheels that rotate by the rotational force of the motor. is there.
 この電動車両においては、バッテリモジュールからの電力によりモータが駆動される。そのモータの回転力によって駆動輪が回転することにより、電動車両が移動する。 In this electric vehicle, the motor is driven by the electric power from the battery module. The drive wheel is rotated by the rotational force of the motor, so that the electric vehicle moves.
 この電動車両には、本発明の一局面に従うバッテリモジュールが用いられるので、電動車両に含まれるバッテリシステムの安定な動作が確保される。これにより、電動車両の安定な動作が確保される。 Since the battery module according to one aspect of the present invention is used for this electric vehicle, stable operation of the battery system included in the electric vehicle is ensured. Thereby, the stable operation | movement of an electric vehicle is ensured.
 また、電動車両に含まれるバッテリシステムの仕様の変更を容易に行うことが可能となる。これにより、電動車両の仕様の変更を容易に行うことが可能となる。 Also, it becomes possible to easily change the specifications of the battery system included in the electric vehicle. Thereby, it becomes possible to easily change the specification of the electric vehicle.
 (9)本発明のさらに他の局面に従う移動体は、本発明の一局面に従うバッテリモジュールと、移動本体部と、バッテリモジュールからの電力を移動本体部を移動させるための動力に変換する動力源とを備えるものである。 (9) A moving body according to still another aspect of the present invention includes a battery module according to one aspect of the present invention, a moving main body, and a power source that converts electric power from the battery module into power for moving the moving main body. Are provided.
 この移動体においては、本発明の一局面に従うバッテリモジュールからの電力が動力源により動力に変換され、その動力により移動本体部が移動する。 In this moving body, electric power from the battery module according to one aspect of the present invention is converted into power by a power source, and the moving main body moves by the power.
 この移動体には、本発明の一局面に従うバッテリモジュールが用いられるので、移動体に含まれるバッテリシステムの安定な動作が確保される。これにより、移動体の安定な動作が確保される。 Since the battery module according to one aspect of the present invention is used for this moving body, stable operation of the battery system included in the moving body is ensured. Thereby, the stable operation | movement of a moving body is ensured.
 また、移動体に含まれるバッテリシステムの仕様の変更を容易に行うことが可能となる。これにより、移動体の仕様の変更を容易に行うことが可能となる。 Also, it is possible to easily change the specifications of the battery system included in the mobile object. Thereby, it becomes possible to easily change the specifications of the moving body.
 (10)本発明のさらに他の局面に従う電力貯蔵装置は、本発明の一局面に従うバッテリモジュールと、バッテリモジュールの放電または充電に関する制御を行うシステム制御部とを備えるものである。 (10) A power storage device according to still another aspect of the present invention includes a battery module according to one aspect of the present invention and a system control unit that performs control related to discharging or charging of the battery module.
 この電力貯蔵装置においては、システム制御部により、本発明の一局面に従うバッテリモジュールの充電または放電に関する制御が行われる。それにより、バッテリモジュールの劣化、過放電および過充電を防止することができる。 In this power storage device, control related to charging or discharging of the battery module according to one aspect of the present invention is performed by the system control unit. Thereby, deterioration, overdischarge, and overcharge of the battery module can be prevented.
 この電力貯蔵装置には、本発明の一局面に従うバッテリモジュールが用いられるので、電力貯蔵装置に含まれるバッテリシステムの安定な動作が確保される。これにより、電力貯蔵装置の安定な動作が確保される。 Since the battery module according to one aspect of the present invention is used for this power storage device, stable operation of the battery system included in the power storage device is ensured. Thereby, the stable operation | movement of an electric power storage apparatus is ensured.
 また、電力貯蔵装置に含まれるバッテリシステムの仕様の変更を容易に行うことが可能となる。これにより、電力貯蔵装置の仕様の変更を容易に行うことが可能となる。 Also, it is possible to easily change the specifications of the battery system included in the power storage device. Thereby, it becomes possible to easily change the specifications of the power storage device.
 (11)本発明のさらに他の局面に従う電源装置は、外部に接続可能な電源装置であって、本発明のさらに他の局面に従う電力貯蔵装置と、電力貯蔵装置のシステム制御部により制御され、電力貯蔵装置のバッテリモジュールと外部との間で電力変換を行う電力変換装置とを備えるものである。 (11) A power supply device according to still another aspect of the present invention is a power supply device connectable to the outside, and is controlled by a power storage device according to still another aspect of the present invention and a system control unit of the power storage device, And a power conversion device that performs power conversion between the battery module of the power storage device and the outside.
 この電源装置においては、バッテリモジュールと外部との間で電力変換装置により電力変換が行われる。電力変換装置が電力貯蔵装置のシステム制御部により制御されることにより、バッテリモジュールの充電または放電に関する制御が行われる。それにより、バッテリモジュールの劣化、過放電および過充電を防止することができる。 In this power supply device, power conversion is performed between the battery module and the outside by the power conversion device. Control related to charging or discharging of the battery module is performed by controlling the power conversion device by the system control unit of the power storage device. Thereby, deterioration, overdischarge, and overcharge of the battery module can be prevented.
 この電源装置には、本発明の一局面に従うバッテリモジュールが用いられるので、電源装置に含まれるバッテリシステムの安定な動作が確保される。これにより、電源装置の安定な動作が確保される。 Since the battery module according to one aspect of the present invention is used for this power supply device, stable operation of the battery system included in the power supply device is ensured. Thereby, a stable operation of the power supply device is ensured.
 また、電源装置に含まれるバッテリシステムの仕様の変更を容易に行うことが可能となる。これにより、電源装置の仕様の変更を容易に行うことが可能となる。 Also, it is possible to easily change the specifications of the battery system included in the power supply device. Thereby, it is possible to easily change the specifications of the power supply device.
 (12)本発明のさらに他の局面に従う電気機器は、本発明の一局面に従うバッテリモジュールと、バッテリモジュールからの電力により駆動される負荷とを備えるものである。 (12) An electric device according to still another aspect of the present invention includes a battery module according to one aspect of the present invention and a load driven by electric power from the battery module.
 この電気機器においては、負荷がバッテリモジュールからの電力により駆動される。この電気機器には、本発明の一局面に従うバッテリモジュールが用いられるので、電気機器に含まれるバッテリシステムの安定な動作が確保される。これにより、電気機器の安定な動作が確保される。 In this electrical device, the load is driven by the power from the battery module. Since the battery module according to one aspect of the present invention is used for this electric device, stable operation of the battery system included in the electric device is ensured. Thereby, the stable operation | movement of an electric equipment is ensured.
 また、電気機器に含まれるバッテリシステムの仕様の変更を容易に行うことが可能となる。これにより、電気機器の仕様の変更を容易に行うことが可能となる。 Also, it is possible to easily change the specifications of the battery system included in the electrical equipment. Thereby, it becomes possible to easily change the specification of the electric device.
 本発明によれば、バッテリシステムの安定な動作を確保することが可能となる。 According to the present invention, stable operation of the battery system can be ensured.
図1は第1の実施の形態に係るバッテリモジュールを用いたバッテリシステムの構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a battery system using the battery module according to the first embodiment. 図2は図1のプリント回路基板の接続を示す説明図である。FIG. 2 is an explanatory view showing connection of the printed circuit board of FIG. 図3は図1のプリント回路基板の構成を示すブロック図である。FIG. 3 is a block diagram showing the configuration of the printed circuit board of FIG. 図4は低電位側第1回路の構成を示すブロック図である。FIG. 4 is a block diagram showing the configuration of the first circuit on the low potential side. 図5は第2回路の構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of the second circuit. 図6は図2のプリント回路基板のコネクタに接続される入出力用ハーネスの模式的平面図である。6 is a schematic plan view of an input / output harness connected to the connector of the printed circuit board of FIG. 図7はバッテリモジュールの外観斜視図である。FIG. 7 is an external perspective view of the battery module. 図8はバッテリモジュールの平面図である。FIG. 8 is a plan view of the battery module. 図9はバッテリモジュールの端面図である。FIG. 9 is an end view of the battery module. 図10はバスバーの外観斜視図である。FIG. 10 is an external perspective view of the bus bar. 図11はFPC基板に複数のバスバーおよび複数のPTC素子が取り付けられた状態を示す外観斜視図である。FIG. 11 is an external perspective view showing a state where a plurality of bus bars and a plurality of PTC elements are attached to the FPC board. 図12はバスバーと低電位側第1回路および高電位側第1回路との接続について説明するための模式的平面図である。FIG. 12 is a schematic plan view for explaining the connection between the bus bar, the low potential side first circuit, and the high potential side first circuit. 図13は電圧電流バスバーおよびFPC基板を示す拡大平面図である。FIG. 13 is an enlarged plan view showing the voltage / current bus bar and the FPC board. 図14はプリント回路基板の一構成例を示す模式的平面図である。FIG. 14 is a schematic plan view showing a configuration example of a printed circuit board. 図15は低電位側第1回路および高電位側第1回路の制御部によるバッテリセルの均等化処理における過放電防止処理を示すフローチャートである。FIG. 15 is a flowchart showing an overdischarge prevention process in the battery cell equalization process by the control unit of the low potential side first circuit and the high potential side first circuit. 図16は第2の実施の形態の低電位側第1回路および高電位側第1回路の制御部によるバッテリセルの均等化処理における過放電防止処理を示すフローチャートである。FIG. 16 is a flowchart showing an overdischarge prevention process in the battery cell equalization process by the control unit of the low potential side first circuit and the high potential side first circuit according to the second embodiment. 図17はバッテリシステムを備える電動自動車の構成を示すブロック図である。FIG. 17 is a block diagram illustrating a configuration of an electric automobile including a battery system. 図18は電源装置の構成を示すブロック図である。FIG. 18 is a block diagram showing the configuration of the power supply apparatus.
 [1]第1の実施の形態
 以下、第1の実施の形態に係るバッテリモジュールについて図面を参照しながら説明する。なお、本実施の形態に係るバッテリモジュールは、電力を駆動源とする電動車両(例えば電動自動車)に搭載される。
[1] First Embodiment Hereinafter, a battery module according to a first embodiment will be described with reference to the drawings. The battery module according to the present embodiment is mounted on an electric vehicle (for example, an electric automobile) that uses electric power as a drive source.
 (1)バッテリシステムの構成
 図1は、第1の実施の形態に係るバッテリモジュールを用いたバッテリシステムの構成を示すブロック図である。図1に示すように、バッテリシステム500は、複数のバッテリモジュール100(本例では4個)、バッテリECU101およびコンタクタ102を含む。バッテリシステム500において、複数のバッテリモジュール100は、バス103を介してバッテリECU101に接続されている。また、バッテリシステム500のバッテリECU101は、バス104を介して電動車両の主制御部300に接続されている。
(1) Configuration of Battery System FIG. 1 is a block diagram showing a configuration of a battery system using the battery module according to the first embodiment. As shown in FIG. 1, the battery system 500 includes a plurality of battery modules 100 (four in this example), a battery ECU 101 and a contactor 102. In the battery system 500, the plurality of battery modules 100 are connected to the battery ECU 101 via the bus 103. Further, the battery ECU 101 of the battery system 500 is connected to the main control unit 300 of the electric vehicle via the bus 104.
 バッテリシステム500の複数のバッテリモジュール100は、電源線501を通して互いに接続されている。各バッテリモジュール100は、複数(本例では18個)のバッテリセル10、複数(本例では4個)のサーミスタ11およびリジッドプリント回路基板(以下、プリント回路基板と略記する。)21を有する。 The plurality of battery modules 100 of the battery system 500 are connected to each other through the power line 501. Each battery module 100 includes a plurality (18 in this example) of battery cells 10, a plurality (4 in this example) of thermistors 11 and a rigid printed circuit board (hereinafter abbreviated as a printed circuit board) 21.
 各バッテリモジュール100において、複数のバッテリセル10は互いに隣接するように一体的に配置され、複数のバスバー40により直列接続されている。各バッテリセル10は、例えばリチウムイオン電池またはニッケル水素電池等の二次電池である。 In each battery module 100, the plurality of battery cells 10 are integrally arranged so as to be adjacent to each other, and are connected in series by a plurality of bus bars 40. Each battery cell 10 is a secondary battery such as a lithium ion battery or a nickel metal hydride battery.
 両端部に配置されるバッテリセル10は、バスバー40aを介して電源線501に接続されている。これにより、バッテリシステム500においては、複数のバッテリモジュール100の全てのバッテリセル10が直列接続されている。バッテリシステム500から引き出される電源線501は、電動車両のモータ等の負荷に接続される。バッテリモジュール100の詳細は後述する。 The battery cells 10 arranged at both ends are connected to the power line 501 through the bus bar 40a. Thereby, in the battery system 500, all the battery cells 10 of the plurality of battery modules 100 are connected in series. A power line 501 drawn from the battery system 500 is connected to a load such as a motor of an electric vehicle. Details of the battery module 100 will be described later.
 一端部のバッテリモジュール100に接続された電源線501には、コンタクタ102が介挿されている。バッテリECU101は、バッテリモジュール100の異常を検出した場合、コンタクタ102をオフする。これにより、異常時には、各バッテリモジュール100に電流が流れないので、バッテリモジュール100の異常発熱が防止される。 The contactor 102 is inserted in the power supply line 501 connected to the battery module 100 at one end. When the battery ECU 101 detects an abnormality in the battery module 100, the battery ECU 101 turns off the contactor 102. Thereby, when an abnormality occurs, no current flows through each battery module 100, and thus abnormal heat generation of the battery module 100 is prevented.
 バッテリECU101は、主制御部300に各バッテリモジュール100の充電量(バッテリセル10の充電量)を与える。主制御部300は、その充電量に基づいて電動車両の動力(例えばモータの回転速度)を制御する。また、各バッテリモジュール100の充電量が少なくなると、主制御部300は、電源線501に接続された図示しない発電装置を制御して各バッテリモジュール100を充電する。 The battery ECU 101 gives the main controller 300 the amount of charge of each battery module 100 (the amount of charge of the battery cell 10). The main control unit 300 controls the power of the electric vehicle (for example, the rotational speed of the motor) based on the amount of charge. When the charge amount of each battery module 100 decreases, the main control unit 300 controls a power generation device (not shown) connected to the power line 501 to charge each battery module 100.
 なお、本実施の形態において、発電装置は例えば上記の電源線501に接続されたモータである。この場合、モータは、電動車両の加速時にバッテリシステム500から供給された電力を、図示しない駆動輪を駆動するための動力に変換する。また、モータは、電動車両の減速時に回生電力を発生する。この回生電力により各バッテリモジュール100が充電される。 In the present embodiment, the power generation device is a motor connected to the power supply line 501 described above, for example. In this case, the motor converts the electric power supplied from the battery system 500 during acceleration of the electric vehicle into motive power for driving drive wheels (not shown). The motor generates regenerative power when the electric vehicle is decelerated. Each battery module 100 is charged by this regenerative power.
 図2は、図1の複数のプリント回路基板21の接続を示す説明図である。各プリント回路基板21には、複数の第1回路30、共通の第2回路24およびコネクタ23が実装される。1個の第1回路30と第2回路24とは、絶縁素子25により互いに電気的に絶縁されつつ通信可能に接続される。1個の第1回路30には他の第1回路30が接続される。 FIG. 2 is an explanatory view showing the connection of the plurality of printed circuit boards 21 of FIG. A plurality of first circuits 30, a common second circuit 24 and a connector 23 are mounted on each printed circuit board 21. The one first circuit 30 and the second circuit 24 are connected so as to be communicable while being electrically insulated from each other by the insulating element 25. Another first circuit 30 is connected to one first circuit 30.
 第1回路30は、各バッテリセル10の端子電圧を検出する検出部20を有する。バッテリモジュール100の複数のバッテリセル10は第1回路30の電源として用いられる。第2回路24は、検出部20により検出される端子電圧およびその他の情報を処理する処理部241を有する。後述する電動自動車600に搭載される非動力用バッテリ12が第2回路24の電源として用いられる。なお、本実施の形態において、非動力用バッテリ12は鉛蓄電池である。 1st circuit 30 has the detection part 20 which detects the terminal voltage of each battery cell 10. FIG. The plurality of battery cells 10 of the battery module 100 are used as a power source for the first circuit 30. The second circuit 24 includes a processing unit 241 that processes the terminal voltage detected by the detection unit 20 and other information. A non-power battery 12 mounted on an electric vehicle 600 described later is used as a power source for the second circuit 24. In the present embodiment, the non-power battery 12 is a lead storage battery.
 コネクタ23は第2回路24に接続される。コネクタ23は、後述する入出力用ハーネスHの複数の導体線53を介してバス103に接続される。 The connector 23 is connected to the second circuit 24. The connector 23 is connected to the bus 103 via a plurality of conductor wires 53 of an input / output harness H described later.
 バッテリECU101は、プリント回路基板105を有する。プリント回路基板105には、マイクロプロセッサ(MPU)106、スイッチ回路107および複数のコネクタ108が実装される。プリント回路基板105には、非動力用バッテリ12により供給される電圧を降圧する電源回路および図1のコンタクタ102をオンおよびオフするコンタクタ制御回路等の他の回路も実装されている。MPU106およびスイッチ回路107には、非動力用バッテリ12により電力が供給される。 The battery ECU 101 has a printed circuit board 105. A microprocessor (MPU) 106, a switch circuit 107, and a plurality of connectors 108 are mounted on the printed circuit board 105. The printed circuit board 105 is also mounted with other circuits such as a power supply circuit for stepping down the voltage supplied by the non-power battery 12 and a contactor control circuit for turning on and off the contactor 102 of FIG. Electric power is supplied to the MPU 106 and the switch circuit 107 by the non-power battery 12.
 プリント回路基板105の複数のコネクタ108と複数のプリント回路基板21のコネクタ23とは、後述する複数の入出力用ハーネスHの複数の導体線54により接続される。 The plurality of connectors 108 of the printed circuit board 105 and the connectors 23 of the plurality of printed circuit boards 21 are connected by a plurality of conductor wires 54 of a plurality of input / output harnesses H described later.
 スイッチ回路107のオンおよびオフは、MPU106により制御される。スイッチ回路107がオンである場合、非動力用バッテリ12による電力は、スイッチ回路107、複数のコネクタ108、複数の導体線54および複数のプリント回路基板21のコネクタ23を介して複数のプリント回路基板21の第2回路24に与えられる。これにより、各第2回路24が動作する。 The on / off of the switch circuit 107 is controlled by the MPU 106. When the switch circuit 107 is on, power from the non-power battery 12 is supplied to the plurality of printed circuit boards via the switch circuit 107, the plurality of connectors 108, the plurality of conductor wires 54, and the connectors 23 of the plurality of printed circuit boards 21. 21 to the second circuit 24. Thereby, each second circuit 24 operates.
 MPU106はバス103に接続される。これにより、バッテリECU101のMPU106と各バッテリモジュール100の第2回路24とは通信可能に接続される。また、MPU106は、バス104を介して電動自動車600の主制御部300に通信可能に接続される。 The MPU 106 is connected to the bus 103. Thereby, MPU106 of battery ECU101 and the 2nd circuit 24 of each battery module 100 are connected so that communication is possible. The MPU 106 is communicably connected to the main control unit 300 of the electric automobile 600 via the bus 104.
 図3は、図1のプリント回路基板21の構成を示すブロック図である。プリント回路基板21には、上記の複数の第1回路30、第2回路24および絶縁素子25とともに、抵抗Rおよびスイッチング素子SWからなる複数の直列回路SCが実装される。 FIG. 3 is a block diagram showing the configuration of the printed circuit board 21 of FIG. A plurality of series circuits SC including a resistor R and a switching element SW are mounted on the printed circuit board 21 together with the plurality of first circuits 30, the second circuit 24, and the insulating elements 25 described above.
 本実施の形態において、プリント回路基板21に2個の第1回路30が実装される。一方の第1回路30(以下、低電位側第1回路30Lと呼ぶ。)は、複数のバッテリセル10のうち低電位側の半数(本例では9個)のバッテリセル10(以下、低電位側バッテリセル群10Lと呼ぶ。)に対応する。他方の第1回路30(以下、高電位側第1回路30Hと呼ぶ。)は、複数のバッテリセル10のうち高電位側の半数(本例では9個)のバッテリセル10(以下、高電位側バッテリセル群10Hと呼ぶ。)に対応する。低電位側第1回路30Lは、低電位側バッテリセル群10Lの複数のバッテリセル10の各々の端子電圧を検出する。高電位側第1回路30Hは、高電位側バッテリセル群10Hの複数のバッテリセル10の各々の端子電圧を検出する。 In the present embodiment, two first circuits 30 are mounted on the printed circuit board 21. One of the first circuits 30 (hereinafter referred to as the low potential side first circuit 30L) is half the low potential side (9 in this example) of the plurality of battery cells 10 (hereinafter referred to as the low potential). Corresponds to the side battery cell group 10L). The other first circuit 30 (hereinafter, referred to as a high potential side first circuit 30H) has half (9 in this example) of battery cells 10 (hereinafter referred to as high potential) among the plurality of battery cells 10. Corresponds to the side battery cell group 10H). The low potential side first circuit 30L detects the terminal voltage of each of the plurality of battery cells 10 in the low potential side battery cell group 10L. The high potential side first circuit 30H detects the terminal voltage of each of the plurality of battery cells 10 in the high potential side battery cell group 10H.
 低電位側第1回路30Lは、複数の導体線52およびPTC(Positive Temperature Coefficient:正温度係数)素子60を介して低電位側バッテリセル群10Lのバスバー40,40aに電気的に接続される。同様に、高電位側第1回路30Hは、複数の導体線52およびPTC素子60を介して高電位側バッテリセル群10Hのバスバー40,40aに電気的に接続される。 The low potential side first circuit 30L is electrically connected to the bus bars 40, 40a of the low potential side battery cell group 10L via a plurality of conductor lines 52 and PTC (Positive Temperature Coefficient) elements 60. Similarly, the high potential side first circuit 30H is electrically connected to the bus bars 40, 40a of the high potential side battery cell group 10H via the plurality of conductor lines 52 and the PTC element 60.
 ここで、PTC素子60は、温度がある値を超えると抵抗値が急激に増加する抵抗温度特性を有する。そのため、低電位側第1回路30L、高電位側第1回路30Hまたは導体線52等で短絡が生じた場合に、その短絡経路を流れる電流によりPTC素子60の温度が上昇すると、PTC素子60の抵抗値が大きくなる。これにより、PTC素子60を含む短絡経路に大電流が流れることが抑制される。 Here, the PTC element 60 has a resistance temperature characteristic in which the resistance value rapidly increases when the temperature exceeds a certain value. Therefore, when a short circuit occurs in the low potential side first circuit 30L, the high potential side first circuit 30H, the conductor line 52, or the like, if the temperature of the PTC element 60 rises due to the current flowing through the short circuit path, The resistance value increases. Thereby, it is suppressed that a large current flows through the short circuit path including the PTC element 60.
 低電位側第1回路30Lは、導体線55Lを介して低電位側バッテリセル群10Lのバッテリセル10のうち最高電位を有するバッテリセル10のバスバー40に電気的に接続される。また、低電位側第1回路30Lの基準電位(グランド電位)は、低電位側バッテリセル群10Lの複数のバッテリセル10の最低電位に保持される。これにより、低電位側第1回路30Lには、低電位側バッテリセル群10Lの複数のバッテリセル10から電力が供給される。 The low potential side first circuit 30L is electrically connected to the bus bar 40 of the battery cell 10 having the highest potential among the battery cells 10 of the low potential side battery cell group 10L through the conductor line 55L. Further, the reference potential (ground potential) of the low potential side first circuit 30L is held at the lowest potential of the plurality of battery cells 10 in the low potential side battery cell group 10L. Thereby, electric power is supplied to the low potential side first circuit 30L from the plurality of battery cells 10 of the low potential side battery cell group 10L.
 同様に、高電位側第1回路30Hは、導体線55Hを介して高電位側バッテリセル群10Hのバッテリセル10のうち最高電位を有するバッテリセル10のバスバー40aに電気的に接続される。また、高電位側第1回路30Hの基準電位(グランド電位)は、高電位側バッテリセル群10Hの複数のバッテリセル10の最低電位に保持される。これにより、高電位側第1回路30Hには、高電位側バッテリセル群10Hの複数のバッテリセル10から電力が供給される。 Similarly, the high potential side first circuit 30H is electrically connected to the bus bar 40a of the battery cell 10 having the highest potential among the battery cells 10 of the high potential side battery cell group 10H via the conductor line 55H. The reference potential (ground potential) of the high potential side first circuit 30H is held at the lowest potential of the plurality of battery cells 10 in the high potential side battery cell group 10H. Thereby, electric power is supplied to the high potential side first circuit 30H from the plurality of battery cells 10 of the high potential side battery cell group 10H.
 隣り合う各2つのバスバー40間には、抵抗Rおよびスイッチング素子SWからなる直列回路SCが接続される。隣り合う各2つのバスバー40,40a間にも、抵抗Rおよびスイッチング素子SWからなる直列回路SCが接続される。スイッチング素子SWのオンおよびオフは、対応する高電位側第1回路30Hまたは低電位側第1回路30Lにより制御される。なお、通常状態では、スイッチング素子SWはオフになっている。 A series circuit SC composed of a resistor R and a switching element SW is connected between each two adjacent bus bars 40. A series circuit SC composed of a resistor R and a switching element SW is also connected between each two adjacent bus bars 40, 40a. The switching element SW is turned on and off by the corresponding high potential side first circuit 30H or low potential side first circuit 30L. In the normal state, the switching element SW is turned off.
 図4は、低電位側第1回路30Lの構成を示すブロック図である。低電位側第1回路30Lは、例えばASIC(Application Specific Integrated Circuit:特定用途向け集積回路)からなる。低電位側第1回路30Lは、上記の検出部20とともに、制御部31、通信回路32、均等化制御回路33、タイマ34および電源回路35を含む。低電位側第1回路30Lの検出部20、制御部31、通信回路32、均等化制御回路33、タイマ34および電源回路35(以下、低電位側第1回路30Lの各部と呼ぶ。)の基準電位(グランド電位)は、低電位側バッテリセル群10Lの複数のバッテリセル10の最低電位に保持される。 FIG. 4 is a block diagram showing a configuration of the low potential side first circuit 30L. The low-potential-side first circuit 30L is composed of, for example, an ASIC (Application Specific Integrated Circuit). The low potential side first circuit 30 </ b> L includes a control unit 31, a communication circuit 32, an equalization control circuit 33, a timer 34, and a power supply circuit 35 along with the detection unit 20. The reference of the detection unit 20, the control unit 31, the communication circuit 32, the equalization control circuit 33, the timer 34, and the power supply circuit 35 (hereinafter referred to as each unit of the low potential side first circuit 30L) of the low potential side first circuit 30L. The potential (ground potential) is held at the lowest potential of the plurality of battery cells 10 in the low potential side battery cell group 10L.
 検出部20は、マルチプレクサ20a、A/D(アナログ/デジタル)変換器20bおよび複数の差動増幅器20cを含む。検出部20の各差動増幅器20cは2つの入力端子および出力端子を有する。各差動増幅器20cは、2つの入力端子に入力された電圧を差動増幅し、増幅された電圧を出力端子から出力する。 The detection unit 20 includes a multiplexer 20a, an A / D (analog / digital) converter 20b, and a plurality of differential amplifiers 20c. Each differential amplifier 20c of the detection unit 20 has two input terminals and an output terminal. Each differential amplifier 20c differentially amplifies the voltage input to the two input terminals, and outputs the amplified voltage from the output terminal.
 各差動増幅器20cの2つの入力端子は、導体線52およびPTC素子60を介して対応する複数のバッテリセル10の隣り合う2つのバスバー40間または隣り合う2つのバスバー40,40aに電気的に接続される。隣り合う2つのバスバー40間の電圧または隣り合う2つのバスバー40,40aの電圧が各差動増幅器20cにより差動増幅される。各差動増幅器20cの出力電圧は低電位側バッテリセル群10Lの各バッテリセル10の端子電圧に相当する。複数の差動増幅器20cから出力される端子電圧はマルチプレクサ20aに与えられる。マルチプレクサ20aは、複数の差動増幅器20cから与えられる端子電圧を順次A/D変換器20bに出力する。A/D変換器20bは、マルチプレクサ20aから出力される端子電圧をデジタル値に変換する。 Two input terminals of each differential amplifier 20c are electrically connected between two adjacent bus bars 40 of a plurality of corresponding battery cells 10 or two adjacent bus bars 40, 40a via a conductor line 52 and a PTC element 60. Connected. A voltage between two adjacent bus bars 40 or a voltage between two adjacent bus bars 40 and 40a is differentially amplified by each differential amplifier 20c. The output voltage of each differential amplifier 20c corresponds to the terminal voltage of each battery cell 10 in the low potential side battery cell group 10L. Terminal voltages output from the plurality of differential amplifiers 20c are applied to the multiplexer 20a. The multiplexer 20a sequentially outputs the terminal voltages supplied from the plurality of differential amplifiers 20c to the A / D converter 20b. The A / D converter 20b converts the terminal voltage output from the multiplexer 20a into a digital value.
 制御部31は、検出部20、通信回路32、均等化制御回路33、タイマ34および電源回路35と接続される。通信回路32は、通信機能を有し、図2の絶縁素子25を介して図2の第2回路24と通信可能に接続される。また、通信回路32は、図3の高電位側第1回路30Hと通信可能に接続される。 The control unit 31 is connected to the detection unit 20, the communication circuit 32, the equalization control circuit 33, the timer 34, and the power supply circuit 35. The communication circuit 32 has a communication function and is communicably connected to the second circuit 24 of FIG. 2 via the insulating element 25 of FIG. The communication circuit 32 is connected to be communicable with the high potential side first circuit 30H of FIG.
 制御部31は、検出部20のA/D変換器20bから低電位側バッテリセル群10Lの各バッテリセル10の端子電圧のデジタル値を取得する。また、後述するように、制御部31は、通信回路32を介して高電位側第1回路30Hから高電位側バッテリセル群10Hの各バッテリセル10の端子電圧のデジタル値を取得する。さらに、制御部31は、低電位側バッテリセル群10Lの各バッテリセル10の端子電圧のデジタル値および高電位側バッテリセル群10Hの各バッテリセル10の端子電圧のデジタル値を通信回路32および絶縁素子25(図2参照)を介して第2回路24に送信する。また、制御部31は、第2回路24から送信される後述する均等化処理のための指令を絶縁素子25および通信回路32を介して受信し、その指令を均等化制御回路33に与える。 The control unit 31 acquires the digital value of the terminal voltage of each battery cell 10 of the low potential side battery cell group 10L from the A / D converter 20b of the detection unit 20. Further, as will be described later, the control unit 31 acquires the digital value of the terminal voltage of each battery cell 10 of the high potential side battery cell group 10H from the high potential side first circuit 30H via the communication circuit 32. Further, the control unit 31 isolates the digital value of the terminal voltage of each battery cell 10 of the low potential side battery cell group 10L and the digital value of the terminal voltage of each battery cell 10 of the high potential side battery cell group 10H from the communication circuit 32. It transmits to the 2nd circuit 24 through the element 25 (refer FIG. 2). The control unit 31 receives a command for equalization processing, which will be described later, transmitted from the second circuit 24 via the insulating element 25 and the communication circuit 32, and gives the command to the equalization control circuit 33.
 均等化制御回路33は、第2回路24からの指令に基づいてスイッチング素子SWをオンおよびオフすることによりバッテリセル10の充電状態の均等化処理を行う。第2回路24が停止しているとき、または第2回路24に異常が発生したときには、制御部31が均等化制御回路33による均等化処理の停止を制御する。 The equalization control circuit 33 performs the equalization process of the state of charge of the battery cell 10 by turning on and off the switching element SW based on a command from the second circuit 24. When the second circuit 24 is stopped or when an abnormality occurs in the second circuit 24, the control unit 31 controls the stop of the equalization process by the equalization control circuit 33.
 タイマ34は経過時間を計測する。タイマ34は制御部31により制御される。詳細は後述する。 Timer 34 measures elapsed time. The timer 34 is controlled by the control unit 31. Details will be described later.
 電源回路35は、降圧部35a、昇圧部35bおよび切替回路35cを含む。降圧部35aは、入力された電圧を所定電圧(例えば5V)に降圧して出力する。昇圧部35bは、入力された電圧を所定電圧(例えば5V)に昇圧して出力する。低電位側第1回路30Lの各部は、降圧部35aまたは昇圧部35bから出力される電圧で動作する。 The power supply circuit 35 includes a step-down unit 35a, a step-up unit 35b, and a switching circuit 35c. The step-down unit 35a steps down the input voltage to a predetermined voltage (for example, 5V) and outputs it. The booster 35b boosts the input voltage to a predetermined voltage (for example, 5V) and outputs the boosted voltage. Each part of the low potential side first circuit 30L operates with the voltage output from the step-down unit 35a or the step-up unit 35b.
 切替回路35cは、複数の端子CP0,CP1,CP2,CP3を含む。端子CP0は、導体線55Lにより低電位側バッテリセル群10Lの複数のバッテリセル10のうち最高電位を有するバッテリセル10のバスバー40に電気的に接続される。端子CP1,CP2は、それぞれ降圧部35aおよび昇圧部35bに電気的に接続される。端子CP3はいずれにも電気的に接続されない。切替回路35cは、複数の端子CP1~CP3のうち1つが端子CP0に接続されるように制御部31により切り替えられる。 The switching circuit 35c includes a plurality of terminals CP0, CP1, CP2, CP3. The terminal CP0 is electrically connected to the bus bar 40 of the battery cell 10 having the highest potential among the plurality of battery cells 10 of the low potential side battery cell group 10L through the conductor line 55L. Terminals CP1 and CP2 are electrically connected to step-down unit 35a and step-up unit 35b, respectively. Terminal CP3 is not electrically connected to any of them. The switching circuit 35c is switched by the control unit 31 so that one of the plurality of terminals CP1 to CP3 is connected to the terminal CP0.
 制御部31は、低電位側第1回路30Lの各部の動作を停止させる場合、端子CP0が端子CP3に接続されるように切替回路35cを切り替える。この場合、電源回路35は電圧を出力しないので、低電位側第1回路30Lの各部の動作は停止する。ここで、低電位側第1回路30Lの各部の動作が停止する前に、制御部31は均等化制御回路33により直列回路SCのスイッチング素子SWをオフにする。 The control unit 31 switches the switching circuit 35c so that the terminal CP0 is connected to the terminal CP3 when stopping the operation of each unit of the low potential side first circuit 30L. In this case, since the power supply circuit 35 does not output a voltage, the operation of each part of the low potential side first circuit 30L is stopped. Here, before the operation of each part of the low potential side first circuit 30L stops, the control unit 31 turns off the switching element SW of the series circuit SC by the equalization control circuit 33.
 制御部31は、検出部20により検出された各バッテリセル10の端子電圧に基づいて低電位側バッテリセル群10Lの総電圧を算出する。ここで、低電位側バッテリセル群10Lの総電圧とは、低電位側バッテリセル群10Lの最高電位(導体線55Lの電位)と低電位側バッテリセル群10Lの最低電位(バスバー40aの電位)との差に相当する。 The control unit 31 calculates the total voltage of the low-potential side battery cell group 10L based on the terminal voltage of each battery cell 10 detected by the detection unit 20. Here, the total voltage of the low potential side battery cell group 10L is the highest potential of the low potential side battery cell group 10L (the potential of the conductor line 55L) and the lowest potential of the low potential side battery cell group 10L (the potential of the bus bar 40a). This is equivalent to the difference.
 制御部31は、低電位側バッテリセル群10Lの総電圧と低電位側第1回路30Lの予め定められた動作電圧(例えば5V)とを比較する。低電位側バッテリセル群10Lの総電圧が低電位側第1回路30Lの動作電圧以上である場合、制御部31は端子CP0が端子CP1に接続されるように切替回路35cを切り替える。この場合、降圧部35aにより低電位側バッテリセル群10Lの総電圧が動作電圧に等しい所定電圧まで降圧されて出力される。一方、低電位側バッテリセル群10Lの総電圧が低電位側第1回路30Lの動作電圧よりも低い場合、制御部31は端子CP0が端子CP2に接続されるように切替回路35cを切り替える。この場合、昇圧部35bにより低電位側バッテリセル群10Lの総電圧が動作電圧に等しい所定電圧まで昇圧されて出力される。 The control unit 31 compares the total voltage of the low-potential side battery cell group 10L with a predetermined operating voltage (for example, 5V) of the low-potential side first circuit 30L. When the total voltage of the low potential side battery cell group 10L is equal to or higher than the operating voltage of the low potential side first circuit 30L, the control unit 31 switches the switching circuit 35c so that the terminal CP0 is connected to the terminal CP1. In this case, the total voltage of the low potential side battery cell group 10L is stepped down to a predetermined voltage equal to the operating voltage and output by the step-down unit 35a. On the other hand, when the total voltage of the low potential side battery cell group 10L is lower than the operating voltage of the low potential side first circuit 30L, the control unit 31 switches the switching circuit 35c so that the terminal CP0 is connected to the terminal CP2. In this case, the booster 35b boosts and outputs the total voltage of the low potential side battery cell group 10L to a predetermined voltage equal to the operating voltage.
 この場合、低電位側第1回路30Lの各部は、一定の動作電圧で動作する。これにより、検出部20が安定かつ高精度に低電位側バッテリセル群10Lの各バッテリセル10の端子電圧を検出することが可能となる。また、低電位側第1回路30Lの各部は、低電位側バッテリセル群10Lの全てのバッテリセル10から電力を供給されるので、低電位側バッテリセル群10Lのバッテリセル10の電力消費量を略等しくすることができる。さらに、電力供給用の導体線55Lが電圧検出用の導体線52と別個に設けられるので、低電位側第1回路30Lに電力が供給される際に流れる電流による電圧降下が導体線52に発生することが防止される。その結果、検出部20による端子電圧の検出誤差を低減することが可能となる。 In this case, each part of the low potential side first circuit 30L operates at a constant operating voltage. Thereby, the detection unit 20 can detect the terminal voltage of each battery cell 10 of the low-potential side battery cell group 10L stably and with high accuracy. Further, since each part of the low potential side first circuit 30L is supplied with power from all the battery cells 10 of the low potential side battery cell group 10L, the power consumption of the battery cells 10 of the low potential side battery cell group 10L is reduced. Can be approximately equal. Furthermore, since the power supply conductor line 55L is provided separately from the voltage detection conductor line 52, a voltage drop is generated in the conductor line 52 due to the current that flows when power is supplied to the low potential side first circuit 30L. Is prevented. As a result, the detection error of the terminal voltage by the detection unit 20 can be reduced.
 図3の高電位側第1回路30Hは、以下の点を除いて図4の低電位側第1回路30Lと同様の構成を有する。 The high potential side first circuit 30H in FIG. 3 has the same configuration as the low potential side first circuit 30L in FIG. 4 except for the following points.
 高電位側第1回路30Hの検出部20、制御部31、通信回路32、均等化制御回路33、タイマ34および電源回路35(以下、高電位側第1回路30Hの各部と呼ぶ。)の基準電位(グランド電位)は、高電位側バッテリセル群10Hの複数のバッテリセル10の最低電位に保持される。切替回路35cの端子CP0は、図4の導体線55Lに代えて導体線55Hにより高電位側バッテリセル群10Hの複数のバッテリセル10のうち最高電位を有するバッテリセル10のバスバー40aに電気的に接続される。 The reference of the detection unit 20, the control unit 31, the communication circuit 32, the equalization control circuit 33, the timer 34, and the power supply circuit 35 (hereinafter referred to as each unit of the high potential side first circuit 30H) of the high potential side first circuit 30H. The potential (ground potential) is held at the lowest potential of the plurality of battery cells 10 in the high potential side battery cell group 10H. The terminal CP0 of the switching circuit 35c is electrically connected to the bus bar 40a of the battery cell 10 having the highest potential among the plurality of battery cells 10 of the high potential side battery cell group 10H by the conductor line 55H instead of the conductor line 55L of FIG. Connected.
 上記の低電位側第1回路30Lと同様に、高電位側第1回路30Hの各部は、一定の動作電圧で動作する。これにより、検出部20が安定かつ高精度に高電位側バッテリセル群10Hの各バッテリセル10の端子電圧を検出することが可能となる。また、高電位側第1回路30Hの各部は、高電位側バッテリセル群10Hの全てのバッテリセル10から電力を供給されるので、高電位側バッテリセル群10Hのバッテリセル10の電力消費量を略等しくすることができる。さらに、電力供給用の導体線55Hが電圧検出用の導体線52と別個に設けられるので、高電位側第1回路30Hに電力が供給される際に流れる電流による電圧降下が導体線52に発生することが防止される。その結果、検出部20による端子電圧の検出誤差を低減することが可能となる。 Similarly to the low potential side first circuit 30L, each part of the high potential side first circuit 30H operates at a constant operating voltage. As a result, the detection unit 20 can stably and accurately detect the terminal voltage of each battery cell 10 in the high potential side battery cell group 10H. Moreover, since each part of the high potential side first circuit 30H is supplied with power from all the battery cells 10 in the high potential side battery cell group 10H, the power consumption of the battery cells 10 in the high potential side battery cell group 10H is reduced. Can be approximately equal. Further, since the power supply conductor wire 55H is provided separately from the voltage detection conductor wire 52, a voltage drop is generated in the conductor wire 52 due to the current flowing when power is supplied to the high potential side first circuit 30H. Is prevented. As a result, the detection error of the terminal voltage by the detection unit 20 can be reduced.
 高電位側第1回路30Hの通信回路32は、低電位側第1回路30Lの通信回路32(図4参照)と通信可能に接続される。これにより、高電位側第1回路30Hの制御部31は、高電位側第1回路30Hの通信回路32および低電位側第1回路30Lの通信回路32を介して高電位側バッテリセル群10Hの各バッテリセル10の端子電圧のデジタル値を低電位側第1回路30Lの制御部31(図4参照)に与える。その結果、前述のように高電位側バッテリセル群10Hの各バッテリセル10の端子電圧のデジタル値を第2回路24に送信することができる。 The communication circuit 32 of the high potential side first circuit 30H is communicably connected to the communication circuit 32 (see FIG. 4) of the low potential side first circuit 30L. As a result, the control unit 31 of the high potential side first circuit 30H includes the high potential side battery cell group 10H via the communication circuit 32 of the high potential side first circuit 30H and the communication circuit 32 of the low potential side first circuit 30L. The digital value of the terminal voltage of each battery cell 10 is given to the control unit 31 (see FIG. 4) of the low potential side first circuit 30L. As a result, the digital value of the terminal voltage of each battery cell 10 of the high potential side battery cell group 10H can be transmitted to the second circuit 24 as described above.
 図5は、第2回路24の構成を示すブロック図である。図5に示すように、第2回路24は、処理部241とともに記憶部242、通信インタフェース244および電源回路245を含む。 FIG. 5 is a block diagram showing the configuration of the second circuit 24. As shown in FIG. 5, the second circuit 24 includes a storage unit 242, a communication interface 244, and a power supply circuit 245 along with the processing unit 241.
 処理部241は、例えばCPU(中央演算処理装置)を含み、記憶部242と接続される。また、処理部241は図1の複数のサーミスタ11に接続される。これにより、処理部241はバッテリモジュール100の温度を取得する。また、処理部241は、低電位側第1回路30Lおよび高電位側第1回路30Hの検出部20(図3および図4参照)により検出される端子電圧ならびにその他の情報を処理する機能を有する。本実施の形態において、処理部241は、各バッテリセル10の充電量および複数のバッテリセル10に流れる電流等を算出する。以下、バッテリセルの端子電圧、複数のバッテリセル10に流れる電流およびバッテリモジュール100の温度をセル情報と呼ぶ。電流の算出の詳細は後述する。 The processing unit 241 includes a CPU (Central Processing Unit), for example, and is connected to the storage unit 242. The processing unit 241 is connected to the plurality of thermistors 11 shown in FIG. Thereby, the processing unit 241 acquires the temperature of the battery module 100. The processing unit 241 has a function of processing the terminal voltage and other information detected by the detection unit 20 (see FIGS. 3 and 4) of the low potential side first circuit 30L and the high potential side first circuit 30H. . In the present embodiment, the processing unit 241 calculates the charge amount of each battery cell 10, the current flowing through the plurality of battery cells 10, and the like. Hereinafter, the terminal voltage of the battery cell, the current flowing through the plurality of battery cells 10 and the temperature of the battery module 100 are referred to as cell information. Details of the current calculation will be described later.
 記憶部242は、例えばEEPROM(電気的消去およびプログラム可能リードオンリーメモリ)等の不揮発性メモリを含む。処理部241は、通信機能を有する通信回路246を含む。処理部241は、絶縁素子25(図2参照)を介して低電位側第1回路30Lの通信回路32(図4参照)と通信可能に接続される。処理部241は、低電位側第1回路30Lおよび高電位側第1回路30Hの制御部31(図3および図4参照)に後述する均等化処理のための各種指令を与える。 The storage unit 242 includes a non-volatile memory such as an EEPROM (electrically erasable and programmable read-only memory). The processing unit 241 includes a communication circuit 246 having a communication function. The processing unit 241 is communicably connected to the communication circuit 32 (see FIG. 4) of the low potential side first circuit 30L via the insulating element 25 (see FIG. 2). The processing unit 241 gives various commands for equalization processing to be described later to the control unit 31 (see FIGS. 3 and 4) of the low potential side first circuit 30L and the high potential side first circuit 30H.
 処理部241には通信インタフェース244が接続される。通信インタフェース244は、例えばRS-485規格のシリアル通信インタフェースである。通信インタフェース244は、図2のコネクタ23に接続される。本実施の形態において、通信回路246は、図2のバッテリECU101とRS-485規格のシリアル通信を行うが、これに限定されない。例えば、通信回路246は、バッテリECU101と他の規格のシリアル通信を行ってもよく、バッテリECU101とCAN(Controller Area Network)通信を行ってもよい。 A communication interface 244 is connected to the processing unit 241. The communication interface 244 is an RS-485 standard serial communication interface, for example. The communication interface 244 is connected to the connector 23 in FIG. In the present embodiment, the communication circuit 246 performs RS-485 standard serial communication with the battery ECU 101 of FIG. 2, but is not limited thereto. For example, the communication circuit 246 may perform serial communication of other standards with the battery ECU 101, and may perform CAN (Controller Area Network) communication with the battery ECU 101.
 電源回路245は図示しない降圧部を含む。電源回路245は、図2のコネクタ23を介して電動自動車600の非動力用バッテリ12に接続される。非動力用バッテリ12の電圧は電源回路245の降圧部により所定電圧(例えば5V)に降圧されて出力される。第2回路24の処理部241、記憶部242、通信インタフェース244、電源回路245および通信回路246は、電源回路245により出力される電圧で動作する。 The power supply circuit 245 includes a step-down unit (not shown). The power supply circuit 245 is connected to the non-power battery 12 of the electric automobile 600 through the connector 23 of FIG. The voltage of the non-power battery 12 is stepped down to a predetermined voltage (for example, 5 V) by the step-down unit of the power supply circuit 245 and output. The processing unit 241, the storage unit 242, the communication interface 244, the power supply circuit 245 and the communication circuit 246 of the second circuit 24 operate with the voltage output from the power supply circuit 245.
 図6は、図2のプリント回路基板21のコネクタ23に接続される入出力用ハーネスHの模式的平面図である。図6に示すように、入出力用ハーネスHは、コネクタ23a、コネクタ103a、コネクタ108aおよび複数の導体線53,54からなる。コネクタ23aは複数の接続端子23b,23cを有する。コネクタ103aは複数の接続端子103bを有する。コネクタ108aは複数の接続端子108bを有する。 FIG. 6 is a schematic plan view of the input / output harness H connected to the connector 23 of the printed circuit board 21 of FIG. As shown in FIG. 6, the input / output harness H includes a connector 23 a, a connector 103 a, a connector 108 a, and a plurality of conductor wires 53 and 54. The connector 23a has a plurality of connection terminals 23b and 23c. The connector 103a has a plurality of connection terminals 103b. The connector 108a has a plurality of connection terminals 108b.
 コネクタ23aの複数の接続端子23bとコネクタ103aの複数の接続端子103bとが複数の導体線53により接続される。また、コネクタ23aの複数の接続端子23cとコネクタ108aの複数の接続端子108bとが複数の導体線54により接続される。本実施の形態において、複数の導体線53,54は一体的に結束される。 The plurality of connection terminals 23 b of the connector 23 a and the plurality of connection terminals 103 b of the connector 103 a are connected by a plurality of conductor wires 53. Further, the plurality of connection terminals 23 c of the connector 23 a and the plurality of connection terminals 108 b of the connector 108 a are connected by a plurality of conductor wires 54. In the present embodiment, the plurality of conductor wires 53 and 54 are united together.
 コネクタ23aは、図2のプリント回路基板21のコネクタ23に接続される。それにより、コネクタ23aの接続端子23bは図5の第2回路24の通信回路246に接続され、コネクタ23aの接続端子23cは図5の第2回路24の電源回路245に接続される。コネクタ103aは、図2のバス103に接続される。コネクタ108aは、図2のプリント回路基板105のコネクタ108に接続される。 The connector 23a is connected to the connector 23 of the printed circuit board 21 in FIG. Thereby, the connection terminal 23b of the connector 23a is connected to the communication circuit 246 of the second circuit 24 of FIG. 5, and the connection terminal 23c of the connector 23a is connected to the power supply circuit 245 of the second circuit 24 of FIG. The connector 103a is connected to the bus 103 in FIG. The connector 108a is connected to the connector 108 of the printed circuit board 105 in FIG.
 これにより、図5の第2回路24の電源回路245と電動自動車600の非動力用バッテリ12とがプリント回路基板105のスイッチ回路107を介して接続されるとともに(図2参照)、図5の第2回路24の通信回路246とバッテリECU101のMPU106とがバス103を介して通信可能に接続される(図2参照)。 As a result, the power supply circuit 245 of the second circuit 24 of FIG. 5 and the non-power battery 12 of the electric automobile 600 are connected via the switch circuit 107 of the printed circuit board 105 (see FIG. 2). The communication circuit 246 of the second circuit 24 and the MPU 106 of the battery ECU 101 are communicably connected via the bus 103 (see FIG. 2).
 この場合、単純な配線によりバッテリモジュール100の通信回路246をバッテリECU101に接続するとともにバッテリモジュール100の電源回路245を非動力用バッテリ12に接続することができる。これにより、バッテリシステム500の配線を単純化するとともにバッテリシステム500を小型化することが可能となる。 In this case, the communication circuit 246 of the battery module 100 can be connected to the battery ECU 101 and the power circuit 245 of the battery module 100 can be connected to the non-power battery 12 by simple wiring. Thereby, the wiring of the battery system 500 can be simplified and the battery system 500 can be miniaturized.
 また、第2回路24の通信回路246によりセル情報がバッテリECU101に送信され、またはバッテリECU101から各種情報および指令が受信される。それにより、バッテリシステム500のいずれかのバッテリモジュール100のバッテリセル10の電圧が低下した場合でも、バッテリモジュール100はバッテリECU101と通信を行うことができる。 Further, cell information is transmitted to the battery ECU 101 by the communication circuit 246 of the second circuit 24, or various information and commands are received from the battery ECU 101. Thereby, even when the voltage of the battery cell 10 of any battery module 100 of the battery system 500 is lowered, the battery module 100 can communicate with the battery ECU 101.
 各バッテリモジュール100の第2回路24は、セル情報に基づいて各バッテリセル10の充電量を算出する。また、第2回路24は、各バッテリセル10の端子電圧に基づいて各バッテリセル10の充放電制御を行う。各バッテリセル10の充放電制御の詳細は後述する。 The second circuit 24 of each battery module 100 calculates the charge amount of each battery cell 10 based on the cell information. The second circuit 24 performs charge / discharge control of each battery cell 10 based on the terminal voltage of each battery cell 10. Details of charge / discharge control of each battery cell 10 will be described later.
 各バッテリモジュール100の第2回路24は、セル情報に基づいて各バッテリモジュール100の異常を検出する。バッテリモジュール100の異常とは、例えば、バッテリセル10の過放電、過充電または温度異常等である。また、各第2回路24は、各バッテリセル10の充電量の算出結果ならびにバッテリセル10の過放電、過充電および温度異常等の検出結果をバッテリECU101に与える。 The second circuit 24 of each battery module 100 detects an abnormality of each battery module 100 based on the cell information. The abnormality of the battery module 100 is, for example, overdischarge, overcharge, or temperature abnormality of the battery cell 10. In addition, each second circuit 24 provides the battery ECU 101 with a calculation result of the charge amount of each battery cell 10 and detection results such as overdischarge, overcharge, and temperature abnormality of the battery cell 10.
 なお、本実施の形態では、各バッテリモジュール100の第2回路24が上記の各バッテリセル10の充電量の算出およびバッテリセル10の過放電、過充電および温度異常等の検出を行うが、これに限定されない。バッテリECU101が、各バッテリセル10の充電量の算出またはバッテリセル10の過放電、過充電および温度異常等の検出を行ってもよい。 In the present embodiment, the second circuit 24 of each battery module 100 calculates the amount of charge of each battery cell 10 and detects the overdischarge, overcharge, temperature abnormality, etc. of the battery cell 10. It is not limited to. The battery ECU 101 may calculate the amount of charge of each battery cell 10 or detect overdischarge, overcharge, temperature abnormality, and the like of the battery cell 10.
 (2)バッテリモジュールの詳細
 バッテリモジュール100の詳細について説明する。図7はバッテリモジュール100の外観斜視図であり、図8はバッテリモジュール100の平面図であり、図9はバッテリモジュール100の端面図である。
(2) Details of Battery Module Details of the battery module 100 will be described. 7 is an external perspective view of the battery module 100, FIG. 8 is a plan view of the battery module 100, and FIG. 9 is an end view of the battery module 100.
 なお、図7~図9および後述する図11~図13においては、矢印X,Y,Zで示すように、互いに直交する三方向をX方向、Y方向およびZ方向と定義する。なお、本例では、X方向およびY方向が水平面に平行な方向であり、Z方向が水平面に直交する方向である。 In FIGS. 7 to 9 and FIGS. 11 to 13 to be described later, as shown by arrows X, Y, and Z, three directions orthogonal to each other are defined as an X direction, a Y direction, and a Z direction. In this example, the X direction and the Y direction are directions parallel to the horizontal plane, and the Z direction is a direction orthogonal to the horizontal plane.
 図7~図9に示すように、バッテリモジュール100においては、扁平な略直方体形状を有する複数のバッテリセル10がX方向に並ぶように配置される。この状態で、複数のバッテリセル10は、一対の端面枠92、一対の上端枠93および一対の下端枠94により一体的に固定される。 As shown in FIGS. 7 to 9, in the battery module 100, a plurality of battery cells 10 having a flat, substantially rectangular parallelepiped shape are arranged in the X direction. In this state, the plurality of battery cells 10 are integrally fixed by a pair of end face frames 92, a pair of upper end frames 93 and a pair of lower end frames 94.
 一対の端面枠92は略板形状を有し、YZ平面に平行に配置される。一対の上端枠93および一対の下端枠94は、X方向に延びるように配置される。 The pair of end face frames 92 have a substantially plate shape and are arranged in parallel to the YZ plane. The pair of upper end frames 93 and the pair of lower end frames 94 are arranged so as to extend in the X direction.
 一対の端面枠92の四隅には、一対の上端枠93および一対の下端枠94を接続するための接続部が形成される。一対の端面枠92の間に複数のバッテリセル10が配置された状態で、一対の端面枠92の上側の接続部に一対の上端枠93が取り付けられ、一対の端面枠92の下側の接続部に一対の下端枠94が取り付けられる。これにより、複数のバッテリセル10が、X方向に並ぶように配置された状態で一体的に固定される。一方の端面枠92には、外側の面に間隔を隔ててプリント回路基板21が取り付けられる。 Connection portions for connecting the pair of upper end frames 93 and the pair of lower end frames 94 are formed at the four corners of the pair of end face frames 92. In a state where the plurality of battery cells 10 are disposed between the pair of end surface frames 92, the pair of upper end frames 93 are attached to the upper connection portions of the pair of end surface frames 92, and the lower connection of the pair of end surface frames 92 is performed. A pair of lower end frames 94 are attached to the part. Thereby, the some battery cell 10 is fixed integrally in the state arrange | positioned so that it may rank with a X direction. The printed circuit board 21 is attached to one end face frame 92 with an interval on the outer surface.
 ここで、複数のバッテリセル10は、Y方向における一端部側および他端部側のいずれかの上面部分にプラス電極10aを有し、その逆側の上面部分にマイナス電極10bを有する。各電極10a,10bは、上方に向かって突出するように傾斜して設けられる(図9参照)。 Here, the plurality of battery cells 10 have a plus electrode 10a on the upper surface portion on one end side and the other end side in the Y direction, and a minus electrode 10b on the upper surface portion on the opposite side. Each electrode 10a, 10b is provided to be inclined so as to protrude upward (see FIG. 9).
 以下の説明においては、プリント回路基板21が取り付けられない端面枠92に隣接するバッテリセル10からプリント回路基板21が取り付けられる端面枠92に隣接するバッテリセル10までを1番目~18番目のバッテリセル10と呼ぶ。 In the following description, the first to 18th battery cells from the battery cell 10 adjacent to the end face frame 92 to which the printed circuit board 21 is not attached to the battery cell 10 adjacent to the end face frame 92 to which the printed circuit board 21 is attached are described. Call it 10.
 図8に示すように、バッテリモジュール100において、各バッテリセル10は、隣接するバッテリセル10間でY方向におけるプラス電極10aおよびマイナス電極10bの位置関係が互いに逆になるように配置される。 As shown in FIG. 8, in the battery module 100, each battery cell 10 is arranged so that the positional relationship between the plus electrode 10 a and the minus electrode 10 b in the Y direction is opposite between adjacent battery cells 10.
 それにより、隣接する2個のバッテリセル10間では、一方のバッテリセル10のプラス電極10aと他方のバッテリセル10のマイナス電極10bとが近接し、一方のバッテリセル10のマイナス電極10bと他方のバッテリセル10のプラス電極10aとが近接する。この状態で、近接する2個の電極にバスバー40が取り付けられる。これにより、複数のバッテリセル10が直列接続される。 Thereby, between two adjacent battery cells 10, the plus electrode 10a of one battery cell 10 and the minus electrode 10b of the other battery cell 10 are close to each other, and the minus electrode 10b of one battery cell 10 and the other electrode are The positive electrode 10a of the battery cell 10 is in close proximity. In this state, the bus bar 40 is attached to two adjacent electrodes. Thereby, the some battery cell 10 is connected in series.
 具体的には、1番目のバッテリセル10のマイナス電極10bと2番目のバッテリセル10のプラス電極10aとに共通のバスバー40が取り付けられる。また、2番目のバッテリセル10のマイナス電極10bと3番目のバッテリセル10のプラス電極10aとに共通のバスバー40が取り付けられる。同様にして、各奇数番目のバッテリセル10のマイナス電極10bとそれに隣接する偶数番目のバッテリセル10のプラス電極10aとに共通のバスバー40が取り付けられる。各偶数番目のバッテリセル10のマイナス電極10bとそれに隣接する奇数番目のバッテリセル10のプラス電極10aとに共通のバスバー40が取り付けられる。 Specifically, a common bus bar 40 is attached to the negative electrode 10b of the first battery cell 10 and the positive electrode 10a of the second battery cell 10. A common bus bar 40 is attached to the negative electrode 10b of the second battery cell 10 and the positive electrode 10a of the third battery cell 10. Similarly, a common bus bar 40 is attached to the minus electrode 10b of each odd-numbered battery cell 10 and the plus electrode 10a of the even-numbered battery cell 10 adjacent thereto. A common bus bar 40 is attached to the minus electrode 10b of each even-numbered battery cell 10 and the plus electrode 10a of the odd-numbered battery cell 10 adjacent thereto.
 また、1番目のバッテリセル10のプラス電極10aおよび18番目のバッテリセル10のマイナス電極10bには、外部から電源線501(図1参照)を接続するためのバスバー40aがそれぞれ取り付けられる。 Further, a bus bar 40a for connecting a power line 501 (see FIG. 1) from the outside is attached to the plus electrode 10a of the first battery cell 10 and the minus electrode 10b of the 18th battery cell 10, respectively.
 Y方向における複数のバッテリセル10の一端部側には、X方向に延びる長尺状のフレキシブルプリント回路基板(以下、FPC基板と略記する。)50が複数のバスバー40に共通して接続される。同様に、Y方向における複数のバッテリセル10の他端部側には、X方向に延びる長尺状のFPC基板50が複数のバスバー40,40aに共通して接続される。 A long flexible printed circuit board (hereinafter abbreviated as FPC board) 50 extending in the X direction is commonly connected to the plurality of bus bars 40 on one end side of the plurality of battery cells 10 in the Y direction. . Similarly, a long FPC board 50 extending in the X direction is commonly connected to the plurality of bus bars 40 and 40a on the other end side of the plurality of battery cells 10 in the Y direction.
 FPC基板50は、主として絶縁層上に後述する図12の複数の導体線51,52が形成された構成を有し、屈曲性および可撓性を有する。FPC基板50を構成する絶縁層の材料としては例えばポリイミドが用いられ、導体線51,52の材料としては例えば銅が用いられる。FPC基板50上において、各バスバー40,40aに近接するように各PTC素子60が配置される。 The FPC board 50 has a configuration in which a plurality of conductor wires 51 and 52 shown in FIG. 12, which will be described later, are mainly formed on an insulating layer, and has flexibility and flexibility. For example, polyimide is used as the material of the insulating layer constituting the FPC board 50, and copper is used as the material of the conductor wires 51 and 52, for example. On the FPC board 50, the PTC elements 60 are arranged so as to be close to the bus bars 40, 40a.
 各FPC基板50は、端面枠92(プリント回路基板21が取り付けられる端面枠92)の上端部分で内側に向かって直角に折り返され、さらに下方に向かって折り返され、プリント回路基板21に接続される。 Each FPC board 50 is folded at a right angle toward the inside at the upper end portion of the end face frame 92 (end face frame 92 to which the printed circuit board 21 is attached), and is further folded downward to be connected to the printed circuit board 21. .
 (3)バスバーおよびFPC基板の構造
 次に、バスバー40,40aおよびFPC基板50の構造の詳細を説明する。以下、隣接する2個のバッテリセル10のプラス電極10aとマイナス電極10bとを接続するためのバスバー40を2電極用のバスバー40と呼び、1個のバッテリセル10のプラス電極10aまたはマイナス電極10bと電源線501とを接続するためのバスバー40aを1電極用のバスバー40aと呼ぶ。
(3) Structure of Bus Bar and FPC Board Next, details of the structure of the bus bars 40 and 40a and the FPC board 50 will be described. Hereinafter, the bus bar 40 for connecting the plus electrode 10a and the minus electrode 10b of the two adjacent battery cells 10 is referred to as a bus bar 40 for two electrodes, and the plus electrode 10a or the minus electrode 10b of one battery cell 10 is called. The bus bar 40a for connecting the power line 501 and the power line 501 is referred to as a one-electrode bus bar 40a.
 図10(a)は2電極用のバスバー40の外観斜視図であり、図10(b)は1電極用のバスバー40aの外観斜視図である。 FIG. 10A is an external perspective view of the bus bar 40 for two electrodes, and FIG. 10B is an external perspective view of the bus bar 40a for one electrode.
 図10(a)に示すように、2電極用のバスバー40は、略長方形状を有するベース部41およびそのベース部41の一辺からその一面側に屈曲して延びる一対の取付片42を備える。ベース部41には、一対の電極接続孔43が形成される。 As shown in FIG. 10A, the two-electrode bus bar 40 includes a base portion 41 having a substantially rectangular shape and a pair of attachment pieces 42 that are bent and extended from one side of the base portion 41 to the one surface side. A pair of electrode connection holes 43 are formed in the base portion 41.
 図10(b)に示すように、1電極用のバスバー40aは、略正方形状を有するベース部45およびそのベース部45の一辺からその一面側に屈曲して延びる取付片46を備える。ベース部45には、電極接続孔47が形成される。 As shown in FIG. 10B, the bus bar 40a for one electrode includes a base portion 45 having a substantially square shape and a mounting piece 46 that is bent and extends from one side of the base portion 45 to one side thereof. An electrode connection hole 47 is formed in the base portion 45.
 本実施の形態において、バスバー40,40aは、例えばタフピッチ銅の表面にニッケルめっきが施された構成を有する。 In the present embodiment, the bus bars 40, 40a have a configuration in which, for example, nickel plating is applied to the surface of tough pitch copper.
 図11は、FPC基板50に複数のバスバー40,40aおよび複数のPTC素子60が取り付けられた状態を示す外観斜視図である。図11に示すように、2枚のFPC基板50には、X方向に沿って所定の間隔で複数のバスバー40,40aの取付片42,46が取り付けられる。また、複数のPTC素子60は、複数のバスバー40,40aの間隔と同じ間隔で2枚のFPC基板50にそれぞれ取り付けられる。 FIG. 11 is an external perspective view showing a state in which a plurality of bus bars 40, 40a and a plurality of PTC elements 60 are attached to the FPC board 50. FIG. As shown in FIG. 11, mounting pieces 42 and 46 of a plurality of bus bars 40 and 40a are attached to the two FPC boards 50 at predetermined intervals along the X direction. Further, the plurality of PTC elements 60 are respectively attached to the two FPC boards 50 at the same interval as the interval between the plurality of bus bars 40, 40a.
 バッテリモジュール100を作製する際には、図7の端面枠92、上端枠93および下端枠94により一体的に固定された複数のバッテリセル10上に、上記のように複数のバスバー40,40aおよび複数のPTC素子60が取り付けられた2枚のFPC基板50が取り付けられる。 When the battery module 100 is manufactured, the plurality of bus bars 40, 40a and the plurality of bus bars 40, 40a and the plurality of battery cells 10 integrally fixed by the end face frame 92, the upper end frame 93, and the lower end frame 94 of FIG. Two FPC boards 50 to which a plurality of PTC elements 60 are attached are attached.
 この取り付け時においては、隣接するバッテリセル10のプラス電極10aおよびマイナス電極10bが各バスバー40,40aに形成された電極接続孔43,47に嵌め込まれる。プラス電極10aおよびマイナス電極10bには雄ねじが形成される。各バスバー40,40aが隣接するバッテリセル10のプラス電極10aおよびマイナス電極10bに嵌め込まれた状態で図示しないナットがプラス電極10aおよびマイナス電極10bの雄ねじに螺合される。 At the time of attachment, the plus electrode 10a and the minus electrode 10b of the adjacent battery cell 10 are fitted into the electrode connection holes 43 and 47 formed in the bus bars 40 and 40a. Male screws are formed on the plus electrode 10a and the minus electrode 10b. Nuts (not shown) are screwed into male threads of the plus electrode 10a and the minus electrode 10b in a state where the bus bars 40, 40a are fitted in the plus electrode 10a and the minus electrode 10b of the adjacent battery cell 10.
 このようにして、複数のバッテリセル10に複数のバスバー40,40aが取り付けられるとともに、複数のバスバー40,40aによりFPC基板50が略水平姿勢で保持される。 Thus, the plurality of bus bars 40, 40a are attached to the plurality of battery cells 10, and the FPC board 50 is held in a substantially horizontal posture by the plurality of bus bars 40, 40a.
 (4)バスバーと第1回路との接続
 次に、バスバー40,40aと低電位側第1回路30Lおよび高電位側第1回路30Hとの接続について説明する。図12は、バスバー40,40aと低電位側第1回路30Lおよび高電位側第1回路30Hとの接続について説明するための模式的平面図である。
(4) Connection between Bus Bar and First Circuit Next, connection between the bus bars 40, 40a, the low potential side first circuit 30L, and the high potential side first circuit 30H will be described. FIG. 12 is a schematic plan view for explaining the connection between the bus bars 40, 40a, the low potential side first circuit 30L, and the high potential side first circuit 30H.
 図12に示すように、FPC基板50には、複数のバスバー40,40aの各々に対応するように複数の導体線51,52が設けられる。各導体線51は、バスバー40,40aの取付片42,46とそのバスバー40,40aの近傍に配置されたPTC素子60との間でY方向に平行に延びるように設けられ、各導体線52は、PTC素子60とFPC基板50の一端部との間でX方向に平行に延びるように設けられる。 As shown in FIG. 12, the FPC board 50 is provided with a plurality of conductor wires 51 and 52 so as to correspond to each of the plurality of bus bars 40 and 40a. Each conductor wire 51 is provided so as to extend in parallel in the Y direction between the mounting pieces 42 and 46 of the bus bars 40 and 40a and the PTC element 60 disposed in the vicinity of the bus bars 40 and 40a. Are provided so as to extend parallel to the X direction between the PTC element 60 and one end of the FPC board 50.
 各導体線51の一端部は、FPC基板50の下面側に露出するように設けられる。下面側に露出する各導体線51の一端部が、例えば半田付けまたは溶接により各バスバー40,40aの取付片42,46に電気的に接続される。それにより、FPC基板50が各バスバー40,40aに固定される。 One end of each conductor wire 51 is provided so as to be exposed on the lower surface side of the FPC board 50. One end of each conductor wire 51 exposed on the lower surface side is electrically connected to the mounting pieces 42 and 46 of each bus bar 40 and 40a, for example, by soldering or welding. Thereby, the FPC board 50 is fixed to each bus bar 40, 40a.
 各導体線51の他端部および各導体線52の一端部は、FPC基板50の上面側に露出するように設けられる。PTC素子60の一対の端子(図示せず)が、例えば半田付けにより各導体線51の他端部および各導体線52の一端部に接続される。 The other end of each conductor line 51 and one end of each conductor line 52 are provided so as to be exposed on the upper surface side of the FPC board 50. A pair of terminals (not shown) of the PTC element 60 are connected to the other end of each conductor wire 51 and one end of each conductor wire 52 by, for example, soldering.
 各PTC素子60は、X方向において、対応するバスバー40,40aの両端間の領域に配置されることが好ましい。FPC基板50に応力が加わった場合、隣接するバスバー40,40a間におけるFPC基板50の領域は撓みやすいが、各バスバー40,40aの両端部間におけるFPC基板50の領域はバスバー40,40aに固定されているため、比較的平坦に維持される。そのため、各PTC素子60が各バスバー40,40aの両端部間におけるFPC基板50の領域内に配置されることにより、PTC素子60と導体線51,52との接続性が十分に確保される。また、FPC基板50の撓みによる各PTC素子60への影響(例えば、PTC素子60の抵抗値の変化)が抑制される。 Each PTC element 60 is preferably arranged in a region between both ends of the corresponding bus bar 40, 40a in the X direction. When stress is applied to the FPC board 50, the area of the FPC board 50 between the adjacent bus bars 40, 40a is easily bent, but the area of the FPC board 50 between both ends of each bus bar 40, 40a is fixed to the bus bars 40, 40a. Therefore, it is kept relatively flat. Therefore, each PTC element 60 is disposed in the region of the FPC board 50 between both ends of each bus bar 40, 40a, so that the connectivity between the PTC element 60 and the conductor wires 51, 52 is sufficiently ensured. Moreover, the influence (for example, change of the resistance value of the PTC element 60) on each PTC element 60 by the bending of the FPC board 50 is suppressed.
 プリント回路基板21には、FPC基板50の複数の導体線52に対応した複数の接続端子22が設けられる。複数の接続端子22と低電位側第1回路30Lおよび高電位側第1回路30Hとはプリント回路基板21上で電気的に接続されている。FPC基板50の各導体線52の他端部は、例えば半田付けまたは溶接により対応する接続端子22に接続される。なお、プリント回路基板21とFPC基板50との接続は、半田付けまたは溶接に限らずコネクタを用いて行われてもよい。 The printed circuit board 21 is provided with a plurality of connection terminals 22 corresponding to the plurality of conductor lines 52 of the FPC board 50. The plurality of connection terminals 22, the low potential side first circuit 30 </ b> L, and the high potential side first circuit 30 </ b> H are electrically connected on the printed circuit board 21. The other end of each conductor wire 52 of the FPC board 50 is connected to the corresponding connection terminal 22 by, for example, soldering or welding. The connection between the printed circuit board 21 and the FPC board 50 is not limited to soldering or welding, and may be performed using a connector.
 このようにして、各バスバー40,40aがPTC素子60を介して低電位側第1回路30Lおよび高電位側第1回路30Hに電気的に接続される。これにより、各バッテリセル10の端子電圧が検出される。 In this way, the bus bars 40, 40a are electrically connected to the low potential side first circuit 30L and the high potential side first circuit 30H via the PTC element 60. Thereby, the terminal voltage of each battery cell 10 is detected.
 少なくとも1個のバッテリモジュール100における複数のバスバー40のうちの1つは、電流検出用のシャント抵抗として用いられる。シャント抵抗として用いられるバスバー40を電圧電流バスバー40yと呼ぶ。図13は、電圧電流バスバー40yおよびFPC基板50を示す拡大平面図である。図13に示すように、プリント回路基板21は増幅回路410をさらに有する。 One of the plurality of bus bars 40 in at least one battery module 100 is used as a shunt resistor for current detection. The bus bar 40 used as the shunt resistor is referred to as a voltage / current bus bar 40y. FIG. 13 is an enlarged plan view showing the voltage / current bus bar 40y and the FPC board 50. FIG. As shown in FIG. 13, the printed circuit board 21 further includes an amplifier circuit 410.
 電圧電流バスバー40yのベース部41上には、一対のはんだパターンH1,H2が一定間隔で互いに平行に形成されている。はんだパターンH1は2つの電極接続孔43間で一方の電極接続孔43の近傍に配置され、はんだパターンH2は電極接続孔43間で他方の電極接続孔43の近傍に配置される。電圧電流バスバー40yにおけるはんだパターンH1,H2間に形成される抵抗を電流検出用のシャント抵抗RSと呼ぶ。 On the base portion 41 of the voltage / current bus bar 40y, a pair of solder patterns H1 and H2 are formed in parallel with each other at regular intervals. The solder pattern H1 is disposed between the two electrode connection holes 43 in the vicinity of one electrode connection hole 43, and the solder pattern H2 is disposed between the electrode connection holes 43 in the vicinity of the other electrode connection hole 43. The resistance formed between the solder patterns H1 and H2 in the voltage / current bus bar 40y is referred to as a current detection shunt resistance RS.
 電圧電流バスバー40yのはんだパターンH1は、導体線51、PTC素子60、導体線52および接続端子22を介して増幅回路410の一方の入力端子に接続される。同様に、電圧電流バスバー40yのはんだパターンH2は、導体線51、PTC素子60、導体線52および接続端子22を介して増幅回路410の他方の入力端子に接続される。増幅回路410の出力端子は、導体線により接続端子22に接続される。これにより、低電位側第1回路30Lまたは高電位側第1回路30Hは、増幅回路410の出力電圧に基づいてはんだパターンH1,H2間の電圧を検出する。低電位側第1回路30Lまたは高電位側第1回路30Hにより検出されたはんだパターンH1,H2間の電圧は図5の第2回路24に与えられる。 The solder pattern H1 of the voltage / current bus bar 40y is connected to one input terminal of the amplifier circuit 410 via the conductor line 51, the PTC element 60, the conductor line 52, and the connection terminal 22. Similarly, the solder pattern H2 of the voltage / current bus bar 40y is connected to the other input terminal of the amplifier circuit 410 via the conductor line 51, the PTC element 60, the conductor line 52, and the connection terminal 22. The output terminal of the amplifier circuit 410 is connected to the connection terminal 22 by a conductor line. Thereby, the low potential side first circuit 30L or the high potential side first circuit 30H detects the voltage between the solder patterns H1 and H2 based on the output voltage of the amplifier circuit 410. The voltage between the solder patterns H1, H2 detected by the low potential side first circuit 30L or the high potential side first circuit 30H is applied to the second circuit 24 of FIG.
 本実施の形態において、図5の第2回路24の記憶部242には、予め電圧電流バスバー40yにおけるはんだパターンH1,H2間のシャント抵抗RSの値が記憶されている。図5の第2回路24の処理部241は、低電位側第1回路30Lまたは高電位側第1回路30Hから与えられたはんだパターンH1,H2間の電圧を記憶部242に記憶されたシャント抵抗RSの値で除算することにより電圧電流バスバー40yに流れる電流の値を算出する。このようにして、複数のバッテリセル10に流れる電流の値が検出される。 In the present embodiment, the value of the shunt resistance RS between the solder patterns H1 and H2 in the voltage / current bus bar 40y is stored in advance in the storage unit 242 of the second circuit 24 in FIG. The processing unit 241 of the second circuit 24 in FIG. 5 includes a shunt resistor in which the voltage between the solder patterns H1 and H2 given from the low potential side first circuit 30L or the high potential side first circuit 30H is stored in the storage unit 242. By dividing by the value of RS, the value of the current flowing through the voltage / current bus bar 40y is calculated. In this way, the value of the current flowing through the plurality of battery cells 10 is detected.
 (5)プリント回路基板の一構成例
 次に、プリント回路基板21の一構成例について説明する。図14は、プリント回路基板21の一構成例を示す模式的平面図である。プリント回路基板21は略矩形状を有し、一面および他面を有する。図14(a)および図14(b)は、それぞれプリント回路基板21の一面および他面を示す。
(5) One Configuration Example of Printed Circuit Board Next, one configuration example of the printed circuit board 21 will be described. FIG. 14 is a schematic plan view showing a configuration example of the printed circuit board 21. The printed circuit board 21 has a substantially rectangular shape and has one side and the other side. 14A and 14B show one surface and the other surface of the printed circuit board 21, respectively.
 図14(a)に示すように、プリント回路基板21上の一面には、低電位側第1回路30L、高電位側第1回路30H、第2回路24、絶縁素子25およびコネクタ23が実装される。また、プリント回路基板21には、複数の接続端子22が形成される。プリント回路基板21は、一面に第1の実装領域10G、第2の実装領域12Gおよび帯状の絶縁領域26を有する。 As shown in FIG. 14A, the low potential side first circuit 30L, the high potential side first circuit 30H, the second circuit 24, the insulating element 25, and the connector 23 are mounted on one surface of the printed circuit board 21. The A plurality of connection terminals 22 are formed on the printed circuit board 21. The printed circuit board 21 has a first mounting region 10G, a second mounting region 12G, and a strip-shaped insulating region 26 on one surface.
 第2の実装領域12Gは、プリント回路基板21の1つの角部に形成される。絶縁領域26は、第2の実装領域12Gに沿って延びるように形成される。第1の実装領域10Gは、プリント回路基板21の残りの部分に形成される。第1の実装領域10Gと第2の実装領域12Gとは絶縁領域26により互いに分離される。それにより、第1の実装領域10Gと第2の実装領域12Gとは絶縁領域26により電気的に絶縁される。 The second mounting region 12G is formed at one corner of the printed circuit board 21. The insulating region 26 is formed so as to extend along the second mounting region 12G. The first mounting region 10G is formed in the remaining part of the printed circuit board 21. The first mounting region 10G and the second mounting region 12G are separated from each other by the insulating region 26. Thereby, the first mounting region 10G and the second mounting region 12G are electrically insulated by the insulating region 26.
 第1の実装領域10Gには、低電位側第1回路30Lおよび高電位側第1回路30Hが実装されるとともに複数の接続端子22が形成され、低電位側第1回路30Lおよび高電位側第1回路30Hと複数の接続端子22とはプリント回路基板21上で接続線により電気的に接続される。また、低電位側第1回路30Lおよび高電位側第1回路30Hの電源として、バッテリモジュール100の複数のバッテリセル10(図1参照)が低電位側第1回路30Lおよび高電位側第1回路30Hに接続される。 In the first mounting region 10G, the low potential side first circuit 30L and the high potential side first circuit 30H are mounted and a plurality of connection terminals 22 are formed, and the low potential side first circuit 30L and the high potential side first circuit One circuit 30H and the plurality of connection terminals 22 are electrically connected on the printed circuit board 21 by connection lines. In addition, as a power source for the low potential side first circuit 30L and the high potential side first circuit 30H, the plurality of battery cells 10 (see FIG. 1) of the battery module 100 include the low potential side first circuit 30L and the high potential side first circuit. Connected to 30H.
 低電位側第1回路30Lの実装領域および接続線の形成領域を除いて、低電位側第1回路30Lの実装領域の周囲にグランドパターンGND1Lが形成される。グランドパターンGND1Lは、低電位側バッテリセル群10L(図3参照)の複数のバッテリセル10の最低電位に保持される。高電位側第1回路30Hの実装領域および接続線の形成領域を除いて、高電位側第1回路30Hの実装領域の周囲にグランドパターンGND1Hが形成される。グランドパターンGND1Hは、高電位側バッテリセル群10H(図3参照)の複数のバッテリセル10の最低電位に保持される。 The ground pattern GND1L is formed around the mounting region of the low potential side first circuit 30L except for the mounting region of the low potential side first circuit 30L and the connection line forming region. The ground pattern GND1L is held at the lowest potential of the plurality of battery cells 10 in the low potential side battery cell group 10L (see FIG. 3). A ground pattern GND1H is formed around the mounting region of the high potential side first circuit 30H, except for the mounting region of the high potential side first circuit 30H and the connection line forming region. The ground pattern GND1H is held at the lowest potential of the plurality of battery cells 10 in the high potential side battery cell group 10H (see FIG. 3).
 第2の実装領域12Gには、第2回路24およびコネクタ23が実装され、第2回路24とコネクタ23とはプリント回路基板21上で複数の接続線により電気的に接続される。また、第2回路24の電源として、電動車両が備える非動力用バッテリ12(図1参照)がコネクタ23を介して第2回路24に接続される。第2回路24およびコネクタ23の実装領域ならびに複数の接続線の形成領域を除いて、第2の実装領域12GにグランドパターンGND2が形成される。グランドパターンGND2は非動力用バッテリ12の基準電位(グランド電位)に保持される。 The second circuit 24 and the connector 23 are mounted in the second mounting region 12G, and the second circuit 24 and the connector 23 are electrically connected on the printed circuit board 21 by a plurality of connection lines. Further, as a power source for the second circuit 24, the non-power battery 12 (see FIG. 1) provided in the electric vehicle is connected to the second circuit 24 via the connector 23. A ground pattern GND2 is formed in the second mounting region 12G except for the mounting region of the second circuit 24 and the connector 23 and the formation region of a plurality of connection lines. The ground pattern GND2 is held at the reference potential (ground potential) of the non-power battery 12.
 絶縁素子25は、絶縁領域26をまたぐように実装される。絶縁素子25は、グランドパターンGND1LとグランドパターンGND2とを互いに電気的に絶縁しつつ低電位側第1回路30Lと第2回路24との間で信号を伝送する。絶縁素子25としては、例えばデジタルアイソレータまたはフォトカプラなどを用いることができる。本実施の形態においては、絶縁素子25としてデジタルアイソレータを用いる。 The insulating element 25 is mounted so as to straddle the insulating region 26. The insulating element 25 transmits a signal between the first circuit 30L on the low potential side and the second circuit 24 while electrically insulating the ground pattern GND1L and the ground pattern GND2 from each other. As the insulating element 25, for example, a digital isolator or a photocoupler can be used. In the present embodiment, a digital isolator is used as the insulating element 25.
 このように、低電位側第1回路30Lと第2回路24とは、絶縁素子25により電気的に絶縁されつつ通信可能に接続される。また、高電位側第1回路30Hと第2回路24とは、電気的に絶縁されつつ低電位側第1回路30Lを介して通信可能に接続される。これにより、低電位側第1回路30Lおよび高電位側第1回路30Hの電源として複数のバッテリセル10を用いることができ、第2回路24の電源として非動力用バッテリ12(図1参照)を用いることができる。その結果、第2回路24を低電位側第1回路30Lおよび高電位側第1回路30Hから独立に安定して動作させることができる。 Thus, the low potential side first circuit 30L and the second circuit 24 are connected so as to be able to communicate while being electrically insulated by the insulating element 25. The high potential side first circuit 30H and the second circuit 24 are connected to each other via the low potential side first circuit 30L while being electrically insulated. As a result, a plurality of battery cells 10 can be used as the power source of the low potential side first circuit 30L and the high potential side first circuit 30H, and the non-power battery 12 (see FIG. 1) is used as the power source of the second circuit 24. Can be used. As a result, the second circuit 24 can be stably operated independently from the low potential side first circuit 30L and the high potential side first circuit 30H.
 図14(b)に示すように、プリント回路基板21の他面には、複数の抵抗Rおよび複数のスイッチング素子SWが実装されるとともに、接続端子22が形成される。プリント回路基板21の他面の複数の抵抗Rは、低電位側第1回路30L、高電位側第1回路30Hおよび第2回路24に対応する位置よりも上方の位置に配置される。これにより、抵抗Rから発生する熱を効率よく放散させることができる。また、抵抗Rから発生する熱が低電位側第1回路30L、高電位側第1回路30Hおよび第2回路24に伝導することを防止することができる。その結果、低電位側第1回路30L、高電位側第1回路30Hおよび第2回路24の熱による誤動作および劣化を防止することができる。 As shown in FIG. 14B, on the other surface of the printed circuit board 21, a plurality of resistors R and a plurality of switching elements SW are mounted, and a connection terminal 22 is formed. The plurality of resistors R on the other surface of the printed circuit board 21 are arranged at positions above positions corresponding to the low potential side first circuit 30L, the high potential side first circuit 30H, and the second circuit 24. Thereby, the heat generated from the resistor R can be efficiently dissipated. Further, the heat generated from the resistor R can be prevented from being conducted to the low potential side first circuit 30L, the high potential side first circuit 30H, and the second circuit 24. As a result, it is possible to prevent malfunction and deterioration of the low potential side first circuit 30L, the high potential side first circuit 30H, and the second circuit 24 due to heat.
 (6)バッテリセルの均等化処理
 バッテリセル10の充電状態の均等化処理について説明する。以下の説明では、複数のバッテリセル10の充電状態の一例として端子電圧の均等化処理を説明するが、これに代えて複数のバッテリセル10の充電量等の他の充電状態を均等化してもよい。
(6) Battery cell equalization process The charge state equalization process of the battery cell 10 is demonstrated. In the following description, the terminal voltage equalization process will be described as an example of the charge state of the plurality of battery cells 10, but instead of this, other charge states such as the charge amounts of the plurality of battery cells 10 may be equalized. Good.
 第2回路24の処理部241(図5参照)は、低電位側第1回路30Lおよび高電位側第1回路30Hの検出部20(図3および図4参照)から各バッテリセル10の端子電圧を取得する。ここで、処理部241は、あるバッテリセル10の端子電圧が他のバッテリセル10の端子電圧よりも高いと判定した場合(均等化処理の必要がある場合)、低電位側第1回路30Lまたは高電位側第1回路30Hの制御部31(図3および図4参照)を通して均等化制御回路33にそのバッテリセル10に対応するスイッチング素子SW(図3参照)をオンにする指令(オン指令)を与える。それにより、均等化制御回路33がそのスイッチング素子SWをオンにする。その結果、そのバッテリセル10に充電された電荷が抵抗R(図3参照)を通して放電される。 The processing unit 241 (see FIG. 5) of the second circuit 24 receives the terminal voltage of each battery cell 10 from the detection unit 20 (see FIGS. 3 and 4) of the low potential side first circuit 30L and the high potential side first circuit 30H. To get. Here, when the processing unit 241 determines that the terminal voltage of a certain battery cell 10 is higher than the terminal voltage of another battery cell 10 (when equalization processing is necessary), the low-potential-side first circuit 30L or A command (ON command) for turning on the switching element SW (see FIG. 3) corresponding to the battery cell 10 to the equalization control circuit 33 through the control unit 31 (see FIGS. 3 and 4) of the first circuit 30H on the high potential side. give. Thereby, the equalization control circuit 33 turns on the switching element SW. As a result, the charge charged in the battery cell 10 is discharged through the resistor R (see FIG. 3).
 処理部241は、そのバッテリセル10の端子電圧が他のバッテリセル10の端子電圧と略等しくなるまで低下したと判定した場合(均等化処理の必要がない場合)、低電位側第1回路30Lまたは高電位側第1回路30Hの制御部31を通して均等化制御回路33にそのバッテリセル10に対応するスイッチング素子SWをオフにする指令(オフ指令)を与える。それにより、均等化制御回路33がそのスイッチング素子SWをオフにする。このようにして、全てのバッテリセル10の端子電圧が略均等に保たれる。これにより、一部のバッテリセル10の過充電および過放電を防止することができる。その結果、バッテリセル10の劣化を防止することができる。 When the processing unit 241 determines that the terminal voltage of the battery cell 10 has decreased to be substantially equal to the terminal voltage of the other battery cell 10 (when equalization processing is not necessary), the low-potential-side first circuit 30L. Alternatively, a command (off command) for turning off the switching element SW corresponding to the battery cell 10 is given to the equalization control circuit 33 through the control unit 31 of the first circuit 30H on the high potential side. Thereby, the equalization control circuit 33 turns off the switching element SW. In this way, the terminal voltages of all the battery cells 10 are kept substantially equal. Thereby, the overcharge and overdischarge of some battery cells 10 can be prevented. As a result, deterioration of the battery cell 10 can be prevented.
 なお、本実施の形態では、第2回路24が上記の各バッテリセル10の端子電圧の比較ならびにスイッチング素子SWのオン指令およびオフ指令の送信を行うが、これに限定されない。図1のバッテリECU101が、各バッテリセル10の端子電圧の検出ならびにスイッチング素子SWのオン指令およびオフ指令の送信を行ってもよい。 In the present embodiment, the second circuit 24 compares the terminal voltages of the respective battery cells 10 and transmits the ON command and the OFF command of the switching element SW, but is not limited thereto. The battery ECU 101 in FIG. 1 may detect the terminal voltage of each battery cell 10 and transmit an ON command and an OFF command for the switching element SW.
 (7)均等化処理における過放電防止処理
 後述する図17の電動自動車600の停止中においても、バッテリセル10の均等化処理を行うことが可能である。電動自動車600の停止中には、第2回路24の処理部241が一定時間ごとに休止状態になる。そのため、均等化処理の開始後、バッテリセル10の均等化が終了した時点で処理部241が休止状態である場合には、処理部241からオフ指令が送信されない。本実施の形態では、均等化処理の継続によりバッテリセル10が過放電状態になることを防止するために、以下の過放電防止処理が行われる。
(7) Overdischarge prevention process in equalization process It is possible to perform the equalization process of the battery cell 10 even when the electric vehicle 600 of FIG. While the electric automobile 600 is stopped, the processing unit 241 of the second circuit 24 enters a resting state at regular intervals. Therefore, after the equalization process is started, when the processing unit 241 is in a dormant state when the equalization of the battery cells 10 is completed, an off command is not transmitted from the processing unit 241. In the present embodiment, the following overdischarge prevention process is performed in order to prevent the battery cell 10 from being overdischarged by continuing the equalization process.
 図15は、低電位側第1回路30Lおよび高電位側第1回路30Hの制御部31によるバッテリセル10の均等化処理における過放電防止処理を示すフローチャートである。図15に示すように、均等化処理が必要である場合、低電位側第1回路30Lおよび高電位側第1回路30Hの制御部31(図3および図4参照)は、第2回路24の処理部241(図5参照)から均等化処理が必要なバッテリセル10に対応するスイッチング素子SW(図3参照)をオンにするオン指令を受信し、そのオン指令を均等化制御回路33に与える(ステップS1)。これにより、そのバッテリセル10に充電された電荷が抵抗R(図3参照)を通して放電される。 FIG. 15 is a flowchart showing an overdischarge prevention process in the equalization process of the battery cells 10 by the control unit 31 of the low potential side first circuit 30L and the high potential side first circuit 30H. As shown in FIG. 15, when equalization processing is necessary, the control unit 31 (see FIGS. 3 and 4) of the low potential side first circuit 30L and the high potential side first circuit 30H An on command to turn on the switching element SW (see FIG. 3) corresponding to the battery cell 10 that needs equalization processing is received from the processing unit 241 (see FIG. 5), and the on command is given to the equalization control circuit 33. (Step S1). Thereby, the electric charge charged in the battery cell 10 is discharged through the resistor R (see FIG. 3).
 その後、第2回路24の処理部241は休止状態に移行する。この場合、第2回路24により消費される電力が低減される。これにより、図1の非動力用バッテリ12の電力消費が抑制される。処理部241は、予め設定された休止時間の経過後に休止状態から動作状態に移行する。ここで、処理部241は上記の均等化処理の必要があるか否かを判定する。均等化処理の必要がある場合、処理部241は再び休止状態に移行する。一方、均等化処理の必要がない場合、処理部241は均等化処理を終了することを示す均等化終了指令を制御部31に送信した後、再び休止状態に移行する。 Thereafter, the processing unit 241 of the second circuit 24 shifts to a dormant state. In this case, the power consumed by the second circuit 24 is reduced. Thereby, the power consumption of the non-power battery 12 of FIG. 1 is suppressed. The processing unit 241 shifts from the hibernation state to the operation state after elapse of a preset pause time. Here, the processing unit 241 determines whether or not the above equalization processing is necessary. When the equalization process is necessary, the processing unit 241 shifts to the sleep state again. On the other hand, when there is no need for equalization processing, the processing unit 241 transmits an equalization end command indicating that the equalization processing is to be ended to the control unit 31, and then shifts to the sleep state again.
 制御部31は、均等化終了指令を受信したか否かを判定する(ステップS2)。処理部241が休止状態にある場合には、処理部241から均等化終了指令は送信されない。制御部31は、均等化終了指令を受信しない場合、スイッチング素子SWのオン指令を保持する(ステップS3)。また、制御部31は、第1回路30の検出部20(図4参照)からオン状態のスイッチング素子SWが接続されるバッテリセル10の端子電圧を取得する(ステップS4)。そして、制御部31は、端子電圧が過放電電圧よりも低いか否かを判定する(ステップS5)。ここで、過放電電圧とは、バッテリセル10が過放電状態にならない最低の電圧(最低許容電圧)である。端子電圧が過放電電圧以上の場合、制御部31はステップS2の処理に戻る。 The control unit 31 determines whether or not an equalization end command has been received (step S2). When the processing unit 241 is in the dormant state, the equalization end command is not transmitted from the processing unit 241. The control part 31 hold | maintains the ON command of switching element SW, when not receiving an equalization completion command (step S3). Moreover, the control part 31 acquires the terminal voltage of the battery cell 10 to which the switching element SW in the ON state is connected from the detection part 20 (see FIG. 4) of the first circuit 30 (step S4). And the control part 31 determines whether a terminal voltage is lower than an overdischarge voltage (step S5). Here, the overdischarge voltage is the lowest voltage (minimum allowable voltage) at which the battery cell 10 is not overdischarged. When the terminal voltage is equal to or higher than the overdischarge voltage, the control unit 31 returns to the process of step S2.
 ステップS2において、均等化終了指令を受信した場合、制御部31はステップS6の処理に進む。ステップS5において、端子電圧が過放電電圧よりも低い場合、制御部31はオン状態のスイッチング素子SWをオフにするオフ指令を均等化制御回路33に与える(ステップS6)。これにより、バッテリセル10の均等化処理が終了する。ステップS2~S5の処理に要する時間は処理部241の休止時間よりも短い。 When the equalization end command is received in step S2, the control unit 31 proceeds to the process of step S6. When the terminal voltage is lower than the overdischarge voltage in step S5, the control unit 31 gives an off command to turn off the switching element SW in the on state to the equalization control circuit 33 (step S6). Thereby, the equalization process of the battery cell 10 is complete | finished. The time required for the processing in steps S2 to S5 is shorter than the pause time of the processing unit 241.
 上記の処理においては、第2回路24の処理部241が休止状態である間にオン状態のスイッチング素子SWに接続されるバッテリセル10の端子電圧が過放電電圧よりも低くなると、制御部31がそのスイッチング素子SWをオフにする。これにより、バッテリセル10の放電が停止する。その結果、電動自動車600の停止中においては、非動力用バッテリ12の電力消費を抑制しつつ一部のバッテリセル10の過放電を確実に防止することができる。また、処理部241または処理部241と制御部31との間の通信不良により制御部31が均等化終了指令を受信しない場合にも、一部のバッテリセル10の過放電を防止することができる。 In the above processing, when the terminal voltage of the battery cell 10 connected to the switching element SW in the on state is lower than the overdischarge voltage while the processing unit 241 of the second circuit 24 is in the dormant state, the control unit 31 The switching element SW is turned off. Thereby, the discharge of the battery cell 10 is stopped. As a result, when the electric automobile 600 is stopped, overdischarge of some of the battery cells 10 can be reliably prevented while suppressing power consumption of the non-power battery 12. Further, even when the control unit 31 does not receive the equalization end command due to a communication failure between the processing unit 241 or the processing unit 241 and the control unit 31, overdischarge of some of the battery cells 10 can be prevented. .
 (8)効果
 第1の実施の形態に係るバッテリモジュール100においては、第1回路30の検出部20により各バッテリセル10の端子電圧が検出される。また、第1回路30の検出部20により検出される各バッテリセル10の端子電圧に基づいて、第2回路24の処理部241によりバッテリセル10の均等化処理に関する指令の送信、セル情報の算出およびセル情報の送信等の情報の処理が行われる。第1回路30は、複数のバッテリセル10から供給される電力により動作し、第2回路24は、非動力用バッテリ12から供給される電力により動作する。
(8) Effect In the battery module 100 according to the first embodiment, the detection unit 20 of the first circuit 30 detects the terminal voltage of each battery cell 10. Further, based on the terminal voltage of each battery cell 10 detected by the detection unit 20 of the first circuit 30, the processing unit 241 of the second circuit 24 transmits a command related to the equalization processing of the battery cell 10 and calculates cell information. Information processing such as transmission of cell information is performed. The first circuit 30 operates with electric power supplied from the plurality of battery cells 10, and the second circuit 24 operates with electric power supplied from the non-power battery 12.
 この場合、第2回路24の動作は、複数のバッテリセル10の電圧の低下により停止することがない。それにより、複数のバッテリセル10の電圧が低下した場合でも、第2回路24の処理部241は情報の処理を続行することができる。したがって、バッテリシステム500において、いずれかのバッテリモジュール100におけるバッテリセル10の電圧の低下によりバッテリシステム500の全体の機能が停止することが防止される。その結果、バッテリシステム500の安定な動作が確保される。 In this case, the operation of the second circuit 24 does not stop due to the voltage drop of the plurality of battery cells 10. Thereby, even when the voltage of the some battery cell 10 falls, the process part 241 of the 2nd circuit 24 can continue the process of information. Therefore, in the battery system 500, it is possible to prevent the entire function of the battery system 500 from being stopped due to a decrease in the voltage of the battery cell 10 in any one of the battery modules 100. As a result, stable operation of the battery system 500 is ensured.
 また、バッテリモジュール100の処理部241が、検出された端子電圧に関する情報の処理を行う機能を有する。そのため、バッテリシステム500において、バッテリECU101の構成を変更することなく、バッテリモジュール100の数および種類を容易に変更することができる。それにより、バッテリシステム500の仕様の変更を容易に行うことが可能となる。 Further, the processing unit 241 of the battery module 100 has a function of processing information regarding the detected terminal voltage. Therefore, in battery system 500, the number and type of battery modules 100 can be easily changed without changing the configuration of battery ECU 101. Thereby, the specification of the battery system 500 can be easily changed.
 さらに、検出部20を含む第1回路30と処理部241を含む第2回路24とが共通のプリント回路基板21上に実装されるので、バッテリモジュール100の増設および交換を容易に行うことができる。 Furthermore, since the first circuit 30 including the detection unit 20 and the second circuit 24 including the processing unit 241 are mounted on the common printed circuit board 21, the battery module 100 can be easily added and replaced. .
 また、第1回路30と第2回路24とがそれぞれ独立した電源により動作するので、第1回路30および第2回路24の一方の動作に異常が発生した場合でも、他方は正常に動作することができる。したがって、第1回路30および第2回路24のいずれに異常が発生したかを容易に判別することができる。 In addition, since the first circuit 30 and the second circuit 24 operate with independent power supplies, even if an abnormality occurs in one of the operations of the first circuit 30 and the second circuit 24, the other operates normally. Can do. Therefore, it is possible to easily determine which of the first circuit 30 and the second circuit 24 is abnormal.
 [2]第2の実施の形態
 第2の実施の形態に係るバッテリモジュール100について、第1の実施の形態に係るバッテリモジュール100と異なる点を説明する。図16は、第2の実施の形態の低電位側第1回路30Lおよび高電位側第1回路30Hの制御部31によるバッテリセル10の均等化処理における過放電防止処理を示すフローチャートである。
[2] Second Embodiment A battery module 100 according to a second embodiment will be described while referring to differences from the battery module 100 according to the first embodiment. FIG. 16 is a flowchart illustrating an overdischarge prevention process in the equalization process of the battery cells 10 by the control unit 31 of the low potential side first circuit 30L and the high potential side first circuit 30H according to the second embodiment.
 図16に示すように、均等化処理が必要である場合、低電位側第1回路30Lおよび高電位側第1回路30Hの制御部31(図3および図4参照)は、第2回路24の処理部241(図5参照)から均等化処理が必要なバッテリセル10に対応するスイッチング素子SW(図3参照)をオンにするオン指令を受信し、そのオン指令を均等化制御回路33に与える(ステップS11)。これにより、そのバッテリセル10に充電された電荷が抵抗R(図3参照)を通して放電される。 As shown in FIG. 16, when equalization processing is necessary, the control unit 31 (see FIGS. 3 and 4) of the low potential side first circuit 30L and the high potential side first circuit 30H An on command to turn on the switching element SW (see FIG. 3) corresponding to the battery cell 10 that needs equalization processing is received from the processing unit 241 (see FIG. 5), and the on command is given to the equalization control circuit 33. (Step S11). Thereby, the electric charge charged in the battery cell 10 is discharged through the resistor R (see FIG. 3).
 次に、制御部31は、処理部241からの制御に基づいて、低電位側第1回路30Lおよび高電位側第1回路30Hのタイマ34(図3および図4参照)をリセットし(ステップS12)、タイマ34の動作を開始させる(ステップS13)。処理部241は、予め設定された時間(以下、リセット時間と呼ぶ。)ごとに、タイマ34のリセットを指令するリセット指令を制御部31に送信する。 Next, the control unit 31 resets the timer 34 (see FIGS. 3 and 4) of the low potential side first circuit 30L and the high potential side first circuit 30H based on the control from the processing unit 241 (step S12). ), The operation of the timer 34 is started (step S13). The processing unit 241 transmits to the control unit 31 a reset command for instructing resetting of the timer 34 every preset time (hereinafter referred to as reset time).
 制御部31は、リセット指令を受信したか否かを判定する(ステップS14)。リセット指令を受信しない場合、制御部31はタイマ34の動作を継続させる(ステップS15)。その後、制御部31は、タイマ34による計測時間が予め設定された時間(以下、均等化終了時間と呼ぶ。)よりも短いか否かを判定する(ステップS16)。計測時間が均等化終了よりも短い場合、制御部31はステップS14の処理に戻る。 The control unit 31 determines whether or not a reset command has been received (step S14). When the reset command is not received, the control unit 31 continues the operation of the timer 34 (step S15). Thereafter, the control unit 31 determines whether or not the time measured by the timer 34 is shorter than a preset time (hereinafter referred to as equalization end time) (step S16). If the measurement time is shorter than the end of equalization, the control unit 31 returns to the process of step S14.
 ステップS14において、均等化終了指令を受信した場合、制御部31はステップS12の処理に戻る。ステップS16において、計測時間が均等化終了時間以上である場合、制御部31はオン状態のスイッチング素子SWをオフにするオフ指令を均等化制御回路33に与える(ステップS17)。これにより、バッテリセル10の均等化処理が終了する。リセット時間は均等化終了時間よりも短い。 In step S14, when the equalization end command is received, the control unit 31 returns to the process of step S12. In step S16, when the measurement time is equal to or greater than the equalization end time, the control unit 31 gives an off command to turn off the switching element SW in the on state to the equalization control circuit 33 (step S17). Thereby, the equalization process of the battery cell 10 is complete | finished. The reset time is shorter than the equalization end time.
 また、本実施の形態においても、第1の実施の形態と同様に、全てのバッテリセル10の端子電圧が略等しくなった場合、制御部31は処理部241からの指令に基づいて、全てのスイッチング素子SWをオフにする。これにより均等化処理が終了する。 Also in the present embodiment, as in the first embodiment, when the terminal voltages of all the battery cells 10 are substantially equal, the control unit 31 determines that all of the battery cells 10 are all based on a command from the processing unit 241. The switching element SW is turned off. This completes the equalization process.
 上記の均等化処理においては、計測時間が均等化処理時間以上である場合、制御部31が各バッテリセル10のスイッチング素子SWをオフにする。これにより、各バッテリセル10の放電が停止する。その結果、均等化処理開始後に制御部31と第2回路24の処理部241(図2参照)との間の通信が不能になった場合でも、一部のバッテリセル10の過充電および過放電を確実に防止することができる。 In the above equalization processing, when the measurement time is equal to or longer than the equalization processing time, the control unit 31 turns off the switching element SW of each battery cell 10. Thereby, discharge of each battery cell 10 stops. As a result, even when communication between the control unit 31 and the processing unit 241 (see FIG. 2) of the second circuit 24 is disabled after the equalization processing is started, overcharge and overdischarge of some battery cells 10 are performed. Can be reliably prevented.
 [3]第3の実施の形態
 (1)構成および動作
 以下、第3の実施の形態に係る電動車両について説明する。本実施の形態に係る電動車両は、第1または第2の実施の形態に係るバッテリモジュール100を含むバッテリシステム500を備える。なお、以下では、電動車両の一例として電動自動車を説明する。
[3] Third Embodiment (1) Configuration and Operation Hereinafter, an electric vehicle according to a third embodiment will be described. The electric vehicle according to the present embodiment includes a battery system 500 including the battery module 100 according to the first or second embodiment. In the following, an electric vehicle will be described as an example of an electric vehicle.
 図17は、バッテリシステム500を備える電動自動車の構成を示すブロック図である。図17に示すように、本実施の形態に係る電動自動車600は、車体610を備える。車体610に、図1の非動力用バッテリ12、主制御部300およびバッテリシステム500、電力変換部601、モータ602、駆動輪603、アクセル装置604、ブレーキ装置605、ならびに回転速度センサ606を含む。モータ602が交流(AC)モータである場合には、電力変換部601はインバータ回路を含む。 FIG. 17 is a block diagram illustrating a configuration of an electric vehicle including the battery system 500. As shown in FIG. 17, the electric automobile 600 according to the present embodiment includes a vehicle body 610. The vehicle body 610 includes the non-power battery 12 of FIG. 1, the main control unit 300 and the battery system 500, the power conversion unit 601, the motor 602, the drive wheels 603, the accelerator device 604, the brake device 605, and the rotation speed sensor 606. When motor 602 is an alternating current (AC) motor, power conversion unit 601 includes an inverter circuit.
 本実施の形態において、バッテリシステム500には、非動力用バッテリ12が接続される。また、バッテリシステム500は、電力変換部601を介してモータ602に接続されるとともに、主制御部300に接続される。上述のように、主制御部300には、バッテリシステム500を構成するバッテリECU101(図1参照)から各バッテリセル10(図1参照)の充電量および複数のバッテリセル10に流れる電流の値が与えられる。 In the present embodiment, the non-power battery 12 is connected to the battery system 500. The battery system 500 is connected to the motor 602 via the power conversion unit 601 and also connected to the main control unit 300. As described above, the main controller 300 has the amount of charge of each battery cell 10 (see FIG. 1) and the value of the current flowing through the plurality of battery cells 10 from the battery ECU 101 (see FIG. 1) constituting the battery system 500. Given.
 主制御部300には、アクセル装置604、ブレーキ装置605および回転速度センサ606が接続される。主制御部300は、例えばCPUおよびメモリ、またはマイクロコンピュータからなる。主制御部300には、非動力用バッテリ12が接続される。非動力用バッテリ12から出力される電力は、主制御部300による制御に基づいて電動自動車600の一部の電装部品に供給される。 Accelerator device 604, brake device 605 and rotation speed sensor 606 are connected to main controller 300. The main control unit 300 includes, for example, a CPU and a memory, or a microcomputer. A non-power battery 12 is connected to the main controller 300. The electric power output from the non-power battery 12 is supplied to some electrical components of the electric automobile 600 based on the control by the main control unit 300.
 アクセル装置604は、電動自動車600が備えるアクセルペダル604aと、アクセルペダル604aの操作量(踏み込み量)を検出するアクセル検出部604bとを含む。運転者によりアクセルペダル604aが操作されると、アクセル検出部604bは、運転者により操作されていない状態を基準としてアクセルペダル604aの操作量を検出する。検出されたアクセルペダル604aの操作量が主制御部300に与えられる。 The accelerator device 604 includes an accelerator pedal 604a included in the electric automobile 600 and an accelerator detection unit 604b that detects an operation amount (depression amount) of the accelerator pedal 604a. When the accelerator pedal 604a is operated by the driver, the accelerator detector 604b detects the operation amount of the accelerator pedal 604a based on a state where the driver is not operated. The detected operation amount of the accelerator pedal 604a is given to the main controller 300.
 ブレーキ装置605は、電動自動車600が備えるブレーキペダル605aと、運転者によるブレーキペダル605aの操作量(踏み込み量)を検出するブレーキ検出部605bとを含む。運転者によりブレーキペダル605aが操作されると、ブレーキ検出部605bによりその操作量が検出される。検出されたブレーキペダル605aの操作量が主制御部300に与えられる。 The brake device 605 includes a brake pedal 605a included in the electric automobile 600 and a brake detection unit 605b that detects an operation amount (depression amount) of the brake pedal 605a by the driver. When the brake pedal 605a is operated by the driver, the operation amount is detected by the brake detection unit 605b. The detected operation amount of the brake pedal 605a is given to the main control unit 300.
 回転速度センサ606は、モータ602の回転速度を検出する。検出された回転速度は、主制御部300に与えられる。 Rotational speed sensor 606 detects the rotational speed of motor 602. The detected rotation speed is given to the main control unit 300.
 上記のように、主制御部300には、各バッテリセル10の充電量、複数のバッテリセル10に流れる電流の値、アクセルペダル604aの操作量、ブレーキペダル605aの操作量、およびモータ602の回転速度が与えられる。主制御部300は、これらの情報に基づいて、バッテリモジュール100の充放電制御および電力変換部601の電力変換制御を行う。 As described above, the main control unit 300 includes the charge amount of each battery cell 10, the value of the current flowing through the plurality of battery cells 10, the operation amount of the accelerator pedal 604a, the operation amount of the brake pedal 605a, and the rotation of the motor 602. Speed is given. The main control unit 300 performs charge / discharge control of the battery module 100 and power conversion control of the power conversion unit 601 based on these pieces of information.
 例えば、アクセル操作に基づく電動自動車600の発進時および加速時には、バッテリシステム500から電力変換部601にバッテリモジュール100の電力が供給される。 For example, when the electric vehicle 600 is started and accelerated based on the accelerator operation, the battery module 100 supplies power to the power conversion unit 601.
 さらに、主制御部300は、与えられたアクセルペダル604aの操作量に基づいて、駆動輪603に伝達すべき回転力(指令トルク)を算出し、その指令トルクに基づく制御信号を電力変換部601に与える。 Further, the main control unit 300 calculates a rotational force (command torque) to be transmitted to the drive wheels 603 based on the given operation amount of the accelerator pedal 604a, and outputs a control signal based on the command torque to the power conversion unit 601. To give.
 上記の制御信号を受けた電力変換部601は、バッテリシステム500から供給された電力を、駆動輪603を駆動するために必要な電力(駆動電力)に変換する。これにより、電力変換部601により変換された駆動電力がモータ602に供給され、その駆動電力に基づくモータ602の回転力が駆動輪603に伝達される。 The power conversion unit 601 that has received the control signal converts the power supplied from the battery system 500 into power (drive power) necessary for driving the drive wheels 603. As a result, the driving power converted by the power converter 601 is supplied to the motor 602, and the rotational force of the motor 602 based on the driving power is transmitted to the driving wheels 603.
 一方、ブレーキ操作に基づく電動自動車600の減速時には、モータ602は発電装置として機能する。この場合、電力変換部601は、モータ602により発生された回生電力をバッテリモジュール100の充電に適した電力に変換し、バッテリモジュール100に与える。それにより、バッテリモジュール100が充電される。 On the other hand, when the electric automobile 600 is decelerated based on the brake operation, the motor 602 functions as a power generator. In this case, the power conversion unit 601 converts the regenerative power generated by the motor 602 into power suitable for charging the battery module 100 and supplies the power to the battery module 100. Thereby, the battery module 100 is charged.
 (2)効果
 上記のように、本実施の形態に係る電動自動車600には、第1または第2の実施の形態に係るバッテリモジュール100を含むバッテリシステム500が設けられるので、電動自動車600に含まれるバッテリシステム500の安定な動作が確保される。これにより、電動自動車600の安定な動作が確保される。
(2) Effect As described above, the electric vehicle 600 according to the present embodiment is provided with the battery system 500 including the battery module 100 according to the first or second embodiment. Stable operation of the battery system 500 is ensured. Thereby, the stable operation of the electric automobile 600 is ensured.
 また、電動自動車600に含まれるバッテリシステム500の仕様の変更を容易に行うことが可能となる。これにより、電動自動車600の仕様の変更を容易に行うことが可能となる。 Also, it is possible to easily change the specifications of the battery system 500 included in the electric automobile 600. Thereby, it becomes possible to easily change the specification of the electric automobile 600.
 (3)他の移動体
 上記では、第1または第2の実施の形態に係るバッテリモジュール100を含むバッテリシステム500が電動車両に搭載される例について説明したが、バッテリシステム500が船、航空機、エレベータまたは歩行ロボット等の他の移動体に搭載されてもよい。
(3) Other mobile object In the above, the example in which the battery system 500 including the battery module 100 according to the first or second embodiment is mounted on an electric vehicle has been described. However, the battery system 500 is a ship, an aircraft, You may mount in other moving bodies, such as an elevator or a walking robot.
 バッテリシステム500が搭載された船は、例えば、図17の車体610の代わりに船体を備え、駆動輪603の代わりにスクリューを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。運転者は、船体を加速させる際にアクセル装置604の代わりに加速入力部を操作し、船体を減速させる際にブレーキ装置605の代わりに減速入力部を操作する。この場合、船体が移動本体部に相当し、モータが動力源に相当し、スクリューが駆動部に相当する。このような構成において、モータがバッテリシステム500からの電力を受けてその電力を動力に変換し、その動力によってスクリューが回転されることにより船体が移動する。 A ship equipped with the battery system 500 includes, for example, a hull instead of the vehicle body 610 in FIG. 17, a screw instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. Instead, a deceleration input unit is provided. The driver operates the acceleration input unit instead of the accelerator device 604 when accelerating the hull, and operates the deceleration input unit instead of the brake device 605 when decelerating the hull. In this case, the hull corresponds to the moving main body, the motor corresponds to the power source, and the screw corresponds to the drive unit. In such a configuration, the motor receives electric power from the battery system 500 and converts the electric power into motive power, and the hull moves as the screw is rotated by the motive power.
 同様に、バッテリシステム500が搭載された航空機は、例えば、図17の車体610の代わりに機体を備え、駆動輪603の代わりにプロペラを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。この場合、機体が移動本体部に相当し、モータが動力源に相当し、プロペラが駆動部に相当する。このような構成において、モータがバッテリシステム500からの電力を受けてその電力を動力に変換し、その動力によってプロペラが回転されることにより機体が移動する。 Similarly, an aircraft equipped with the battery system 500 includes, for example, a fuselage instead of the vehicle body 610 in FIG. 17, a propeller instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake. A deceleration input unit is provided instead of the device 605. In this case, the airframe corresponds to the moving main body, the motor corresponds to the power source, and the propeller corresponds to the drive unit. In such a configuration, the motor receives electric power from the battery system 500 and converts the electric power into motive power, and the propeller is rotated by the motive power, so that the aircraft moves.
 バッテリシステム500が搭載されたエレベータは、例えば、図17の車体610の代わりに籠を備え、駆動輪603の代わりに籠に取り付けられる昇降用ロープを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。この場合、籠が移動本体部に相当し、モータが動力源に相当し、昇降用ロープが駆動部に相当する。このような構成において、モータがバッテリシステム500からの電力を受けてその電力を動力に変換し、その動力によって昇降用ロープが巻き上げられることにより籠が昇降する。 The elevator equipped with the battery system 500 includes, for example, a saddle instead of the vehicle body 610 in FIG. 17, a lifting rope attached to the saddle instead of the driving wheel 603, and an acceleration input unit instead of the accelerator device 604. And a deceleration input unit instead of the brake device 605. In this case, the kite corresponds to the moving main body, the motor corresponds to the power source, and the lifting rope corresponds to the drive unit. In such a configuration, the motor receives electric power from the battery system 500 and converts the electric power into motive power, and the elevating rope is wound up by the motive power, so that the kite moves up and down.
 バッテリシステム500が搭載された歩行ロボットは、例えば、図17の車体610の代わりに胴体を備え、駆動輪603の代わりに足を備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。この場合、胴体が移動本体部に相当し、モータが動力源に相当し、足が駆動部に相当する。このような構成において、モータがバッテリシステム500からの電力を受けてその電力を動力に変換し、その動力によって足が駆動されることにより胴体が移動する。 A walking robot equipped with the battery system 500 includes, for example, a torso instead of the vehicle body 610 in FIG. 17, a foot instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. A deceleration input unit is provided instead of. In this case, the body corresponds to the moving main body, the motor corresponds to the power source, and the foot corresponds to the drive unit. In such a configuration, the motor receives electric power from the battery system 500, converts the electric power into power, and the torso moves by driving the foot with the power.
 このように、バッテリシステム500が搭載された移動体においては、動力源がバッテリシステム500からの電力を受けてその電力を動力に変換し、駆動部が動力源により変換された動力により移動本体部を移動させる。 As described above, in the moving body on which the battery system 500 is mounted, the power source receives power from the battery system 500 and converts the power into power, and the drive unit is moved by the power converted by the power source. Move.
 また、バッテリシステム500が搭載された船、航空機、エレベータまたは歩行ロボット等の他の移動体は、図17の非動力用バッテリ12の代わりに、バッテリモジュール100と異なる第2回路用バッテリを備える。第2回路用バッテリは、例えば鉛蓄電池等の二次電池である。第2回路用バッテリは、バッテリモジュール100を充電するための充電系統と同一の充電系統により充電可能である。第2回路用バッテリは、バッテリモジュール100を充電するための充電系統と異なる充電系統により充電されてもよい。第2回路用バッテリは、複数のバッテリシステム500に含まれる図2のバッテリECU101のスイッチ回路107に接続される。スイッチ回路107がオンになると、第2回路用バッテリにより図2の複数のコネクタ108、複数の導体線54および複数のプリント回路基板21のコネクタ23を介して複数のプリント回路基板21の第2回路24に電力が与えられる。これにより、各第2回路24が動作する。 Further, other moving bodies such as a ship, an aircraft, an elevator, or a walking robot equipped with the battery system 500 include a second circuit battery different from the battery module 100 instead of the non-power battery 12 of FIG. The second circuit battery is a secondary battery such as a lead storage battery. The second circuit battery can be charged by the same charging system as the charging system for charging the battery module 100. The second circuit battery may be charged by a charging system different from the charging system for charging the battery module 100. The second circuit battery is connected to the switch circuit 107 of the battery ECU 101 of FIG. When the switch circuit 107 is turned on, the second circuit of the plurality of printed circuit boards 21 is connected by the second circuit battery via the plurality of connectors 108, the plurality of conductor lines 54, and the connectors 23 of the plurality of printed circuit boards 21 in FIG. 24 is supplied with power. Thereby, each second circuit 24 operates.
 [4]第4の実施の形態
 (1)構成および動作
 以下、第4の実施の形態に係る電源装置について説明する。本実施の形態に係る電源装置は、第1または第2の実施の形態に係るバッテリモジュール100を含むバッテリシステム500を備える。
[4] Fourth Embodiment (1) Configuration and Operation Hereinafter, a power supply device according to a fourth embodiment will be described. The power supply device according to the present embodiment includes a battery system 500 including the battery module 100 according to the first or second embodiment.
 図18は、電源装置の構成を示すブロック図である。図18に示すように、電源装置700は、電力貯蔵装置710および電力変換装置720を備える。電力貯蔵装置710は、バッテリシステム群711、コントローラ712および第2回路用バッテリ713を備える。バッテリシステム群711は複数のバッテリシステム500を含む。複数のバッテリシステム500は互いに並列に接続されてもよく、または互いに直列に接続されてもよい。 FIG. 18 is a block diagram showing the configuration of the power supply device. As illustrated in FIG. 18, the power supply device 700 includes a power storage device 710 and a power conversion device 720. The power storage device 710 includes a battery system group 711, a controller 712, and a second circuit battery 713. The battery system group 711 includes a plurality of battery systems 500. The plurality of battery systems 500 may be connected in parallel with each other, or may be connected in series with each other.
 第2回路用バッテリ713は、例えば鉛蓄電池等の二次電池である。第2回路用バッテリ713は、複数のバッテリシステム500に含まれる図2のバッテリECU101のスイッチ回路107に接続される。スイッチ回路107がオンになると、第2回路用バッテリ713により図2の複数のコネクタ108、複数の導体線54および複数のプリント回路基板21のコネクタ23を介して複数のプリント回路基板21の第2回路24に電力が与えられる。これにより、各第2回路24が動作する。 The second circuit battery 713 is a secondary battery such as a lead storage battery. The second circuit battery 713 is connected to the switch circuit 107 of the battery ECU 101 of FIG. When the switch circuit 107 is turned on, the second circuit battery 713 causes the second of the plurality of printed circuit boards 21 to pass through the plurality of connectors 108, the plurality of conductor wires 54, and the connectors 23 of the plurality of printed circuit boards 21 of FIG. Power is applied to the circuit 24. Thereby, each second circuit 24 operates.
 コントローラ712は、例えばCPUおよびメモリ、またはマイクロコンピュータからなる。コントローラ712は、各バッテリシステム500に含まれるバッテリECU101(図1参照)に接続される。コントローラ712は、各バッテリECU101から与えられた各バッテリセル10の充電量に基づいて電力変換装置720を制御する。コントローラ712は、バッテリシステム500のバッテリモジュール100の放電または充電に関する制御として、後述する制御を行う。 The controller 712 includes, for example, a CPU and a memory, or a microcomputer. The controller 712 is connected to a battery ECU 101 (see FIG. 1) included in each battery system 500. The controller 712 controls the power conversion device 720 based on the charge amount of each battery cell 10 given from each battery ECU 101. The controller 712 performs later-described control as control related to discharging or charging of the battery module 100 of the battery system 500.
 電力変換装置720は、DC/DC(直流/直流)コンバータ721およびDC/AC(直流/交流)インバータ722を含む。DC/DCコンバータ721は入出力端子721a,721bを有し、DC/ACインバータ722は入出力端子722a,722bを有する。DC/DCコンバータ721の入出力端子721aは電力貯蔵装置710のバッテリシステム群711および第2回路用バッテリ713に接続される。第2回路用バッテリ713は、DC/DCコンバータ721により充電される。 The power converter 720 includes a DC / DC (DC / DC) converter 721 and a DC / AC (DC / AC) inverter 722. The DC / DC converter 721 has input / output terminals 721a and 721b, and the DC / AC inverter 722 has input / output terminals 722a and 722b. The input / output terminal 721 a of the DC / DC converter 721 is connected to the battery system group 711 and the second circuit battery 713 of the power storage device 710. The second circuit battery 713 is charged by the DC / DC converter 721.
 DC/DCコンバータ721の入出力端子721bおよびDC/ACインバータ722の入出力端子722aは互いに接続されるとともに電力出力部PU1に接続される。DC/ACインバータ722の入出力端子722bは電力出力部PU2に接続されるとともに他の電力系統に接続される。 The input / output terminal 721b of the DC / DC converter 721 and the input / output terminal 722a of the DC / AC inverter 722 are connected to each other and to the power output unit PU1. The input / output terminal 722b of the DC / AC inverter 722 is connected to the power output unit PU2 and to another power system.
 電力出力部PU1,PU2は例えばコンセントを含む。電力出力部PU1,PU2には、例えば種々の負荷が接続される。他の電力系統は、例えば商用電源または太陽電池を含む。電力出力部PU1,PU2および他の電力系統が電源装置に接続される外部の例である。なお、電力系統として太陽電池を用いる場合、DC/DCコンバータ721の入出力端子721bに太陽電池が接続される。一方、電力系統として太陽電池を含む太陽光発電システムを用いる場合、DC/ACインバータ722の入出力端子722bに太陽光発電システムのパワーコンディショナのAC出力部が接続される。 The power output units PU1 and PU2 include, for example, outlets. For example, various loads are connected to the power output units PU1 and PU2. Other power systems include, for example, commercial power sources or solar cells. This is an external example in which power output units PU1, PU2 and another power system are connected to a power supply device. When a solar cell is used as the power system, the solar cell is connected to the input / output terminal 721b of the DC / DC converter 721. On the other hand, when a solar power generation system including a solar battery is used as the power system, the AC output unit of the power conditioner of the solar power generation system is connected to the input / output terminal 722 b of the DC / AC inverter 722.
 DC/DCコンバータ721およびDC/ACインバータ722がコントローラ712によって制御されることにより、バッテリシステム群711の放電および充電が行われる。バッテリシステム群711の放電時には、バッテリシステム群711から与えられる電力がDC/DCコンバータ721によりDC/DC(直流/直流)変換され、さらにDC/ACインバータ722によりDC/AC(直流/交流)変換される。 When the DC / DC converter 721 and the DC / AC inverter 722 are controlled by the controller 712, the battery system group 711 is discharged and charged. When the battery system group 711 is discharged, power supplied from the battery system group 711 is DC / DC (direct current / direct current) converted by the DC / DC converter 721, and further DC / AC (direct current / alternating current) conversion is performed by the DC / AC inverter 722. Is done.
 電源装置700が直流電源として用いられる場合、DC/DCコンバータ721によりDC/DC変換された電力が電力出力部PU1に供給される。電源装置700が交流電源として用いられる場合、DC/ACインバータ722によりDC/AC変換された電力が電力出力部PU2に供給される。また、DC/ACインバータ722により交流に変換された電力を他の電力系統に供給することもできる。 When the power supply device 700 is used as a DC power supply, the power DC / DC converted by the DC / DC converter 721 is supplied to the power output unit PU1. When the power supply device 700 is used as an AC power supply, the power that is DC / AC converted by the DC / AC inverter 722 is supplied to the power output unit PU2. Moreover, the electric power converted into alternating current by the DC / AC inverter 722 can also be supplied to another electric power system.
 コントローラ712は、バッテリシステム群711のバッテリモジュール100の放電に関する制御の一例として、次の制御を行う。バッテリシステム群711の放電時に、コントローラ712は、算出された充電量に基づいてバッテリシステム群711の放電を停止するか否かまたは放電電流(または放電電力)を制限するか否かを判定し、判定結果に基づいて電力変換装置720を制御する。具体的には、バッテリシステム群711に含まれる複数のバッテリセル10(図1参照)のうちいずれかのバッテリセル10の充電量が予め定められたしきい値よりも小さくなると、コントローラ712は、バッテリシステム群711の放電が停止されまたは放電電流(または放電電力)が制限されるようにDC/DCコンバータ721およびDC/ACインバータ722を制御する。これにより、各バッテリセル10の過放電が防止される。 The controller 712 performs the following control as an example of control related to the discharge of the battery module 100 of the battery system group 711. When the battery system group 711 is discharged, the controller 712 determines whether to stop discharging the battery system group 711 based on the calculated charge amount or whether to limit the discharge current (or discharge power), The power conversion device 720 is controlled based on the determination result. Specifically, when the charge amount of any one of the plurality of battery cells 10 (see FIG. 1) included in the battery system group 711 is smaller than a predetermined threshold value, the controller 712 The DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the discharge of the battery system group 711 is stopped or the discharge current (or discharge power) is limited. Thereby, overdischarge of each battery cell 10 is prevented.
 放電電流(または放電電力)の制限は、バッテリシステム群711の電圧が一定の基準電圧となるように制限されることにより行われる。また、基準電圧は、バッテリセル10の充電量に基づいて、コントローラ712により設定される。 The discharge current (or discharge power) is limited by limiting the voltage of the battery system group 711 to a constant reference voltage. The reference voltage is set by the controller 712 based on the charge amount of the battery cell 10.
 一方、バッテリシステム群711の充電時には、他の電力系統から与えられる交流の電力がDC/ACインバータ722によりAC/DC(交流/直流)変換され、さらにDC/DCコンバータ721によりDC/DC(直流/直流)変換される。DC/DCコンバータ721からバッテリシステム群711に電力が与えられることにより、バッテリシステム群711に含まれる複数のバッテリセル10(図1参照)が充電される。 On the other hand, when the battery system group 711 is charged, AC power supplied from another power system is AC / DC (AC / DC) converted by the DC / AC inverter 722, and further DC / DC (DC) is converted by the DC / DC converter 721. / DC) converted. When power is supplied from the DC / DC converter 721 to the battery system group 711, the plurality of battery cells 10 (see FIG. 1) included in the battery system group 711 are charged.
 コントローラ712は、バッテリシステム群711のバッテリモジュール100の充電に関する制御の一例として、次の制御を行う。バッテリシステム群711の充電時に、コントローラ712は、算出された充電量に基づいてバッテリシステム群711の充電を停止するか否かまたは充電電流(または充電電力)を制限するか否かを判定し、判定結果に基づいて電力変換装置720を制御する。具体的には、バッテリシステム群711に含まれる複数のバッテリセル10(図1参照)のうちいずれかのバッテリセル10の充電量が予め定められたしきい値よりも大きくなると、コントローラ712は、バッテリシステム群711の充電が停止されまたは充電電流(または充電電力)が制限されるようにDC/DCコンバータ721およびDC/ACインバータ722を制御する。これにより、各バッテリセル10の過充電が防止される。 The controller 712 performs the following control as an example of control related to the charging of the battery module 100 of the battery system group 711. When charging the battery system group 711, the controller 712 determines whether to stop charging the battery system group 711 or limit the charging current (or charging power) based on the calculated charge amount, The power conversion device 720 is controlled based on the determination result. Specifically, when the charge amount of any one of the plurality of battery cells 10 (see FIG. 1) included in the battery system group 711 is greater than a predetermined threshold, the controller 712 The DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the charging of the battery system group 711 is stopped or the charging current (or charging power) is limited. Thereby, overcharge of each battery cell 10 is prevented.
 充電電流(または充電電力)の制限は、バッテリシステム群711の電圧が一定の基準電圧となるように制限されることにより行われる。また、基準電圧は、バッテリセル10の充電量に基づいて、コントローラ712により設定される。 The charging current (or charging power) is limited by limiting the voltage of the battery system group 711 to a constant reference voltage. The reference voltage is set by the controller 712 based on the charge amount of the battery cell 10.
 なお、電源装置700と外部との間で互いに電力を供給可能であれば、電力変換装置720がDC/DCコンバータ721およびDC/ACインバータ722のうちいずれか一方のみを有してもよい。また、電源装置700と外部との間で互いに電力を供給可能であれば、電力変換装置720が設けられなくてもよい。 Note that the power conversion device 720 may include only one of the DC / DC converter 721 and the DC / AC inverter 722 as long as power can be supplied between the power supply device 700 and the outside. Further, the power conversion device 720 may not be provided as long as power can be supplied between the power supply device 700 and the outside.
 (2)効果
 電源装置700においては、コントローラ712によりバッテリシステム群711と外部との間の電力の供給が制御される。それにより、バッテリシステム群711に含まれる各バッテリセル10の過放電および過充電が防止される。
(2) Effect In the power supply device 700, the controller 712 controls the power supply between the battery system group 711 and the outside. Thereby, overdischarge and overcharge of each battery cell 10 included in the battery system group 711 are prevented.
 上記のように、本実施の形態に係る電源装置700には、第1または第2の実施の形態に係るバッテリモジュール100を含むバッテリシステム500が設けられるので、電源装置700に含まれるバッテリシステム500の安定な動作が確保される。これにより、電源装置700の安定な動作が確保される。 As described above, the power supply apparatus 700 according to the present embodiment is provided with the battery system 500 including the battery module 100 according to the first or second embodiment. Therefore, the battery system 500 included in the power supply apparatus 700 is provided. Stable operation is ensured. Thereby, stable operation of the power supply device 700 is ensured.
 また、電源装置700に含まれるバッテリシステム500の仕様の変更を容易に行うことが可能となる。これにより、電源装置700の仕様の変更を容易に行うことが可能となる。 Also, it is possible to easily change the specifications of the battery system 500 included in the power supply device 700. As a result, the specification of the power supply device 700 can be easily changed.
 [5]他の実施の形態
 (1)上記実施の形態において、プリント回路基板21に2個の第1回路30(低電位側第1回路30Lおよび高電位側第1回路30H)が実装されるが、これに限定されない。第1回路30の耐圧が十分大きい場合には、プリント回路基板21に1個の第1回路30が実装されてもよい。また、バッテリセル10の数が少ない場合には、プリント回路基板21に1個の第1回路30が実装されてもよい。さらに、バッテリセル10の数が多い場合には、プリント回路基板21に3個以上の第1回路30が実装されてもよい。
[5] Other Embodiments (1) In the above embodiment, the two first circuits 30 (the low potential side first circuit 30L and the high potential side first circuit 30H) are mounted on the printed circuit board 21. However, it is not limited to this. When the withstand voltage of the first circuit 30 is sufficiently large, one first circuit 30 may be mounted on the printed circuit board 21. When the number of battery cells 10 is small, one first circuit 30 may be mounted on the printed circuit board 21. Further, when the number of battery cells 10 is large, three or more first circuits 30 may be mounted on the printed circuit board 21.
 また、上記実施の形態において、第1回路30には、全てのバッテリセル10から電力が供給されるが、これに限定されない。二以上の所定数のバッテリセル10から電力が供給されてもよい。この場合、1つのバッテリセル10の電力消費量が他のバッテリセル10の電力消費量に比べて著しく多くなることが防止される。これにより、複数のバッテリセル10の電圧のばらつきを緩和することができる。 In the above embodiment, the first circuit 30 is supplied with power from all the battery cells 10, but the present invention is not limited to this. Electric power may be supplied from two or more predetermined number of battery cells 10. In this case, it is possible to prevent the power consumption of one battery cell 10 from becoming significantly larger than the power consumption of other battery cells 10. Thereby, the dispersion | variation in the voltage of the some battery cell 10 can be relieve | moderated.
 (2)上記実施の形態において、複数のバッテリモジュール100の第2回路24とバッテリECU101とがバス103により接続されるが、これに限定されない。例えば、複数のバッテリモジュール100の第2回路24およびバッテリECU101が直列接続されてもよい。 (2) In the above embodiment, the second circuit 24 of the plurality of battery modules 100 and the battery ECU 101 are connected by the bus 103, but the present invention is not limited to this. For example, the second circuit 24 and the battery ECU 101 of the plurality of battery modules 100 may be connected in series.
 (3)第2の実施の形態のステップS17において、低電位側第1回路30Lおよび高電位側第1回路30Hの制御部31は直列回路SCのスイッチング素子SWをオフにするが、これに限定されない。例えば、制御部31は、図4の端子CP0と端子CP3とが接続されるように切替回路35cを切り替えてもよい。この場合、直列回路SCのスイッチング素子SWがオフになるとともに低電位側第1回路30Lの各部および高電位側第1回路30Hの各部の動作が停止する。その結果、低電位側第1回路30Lおよび高電位側第1回路30Hで電力が消費されないので、複数のバッテリセル10の充電量が不均一になることが防止される。 (3) In step S17 of the second embodiment, the control unit 31 of the low potential side first circuit 30L and the high potential side first circuit 30H turns off the switching element SW of the series circuit SC. Not. For example, the control unit 31 may switch the switching circuit 35c so that the terminals CP0 and CP3 in FIG. 4 are connected. In this case, the switching element SW of the series circuit SC is turned off, and the operation of each part of the low potential side first circuit 30L and each part of the high potential side first circuit 30H is stopped. As a result, power is not consumed in the low-potential side first circuit 30L and the high-potential side first circuit 30H, so that the charge amounts of the plurality of battery cells 10 are prevented from becoming uneven.
 なお、上記では、制御部31は、図4の端子CP0が端子CP3に接続されるように切替回路35cを切り替えることにより、低電位側第1回路30Lの各部および高電位側第1回路30Hの各部の動作を停止させるが、これに限定されない。例えば、図4の降圧部35aおよび昇圧部35bと低電位側第1回路30Lの各部との間にスイッチング素子を設け、低電位側第1回路30Lの制御部31がそのスイッチング素子をオフにしてもよい。これにより、低電位側第1回路30Lの各部の動作を停止させることができる。同様に、降圧部35aおよび昇圧部35bと高電位側第1回路30Hの各部との間にスイッチング素子を設け、高電位側第1回路30Hの制御部31がそのスイッチング素子をオフにしてもよい。これにより、高電位側第1回路30Hの各部の動作を停止させることができる。 In the above description, the control unit 31 switches the switching circuit 35c so that the terminal CP0 of FIG. 4 is connected to the terminal CP3, so that each part of the low potential side first circuit 30L and the high potential side first circuit 30H Although the operation of each unit is stopped, the present invention is not limited to this. For example, a switching element is provided between the step-down unit 35a and step-up unit 35b of FIG. 4 and each part of the low potential side first circuit 30L, and the control unit 31 of the low potential side first circuit 30L turns off the switching element. Also good. Thereby, operation | movement of each part of the low electric potential side 1st circuit 30L can be stopped. Similarly, a switching element may be provided between the step-down unit 35a and step-up unit 35b and each part of the high potential side first circuit 30H, and the control unit 31 of the high potential side first circuit 30H may turn off the switching element. . Thereby, the operation of each part of the high potential side first circuit 30H can be stopped.
 (4)上記実施の形態に係る電動自動車600、船、航空機、エレベータまたは歩行ロボット等の移動体はバッテリモジュール100を備えるとともに、負荷としてモータ602を備える電気機器である。本発明に係る電気機器は、電動自動車600、船、航空機、エレベータまたは歩行ロボット等の移動体に限定されず、洗濯機、冷蔵庫またはエアコンディショナ等であってもよい。例えば、洗濯機は負荷としてモータを備える電気機器であり、冷蔵庫またはエアコンディショナは負荷としてコンプレッサを備える電気機器である。 (4) A moving body such as the electric automobile 600, a ship, an aircraft, an elevator, or a walking robot according to the above embodiment is an electric device including the battery module 100 and a motor 602 as a load. The electric device according to the present invention is not limited to a moving body such as an electric automobile 600, a ship, an aircraft, an elevator, or a walking robot, and may be a washing machine, a refrigerator, an air conditioner, or the like. For example, a washing machine is an electric device including a motor as a load, and a refrigerator or an air conditioner is an electric device including a compressor as a load.
 洗濯機、冷蔵庫またはエアコンディショナ等の電気機器は、図2の非動力用バッテリ12の代わりに、バッテリモジュール100と異なる第2回路用バッテリを備える。第2回路用バッテリは、例えば鉛蓄電池等の二次電池である。第2回路用バッテリは、バッテリモジュール100を充電するための充電系統と同一の充電系統により充電可能である。第2回路用バッテリは、バッテリモジュール100を充電するための充電系統と異なる充電系統により充電されてもよい。第2回路用バッテリは、複数のバッテリシステム500に含まれる図2のバッテリECU101のスイッチ回路107に接続される。スイッチ回路107がオンになると、第2回路用バッテリにより図2の複数のコネクタ108、複数の導体線54および複数のプリント回路基板21のコネクタ23を介して複数のプリント回路基板21の第2回路24に電力が与えられる。これにより、各第2回路24が動作する。 An electric device such as a washing machine, a refrigerator, or an air conditioner includes a second circuit battery different from the battery module 100 in place of the non-power battery 12 of FIG. The second circuit battery is a secondary battery such as a lead storage battery. The second circuit battery can be charged by the same charging system as the charging system for charging the battery module 100. The second circuit battery may be charged by a charging system different from the charging system for charging the battery module 100. The second circuit battery is connected to the switch circuit 107 of the battery ECU 101 of FIG. When the switch circuit 107 is turned on, the second circuit of the plurality of printed circuit boards 21 is connected by the second circuit battery via the plurality of connectors 108, the plurality of conductor lines 54, and the connectors 23 of the plurality of printed circuit boards 21 in FIG. 24 is supplied with power. Thereby, each second circuit 24 operates.
 [6]請求項の各構成要素と実施の形態の各部との対応関係
 以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが、本発明は下記の例に限定されない。
[6] Correspondence relationship between each constituent element of claim and each part of the embodiment Hereinafter, an example of correspondence between each constituent element of the claim and each part of the embodiment will be described. It is not limited.
 上記実施の形態においては、非動力用バッテリ12または第2回路用バッテリ713が外部電源の例であり、バッテリモジュール100がバッテリモジュールの例であり、バッテリセル10がバッテリセルの例であり、検出部20が検出部の例である。第1回路30(低電位側第1回路30Lおよび高電位側第1回路30H)が第1の回路部の例であり、処理部241が処理部の例であり、第2回路24が第2の回路部の例であり、プリント回路基板21が回路基板の例である。電源回路35が第1の電源回路の例であり、プラス電極10aおよびマイナス電極10bが電極端子の例であり、導体線52が電圧検出線の例であり、導体線55L,55Hが内部電源線の例であり、入出力用ハーネスHが接続部材の例である。 In the above embodiment, the non-power battery 12 or the second circuit battery 713 is an example of an external power source, the battery module 100 is an example of a battery module, the battery cell 10 is an example of a battery cell, and detection The unit 20 is an example of a detection unit. The first circuit 30 (the low potential side first circuit 30L and the high potential side first circuit 30H) is an example of the first circuit unit, the processing unit 241 is an example of the processing unit, and the second circuit 24 is the second circuit unit. The printed circuit board 21 is an example of a circuit board. The power supply circuit 35 is an example of a first power supply circuit, the plus electrode 10a and the minus electrode 10b are examples of electrode terminals, the conductor line 52 is an example of a voltage detection line, and the conductor lines 55L and 55H are internal power supply lines. The input / output harness H is an example of a connection member.
 通信回路246が通信回路の例であり、電源回路245が第2の電源回路の例であり、接続端子23cが第1の接続端子の例であり、接続端子23bが第2の接続端子の例であり、コネクタ23aがコネクタの例であり、導体線54が外部電源線の例である。導体線53が通信線の例であり、昇圧部35bが昇圧部の例であり、降圧部35aが降圧部の例であり、直列回路SCが均等化回路の例であり、制御部31が均等化停止部の例であり、均等化制御回路33が均等化制御部の例である。 The communication circuit 246 is an example of a communication circuit, the power supply circuit 245 is an example of a second power supply circuit, the connection terminal 23c is an example of a first connection terminal, and the connection terminal 23b is an example of a second connection terminal. The connector 23a is an example of a connector, and the conductor line 54 is an example of an external power supply line. The conductor line 53 is an example of a communication line, the step-up unit 35b is an example of a step-up unit, the step-down unit 35a is an example of a step-down unit, the series circuit SC is an example of an equalization circuit, and the control unit 31 is equal. This is an example of the equalization stop unit, and the equalization control circuit 33 is an example of the equalization control unit.
 モータ602がモータの例であり、駆動輪603が駆動輪の例であり、電動自動車600が電動車両の例である。車体610、船の船体、航空機の機体、エレベータの籠または歩行ロボットの胴体が移動本体部の例であり、モータ602、駆動輪603、スクリュー、プロペラ、昇降用ロープの巻上モータまたは歩行ロボットの足が動力源の例である。電動自動車600、船、航空機、エレベータまたは歩行ロボットが移動体の例である。コントローラ712がシステム制御部の例であり、電力貯蔵装置710が電力貯蔵装置の例であり、電源装置700が電源装置の例であり、電力変換装置720が電力変換装置の例である。モータ602またはコンプレッサが負荷の例であり、電動自動車600、船、航空機、エレベータ、歩行ロボット、洗濯機、冷蔵庫またはエアコンディショナが電気機器の例である。 The motor 602 is an example of a motor, the driving wheel 603 is an example of a driving wheel, and the electric automobile 600 is an example of an electric vehicle. The body 610, the ship hull, the aircraft fuselage, the elevator cage or the body of the walking robot are examples of the moving main body, and the motor 602, the drive wheel 603, the screw, the propeller, the hoisting motor of the lifting rope or the walking robot. A foot is an example of a power source. An electric vehicle 600, a ship, an aircraft, an elevator, or a walking robot are examples of moving objects. The controller 712 is an example of a system control unit, the power storage device 710 is an example of a power storage device, the power supply device 700 is an example of a power supply device, and the power conversion device 720 is an example of a power conversion device. The motor 602 or the compressor is an example of a load, and the electric automobile 600, a ship, an aircraft, an elevator, a walking robot, a washing machine, a refrigerator, or an air conditioner is an example of an electric device.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。 As the constituent elements of the claims, various other elements having configurations or functions described in the claims can be used.
 本発明は、電力を駆動源とする種々の移動体、電力の貯蔵装置またはモバイル機器等に有効に利用することができる。 The present invention can be effectively used for various mobile objects using electric power as a drive source, power storage devices, mobile devices, and the like.

Claims (12)

  1. 外部電源と接続可能なバッテリモジュールであって、
     複数のバッテリセルと、
     各バッテリセルの電圧を検出する検出部を含む第1の回路部と、
     前記第1の回路部の前記検出部により検出される電圧に関する情報を処理する処理部を含む第2の回路部と、
     前記第1の回路部および前記第2の回路部が実装される共通の回路基板とを備え、
     前記第1の回路部は、前記複数のバッテリセルの少なくとも一部から供給される電力により動作可能に構成され、
     前記第2の回路部は、前記外部電源から供給される電力により動作可能に構成される、バッテリモジュール。
    A battery module that can be connected to an external power source,
    Multiple battery cells;
    A first circuit unit including a detection unit for detecting the voltage of each battery cell;
    A second circuit unit including a processing unit for processing information on the voltage detected by the detection unit of the first circuit unit;
    A common circuit board on which the first circuit unit and the second circuit unit are mounted;
    The first circuit unit is configured to be operable by electric power supplied from at least some of the plurality of battery cells,
    The second circuit unit is a battery module configured to be operable by electric power supplied from the external power source.
  2. 前記第1の回路部は、前記複数のバッテリセルのうち二以上の所定数のバッテリセルにより供給される電力に基づいて前記検出部の動作電圧を得る第1の電源回路をさらに含み、
     前記検出部は、前記第1の電源回路により得られる動作電圧で動作するように接続される、請求項1記載のバッテリモジュール。
    The first circuit unit further includes a first power supply circuit that obtains an operating voltage of the detection unit based on power supplied by a predetermined number of battery cells of two or more of the plurality of battery cells,
    The battery module according to claim 1, wherein the detection unit is connected to operate at an operating voltage obtained by the first power supply circuit.
  3. 前記複数のバッテリセルの電極端子と前記検出部とを接続する電圧検出用の複数の電圧検出線と、
     前記複数の電圧検出線とは別個に設けられ、前記所定数のバッテリセルのうち最高電位を有するバッテリセルの電極端子と前記第1の回路部の前記第1の電源回路とを接続する内部電源線とをさらに備える、請求項2記載のバッテリモジュール。
    A plurality of voltage detection lines for voltage detection connecting the electrode terminals of the plurality of battery cells and the detection unit;
    An internal power supply that is provided separately from the plurality of voltage detection lines and connects the electrode terminal of the battery cell having the highest potential among the predetermined number of battery cells and the first power supply circuit of the first circuit unit. The battery module according to claim 2, further comprising a wire.
  4. 前記回路基板と他の回路とを電気的に接続する接続部材をさらに備え、
     前記第2の回路部の前記処理部は外部と通信を行う通信回路を含み、
     前記第2の回路部は前記外部電源により供給される電力に基づいて前記処理部の動作電圧を得る第2の電源回路をさらに含み、
     前記接続部材は、
     前記第2の電源回路に接続される第1の接続端子および前記通信回路に接続される第2の接続端子を有するコネクタと、
     前記コネクタの前記第1の接続端子に接続される外部電源線と、
     前記コネクタの前記第2の接続端子に接続される通信線とを含み、
     前記外部電源線と前記通信線とが一体的に結束される、請求項1記載のバッテリモジュール。
    A connection member for electrically connecting the circuit board and another circuit;
    The processing unit of the second circuit unit includes a communication circuit that communicates with the outside,
    The second circuit unit further includes a second power supply circuit that obtains an operating voltage of the processing unit based on power supplied from the external power supply,
    The connecting member is
    A connector having a first connection terminal connected to the second power supply circuit and a second connection terminal connected to the communication circuit;
    An external power line connected to the first connection terminal of the connector;
    A communication line connected to the second connection terminal of the connector,
    The battery module according to claim 1, wherein the external power line and the communication line are integrally bound.
  5. 前記第1の電源回路は、
     前記所定数のバッテリセルにより得られる電圧を昇圧する昇圧部と、
     前記所定数のバッテリセルにより得られる電圧を降圧する降圧部とを含み、
     前記所定数のバッテリセルにより得られる電圧が前記動作電圧以上の場合には、前記降圧部により前記動作電圧が前記検出部に供給され、前記所定数のバッテリセルにより得られる電圧が前記動作電圧よりも低い場合には、前記昇圧部により前記動作電圧が前記検出部に供給される、請求項2記載のバッテリモジュール。
    The first power supply circuit includes:
    A booster that boosts a voltage obtained by the predetermined number of battery cells;
    A step-down unit for stepping down a voltage obtained by the predetermined number of battery cells,
    When the voltage obtained by the predetermined number of battery cells is equal to or higher than the operating voltage, the operating voltage is supplied to the detection unit by the step-down unit, and the voltage obtained by the predetermined number of battery cells is greater than the operating voltage. The battery module according to claim 2, wherein the operating voltage is supplied to the detection unit by the boosting unit when the voltage is lower.
  6. 前記複数のバッテリセルの充電状態を均等化する均等化回路をさらに備え、
     前記第1の回路部は、前記検出部により検出される電圧に基づいていずれかのバッテリセルの充電状態が許容値を超えたか否かを判定し、いずれかのバッテリセルの充電状態が許容値を超えた場合に前記均等化回路による均等化を停止させる均等化停止部をさらに含む、請求項1記載のバッテリモジュール。
    Further comprising an equalization circuit for equalizing the state of charge of the plurality of battery cells;
    The first circuit unit determines whether the state of charge of any battery cell exceeds an allowable value based on the voltage detected by the detection unit, and the state of charge of any battery cell is an allowable value The battery module according to claim 1, further comprising an equalization stop unit that stops equalization by the equalization circuit when exceeding the value.
  7. 前記複数のバッテリセルの充電状態を均等化する均等化回路をさらに備え、
     前記第2の回路部は、前記均等化回路の動作を制御するための制御信号を前記第1の回路部に送信する通信機能を有し、
     前記第1の回路部は、
     前記第2の回路部により送信された制御信号に基づいて前記均等化回路の動作を制御する均等化制御部と、
     前記第2の回路部による通信が不能になったか否かを判定し、前記通信が不能になった場合に前記均等化回路による均等化を停止させる均等化停止部をさらに含む、請求項1記載のバッテリモジュール。
    Further comprising an equalization circuit for equalizing the state of charge of the plurality of battery cells;
    The second circuit unit has a communication function of transmitting a control signal for controlling the operation of the equalization circuit to the first circuit unit,
    The first circuit unit includes:
    An equalization control unit that controls the operation of the equalization circuit based on a control signal transmitted by the second circuit unit;
    The equalization stop part which determines whether the communication by the said 2nd circuit part became impossible, and stops the equalization by the said equalization circuit when the said communication becomes impossible is further included. Battery module.
  8. 請求項1記載のバッテリモジュールと、
     前記バッテリモジュールからの電力により駆動されるモータと、
     前記モータの回転力により回転する駆動輪とを備える、電動車両。
    The battery module according to claim 1;
    A motor driven by electric power from the battery module;
    An electric vehicle comprising drive wheels that are rotated by the rotational force of the motor.
  9. 請求項1記載のバッテリモジュールと、
     移動本体部と、
     前記バッテリモジュールからの電力を前記移動本体部を移動させるための動力に変換する動力源とを備える、移動体。
    The battery module according to claim 1;
    A moving body,
    A moving body comprising: a power source that converts electric power from the battery module into power for moving the moving main body.
  10. 請求項1記載のバッテリモジュールと、
     前記バッテリモジュールの放電または充電に関する制御を行うシステム制御部とを備える、電力貯蔵装置。
    The battery module according to claim 1;
    A power storage device comprising: a system control unit that performs control related to discharging or charging of the battery module.
  11. 外部に接続可能な電源装置であって、
     請求項10記載の電力貯蔵装置と、
     前記電力貯蔵装置の前記システム制御部により制御され、前記電力貯蔵装置の前記バッテリモジュールと前記外部との間で電力変換を行う電力変換装置とを備える、電源装置。
    An externally connectable power supply,
    The power storage device according to claim 10;
    A power supply device comprising: a power conversion device that is controlled by the system control unit of the power storage device and performs power conversion between the battery module of the power storage device and the outside.
  12. 請求項1記載のバッテリモジュールと、
     前記バッテリモジュールからの電力により駆動される負荷とを備える、電気機器。
    The battery module according to claim 1;
    An electric device comprising a load driven by electric power from the battery module.
PCT/JP2011/002378 2010-04-22 2011-04-22 Battery module, electric vehicle provided with same, mobile body, power storage device, power source device, and electric equipment WO2011132434A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-098783 2010-04-22
JP2010098783 2010-04-22

Publications (1)

Publication Number Publication Date
WO2011132434A1 true WO2011132434A1 (en) 2011-10-27

Family

ID=44833975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002378 WO2011132434A1 (en) 2010-04-22 2011-04-22 Battery module, electric vehicle provided with same, mobile body, power storage device, power source device, and electric equipment

Country Status (1)

Country Link
WO (1) WO2011132434A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029317A1 (en) * 2010-08-31 2012-03-08 三洋電機株式会社 Battery system, electrically driven vehicle provided with same, moving body, power storage apparatus, power supply apparatus, and electrical equipment
WO2012053426A1 (en) * 2010-10-19 2012-04-26 三洋電機株式会社 Power supply device, and vehicle and electrical storage device each equipped with same
WO2012132178A1 (en) * 2011-03-28 2012-10-04 三洋電機株式会社 Battery system, electric vehicle, mobile body, power storage device, and power source device
JP2013238472A (en) * 2012-05-15 2013-11-28 Renesas Electronics Corp Semiconductor device and voltage measurement device
JP2014068486A (en) * 2012-09-26 2014-04-17 Panasonic Corp Drive control circuit and power tool
WO2015185776A1 (en) * 2014-06-03 2015-12-10 Dachs Electrónica, S. A. Battery element comprising a plurality of battery cells disposed in a line
US9440601B2 (en) 2013-09-06 2016-09-13 Johnson Controls Technology Company System for providing voltage measurements of battery cells to a PCB within a battery module
CN110504502A (en) * 2019-08-29 2019-11-26 重庆长安新能源汽车科技有限公司 Processing method, device, controller and automobile when a kind of battery temperature acquisition abnormity
CN111129616A (en) * 2018-10-30 2020-05-08 周锡卫 Battery energy storage BMS system based on dual-path information sampling monitoring and protection control
US20210391603A1 (en) * 2020-06-12 2021-12-16 Toyota Jidosha Kabushiki Kaisha Battery system
CN116872733A (en) * 2023-06-16 2023-10-13 深圳市华芯控股有限公司 Integrated whole vehicle control system of low-speed electric vehicle and control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272009A (en) * 2001-03-08 2002-09-20 Isuzu Motors Ltd Capacitor power supply system, capacitor control unit, and capacitor module
WO2007029673A1 (en) * 2005-09-05 2007-03-15 Matsushita Electric Industrial Co., Ltd. Accumulator state detection device
JP2008278688A (en) * 2007-05-02 2008-11-13 Seiko Instruments Inc Battery state monitoring circuit and battery device
JP2009038857A (en) * 2007-07-31 2009-02-19 Yazaki Corp Voltage regulator
JP2010061939A (en) * 2008-09-03 2010-03-18 Omron Corp Multi-cell battery system and method for applying management number

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272009A (en) * 2001-03-08 2002-09-20 Isuzu Motors Ltd Capacitor power supply system, capacitor control unit, and capacitor module
WO2007029673A1 (en) * 2005-09-05 2007-03-15 Matsushita Electric Industrial Co., Ltd. Accumulator state detection device
JP2008278688A (en) * 2007-05-02 2008-11-13 Seiko Instruments Inc Battery state monitoring circuit and battery device
JP2009038857A (en) * 2007-07-31 2009-02-19 Yazaki Corp Voltage regulator
JP2010061939A (en) * 2008-09-03 2010-03-18 Omron Corp Multi-cell battery system and method for applying management number

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029317A1 (en) * 2010-08-31 2012-03-08 三洋電機株式会社 Battery system, electrically driven vehicle provided with same, moving body, power storage apparatus, power supply apparatus, and electrical equipment
US8878492B2 (en) 2010-10-19 2014-11-04 Sanyo Electric Co., Ltd. Power source apparatus, vehicle and power storage system using the power source apparatus
WO2012053426A1 (en) * 2010-10-19 2012-04-26 三洋電機株式会社 Power supply device, and vehicle and electrical storage device each equipped with same
JP5937011B2 (en) * 2010-10-19 2016-06-22 三洋電機株式会社 Power supply device, vehicle using the same, and power storage device
JPWO2012053426A1 (en) * 2010-10-19 2014-02-24 三洋電機株式会社 Power supply device, vehicle using the same, and power storage device
US9329239B2 (en) 2011-03-28 2016-05-03 Sanyo Electric Co., Ltd. Battery system, electric-powered vehicle, movable equipment, power storage device, and power source apparatus
WO2012132178A1 (en) * 2011-03-28 2012-10-04 三洋電機株式会社 Battery system, electric vehicle, mobile body, power storage device, and power source device
JP2013238472A (en) * 2012-05-15 2013-11-28 Renesas Electronics Corp Semiconductor device and voltage measurement device
JP2014068486A (en) * 2012-09-26 2014-04-17 Panasonic Corp Drive control circuit and power tool
US9440601B2 (en) 2013-09-06 2016-09-13 Johnson Controls Technology Company System for providing voltage measurements of battery cells to a PCB within a battery module
WO2015185776A1 (en) * 2014-06-03 2015-12-10 Dachs Electrónica, S. A. Battery element comprising a plurality of battery cells disposed in a line
CN111129616A (en) * 2018-10-30 2020-05-08 周锡卫 Battery energy storage BMS system based on dual-path information sampling monitoring and protection control
CN110504502A (en) * 2019-08-29 2019-11-26 重庆长安新能源汽车科技有限公司 Processing method, device, controller and automobile when a kind of battery temperature acquisition abnormity
US20210391603A1 (en) * 2020-06-12 2021-12-16 Toyota Jidosha Kabushiki Kaisha Battery system
US11881567B2 (en) * 2020-06-12 2024-01-23 Toyota Jidosha Kabushiki Kaisha Battery system
CN116872733A (en) * 2023-06-16 2023-10-13 深圳市华芯控股有限公司 Integrated whole vehicle control system of low-speed electric vehicle and control method thereof
CN116872733B (en) * 2023-06-16 2024-01-30 深圳市华芯控股有限公司 Integrated whole vehicle control system of low-speed electric vehicle and control method thereof

Similar Documents

Publication Publication Date Title
WO2011132434A1 (en) Battery module, electric vehicle provided with same, mobile body, power storage device, power source device, and electric equipment
US9329239B2 (en) Battery system, electric-powered vehicle, movable equipment, power storage device, and power source apparatus
JP5735098B2 (en) Battery system, electric vehicle, moving object, power storage device, and power supply device
KR101199102B1 (en) Battery system, electric vehicle, movable body, power storage device, and power supply device
US9705161B2 (en) Battery module, battery system, electric vehicle, mobile unit, electric power storage device, power supply device, and electric device
US20110156618A1 (en) Battery system and electric vehicle including the same
WO2012011237A1 (en) Battery module, battery system, electric vehicle, mobile body, power storage device, and power source device
WO2011135868A1 (en) Battery module, mobile body provided with same, power storage device, power supply device, and electric apparatus
US9590429B2 (en) Battery unit, electric vehicle, movable structure, power supply device, and battery control device
US8975774B2 (en) HV-battery, in particular traction battery for a vehicle
US20130200700A1 (en) Battery module, battery system, electric vehicle, movable body, power storage device, power supply device, and electrical equipment
US20100271036A1 (en) Battery module, battery system and electric vehicle
US20120161677A1 (en) Battery module, battery system and electrically driven vehicle
JP4921878B2 (en) Railway vehicle power storage device control method
WO2012026093A1 (en) Battery module, battery system, electric vehicle, mobile body, electric power storage device, and electric power supply device
WO2012132177A1 (en) Battery module, battery system, electric vehicle, mobile body, power storage device, and power source device
JP2011028987A (en) Battery system and electrically-powered vehicle
JP5008782B1 (en) Battery system, electric vehicle, moving object, power storage device, and power supply device
EP2325919A2 (en) Battery system and electric vehicle including the same
WO2012029317A1 (en) Battery system, electrically driven vehicle provided with same, moving body, power storage apparatus, power supply apparatus, and electrical equipment
WO2012026064A1 (en) Detection circuit, battery module, battery system, electrically-driven vehicle, moving body, power storage device, and power supply device
JP2011119235A (en) Battery system and electric vehicle comprising same
JP2012202935A (en) Voltage detection device, battery module including the same, battery system, electric vehicle, mobile body, power storage unit, and power supply device
JP2012204280A (en) Integrated circuit device, battery module having the same, battery system, electric vehicle, mobile body, power storage device and power supply device
WO2012042912A1 (en) Battery system, electric vehicle provided therewith, mobile body, electric-power storage apparatus, power-supply apparatus, and electrical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP