WO2011093105A1 - Battery module, battery system provided with same, electric drive vehicle, mobile unit, power storage device, power supply device, and electric equipment - Google Patents

Battery module, battery system provided with same, electric drive vehicle, mobile unit, power storage device, power supply device, and electric equipment Download PDF

Info

Publication number
WO2011093105A1
WO2011093105A1 PCT/JP2011/000498 JP2011000498W WO2011093105A1 WO 2011093105 A1 WO2011093105 A1 WO 2011093105A1 JP 2011000498 W JP2011000498 W JP 2011000498W WO 2011093105 A1 WO2011093105 A1 WO 2011093105A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power
block
battery module
voltage detection
Prior art date
Application number
PCT/JP2011/000498
Other languages
French (fr)
Japanese (ja)
Inventor
岸本 圭司
由知 西原
計美 大倉
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2011093105A1 publication Critical patent/WO2011093105A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/298Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the wiring of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module, a battery system including the battery module, an electric vehicle, a moving body, a power storage device, a power supply device, and an electric device.
  • a plurality of battery modules that can be charged and discharged are provided in order to obtain a predetermined driving force.
  • Each battery module has a configuration in which a plurality of batteries (battery cells) are connected in series, for example.
  • Patent Document 1 describes a battery module including a plurality of cylindrical unit cells.
  • a plurality of assembled battery groups are accommodated in an exterior case.
  • Each assembled battery group is composed of six assembled batteries.
  • Each assembled battery includes four cylindrical unit cells connected in series.
  • Each assembled battery is provided with a voltage output connector.
  • a control board is provided in the outer case. The voltage output connectors of the plurality of assembled batteries and the voltage input connector of the control board are connected by a plurality of voltage detection cables.
  • An object of the present invention is to provide a battery module that simplifies wiring and can be miniaturized, a battery system including the battery module, an electric vehicle, a moving body, a power storage device, a power supply device, and an electric device.
  • a battery module according to an aspect of the present invention is provided in a battery block including a plurality of cylindrical battery cells, a voltage detection circuit for detecting a voltage between terminals of each battery cell, and the battery block.
  • the wiring member has a voltage detection line for electrically connecting the positive electrode terminal or the negative electrode terminal of each battery cell and the voltage detection circuit.
  • a battery block is composed of a plurality of cylindrical battery cells.
  • the battery block is provided with a wiring member.
  • the positive or negative terminal of each battery cell and the voltage detection circuit are electrically connected by the voltage detection line of the wiring member.
  • the wiring member may be a member provided with a voltage detection line for electrically connecting the positive electrode terminal or negative electrode terminal of the battery cell and the voltage detection circuit and provided in the battery block. Therefore, the wiring member may be directly attached to the battery block, or may be indirectly attached using another member such as a jig.
  • the wiring member may be directly attached to the battery block by connecting one end of the wiring member to the positive terminal or the negative terminal of the battery cell.
  • the wiring member may be indirectly attached to the battery block via the voltage detection circuit by connecting the other end of the wiring member to the voltage detection circuit.
  • the wiring member may include a flexible printed circuit board, and the flexible printed circuit board may have a configuration in which the voltage detection line is integrally formed on a board made of a flexible material. That is, a battery module according to another aspect of the present invention is provided in a battery block constituted by a plurality of cylindrical battery cells, a voltage detection circuit for detecting a voltage between terminals of each battery cell, and the battery block.
  • a flexible printed circuit board, and the flexible printed circuit board has a voltage detection line for electrically connecting a positive electrode terminal or a negative electrode terminal of each battery cell and the voltage detection circuit integrally with a substrate made of a flexible material. It has the structure formed in.
  • a battery block is composed of a plurality of cylindrical battery cells.
  • the battery block is provided with a flexible printed circuit board.
  • the voltage detection line of the flexible printed circuit board electrically connects the positive electrode terminal or the negative electrode terminal of each battery cell to the voltage detection circuit.
  • the voltage detection line is integrally formed on a substrate made of a flexible material.
  • the voltage detection line integrally formed on the substrate made of a flexible material is provided to electrically connect the positive electrode terminal or the negative electrode terminal of each battery cell and the voltage detection circuit. You may comprise some wirings which electrically connect the positive electrode terminal or negative electrode terminal of a battery cell, and a voltage detection circuit.
  • the wiring for connecting the positive electrode terminal or the negative electrode terminal of the battery cell and the voltage detection circuit can be constituted by two or more kinds of members.
  • the wiring is configured by a first member including a voltage detection line integrally formed on a substrate made of a flexible material and a second member including a bus bar for connecting adjacent battery cells. Can do.
  • the first member can be used for at least a portion that can be bent, and another wiring member (a normal rigid printed circuit board or the like) can be used for a portion that cannot be bent.
  • This battery module is used as a power drive source for a mobile object such as an electric automobile.
  • the moving body may be a ship such as a motor boat that rotates a motor with electric power from a battery module and drives a screw with the rotational force.
  • the battery block has first and second surfaces different from each other, and at least one of the positive electrode terminal and the negative electrode terminal of each battery cell is arranged on the first surface of the battery block, and the voltage detection circuit May be disposed on the second surface of the battery block.
  • At least one of the positive electrode terminal and the negative electrode terminal of each battery cell is arranged on the first surface of the battery block, and the voltage detection circuit is arranged on a second surface different from the first surface of the battery block.
  • the battery block further includes a third surface that faces the first surface and is different from the second surface, and the other terminal of the positive and negative terminals of each battery cell is the third surface of the battery block.
  • the flexible printed circuit board may extend from the second surface of the battery block to the first surface and the third surface.
  • the voltage detection circuit provided on the second surface of the battery block is connected to one terminal of the plurality of battery cells arranged on the first surface by the flexible printed circuit board and arranged on the third surface. Connected to the other terminal of the plurality of battery cells. This further improves the complexity of the connection work between the voltage detection circuit and the positive and negative terminals of the plurality of battery cells.
  • the battery module further includes a housing that houses a plurality of battery cells, and the battery block further includes fourth and fifth surfaces that are different from the first, second, and third surfaces and face each other.
  • An inlet through which cooling air can flow is formed in the housing portion corresponding to the fourth surface of the battery block, and cooling air can flow out into the housing portion corresponding to the fifth surface of the battery block.
  • An outlet may be formed.
  • the cooling air flows into the housing from the inlet formed in the housing portion corresponding to the fourth surface of the battery block.
  • cooling air flows out of the housing from an outlet formed in the housing portion corresponding to the fifth surface of the battery block.
  • the cooling air passes between the plurality of battery cells without being blocked by the positive and negative terminals arranged on the first and third surfaces and the voltage detection circuit provided on the second surface. Can do.
  • the plurality of battery cells are efficiently cooled.
  • the wiring member includes a voltage detection line and a connection member connected to the voltage detection line, and the wiring member is connected to each other so that the positive electrode terminal and the negative electrode terminal of adjacent battery cells are connected to each other by the connection member. You may attach to a battery block.
  • the connecting member is electrically connected to the voltage detection circuit via the voltage detection line of the wiring member.
  • a battery system includes a plurality of battery modules, and each of the plurality of battery modules includes a battery block including a plurality of cylindrical battery cells and a terminal voltage of each battery cell. And a flexible printed circuit board provided in the battery block, and the flexible printed circuit board electrically connects the positive or negative terminal of each battery cell and the voltage detecting circuit. Therefore, a voltage detection line for forming a voltage is integrally formed on a substrate made of a flexible material.
  • This battery system includes a plurality of battery modules.
  • a battery block is constituted by a plurality of cylindrical battery cells.
  • the battery block is provided with a flexible printed circuit board.
  • the voltage detection line of the flexible printed circuit board electrically connects the positive electrode terminal or the negative electrode terminal of each battery cell to the voltage detection circuit.
  • the voltage detection line is integrally formed on a substrate made of a flexible material.
  • An electric vehicle according to still another aspect of the present invention is rotated by a battery system according to still another aspect of the present invention, a motor driven by electric power from a plurality of battery modules of the battery system, and a rotational force of the motor. Drive wheels.
  • the motor is driven by electric power from a plurality of battery modules of the battery system.
  • the drive wheel is rotated by the rotational force of the motor, so that the electric vehicle moves.
  • a battery block is configured by a plurality of cylindrical battery cells.
  • the battery block is provided with a flexible printed circuit board.
  • the voltage detection line of the flexible printed circuit board electrically connects the positive electrode terminal or the negative electrode terminal of each battery cell to the voltage detection circuit.
  • the voltage detection line is integrally formed on a substrate made of a flexible material.
  • a moving body moves one or more battery modules according to one aspect of the present invention, a moving main body, and power from the one or more battery modules to move the moving main body. And a power source that converts the power into power for the purpose.
  • this moving body electric power from one or a plurality of battery modules is converted into power by a power source, and the moving main body moves by the power.
  • the above battery module since the above battery module is used, it is not necessary to perform complicated wiring work for connecting the plurality of battery cells and the voltage detection circuit, so that the complexity of the wiring of the voltage detection line is improved. . Therefore, maintenance of the moving body is facilitated.
  • a power storage device includes one or more battery modules according to one aspect of the present invention and a control unit that performs control related to discharging or charging of the one or more battery modules. It is.
  • control unit controls the discharge or charging of one or a plurality of battery modules.
  • the control unit determines whether to stop discharging one or more battery modules based on the charge amount of the battery cell or to limit the discharge current (or discharge power).
  • the power converter is controlled based on the determination result. Specifically, when the charge amount of any one of the plurality of battery cells becomes smaller than a predetermined threshold value, the control unit stops the discharge of one or the plurality of battery modules or discharge current. The power converter is controlled so that (or the discharge power) is limited.
  • control unit determines whether to stop discharging of one or a plurality of battery modules based on an external instruction or whether to limit the discharge current (or discharge power), and based on the determination result
  • the conversion device can also be controlled.
  • the control unit determines whether to stop charging one or more battery modules based on the charge amount of the battery cell or to limit the charging current (or charging power).
  • the power converter is controlled based on the determination result. Specifically, when the charge amount of any one of a plurality of battery cells included in one or a plurality of battery modules is larger than a predetermined threshold value, the control unit performs the one or a plurality of batteries.
  • the power conversion device is controlled such that charging of the module is stopped or charging current (or charging power) is limited.
  • control unit determines whether to stop charging one or a plurality of battery modules based on an external instruction, or whether to limit the charging current (or charging power), and power based on the determination result.
  • the conversion device can also be controlled.
  • a power supply device is a power supply device connectable to the outside, the power storage device according to still another aspect of the present invention, and one or more battery modules of the power storage device And a power converter that performs power conversion with the outside, and the control unit controls the power converter.
  • power conversion is performed by the power conversion device between one or a plurality of battery modules and the outside.
  • the power converter is controlled by the control unit.
  • the control unit determines whether to stop discharging one or more battery modules based on the charge amount of the battery cell or to limit the discharge current (or discharge power).
  • the power converter is controlled based on the determination result. Specifically, when the charge amount of any one of the plurality of battery cells becomes smaller than a predetermined threshold value, the control unit stops the discharge of one or the plurality of battery modules or discharge current. The power converter is controlled so that (or the discharge power) is limited.
  • control unit determines whether to stop discharging of one or a plurality of battery modules based on an external instruction or whether to limit the discharge current (or discharge power), and based on the determination result
  • the conversion device can also be controlled.
  • the control unit determines whether to stop charging one or more battery modules based on the charge amount of the battery cell or to limit the charging current (or charging power).
  • the power converter is controlled based on the determination result. Specifically, when the charge amount of any one of a plurality of battery cells included in one or a plurality of battery modules is larger than a predetermined threshold value, the control unit performs the one or a plurality of batteries.
  • the power conversion device is controlled such that charging of the module is stopped or charging current (or charging power) is limited.
  • control unit determines whether to stop charging one or a plurality of battery modules based on an external instruction, or whether to limit the charging current (or charging power), and power based on the determination result.
  • the conversion device can also be controlled.
  • An electrical device includes one or more battery modules according to one aspect of the present invention and a load driven by electric power from the one or more battery modules.
  • the load is driven by electric power from one or more battery modules.
  • the above battery module since the above battery module is used, it is not necessary to perform complicated wiring work for connecting the plurality of battery cells and the voltage detection circuit, so that the complexity of the wiring of the voltage detection line is improved. . Therefore, maintenance of the electric equipment is facilitated.
  • the complexity of the wiring of the voltage detection line for connecting the voltage detection circuit for detecting the voltage of the plurality of battery cells and the positive terminal and the negative terminal of the battery cell is improved.
  • FIG. 1 is a block diagram showing the configuration of the battery system according to the first embodiment.
  • FIG. 2 is a block diagram showing a configuration of the printed circuit board of FIG.
  • FIG. 3 is an external perspective view of the battery module according to the first embodiment.
  • FIG. 4 is a side view of one side of the battery module of FIG.
  • FIG. 5 is a side view of the other side of the battery module of FIG.
  • FIG. 6 is a side view and an end view of the battery cell.
  • FIG. 7 is a plan view, a cross-sectional view, and a side view as seen from the short side of the battery holder of FIG.
  • FIG. 8 is an end view of the battery block in the battery module of FIG.
  • FIG. 9 is a plan view of the battery block.
  • FIG. 1 is a block diagram showing the configuration of the battery system according to the first embodiment.
  • FIG. 2 is a block diagram showing a configuration of the printed circuit board of FIG.
  • FIG. 3 is an external perspective view of the battery
  • FIG. 10 is a side view of one of the battery blocks.
  • FIG. 11 is a side view of the other side of the battery block.
  • FIG. 12 is an external perspective view of the bus bar.
  • FIG. 13 is an external perspective view showing a state in which a plurality of bus bars and PTC elements are attached to the FPC board.
  • FIG. 14 is a schematic plan view for explaining the connection between the bus bar and the thermistor and the detection circuit.
  • FIG. 17 is a schematic plan view of an input / output harness used for connection of the communication circuit of FIG.
  • FIG. 18 is an explanatory diagram for connecting battery blocks.
  • FIG. 19 is an external perspective view of the battery module housed in the casing.
  • FIG. 20 is a schematic plan view showing an example of connection and wiring of a plurality of battery modules in the battery system according to the first embodiment.
  • FIG. 21 is a plan view of the battery block according to the second embodiment.
  • FIG. 22 is a side view of one side of the battery block of FIG.
  • FIG. 23 is a side view of the other side of the battery block of FIG. 24 is a plan view, a cross-sectional view, and a side view as seen from the short side of the battery holder of FIG.
  • FIG. 25 is an external perspective view of the battery module according to the third embodiment.
  • FIG. 28 is an external perspective view showing a wiring member of the battery module according to the fourth embodiment.
  • FIG. 29 is an external perspective view of the battery module according to the fifth embodiment.
  • FIG. 30 is a plan view of the battery system according to the fifth embodiment.
  • FIG. 31 is a block diagram illustrating a configuration of an electric vehicle including a battery system.
  • FIG. 32 is a block diagram showing a configuration of a power supply device according to the seventh embodiment.
  • FIG. 33 is a perspective view of a rack that houses a plurality of battery systems.
  • FIG. 34 is a schematic plan view showing a state in which the battery system is housed in the housing space of the rack of FIG.
  • the battery module and the battery system according to the present embodiment are mounted on an electric vehicle (for example, an electric automobile) that uses electric power as a drive source.
  • an electric vehicle for example, an electric automobile
  • FIG. 1 is a block diagram showing the configuration of the battery system according to the first embodiment.
  • the battery system 500 includes a plurality of battery modules 100 (six in this example), a battery ECU 101, and a contactor 102, and is connected to the main control unit 300 of the electric vehicle via a bus 104. .
  • Each battery module 100 of the battery system 500 is connected to each other through the power line 501.
  • Each battery module 100 includes a battery block 10 ⁇ / b> B including a plurality (12 in this example) of battery cells 10.
  • Each battery module 100 further includes a plurality of (six in this example) thermistors 11 and a rigid printed circuit board (hereinafter abbreviated as a printed circuit board) 21.
  • Each battery cell 10 of each battery block 10B are integrally arranged and connected in series by a plurality of bus bars 40.
  • Each battery cell 10 is a secondary battery such as a lithium ion battery or a nickel metal hydride battery.
  • the terminal of the battery cell 10 having the highest potential and the terminal of the battery cell 10 having the lowest potential are connected to the power supply line 501 via the bus bar 40a.
  • the battery system 500 all the battery cells 10 of the plurality of battery modules 100 are connected in series.
  • a power line 501 drawn from the battery system 500 is connected to a load such as a motor of an electric vehicle. Details of the battery module 100 will be described later.
  • FIG. 2 is a block diagram showing a configuration of the printed circuit board 21 of FIG.
  • a detection circuit 20 On the printed circuit board 21, a detection circuit 20, a plurality of resistors R, and a plurality of switching elements SW are mounted.
  • the detection circuit 20 includes a multiplexer 20a, an A / D converter 20b, a differential amplifier 20c, and a communication circuit 20d.
  • the detection circuit 20 includes, for example, an ASIC (Application Specific Integrated Circuit), and the plurality of battery cells 10 are used as a power source for the detection circuit 20.
  • ASIC Application Specific Integrated Circuit
  • the differential amplifier 20c has two input terminals and an output terminal.
  • the differential amplifier 20c differentially amplifies voltages input to the two input terminals, and outputs the amplified voltage from the output terminal.
  • Two input terminals of each differential amplifier 20c are electrically connected to two adjacent bus bars 40, 40a via a conductor line 51 and a PTC (Positive Temperature Coefficient) element 60.
  • the PTC element 60 has a resistance temperature characteristic in which the resistance value rapidly increases when the temperature exceeds a certain value. For this reason, when a short circuit occurs in the detection circuit 20 and the conductor wire 51, if the temperature of the PTC element 60 rises due to the current flowing through the short circuit path, the resistance value of the PTC element 60 increases. Thereby, it is suppressed that a large current flows through the short circuit path including the PTC element 60.
  • the voltages of the two adjacent bus bars 40 and 40a are differentially amplified by each differential amplifier 20c.
  • the output voltage of each differential amplifier 20 c corresponds to the terminal voltage of each battery cell 10. Terminal voltages output from the plurality of differential amplifiers 20c are applied to the multiplexer 20a.
  • the multiplexer 20a sequentially outputs the terminal voltages supplied from the plurality of differential amplifiers 20c to the A / D converter 20b.
  • the A / D converter 20b converts the terminal voltage output from the multiplexer 20a into a digital value and supplies the digital value to the communication circuit 20d.
  • the detection circuit 20 functions as a voltage detection unit.
  • the communication circuit 20d includes, for example, a CPU (Central Processing Unit), a memory, and an interface circuit, and has a communication function and an arithmetic function.
  • the communication circuit 20d is connected to the plurality of thermistors 11 through the conductor line 52a. Accordingly, the communication circuit 20d acquires the temperature of the battery module 100 (see FIG. 1) based on the output signal of the thermistor 11.
  • the detection circuit 20 also functions as a temperature detection unit.
  • At least one bus bar 40 among the plurality of bus bars 40 of each battery module 100 is used as a shunt resistor for current detection.
  • the detection circuit 20 detects the current flowing through each battery module 100 by detecting the voltage across the bus bar 40 used as the shunt resistor.
  • the detection circuit 20 also functions as a current detection unit.
  • the communication circuits 20d of the plurality of battery modules 100 are connected in series via the harness 560. Thereby, the communication circuit 20d of each battery module 100 can communicate with the other battery modules 100.
  • the communication circuit 20d of the battery module 100 at the end is connected to the battery ECU 101 via the harness 560.
  • the communication circuit 20d gives the battery ECU 101 the terminal voltage of each battery cell 10, the current flowing through the plurality of battery cells 10, and the temperature of the battery module 100.
  • these terminal voltages, currents, and temperatures are referred to as cell information.
  • the battery ECU 101 calculates the charge amount of each battery cell 10 based on the cell information given from the communication circuit 20d of each battery module 100, and performs charge / discharge control of each battery cell 10 based on the charge amount.
  • the charge / discharge control is, for example, control for equalizing the amount of charge (hereinafter referred to as equalization control).
  • equalization control In order to perform equalization control of each battery cell 10, a series circuit of a resistor R and a switching element SW is connected between each two adjacent bus bars 40, 40a. On / off of the switching element SW is controlled by the battery ECU 101 via the communication circuit 20d. In the normal state, the switching element SW is turned off. Details of the equalization control will be described later.
  • the battery ECU 101 detects an abnormality of each battery module 100 based on the cell information given from the communication circuit 20d of each battery module 100.
  • the abnormality of the battery module 100 is, for example, overdischarge, overcharge, or temperature abnormality of the battery cell 10.
  • the battery ECU 101 performs calculation and equalization control of the charge amount of each battery cell 10 and detection of overdischarge, overcharge, or temperature abnormality of the battery cell 10, but the present invention is not limited to this.
  • the detection circuit 20 may have a function of calculating the amount of charge of each battery cell 10 and detecting overdischarge, overcharge, or temperature abnormality of each battery cell 10. In this case, the detection circuit 20 gives the detection result to the battery ECU 101.
  • the detection circuit 20 calculates the charge amount of each battery cell 10, the charge amount of each battery cell 10 in addition to the terminal voltage of each battery cell 10, the current flowing through the plurality of battery cells 10, and the temperature of the battery module 100. Is called cell information.
  • a contactor 102 is inserted in the power supply line 501 connected to the battery module 100 at one end.
  • the battery ECU 101 detects an abnormality in the battery module 100
  • the battery ECU 101 turns off the contactor 102. Thereby, when an abnormality occurs, no current flows through each battery module 100, and thus abnormal heat generation of the battery module 100 is prevented.
  • the battery ECU 101 is connected to the main control unit 300 via the bus 104.
  • the amount of charge of each battery cell 10 is given from the battery ECU 101 to the main control unit 300.
  • the main control unit 300 controls the power of the electric vehicle (for example, the rotational speed of the motor) based on the amount of charge.
  • the main control unit 300 controls a power generation device (not shown) connected to the power line 501 to charge each battery module 100.
  • the power generation device is a motor connected to the power supply line 501 described above, for example.
  • the motor converts the electric power supplied from the battery system 500 during acceleration of the electric vehicle into motive power for driving drive wheels (not shown).
  • the motor generates regenerative power when the electric vehicle is decelerated. Each battery module 100 is charged by this regenerative power.
  • FIG. 3 is an external perspective view of the battery module 100 according to the first embodiment
  • FIG. 4 is a side view of one side of the battery module 100 of FIG. 3
  • FIG. 5 is the other side of the battery module 100 of FIG. It is a side view.
  • X, Y, and Z three directions orthogonal to each other are defined as an X direction, a Y direction, and a Z direction.
  • the X direction and the Y direction are directions parallel to the horizontal plane
  • the Z direction is a direction orthogonal to the horizontal plane.
  • the battery module 100 includes a battery block 10B, a printed circuit board 21, and a flexible printed circuit board (hereinafter abbreviated as an FPC board) 50.
  • the battery block 10 ⁇ / b> B includes a plurality of cylindrical battery cells 10 and a pair of battery holders 90 that hold the plurality of battery cells 10.
  • FIG. 6A is a side view of the battery cell 10
  • FIG. 6B is an end view of the battery cell 10 shown in FIG. 6A
  • FIG. 6C is FIG. It is the end view seen from the other side of the battery cell 10 of FIG.
  • a battery cell 10 having a cylindrical outer shape (so-called columnar shape) having opposed end surfaces is used.
  • a positive electrode 10a that is a positive electrode terminal is formed so as to protrude in the axial direction.
  • a negative electrode 10b which is a negative electrode terminal, is formed on the other end face of the battery cell 10 so as to protrude in the axial direction.
  • the plus electrode 10a has a prism shape having a square cross section.
  • a screw hole 9a is formed in the plus electrode 10a.
  • the negative electrode 10b has a prismatic shape having a square cross section.
  • a screw hole 9b is formed in the negative electrode 10b.
  • the plurality of battery cells 10 are arranged in parallel so that the respective axes are parallel to each other.
  • half (six in this example) battery cells 10 are arranged in the upper stage, and the remaining half (six in this example) battery cells 10 are arranged in the lower stage.
  • the battery holder 90 is made of a substantially rectangular plate-like member made of, for example, resin.
  • the battery holder 90 has one side and the other side.
  • one surface and the other surface of the battery holder 90 are referred to as an outer surface and an inner surface, respectively.
  • 7 (a) is a plan view of the outer surface of the battery holder 90 of FIG. 3
  • FIG. 7 (b) is a plan view of the inner surface of the battery holder 90 of FIG. 3
  • FIG. 7 (c) is a plan view of FIG. )
  • FIG. 7B is a sectional view taken along line AA of the battery holder 90 in FIG. 7B
  • FIG. 7D is a side view of the battery holder 90 in FIG. 3 viewed from the short side.
  • the battery holder 90 has a plurality of square holes in the upper and lower stages along the long side direction (X direction in FIGS. 3 to 5). 91 are formed at equal intervals. The plurality of upper and lower hole portions 91 are arranged to correspond to the plurality of upper and lower battery cells 10 in the battery block 10B. The positive electrode 10a or the negative electrode 10b of the corresponding battery cell 10 is fitted into each hole 91.
  • a plurality of annular protrusions 92 are formed at equal intervals so as to surround the plurality of holes 91, respectively.
  • the plurality of upper and lower protrusions 92 are arranged so as to correspond to the upper and lower battery cells 10 in the battery block 10B.
  • the center of each protrusion 92 coincides with the center of each hole 91.
  • the hole 93 is formed in the four corners of the battery holder 90.
  • a fastening member 13 shown in FIG. 8 to be described later is inserted into each hole 93.
  • three holes 94 are formed in the battery holder 90 at equal intervals along the long side direction (X direction in FIGS. 3 to 5). 2 and 3 is inserted into the hole 94.
  • two screw holes 95 are formed on the end surface along the short side of the battery holder 90 at a predetermined interval.
  • a screw S shown in FIG. 16 described later is screwed into the screw hole 95.
  • FIG. 8 is an end view of the battery block 10B in the battery module 100 of FIG. 3
  • FIG. 9 is a plan view of the battery block 10B of FIG. 8
  • FIG. 10 is a side view of one side of the battery block 10B of FIG.
  • FIG. 11 is a side view of the other side of the battery block 10B of FIG.
  • the upper and lower battery cells 10 are arranged so as to correspond to the upper and lower holes 91 of the pair of battery holders 90, respectively.
  • positions so that the positional relationship of the plus electrode 10a and the minus electrode 10b may become mutually opposite between each two adjacent battery cells 10.
  • the positive electrode 10a of one battery cell 10 and the negative electrode 10b of the other battery cell 10 are adjacent to each other, and the negative electrode 10b of one battery cell 10 and the other battery are adjacent to each other.
  • the plus electrode 10a of the cell 10 is adjacent.
  • the plus electrode 10a and the minus electrode 10b of the battery cell 10 are fitted into the holes 91 from the inner surfaces of the pair of battery holders 90, and both ends of the battery cell 10 are paired.
  • the battery holder 90 is fitted into the protrusion 92 on the inner surface.
  • the positive electrode 10 a and the negative electrode 10 b of each battery cell 10 protrude from the outer surfaces of the pair of battery holders 90.
  • both ends of the rod-shaped fastening member 13 are inserted into the holes 93 of the pair of battery holders 90. Male screws are formed at both ends of the fastening member 13.
  • the nuts N are attached to both ends of the fastening member 13, whereby the plurality of battery cells 10 and the pair of battery holders 90 are integrally fixed. In this way, the battery block 10B is configured.
  • the virtual surface facing the outer peripheral surface of the battery cell 10 located at one end of the upper and lower stages is called the side surface Ea of the battery block 10B, and the battery located at the other end of the upper and lower stages
  • a virtual surface facing the outer peripheral surface of the cell 10 is referred to as a side surface Eb of the battery block 10B.
  • a virtual surface that faces one end surface of the plurality of battery cells 10 is referred to as a side surface Ec of the battery block 10B, and a virtual surface that faces the other end surface of the plurality of battery cells 10 This is referred to as a side surface Ed of the battery block 10B.
  • a virtual surface that faces the outer peripheral surface of the upper plurality of battery cells 10 is called a side surface Ee of the battery block 10B, and a virtual surface that faces the outer peripheral surfaces of the lower plurality of battery cells 10. The surface is referred to as a side surface Ef of the battery block 10B.
  • the side surfaces Ea and Eb of the battery block 10B are perpendicular to the alignment direction (X direction) of the plurality of upper or lower battery cells 10.
  • the side surfaces Ec and Ed of the battery block 10B are perpendicular to the axial direction (Y direction) of each battery cell 10.
  • the side surfaces Ee and Ef of the battery block 10B are parallel to the alignment direction (X direction) of the plurality of upper or lower battery cells 10 and the axial direction (Y direction) of each battery cell 10.
  • One of the positive electrode 10a and the negative electrode 10b of each battery cell 10 is disposed on the side surface Ec of the battery block 10B, and the other is disposed on the side surface Ed of the battery block 10B.
  • the plurality of battery cells 10 are connected in series by the plurality of bus bars 40, 40a and the hexagon bolts 14.
  • a plurality of thermistors 11 are attached to the battery block 10B.
  • the printed circuit board 21 is provided on the side surface Ea of the battery block 10B.
  • the printed circuit board 21 is mounted with a detection circuit 20 for detecting cell information of each battery cell 10 and the resistor R and switching element SW shown in FIG.
  • a long FPC board 50 is provided so as to extend from the side surface Ec of the battery block 10B to the side surface Ea. Further, a long FPC board 50 is provided so as to extend from the side surface Ed of the battery block 10B to the side surface Ea.
  • Each FPC board 50 has a configuration in which a conductor wire 51 (see FIG. 1) and a conductor wire 52 (see FIG. 14 described later) are integrally formed on a board made of a flexible material, and is flexible and flexible.
  • a conductor wire 51 see FIG. 1
  • a conductor wire 52 see FIG. 14 described later
  • the PTC elements 60 are arranged so as to be close to the bus bars 40, 40a.
  • the bus bars 40, 40a and the thermistor 11 of the battery module 100 are electrically connected to the printed circuit board 21 by conductor lines 51 (see FIG. 1) and conductor lines 52 (see FIG. 14 described later) formed on the FPC board 50, respectively. Connected.
  • the battery cell 10 closest to the side surface Ea to the battery cell 10 closest to the side surface Eb is the first. This is called the sixth battery cell 10.
  • the battery cells 10 closest to the side surface Eb to the battery cells 10 closest to the side surface Ea are referred to as the seventh to twelfth battery cells 10. .
  • each battery cell 10 is disposed so that the positional relationship between the plus electrode 10a and the minus electrode 10b is opposite to each other between the adjacent battery cells 10.
  • the plus electrode 10a of one battery cell 10 and the minus electrode 10b of the other battery cell 10 are close to each other, and the minus electrode 10b of one battery cell 10 and the plus electrode 10a of the other battery cell 10 are Is close.
  • the bus bar 40 is attached to the plus electrode 10a and the minus electrode 10b that are close to each other so that the plurality of battery cells 10 are connected in series.
  • a common bus bar 40 is attached to the negative electrode 10b of the first battery cell 10 and the positive electrode 10a of the second battery cell 10.
  • a common bus bar 40 is attached to the negative electrode 10b of the second battery cell 10 and the positive electrode 10a of the third battery cell 10.
  • a common bus bar 40 is attached to the minus electrode 10b of each odd-numbered battery cell 10 and the plus electrode 10a of the even-numbered battery cell 10 adjacent thereto.
  • a common bus bar 40 is attached to the minus electrode 10b of each even-numbered battery cell 10 and the plus electrode 10a of the odd-numbered battery cell 10 adjacent thereto.
  • a bus bar 40a for connecting a power line 501 (see FIG. 1) from the outside is attached to the plus electrode 10a of the first battery cell 10 and the minus electrode 10b of the twelfth battery cell 10, respectively.
  • one FPC board 50 is arranged to extend in the alignment direction (X direction) of the plurality of battery cells 10 at the center on the side surface Ec of the battery block 10B.
  • the FPC board 50 is commonly connected to the plurality of bus bars 40.
  • the other FPC board 50 is arranged so as to extend in the alignment direction (X direction) of the plurality of battery cells 10 at the central portion on the side surface Ed of the battery block 10B.
  • the FPC board 50 is commonly connected to the plurality of bus bars 40, 40a.
  • the FPC board 50 is attached between the plus electrodes 10 a and the minus electrodes 10 b of the plurality of battery cells 10 and the plurality of bus bars 40 along the alignment direction (X direction) of the plurality of battery cells 10.
  • the FPC board 50 on the side surface Ec is folded at a right angle toward the side surface Ea at one end of the side surface Ec of the battery block 10B and connected to the printed circuit board 21. Further, the FPC board 50 on the side surface Ed is folded at a right angle toward the side surface Ea at one end of the side surface Ed of the battery block 10B and connected to the printed circuit board 21.
  • the battery module 100 configured as described above is accommodated in a casing 110 of FIG.
  • bus bar 40 for connecting the plus electrode 10a and the minus electrode 10b of two adjacent battery cells 10 is called a two-electrode bus bar 40, and the plus electrode 10a or the minus electrode 10b of one battery cell 10 is called.
  • the bus bar 40a for connecting the power line 501 and the power line 501 is referred to as a one-electrode bus bar 40a.
  • FIG. 12 (a) is an external perspective view of the bus bar 40 for two electrodes
  • FIG. 12 (b) is an external perspective view of the bus bar 40a for one electrode.
  • the two-electrode bus bar 40 includes a base portion 41 having a substantially rectangular shape and a pair of attachment pieces 42 that bend and extend from one side of the base portion 41 to one surface thereof.
  • a pair of electrode connection holes 43 are formed in the base portion 41.
  • the bus bar 40a for one electrode includes a base portion 45 having a substantially square shape and a mounting piece 46 that is bent and extends from one side of the base portion 45 to one surface thereof.
  • An electrode connection hole 47 is formed in the base portion 45.
  • the bus bars 40, 40a have a configuration in which, for example, nickel plating is applied to the surface of tough pitch copper.
  • FIG. 13 is an external perspective view showing a state in which a plurality of bus bars 40, 40a and a PTC element 60 are attached to the FPC board 50.
  • the two FPC boards 50 have mounting pieces 42 for a plurality of bus bars 40, 40a at predetermined intervals along the alignment direction (X direction) of the plurality of battery cells 10 (see FIG. 3). , 46 are attached.
  • the plurality of PTC elements 60 are respectively attached to the two FPC boards 50 at the same interval as the interval between the plurality of bus bars 40, 40a.
  • a member in which the FPC board 50 and the plurality of bus bars 40, 40a are integrally coupled in this manner is hereinafter referred to as a wiring member 70.
  • a shunt resistor is formed in at least one bus bar 40 among the plurality of bus bars 40 in order to detect the current flowing through each battery module 100.
  • the shunt resistor is formed by adjusting the material or dimensions of the bus bar 40.
  • the dimensions are a cross-sectional area and a length of a region of the bus bar 40 used as a resistance. Therefore, the adjustment of the length of the bus bar 40 is limited by the distance between the electrode connection holes 43.
  • the shunt resistor connects the battery cell 10 (sixth battery cell 10) located at one end of the upper stage and the battery cell 10 (seventh battery cell 10) located at one end of the lower stage.
  • the bus bar 40 is formed. This bus bar 40 is referred to as a voltage / current bus bar 40y (see FIG. 13).
  • the voltage / current bus bar 40y is arranged so as to extend in a direction orthogonal to the other bus bars 40, even if the dimensions of the voltage / current bus bar 40y are adjusted to form a shunt resistor, the size of the battery module 100 is reduced. There is no change in the alignment direction (X direction) of the plurality of battery cells 10 (see FIG. 3).
  • the current flowing through the voltage / current bus bar 40y is detected by the detection circuit 20.
  • two potential difference detection lines are provided for the connection between the voltage / current bus bar 40y and the detection circuit 20.
  • a conductor line 51 connected to one attachment piece 42 of the voltage / current bus bar 40y among conductor lines 51 (see FIG. 14 described later) provided on the FPC board 50 is used. be able to.
  • the conductor line 51 is connected to the detection circuit 20 on the printed circuit board 21.
  • the conductor wire 51 connected to the other attachment piece 42 of the voltage / current bus bar 40y among the conductor wires 51 (see FIG. 14 described later) provided on the FPC board 50 is used as the other of the potential difference detection lines. Can do.
  • the conductor line 51 is connected to the detection circuit 20 on the printed circuit board 21.
  • the wiring members 70 are respectively disposed on the side surfaces Ec and Ed (see FIGS. 4 and 5) of the battery block 10B. Then, the screw hole 9a (see FIG. 6) of the plus electrode 10a of the adjacent battery cell 10 and the screw hole 9b (see FIG. 6) of the minus electrode 10b are overlapped with the two electrode connection holes 43 formed in each bus bar 40. In addition, the screw hole 9a of the plus electrode 10a of one battery cell 10 and the screw hole 9b of the minus electrode 10b of another battery cell 10 are overlapped with the electrode connection hole 47 of the bus bar 40a. In this state, the hexagon bolt 14 (see FIG. 3) is screwed into the screw holes 9a and 9b of the plus electrode 10a and the minus electrode 10b through the electrode connection holes 43 and 47 of the bus bars 40 and 40a.
  • the plurality of bus bars 40, 40a are attached to the plurality of battery cells 10, and the FPC boards 50 extend in the alignment direction (X direction) of the plurality of battery cells 10 by the plurality of bus bars 40, 40a. It is held in a substantially vertical posture.
  • the battery module 100 can be easily assembled by attaching the wiring member 70 to the battery block 10B.
  • FIG. 14 is a schematic plan view for explaining the connection between the bus bars 40 and 40 a and the thermistor 11 and the detection circuit 20.
  • a plurality of conductor wires 51 are provided on the main surface of the FPC board 50 so as to correspond to the plurality of bus bars 40, 40 a, and a plurality of conductor wires 52 are provided so as to correspond to the plurality of thermistors 11. Is provided.
  • a plurality of connection pads 51a are provided along the long sides of the main surface of the FPC board 50 so as to correspond to the plurality of bus bars 40, 40a.
  • each conductor wire 51 is connected to each connection pad 51a via a PTC element 60.
  • Each connection pad 51a is electrically connected to the mounting pieces 42, 46 of each bus bar 40, 40a, for example, by soldering or welding. Thereby, the FPC board 50 is fixed to each bus bar 40, 40a.
  • Each PTC element 60 is preferably arranged in a region between both ends of the corresponding bus bar 40, 40a.
  • the area of the FPC board 50 between the adjacent bus bars 40, 40a is easily bent, but the area of the FPC board 50 between both ends of each bus bar 40, 40a is fixed to the bus bars 40, 40a. Therefore, it is kept relatively flat. Therefore, each PTC element 60 is disposed in the region of the FPC board 50 between both ends of each bus bar 40, 40 a, thereby ensuring sufficient connectivity between the PTC element 60 and the conductor wire 51. Moreover, the influence (for example, change of the resistance value of the PTC element 60) on each PTC element 60 by the bending of the FPC board 50 is suppressed.
  • each conductor wire 52 is electrically connected to each thermistor 11 using the conductor wire 52a of FIG.
  • connection terminals 22 (see FIG. 15 to be described later) corresponding to the plurality of conductor lines 51 and 52 of the FPC board 50.
  • the other end portions of the conductor lines 51 and 52 of the FPC board 50 are provided so as to be exposed on the back side of the FPC board 50.
  • the other ends of the conductor wires 51 and 52 exposed on the back surface are connected to the corresponding connection terminals 22 on the printed circuit board 21 by, for example, soldering or welding.
  • the connection between the printed circuit board 21 and the FPC board 50 is not limited to soldering or welding, and may be performed using a connector.
  • each bus bar 40, 40a is electrically connected to the detection circuit 20 via the PTC element 60, and each thermistor 11 is electrically connected to the detection circuit 20.
  • FIG. 14 the FPC board 50 on the side surface Ed (see FIG. 5) of the battery block 10B and the method of connecting the bus bars 40, 40a and the detection circuit 20 are illustrated, but the side surface Ec of the battery block 10B (see FIG. 4)
  • the connection method between the FPC board 50 and each bus bar 40, 40a and the detection circuit 20 is the same as the connection method of FIG.
  • FIG. 15 is a schematic plan view illustrating a configuration example of the printed circuit board 21.
  • the printed circuit board 21 has a substantially rectangular shape and has one side and the other side.
  • FIG. 15A and FIG. 15B show one surface and the other surface of the printed circuit board 21, respectively.
  • the detection circuit 20 is mounted, and a plurality of connection terminals 22 and connectors 23 are formed. In addition, holes H are formed at the four corners of the printed circuit board 21.
  • the detection circuit 20 and the plurality of connection terminals 22 are electrically connected on the printed circuit board 21 by connection lines.
  • the detection circuit 20 and the connector 23 are electrically connected to each other on the printed circuit board 21 by a connection line.
  • a plurality of resistors R and a plurality of switching elements SW are mounted on the other surface of the printed circuit board 21.
  • the heat generated from the resistor R can be efficiently dissipated.
  • heat generated from the resistor R can be prevented from being conducted to the detection circuit 20. As a result, malfunction and deterioration due to heat of the detection circuit 20 can be prevented.
  • FIG. 16 is a side view showing a state where the printed circuit board 21 is attached to the battery block 10B of FIG.
  • a screw S is inserted into the hole H (see FIG. 15) of the printed circuit board 21.
  • the screw S is screwed into the screw hole 95 (see FIG. 7D) of the battery holder 90, whereby the printed circuit board 21 is attached to the side surface Ea of the battery block 10B.
  • the battery module 100 is configured by attaching the printed circuit board 21 and the two FPC boards 50 to the battery block 10B.
  • the printed circuit board 21 is attached so that the other surface (the surface on which the resistor R and the switching element SW are mounted) faces the battery block 10B.
  • a space for cooling air to flow in is provided between the other surface of the printed circuit board 21 and the battery block 10B.
  • a process of manufacturing the wiring member 70 by combining the FPC board 50 and the bus bars 40 and 40a is performed.
  • the FPC board 50 and the bus bars 40, 40a can be coupled by reflow soldering.
  • connection terminal 22 (see FIG. 15A) of the printed circuit board 21 provided with the detection circuit 20 and the terminal of the FPC board 50 can be coupled by pulse heat bonding.
  • a process of coupling the bus bars 40 and 40a of the wiring member 70 to the plus electrode 10a and the minus electrode 10b of the battery cell 10 of the battery module 100 is performed.
  • the hexagon bolt 14 (see FIG. 3) is screwed into the screw holes 9a and 9b (see FIG. 6) through the electrode connection holes 43 and 47 (see FIG. 12), so that the bus bars 40 and 40a and the positive electrode are connected. 10a and the negative electrode 10b are coupled.
  • a process of attaching the detection circuit 20 to the battery block 10B is performed.
  • the screw S (see FIG. 16) is screwed into the screw hole 95 (see FIG. 7D) through the hole H (see FIG. 15), whereby the printed circuit board on which the detection circuit 20 is mounted.
  • 21 (see FIG. 15) is attached to the battery holder 90 (see FIG. 7) of the battery block 10B.
  • a process that undergoes a heat treatment such as reflow soldering that connects the FPC board 50 and the bus bars 40 and 40a can be performed without the battery block 10B. Thereby, the deterioration of the performance by the heat processing of the battery cell 10 or a damage can be suppressed.
  • bus bars 40 and 40a are connected to the positive electrode 10a and the negative electrode 10b of the battery cell 10 and the FPC board 50 is connected to the detection circuit 20 after the process of changing the order of the above steps, and then the bus bars 40 and 40a are connected. A step of connecting to the FPC board 50 can also be performed.
  • the FPC board 50 and the bus bars 40, 40a are connected using a conductive adhesive or the like. This prevents the battery block 10B from being deteriorated by the heat of reflow soldering.
  • reflow soldering is simultaneously performed on the PTC element 60 and the conductor wire 52a (see FIG. 14). Furthermore, the PTC element 60, the bus bars 40 and 40a, and the conductor wire 52a are arranged on the same surface of the FPC board 50. In this case, the PTC element 60, the bus bars 40 and 40a, and the conductor wire 52a are coupled to the FPC board 50 by one reflow soldering. As a result, the assembly process of the battery module 100 can be reduced.
  • the conductor wires 51 and 52 can be arranged in a compact manner. Further, it is possible to prevent the wiring arrangement from becoming complicated. Furthermore, the dimensional error at the time of manufacture at the time of attaching FPC board 50 can be absorbed by the expansion-contraction action of a flexible material.
  • the conductor wires 51 and 52 are fixed to the flexible material, when one of the conductor wires 51 and 52 is disconnected, the disconnected portion can be prevented from coming into contact with the other of the conductor wires 51 and 52. . Thereby, a short circuit between the conductor wires 51 and 52 is prevented. As a result, the reliability of the battery module 100 is improved.
  • the plurality of battery cells 10 are aligned in one direction, and a side surface Ea facing the outer peripheral surface of the battery cell 10 positioned at one end in the alignment direction (X direction) of the plurality of battery cells 10 (see FIG. 3). ) Is disposed on the printed circuit board 21. Further, the positive electrode 10a and the negative electrode 10b of each battery cell 10 are arranged on the side surface Ec (see FIG. 3) and the side surface Ed (see FIG. 3) of the battery block 10B.
  • a small number (two in this example) of wiring members 70 are arranged along the alignment direction (X direction) of the plurality of battery cells 10 on the side surface Ec and the side surface Ed of the battery block 10B, and on the printed circuit board 21. By connecting, voltage detection of each battery cell 10 can be performed. Further, since the FPC board 50 can be formed in a strip shape, the yield at the time of manufacturing the FPC board 50 can be improved.
  • Wiring member 70 includes bus bars 40 and 40a and FPC board 50. Therefore, a plurality of battery cells 10 are connected in series by a simple operation of connecting the wiring member 70 to the positive electrode 10a and the negative electrode 10b of the battery cell 10 and the detection circuit 20, and the positive electrode 10a of the battery cell 10 and The negative electrode 10 b can be electrically connected to the conductor wire 51.
  • a battery ECU 101 in FIG. 2 calculates the charge amount of each battery cell 10 from the cell information of each battery cell 10.
  • the battery ECU 101 detects that the charge amount of a certain battery cell 10 is larger than the charge amount of another battery cell 10
  • the battery ECU 101 turns on the switching element SW connected to the battery cell 10 having a large charge amount. . Thereby, the electric charge charged in the battery cell 10 is discharged through the resistor R.
  • the battery ECU 101 turns off the switching element SW connected to the battery cell 10. In this way, the charge amounts of all the battery cells 10 are kept substantially equal. Thereby, the overcharge and overdischarge of some battery cells 10 can be prevented. As a result, deterioration of the battery cell 10 can be prevented.
  • FIG. 17 is a schematic plan view of an input / output harness 23H used for connection of the detection circuit 20 of FIG.
  • the input / output harness 23H includes an input connector 23a, a relay connector 23b, an output connector 23c, and harnesses 530 and 540.
  • the input connector 23a has a plurality of input terminals for receiving cell information.
  • the relay connector 23b has a plurality of input terminals for receiving cell information and a plurality of output terminals for transmitting cell information.
  • the output connector 23c has a plurality of output terminals for transmitting cell information.
  • the plurality of input terminals of the input connector 23a and the plurality of input terminals of the relay connector 23b are connected by the harness 530.
  • a plurality of output terminals of the relay connector 23 b and a plurality of output terminals of the output connector 23 c are connected by the harness 540.
  • the plurality of conductor wires 53 and 54 constituting the harnesses 530 and 540 are indicated by a plurality of solid lines and a plurality of dotted lines, respectively.
  • the relay connector 23b of the input / output harness 23H is connected to the connector 23 of the printed circuit board 21 of the battery module 100.
  • the input connector 23a of the input / output harness 23H of each battery module 100 is connected to the output connector 23c of the input / output harness 23H of another adjacent battery module 100 via the harness 560 (see FIG. 1).
  • the output connector 23c of the input / output harness 23H of each battery module 100 is connected to the input connector 23a of the input / output harness 23H of another adjacent battery module 100 via the harness 560 (see FIG. 1). .
  • the detection circuits 20 of the plurality of battery modules 100 are sequentially connected by the plurality of input / output harnesses 23H. In this way, each battery module 100 can communicate with other battery modules 100.
  • FIG. 18 is an explanatory diagram for connection of the battery block 10B. As shown in FIG. 18, in the battery module 100, two bus bars 501a and 501b are used as the power supply line 501 in FIG.
  • bus bar 501a One end of the bus bar 501a is connected to the plus electrode 10a (see FIG. 6) of the first battery cell 10 by the hexagon bolt 14 via the bus bar 40a.
  • bus bar 501b is connected to the negative electrode 10b (see FIG. 6) of the twelfth battery cell 10 by the hexagon bolt 14 via the bus bar 40a.
  • the other end portions of the two bus bars 501a and 501b are pulled out in the alignment direction (X direction) of the plurality of battery cells 10.
  • FIG. 19 is an external perspective view of the battery module 100 housed in the casing. As shown in FIG. 19, each battery module 100 is accommodated in a casing 110. The casing 110 prevents occurrence of a short circuit between the battery cells 10 when the battery module 100 is transported and connected.
  • the casing 110 has a rectangular parallelepiped shape including six side walls 110a, 110b, 110c, 110d, 110e, and 110f.
  • the inner surfaces of the side walls 110a to 110f of the casing 110 face the side surfaces Ea to Ef (see FIGS. 4 and 5) of the battery block 10B, respectively.
  • a rectangular opening 105 is formed in the vicinity of the side wall 110d so as to extend in the vertical direction.
  • the two bus bars 501 a and 501 b are drawn out of the casing 110 through the opening 105.
  • openings 106 and 107 into which the input connector 23a and the output connector 23c of the input / output harness 23H of FIG. 17 can be respectively fitted are formed at a substantially central portion of the side wall 110a of the casing 110.
  • the input connector 23a and the output connector 23c are fixed in a state of protruding to the outside of the casing 110 by being fitted into the openings 106 and 107, respectively.
  • bus bars 501a and 501b, the input connector 23a, and the output connector 23c are concentrated on one side wall (side wall 110a in this example) of the casing 110 to connect the wiring between the battery modules 100. Work efficiency is improved.
  • FIG. 20 is a schematic plan view showing an example of connection and wiring of a plurality of battery modules 100 in the battery system 500 according to the first embodiment.
  • the battery system 500 includes a plurality (six in this example) of battery modules 100, a battery ECU 101, a contactor 102, an HV (High Voltage) connector 510, and a service plug 520.
  • the respective battery modules 100 are referred to as battery modules 100A, 100B, 100C, 100D, 100E, and 100F.
  • Battery modules 100A to 100F, battery ECU 101, contactor 102, HV connector 510 and service plug 520 are housed in box-shaped casing 550.
  • Casing 550 has side walls 550a, 550b, 550c, and 550d.
  • the side walls 550a and 550c are parallel to each other, and the side walls 550b and 550d are parallel to each other and perpendicular to the side walls 550a and 550c.
  • the battery modules 100C, 100B, and 100A are arranged in this order so as to be arranged at predetermined intervals in a direction parallel to the side walls 550b and 550d. Further, the battery modules 100D, 100E, and 100F are arranged in this order so as to be arranged at a predetermined interval in a direction parallel to the side walls 550b and 550d.
  • battery modules 100A to 100F are attached to casing 550 such that side wall 110d (see FIG. 19) of casing 110 faces upward.
  • the plurality of battery cells 10 of the battery block 10B are arranged such that the axis is parallel to the vertical direction.
  • an operation of connecting wiring between the battery modules 100 described later can be performed from the upper surface of the casing 550. As a result, the work efficiency for connecting the wiring between the battery modules 100 is improved.
  • the bus bar 501b of the battery module 100A and the bus bar 501a of the battery module 100B are connected via the connecting bus bar 501c, and the bus bar 501b of the battery module 100B and the bus bar 501a of the battery module 100C are connected via the connecting bus bar 501c. Connected.
  • bus bar 501b of the battery module 100D and the bus bar 501a of the battery module 100E are connected via the connection bus bar 501c
  • bus bar 501b of the battery module 100E and the bus bar 501a of the battery module 100F are connected via the connection bus bar 501c. Is done.
  • the battery modules 100A to 100F are arranged so that the distances between the battery modules 100A and 100B, between the battery modules 100B and 100C, between the battery modules 100D and 100E, and between the battery modules 100E and 100F are reduced. Therefore, the connection bus bar 501c that connects the battery modules 100A and 100B, the battery modules 100B and 100C, the battery modules 100D and 100E, and the battery modules 100E and 100F can be shortened. Thereby, the power loss by the connection bus bar 501c can be suppressed.
  • a service plug 520 is inserted between the bus bar 501b of the battery module 100C and the bus bar 501a of the battery module 100D.
  • Service plug 520 includes a switch for electrically connecting or disconnecting battery modules 100C and 100D. When the service plug 520 is turned on, the battery modules 100A to 100F are connected in series.
  • the service plug 520 When the battery system 500 is maintained, the service plug 520 is turned off. In this case, no current flows through the battery modules 100A to 100F. Thereby, even if the user contacts the battery modules 100A to 100F, the user can be prevented from receiving an electric shock.
  • the bus bar 501a of the battery module 100A and the bus bar 501b of the battery module 100F are connected to the HV connector 510 via the contactor 102.
  • the HV connector 510 is connected to a load such as a motor of an electric vehicle. As a result, the power of battery modules 100A to 100F connected in series can be supplied to a motor or the like.
  • the output connector 23c (see FIG. 19) of the battery module 100A is connected to the input connector 23a (see FIG. 19) of the battery module 100B via the harness 560.
  • the output connector 23c of the battery module 100B is connected to the input connector 23a of the battery module 100C via a harness 560.
  • the output connector 23c of the battery module 100C is connected to the input connector 23a of the battery module 100D via the harness 560.
  • the output connector 23c of the battery module 100D is connected to the input connector 23a of the battery module 100E via the harness 560.
  • the output connector 23c of the battery module 100E is connected to the input connector 23a of the battery module 100F via a harness 560.
  • the input connector 23a of the battery module 100A and the output connector 23c of the battery module 100F are connected to the battery ECU 101 via the harness 560, respectively. Thereby, the cell information of the battery modules 100A to 100F is given to the battery ECU 101.
  • the battery block 10B is configured by the plurality of cylindrical battery cells 10 and the battery holder 90.
  • An FPC board 50 is provided in the battery block 10B.
  • the positive electrode 10 a or the negative electrode 10 b of each battery cell 10 and the detection circuit 20 are electrically connected by the conductor wire 51 of the FPC board 50.
  • the battery module 100 can be reduced in size, and the complexity of the work of wiring the conductor wire 51 can be reduced.
  • the possibility of disconnection due to the bending of the wiring can be suppressed as compared with the case where a conventional voltage detection cable is used for the voltage detection line, the reliability can be improved.
  • the voltage detection cable bent due to the influence of vibration during movement may be disconnected due to vibration or resonance. According to this embodiment, the voltage detection cable The possibility of disconnection is sufficiently reduced.
  • one of the positive electrode 10a and the negative electrode 10b of each battery cell 10 is arranged on the side surface Ec of the battery block 10B, and the other of the positive electrode 10a and the negative electrode 10b of each battery cell 10 is the side surface Ed of the battery block 10B.
  • the printed circuit board 21 on which the detection circuit 20 is mounted is disposed on the side surface Ea of the battery block 10B.
  • the FPC board 50 extends from the side surface Ea of the battery block 10B to the side surface Ec and the side surface Ed.
  • the detection circuit 20 provided on the side surface Ea of the battery block 10B is connected to the plus electrode 10a and the minus electrode 10b of the plurality of battery cells 10 arranged on the side surfaces Ec and Ed by the FPC board 50.
  • the detection circuit 20 provided on the side surface Ea of the battery block 10B is connected to the plus electrode 10a and the minus electrode 10b of the plurality of battery cells 10 arranged on the side surfaces Ec and Ed by the FPC board 50.
  • Second Embodiment A battery module according to a second embodiment will be described while referring to differences from the battery module 100 according to the first embodiment.
  • FIG. 21 is a plan view of the battery block 10B in the battery module 100 according to the second embodiment
  • FIG. 22 is a side view of one of the battery blocks 10B in FIG. 21,
  • FIG. 23 is a battery block 10B in FIG. FIG.
  • a plurality of upper battery cells 10 and a plurality of lower battery cells 10 in a battery block 10B are connected to each other. Are displaced in the alignment direction (X direction).
  • the amount of displacement between the plurality of upper battery cells 10 and the plurality of lower battery cells 10 in the alignment direction (X direction) of the plurality of battery cells 10 is half of the distance between the axial centers of adjacent battery cells 10.
  • battery holders 90A and 90B are used instead of the pair of battery holders 90 in FIG.
  • the battery holders 90A and 90B are different from the battery holder 90 of FIG. 7 in the following points.
  • FIG. 24A is a plan view of the outer surface of the battery holder 90A of FIG. 21,
  • FIG. 24B is a plan view of the inner surface of the battery holder 90A of FIG. 21, and
  • FIG. 24C is a plan view of FIG. )
  • FIG. 24B is a cross-sectional view taken along the line BB of the battery holder 90A in FIG. 24B, and
  • FIG. 24D is a side view of the battery holder 90A in FIG.
  • the upper hole portions 91 and the lower hole portions 91 are parallel to the long side of the battery holder 90A.
  • the plurality of upper protrusions 92 and the plurality of lower protrusions 92 are formed to be displaced in one direction parallel to the long side of the battery holder 90A.
  • the plurality of upper hole portions 91 and the plurality of lower hole portions 91 are formed to be displaced from each other in the direction opposite to the displacement direction of the plurality of hole portions 91 of the battery holder 90A.
  • the plurality of upper protrusions 92 and the plurality of lower protrusions 92 are formed to be displaced from each other in the direction opposite to the displacement direction of the plurality of holes 91 of the battery holder 90A.
  • the amount of displacement between the plurality of upper holes 91 and the plurality of lower holes 91 in the direction parallel to the long sides of the battery holders 90A and 90B is half of the distance between the centers of the adjacent holes 91.
  • the amount of displacement between the plurality of upper projections 92 and the plurality of lower projections 92 in the direction parallel to the long sides of the battery holders 90A and 90B is the distance between the centers of adjacent projections 92. Set to half.
  • the plurality of battery cells 10 and the battery holders 90A, 90B are integrally fixed in the same manner as the battery block 10B of the first embodiment. In this way, the battery block 10B is configured.
  • the plurality of upper battery cells 10 and the plurality of lower battery cells 10 in the battery block 10B are aligned with each other. Displaced in the (X direction). Therefore, it becomes possible to arrange a part of the upper battery cell 10 in the gap between the adjacent battery cells 10 in the lower stage. Thereby, the size of the battery block 10B in the vertical direction (Z direction) can be reduced.
  • the size in the alignment direction (X direction) of the plurality of battery cells 10 can be reduced as compared with the battery module 100 according to the second embodiment. .
  • the space V (see FIGS. 22 and 23) is provided outside the battery cell 10 at one end of the upper stage and outside the battery cell 10 at the other end of the lower stage. See).
  • Various parts can be arranged in these spaces V.
  • FIG. 25 is an external perspective view of the battery module 100 according to the third embodiment
  • FIG. 26 is a side view of the battery module 100 of FIG. 25
  • FIG. 27 is a plan view of the battery module 100 of FIG. .
  • the battery module 100 according to the present embodiment is different from the battery module 100 according to the first embodiment in the following points.
  • the printed circuit board 21 on which the detection circuit 20 is mounted is disposed on the side surface Ee of the battery block 10B. Further, T-shaped FPC boards 50 are provided on the side surfaces Ec and Ed, respectively.
  • the FPC board 50 on the side surface Ed is bent at a right angle toward the side surface Ee at the upper end of the side surface Ed of the battery block 10B and connected to the printed circuit board 21. Further, as shown in FIG. 26, the FPC board 50 on the side surface Ec is folded back so as to be parallel to the long side of the battery holder 90 in the vicinity of the upper end portion of the side surface Ec of the battery block 10B, and then upward (Z The upper end portion is bent at a right angle toward the side surface Ee and connected to the printed circuit board 21.
  • a screw S is inserted into the hole H (see FIG. 15) of the printed circuit board 21.
  • the screw S is screwed into the screw hole of the battery holder 90, whereby the printed circuit board 21 is attached to the side surface Ee of the battery block 10B.
  • the battery module 100 is configured by attaching the printed circuit board 21 and the two FPC boards 50 to the battery block 10B.
  • the area of the side surface Ee of the battery block 10B is larger than the area of the side surface Ea. Therefore, the printed circuit board 21 larger than the printed circuit board 21 of the first embodiment can be disposed on the side surface Ee of the battery block 10B.
  • the battery module 100 can be effectively used when a larger number of battery cells 10 are provided.
  • FIG. 28 is an external perspective view showing the wiring member 70 of the battery module 100 according to the fourth embodiment.
  • the wiring member 70 in the present embodiment is different from the wiring member 70 in the third embodiment in the following points.
  • the wiring member 70 in the present embodiment includes two FPC boards 50F and two rigid boards 50R instead of the two FPC boards 50 of FIG.
  • One rigid board 50R is arranged so as to extend in the alignment direction (X direction) of the plurality of battery cells 10 at the center on the side surface Ed (see FIG. 25) of the battery block 10B.
  • the rigid board 50R is connected in common to the plurality of bus bars 40, 40a.
  • One FPC board 50F is arranged so as to extend upward (Z direction) from the central portion of one rigid board 50R.
  • the FPC board 50F is bent at right angles toward the side surface Ee (see FIG. 25) at the upper end of the side surface Ed of the battery block 10B, and is connected to the printed circuit board 21 (see FIG. 25).
  • the other rigid board 50R is disposed so as to extend in the alignment direction (X direction) of the plurality of battery cells 10 at the center on the side surface Ec (see FIG. 25) of the battery block 10B.
  • the rigid substrate 50R is connected to the plurality of bus bars 40 in common.
  • the other FPC board 50F is arranged so as to extend upward (Z direction) from the central portion of the other rigid board 50R.
  • the FPC board 50F is folded back in the vicinity of the upper end of the side surface Ec of the battery block 10B so as to be parallel to the long side of the battery holder 90, and then folded upward (Z direction). It is bent at a right angle upward and connected to the printed circuit board 21 (see FIG. 25).
  • the rigid substrate 50R can be easily multi-layered compared to the FPC substrate. By making the rigid substrate 50R multilayer, a large number of conductor lines 51 and 52 and the PTC element 60 can be provided on the rigid substrate 50R. In this case, cell information of a larger number of battery cells 10 can be detected. Therefore, the battery module 100 according to the present embodiment can be effectively used when a larger number of battery cells 10 are provided.
  • FIG. 29 is an external perspective view of the battery module 100 according to the fifth embodiment. As shown in FIG. 29, each battery module 100 is accommodated in a casing 110. In battery module 100 according to the present embodiment, casing 110 differs from casing 110 in FIG. 19 in the following points.
  • a plurality of rectangular slits 108 extending in the axial direction (Y direction) of the plurality of battery cells 10 are arranged in the side wall 110e of the casing 110 in the alignment direction (X direction) of the plurality of battery cells 10. It is formed.
  • a plurality of rectangular slits 109 extending in the axial direction (Y direction) of the plurality of battery cells 10 are formed on the side wall 110f of the casing 110 so as to be aligned in the alignment direction (X direction) of the plurality of battery cells 10. . Cooling air can flow into the casing 110 through the slits 108 and 109 and flow out to the outside.
  • FIG. 30 is a plan view of a battery system 500 according to the fifth embodiment.
  • the battery system 500 further includes two blowers 581.
  • One blower 581 is attached to the side wall 550a of the casing 550 so as to face the side wall 110f of the battery module 100C.
  • the other blower 581 is attached to the side wall 550a of the casing 550 so as to face the side wall 110e of the battery module 100D.
  • exhaust ports 582 are formed in the side wall 550c of the casing 550 so as to face the side wall 110e of the battery module 100A and the side wall 110f of the battery module 100F, respectively.
  • the cooling air passes through the slits 109 and 108 (see FIG. 29) of the battery modules 100C to 100A and the slits 108 and 109 (see FIG. 29) of the battery modules 100D to 100F, and the casing 110 of the battery modules 100C to 100A and 100D to 100F. It passes through the inside (see FIG. 29) and is discharged from the exhaust port 582. As a result, the battery block 10B (see FIG. 18) of each of the battery modules 100C to 100A, 100D to 100F is cooled.
  • the printed circuit board 21 on which the cooling air is mounted on the side surface Ec and the side surface Ed of the battery block 10B in FIG. 9 and the detection circuit 20 and the like provided on the side surface Ea are mounted. It can pass between the plurality of battery cells 10 in the battery block 10B without being obstructed by (see FIG. 15). As a result, the plurality of battery cells 10 are efficiently cooled.
  • the printed circuit boards 21 of the battery modules 100A to 100F are arranged in parallel to the flow of the cooling air. Therefore, the heat generated from the detection circuit 20 and the resistor R mounted on the printed circuit board 21 is efficiently dissipated by the cooling air. Thereby, the deterioration of the detection circuit 20 and the resistance R is suppressed. Furthermore, the accuracy of the detection circuit 20 can be prevented from being lowered, and the reliability of the detection circuit 20 can be improved.
  • the electric vehicle according to the present embodiment includes the battery system according to any one of the first to fifth embodiments.
  • an electric vehicle will be described as an example of an electric vehicle.
  • FIG. 31 is a block diagram illustrating a configuration of an electric vehicle including the battery system 500.
  • electric vehicle 600 according to the present embodiment includes a vehicle body 610.
  • the vehicle body 610 is provided with a battery system 500, a main control unit 300, a power conversion unit 601, a motor 602, driving wheels 603, an accelerator device 604, a brake device 605, and a rotation speed sensor 606.
  • power conversion unit 601 includes an inverter circuit.
  • the battery system 500 is connected to the motor 602 via the power converter 601 and to the main controller 300.
  • an accelerator device 604, a brake device 605, and a rotation speed sensor 606 are connected to the main control unit 300.
  • the main control unit 300 includes, for example, a CPU and a memory, or a microcomputer.
  • the accelerator device 604 includes an accelerator pedal 604a included in the electric automobile 600 and an accelerator detection unit 604b that detects an operation amount (depression amount) of the accelerator pedal 604a.
  • the accelerator detector 604b detects the operation amount of the accelerator pedal 604a based on a state where the driver is not operated. The detected operation amount of the accelerator pedal 604a is given to the main controller 300.
  • the brake device 605 includes a brake pedal 605a included in the electric automobile 600 and a brake detection unit 605b that detects an operation amount (depression amount) of the brake pedal 605a by the driver.
  • the operation amount is detected by the brake detection unit 605b.
  • the detected operation amount of the brake pedal 605a is given to the main control unit 300.
  • Rotational speed sensor 606 detects the rotational speed of motor 602. The detected rotation speed is given to the main control unit 300.
  • the main controller 300 is given the voltage, current and temperature of the battery module 100, the amount of operation of the accelerator pedal 604a, the amount of operation of the brake pedal 605a, and the rotational speed of the motor 602.
  • the main control unit 300 performs charge / discharge control of the battery module 100 and power conversion control of the power conversion unit 601 based on these pieces of information.
  • the battery module 100 supplies power to the power conversion unit 601.
  • the main control unit 300 calculates a rotational force (command torque) to be transmitted to the drive wheels 603 based on the given operation amount of the accelerator pedal 604a, and outputs a control signal based on the command torque to the power conversion unit 601. To give.
  • the power conversion unit 601 that has received the control signal converts the power supplied from the battery system 500 into power (drive power) necessary for driving the drive wheels 603. As a result, the driving power converted by the power converter 601 is supplied to the motor 602, and the rotational force of the motor 602 based on the driving power is transmitted to the driving wheels 603.
  • the motor 602 functions as a power generator.
  • the power conversion unit 601 converts the regenerative power generated by the motor 602 into power suitable for charging the battery module 100 and supplies the power to the battery module 100. Thereby, the battery module 100 is charged.
  • the electric vehicle 600 according to the present embodiment is provided with the battery system 500 according to any one of the first to fifth embodiments.
  • the complexity of wiring of the voltage detection lines is improved. Therefore, maintenance of the electric vehicle 600 is facilitated.
  • the electric automobile 600 has been described as an example of the electric vehicle that is a moving body.
  • the moving body that drives the driving wheels 603 using the motor 602 as a driving source together with the engine that is an internal combustion engine
  • the present invention can be applied to a hybrid vehicle.
  • the present invention can be applied to a ship that drives a screw using a motor as a drive source.
  • the battery system 500 may be mounted on another moving body such as an aircraft or a walking robot.
  • a ship equipped with the battery system 500 includes, for example, a hull instead of the vehicle body 610 in FIG. 31, a screw instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605.
  • a deceleration input unit is provided.
  • the driver operates the acceleration input unit instead of the accelerator device 604 when accelerating the hull, and operates the deceleration input unit instead of the brake device 605 when decelerating the hull.
  • the motor 602 is driven by the electric power of the battery system 500, the propulsive force is generated by transmitting the rotational force of the motor 602 to the screw, and the hull moves.
  • an aircraft equipped with the battery system 500 includes, for example, a fuselage instead of the vehicle body 610 in FIG. 31, a propeller instead of the drive wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake
  • a deceleration input unit is provided instead of the device 605.
  • a walking robot equipped with the battery system 500 includes, for example, a torso instead of the vehicle body 610 in FIG. 31, a foot instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605.
  • a deceleration input unit is provided instead of.
  • the electric power from the battery system 500 is converted into power by the power source (motor), and the moving main body (the vehicle body, the hull, the fuselage, or the fuselage) is converted by the power. Moving.
  • FIG. 32 is a block diagram illustrating a configuration of a power supply device according to the seventh embodiment.
  • the power supply device 700 includes a power storage device 710 and a power conversion device 720.
  • the power storage device 710 includes a battery system group 711 and a controller 712.
  • the battery system group 711 includes a plurality of battery systems 500.
  • Each battery system 500 includes a plurality of battery modules 100 of FIG. 3 connected in series.
  • the plurality of battery systems 500 may be connected in parallel with each other, or may be connected in series with each other.
  • battery ECU 101 (FIG. 30) of each battery system 500 is connected to controller 712.
  • the HV connector 510 (FIG. 30) of each battery system 500 is connected to a DC / DC converter 721 of the power conversion device 720 described later.
  • the controller 712 includes, for example, a CPU and a memory, or a microcomputer.
  • the controller 712 is connected to the detection circuit 20 of each battery module 100 (FIG. 3) included in each battery system 500.
  • the voltage, current, and temperature detected by the detection circuit 20 of each battery module 100 are supplied to the controller 712.
  • the controller 712 calculates the charge amount of each battery cell 10 (FIG. 3) based on the voltage, current, and temperature given from each detection circuit 20, and controls the power conversion device 720 based on the calculated charge amount. .
  • the controller 712 performs control described later as control related to discharging or charging of the battery module 100 of the battery system 500.
  • the power converter 720 includes a DC / DC (DC / DC) converter 721 and a DC / AC (DC / AC) inverter 722.
  • the DC / DC converter 721 has input / output terminals 721a and 721b, and the DC / AC inverter 722 has input / output terminals 722a and 722b.
  • the input / output terminal 721 a of the DC / DC converter 721 is connected to the battery system group 711 of the power storage device 710.
  • the input / output terminal 721b of the DC / DC converter 721 and the input / output terminal 722a of the DC / AC inverter 722 are connected to each other and to the power output unit PU1.
  • the input / output terminal 722b of the DC / AC inverter 722 is connected to the power output unit PU2 and to another power system.
  • the power output units PU1, PU2 include, for example, outlets. For example, various loads are connected to the power output units PU1 and PU2.
  • Other power systems include, for example, commercial power sources or solar cells. This is an external example in which power output units PU1, PU2 and another power system are connected to a power supply device.
  • the solar cell is connected to the input / output terminal 721b of the DC / DC converter 721.
  • the AC output unit of the power conditioner of the solar power generation system is connected to the input / output terminal 722 b of the DC / AC inverter 722.
  • the battery system group 711 is discharged and charged.
  • DC / DC direct current / direct current
  • DC / AC direct current / alternating current
  • the power supply device 700 When the power supply device 700 is used as a DC power supply, the power DC / DC converted by the DC / DC converter 721 is supplied to the power output unit PU1. When the power supply device 700 is used as an AC power supply, the power that is DC / AC converted by the DC / AC inverter 722 is supplied to the power output unit PU2. Moreover, the electric power converted into alternating current by the DC / AC inverter 722 can also be supplied to another electric power system.
  • the controller 712 determines whether to stop discharging the battery system group 711 based on the calculated charge amount or whether to limit the discharge current (or discharge power),
  • the power conversion device 720 is controlled based on the determination result. Specifically, when the charge amount of any one of the plurality of battery cells 10 (FIG. 3) included in the battery system group 711 becomes smaller than a predetermined threshold value, the controller 712 The DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the discharge of the system group 711 is stopped or the discharge current (or discharge power) is limited. Thereby, overdischarge of each battery cell 10 is prevented.
  • the controller 712 determines whether to stop discharging the battery system group 711 based on an external instruction or whether to limit the discharge current (or discharge power), and determines the power conversion device 720 based on the determination result. You may control.
  • the discharge current (or discharge power) is limited by limiting the voltage of the battery system group 711 to a constant reference voltage.
  • the reference voltage is set by the controller 712 based on the charge amount of the battery cell 10 or an external instruction.
  • the controller 712 determines whether to stop charging the battery system group 711 or limit the charging current (or charging power) based on the calculated charge amount,
  • the power conversion device 720 is controlled based on the determination result. Specifically, when the charge amount of any one of the plurality of battery cells 10 (FIG. 3) included in the battery system group 711 is larger than a predetermined threshold, the controller 712 The DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the charging of the system group 711 is stopped or the charging current (or charging power) is limited. Thereby, overcharge of each battery cell 10 is prevented.
  • the controller 712 determines whether to stop the charging of the battery system group 711 based on an external instruction or whether to limit the charging current (or charging power), and determines the power conversion device 720 based on the determination result. You may control.
  • the charging current (or charging power) is limited by limiting the voltage of the battery system group 711 to a constant reference voltage.
  • the reference voltage is set by the controller 712 based on the charge amount of the battery cell 10 or an external instruction.
  • the power conversion device 720 may include only one of the DC / DC converter 721 and the DC / AC inverter 722 as long as power can be supplied between the power supply device 700 and the outside. Further, the power conversion device 720 may not be provided as long as power can be supplied between the power supply device 700 and the outside.
  • FIG. 33 is a perspective view of a rack that houses a plurality of battery systems 500.
  • the rack 750 includes side portions 751 and 752, a top surface portion 753, a bottom surface portion 754, a back surface portion 755, and a plurality of partition portions 756.
  • the side surface portions 751 and 752 extend vertically in parallel with each other.
  • the upper surface portion 753 extends horizontally so as to connect the upper end portions of the side surface portions 751 and 752 to each other, and the bottom surface portion 754 extends horizontally so as to connect the lower end portions of the side surface portions 751 and 752 to each other.
  • a back surface portion 755 extends vertically up and down perpendicular to the side surface portions 751 and 752 along one side of the side surface portion 751 and one side of the side surface portion 752.
  • a plurality of partition portions 756 are provided in parallel to the top surface portion 753 and the bottom surface portion 754 at equal intervals.
  • a plurality of storage spaces 757 are provided between the top surface portion 753, the plurality of partition portions 756, and the bottom surface portion 754.
  • Each accommodation space 757 opens on the front surface of the rack 750 (the surface opposite to the back surface portion 755).
  • the battery system 500 is housed in each housing space 757 from the front surface of the rack 750.
  • FIG. 34 is a schematic plan view showing a state where the battery system 500 is housed in the housing space 757 of the rack 750 of FIG. As shown in FIG. 34, the battery system 500 is accommodated in the accommodation space 757 of the rack 750 so that the side wall 550 d of the battery system 500 faces the back surface portion 755 of the rack 750. Instead of two blowers 581 (FIG. 30), two vent holes 583 are provided on the side wall 550a of battery system 500 in the present embodiment.
  • the rear surface portion 755 of the rack 750 is provided with a communication connection portion 763, an on / off switching portion 764 and a power connection portion 765 for each storage space 757.
  • Communication connection unit 763 is provided at a position overlapping battery ECU 101 of battery system 500.
  • the on / off switching unit 764 is provided at a position overlapping the service plug 520 of the battery system 500.
  • the power connection unit 765 is provided at a position overlapping the HV connector 510 of the battery system 500.
  • the communication connection unit 763 is electrically connected to the controller 712.
  • the power connection unit 765 is electrically connected to the power conversion device 720.
  • Two cooling fans 761 are provided for each storage space 757 on the side surface 752 of the rack 750.
  • the two cooling fans 761 are provided at positions overlapping the two vent holes 583 of the side wall 550a of the battery system 500, respectively.
  • Two exhaust ports 762 are provided in the side surface portion 751 of the rack 750 for each storage space 757.
  • the two exhaust ports 762 are provided at positions overlapping the two exhaust ports 582 of the side wall 550c of the battery system 500, respectively.
  • the battery ECU 101 of the battery system 500 and the communication connection unit 763 of the rack 750 are connected. Thereby, battery ECU101 and controller 712 are connected so that communication is possible.
  • the service plug 520 of the battery system 500 and the on / off switching unit 764 of the rack 750 are connected. As a result, the service plug 520 is turned on. As a result, the battery modules 100A to 100F of the battery system 500 are connected in series.
  • the HV connector 510 of the battery system 500 is connected to the power connection portion 765 of the rack 750. Thereby, the HV connector 510 is connected to the power converter 720. As a result, power is supplied to the battery modules 100A to 100F of the battery system 500.
  • the service plug 520 is turned on and the HV connector 510 is connected to the power converter 720.
  • the service plug 520 is turned off and HV connector 510 is not connected to power converter 720. Therefore, when the battery system 500 is not accommodated in the accommodation space 757 of the rack 750, the current path between the battery modules 100A to 100F is reliably interrupted. Therefore, the maintenance work of the battery system 500 can be performed easily and safely.
  • the cooling gas is introduced into the casing 550 through the vent 583 by the cooling fan 761.
  • the heat of each battery cell 10 (FIG. 3) of the battery modules 100A to 100F is absorbed by the cooling gas in the casing 550.
  • the cooling gas that has absorbed heat in the casing 550 is discharged through the exhaust port 582 of the casing 550 and the exhaust port 762 of the rack 750. In this way, the battery cells 10 of the battery modules 100A to 100F are cooled.
  • each battery system 500 may be provided with a blower 581.
  • all the battery systems 500 are accommodated in one rack 750, but all the battery systems 500 may be accommodated in a plurality of racks 750. Further, each battery system 500 may be individually installed so as to be connected to the controller 712 and the power conversion device 720.
  • the power supply apparatus 700 is provided with the battery system 500 according to any one of the first to fifth embodiments.
  • the complexity of wiring of the voltage detection lines is improved. Therefore, maintenance of the power supply device 700 is facilitated.
  • the cylindrical battery cell 10 is used as the cylindrical battery cell.
  • the present invention is not limited to this.
  • a columnar battery cell having an elliptical, oval, or polygonal cross section may be used, or a columnar battery cell having another shape may be used.
  • the battery module using these battery cells has an effect of reducing the complexity of the wiring of the voltage detection lines, like the battery module 100 using the cylindrical battery cell 10.
  • the cylindrical battery cell 10 has high strength against the internal pressure. Therefore, when the cylindrical battery cell 10 is used, the metal package of the battery cell can be reduced in weight compared to the case where other columnar battery cells are used. As a result, when the cylindrical battery cell 10 is used in a battery module and a battery system that require a large number of battery cells, the battery module and the battery system can be reduced in weight.
  • the moving body By mounting such a battery system on a moving body such as an electric vehicle using the battery system as a drive source, the moving body is reduced in weight. In reducing the weight of the moving body, the contribution of the weight reduction of the battery system is great.
  • the positive electrode 10a is formed on one end face of the cylindrical battery cell 10 and the negative electrode 10b is formed on the other end face.
  • the plus electrode 10 a and the minus electrode 10 b may be formed on the same end surface of the battery cell 10.
  • the voltage detection of each battery cell 10 can be performed by one FPC board 50. it can.
  • the six battery cells 10 are arranged in the upper stage and the six battery cells 10 are arranged in the lower stage.
  • the present invention is not limited to this. .
  • a larger number of battery cells 10 may be arranged in the battery block 10B, or a smaller number of battery cells 10 may be arranged.
  • the plurality of battery cells 10 may be arranged in three or more stages, or may be arranged in one stage.
  • the plus electrodes 10a and minus electrodes 10b of the plurality of battery cells 10 and the conductor wires 51 provided on the FPC board 50 are connected via the bus bars 40, 40a.
  • the positive electrodes 10a and the negative electrodes 10b of the plurality of battery cells 10 and the conductor wires 51 provided on the FPC board 50 may be directly connected without passing through the bus bars 40, 40a, or the plurality of battery cells 10
  • the plus electrode 10a and the minus electrode 10b may be connected to the conductor line 51 provided on the FPC board 50 via another conductor line or a conductor material.
  • the battery module 100 according to the above embodiment is accommodated in the casing 110 in order to protect the battery cell 10 from the outside, but is not limited thereto.
  • the battery module 100 may not be accommodated in the casing 110.
  • the battery module 100 is housed and fixed in the casing 550 of the battery system 500, components such as the battery cell 10, the detection circuit 20, and the FPC board 50 can be protected from the outside.
  • the battery system 500 includes the six battery modules 100, the present invention is not limited to this.
  • the battery system 500 may include seven or more battery modules 100, or may include five or less battery modules 100.
  • a moving body such as the electric automobile 600 or a ship according to the above embodiment is an electric device including the battery module 100 (battery system 500) and the motor 602 as a load.
  • the electric device according to the present invention is not limited to a moving body such as the electric automobile 600 and a ship, and may be a washing machine, a refrigerator, an air conditioner, or the like.
  • a washing machine is an electric device including a motor as a load
  • a refrigerator or an air conditioner is an electric device including a compressor as a load.
  • a rigid printed circuit board may be used instead of the FPC board 50.
  • the wiring member 70 since the wiring member 70 has rigidity, handling of the wiring member 70 and attachment to the battery block 10B are facilitated.
  • the battery cell 10 is an example of a battery cell
  • the battery block 10B is an example of a battery block
  • the detection circuit 20 is an example of a voltage detection circuit.
  • the FPC board 50 is an example of a wiring member
  • the FPC board 50F and the rigid board 50R are other examples of the wiring member
  • the example wiring member 70 is still another example of the wiring member.
  • the FPC boards 50 and 50F are examples of flexible printed circuit boards
  • the positive electrode 10a is an example of a positive terminal
  • the negative electrode 10b is an example of a negative terminal
  • the conductor line 51 is an example of a voltage detection line
  • a battery Module 100 and battery modules 100A to 100F are examples of battery modules.
  • the side surface Ec is an example of the first surface
  • the side surface Ed is an example of the third surface
  • the side surface Ea is an example of the second surface
  • the side surface Ee is an example of the fourth surface
  • the side surface Ef is an example of the fifth surface.
  • the side surface Ee is an example of the second surface
  • the side surface Ea is an example of the fourth surface
  • the side surface Eb is an example of the fifth surface.
  • the casing 110 is an example of a housing
  • the side wall 110e is an example of the housing portion corresponding to the fourth surface of the battery block
  • the side wall 110f is an example of the housing portion corresponding to the fifth surface of the battery block.
  • the slits 109 of the battery modules 100A to 100C and the slits 108 of the battery modules 100D to 100F are examples of inlets
  • the slits 108 of the battery modules 100A to 100C and the slits 109 of battery modules 100D to 100F are examples of outlets.
  • the bus bar 40 is an example of a connection member
  • the battery system 500 is an example of a battery system
  • the motor 602 is an example of a motor or a power source
  • the driving wheels 603 are examples of driving wheels
  • the electric automobile 600 is an electric vehicle. It is an example.
  • the vehicle body 610, the hull, the fuselage, or the fuselage are examples of the moving body
  • the motor 602 is an example of the power source
  • the electric automobile 600, the ship, the aircraft, or the walking robot is an example of the moving body.
  • the controller 712 is an example of a control unit
  • the power storage device 710 is an example of a power storage device
  • the power conversion device 720 is an example of a power conversion device
  • the power supply device 700 is an example of a power supply device.
  • a motor 602 or a compressor is an example of a load
  • an electric vehicle 600, a ship, an aircraft, a walking robot, a washing machine, a refrigerator, or an air conditioner is an example of an electric device.
  • the present invention can be effectively used for various mobile objects using electric power as a drive source, power storage devices, mobile devices, and the like.

Abstract

The disclosed battery module includes a battery block, a printed circuit board, and two long FPC boards. The printed circuit board has a detection circuit mounted thereon. The battery block is constructed of a plurality of cylindrical battery cells and a pair of battery holders. The printed circuit board is provided on one of the side surfaces of the battery block. One of the FPC boards is provided so as to extend from said side surface onto another side surface of the battery block. The other FPC board is provided so as to extend from said side surface onto another side surface of the battery block.

Description

バッテリモジュール、それを備えたバッテリシステム、電動車両、移動体、電力貯蔵装置、電源装置および電気機器Battery module, battery system including the same, electric vehicle, moving object, power storage device, power supply device, and electric device
 本発明は、バッテリモジュール、それを備えたバッテリシステム、電動車両、移動体、電力貯蔵装置、電源装置および電気機器に関する。 The present invention relates to a battery module, a battery system including the battery module, an electric vehicle, a moving body, a power storage device, a power supply device, and an electric device.
 電動自動車等の移動体の駆動源として用いられるバッテリシステムにおいては、所定の駆動力を得るために、充放電が可能な複数のバッテリモジュールが設けられる。各バッテリモジュールは、複数の電池(バッテリセル)が例えば直列に接続された構成を有する。 In a battery system used as a driving source for a moving body such as an electric automobile, a plurality of battery modules that can be charged and discharged are provided in order to obtain a predetermined driving force. Each battery module has a configuration in which a plurality of batteries (battery cells) are connected in series, for example.
 特許文献1には、複数の円柱状の単電池を含む電池モジュールが記載されている。電池モジュールにおいては、外装ケース内に複数の組電池群が収容されている。各組電池群は6個の組電池により構成されている。各組電池は直列に接続された4個の円柱状の単電池を含む。各組電池に電圧出力用のコネクタが設けられる。また、外装ケースに制御基板が設けられる。複数の組電池の電圧出力用のコネクタと制御基板の電圧入力用のコネクタとが複数の電圧検出ケーブルにより接続される。
特開2006-099997号公報
Patent Document 1 describes a battery module including a plurality of cylindrical unit cells. In the battery module, a plurality of assembled battery groups are accommodated in an exterior case. Each assembled battery group is composed of six assembled batteries. Each assembled battery includes four cylindrical unit cells connected in series. Each assembled battery is provided with a voltage output connector. In addition, a control board is provided in the outer case. The voltage output connectors of the plurality of assembled batteries and the voltage input connector of the control board are connected by a plurality of voltage detection cables.
JP 2006-099997 A
 上記の特許文献1の電池モジュールの構成によると、外装ケース内には多数の電圧検出ケーブルが配置されることになる。そのため、配線が複雑化するとともに、電池モジュールを小型化することが困難になる。 According to the configuration of the battery module described in Patent Document 1, a large number of voltage detection cables are arranged in the outer case. Therefore, the wiring becomes complicated and it is difficult to reduce the size of the battery module.
 本発明の目的は、配線を単純化するとともに小型化が可能なバッテリモジュール、それを備えたバッテリシステム、電動車両、移動体、電力貯蔵装置、電源装置および電気機器を提供することである。
An object of the present invention is to provide a battery module that simplifies wiring and can be miniaturized, a battery system including the battery module, an electric vehicle, a moving body, a power storage device, a power supply device, and an electric device.
 (1)本発明の一局面に従うバッテリモジュールは、複数の筒型のバッテリセルにより構成されるバッテリブロックと、各バッテリセルの端子間電圧を検出するための電圧検出回路と、バッテリブロックに設けられた配線部材とを備え、配線部材は、各バッテリセルの正極端子または負極端子と電圧検出回路とを電気的に接続するための電圧検出線を有するものである。 (1) A battery module according to an aspect of the present invention is provided in a battery block including a plurality of cylindrical battery cells, a voltage detection circuit for detecting a voltage between terminals of each battery cell, and the battery block. The wiring member has a voltage detection line for electrically connecting the positive electrode terminal or the negative electrode terminal of each battery cell and the voltage detection circuit.
 このバッテリモジュールでは、複数の筒型のバッテリセルによりバッテリブロックが構成される。バッテリブロックには、配線部材が設けられる。配線部材の電圧検出線により各バッテリセルの正極端子または負極端子と電圧検出回路とが電気的に接続される。 In this battery module, a battery block is composed of a plurality of cylindrical battery cells. The battery block is provided with a wiring member. The positive or negative terminal of each battery cell and the voltage detection circuit are electrically connected by the voltage detection line of the wiring member.
 この場合、複数のバッテリセルと電圧検出回路とを接続するために煩雑な配線作業を行う必要がないので、電圧検出線の配線の煩雑さが改善される。 In this case, since it is not necessary to perform complicated wiring work for connecting the plurality of battery cells and the voltage detection circuit, the complexity of the wiring of the voltage detection line is improved.
 配線部材は、バッテリセルの正極端子または負極端子と電圧検出回路とを電気的に接続するための電圧検出線を備え、バッテリブロックに設けられている部材であればよい。したがって、配線部材は、バッテリブロックに直接取り付けられてもよいし、冶具等の他の部材を用いて間接的に取り付けられてもよい。 The wiring member may be a member provided with a voltage detection line for electrically connecting the positive electrode terminal or negative electrode terminal of the battery cell and the voltage detection circuit and provided in the battery block. Therefore, the wiring member may be directly attached to the battery block, or may be indirectly attached using another member such as a jig.
 例えば、配線部材の一端がバッテリセルの正極端子または負極端子に接続されることにより、配線部材がバッテリブロックに直接取り付けられていてもよい。また、配線部材の他端が電圧検出回路に接続されることにより、配線部材が電圧検出回路を介してバッテリブロックに間接的に取り付けられていてもよい。 For example, the wiring member may be directly attached to the battery block by connecting one end of the wiring member to the positive terminal or the negative terminal of the battery cell. Moreover, the wiring member may be indirectly attached to the battery block via the voltage detection circuit by connecting the other end of the wiring member to the voltage detection circuit.
 (2)配線部材は、フレキシブルプリント回路基板を含み、フレキシブルプリント回路基板は、電圧検出線が柔軟性材料からなる基板に一体的に形成された構成を有してもよい。すなわち、本発明の他の局面に従うバッテリモジュールは、複数の筒型のバッテリセルにより構成されるバッテリブロックと、各バッテリセルの端子間電圧を検出するための電圧検出回路と、バッテリブロックに設けられたフレキシブルプリント回路基板とを備え、フレキシブルプリント回路基板は、各バッテリセルの正極端子または負極端子と電圧検出回路とを電気的に接続するための電圧検出線が柔軟性材料からなる基板に一体的に形成された構成を有するものである。 (2) The wiring member may include a flexible printed circuit board, and the flexible printed circuit board may have a configuration in which the voltage detection line is integrally formed on a board made of a flexible material. That is, a battery module according to another aspect of the present invention is provided in a battery block constituted by a plurality of cylindrical battery cells, a voltage detection circuit for detecting a voltage between terminals of each battery cell, and the battery block. A flexible printed circuit board, and the flexible printed circuit board has a voltage detection line for electrically connecting a positive electrode terminal or a negative electrode terminal of each battery cell and the voltage detection circuit integrally with a substrate made of a flexible material. It has the structure formed in.
 このバッテリモジュールでは、複数の筒型のバッテリセルによりバッテリブロックが構成される。バッテリブロックには、フレキシブルプリント回路基板が設けられる。フレキシブルプリント回路基板の電圧検出線により各バッテリセルの正極端子または負極端子と電圧検出回路とが電気的に接続される。電圧検出線は柔軟性材料からなる基板に一体的に形成される。 In this battery module, a battery block is composed of a plurality of cylindrical battery cells. The battery block is provided with a flexible printed circuit board. The voltage detection line of the flexible printed circuit board electrically connects the positive electrode terminal or the negative electrode terminal of each battery cell to the voltage detection circuit. The voltage detection line is integrally formed on a substrate made of a flexible material.
 この場合、複数のバッテリセルと電圧検出回路とを接続するために煩雑な配線作業を行う必要がないので、電圧検出線の配線の煩雑さが改善される。 In this case, since it is not necessary to perform complicated wiring work for connecting the plurality of battery cells and the voltage detection circuit, the complexity of the wiring of the voltage detection line is improved.
 また、柔軟性材料からなる基板に一体的に形成された電圧検出線は、各バッテリセルの正極端子または負極端子と電圧検出回路とを電気的に接続するために設けられるものであって、各バッテリセルの正極端子または負極端子と電圧検出回路とを電気的に接続する配線の一部を構成するものであってもよい。 Further, the voltage detection line integrally formed on the substrate made of a flexible material is provided to electrically connect the positive electrode terminal or the negative electrode terminal of each battery cell and the voltage detection circuit, You may comprise some wirings which electrically connect the positive electrode terminal or negative electrode terminal of a battery cell, and a voltage detection circuit.
 この場合、バッテリセルの正極端子または負極端子と電圧検出回路とを接続する配線を2種類以上の部材により構成することができる。例えば、上記の配線を、柔軟性材料からなる基板に一体的に形成された電圧検出線を含む第1の部材と隣接するバッテリセル間を接続するバスバーを含む第2の部材とにより構成することができる。また、上記の配線のうち、少なくとも折り曲げられる部分に、上記の第1の部材を用い、折り曲げられない部分に、他の配線部材(通常のリジッドプリント基板等)を用いることができる。 In this case, the wiring for connecting the positive electrode terminal or the negative electrode terminal of the battery cell and the voltage detection circuit can be constituted by two or more kinds of members. For example, the wiring is configured by a first member including a voltage detection line integrally formed on a substrate made of a flexible material and a second member including a bus bar for connecting adjacent battery cells. Can do. Further, among the above-described wirings, the first member can be used for at least a portion that can be bent, and another wiring member (a normal rigid printed circuit board or the like) can be used for a portion that cannot be bent.
 このバッテリモジュールは、電動自動車等の移動体の電力駆動源として用いられるものである。この移動体は、電動自動車等の電動車両の他に、バッテリモジュールからの電力によってモータを回転させ、その回転力によりスクリューを駆動するモータボート等の船舶であってもよい。 This battery module is used as a power drive source for a mobile object such as an electric automobile. In addition to an electric vehicle such as an electric automobile, the moving body may be a ship such as a motor boat that rotates a motor with electric power from a battery module and drives a screw with the rotational force.
 (3)バッテリブロックは、互いに異なる第1および第2の面を有し、各バッテリセルの正極端子および負極端子のうち少なくとも一方の端子はバッテリブロックの第1の面に配列され、電圧検出回路はバッテリブロックの第2の面に配置されてもよい。 (3) The battery block has first and second surfaces different from each other, and at least one of the positive electrode terminal and the negative electrode terminal of each battery cell is arranged on the first surface of the battery block, and the voltage detection circuit May be disposed on the second surface of the battery block.
 この場合、各バッテリセルの正極端子および負極端子のうち少なくとも一方の端子はバッテリブロックの第1の面に配列され、電圧検出回路はバッテリブロックの第1の面と異なる第2の面に配置される。これにより、構造を複雑化することなく複数のバッテリセルの端子と電圧検出回路との接触を防止することが可能になる。 In this case, at least one of the positive electrode terminal and the negative electrode terminal of each battery cell is arranged on the first surface of the battery block, and the voltage detection circuit is arranged on a second surface different from the first surface of the battery block. The This makes it possible to prevent contact between the terminals of the plurality of battery cells and the voltage detection circuit without complicating the structure.
 (4)バッテリブロックは、第1の面と対向しかつ第2の面と異なる第3の面をさらに有し、各バッテリセルの正極端子および負極端子のうち他方の端子はバッテリブロックの第3の面に配列され、フレキシブルプリント回路基板は、バッテリブロックの第2の面上から第1の面上および第3の面上に延びていてもよい。 (4) The battery block further includes a third surface that faces the first surface and is different from the second surface, and the other terminal of the positive and negative terminals of each battery cell is the third surface of the battery block. The flexible printed circuit board may extend from the second surface of the battery block to the first surface and the third surface.
 この場合、バッテリブロックの第2の面に設けられる電圧検出回路がフレキシブルプリント回路基板により第1の面に配列される複数のバッテリセルの一方の端子に接続されるとともに第3の面に配列される複数のバッテリセルの他方の端子に接続される。それにより、電圧検出回路と複数のバッテリセルの正極端子および負極端子との接続作業の煩雑さがさらに改善される。 In this case, the voltage detection circuit provided on the second surface of the battery block is connected to one terminal of the plurality of battery cells arranged on the first surface by the flexible printed circuit board and arranged on the third surface. Connected to the other terminal of the plurality of battery cells. This further improves the complexity of the connection work between the voltage detection circuit and the positive and negative terminals of the plurality of battery cells.
 (5)バッテリモジュールは、複数のバッテリセルを収容する筺体をさらに備え、バッテリブロックは、第1、第2および第3の面と異なりかつ互いに対向する第4および第5の面をさらに有し、バッテリブロックの第4の面に対応する筺体の部分には冷却用空気が流入可能な入口が形成され、バッテリブロックの第5の面に対応する筺体の部分には冷却用空気が流出可能な出口が形成されてもよい。 (5) The battery module further includes a housing that houses a plurality of battery cells, and the battery block further includes fourth and fifth surfaces that are different from the first, second, and third surfaces and face each other. An inlet through which cooling air can flow is formed in the housing portion corresponding to the fourth surface of the battery block, and cooling air can flow out into the housing portion corresponding to the fifth surface of the battery block. An outlet may be formed.
 この場合、バッテリブロックの第4の面に対応する筺体の部分に形成される入口から筺体の内部に冷却用空気が流入する。また、バッテリブロックの第5の面に対応する筺体の部分に形成される出口から筺体の外部に冷却用空気が流出する。これにより、冷却用空気が、第1および第3の面に配列される正極端子および負極端子ならびに第2の面に設けられる電圧検出回路により妨げられることなく、複数のバッテリセル間を通過することができる。その結果、複数のバッテリセルが効率的に冷却される。 In this case, the cooling air flows into the housing from the inlet formed in the housing portion corresponding to the fourth surface of the battery block. In addition, cooling air flows out of the housing from an outlet formed in the housing portion corresponding to the fifth surface of the battery block. Thus, the cooling air passes between the plurality of battery cells without being blocked by the positive and negative terminals arranged on the first and third surfaces and the voltage detection circuit provided on the second surface. Can do. As a result, the plurality of battery cells are efficiently cooled.
 (6)配線部材は、電圧検出線とその電圧検出線に接続された接続部材とを含み、接続部材により隣り合うバッテリセルの正極端子と負極端子とが互いに接続されるように、配線部材がバッテリブロックに取り付けられてもよい。 (6) The wiring member includes a voltage detection line and a connection member connected to the voltage detection line, and the wiring member is connected to each other so that the positive electrode terminal and the negative electrode terminal of adjacent battery cells are connected to each other by the connection member. You may attach to a battery block.
 この場合、配線部材をバッテリブロックに取り付けることにより、隣り合うバッテリセルの正極端子と負極端子とが接続部材により互いに接続される。また、接続部材は、配線部材の電圧検出線を介して電圧検出回路に電気的に接続される。このように、配線部材をバッテリブロックに取り付けることによりバッテリモジュールを容易に組み立てることができる。 In this case, by attaching the wiring member to the battery block, the positive terminal and the negative terminal of the adjacent battery cells are connected to each other by the connecting member. The connecting member is electrically connected to the voltage detection circuit via the voltage detection line of the wiring member. Thus, the battery module can be easily assembled by attaching the wiring member to the battery block.
 (7)本発明のさらに他の局面に従うバッテリシステムは、複数のバッテリモジュールを備え、複数のバッテリモジュールの各々は、複数の筒型のバッテリセルからなるバッテリブロックと、各バッテリセルの端子間電圧を検出するための電圧検出回路と、バッテリブロックに設けられたフレキシブルプリント回路基板とを備え、フレキシブルプリント回路基板は、各バッテリセルの正極端子または負極端子と電圧検出回路とを電気的に接続するための電圧検出線が柔軟性材料からなる基板に一体的に形成された構成を有するものである。 (7) A battery system according to still another aspect of the present invention includes a plurality of battery modules, and each of the plurality of battery modules includes a battery block including a plurality of cylindrical battery cells and a terminal voltage of each battery cell. And a flexible printed circuit board provided in the battery block, and the flexible printed circuit board electrically connects the positive or negative terminal of each battery cell and the voltage detecting circuit. Therefore, a voltage detection line for forming a voltage is integrally formed on a substrate made of a flexible material.
 このバッテリシステムは、複数のバッテリモジュールを備える。複数のバッテリモジュールの各々において、複数の筒型のバッテリセルによりバッテリブロックが構成される。バッテリブロックには、フレキシブルプリント回路基板が設けられる。フレキシブルプリント回路基板の電圧検出線により各バッテリセルの正極端子または負極端子と電圧検出回路とが電気的に接続される。電圧検出線は柔軟性材料からなる基板に一体的に形成される。 This battery system includes a plurality of battery modules. In each of the plurality of battery modules, a battery block is constituted by a plurality of cylindrical battery cells. The battery block is provided with a flexible printed circuit board. The voltage detection line of the flexible printed circuit board electrically connects the positive electrode terminal or the negative electrode terminal of each battery cell to the voltage detection circuit. The voltage detection line is integrally formed on a substrate made of a flexible material.
 この場合、複数のバッテリセルと電圧検出回路とを接続するために煩雑な配線作業を行う必要がないので、電圧検出線の配線の煩雑さが改善される。 In this case, since it is not necessary to perform complicated wiring work for connecting the plurality of battery cells and the voltage detection circuit, the complexity of the wiring of the voltage detection line is improved.
 (8)本発明のさらに他の局面に従う電動車両は、本発明のさらに他の局面に従うバッテリシステムと、バッテリシステムの複数のバッテリモジュールからの電力により駆動されるモータと、モータの回転力により回転する駆動輪とを備えるものである。 (8) An electric vehicle according to still another aspect of the present invention is rotated by a battery system according to still another aspect of the present invention, a motor driven by electric power from a plurality of battery modules of the battery system, and a rotational force of the motor. Drive wheels.
 この電動車両においては、バッテリシステムの複数のバッテリモジュールからの電力によりモータが駆動される。そのモータの回転力によって駆動輪が回転することにより、電動車両が移動する。 In this electric vehicle, the motor is driven by electric power from a plurality of battery modules of the battery system. The drive wheel is rotated by the rotational force of the motor, so that the electric vehicle moves.
 バッテリシステムの複数のバッテリモジュールの各々において、複数の筒型のバッテリセルによりバッテリブロックが構成される。バッテリブロックには、フレキシブルプリント回路基板が設けられる。フレキシブルプリント回路基板の電圧検出線により各バッテリセルの正極端子または負極端子と電圧検出回路とが電気的に接続される。電圧検出線は柔軟性材料からなる基板に一体的に形成される。 In each of the plurality of battery modules of the battery system, a battery block is configured by a plurality of cylindrical battery cells. The battery block is provided with a flexible printed circuit board. The voltage detection line of the flexible printed circuit board electrically connects the positive electrode terminal or the negative electrode terminal of each battery cell to the voltage detection circuit. The voltage detection line is integrally formed on a substrate made of a flexible material.
 この場合、複数のバッテリセルと電圧検出回路とを接続するために煩雑な配線作業を行う必要がないので、電圧検出線の配線の煩雑さが改善される。したがって、電動車両のメンテナンスが容易になる。 In this case, since it is not necessary to perform complicated wiring work for connecting the plurality of battery cells and the voltage detection circuit, the complexity of the wiring of the voltage detection line is improved. Therefore, maintenance of the electric vehicle is facilitated.
 (9)本発明のさらに他の局面に従う移動体は、本発明の一局面に従う1または複数のバッテリモジュールと、移動本体部と、1または複数のバッテリモジュールからの電力を移動本体部を移動させるための動力に変換する動力源とを備えるものである。 (9) A moving body according to still another aspect of the present invention moves one or more battery modules according to one aspect of the present invention, a moving main body, and power from the one or more battery modules to move the moving main body. And a power source that converts the power into power for the purpose.
 この移動体においては、1または複数のバッテリモジュールからの電力が動力源により動力に変換され、その動力により移動本体部が移動する。この場合、上記のバッテリモジュールが用いられることにより、複数のバッテリセルと電圧検出回路とを接続するために煩雑な配線作業を行う必要がないので、電圧検出線の配線の煩雑さが改善される。したがって、移動体のメンテナンスが容易になる。 In this moving body, electric power from one or a plurality of battery modules is converted into power by a power source, and the moving main body moves by the power. In this case, since the above battery module is used, it is not necessary to perform complicated wiring work for connecting the plurality of battery cells and the voltage detection circuit, so that the complexity of the wiring of the voltage detection line is improved. . Therefore, maintenance of the moving body is facilitated.
 (10)本発明のさらに他の局面に従う電力貯蔵装置は、本発明の一局面に従う1または複数のバッテリモジュールと、1または複数のバッテリモジュールの放電または充電に関する制御を行う制御部とを備えるものである。 (10) A power storage device according to still another aspect of the present invention includes one or more battery modules according to one aspect of the present invention and a control unit that performs control related to discharging or charging of the one or more battery modules. It is.
 この電力貯蔵装置においては、制御部により、1または複数のバッテリモジュールの放電または充電に関する制御が行われる。 In this power storage device, the control unit controls the discharge or charging of one or a plurality of battery modules.
 例えば、1または複数のバッテリモジュールの放電時に、制御部は、バッテリセルの充電量に基づいて1または複数のバッテリモジュールの放電を停止するか否かまたは放電電流(または放電電力)を制限するか否かを判定し、判定結果に基づいて電力変換装置を制御する。具体的には、複数のバッテリセルのうちいずれかのバッテリセルの充電量が予め定められたしきい値よりも小さくなると、制御部は、1または複数のバッテリモジュールの放電が停止されまたは放電電流(または放電電力)が制限されるように電力変換装置を制御する。 For example, when discharging one or more battery modules, the control unit determines whether to stop discharging one or more battery modules based on the charge amount of the battery cell or to limit the discharge current (or discharge power). The power converter is controlled based on the determination result. Specifically, when the charge amount of any one of the plurality of battery cells becomes smaller than a predetermined threshold value, the control unit stops the discharge of one or the plurality of battery modules or discharge current. The power converter is controlled so that (or the discharge power) is limited.
 また、制御部は、外部の指示に基づいて1または複数のバッテリモジュールの放電を停止するか否かまたは放電電流(または放電電力)を制限するか否かを判定し、判定結果に基づいて電力変換装置を制御することもできる。 Further, the control unit determines whether to stop discharging of one or a plurality of battery modules based on an external instruction or whether to limit the discharge current (or discharge power), and based on the determination result The conversion device can also be controlled.
 一方、1または複数のバッテリモジュールの充電時に、制御部は、バッテリセルの充電量に基づいて1または複数のバッテリモジュールの充電を停止するか否かまたは充電電流(または充電電力)を制限するか否かを判定し、判定結果に基づいて電力変換装置を制御する。具体的には、1または複数のバッテリモジュールに含まれる複数のバッテリセルのうちいずれかのバッテリセルの充電量が予め定められたしきい値よりも大きくなると、制御部は、1または複数のバッテリモジュールの充電が停止されまたは充電電流(または充電電力)が制限されるように電力変換装置を制御する。 On the other hand, when charging one or more battery modules, the control unit determines whether to stop charging one or more battery modules based on the charge amount of the battery cell or to limit the charging current (or charging power). The power converter is controlled based on the determination result. Specifically, when the charge amount of any one of a plurality of battery cells included in one or a plurality of battery modules is larger than a predetermined threshold value, the control unit performs the one or a plurality of batteries. The power conversion device is controlled such that charging of the module is stopped or charging current (or charging power) is limited.
 また、制御部は、外部の指示に基づいて1または複数のバッテリモジュールの充電を停止するか否かまたは充電電流(または充電電力)を制限するか否かを判定し、判定結果に基づいて電力変換装置を制御することもできる。 In addition, the control unit determines whether to stop charging one or a plurality of battery modules based on an external instruction, or whether to limit the charging current (or charging power), and power based on the determination result. The conversion device can also be controlled.
 これにより、1または複数のバッテリモジュールの過放電および過充電を防止することができる。 Thereby, overdischarge and overcharge of one or a plurality of battery modules can be prevented.
 この場合、上記のバッテリモジュールが用いられることにより、複数のバッテリセルと電圧検出回路とを接続するために煩雑な配線作業を行う必要がないので、電圧検出線の配線の煩雑さが改善される。したがって、電力貯蔵装置のメンテナンスが容易になる。 In this case, since the above battery module is used, it is not necessary to perform complicated wiring work for connecting the plurality of battery cells and the voltage detection circuit, so that the complexity of the wiring of the voltage detection line is improved. . Therefore, maintenance of the power storage device is facilitated.
 (11)本発明のさらに他の局面に従う電源装置は、外部に接続可能な電源装置であって、本発明のさらに他の局面に従う電力貯蔵装置と、電力貯蔵装置の1または複数のバッテリモジュールと外部との間で電力変換を行う電力変換装置とを備え、制御部は、電力変換装置を制御するものである。 (11) A power supply device according to still another aspect of the present invention is a power supply device connectable to the outside, the power storage device according to still another aspect of the present invention, and one or more battery modules of the power storage device And a power converter that performs power conversion with the outside, and the control unit controls the power converter.
 この電源装置においては、1または複数のバッテリモジュールと外部との間で電力変換装置により電力変換が行われる。電力変換装置が制御部により制御される。 In this power supply device, power conversion is performed by the power conversion device between one or a plurality of battery modules and the outside. The power converter is controlled by the control unit.
 例えば、1または複数のバッテリモジュールの放電時に、制御部は、バッテリセルの充電量に基づいて1または複数のバッテリモジュールの放電を停止するか否かまたは放電電流(または放電電力)を制限するか否かを判定し、判定結果に基づいて電力変換装置を制御する。具体的には、複数のバッテリセルのうちいずれかのバッテリセルの充電量が予め定められたしきい値よりも小さくなると、制御部は、1または複数のバッテリモジュールの放電が停止されまたは放電電流(または放電電力)が制限されるように電力変換装置を制御する。 For example, when discharging one or more battery modules, the control unit determines whether to stop discharging one or more battery modules based on the charge amount of the battery cell or to limit the discharge current (or discharge power). The power converter is controlled based on the determination result. Specifically, when the charge amount of any one of the plurality of battery cells becomes smaller than a predetermined threshold value, the control unit stops the discharge of one or the plurality of battery modules or discharge current. The power converter is controlled so that (or the discharge power) is limited.
 また、制御部は、外部の指示に基づいて1または複数のバッテリモジュールの放電を停止するか否かまたは放電電流(または放電電力)を制限するか否かを判定し、判定結果に基づいて電力変換装置を制御することもできる。 Further, the control unit determines whether to stop discharging of one or a plurality of battery modules based on an external instruction or whether to limit the discharge current (or discharge power), and based on the determination result The conversion device can also be controlled.
 一方、1または複数のバッテリモジュールの充電時に、制御部は、バッテリセルの充電量に基づいて1または複数のバッテリモジュールの充電を停止するか否かまたは充電電流(または充電電力)を制限するか否かを判定し、判定結果に基づいて電力変換装置を制御する。具体的には、1または複数のバッテリモジュールに含まれる複数のバッテリセルのうちいずれかのバッテリセルの充電量が予め定められたしきい値よりも大きくなると、制御部は、1または複数のバッテリモジュールの充電が停止されまたは充電電流(または充電電力)が制限されるように電力変換装置を制御する。 On the other hand, when charging one or more battery modules, the control unit determines whether to stop charging one or more battery modules based on the charge amount of the battery cell or to limit the charging current (or charging power). The power converter is controlled based on the determination result. Specifically, when the charge amount of any one of a plurality of battery cells included in one or a plurality of battery modules is larger than a predetermined threshold value, the control unit performs the one or a plurality of batteries. The power conversion device is controlled such that charging of the module is stopped or charging current (or charging power) is limited.
 また、制御部は、外部の指示に基づいて1または複数のバッテリモジュールの充電を停止するか否かまたは充電電流(または充電電力)を制限するか否かを判定し、判定結果に基づいて電力変換装置を制御することもできる。 In addition, the control unit determines whether to stop charging one or a plurality of battery modules based on an external instruction, or whether to limit the charging current (or charging power), and power based on the determination result. The conversion device can also be controlled.
 これにより、複数のバッテリモジュールの過放電および過充電を防止することができる。 This can prevent overdischarge and overcharge of a plurality of battery modules.
 この場合、上記のバッテリモジュールが用いられることにより、複数のバッテリセルと電圧検出回路とを接続するために煩雑な配線作業を行う必要がないので、電圧検出線の配線の煩雑さが改善される。したがって、電源装置のメンテナンスが容易になる。 In this case, since the above battery module is used, it is not necessary to perform complicated wiring work for connecting the plurality of battery cells and the voltage detection circuit, so that the complexity of the wiring of the voltage detection line is improved. . Therefore, maintenance of the power supply device is facilitated.
 (12)本発明のさらに他の局面に従う電気機器は、本発明の一局面に従う1または複数のバッテリモジュールと、1または複数のバッテリモジュールからの電力により駆動される負荷とを備えるものである。 (12) An electrical device according to still another aspect of the present invention includes one or more battery modules according to one aspect of the present invention and a load driven by electric power from the one or more battery modules.
 この電気機器においては、負荷が1または複数のバッテリモジュールからの電力により駆動される。この場合、上記のバッテリモジュールが用いられることにより、複数のバッテリセルと電圧検出回路とを接続するために煩雑な配線作業を行う必要がないので、電圧検出線の配線の煩雑さが改善される。したがって、電気機器のメンテナンスが容易になる。 In this electrical device, the load is driven by electric power from one or more battery modules. In this case, since the above battery module is used, it is not necessary to perform complicated wiring work for connecting the plurality of battery cells and the voltage detection circuit, so that the complexity of the wiring of the voltage detection line is improved. . Therefore, maintenance of the electric equipment is facilitated.
 本発明によれば、複数のバッテリセルの電圧を検出するための電圧検出回路とバッテリセルの正極端子および負極端子とを接続する電圧検出線の配線の煩雑さが改善される。 According to the present invention, the complexity of the wiring of the voltage detection line for connecting the voltage detection circuit for detecting the voltage of the plurality of battery cells and the positive terminal and the negative terminal of the battery cell is improved.
図1は第1の実施の形態に係るバッテリシステムの構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of the battery system according to the first embodiment. 図2は図1のプリント回路基板の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of the printed circuit board of FIG. 図3は第1の実施の形態に係るバッテリモジュールの外観斜視図である。FIG. 3 is an external perspective view of the battery module according to the first embodiment. 図4は図3のバッテリモジュールの一方の側面図である。FIG. 4 is a side view of one side of the battery module of FIG. 図5は図3のバッテリモジュールの他方の側面図である。FIG. 5 is a side view of the other side of the battery module of FIG. 図6はバッテリセルの側面図および端面図である。FIG. 6 is a side view and an end view of the battery cell. 図7は図3のバッテリホルダの平面図、断面図および短辺側から見た側面図である。FIG. 7 is a plan view, a cross-sectional view, and a side view as seen from the short side of the battery holder of FIG. 図8は図3のバッテリモジュールにおけるバッテリブロックの端面図である。FIG. 8 is an end view of the battery block in the battery module of FIG. 図9はバッテリブロックの平面図である。FIG. 9 is a plan view of the battery block. 図10はバッテリブロックの一方の側面図である。FIG. 10 is a side view of one of the battery blocks. 図11はバッテリブロックの他方の側面図である。FIG. 11 is a side view of the other side of the battery block. 図12はバスバーの外観斜視図である。FIG. 12 is an external perspective view of the bus bar. 図13はFPC基板に複数のバスバーおよびPTC素子が取り付けられた状態を示す外観斜視図である。FIG. 13 is an external perspective view showing a state in which a plurality of bus bars and PTC elements are attached to the FPC board. 図14はバスバーおよびサーミスタと検出回路との接続について説明するための模式的平面図である。FIG. 14 is a schematic plan view for explaining the connection between the bus bar and the thermistor and the detection circuit. 図15はプリント回路基板の一構成例を示す模式的平面図である。FIG. 15 is a schematic plan view showing a configuration example of a printed circuit board. 図16は図8のバッテリブロックにプリント回路基板が取り付けられた状態を示す側面図である。16 is a side view showing a state where a printed circuit board is attached to the battery block of FIG. 図17は図2の通信回路の接続に用いられる入出力用ハーネスの模式的平面図である。FIG. 17 is a schematic plan view of an input / output harness used for connection of the communication circuit of FIG. 図18はバッテリブロックの接続のための説明図である。FIG. 18 is an explanatory diagram for connecting battery blocks. 図19はケーシングに収容されたバッテリモジュールの外観斜視図である。FIG. 19 is an external perspective view of the battery module housed in the casing. 図20は第1の実施の形態に係るバッテリシステム内の複数のバッテリモジュールの接続および配線の一例を示す模式的平面図である。FIG. 20 is a schematic plan view showing an example of connection and wiring of a plurality of battery modules in the battery system according to the first embodiment. 図21は第2の実施の形態に係るバッテリブロックの平面図である。FIG. 21 is a plan view of the battery block according to the second embodiment. 図22は図21のバッテリブロックの一方の側面図である。FIG. 22 is a side view of one side of the battery block of FIG. 図23は図21のバッテリブロックの他方の側面図である。FIG. 23 is a side view of the other side of the battery block of FIG. 図24は図21のバッテリホルダの平面図、断面図および短辺側から見た側面図である。24 is a plan view, a cross-sectional view, and a side view as seen from the short side of the battery holder of FIG. 図25は第3の実施の形態に係るバッテリモジュールの外観斜視図である。FIG. 25 is an external perspective view of the battery module according to the third embodiment. 図26は図25のバッテリモジュールの側面図である。FIG. 26 is a side view of the battery module of FIG. 図27は図25のバッテリモジュールの平面図である。27 is a plan view of the battery module of FIG. 図28は第4の実施に係るバッテリモジュールの配線部材を示す外観斜視図である。FIG. 28 is an external perspective view showing a wiring member of the battery module according to the fourth embodiment. 図29は第5の実施の形態に係るバッテリモジュールの外観斜視図である。FIG. 29 is an external perspective view of the battery module according to the fifth embodiment. 図30は第5の実施の形態に係るバッテリシステムの平面図である。FIG. 30 is a plan view of the battery system according to the fifth embodiment. 図31はバッテリシステムを備える電動自動車の構成を示すブロック図である。FIG. 31 is a block diagram illustrating a configuration of an electric vehicle including a battery system. 図32は第7の実施の形態に係る電源装置の構成を示すブロック図である。FIG. 32 is a block diagram showing a configuration of a power supply device according to the seventh embodiment. 図33は複数のバッテリシステムを収容するラックの斜視図である。FIG. 33 is a perspective view of a rack that houses a plurality of battery systems. 図34はバッテリシステムが図33のラックの収容スペース内に収容された状態を示す模式的平面図である。FIG. 34 is a schematic plan view showing a state in which the battery system is housed in the housing space of the rack of FIG.
 [1]第1の実施の形態
 以下、第1の実施の形態に係るバッテリモジュールおよびそれを備えたバッテリシステムについて図面を参照しながら説明する。なお、本実施の形態に係るバッテリモジュールおよびバッテリシステムは、電力を駆動源とする電動車両(例えば電動自動車)に搭載される。
[1] First Embodiment Hereinafter, a battery module according to a first embodiment and a battery system including the battery module will be described with reference to the drawings. The battery module and the battery system according to the present embodiment are mounted on an electric vehicle (for example, an electric automobile) that uses electric power as a drive source.
 (1)バッテリシステムの構成
 図1は、第1の実施の形態に係るバッテリシステムの構成を示すブロック図である。図1に示すように、バッテリシステム500は、複数のバッテリモジュール100(本例では6個)、バッテリECU101およびコンタクタ102を含み、バス104を介して電動車両の主制御部300に接続されている。
(1) Configuration of Battery System FIG. 1 is a block diagram showing the configuration of the battery system according to the first embodiment. As shown in FIG. 1, the battery system 500 includes a plurality of battery modules 100 (six in this example), a battery ECU 101, and a contactor 102, and is connected to the main control unit 300 of the electric vehicle via a bus 104. .
 バッテリシステム500の複数のバッテリモジュール100は、電源線501を通して互いに接続されている。各バッテリモジュール100は、複数(本例では12個)のバッテリセル10を含むバッテリブロック10Bを有する。また、各バッテリモジュール100は、複数(本例では6個)のサーミスタ11およびリジッドプリント回路基板(以下、プリント回路基板と略記する)21をさらに有する。 The plurality of battery modules 100 of the battery system 500 are connected to each other through the power line 501. Each battery module 100 includes a battery block 10 </ b> B including a plurality (12 in this example) of battery cells 10. Each battery module 100 further includes a plurality of (six in this example) thermistors 11 and a rigid printed circuit board (hereinafter abbreviated as a printed circuit board) 21.
 各バッテリブロック10Bの複数のバッテリセル10は一体的に配置され、複数のバスバー40により直列接続されている。各バッテリセル10は、例えばリチウムイオン電池またはニッケル水素電池等の二次電池である。 The plurality of battery cells 10 of each battery block 10B are integrally arranged and connected in series by a plurality of bus bars 40. Each battery cell 10 is a secondary battery such as a lithium ion battery or a nickel metal hydride battery.
 各バッテリモジュール100の複数のバッテリセル10のうち、最高電位を有するバッテリセル10の端子および最低電位を有するバッテリセル10の端子は、バスバー40aを介して電源線501に接続されている。これにより、バッテリシステム500においては、複数のバッテリモジュール100の全てのバッテリセル10が直列接続されている。バッテリシステム500から引き出される電源線501は、電動車両のモータ等の負荷に接続される。バッテリモジュール100の詳細は後述する。 Among the plurality of battery cells 10 of each battery module 100, the terminal of the battery cell 10 having the highest potential and the terminal of the battery cell 10 having the lowest potential are connected to the power supply line 501 via the bus bar 40a. Thereby, in the battery system 500, all the battery cells 10 of the plurality of battery modules 100 are connected in series. A power line 501 drawn from the battery system 500 is connected to a load such as a motor of an electric vehicle. Details of the battery module 100 will be described later.
 図2は、図1のプリント回路基板21の構成を示すブロック図である。プリント回路基板21上には、検出回路20、複数の抵抗Rおよび複数のスイッチング素子SWが実装される。また、検出回路20は、マルチプレクサ20a、A/D変換器20b、差動増幅器20cおよび通信回路20dを含む。検出回路20は、例えばASIC(Application Specific Integrated Circuit:特定用途向け集積回路)からなり、複数のバッテリセル10は検出回路20の電源として用いられる。 FIG. 2 is a block diagram showing a configuration of the printed circuit board 21 of FIG. On the printed circuit board 21, a detection circuit 20, a plurality of resistors R, and a plurality of switching elements SW are mounted. The detection circuit 20 includes a multiplexer 20a, an A / D converter 20b, a differential amplifier 20c, and a communication circuit 20d. The detection circuit 20 includes, for example, an ASIC (Application Specific Integrated Circuit), and the plurality of battery cells 10 are used as a power source for the detection circuit 20.
 差動増幅器20cは2つの入力端子および出力端子を有する。差動増幅器20cは、2つの入力端子に入力された電圧を差動増幅し、増幅された電圧を出力端子から出力する。各差動増幅器20cの2つの入力端子は、導体線51およびPTC(Positive Temperature Coefficient:正温度係数)素子60を介して隣り合う2つのバスバー40,40aに電気的に接続される。 The differential amplifier 20c has two input terminals and an output terminal. The differential amplifier 20c differentially amplifies voltages input to the two input terminals, and outputs the amplified voltage from the output terminal. Two input terminals of each differential amplifier 20c are electrically connected to two adjacent bus bars 40, 40a via a conductor line 51 and a PTC (Positive Temperature Coefficient) element 60.
 ここで、PTC素子60は、温度がある値を超えると抵抗値が急激に増加する抵抗温度特性を有する。そのため、検出回路20および導体線51等で短絡が生じた場合に、その短絡経路を流れる電流によりPTC素子60の温度が上昇すると、PTC素子60の抵抗値が大きくなる。これにより、PTC素子60を含む短絡経路に大電流が流れることが抑制される。 Here, the PTC element 60 has a resistance temperature characteristic in which the resistance value rapidly increases when the temperature exceeds a certain value. For this reason, when a short circuit occurs in the detection circuit 20 and the conductor wire 51, if the temperature of the PTC element 60 rises due to the current flowing through the short circuit path, the resistance value of the PTC element 60 increases. Thereby, it is suppressed that a large current flows through the short circuit path including the PTC element 60.
 隣り合う2つのバスバー40,40aの電圧が各差動増幅器20cにより差動増幅される。各差動増幅器20cの出力電圧は各バッテリセル10の端子電圧に相当する。複数の差動増幅器20cから出力される端子電圧はマルチプレクサ20aに与えられる。マルチプレクサ20aは、複数の差動増幅器20cから与えられる端子電圧を順次A/D変換器20bに出力する。A/D変換器20bは、マルチプレクサ20aから出力される端子電圧をデジタル値に変換し、通信回路20dに与える。このように、検出回路20は電圧検出部として機能する。 The voltages of the two adjacent bus bars 40 and 40a are differentially amplified by each differential amplifier 20c. The output voltage of each differential amplifier 20 c corresponds to the terminal voltage of each battery cell 10. Terminal voltages output from the plurality of differential amplifiers 20c are applied to the multiplexer 20a. The multiplexer 20a sequentially outputs the terminal voltages supplied from the plurality of differential amplifiers 20c to the A / D converter 20b. The A / D converter 20b converts the terminal voltage output from the multiplexer 20a into a digital value and supplies the digital value to the communication circuit 20d. Thus, the detection circuit 20 functions as a voltage detection unit.
 また、通信回路20dは、例えばCPU(中央演算処理装置)、メモリおよびインタフェース回路を含み、通信機能を有するとともに演算機能を有する。通信回路20dは導体線52aを介して複数のサーミスタ11に接続される。これにより、通信回路20dは、サーミスタ11の出力信号に基づいてバッテリモジュール100(図1参照)の温度を取得する。このように、検出回路20は温度検出部としても機能する。 The communication circuit 20d includes, for example, a CPU (Central Processing Unit), a memory, and an interface circuit, and has a communication function and an arithmetic function. The communication circuit 20d is connected to the plurality of thermistors 11 through the conductor line 52a. Accordingly, the communication circuit 20d acquires the temperature of the battery module 100 (see FIG. 1) based on the output signal of the thermistor 11. Thus, the detection circuit 20 also functions as a temperature detection unit.
 さらに、本実施の形態においては、各バッテリモジュール100の複数のバスバー40のうちの少なくとも1つのバスバー40が電流検出用のシャント抵抗として用いられる。これにより、検出回路20は、シャント抵抗として用いられるバスバー40の両端の電圧を検出することにより、各バッテリモジュール100に流れる電流を検出する。このように、検出回路20は電流検出部としても機能する。 Furthermore, in the present embodiment, at least one bus bar 40 among the plurality of bus bars 40 of each battery module 100 is used as a shunt resistor for current detection. Thereby, the detection circuit 20 detects the current flowing through each battery module 100 by detecting the voltage across the bus bar 40 used as the shunt resistor. Thus, the detection circuit 20 also functions as a current detection unit.
 複数のバッテリモジュール100の通信回路20dは、ハーネス560を介して直列接続される。これにより、各バッテリモジュール100の通信回路20dは、他のバッテリモジュール100と通信を行うことができる。 The communication circuits 20d of the plurality of battery modules 100 are connected in series via the harness 560. Thereby, the communication circuit 20d of each battery module 100 can communicate with the other battery modules 100.
 また、端部のバッテリモジュール100の通信回路20dはハーネス560を介してバッテリECU101に接続される。これにより、通信回路20dは、各バッテリセル10の端子電圧、複数のバッテリセル10に流れる電流およびバッテリモジュール100の温度をバッテリECU101に与える。以下、これらの端子電圧、電流および温度をセル情報と呼ぶ。 Further, the communication circuit 20d of the battery module 100 at the end is connected to the battery ECU 101 via the harness 560. Thereby, the communication circuit 20d gives the battery ECU 101 the terminal voltage of each battery cell 10, the current flowing through the plurality of battery cells 10, and the temperature of the battery module 100. Hereinafter, these terminal voltages, currents, and temperatures are referred to as cell information.
 バッテリECU101は、各バッテリモジュール100の通信回路20dから与えられたセル情報に基づいて各バッテリセル10の充電量を算出し、その充電量に基づいて各バッテリセル10の充放電制御を行う。ここで、充放電制御とは、例えば充電量の均等化のための制御(以下、均等化制御と呼ぶ。)である。各バッテリセル10の均等化制御を行うために、隣り合う各2つのバスバー40,40a間には、抵抗Rおよびスイッチング素子SWの直列回路が接続される。スイッチング素子SWのオンおよびオフは、通信回路20dを介してバッテリECU101により制御される。なお、通常状態では、スイッチング素子SWはオフになっている。均等化制御の詳細は後述する。 The battery ECU 101 calculates the charge amount of each battery cell 10 based on the cell information given from the communication circuit 20d of each battery module 100, and performs charge / discharge control of each battery cell 10 based on the charge amount. Here, the charge / discharge control is, for example, control for equalizing the amount of charge (hereinafter referred to as equalization control). In order to perform equalization control of each battery cell 10, a series circuit of a resistor R and a switching element SW is connected between each two adjacent bus bars 40, 40a. On / off of the switching element SW is controlled by the battery ECU 101 via the communication circuit 20d. In the normal state, the switching element SW is turned off. Details of the equalization control will be described later.
 また、バッテリECU101は、各バッテリモジュール100の通信回路20dから与えられたセル情報に基づいて各バッテリモジュール100の異常を検出する。バッテリモジュール100の異常とは、例えば、バッテリセル10の過放電、過充電または温度異常等である。 Further, the battery ECU 101 detects an abnormality of each battery module 100 based on the cell information given from the communication circuit 20d of each battery module 100. The abnormality of the battery module 100 is, for example, overdischarge, overcharge, or temperature abnormality of the battery cell 10.
 なお、本実施の形態では、バッテリECU101が上記の各バッテリセル10の充電量の算出および均等化制御ならびにバッテリセル10の過放電、過充電または温度異常等の検出を行うが、これに限定されない。検出回路20が各バッテリセル10の充電量の算出および各バッテリセル10の過放電、過充電または温度異常等の検出を行う機能を有していてもよい。この場合、検出回路20は、検出結果をバッテリECU101に与える。 In the present embodiment, the battery ECU 101 performs calculation and equalization control of the charge amount of each battery cell 10 and detection of overdischarge, overcharge, or temperature abnormality of the battery cell 10, but the present invention is not limited to this. . The detection circuit 20 may have a function of calculating the amount of charge of each battery cell 10 and detecting overdischarge, overcharge, or temperature abnormality of each battery cell 10. In this case, the detection circuit 20 gives the detection result to the battery ECU 101.
 また、検出回路20が各バッテリセル10の充電量を算出する場合、各バッテリセル10の端子電圧、複数のバッテリセル10に流れる電流およびバッテリモジュール100の温度に加えて各バッテリセル10の充電量をセル情報と呼ぶ。 When the detection circuit 20 calculates the charge amount of each battery cell 10, the charge amount of each battery cell 10 in addition to the terminal voltage of each battery cell 10, the current flowing through the plurality of battery cells 10, and the temperature of the battery module 100. Is called cell information.
 図1に戻り、一端部のバッテリモジュール100に接続された電源線501には、コンタクタ102が介挿されている。バッテリECU101は、バッテリモジュール100の異常を検出した場合、コンタクタ102をオフする。これにより、異常時には、各バッテリモジュール100に電流が流れないので、バッテリモジュール100の異常発熱が防止される。 Referring back to FIG. 1, a contactor 102 is inserted in the power supply line 501 connected to the battery module 100 at one end. When the battery ECU 101 detects an abnormality in the battery module 100, the battery ECU 101 turns off the contactor 102. Thereby, when an abnormality occurs, no current flows through each battery module 100, and thus abnormal heat generation of the battery module 100 is prevented.
 バッテリECU101は、バス104を介して主制御部300に接続される。バッテリECU101から主制御部300に各バッテリセル10の充電量が与えられる。主制御部300は、その充電量に基づいて電動車両の動力(例えばモータの回転速度)を制御する。また、各バッテリモジュール100の充電量が少なくなると、主制御部300は、電源線501に接続された図示しない発電装置を制御して各バッテリモジュール100を充電する。 The battery ECU 101 is connected to the main control unit 300 via the bus 104. The amount of charge of each battery cell 10 is given from the battery ECU 101 to the main control unit 300. The main control unit 300 controls the power of the electric vehicle (for example, the rotational speed of the motor) based on the amount of charge. When the charge amount of each battery module 100 decreases, the main control unit 300 controls a power generation device (not shown) connected to the power line 501 to charge each battery module 100.
 なお、本実施の形態において、発電装置は例えば上記の電源線501に接続されたモータである。この場合、モータは、電動車両の加速時にバッテリシステム500から供給された電力を、図示しない駆動輪を駆動するための動力に変換する。また、モータは、電動車両の減速時に回生電力を発生する。この回生電力により各バッテリモジュール100が充電される。 In the present embodiment, the power generation device is a motor connected to the power supply line 501 described above, for example. In this case, the motor converts the electric power supplied from the battery system 500 during acceleration of the electric vehicle into motive power for driving drive wheels (not shown). The motor generates regenerative power when the electric vehicle is decelerated. Each battery module 100 is charged by this regenerative power.
 (2)バッテリモジュールの詳細
 バッテリモジュール100の詳細について説明する。図3は第1の実施の形態に係るバッテリモジュール100の外観斜視図であり、図4は図3のバッテリモジュール100の一方の側面図であり、図5は図3のバッテリモジュール100の他方の側面図である。
(2) Details of Battery Module Details of the battery module 100 will be described. 3 is an external perspective view of the battery module 100 according to the first embodiment, FIG. 4 is a side view of one side of the battery module 100 of FIG. 3, and FIG. 5 is the other side of the battery module 100 of FIG. It is a side view.
 なお、図3~図5ならびに後述する図8~図11、図13、図16、図18、図19、図21~図23および図25~図29においては、矢印X,Y,Zで示すように、互いに直交する三方向をX方向、Y方向およびZ方向と定義する。なお、本例では、X方向およびY方向が水平面に平行な方向であり、Z方向が水平面に直交する方向である。 In FIGS. 3 to 5 and FIGS. 8 to 11, 13, 16, 18, 19, 21, 21 to 23, and FIGS. 25 to 29, which will be described later, these are indicated by arrows X, Y, and Z. Thus, three directions orthogonal to each other are defined as an X direction, a Y direction, and a Z direction. In this example, the X direction and the Y direction are directions parallel to the horizontal plane, and the Z direction is a direction orthogonal to the horizontal plane.
 図3~図5に示すように、バッテリモジュール100は、バッテリブロック10B、プリント回路基板21およびフレキシブルプリント回路基板(以下、FPC基板と略記する。)50を有する。 3 to 5, the battery module 100 includes a battery block 10B, a printed circuit board 21, and a flexible printed circuit board (hereinafter abbreviated as an FPC board) 50.
 バッテリブロック10Bは、複数の円筒型のバッテリセル10、および複数のバッテリセル10を保持する一対のバッテリホルダ90により構成される。 The battery block 10 </ b> B includes a plurality of cylindrical battery cells 10 and a pair of battery holders 90 that hold the plurality of battery cells 10.
 図6(a)はバッテリセル10の側面図であり、図6(b)は図6(a)のバッテリセル10の一方から見た端面図であり、図6(c)は図6(a)のバッテリセル10の他方から見た端面図である。 FIG. 6A is a side view of the battery cell 10, FIG. 6B is an end view of the battery cell 10 shown in FIG. 6A, and FIG. 6C is FIG. It is the end view seen from the other side of the battery cell 10 of FIG.
 図6(a)に示すように、対向する端面を有する円筒型の外形(いわゆる円柱形状)をなすバッテリセル10が用いられる。バッテリセル10の一方の端面には、軸方向に突出するように正極端子であるプラス電極10aが形成される。また、バッテリセル10の他方の端面には、軸方向に突出するように負極端子であるマイナス電極10bが形成される。 As shown in FIG. 6 (a), a battery cell 10 having a cylindrical outer shape (so-called columnar shape) having opposed end surfaces is used. On one end face of the battery cell 10, a positive electrode 10a that is a positive electrode terminal is formed so as to protrude in the axial direction. Further, a negative electrode 10b, which is a negative electrode terminal, is formed on the other end face of the battery cell 10 so as to protrude in the axial direction.
 図6(b)に示すように、プラス電極10aは正方形の断面を有する角柱形状をなす。プラス電極10aには、ねじ穴9aが形成される。同様に、図6(c)に示すように、マイナス電極10bは正方形の断面を有する角柱形状をなす。マイナス電極10bには、ねじ穴9bが形成される。 As shown in FIG. 6B, the plus electrode 10a has a prism shape having a square cross section. A screw hole 9a is formed in the plus electrode 10a. Similarly, as shown in FIG. 6C, the negative electrode 10b has a prismatic shape having a square cross section. A screw hole 9b is formed in the negative electrode 10b.
 図3~図5のバッテリブロック10Bにおいて、複数のバッテリセル10は、それぞれの軸心が互いに平行になるように並列に配列される。複数のバッテリセル10のうち、半数(本例では6個)のバッテリセル10が上段に配置され、残りの半数(本例では6個)のバッテリセル10が下段に配置される。 In the battery block 10B of FIGS. 3 to 5, the plurality of battery cells 10 are arranged in parallel so that the respective axes are parallel to each other. Of the plurality of battery cells 10, half (six in this example) battery cells 10 are arranged in the upper stage, and the remaining half (six in this example) battery cells 10 are arranged in the lower stage.
 バッテリホルダ90は、例えば樹脂により形成される略長方形状の板状部材からなる。バッテリホルダ90は一面および他面を有する。以下、バッテリホルダ90の一面および他面をそれぞれ外面および内面と呼ぶ。図7(a)は図3のバッテリホルダ90の外面の平面図であり、図7(b)は図3のバッテリホルダ90の内面の平面図であり、図7(c)は図7(a)および図7(b)のバッテリホルダ90のA-A線断面図であり、図7(d)は図3のバッテリホルダ90の短辺側から見た側面図である。 The battery holder 90 is made of a substantially rectangular plate-like member made of, for example, resin. The battery holder 90 has one side and the other side. Hereinafter, one surface and the other surface of the battery holder 90 are referred to as an outer surface and an inner surface, respectively. 7 (a) is a plan view of the outer surface of the battery holder 90 of FIG. 3, FIG. 7 (b) is a plan view of the inner surface of the battery holder 90 of FIG. 3, and FIG. 7 (c) is a plan view of FIG. ) And FIG. 7B is a sectional view taken along line AA of the battery holder 90 in FIG. 7B, and FIG. 7D is a side view of the battery holder 90 in FIG. 3 viewed from the short side.
 図7(a)および図7(b)に示すように、バッテリホルダ90には、長辺方向(図3~図5のX方向)に沿って上段および下段にそれぞれ複数の正方形状の孔部91が等間隔で形成される。上段および下段の複数の孔部91は、バッテリブロック10Bにおける上段および下段の複数のバッテリセル10に対応するように配置される。各孔部91には、対応するバッテリセル10のプラス電極10aまたはマイナス電極10bを嵌め込まれる。 As shown in FIGS. 7A and 7B, the battery holder 90 has a plurality of square holes in the upper and lower stages along the long side direction (X direction in FIGS. 3 to 5). 91 are formed at equal intervals. The plurality of upper and lower hole portions 91 are arranged to correspond to the plurality of upper and lower battery cells 10 in the battery block 10B. The positive electrode 10a or the negative electrode 10b of the corresponding battery cell 10 is fitted into each hole 91.
 図7(b)~図7(d)に示すように、バッテリホルダ90の内面には、複数の孔部91をそれぞれ取り囲むように複数の円環状の突起部92が等間隔で形成される。上段および下段の複数の突起部92は、バッテリブロック10Bにおける上段および下段の複数のバッテリセル10に対応するように配置される。各突起部92の中心は、各孔部91の中心と一致する。各突起部92内には図6のバッテリセル10の端部が嵌め込まれる。 7B to 7D, on the inner surface of the battery holder 90, a plurality of annular protrusions 92 are formed at equal intervals so as to surround the plurality of holes 91, respectively. The plurality of upper and lower protrusions 92 are arranged so as to correspond to the upper and lower battery cells 10 in the battery block 10B. The center of each protrusion 92 coincides with the center of each hole 91. The end portion of the battery cell 10 of FIG.
 バッテリホルダ90の四隅には孔部93が形成される。各孔部93には後述する図8の締結部材13が挿通される。また、バッテリホルダ90には、長辺方向(図3~図5のX方向)に沿って3個の孔部94が等間隔に形成される。孔部94には図2および図3の導体線52aが挿通される。 The hole 93 is formed in the four corners of the battery holder 90. A fastening member 13 shown in FIG. 8 to be described later is inserted into each hole 93. Further, three holes 94 are formed in the battery holder 90 at equal intervals along the long side direction (X direction in FIGS. 3 to 5). 2 and 3 is inserted into the hole 94.
 図7(d)に示すように、バッテリホルダ90の短辺に沿った端面には、所定の間隔で2個のねじ穴95が形成される。ねじ穴95には、後述する図16のねじSが螺合される。 As shown in FIG. 7D, two screw holes 95 are formed on the end surface along the short side of the battery holder 90 at a predetermined interval. A screw S shown in FIG. 16 described later is screwed into the screw hole 95.
 図8は図3のバッテリモジュール100におけるバッテリブロック10Bの端面図であり、図9は図8のバッテリブロック10Bの平面図であり、図10は図8のバッテリブロック10Bの一方の側面図であり、図11は図8のバッテリブロック10Bの他方の側面図である。 8 is an end view of the battery block 10B in the battery module 100 of FIG. 3, FIG. 9 is a plan view of the battery block 10B of FIG. 8, and FIG. 10 is a side view of one side of the battery block 10B of FIG. FIG. 11 is a side view of the other side of the battery block 10B of FIG.
 上記のように、バッテリブロック10Bにおいては、上段および下段の複数のバッテリセル10が一対のバッテリホルダ90の上段および下段の複数の孔部91にそれぞれ対応するように配置される。ここで、隣り合う各2つのバッテリセル10間でプラス電極10aおよびマイナス電極10bの位置関係が互いに逆になるように配置される。それにより、隣り合う各2つのバッテリセル10のうち一方のバッテリセル10のプラス電極10aと他方のバッテリセル10のマイナス電極10bとが隣り合い、一方のバッテリセル10のマイナス電極10bと他方のバッテリセル10のプラス電極10aとが隣り合う。 As described above, in the battery block 10B, the upper and lower battery cells 10 are arranged so as to correspond to the upper and lower holes 91 of the pair of battery holders 90, respectively. Here, it arrange | positions so that the positional relationship of the plus electrode 10a and the minus electrode 10b may become mutually opposite between each two adjacent battery cells 10. FIG. Thereby, the positive electrode 10a of one battery cell 10 and the negative electrode 10b of the other battery cell 10 are adjacent to each other, and the negative electrode 10b of one battery cell 10 and the other battery are adjacent to each other. The plus electrode 10a of the cell 10 is adjacent.
 この状態で、図8~図11に示すように、バッテリセル10のプラス電極10aおよびマイナス電極10bが一対のバッテリホルダ90の内面から孔部91に嵌め込まれるとともに、バッテリセル10の両端部が一対のバッテリホルダ90の内面の突起部92内に嵌め込まれる。各バッテリセル10のプラス電極10aおよびマイナス電極10bは、一対のバッテリホルダ90の外面から突出する。 In this state, as shown in FIGS. 8 to 11, the plus electrode 10a and the minus electrode 10b of the battery cell 10 are fitted into the holes 91 from the inner surfaces of the pair of battery holders 90, and both ends of the battery cell 10 are paired. The battery holder 90 is fitted into the protrusion 92 on the inner surface. The positive electrode 10 a and the negative electrode 10 b of each battery cell 10 protrude from the outer surfaces of the pair of battery holders 90.
 また、一対のバッテリホルダ90の孔部93に棒状の締結部材13の両端が挿通される。締結部材13の両端には雄ねじが形成されている。この状態で、締結部材13の両端にナットNが取り付けられることにより、複数のバッテリセル10と一対のバッテリホルダ90とが一体的に固定される。このようにして、バッテリブロック10Bが構成される。 Further, both ends of the rod-shaped fastening member 13 are inserted into the holes 93 of the pair of battery holders 90. Male screws are formed at both ends of the fastening member 13. In this state, the nuts N are attached to both ends of the fastening member 13, whereby the plurality of battery cells 10 and the pair of battery holders 90 are integrally fixed. In this way, the battery block 10B is configured.
 ここで、バッテリブロック10Bを取り囲む仮想的な直方体を考える。直方体の6つの仮想面のうち、上段および下段の一端部に位置するバッテリセル10の外周面に対向する仮想面をバッテリブロック10Bの側面Eaと呼び、上段および下段の他端部に位置するバッテリセル10の外周面に対向する仮想面をバッテリブロック10Bの側面Ebと呼ぶ。また、直方体の6つの仮想面のうち、複数のバッテリセル10の一方の端面に対向する仮想面をバッテリブロック10Bの側面Ecと呼び、複数のバッテリセル10の他方の端面に対向する仮想面をバッテリブロック10Bの側面Edと呼ぶ。さらに、直方体の6つの仮想面のうち、上段の複数のバッテリセル10の外周面に対向する仮想面をバッテリブロック10Bの側面Eeと呼び、下段の複数のバッテリセル10の外周面に対向する仮想面をバッテリブロック10Bの側面Efと呼ぶ。 Here, consider a virtual rectangular parallelepiped surrounding the battery block 10B. Of the six virtual surfaces of the rectangular parallelepiped, the virtual surface facing the outer peripheral surface of the battery cell 10 located at one end of the upper and lower stages is called the side surface Ea of the battery block 10B, and the battery located at the other end of the upper and lower stages A virtual surface facing the outer peripheral surface of the cell 10 is referred to as a side surface Eb of the battery block 10B. In addition, among the six virtual surfaces of the rectangular parallelepiped, a virtual surface that faces one end surface of the plurality of battery cells 10 is referred to as a side surface Ec of the battery block 10B, and a virtual surface that faces the other end surface of the plurality of battery cells 10 This is referred to as a side surface Ed of the battery block 10B. Further, among the six virtual surfaces of the rectangular parallelepiped, a virtual surface that faces the outer peripheral surface of the upper plurality of battery cells 10 is called a side surface Ee of the battery block 10B, and a virtual surface that faces the outer peripheral surfaces of the lower plurality of battery cells 10. The surface is referred to as a side surface Ef of the battery block 10B.
 バッテリブロック10Bの側面Ea,Ebは、上段または下段の複数のバッテリセル10の整列方向(X方向)に垂直である。バッテリブロック10Bの側面Ec,Edは、各バッテリセル10の軸方向(Y方向)に垂直である。バッテリブロック10Bの側面Ee,Efは、上段または下段の複数のバッテリセル10の整列方向(X方向)および各バッテリセル10の軸方向(Y方向)に平行である。 The side surfaces Ea and Eb of the battery block 10B are perpendicular to the alignment direction (X direction) of the plurality of upper or lower battery cells 10. The side surfaces Ec and Ed of the battery block 10B are perpendicular to the axial direction (Y direction) of each battery cell 10. The side surfaces Ee and Ef of the battery block 10B are parallel to the alignment direction (X direction) of the plurality of upper or lower battery cells 10 and the axial direction (Y direction) of each battery cell 10.
 各バッテリセル10のプラス電極10aおよびマイナス電極10bの一方はバッテリブロック10Bの側面Ecに配置され、他方はバッテリブロック10Bの側面Edに配置される。 One of the positive electrode 10a and the negative electrode 10b of each battery cell 10 is disposed on the side surface Ec of the battery block 10B, and the other is disposed on the side surface Ed of the battery block 10B.
 図3~図5に戻り、バッテリブロック10Bにおいて、複数のバッテリセル10は、複数のバスバー40,40aおよび六角ボルト14により直列接続される。また、バッテリブロック10Bには、複数のサーミスタ11が取り付けられる。 3-5, in the battery block 10B, the plurality of battery cells 10 are connected in series by the plurality of bus bars 40, 40a and the hexagon bolts 14. A plurality of thermistors 11 are attached to the battery block 10B.
 プリント回路基板21はバッテリブロック10Bの側面Eaに設けられる。プリント回路基板21には、各バッテリセル10のセル情報を検出するための検出回路20ならびに図2の抵抗Rおよびスイッチング素子SWが実装される。 The printed circuit board 21 is provided on the side surface Ea of the battery block 10B. The printed circuit board 21 is mounted with a detection circuit 20 for detecting cell information of each battery cell 10 and the resistor R and switching element SW shown in FIG.
 バッテリブロック10Bの側面Ec上から側面Ea上に延びるように長尺状のFPC基板50が設けられる。また、バッテリブロック10Bの側面Ed上から側面Ea上に延びるように長尺状のFPC基板50が設けられる。各FPC基板50は、導体線51(図1参照)および導体線52(後述する図14参照)が柔軟性材料からなる基板に一体的に形成された構成を有し、屈曲性および可撓性を有する。FPC基板50を構成する絶縁層の材料としては例えばポリイミドが用いられ、導体線51の材料としては例えば銅が用いられる。FPC基板50上において、各バスバー40,40aに近接するように各PTC素子60が配置される。 A long FPC board 50 is provided so as to extend from the side surface Ec of the battery block 10B to the side surface Ea. Further, a long FPC board 50 is provided so as to extend from the side surface Ed of the battery block 10B to the side surface Ea. Each FPC board 50 has a configuration in which a conductor wire 51 (see FIG. 1) and a conductor wire 52 (see FIG. 14 described later) are integrally formed on a board made of a flexible material, and is flexible and flexible. Have For example, polyimide is used as the material of the insulating layer constituting the FPC board 50, and copper is used as the material of the conductor wire 51, for example. On the FPC board 50, the PTC elements 60 are arranged so as to be close to the bus bars 40, 40a.
 バッテリモジュール100のバスバー40,40aおよびサーミスタ11は、FPC基板50に形成された導体線51(図1参照)および導体線52(後述する図14参照)により、それぞれプリント回路基板21に電気的に接続される。 The bus bars 40, 40a and the thermistor 11 of the battery module 100 are electrically connected to the printed circuit board 21 by conductor lines 51 (see FIG. 1) and conductor lines 52 (see FIG. 14 described later) formed on the FPC board 50, respectively. Connected.
 以下の説明では、図3~図5のバッテリブロック10Bの上段に配置される6個のバッテリセル10のうち、側面Eaに最も近いバッテリセル10から側面Ebに最も近いバッテリセル10までを1番目~6番目のバッテリセル10と呼ぶ。また、バッテリブロック10Bの下段に配置される6個のバッテリセル10のうち、側面Ebに最も近いバッテリセル10から側面Eaに最も近いバッテリセル10までを7番目~12番目のバッテリセル10と呼ぶ。 In the following description, out of the six battery cells 10 arranged in the upper stage of the battery block 10B of FIGS. 3 to 5, the battery cell 10 closest to the side surface Ea to the battery cell 10 closest to the side surface Eb is the first. This is called the sixth battery cell 10. Among the six battery cells 10 arranged in the lower stage of the battery block 10B, the battery cells 10 closest to the side surface Eb to the battery cells 10 closest to the side surface Ea are referred to as the seventh to twelfth battery cells 10. .
 上記のように、バッテリブロック10Bにおいて、各バッテリセル10は、隣り合うバッテリセル10間でプラス電極10aおよびマイナス電極10bの位置関係が互いに逆になるように配置されるので、隣り合う2個のバッテリセル10間では、一方のバッテリセル10のプラス電極10aと他方のバッテリセル10のマイナス電極10bとが近接し、一方のバッテリセル10のマイナス電極10bと他方のバッテリセル10のプラス電極10aとが近接する。この状態で、複数のバッテリセル10が直列接続されるように近接するプラス電極10aおよびマイナス電極10bにバスバー40が取り付けられる。 As described above, in the battery block 10B, each battery cell 10 is disposed so that the positional relationship between the plus electrode 10a and the minus electrode 10b is opposite to each other between the adjacent battery cells 10. Between the battery cells 10, the plus electrode 10a of one battery cell 10 and the minus electrode 10b of the other battery cell 10 are close to each other, and the minus electrode 10b of one battery cell 10 and the plus electrode 10a of the other battery cell 10 are Is close. In this state, the bus bar 40 is attached to the plus electrode 10a and the minus electrode 10b that are close to each other so that the plurality of battery cells 10 are connected in series.
 具体的には、1番目のバッテリセル10のマイナス電極10bと2番目のバッテリセル10のプラス電極10aとに共通のバスバー40が取り付けられる。また、2番目のバッテリセル10のマイナス電極10bと3番目のバッテリセル10のプラス電極10aとに共通のバスバー40が取り付けられる。同様にして、各奇数番目のバッテリセル10のマイナス電極10bとそれに隣り合う偶数番目のバッテリセル10のプラス電極10aとに共通のバスバー40が取り付けられる。各偶数番目のバッテリセル10のマイナス電極10bとそれに隣り合う奇数番目のバッテリセル10のプラス電極10aとに共通のバスバー40が取り付けられる。 Specifically, a common bus bar 40 is attached to the negative electrode 10b of the first battery cell 10 and the positive electrode 10a of the second battery cell 10. A common bus bar 40 is attached to the negative electrode 10b of the second battery cell 10 and the positive electrode 10a of the third battery cell 10. Similarly, a common bus bar 40 is attached to the minus electrode 10b of each odd-numbered battery cell 10 and the plus electrode 10a of the even-numbered battery cell 10 adjacent thereto. A common bus bar 40 is attached to the minus electrode 10b of each even-numbered battery cell 10 and the plus electrode 10a of the odd-numbered battery cell 10 adjacent thereto.
 また、1番目のバッテリセル10のプラス電極10aおよび12番目のバッテリセル10のマイナス電極10bには、外部から電源線501(図1参照)を接続するためのバスバー40aがそれぞれ取り付けられる。 Further, a bus bar 40a for connecting a power line 501 (see FIG. 1) from the outside is attached to the plus electrode 10a of the first battery cell 10 and the minus electrode 10b of the twelfth battery cell 10, respectively.
 図4に示すように、一方のFPC基板50は、バッテリブロック10Bの側面Ec上の中央部で複数のバッテリセル10の整列方向(X方向)に延びるように配置される。このFPC基板50は複数のバスバー40に共通して接続される。図5に示すように、他方のFPC基板50は、バッテリブロック10Bの側面Ed上の中央部で複数のバッテリセル10の整列方向(X方向)に延びるように配置される。このFPC基板50は複数のバスバー40,40aに共通して接続される。このように、FPC基板50は、複数のバッテリセル10の整列方向(X方向)に沿って、複数のバッテリセル10のプラス電極10aおよびマイナス電極10bならびに複数のバスバー40間に取り付けられる。 As shown in FIG. 4, one FPC board 50 is arranged to extend in the alignment direction (X direction) of the plurality of battery cells 10 at the center on the side surface Ec of the battery block 10B. The FPC board 50 is commonly connected to the plurality of bus bars 40. As shown in FIG. 5, the other FPC board 50 is arranged so as to extend in the alignment direction (X direction) of the plurality of battery cells 10 at the central portion on the side surface Ed of the battery block 10B. The FPC board 50 is commonly connected to the plurality of bus bars 40, 40a. As described above, the FPC board 50 is attached between the plus electrodes 10 a and the minus electrodes 10 b of the plurality of battery cells 10 and the plurality of bus bars 40 along the alignment direction (X direction) of the plurality of battery cells 10.
 側面Ec上のFPC基板50は、バッテリブロック10Bの側面Ecの一方の端部で側面Ea上に向かって直角に折り返され、プリント回路基板21に接続される。また、側面Ed上のFPC基板50は、バッテリブロック10Bの側面Edの一方の端部で側面Ea上に向かって直角に折り返され、プリント回路基板21に接続される。このように構成されたバッテリモジュール100は、後述する図19のケーシング110に収容される。 The FPC board 50 on the side surface Ec is folded at a right angle toward the side surface Ea at one end of the side surface Ec of the battery block 10B and connected to the printed circuit board 21. Further, the FPC board 50 on the side surface Ed is folded at a right angle toward the side surface Ea at one end of the side surface Ed of the battery block 10B and connected to the printed circuit board 21. The battery module 100 configured as described above is accommodated in a casing 110 of FIG.
 (3)バスバーおよびFPC基板の構造
 次に、バスバー40,40aおよびFPC基板50の構造の詳細を説明する。以下、隣り合う2個のバッテリセル10のプラス電極10aとマイナス電極10bとを接続するためのバスバー40を2電極用のバスバー40と呼び、1個のバッテリセル10のプラス電極10aまたはマイナス電極10bと電源線501とを接続するためのバスバー40aを1電極用のバスバー40aと呼ぶ。
(3) Structure of Bus Bar and FPC Board Next, details of the structure of the bus bars 40 and 40a and the FPC board 50 will be described. Hereinafter, the bus bar 40 for connecting the plus electrode 10a and the minus electrode 10b of two adjacent battery cells 10 is called a two-electrode bus bar 40, and the plus electrode 10a or the minus electrode 10b of one battery cell 10 is called. The bus bar 40a for connecting the power line 501 and the power line 501 is referred to as a one-electrode bus bar 40a.
 図12(a)は2電極用のバスバー40の外観斜視図であり、図12(b)は1電極用のバスバー40aの外観斜視図である。 12 (a) is an external perspective view of the bus bar 40 for two electrodes, and FIG. 12 (b) is an external perspective view of the bus bar 40a for one electrode.
 図12(a)に示すように、2電極用のバスバー40は、略長方形状を有するベース部41およびそのベース部41の一辺からその一面側に屈曲して延びる一対の取付片42を備える。ベース部41には、一対の電極接続孔43が形成される。 As shown in FIG. 12 (a), the two-electrode bus bar 40 includes a base portion 41 having a substantially rectangular shape and a pair of attachment pieces 42 that bend and extend from one side of the base portion 41 to one surface thereof. A pair of electrode connection holes 43 are formed in the base portion 41.
 図12(b)に示すように、1電極用のバスバー40aは、略正方形状を有するベース部45およびそのベース部45の一辺からその一面側に屈曲して延びる取付片46を備える。ベース部45には、電極接続孔47が形成される。 As shown in FIG. 12B, the bus bar 40a for one electrode includes a base portion 45 having a substantially square shape and a mounting piece 46 that is bent and extends from one side of the base portion 45 to one surface thereof. An electrode connection hole 47 is formed in the base portion 45.
 本実施の形態において、バスバー40,40aは、例えばタフピッチ銅の表面にニッケルめっきが施された構成を有する。 In the present embodiment, the bus bars 40, 40a have a configuration in which, for example, nickel plating is applied to the surface of tough pitch copper.
 図13は、FPC基板50に複数のバスバー40,40aおよびPTC素子60が取り付けられた状態を示す外観斜視図である。図13に示すように、2枚のFPC基板50には、複数のバッテリセル10(図3参照)の整列方向(X方向)に沿って所定の間隔で複数のバスバー40,40aの取付片42,46が取り付けられる。また、複数のPTC素子60は、複数のバスバー40,40aの間隔と同じ間隔で2枚のFPC基板50にそれぞれ取り付けられる。このように、FPC基板50と複数のバスバー40,40aとが一体的に結合された部材を以下、配線部材70と呼ぶ。 FIG. 13 is an external perspective view showing a state in which a plurality of bus bars 40, 40a and a PTC element 60 are attached to the FPC board 50. FIG. As shown in FIG. 13, the two FPC boards 50 have mounting pieces 42 for a plurality of bus bars 40, 40a at predetermined intervals along the alignment direction (X direction) of the plurality of battery cells 10 (see FIG. 3). , 46 are attached. Further, the plurality of PTC elements 60 are respectively attached to the two FPC boards 50 at the same interval as the interval between the plurality of bus bars 40, 40a. A member in which the FPC board 50 and the plurality of bus bars 40, 40a are integrally coupled in this manner is hereinafter referred to as a wiring member 70.
 この場合、複数のバスバー40,40aは、2枚のFPC基板50の外周に沿って配置されるので、2枚のFPC基板50に形成される導体線51,52(後述する図14参照)と交差することがない。これにより、複数のバスバー40,40aと導体線51,52との短絡を防止することができる。 In this case, since the plurality of bus bars 40 and 40a are arranged along the outer periphery of the two FPC boards 50, conductor wires 51 and 52 (see FIG. 14 described later) formed on the two FPC boards 50 and Never cross. Thereby, a short circuit with a plurality of bus bars 40 and 40a and conductor lines 51 and 52 can be prevented.
 また、前述のように、各バッテリモジュール100に流れる電流を検出するために、複数のバスバー40のうちの少なくとも1つのバスバー40にシャント抵抗が形成される。ここで、シャント抵抗は、バスバー40の材料または寸法を調整することにより形成される。ここで、寸法とは、抵抗として利用するバスバー40の領域の断面積および長さのことである。そのため、バスバー40の長さの調整は、電極接続孔43間の間隔により制限を受ける。 Also, as described above, a shunt resistor is formed in at least one bus bar 40 among the plurality of bus bars 40 in order to detect the current flowing through each battery module 100. Here, the shunt resistor is formed by adjusting the material or dimensions of the bus bar 40. Here, the dimensions are a cross-sectional area and a length of a region of the bus bar 40 used as a resistance. Therefore, the adjustment of the length of the bus bar 40 is limited by the distance between the electrode connection holes 43.
 本実施の形態において、シャント抵抗は、上段の一端部に位置するバッテリセル10(6番目のバッテリセル10)と下段の一端部に位置するバッテリセル10(7番目のバッテリセル10)とを接続するバスバー40に形成される。このバスバー40を電圧電流バスバー40y(図13参照)と呼ぶ。 In this embodiment, the shunt resistor connects the battery cell 10 (sixth battery cell 10) located at one end of the upper stage and the battery cell 10 (seventh battery cell 10) located at one end of the lower stage. The bus bar 40 is formed. This bus bar 40 is referred to as a voltage / current bus bar 40y (see FIG. 13).
 この場合、電圧電流バスバー40yは他のバスバー40と直交する方向に延びるように配置されるので、シャント抵抗の形成のために電圧電流バスバー40yの寸法を調整しても、バッテリモジュール100のサイズが複数のバッテリセル10(図3参照)の整列方向(X方向)に変化することがない。 In this case, since the voltage / current bus bar 40y is arranged so as to extend in a direction orthogonal to the other bus bars 40, even if the dimensions of the voltage / current bus bar 40y are adjusted to form a shunt resistor, the size of the battery module 100 is reduced. There is no change in the alignment direction (X direction) of the plurality of battery cells 10 (see FIG. 3).
 電圧電流バスバー40yを流れる電流は、検出回路20により検出される。この場合、電圧電流バスバー40yと検出回路20との接続には、2本の電位差検出線が設けられる。この2本の電位差検出線のうちの一方として、FPC基板50に設けられる導体線51(後述する図14参照)のうち電圧電流バスバー40yの一方の取付片42に接続された導体線51を用いることができる。この導体線51はプリント回路基板21上の検出回路20に接続される。同様に、電位差検出線のうちの他方として、FPC基板50に設けられる導体線51(後述する図14参照)のうち電圧電流バスバー40yの他方の取付片42に接続された導体線51を用いることができる。この導体線51はプリント回路基板21上の検出回路20に接続される。 The current flowing through the voltage / current bus bar 40y is detected by the detection circuit 20. In this case, two potential difference detection lines are provided for the connection between the voltage / current bus bar 40y and the detection circuit 20. As one of the two potential difference detection lines, a conductor line 51 connected to one attachment piece 42 of the voltage / current bus bar 40y among conductor lines 51 (see FIG. 14 described later) provided on the FPC board 50 is used. be able to. The conductor line 51 is connected to the detection circuit 20 on the printed circuit board 21. Similarly, the conductor wire 51 connected to the other attachment piece 42 of the voltage / current bus bar 40y among the conductor wires 51 (see FIG. 14 described later) provided on the FPC board 50 is used as the other of the potential difference detection lines. Can do. The conductor line 51 is connected to the detection circuit 20 on the printed circuit board 21.
 バッテリモジュール100を作製する際には、バッテリブロック10Bの側面Ec,Ed(図4および図5参照)上に、配線部材70がそれぞれ配置される。そして、隣り合うバッテリセル10のプラス電極10aのねじ穴9a(図6参照)およびマイナス電極10bのねじ穴9b(図6参照)が各バスバー40に形成された2つの電極接続孔43に重ね合わされるとともに、1つのバッテリセル10のプラス電極10aのねじ穴9aおよび他の1つのバッテリセル10のマイナス電極10bのねじ穴9bがバスバー40aの電極接続孔47にそれぞれ重ね合わされる。この状態で六角ボルト14(図3参照)がバスバー40,40aの電極接続孔43,47を通してプラス電極10aおよびマイナス電極10bのねじ穴9a,9bに螺合される。 When producing the battery module 100, the wiring members 70 are respectively disposed on the side surfaces Ec and Ed (see FIGS. 4 and 5) of the battery block 10B. Then, the screw hole 9a (see FIG. 6) of the plus electrode 10a of the adjacent battery cell 10 and the screw hole 9b (see FIG. 6) of the minus electrode 10b are overlapped with the two electrode connection holes 43 formed in each bus bar 40. In addition, the screw hole 9a of the plus electrode 10a of one battery cell 10 and the screw hole 9b of the minus electrode 10b of another battery cell 10 are overlapped with the electrode connection hole 47 of the bus bar 40a. In this state, the hexagon bolt 14 (see FIG. 3) is screwed into the screw holes 9a and 9b of the plus electrode 10a and the minus electrode 10b through the electrode connection holes 43 and 47 of the bus bars 40 and 40a.
 このようにして、複数のバッテリセル10に複数のバスバー40,40aが取り付けられるとともに、複数のバスバー40,40aにより各FPC基板50が複数のバッテリセル10の整列方向(X方向)に延びるように略垂直姿勢で保持される。配線部材70をバッテリブロック10Bに取り付けることによりバッテリモジュール100を容易に組み立てることができる。 In this way, the plurality of bus bars 40, 40a are attached to the plurality of battery cells 10, and the FPC boards 50 extend in the alignment direction (X direction) of the plurality of battery cells 10 by the plurality of bus bars 40, 40a. It is held in a substantially vertical posture. The battery module 100 can be easily assembled by attaching the wiring member 70 to the battery block 10B.
 (4)バスバー、FPC基板および検出回路の接続
 次に、バスバー40,40a、FPC基板50および検出回路20の接続について説明する。図14は、バスバー40,40aおよびサーミスタ11と検出回路20との接続について説明するための模式的平面図である。図14に示すように、FPC基板50の主面には、複数のバスバー40,40aに対応するように複数の導体線51が設けられ、複数のサーミスタ11に対応するように複数の導体線52が設けられる。また、FPC基板50の主面の長辺に沿って複数のバスバー40,40aに対応するように複数の接続パッド51aが設けられる。
(4) Connection of Bus Bar, FPC Board and Detection Circuit Next, connection of the bus bars 40 and 40a, the FPC board 50 and the detection circuit 20 will be described. FIG. 14 is a schematic plan view for explaining the connection between the bus bars 40 and 40 a and the thermistor 11 and the detection circuit 20. As shown in FIG. 14, a plurality of conductor wires 51 are provided on the main surface of the FPC board 50 so as to correspond to the plurality of bus bars 40, 40 a, and a plurality of conductor wires 52 are provided so as to correspond to the plurality of thermistors 11. Is provided. A plurality of connection pads 51a are provided along the long sides of the main surface of the FPC board 50 so as to correspond to the plurality of bus bars 40, 40a.
 各導体線51の一端部は、PTC素子60を介して各接続パッド51aに接続される。各接続パッド51aは、例えば半田付けまたは溶接により各バスバー40,40aの取付片42,46に電気的に接続される。それにより、FPC基板50が各バスバー40,40aに固定される。 One end of each conductor wire 51 is connected to each connection pad 51a via a PTC element 60. Each connection pad 51a is electrically connected to the mounting pieces 42, 46 of each bus bar 40, 40a, for example, by soldering or welding. Thereby, the FPC board 50 is fixed to each bus bar 40, 40a.
 各PTC素子60は、対応するバスバー40,40aの両端間の領域に配置されることが好ましい。FPC基板50に応力が加わった場合、隣り合うバスバー40,40a間におけるFPC基板50の領域は撓みやすいが、各バスバー40,40aの両端部間におけるFPC基板50の領域はバスバー40,40aに固定されているため、比較的平坦に維持される。そのため、各PTC素子60が各バスバー40,40aの両端部間におけるFPC基板50の領域内に配置されることにより、PTC素子60と導体線51との接続性が十分に確保される。また、FPC基板50の撓みによる各PTC素子60への影響(例えば、PTC素子60の抵抗値の変化)が抑制される。 Each PTC element 60 is preferably arranged in a region between both ends of the corresponding bus bar 40, 40a. When stress is applied to the FPC board 50, the area of the FPC board 50 between the adjacent bus bars 40, 40a is easily bent, but the area of the FPC board 50 between both ends of each bus bar 40, 40a is fixed to the bus bars 40, 40a. Therefore, it is kept relatively flat. Therefore, each PTC element 60 is disposed in the region of the FPC board 50 between both ends of each bus bar 40, 40 a, thereby ensuring sufficient connectivity between the PTC element 60 and the conductor wire 51. Moreover, the influence (for example, change of the resistance value of the PTC element 60) on each PTC element 60 by the bending of the FPC board 50 is suppressed.
 また、各導体線52の一端部は、図3の導体線52aを用いて各サーミスタ11に電気的に接続される。 Also, one end of each conductor wire 52 is electrically connected to each thermistor 11 using the conductor wire 52a of FIG.
 図3のプリント回路基板21には、FPC基板50の複数の導体線51,52に対応した複数の接続端子22(後述する図15参照)が設けられる。FPC基板50の各導体線51,52の他端部は、FPC基板50の裏面側に露出するように設けられる。裏面部に露出する導体線51,52の他端部が例えば半田付けまたは溶接により対応するプリント回路基板21上の接続端子22に接続される。なお、プリント回路基板21とFPC基板50との接続は、半田付けまたは溶接に限らずコネクタを用いて行われてもよい。 3 is provided with a plurality of connection terminals 22 (see FIG. 15 to be described later) corresponding to the plurality of conductor lines 51 and 52 of the FPC board 50. The other end portions of the conductor lines 51 and 52 of the FPC board 50 are provided so as to be exposed on the back side of the FPC board 50. The other ends of the conductor wires 51 and 52 exposed on the back surface are connected to the corresponding connection terminals 22 on the printed circuit board 21 by, for example, soldering or welding. The connection between the printed circuit board 21 and the FPC board 50 is not limited to soldering or welding, and may be performed using a connector.
 このようにして、各バスバー40,40aがPTC素子60を介して検出回路20に電気的に接続されるとともに、各サーミスタ11が検出回路20に電気的に接続される。なお、図14では、バッテリブロック10Bの側面Ed(図5参照)上のFPC基板50および各バスバー40,40aと検出回路20との接続方法が図示されるが、バッテリブロック10Bの側面Ec(図4参照)上のFPC基板50および各バスバー40,40aと検出回路20との接続方法についても図14の接続方法と同様である。 In this way, each bus bar 40, 40a is electrically connected to the detection circuit 20 via the PTC element 60, and each thermistor 11 is electrically connected to the detection circuit 20. In FIG. 14, the FPC board 50 on the side surface Ed (see FIG. 5) of the battery block 10B and the method of connecting the bus bars 40, 40a and the detection circuit 20 are illustrated, but the side surface Ec of the battery block 10B (see FIG. 4) The connection method between the FPC board 50 and each bus bar 40, 40a and the detection circuit 20 is the same as the connection method of FIG.
 (5)プリント回路基板の一構成例
 次に、プリント回路基板21の一構成例について説明する。図15は、プリント回路基板21の一構成例を示す模式的平面図である。プリント回路基板21は略矩形状を有し、一面および他面を有する。図15(a)および図15(b)は、それぞれプリント回路基板21の一面および他面を示す。
(5) One Configuration Example of Printed Circuit Board Next, one configuration example of the printed circuit board 21 will be described. FIG. 15 is a schematic plan view illustrating a configuration example of the printed circuit board 21. The printed circuit board 21 has a substantially rectangular shape and has one side and the other side. FIG. 15A and FIG. 15B show one surface and the other surface of the printed circuit board 21, respectively.
 図15(a)に示すように、プリント回路基板21上の一面には、検出回路20が実装されるとともに、複数の接続端子22およびコネクタ23が形成される。また、プリント回路基板21の四隅には孔部Hが形成される。検出回路20と複数の接続端子22とはプリント回路基板21上で接続線により電気的に接続される。また、検出回路20とコネクタ23とはプリント回路基板21上で接続線により電気的に接続される。 As shown in FIG. 15A, on one surface of the printed circuit board 21, the detection circuit 20 is mounted, and a plurality of connection terminals 22 and connectors 23 are formed. In addition, holes H are formed at the four corners of the printed circuit board 21. The detection circuit 20 and the plurality of connection terminals 22 are electrically connected on the printed circuit board 21 by connection lines. The detection circuit 20 and the connector 23 are electrically connected to each other on the printed circuit board 21 by a connection line.
 図15(b)に示すように、プリント回路基板21の他面には、複数の抵抗Rおよび複数のスイッチング素子SWが実装される。これにより、抵抗Rから発生する熱を効率よく放散させることができる。また、抵抗Rから発生する熱が検出回路20に伝導することを防止することができる。その結果、検出回路20の熱による誤動作および劣化を防止することができる。 As shown in FIG. 15B, a plurality of resistors R and a plurality of switching elements SW are mounted on the other surface of the printed circuit board 21. Thereby, the heat generated from the resistor R can be efficiently dissipated. Further, heat generated from the resistor R can be prevented from being conducted to the detection circuit 20. As a result, malfunction and deterioration due to heat of the detection circuit 20 can be prevented.
 図16は、図8のバッテリブロック10Bにプリント回路基板21が取り付けられた状態を示す側面図である。図16に示すように、プリント回路基板21の孔部H(図15参照)には、ねじSが挿通される。この状態で、ねじSがバッテリホルダ90のねじ穴95(図7(d)参照)に螺合されることにより、プリント回路基板21がバッテリブロック10Bの側面Eaに取り付けられる。 FIG. 16 is a side view showing a state where the printed circuit board 21 is attached to the battery block 10B of FIG. As shown in FIG. 16, a screw S is inserted into the hole H (see FIG. 15) of the printed circuit board 21. In this state, the screw S is screwed into the screw hole 95 (see FIG. 7D) of the battery holder 90, whereby the printed circuit board 21 is attached to the side surface Ea of the battery block 10B.
 バッテリブロック10Bにプリント回路基板21および2枚のFPC基板50が取り付けられることにより、バッテリモジュール100が構成される。ここで、プリント回路基板21は、他面(抵抗Rおよびスイッチング素子SWが実装される面)がバッテリブロック10Bに対向するように取り付けられる。また、プリント回路基板21の他面とバッテリブロック10Bとの間には、冷却用空気が流入するための空間が設けられる。これにより、後述するバッテリセル10の均等化制御が行われる際でも、抵抗Rに発生するジュール熱が効率よく放散される。 The battery module 100 is configured by attaching the printed circuit board 21 and the two FPC boards 50 to the battery block 10B. Here, the printed circuit board 21 is attached so that the other surface (the surface on which the resistor R and the switching element SW are mounted) faces the battery block 10B. In addition, a space for cooling air to flow in is provided between the other surface of the printed circuit board 21 and the battery block 10B. Thereby, even when equalization control of the battery cells 10 to be described later is performed, Joule heat generated in the resistor R is efficiently dissipated.
 (6)バッテリモジュールの組み立て
 バッテリモジュール100の具体的な組み立て工程を以下に示す。
(6) Assembly of battery module The specific assembly process of the battery module 100 is shown below.
 まず、FPC基板50とバスバー40,40aとを結合して配線部材70を作製する工程を行う。この工程では、リフロー半田付けによりFPC基板50とバスバー40,40aとを結合することができる。 First, a process of manufacturing the wiring member 70 by combining the FPC board 50 and the bus bars 40 and 40a is performed. In this step, the FPC board 50 and the bus bars 40, 40a can be coupled by reflow soldering.
 次に、配線部材70のFPC基板50と検出回路20とを結合する工程を行う。この工程では、検出回路20が備えられたプリント回路基板21の接続端子22(図15(a)参照)とFPC基板50の端子とをパルスヒート接合によって結合することができる。 Next, a process of coupling the FPC board 50 of the wiring member 70 and the detection circuit 20 is performed. In this step, the connection terminal 22 (see FIG. 15A) of the printed circuit board 21 provided with the detection circuit 20 and the terminal of the FPC board 50 can be coupled by pulse heat bonding.
 さらに、配線部材70のバスバー40,40aをバッテリモジュール100のバッテリセル10のプラス電極10aおよびマイナス電極10bに結合する工程を行う。この工程では、六角ボルト14(図3参照)が電極接続孔43,47(図12参照)を通してねじ穴9a,9b(図6参照)に螺合されることにより、バスバー40,40aとプラス電極10aおよびマイナス電極10bとが結合される。 Further, a process of coupling the bus bars 40 and 40a of the wiring member 70 to the plus electrode 10a and the minus electrode 10b of the battery cell 10 of the battery module 100 is performed. In this step, the hexagon bolt 14 (see FIG. 3) is screwed into the screw holes 9a and 9b (see FIG. 6) through the electrode connection holes 43 and 47 (see FIG. 12), so that the bus bars 40 and 40a and the positive electrode are connected. 10a and the negative electrode 10b are coupled.
 次に、検出回路20をバッテリブロック10Bに取り付ける工程を行う。この工程では、ねじS(図16参照)が孔部H(図15参照)を通してねじ穴95(図7(d)参照)に螺合されることにより、検出回路20が実装されたプリント回路基板21(図15参照)がバッテリブロック10Bのバッテリホルダ90(図7参照)に取り付けられる。 Next, a process of attaching the detection circuit 20 to the battery block 10B is performed. In this process, the screw S (see FIG. 16) is screwed into the screw hole 95 (see FIG. 7D) through the hole H (see FIG. 15), whereby the printed circuit board on which the detection circuit 20 is mounted. 21 (see FIG. 15) is attached to the battery holder 90 (see FIG. 7) of the battery block 10B.
 このような工程でバッテリモジュール100を組み立てることにより、FPC基板50とバスバー40,40aとを接続するリフロー半田付けのような熱処理を経る工程を、バッテリブロック10Bが存在しない状態で行うことができる。これにより、バッテリセル10の熱処理による性能の劣化、または破損を抑制することができる。 By assembling the battery module 100 in such a process, a process that undergoes a heat treatment such as reflow soldering that connects the FPC board 50 and the bus bars 40 and 40a can be performed without the battery block 10B. Thereby, the deterioration of the performance by the heat processing of the battery cell 10 or a damage can be suppressed.
 また、上記の工程の順序を変えて、バスバー40,40aをバッテリセル10のプラス電極10aおよびマイナス電極10bに接続し、FPC基板50を検出回路20に接続する工程の後に、バスバー40,40aをFPC基板50に接続する工程を行うことも可能である。 In addition, the bus bars 40 and 40a are connected to the positive electrode 10a and the negative electrode 10b of the battery cell 10 and the FPC board 50 is connected to the detection circuit 20 after the process of changing the order of the above steps, and then the bus bars 40 and 40a are connected. A step of connecting to the FPC board 50 can also be performed.
 この場合、導電性接着剤等を用いてFPC基板50とバスバー40,40aとを接続する。これにより、バッテリブロック10Bがリフロー半田付けの熱により劣化することが防止される。 In this case, the FPC board 50 and the bus bars 40, 40a are connected using a conductive adhesive or the like. This prevents the battery block 10B from being deteriorated by the heat of reflow soldering.
 また、配線部材70を作製する工程においては、PTC素子60および導体線52a(図14参照)にも同時にリフロー半田付けが行われる。さらに、PTC素子60、バスバー40,40aおよび導体線52aは、FPC基板50の同一面上に配置される。この場合、1回のリフロー半田付けにより、PTC素子60、バスバー40,40aおよび導体線52aがFPC基板50に結合される。その結果、バッテリモジュール100の組み立て工程を少なくすることができる。 Further, in the process of manufacturing the wiring member 70, reflow soldering is simultaneously performed on the PTC element 60 and the conductor wire 52a (see FIG. 14). Furthermore, the PTC element 60, the bus bars 40 and 40a, and the conductor wire 52a are arranged on the same surface of the FPC board 50. In this case, the PTC element 60, the bus bars 40 and 40a, and the conductor wire 52a are coupled to the FPC board 50 by one reflow soldering. As a result, the assembly process of the battery module 100 can be reduced.
 バッテリセル10のプラス電極10aおよびマイナス電極10bならびにサーミスタ11を検出回路20と電気的に接続する配線として、複数の導体線51,52(図14)が形成された柔軟性材料からなるFPC基板50を使用することにより、導体線51,52をコンパクトに保持して配置することができる。また、配線の取り回しが煩雑になることを防止できる。さらに、柔軟性材料の伸縮作用により、FPC基板50を取り付ける際の製造時の寸法誤差を吸収することができる。 An FPC board 50 made of a flexible material on which a plurality of conductor lines 51 and 52 (FIG. 14) are formed as wirings for electrically connecting the plus electrode 10a and the minus electrode 10b of the battery cell 10 and the thermistor 11 to the detection circuit 20. By using the conductor wires 51 and 52, the conductor wires 51 and 52 can be arranged in a compact manner. Further, it is possible to prevent the wiring arrangement from becoming complicated. Furthermore, the dimensional error at the time of manufacture at the time of attaching FPC board 50 can be absorbed by the expansion-contraction action of a flexible material.
 また、導体線51,52が柔軟性材料に固定されるので、導体線51,52の一方が断線した場合に、断線部分が導体線51,52の他方に接触することを防止することができる。それにより、導体線51,52間の短絡が防止される。その結果、バッテリモジュール100の信頼性が向上する。 In addition, since the conductor wires 51 and 52 are fixed to the flexible material, when one of the conductor wires 51 and 52 is disconnected, the disconnected portion can be prevented from coming into contact with the other of the conductor wires 51 and 52. . Thereby, a short circuit between the conductor wires 51 and 52 is prevented. As a result, the reliability of the battery module 100 is improved.
 バッテリブロック10Bにおいて、複数のバッテリセル10は一方向に整列され、複数のバッテリセル10の整列方向(X方向)の一端部に位置するバッテリセル10の外周面に対向する側面Ea(図3参照)にプリント回路基板21が配置される。また、各バッテリセル10のプラス電極10aおよびマイナス電極10bは、バッテリブロック10Bの側面Ec(図3参照)および側面Ed(図3参照)に配列される。 In the battery block 10B, the plurality of battery cells 10 are aligned in one direction, and a side surface Ea facing the outer peripheral surface of the battery cell 10 positioned at one end in the alignment direction (X direction) of the plurality of battery cells 10 (see FIG. 3). ) Is disposed on the printed circuit board 21. Further, the positive electrode 10a and the negative electrode 10b of each battery cell 10 are arranged on the side surface Ec (see FIG. 3) and the side surface Ed (see FIG. 3) of the battery block 10B.
 そのため、少数(本例では2つ)の配線部材70をバッテリブロック10Bの側面Ecおよび側面Edにおいて、複数のバッテリセル10の整列方向(X方向)に沿って配置するとともに、プリント回路基板21に接続することにより、各バッテリセル10の電圧検出を行うことができる。また、FPC基板50を帯状に形成することができるので、FPC基板50の製造時の歩留まりを改善することができる。 Therefore, a small number (two in this example) of wiring members 70 are arranged along the alignment direction (X direction) of the plurality of battery cells 10 on the side surface Ec and the side surface Ed of the battery block 10B, and on the printed circuit board 21. By connecting, voltage detection of each battery cell 10 can be performed. Further, since the FPC board 50 can be formed in a strip shape, the yield at the time of manufacturing the FPC board 50 can be improved.
 配線部材70はバスバー40,40aおよびFPC基板50により構成される。そのため、配線部材70をバッテリセル10のプラス電極10aおよびマイナス電極10bならびに検出回路20と接続するという簡単な作業により、複数のバッテリセル10を直列に接続するとともに、バッテリセル10のプラス電極10aおよびマイナス電極10bを導体線51と電気的に接続することができる。 Wiring member 70 includes bus bars 40 and 40a and FPC board 50. Therefore, a plurality of battery cells 10 are connected in series by a simple operation of connecting the wiring member 70 to the positive electrode 10a and the negative electrode 10b of the battery cell 10 and the detection circuit 20, and the positive electrode 10a of the battery cell 10 and The negative electrode 10 b can be electrically connected to the conductor wire 51.
 (7)バッテリセルの充電量の均等化制御
 図2のバッテリECU101は、各バッテリセル10のセル情報から各バッテリセル10の充電量を算出する。ここで、バッテリECU101は、あるバッテリセル10の充電量が他のバッテリセル10の充電量よりも大きいことを検出した場合、充電量の大きいバッテリセル10に接続されたスイッチング素子SWをオンにする。これにより、そのバッテリセル10に充電された電荷が抵抗Rを通して放電される。
(7) Equalization Control of Battery Cell Charge A battery ECU 101 in FIG. 2 calculates the charge amount of each battery cell 10 from the cell information of each battery cell 10. Here, when the battery ECU 101 detects that the charge amount of a certain battery cell 10 is larger than the charge amount of another battery cell 10, the battery ECU 101 turns on the switching element SW connected to the battery cell 10 having a large charge amount. . Thereby, the electric charge charged in the battery cell 10 is discharged through the resistor R.
 そのバッテリセル10の充電量が他のバッテリセル10の充電量と略等しくなるまで低下すると、バッテリECU101はそのバッテリセル10に接続されたスイッチング素子SWをオフにする。このようにして、全てのバッテリセル10の充電量が略均等に保たれる。これにより、一部のバッテリセル10の過充電および過放電を防止することができる。その結果、バッテリセル10の劣化を防止することができる。 When the charge amount of the battery cell 10 decreases until the charge amount of the other battery cell 10 becomes substantially equal, the battery ECU 101 turns off the switching element SW connected to the battery cell 10. In this way, the charge amounts of all the battery cells 10 are kept substantially equal. Thereby, the overcharge and overdischarge of some battery cells 10 can be prevented. As a result, deterioration of the battery cell 10 can be prevented.
 (8)バッテリモジュールの接続および配線
 図1のバッテリシステム500においては、複数のバッテリモジュール100のバッテリブロック10Bが直列接続されるとともに、複数のバッテリモジュール100の検出回路20(図2参照)が直列接続される。以下、バッテリブロック10Bの接続および検出回路20の接続について説明する。
(8) Connection and Wiring of Battery Modules In the battery system 500 of FIG. 1, the battery blocks 10B of the plurality of battery modules 100 are connected in series, and the detection circuits 20 (see FIG. 2) of the plurality of battery modules 100 are connected in series. Connected. Hereinafter, connection of the battery block 10B and connection of the detection circuit 20 will be described.
 図17は、図2の検出回路20の接続に用いられる入出力用ハーネス23Hの模式的平面図である。図17に示すように、入出力用ハーネス23Hは、入力コネクタ23a、中継コネクタ23b、出力コネクタ23cおよびハーネス530,540からなる。 FIG. 17 is a schematic plan view of an input / output harness 23H used for connection of the detection circuit 20 of FIG. As shown in FIG. 17, the input / output harness 23H includes an input connector 23a, a relay connector 23b, an output connector 23c, and harnesses 530 and 540.
 入力コネクタ23aはセル情報受信用の複数の入力端子を有する。中継コネクタ23bは、セル情報受信用の複数の入力端子およびセル情報送信用の複数の出力端子を有する。出力コネクタ23cは、セル情報送信用の複数の出力端子を有する。 The input connector 23a has a plurality of input terminals for receiving cell information. The relay connector 23b has a plurality of input terminals for receiving cell information and a plurality of output terminals for transmitting cell information. The output connector 23c has a plurality of output terminals for transmitting cell information.
 入力コネクタ23aの複数の入力端子と中継コネクタ23bの複数の入力端子とがハーネス530により接続される。また、中継コネクタ23bの複数の出力端子と出力コネクタ23cの複数の出力端子とがハーネス540により接続される。なお、図17ではハーネス530,540を構成する複数の導体線53,54をそれぞれ複数の実線および複数の点線で示している。 The plurality of input terminals of the input connector 23a and the plurality of input terminals of the relay connector 23b are connected by the harness 530. In addition, a plurality of output terminals of the relay connector 23 b and a plurality of output terminals of the output connector 23 c are connected by the harness 540. In FIG. 17, the plurality of conductor wires 53 and 54 constituting the harnesses 530 and 540 are indicated by a plurality of solid lines and a plurality of dotted lines, respectively.
 入出力用ハーネス23Hの中継コネクタ23bは、バッテリモジュール100のプリント回路基板21のコネクタ23に接続される。各バッテリモジュール100の入出力用ハーネス23Hの入力コネクタ23aは、隣り合う他のバッテリモジュール100の入出力用ハーネス23Hの出力コネクタ23cにハーネス560(図1参照)を介して接続される。また、各バッテリモジュール100の入出力用ハーネス23Hの出力コネクタ23cは、隣り合うさらに他のバッテリモジュール100の入出力用ハーネス23Hの入力コネクタ23aにハーネス560(図1参照)を介して接続される。 The relay connector 23b of the input / output harness 23H is connected to the connector 23 of the printed circuit board 21 of the battery module 100. The input connector 23a of the input / output harness 23H of each battery module 100 is connected to the output connector 23c of the input / output harness 23H of another adjacent battery module 100 via the harness 560 (see FIG. 1). The output connector 23c of the input / output harness 23H of each battery module 100 is connected to the input connector 23a of the input / output harness 23H of another adjacent battery module 100 via the harness 560 (see FIG. 1). .
 それにより、図1のバッテリシステム500では、複数のバッテリモジュール100の検出回路20が複数の入出力用ハーネス23Hにより順次接続される。このようにして、各バッテリモジュール100は、他のバッテリモジュール100と通信を行うことができる。 Thereby, in the battery system 500 of FIG. 1, the detection circuits 20 of the plurality of battery modules 100 are sequentially connected by the plurality of input / output harnesses 23H. In this way, each battery module 100 can communicate with other battery modules 100.
 図18は、バッテリブロック10Bの接続のための説明図である。図18に示すように、バッテリモジュール100においては、図1の電源線501として、2つのバスバー501a,501bが用いられる。 FIG. 18 is an explanatory diagram for connection of the battery block 10B. As shown in FIG. 18, in the battery module 100, two bus bars 501a and 501b are used as the power supply line 501 in FIG.
 バスバー501aの一端部は、六角ボルト14により、バスバー40aを介して1番目のバッテリセル10のプラス電極10a(図6参照)に接続される。同様に、バスバー501bの一端部は、六角ボルト14により、バスバー40aを介して12番目のバッテリセル10のマイナス電極10b(図6参照)に接続される。2つのバスバー501a,501bの他端部は複数のバッテリセル10の整列方向(X方向)に引き出される。 One end of the bus bar 501a is connected to the plus electrode 10a (see FIG. 6) of the first battery cell 10 by the hexagon bolt 14 via the bus bar 40a. Similarly, one end of the bus bar 501b is connected to the negative electrode 10b (see FIG. 6) of the twelfth battery cell 10 by the hexagon bolt 14 via the bus bar 40a. The other end portions of the two bus bars 501a and 501b are pulled out in the alignment direction (X direction) of the plurality of battery cells 10.
 図19は、ケーシングに収容されたバッテリモジュール100の外観斜視図である。図19に示すように、各バッテリモジュール100はケーシング110に収容される。ケーシング110により、バッテリモジュール100の搬送時および接続作業時にバッテリセル10間の短絡の発生が防止される。 FIG. 19 is an external perspective view of the battery module 100 housed in the casing. As shown in FIG. 19, each battery module 100 is accommodated in a casing 110. The casing 110 prevents occurrence of a short circuit between the battery cells 10 when the battery module 100 is transported and connected.
 ケーシング110は6つの側壁110a,110b,110c,110d,110e,110fからなる直方体形状を有する。ケーシング110の側壁110a~110fの内面は、バッテリブロック10Bの側面Ea~Ef(図4および図5参照)にそれぞれ対向する。 The casing 110 has a rectangular parallelepiped shape including six side walls 110a, 110b, 110c, 110d, 110e, and 110f. The inner surfaces of the side walls 110a to 110f of the casing 110 face the side surfaces Ea to Ef (see FIGS. 4 and 5) of the battery block 10B, respectively.
 ケーシング110の側壁110aにおいては、側壁110dの近傍に上下方向に延びるように長方形状の開口部105が形成される。2つのバスバー501a,501bは、開口部105を通してケーシング110の外部に引き出される。 In the side wall 110a of the casing 110, a rectangular opening 105 is formed in the vicinity of the side wall 110d so as to extend in the vertical direction. The two bus bars 501 a and 501 b are drawn out of the casing 110 through the opening 105.
 また、ケーシング110の側壁110aの略中央部には、図17の入出力用ハーネス23Hの入力コネクタ23aおよび出力コネクタ23cをそれぞれ嵌め込み可能な開口部106,107が形成される。入力コネクタ23aおよび出力コネクタ23cは、それぞれ開口部106,107に嵌め込まれることにより、ケーシング110の外部に突出した状態で固定される。 Further, openings 106 and 107 into which the input connector 23a and the output connector 23c of the input / output harness 23H of FIG. 17 can be respectively fitted are formed at a substantially central portion of the side wall 110a of the casing 110. The input connector 23a and the output connector 23c are fixed in a state of protruding to the outside of the casing 110 by being fitted into the openings 106 and 107, respectively.
 このように、バスバー501a,501b、入力コネクタ23aおよび出力コネクタ23cがケーシング110の1つの側壁(本例では側壁110a)に集中して配置されることにより、バッテリモジュール100間の配線を接続するための作業効率が向上する。 As described above, the bus bars 501a and 501b, the input connector 23a, and the output connector 23c are concentrated on one side wall (side wall 110a in this example) of the casing 110 to connect the wiring between the battery modules 100. Work efficiency is improved.
 図20は、第1の実施の形態に係るバッテリシステム500内の複数のバッテリモジュール100の接続および配線の一例を示す模式的平面図である。図20に示すように、バッテリシステム500は、複数(本例では6個)のバッテリモジュール100、バッテリECU101、コンタクタ102、HV(High Voltage;高圧)コネクタ510およびサービスプラグ520を含む。 FIG. 20 is a schematic plan view showing an example of connection and wiring of a plurality of battery modules 100 in the battery system 500 according to the first embodiment. As shown in FIG. 20, the battery system 500 includes a plurality (six in this example) of battery modules 100, a battery ECU 101, a contactor 102, an HV (High Voltage) connector 510, and a service plug 520.
 図20では、バッテリシステム500の6個のバッテリモジュール100を互いに区別するためにそれぞれのバッテリモジュール100をバッテリモジュール100A,100B,100C,100D,100E,100Fと呼ぶ。 20, in order to distinguish the six battery modules 100 of the battery system 500 from each other, the respective battery modules 100 are referred to as battery modules 100A, 100B, 100C, 100D, 100E, and 100F.
 バッテリモジュール100A~100F、バッテリECU101、コンタクタ102、HVコネクタ510およびサービスプラグ520は、箱型のケーシング550内に収容される。 Battery modules 100A to 100F, battery ECU 101, contactor 102, HV connector 510 and service plug 520 are housed in box-shaped casing 550.
 ケーシング550は、側壁550a,550b,550c,550dを有する。側壁550a,550cは互いに平行であり、側壁550b,550dは互いに平行でありかつ側壁550a,550cに対して垂直である。 Casing 550 has side walls 550a, 550b, 550c, and 550d. The side walls 550a and 550c are parallel to each other, and the side walls 550b and 550d are parallel to each other and perpendicular to the side walls 550a and 550c.
 ケーシング550内において、バッテリモジュール100C,100B,100Aは、この順で側壁550b,550dに平行な方向に所定の間隔で並ぶように配置される。また、バッテリモジュール100D,100E,100Fは、この順で側壁550b,550dに平行な方向に所定の間隔で並ぶように配置される。この場合、バッテリモジュール100A~100Fは、ケーシング110の側壁110d(図19参照)が上方を向くようにケーシング550に取り付けられる。それにより、バッテリブロック10Bの複数のバッテリセル10は、軸心が上下方向に平行となるように配置される。この場合、後述するバッテリモジュール100間の配線を接続する作業をケーシング550の上面から行うことができる。その結果、バッテリモジュール100間の配線を接続するための作業効率が向上する。 In the casing 550, the battery modules 100C, 100B, and 100A are arranged in this order so as to be arranged at predetermined intervals in a direction parallel to the side walls 550b and 550d. Further, the battery modules 100D, 100E, and 100F are arranged in this order so as to be arranged at a predetermined interval in a direction parallel to the side walls 550b and 550d. In this case, battery modules 100A to 100F are attached to casing 550 such that side wall 110d (see FIG. 19) of casing 110 faces upward. Thereby, the plurality of battery cells 10 of the battery block 10B are arranged such that the axis is parallel to the vertical direction. In this case, an operation of connecting wiring between the battery modules 100 described later can be performed from the upper surface of the casing 550. As a result, the work efficiency for connecting the wiring between the battery modules 100 is improved.
 バッテリモジュール100C~100Aの側壁110aとバッテリモジュール100D~100Fの側壁110aとがそれぞれ対向する。また、バッテリモジュール100C~100Aの側壁110bがケーシング550の側壁550dに対向し、バッテリモジュール100D~100Fの側壁110bがケーシング550の側壁550bに対向する。さらに、バッテリモジュール100C~100Aの側壁110fおよびバッテリモジュール100D~100Fの側壁110eがケーシング550の側壁550aに対向し、バッテリモジュール100C~100Aの側壁110eおよびバッテリモジュール100D~100Fの側壁110fがケーシング550の側壁550cに対向する。 The side wall 110a of the battery modules 100C to 100A and the side wall 110a of the battery modules 100D to 100F face each other. Further, the side walls 110b of the battery modules 100C to 100A face the side wall 550d of the casing 550, and the side walls 110b of the battery modules 100D to 100F face the side wall 550b of the casing 550. Further, the side wall 110f of the battery modules 100C to 100A and the side wall 110e of the battery modules 100D to 100F are opposed to the side wall 550a of the casing 550, and the side wall 110e of the battery modules 100C to 100A and the side wall 110f of the battery modules 100D to 100F are Opposite the side wall 550c.
 この状態で、バッテリモジュール100Aのバスバー501bとバッテリモジュール100Bのバスバー501aとが連結バスバー501cを介して接続されるとともに、バッテリモジュール100Bのバスバー501bとバッテリモジュール100Cのバスバー501aとが連結バスバー501cを介して接続される。 In this state, the bus bar 501b of the battery module 100A and the bus bar 501a of the battery module 100B are connected via the connecting bus bar 501c, and the bus bar 501b of the battery module 100B and the bus bar 501a of the battery module 100C are connected via the connecting bus bar 501c. Connected.
 また、バッテリモジュール100Dのバスバー501bとバッテリモジュール100Eのバスバー501aとが連結バスバー501cを介して接続されるとともに、バッテリモジュール100Eのバスバー501bとバッテリモジュール100Fのバスバー501aとが連結バスバー501cを介して接続される。 In addition, the bus bar 501b of the battery module 100D and the bus bar 501a of the battery module 100E are connected via the connection bus bar 501c, and the bus bar 501b of the battery module 100E and the bus bar 501a of the battery module 100F are connected via the connection bus bar 501c. Is done.
 ここで、バッテリモジュール100A,100B間、バッテリモジュール100B,100C間、バッテリモジュール100D,100E間およびバッテリモジュール100E,100F間の距離が小さくなるように、バッテリモジュール100A~100Fが配置されている。そのため、バッテリモジュール100A,100B間、バッテリモジュール100B,100C間、バッテリモジュール100D,100E間およびバッテリモジュール100E,100F間を接続する連結バスバー501cを短くすることができる。これにより、連結バスバー501cによる電力損失を抑制することができる。 Here, the battery modules 100A to 100F are arranged so that the distances between the battery modules 100A and 100B, between the battery modules 100B and 100C, between the battery modules 100D and 100E, and between the battery modules 100E and 100F are reduced. Therefore, the connection bus bar 501c that connects the battery modules 100A and 100B, the battery modules 100B and 100C, the battery modules 100D and 100E, and the battery modules 100E and 100F can be shortened. Thereby, the power loss by the connection bus bar 501c can be suppressed.
 さらに、バッテリモジュール100Cのバスバー501bとバッテリモジュール100Dのバスバー501aとの間にサービスプラグ520が介挿される。サービスプラグ520は、バッテリモジュール100C,100D間を電気的に接続または遮断するためのスイッチを含む。サービスプラグ520のスイッチがオンされることにより、バッテリモジュール100A~100Fが直列接続される。 Furthermore, a service plug 520 is inserted between the bus bar 501b of the battery module 100C and the bus bar 501a of the battery module 100D. Service plug 520 includes a switch for electrically connecting or disconnecting battery modules 100C and 100D. When the service plug 520 is turned on, the battery modules 100A to 100F are connected in series.
 バッテリシステム500のメンテナンス時等には、サービスプラグ520のスイッチがオフされる。この場合、バッテリモジュール100A~100Fに電流が流れない。これにより、ユーザがバッテリモジュール100A~100Fに接触しても、ユーザが感電することを防止することができる。 When the battery system 500 is maintained, the service plug 520 is turned off. In this case, no current flows through the battery modules 100A to 100F. Thereby, even if the user contacts the battery modules 100A to 100F, the user can be prevented from receiving an electric shock.
 バッテリモジュール100Aのバスバー501aおよびバッテリモジュール100Fのバスバー501bは、コンタクタ102を介してHVコネクタ510に接続される。HVコネクタ510は、電動車両のモータ等の負荷に接続される。これにより、直列接続されたバッテリモジュール100A~100Fの電力をモータ等に供給することが可能になる。 The bus bar 501a of the battery module 100A and the bus bar 501b of the battery module 100F are connected to the HV connector 510 via the contactor 102. The HV connector 510 is connected to a load such as a motor of an electric vehicle. As a result, the power of battery modules 100A to 100F connected in series can be supplied to a motor or the like.
 また、前述のように、ケーシング550内において、バッテリモジュール100Aの出力コネクタ23c(図19参照)は、バッテリモジュール100Bの入力コネクタ23a(図19参照)にハーネス560を介して接続される。バッテリモジュール100Bの出力コネクタ23cは、バッテリモジュール100Cの入力コネクタ23aにハーネス560を介して接続される。バッテリモジュール100Cの出力コネクタ23cは、バッテリモジュール100Dの入力コネクタ23aにハーネス560を介して接続される。バッテリモジュール100Dの出力コネクタ23cは、バッテリモジュール100Eの入力コネクタ23aにハーネス560を介して接続される。バッテリモジュール100Eの出力コネクタ23cは、バッテリモジュール100Fの入力コネクタ23aにハーネス560を介して接続される。 As described above, in the casing 550, the output connector 23c (see FIG. 19) of the battery module 100A is connected to the input connector 23a (see FIG. 19) of the battery module 100B via the harness 560. The output connector 23c of the battery module 100B is connected to the input connector 23a of the battery module 100C via a harness 560. The output connector 23c of the battery module 100C is connected to the input connector 23a of the battery module 100D via the harness 560. The output connector 23c of the battery module 100D is connected to the input connector 23a of the battery module 100E via the harness 560. The output connector 23c of the battery module 100E is connected to the input connector 23a of the battery module 100F via a harness 560.
 さらに、バッテリモジュール100Aの入力コネクタ23aおよびバッテリモジュール100Fの出力コネクタ23cは、それぞれハーネス560を介してバッテリECU101に接続される。これにより、バッテリモジュール100A~100Fのセル情報がバッテリECU101に与えられる。 Furthermore, the input connector 23a of the battery module 100A and the output connector 23c of the battery module 100F are connected to the battery ECU 101 via the harness 560, respectively. Thereby, the cell information of the battery modules 100A to 100F is given to the battery ECU 101.
 (9)効果
 本実施の形態に係るバッテリモジュール100およびバッテリシステム500においては、複数の円筒型のバッテリセル10およびバッテリホルダ90によりバッテリブロック10Bが構成される。バッテリブロック10Bには、FPC基板50が設けられる。FPC基板50の導体線51により各バッテリセル10のプラス電極10aまたはマイナス電極10bと検出回路20とが電気的に接続される。
(9) Effects In the battery module 100 and the battery system 500 according to the present embodiment, the battery block 10B is configured by the plurality of cylindrical battery cells 10 and the battery holder 90. An FPC board 50 is provided in the battery block 10B. The positive electrode 10 a or the negative electrode 10 b of each battery cell 10 and the detection circuit 20 are electrically connected by the conductor wire 51 of the FPC board 50.
 この場合、電圧検出線である複数の導体線51がFPC基板50により、コンパクトに保持して配置されているので、煩雑な配線作業を行うことがない。これにより、バッテリモジュール100を小型化することが可能になるとともに導体線51を配線する作業の煩雑さを軽減することが可能となる。 In this case, since the plurality of conductor lines 51 which are voltage detection lines are arranged in a compact manner by the FPC board 50, complicated wiring work is not performed. As a result, the battery module 100 can be reduced in size, and the complexity of the work of wiring the conductor wire 51 can be reduced.
 また、従来のような電圧検出ケーブルを電圧検出線に用いる場合に比べ、配線の撓みに起因する断線の可能性を抑制できるため、信頼性の向上を図ることができる。特に、電動車両等の移動体においては、移動中の振動の影響により撓んだ電圧検出ケーブルが、振動または共振により断線する可能性があるが、本実施の形態によれば、電圧検出線の断線の可能性が十分に低減される。 In addition, since the possibility of disconnection due to the bending of the wiring can be suppressed as compared with the case where a conventional voltage detection cable is used for the voltage detection line, the reliability can be improved. In particular, in a moving body such as an electric vehicle, there is a possibility that the voltage detection cable bent due to the influence of vibration during movement may be disconnected due to vibration or resonance. According to this embodiment, the voltage detection cable The possibility of disconnection is sufficiently reduced.
 さらに、各バッテリセル10のプラス電極10aおよびマイナス電極10bのうち一方がバッテリブロック10Bの側面Ecに配列され、各バッテリセル10のプラス電極10aおよびマイナス電極10bのうち他方がバッテリブロック10Bの側面Edに配列され、検出回路20が実装されたプリント回路基板21はバッテリブロック10Bの側面Eaに配置される。FPC基板50は、バッテリブロック10Bの側面Ea上から側面Ecおよび側面Edに延びている。 Furthermore, one of the positive electrode 10a and the negative electrode 10b of each battery cell 10 is arranged on the side surface Ec of the battery block 10B, and the other of the positive electrode 10a and the negative electrode 10b of each battery cell 10 is the side surface Ed of the battery block 10B. The printed circuit board 21 on which the detection circuit 20 is mounted is disposed on the side surface Ea of the battery block 10B. The FPC board 50 extends from the side surface Ea of the battery block 10B to the side surface Ec and the side surface Ed.
 この場合、バッテリブロック10Bの側面Eaに設けられる検出回路20がFPC基板50により側面Ec,Edに配列される複数のバッテリセル10のプラス電極10aおよびマイナス電極10bに接続される。それにより、構造を複雑化することなく複数のバッテリセル10のプラス電極10aおよびマイナス電極10bと検出回路20との接触を防止することが可能になる。また、検出回路20と複数のバッテリセル10のプラス電極10aおよびマイナス電極10bとの接続作業の煩雑さがさらに改善される。 In this case, the detection circuit 20 provided on the side surface Ea of the battery block 10B is connected to the plus electrode 10a and the minus electrode 10b of the plurality of battery cells 10 arranged on the side surfaces Ec and Ed by the FPC board 50. Thereby, it is possible to prevent the positive electrode 10a and the negative electrode 10b of the plurality of battery cells 10 from contacting the detection circuit 20 without complicating the structure. Further, the complexity of the connection work between the detection circuit 20 and the plus electrodes 10a and minus electrodes 10b of the plurality of battery cells 10 is further improved.
 [2]第2の実施の形態
 第2の実施の形態に係るバッテリモジュールについて、第1の実施の形態に係るバッテリモジュール100と異なる点を説明する。
[2] Second Embodiment A battery module according to a second embodiment will be described while referring to differences from the battery module 100 according to the first embodiment.
 図21は第2の実施の形態に係るバッテリモジュール100におけるバッテリブロック10Bの平面図であり、図22は図21のバッテリブロック10Bの一方の側面図であり、図23は図21のバッテリブロック10Bの他方の側面図である。 21 is a plan view of the battery block 10B in the battery module 100 according to the second embodiment, FIG. 22 is a side view of one of the battery blocks 10B in FIG. 21, and FIG. 23 is a battery block 10B in FIG. FIG.
 図21~図23に示すように、本実施の形態に係るバッテリモジュール100においては、バッテリブロック10Bの上段の複数のバッテリセル10と下段の複数のバッテリセル10とが、互いに複数のバッテリセル10の整列方向(X方向)に変位して配置される。 As shown in FIGS. 21 to 23, in the battery module 100 according to the present embodiment, a plurality of upper battery cells 10 and a plurality of lower battery cells 10 in a battery block 10B are connected to each other. Are displaced in the alignment direction (X direction).
 ここで、複数のバッテリセル10の整列方向(X方向)における上段の複数のバッテリセル10と下段の複数のバッテリセル10との変位量は、隣り合うバッテリセル10の軸心間の距離の半分に設定される。 Here, the amount of displacement between the plurality of upper battery cells 10 and the plurality of lower battery cells 10 in the alignment direction (X direction) of the plurality of battery cells 10 is half of the distance between the axial centers of adjacent battery cells 10. Set to
 本実施の形態のバッテリブロック10Bにおいて、図7の一対のバッテリホルダ90に代えて、バッテリホルダ90A,90Bが使用される。バッテリホルダ90A,90Bが図7のバッテリホルダ90と異なるのは以下の点である。 In the battery block 10B of the present embodiment, battery holders 90A and 90B are used instead of the pair of battery holders 90 in FIG. The battery holders 90A and 90B are different from the battery holder 90 of FIG. 7 in the following points.
 図24(a)は図21のバッテリホルダ90Aの外面の平面図であり、図24(b)は図21のバッテリホルダ90Aの内面の平面図であり、図24(c)は図24(a)および図24(b)のバッテリホルダ90AのB-B線断面図であり、図24(d)は図21のバッテリホルダ90Aの短辺側から見た側面図である。 24A is a plan view of the outer surface of the battery holder 90A of FIG. 21, FIG. 24B is a plan view of the inner surface of the battery holder 90A of FIG. 21, and FIG. 24C is a plan view of FIG. ) And FIG. 24B is a cross-sectional view taken along the line BB of the battery holder 90A in FIG. 24B, and FIG. 24D is a side view of the battery holder 90A in FIG.
 図24(a)~図24(d)に示すように、バッテリホルダ90Aにおいては、上段の複数の孔部91と下段の複数の孔部91とは、互いにバッテリホルダ90Aの長辺に平行な一方向に変位して形成されるとともに、上段の複数の突起部92と下段の複数の突起部92とは、互いにバッテリホルダ90Aの長辺に平行な一方向に変位して形成される。 As shown in FIGS. 24A to 24D, in the battery holder 90A, the upper hole portions 91 and the lower hole portions 91 are parallel to the long side of the battery holder 90A. The plurality of upper protrusions 92 and the plurality of lower protrusions 92 are formed to be displaced in one direction parallel to the long side of the battery holder 90A.
 一方、バッテリホルダ90Bにおいては、上段の複数の孔部91と下段の複数の孔部91とは、バッテリホルダ90Aの複数の孔部91の変位の方向と逆方向に互いに変位して形成されるとともに、上段の複数の突起部92と下段の複数の突起部92とは、バッテリホルダ90Aの複数の孔部91の変位の方向と逆方向に互いに変位して形成される。 On the other hand, in the battery holder 90B, the plurality of upper hole portions 91 and the plurality of lower hole portions 91 are formed to be displaced from each other in the direction opposite to the displacement direction of the plurality of hole portions 91 of the battery holder 90A. At the same time, the plurality of upper protrusions 92 and the plurality of lower protrusions 92 are formed to be displaced from each other in the direction opposite to the displacement direction of the plurality of holes 91 of the battery holder 90A.
 ここで、バッテリホルダ90A,90Bの長辺に平行な方向における上段の複数の孔部91と下段の複数の孔部91との変位量は、隣り合う孔部91の中心間の距離の半分に設定されるとともに、バッテリホルダ90A,90Bの長辺に平行な方向における上段の複数の突起部92と下段の複数の突起部92との変位量は、隣り合う突起部92の中心間の距離の半分に設定される。 Here, the amount of displacement between the plurality of upper holes 91 and the plurality of lower holes 91 in the direction parallel to the long sides of the battery holders 90A and 90B is half of the distance between the centers of the adjacent holes 91. The amount of displacement between the plurality of upper projections 92 and the plurality of lower projections 92 in the direction parallel to the long sides of the battery holders 90A and 90B is the distance between the centers of adjacent projections 92. Set to half.
 図21~図23に示すように、第1の実施の形態のバッテリブロック10Bと同様にして、複数のバッテリセル10とバッテリホルダ90A,90Bとが一体的に固定される。このようにして、バッテリブロック10Bが構成される。 As shown in FIGS. 21 to 23, the plurality of battery cells 10 and the battery holders 90A, 90B are integrally fixed in the same manner as the battery block 10B of the first embodiment. In this way, the battery block 10B is configured.
 上記のように、第2の実施の形態に係るバッテリモジュール100においては、バッテリブロック10Bの上段の複数のバッテリセル10と下段の複数のバッテリセル10とが、互いに複数のバッテリセル10の整列方向(X方向)に変位して配置される。そのため、下段の隣り合うバッテリセル10間の隙間に上段のバッテリセル10の一部を配置することが可能となる。これにより、バッテリブロック10Bの上下方向(Z方向)のサイズを小さくすることができる。 As described above, in the battery module 100 according to the second embodiment, the plurality of upper battery cells 10 and the plurality of lower battery cells 10 in the battery block 10B are aligned with each other. Displaced in the (X direction). Therefore, it becomes possible to arrange a part of the upper battery cell 10 in the gap between the adjacent battery cells 10 in the lower stage. Thereby, the size of the battery block 10B in the vertical direction (Z direction) can be reduced.
 一方、第1の実施の形態に係るバッテリモジュール100においては、第2の実施の形態に係るバッテリモジュール100に比べて複数のバッテリセル10の整列方向(X方向)のサイズを小さくすることができる。 On the other hand, in the battery module 100 according to the first embodiment, the size in the alignment direction (X direction) of the plurality of battery cells 10 can be reduced as compared with the battery module 100 according to the second embodiment. .
 これに対して、第2の実施の形態に係るバッテリモジュール100においては、上段の一端部のバッテリセル10の外側および下段の他端部のバッテリセル10の外側にスペースV(図22および図23参照)が生じる。これらのスペースVに種々の部品を配置することが可能となる。 On the other hand, in the battery module 100 according to the second embodiment, the space V (see FIGS. 22 and 23) is provided outside the battery cell 10 at one end of the upper stage and outside the battery cell 10 at the other end of the lower stage. See). Various parts can be arranged in these spaces V.
 [3]第3の実施の形態
 第3の実施の形態に係るバッテリモジュールについて、第1の実施の形態に係るバッテリモジュール100と異なる点を説明する。
[3] Third Embodiment A battery module according to a third embodiment will be described while referring to differences from the battery module 100 according to the first embodiment.
 図25は第3の実施の形態に係るバッテリモジュール100の外観斜視図であり、図26は図25のバッテリモジュール100の側面図であり、図27は図25のバッテリモジュール100の平面図である。本実施の形態に係るバッテリモジュール100が第1の実施の形態に係るバッテリモジュール100と異なるのは以下の点である。 25 is an external perspective view of the battery module 100 according to the third embodiment, FIG. 26 is a side view of the battery module 100 of FIG. 25, and FIG. 27 is a plan view of the battery module 100 of FIG. . The battery module 100 according to the present embodiment is different from the battery module 100 according to the first embodiment in the following points.
 図25~図27に示すように、本実施の形態に係るバッテリモジュール100においては、検出回路20が実装されたプリント回路基板21がバッテリブロック10Bの側面Eeに配置される。また、側面Ec,Ed上にはT字形状のFPC基板50がそれぞれ設けられる。 As shown in FIGS. 25 to 27, in the battery module 100 according to the present embodiment, the printed circuit board 21 on which the detection circuit 20 is mounted is disposed on the side surface Ee of the battery block 10B. Further, T-shaped FPC boards 50 are provided on the side surfaces Ec and Ed, respectively.
 図25に示すように、側面Ed上のFPC基板50は、バッテリブロック10Bの側面Edの上端部で側面Ee上に向かって直角に折り曲げられ、プリント回路基板21に接続される。また、図26に示すように、側面Ec上のFPC基板50は、バッテリブロック10Bの側面Ecの上端部近傍でバッテリホルダ90の長辺に平行になるように折り返された後、上方向(Z方向)に折り返され、さらに上端部で側面Ee上に向かって直角に折り曲げられ、プリント回路基板21に接続される。 As shown in FIG. 25, the FPC board 50 on the side surface Ed is bent at a right angle toward the side surface Ee at the upper end of the side surface Ed of the battery block 10B and connected to the printed circuit board 21. Further, as shown in FIG. 26, the FPC board 50 on the side surface Ec is folded back so as to be parallel to the long side of the battery holder 90 in the vicinity of the upper end portion of the side surface Ec of the battery block 10B, and then upward (Z The upper end portion is bent at a right angle toward the side surface Ee and connected to the printed circuit board 21.
 本実施の形態におけるバッテリホルダ90の長辺に沿った端面には、所定の間隔で2個のねじ穴が形成されている。なお、バッテリホルダ90の短辺に沿った端面には、ねじ穴95(図7(d)参照)が形成されなくてもよい。 In the end face along the long side of the battery holder 90 in the present embodiment, two screw holes are formed at a predetermined interval. In addition, the screw hole 95 (refer FIG.7 (d)) does not need to be formed in the end surface along the short side of the battery holder 90. FIG.
 図27に示すように、プリント回路基板21の孔部H(図15参照)には、ねじSが挿通される。この状態で、ねじSがバッテリホルダ90のねじ穴に螺合されることにより、プリント回路基板21がバッテリブロック10Bの側面Eeに取り付けられる。 27, a screw S is inserted into the hole H (see FIG. 15) of the printed circuit board 21. In this state, the screw S is screwed into the screw hole of the battery holder 90, whereby the printed circuit board 21 is attached to the side surface Ee of the battery block 10B.
 第1の実施の形態に係るバッテリモジュール100と同様にして、バッテリブロック10Bにプリント回路基板21および2枚のFPC基板50が取り付けられることにより、バッテリモジュール100が構成される。 In the same manner as the battery module 100 according to the first embodiment, the battery module 100 is configured by attaching the printed circuit board 21 and the two FPC boards 50 to the battery block 10B.
 バッテリブロック10Bの側面Eeの面積は、側面Eaの面積よりも大きい。そのため、バッテリブロック10Bの側面Eeに第1の実施の形態のプリント回路基板21よりも大きいプリント回路基板21を配置することができる。 The area of the side surface Ee of the battery block 10B is larger than the area of the side surface Ea. Therefore, the printed circuit board 21 larger than the printed circuit board 21 of the first embodiment can be disposed on the side surface Ee of the battery block 10B.
 プリント回路基板21が大きい場合、より多数の検出回路20を実装することができる。この場合、より多数のバッテリセル10のセル情報を検出することができる。したがって、本実施の形態に係るバッテリモジュール100は、より多数のバッテリセル10を備える場合に有効に利用することができる。 When the printed circuit board 21 is large, a larger number of detection circuits 20 can be mounted. In this case, cell information of a larger number of battery cells 10 can be detected. Therefore, the battery module 100 according to the present embodiment can be effectively used when a larger number of battery cells 10 are provided.
 [4]第4の実施の形態
 次に説明するように、各バッテリセル10のプラス電極10aおよびマイナス電極10bをプリント回路基板21上の検出回路20と電気的に接続する導体線51の一部(例えば、折り返される部分または折り曲げられる部分)のみが、柔軟性材料からなる基板に一体的に形成されていてもよい。
[4] Fourth Embodiment As will be described below, a part of the conductor wire 51 that electrically connects the plus electrode 10a and the minus electrode 10b of each battery cell 10 to the detection circuit 20 on the printed circuit board 21. Only (for example, the folded portion or the folded portion) may be integrally formed on the substrate made of a flexible material.
 第4の実施の形態に係るバッテリモジュールについて、第3の実施の形態に係るバッテリモジュール100と異なる点を説明する。 Regarding the battery module according to the fourth embodiment, differences from the battery module 100 according to the third embodiment will be described.
 図28は、第4の実施に係るバッテリモジュール100の配線部材70を示す外観斜視図である。本実施の形態における配線部材70が第3の実施の形態における配線部材70と異なるのは以下の点である。 FIG. 28 is an external perspective view showing the wiring member 70 of the battery module 100 according to the fourth embodiment. The wiring member 70 in the present embodiment is different from the wiring member 70 in the third embodiment in the following points.
 図28に示すように、本実施の形態における配線部材70は、図13の2枚のFPC基板50の代わりに、2枚のFPC基板50Fおよび2枚のリジッド基板50Rを含む。 As shown in FIG. 28, the wiring member 70 in the present embodiment includes two FPC boards 50F and two rigid boards 50R instead of the two FPC boards 50 of FIG.
 一方のリジッド基板50Rは、バッテリブロック10Bの側面Ed(図25参照)上の中央部で複数のバッテリセル10の整列方向(X方向)に延びるように配置される。このリジッド基板50Rは複数のバスバー40,40aに共通して接続される。一方のFPC基板50Fは、一方のリジッド基板50Rの中央部からバッテリブロック10Bの上方向(Z方向)に延びるように配置される。このFPC基板50Fは、バッテリブロック10Bの側面Edの上端部で側面Ee(図25参照)上に向かって直角に折り曲げられ、プリント回路基板21(図25参照)に接続される。 One rigid board 50R is arranged so as to extend in the alignment direction (X direction) of the plurality of battery cells 10 at the center on the side surface Ed (see FIG. 25) of the battery block 10B. The rigid board 50R is connected in common to the plurality of bus bars 40, 40a. One FPC board 50F is arranged so as to extend upward (Z direction) from the central portion of one rigid board 50R. The FPC board 50F is bent at right angles toward the side surface Ee (see FIG. 25) at the upper end of the side surface Ed of the battery block 10B, and is connected to the printed circuit board 21 (see FIG. 25).
 同様に、他方のリジッド基板50Rは、バッテリブロック10Bの側面Ec(図25参照)上の中央部で複数のバッテリセル10の整列方向(X方向)に延びるように配置される。このリジッド基板50Rは複数のバスバー40に共通して接続される。他方のFPC基板50Fは、他方のリジッド基板50Rの中央部からバッテリブロック10Bの上方向(Z方向)に延びるように配置される。このFPC基板50Fは、バッテリブロック10Bの側面Ecの上端部近傍でバッテリホルダ90の長辺に平行になるように折り返された後、上方向(Z方向)に折り返され、さらに上端部で側面Ee上に向かって直角に折り曲げられ、プリント回路基板21(図25参照)に接続される。 Similarly, the other rigid board 50R is disposed so as to extend in the alignment direction (X direction) of the plurality of battery cells 10 at the center on the side surface Ec (see FIG. 25) of the battery block 10B. The rigid substrate 50R is connected to the plurality of bus bars 40 in common. The other FPC board 50F is arranged so as to extend upward (Z direction) from the central portion of the other rigid board 50R. The FPC board 50F is folded back in the vicinity of the upper end of the side surface Ec of the battery block 10B so as to be parallel to the long side of the battery holder 90, and then folded upward (Z direction). It is bent at a right angle upward and connected to the printed circuit board 21 (see FIG. 25).
 リジッド基板50RはFPC基板に比べて多層化することが容易である。リジッド基板50Rを多層化することにより、多数の導体線51,52およびPTC素子60をリジッド基板50Rに設けることができる。この場合、より多数のバッテリセル10のセル情報を検出することができる。したがって、本実施の形態に係るバッテリモジュール100は、より多数のバッテリセル10を備える場合に有効に利用することができる。 The rigid substrate 50R can be easily multi-layered compared to the FPC substrate. By making the rigid substrate 50R multilayer, a large number of conductor lines 51 and 52 and the PTC element 60 can be provided on the rigid substrate 50R. In this case, cell information of a larger number of battery cells 10 can be detected. Therefore, the battery module 100 according to the present embodiment can be effectively used when a larger number of battery cells 10 are provided.
 [5]第5の実施の形態
 第5の実施の形態に係るバッテリモジュールおよびバッテリシステムについて、第1の実施の形態に係るバッテリモジュール100およびバッテリシステム500と異なる点を説明する。
[5] Fifth Embodiment A battery module and a battery system according to a fifth embodiment will be described while referring to differences from the battery module 100 and the battery system 500 according to the first embodiment.
 図29は、第5の実施の形態に係るバッテリモジュール100の外観斜視図である。図29に示すように、各バッテリモジュール100はケーシング110に収容される。本実施の形態に係るバッテリモジュール100において、ケーシング110が図19のケーシング110と異なるのは以下の点である。 FIG. 29 is an external perspective view of the battery module 100 according to the fifth embodiment. As shown in FIG. 29, each battery module 100 is accommodated in a casing 110. In battery module 100 according to the present embodiment, casing 110 differs from casing 110 in FIG. 19 in the following points.
 ケーシング110の側壁110eには、複数のバッテリセル10(図18参照)の軸方向(Y方向)に延びる複数の矩形のスリット108が複数のバッテリセル10の整列方向(X方向)に並ぶように形成される。また、ケーシング110の側壁110fには、複数のバッテリセル10の軸方向(Y方向)に延びる複数の矩形のスリット109が複数のバッテリセル10の整列方向(X方向)に並ぶように形成される。スリット108,109を通して冷却用空気がケーシング110の内部へ流入可能でかつ外部に流出可能である。 A plurality of rectangular slits 108 extending in the axial direction (Y direction) of the plurality of battery cells 10 (see FIG. 18) are arranged in the side wall 110e of the casing 110 in the alignment direction (X direction) of the plurality of battery cells 10. It is formed. A plurality of rectangular slits 109 extending in the axial direction (Y direction) of the plurality of battery cells 10 are formed on the side wall 110f of the casing 110 so as to be aligned in the alignment direction (X direction) of the plurality of battery cells 10. . Cooling air can flow into the casing 110 through the slits 108 and 109 and flow out to the outside.
 図30は、第5の実施の形態に係るバッテリシステム500の平面図である。図30に示すように、バッテリシステム500は、2個の送風機581をさらに備える。一方の送風機581は、バッテリモジュール100Cの側壁110fに対向するようにケーシング550の側壁550aに取り付けられる。他方の送風機581は、バッテリモジュール100Dの側壁110eに対向するようにケーシング550の側壁550aに取り付けられる。 FIG. 30 is a plan view of a battery system 500 according to the fifth embodiment. As shown in FIG. 30, the battery system 500 further includes two blowers 581. One blower 581 is attached to the side wall 550a of the casing 550 so as to face the side wall 110f of the battery module 100C. The other blower 581 is attached to the side wall 550a of the casing 550 so as to face the side wall 110e of the battery module 100D.
 また、バッテリモジュール100Aの側壁110eおよびバッテリモジュール100Fの側壁110fに対向するように、ケーシング550の側壁550cに排気口582がそれぞれ形成される。 Further, exhaust ports 582 are formed in the side wall 550c of the casing 550 so as to face the side wall 110e of the battery module 100A and the side wall 110f of the battery module 100F, respectively.
 送風機581をオンにすることにより、送風機581からの冷却用空気がバッテリモジュール100A~100Fに送られる。冷却用空気の流れが図30の点線の矢印で示される。 When the blower 581 is turned on, the cooling air from the blower 581 is sent to the battery modules 100A to 100F. The flow of cooling air is indicated by the dotted arrows in FIG.
 冷却用空気は、バッテリモジュール100C~100Aのスリット109,108(図29参照)およびバッテリモジュール100D~100Fのスリット108,109(図29参照)を通して、バッテリモジュール100C~100A,100D~100Fのケーシング110(図29参照)内を通過し、排気口582から排出される。これにより、各バッテリモジュール100C~100A,100D~100Fのバッテリブロック10B(図18参照)が冷却される。 The cooling air passes through the slits 109 and 108 (see FIG. 29) of the battery modules 100C to 100A and the slits 108 and 109 (see FIG. 29) of the battery modules 100D to 100F, and the casing 110 of the battery modules 100C to 100A and 100D to 100F. It passes through the inside (see FIG. 29) and is discharged from the exhaust port 582. As a result, the battery block 10B (see FIG. 18) of each of the battery modules 100C to 100A, 100D to 100F is cooled.
 このように、冷却用空気が、図9のバッテリブロック10Bの側面Ecおよび側面Edに配列されるプラス電極10aおよびマイナス電極10bならびに側面Eaに設けられる検出回路20等が実装されたプリント回路基板21(図15参照)により妨げられることなく、バッテリブロック10B中の複数のバッテリセル10間を通過することができる。その結果、複数のバッテリセル10が効率的に冷却される。 As described above, the printed circuit board 21 on which the cooling air is mounted on the side surface Ec and the side surface Ed of the battery block 10B in FIG. 9 and the detection circuit 20 and the like provided on the side surface Ea are mounted. It can pass between the plurality of battery cells 10 in the battery block 10B without being obstructed by (see FIG. 15). As a result, the plurality of battery cells 10 are efficiently cooled.
 また、各バッテリモジュール100A~100Fのプリント回路基板21は、冷却空気の流れに対して平行に配置されている。そのため、冷却空気により、プリント回路基板21に実装される検出回路20および抵抗Rから発生する熱が効率よく放散される。これにより、検出回路20および抵抗Rの劣化が抑制される。さらに、検出回路20の精度が低下することが抑制されるとともに、検出回路20の信頼性を向上させることができる。 Further, the printed circuit boards 21 of the battery modules 100A to 100F are arranged in parallel to the flow of the cooling air. Therefore, the heat generated from the detection circuit 20 and the resistor R mounted on the printed circuit board 21 is efficiently dissipated by the cooling air. Thereby, the deterioration of the detection circuit 20 and the resistance R is suppressed. Furthermore, the accuracy of the detection circuit 20 can be prevented from being lowered, and the reliability of the detection circuit 20 can be improved.
 [6]第6の実施の形態
 以下、第6の実施の形態に係る電動車両について説明する。本実施の形態に係る電動車両は、第1~第5のいずれかの実施の形態に係るバッテリシステムを備える。なお、以下では、電動車両の一例として電動自動車を説明する。
[6] Sixth Embodiment Hereinafter, an electric vehicle according to a sixth embodiment will be described. The electric vehicle according to the present embodiment includes the battery system according to any one of the first to fifth embodiments. In the following, an electric vehicle will be described as an example of an electric vehicle.
 図31は、バッテリシステム500を備える電動自動車の構成を示すブロック図である。図31に示すように、本実施の形態に係る電動自動車600は、車体610を備える。車体610に、バッテリシステム500、主制御部300、電力変換部601、モータ602、駆動輪603、アクセル装置604、ブレーキ装置605、ならびに回転速度センサ606が設けられる。モータ602が交流(AC)モータである場合には、電力変換部601はインバータ回路を含む。 FIG. 31 is a block diagram illustrating a configuration of an electric vehicle including the battery system 500. As shown in FIG. 31, electric vehicle 600 according to the present embodiment includes a vehicle body 610. The vehicle body 610 is provided with a battery system 500, a main control unit 300, a power conversion unit 601, a motor 602, driving wheels 603, an accelerator device 604, a brake device 605, and a rotation speed sensor 606. When motor 602 is an alternating current (AC) motor, power conversion unit 601 includes an inverter circuit.
 本実施の形態において、バッテリシステム500は、電力変換部601を介してモータ602に接続されるとともに、主制御部300に接続される。また、主制御部300には、アクセル装置604、ブレーキ装置605および回転速度センサ606が接続される。主制御部300は、例えばCPUおよびメモリ、またはマイクロコンピュータからなる。 In the present embodiment, the battery system 500 is connected to the motor 602 via the power converter 601 and to the main controller 300. In addition, an accelerator device 604, a brake device 605, and a rotation speed sensor 606 are connected to the main control unit 300. The main control unit 300 includes, for example, a CPU and a memory, or a microcomputer.
 アクセル装置604は、電動自動車600が備えるアクセルペダル604aと、アクセルペダル604aの操作量(踏み込み量)を検出するアクセル検出部604bとを含む。運転者によりアクセルペダル604aが操作されると、アクセル検出部604bは、運転者により操作されていない状態を基準としてアクセルペダル604aの操作量を検出する。検出されたアクセルペダル604aの操作量が主制御部300に与えられる。 The accelerator device 604 includes an accelerator pedal 604a included in the electric automobile 600 and an accelerator detection unit 604b that detects an operation amount (depression amount) of the accelerator pedal 604a. When the accelerator pedal 604a is operated by the driver, the accelerator detector 604b detects the operation amount of the accelerator pedal 604a based on a state where the driver is not operated. The detected operation amount of the accelerator pedal 604a is given to the main controller 300.
 ブレーキ装置605は、電動自動車600が備えるブレーキペダル605aと、運転者によるブレーキペダル605aの操作量(踏み込み量)を検出するブレーキ検出部605bとを含む。運転者によりブレーキペダル605aが操作されると、ブレーキ検出部605bによりその操作量が検出される。検出されたブレーキペダル605aの操作量が主制御部300に与えられる。 The brake device 605 includes a brake pedal 605a included in the electric automobile 600 and a brake detection unit 605b that detects an operation amount (depression amount) of the brake pedal 605a by the driver. When the brake pedal 605a is operated by the driver, the operation amount is detected by the brake detection unit 605b. The detected operation amount of the brake pedal 605a is given to the main control unit 300.
 回転速度センサ606は、モータ602の回転速度を検出する。検出された回転速度は、主制御部300に与えられる。 Rotational speed sensor 606 detects the rotational speed of motor 602. The detected rotation speed is given to the main control unit 300.
 主制御部300には、バッテリモジュール100の電圧、電流および温度、アクセルペダル604aの操作量、ブレーキペダル605aの操作量、ならびにモータ602の回転速度が与えられる。主制御部300は、これらの情報に基づいて、バッテリモジュール100の充放電制御および電力変換部601の電力変換制御を行う。 The main controller 300 is given the voltage, current and temperature of the battery module 100, the amount of operation of the accelerator pedal 604a, the amount of operation of the brake pedal 605a, and the rotational speed of the motor 602. The main control unit 300 performs charge / discharge control of the battery module 100 and power conversion control of the power conversion unit 601 based on these pieces of information.
 例えば、アクセル操作に基づく電動自動車600の発進時および加速時には、バッテリシステム500から電力変換部601にバッテリモジュール100の電力が供給される。 For example, when the electric vehicle 600 is started and accelerated based on the accelerator operation, the battery module 100 supplies power to the power conversion unit 601.
 さらに、主制御部300は、与えられたアクセルペダル604aの操作量に基づいて、駆動輪603に伝達すべき回転力(指令トルク)を算出し、その指令トルクに基づく制御信号を電力変換部601に与える。 Further, the main control unit 300 calculates a rotational force (command torque) to be transmitted to the drive wheels 603 based on the given operation amount of the accelerator pedal 604a, and outputs a control signal based on the command torque to the power conversion unit 601. To give.
 上記の制御信号を受けた電力変換部601は、バッテリシステム500から供給された電力を、駆動輪603を駆動するために必要な電力(駆動電力)に変換する。これにより、電力変換部601により変換された駆動電力がモータ602に供給され、その駆動電力に基づくモータ602の回転力が駆動輪603に伝達される。 The power conversion unit 601 that has received the control signal converts the power supplied from the battery system 500 into power (drive power) necessary for driving the drive wheels 603. As a result, the driving power converted by the power converter 601 is supplied to the motor 602, and the rotational force of the motor 602 based on the driving power is transmitted to the driving wheels 603.
 一方、ブレーキ操作に基づく電動自動車600の減速時には、モータ602は発電装置として機能する。この場合、電力変換部601は、モータ602により発生された回生電力をバッテリモジュール100の充電に適した電力に変換し、バッテリモジュール100に与える。それにより、バッテリモジュール100が充電される。 On the other hand, when the electric automobile 600 is decelerated based on the brake operation, the motor 602 functions as a power generator. In this case, the power conversion unit 601 converts the regenerative power generated by the motor 602 into power suitable for charging the battery module 100 and supplies the power to the battery module 100. Thereby, the battery module 100 is charged.
 上記のように、本実施の形態に係る電動自動車600には、第1~第5のいずれかの実施の形態に係るバッテリシステム500が設けられる。この場合、複数のバッテリセル10と検出回路20とを接続するために煩雑な配線作業を行う必要がないので、電圧検出線の配線の煩雑さが改善される。したがって、電動自動車600のメンテナンスが容易になる。 As described above, the electric vehicle 600 according to the present embodiment is provided with the battery system 500 according to any one of the first to fifth embodiments. In this case, since it is not necessary to perform complicated wiring work to connect the plurality of battery cells 10 and the detection circuit 20, the complexity of wiring of the voltage detection lines is improved. Therefore, maintenance of the electric vehicle 600 is facilitated.
 なお、第6の実施の形態においては、移動体である電動車両の例として、電動自動車600について説明したが、内燃機関であるエンジンとともにモータ602を駆動源として駆動輪603を駆動する移動体、例えばハイブリッド自動車に本発明を適用することも可能である。また、モータを駆動源としてスクリューを駆動する船舶等に本発明を適用することも可能である。バッテリシステム500は、航空機または歩行ロボット等の他の移動体に搭載されてもよい。 In the sixth embodiment, the electric automobile 600 has been described as an example of the electric vehicle that is a moving body. However, the moving body that drives the driving wheels 603 using the motor 602 as a driving source together with the engine that is an internal combustion engine, For example, the present invention can be applied to a hybrid vehicle. In addition, the present invention can be applied to a ship that drives a screw using a motor as a drive source. The battery system 500 may be mounted on another moving body such as an aircraft or a walking robot.
 バッテリシステム500が搭載された船は、例えば、図31の車体610の代わりに船体を備え、駆動輪603の代わりにスクリューを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。運転者は、船体を加速させる際にアクセル装置604の代わりに加速入力部を操作し、船体を減速させる際にブレーキ装置605の代わりに減速入力部を操作する。この場合、バッテリシステム500の電力によりモータ602が駆動され、モータ602の回転力がスクリューに伝達されることにより推進力が発生し、船体が移動する。 A ship equipped with the battery system 500 includes, for example, a hull instead of the vehicle body 610 in FIG. 31, a screw instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. Instead, a deceleration input unit is provided. The driver operates the acceleration input unit instead of the accelerator device 604 when accelerating the hull, and operates the deceleration input unit instead of the brake device 605 when decelerating the hull. In this case, the motor 602 is driven by the electric power of the battery system 500, the propulsive force is generated by transmitting the rotational force of the motor 602 to the screw, and the hull moves.
 同様に、バッテリシステム500が搭載された航空機は、例えば、図31の車体610の代わりに機体を備え、駆動輪603の代わりにプロペラを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。バッテリシステム500が搭載された歩行ロボットは、例えば、図31の車体610の代わりに胴体を備え、駆動輪603の代わりに足を備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。 Similarly, an aircraft equipped with the battery system 500 includes, for example, a fuselage instead of the vehicle body 610 in FIG. 31, a propeller instead of the drive wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake A deceleration input unit is provided instead of the device 605. A walking robot equipped with the battery system 500 includes, for example, a torso instead of the vehicle body 610 in FIG. 31, a foot instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. A deceleration input unit is provided instead of.
 このように、バッテリシステム500が搭載された移動体においては、バッテリシステム500からの電力が動力源(モータ)により動力に変換され、その動力により移動本体部(車体、船体、機体または胴体)が移動する。 As described above, in the moving body on which the battery system 500 is mounted, the electric power from the battery system 500 is converted into power by the power source (motor), and the moving main body (the vehicle body, the hull, the fuselage, or the fuselage) is converted by the power. Moving.
 [7]第7の実施の形態
 (1)電源装置
 次に、第7の実施の形態に係る電源装置について説明する。図32は、第7の実施の形態に係る電源装置の構成を示すブロック図である。
[7] Seventh Embodiment (1) Power Supply Device Next, a power supply device according to a seventh embodiment will be described. FIG. 32 is a block diagram illustrating a configuration of a power supply device according to the seventh embodiment.
 図32に示すように、電源装置700は、電力貯蔵装置710および電力変換装置720を備える。電力貯蔵装置710は、バッテリシステム群711およびコントローラ712を備える。バッテリシステム群711は複数のバッテリシステム500を含む。各バッテリシステム500は、直列に接続された図3の複数のバッテリモジュール100を含む。複数のバッテリシステム500は互いに並列に接続されてもよく、または互いに直列に接続されてもよい。本実施の形態においては、各バッテリシステム500のバッテリECU101(図30)がコントローラ712に接続される。また、各バッテリシステム500のHVコネクタ510(図30)が後述する電力変換装置720のDC/DCコンバータ721に接続される。 32, the power supply device 700 includes a power storage device 710 and a power conversion device 720. The power storage device 710 includes a battery system group 711 and a controller 712. The battery system group 711 includes a plurality of battery systems 500. Each battery system 500 includes a plurality of battery modules 100 of FIG. 3 connected in series. The plurality of battery systems 500 may be connected in parallel with each other, or may be connected in series with each other. In the present embodiment, battery ECU 101 (FIG. 30) of each battery system 500 is connected to controller 712. Further, the HV connector 510 (FIG. 30) of each battery system 500 is connected to a DC / DC converter 721 of the power conversion device 720 described later.
 コントローラ712は、例えばCPUおよびメモリ、またはマイクロコンピュータからなる。コントローラ712は、各バッテリシステム500に含まれる各バッテリモジュール100(図3)の検出回路20に接続される。各バッテリモジュール100の検出回路20により検出された電圧、電流および温度がコントローラ712に与えられる。コントローラ712は、各検出回路20から与えられた電圧、電流および温度に基づいて各バッテリセル10(図3)の充電量を算出し、算出された充電量に基づいて電力変換装置720を制御する。また、コントローラ712は、バッテリシステム500のバッテリモジュール100の放電または充電に関する制御として、後述する制御を行う。 The controller 712 includes, for example, a CPU and a memory, or a microcomputer. The controller 712 is connected to the detection circuit 20 of each battery module 100 (FIG. 3) included in each battery system 500. The voltage, current, and temperature detected by the detection circuit 20 of each battery module 100 are supplied to the controller 712. The controller 712 calculates the charge amount of each battery cell 10 (FIG. 3) based on the voltage, current, and temperature given from each detection circuit 20, and controls the power conversion device 720 based on the calculated charge amount. . In addition, the controller 712 performs control described later as control related to discharging or charging of the battery module 100 of the battery system 500.
 電力変換装置720は、DC/DC(直流/直流)コンバータ721およびDC/AC(直流/交流)インバータ722を含む。DC/DCコンバータ721は入出力端子721a,721bを有し、DC/ACインバータ722は入出力端子722a,722bを有する。DC/DCコンバータ721の入出力端子721aは電力貯蔵装置710のバッテリシステム群711に接続される。DC/DCコンバータ721の入出力端子721bおよびDC/ACインバータ722の入出力端子722aは互いに接続されるとともに電力出力部PU1に接続される。DC/ACインバータ722の入出力端子722bは電力出力部PU2に接続されるとともに他の電力系統に接続される。電力出力部PU1,PU2は例えばコンセントを含む。電力出力部PU1,PU2には、例えば種々の負荷が接続される。他の電力系統は、例えば商用電源または太陽電池を含む。電力出力部PU1,PU2および他の電力系統が電源装置に接続される外部の例である。なお、電力系統として太陽電池を用いる場合、DC/DCコンバータ721の入出力端子721bに太陽電池が接続される。一方、電力系統として太陽電池を含む太陽光発電システムを用いる場合、DC/ACインバータ722の入出力端子722bに太陽光発電システムのパワーコンディショナのAC出力部が接続される。 The power converter 720 includes a DC / DC (DC / DC) converter 721 and a DC / AC (DC / AC) inverter 722. The DC / DC converter 721 has input / output terminals 721a and 721b, and the DC / AC inverter 722 has input / output terminals 722a and 722b. The input / output terminal 721 a of the DC / DC converter 721 is connected to the battery system group 711 of the power storage device 710. The input / output terminal 721b of the DC / DC converter 721 and the input / output terminal 722a of the DC / AC inverter 722 are connected to each other and to the power output unit PU1. The input / output terminal 722b of the DC / AC inverter 722 is connected to the power output unit PU2 and to another power system. The power output units PU1, PU2 include, for example, outlets. For example, various loads are connected to the power output units PU1 and PU2. Other power systems include, for example, commercial power sources or solar cells. This is an external example in which power output units PU1, PU2 and another power system are connected to a power supply device. When a solar cell is used as the power system, the solar cell is connected to the input / output terminal 721b of the DC / DC converter 721. On the other hand, when a solar power generation system including a solar battery is used as the power system, the AC output unit of the power conditioner of the solar power generation system is connected to the input / output terminal 722 b of the DC / AC inverter 722.
 DC/DCコンバータ721およびDC/ACインバータ722がコントローラ712によって制御されることにより、バッテリシステム群711の放電および充電が行われる。 When the DC / DC converter 721 and the DC / AC inverter 722 are controlled by the controller 712, the battery system group 711 is discharged and charged.
 バッテリシステム群711の放電時には、バッテリシステム群711から与えられる電力がDC/DCコンバータ721によりDC/DC(直流/直流)変換され、さらにDC/ACインバータ722によりDC/AC(直流/交流)変換される。 When the battery system group 711 is discharged, power supplied from the battery system group 711 is DC / DC (direct current / direct current) converted by the DC / DC converter 721, and further DC / AC (direct current / alternating current) conversion is performed by the DC / AC inverter 722. Is done.
 電源装置700が直流電源として用いられる場合、DC/DCコンバータ721によりDC/DC変換された電力が電力出力部PU1に供給される。電源装置700が交流電源として用いられる場合、DC/ACインバータ722によりDC/AC変換された電力が電力出力部PU2に供給される。また、DC/ACインバータ722により交流に変換された電力を他の電力系統に供給することもできる。 When the power supply device 700 is used as a DC power supply, the power DC / DC converted by the DC / DC converter 721 is supplied to the power output unit PU1. When the power supply device 700 is used as an AC power supply, the power that is DC / AC converted by the DC / AC inverter 722 is supplied to the power output unit PU2. Moreover, the electric power converted into alternating current by the DC / AC inverter 722 can also be supplied to another electric power system.
 バッテリシステム群711の放電時に、コントローラ712は、算出された充電量に基づいてバッテリシステム群711の放電を停止するか否かまたは放電電流(または放電電力)を制限するか否かを判定し、判定結果に基づいて電力変換装置720を制御する。具体的には、バッテリシステム群711に含まれる複数のバッテリセル10(図3)のうちいずれかのバッテリセル10の充電量が予め定められたしきい値よりも小さくなると、コントローラ712は、バッテリシステム群711の放電が停止されまたは放電電流(または放電電力)が制限されるようにDC/DCコンバータ721およびDC/ACインバータ722を制御する。これにより、各バッテリセル10の過放電が防止される。コントローラ712は、外部の指示に基づいてバッテリシステム群711の放電を停止するか否かまたは放電電流(または放電電力)を制限するか否かを判定し、判定結果に基づいて電力変換装置720を制御してもよい。 When the battery system group 711 is discharged, the controller 712 determines whether to stop discharging the battery system group 711 based on the calculated charge amount or whether to limit the discharge current (or discharge power), The power conversion device 720 is controlled based on the determination result. Specifically, when the charge amount of any one of the plurality of battery cells 10 (FIG. 3) included in the battery system group 711 becomes smaller than a predetermined threshold value, the controller 712 The DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the discharge of the system group 711 is stopped or the discharge current (or discharge power) is limited. Thereby, overdischarge of each battery cell 10 is prevented. The controller 712 determines whether to stop discharging the battery system group 711 based on an external instruction or whether to limit the discharge current (or discharge power), and determines the power conversion device 720 based on the determination result. You may control.
 放電電流(または放電電力)の制限は、バッテリシステム群711の電圧が一定の基準電圧となるように制限されることにより行われる。また、基準電圧は、バッテリセル10の充電量または外部の指示に基づいて、コントローラ712により設定される。 The discharge current (or discharge power) is limited by limiting the voltage of the battery system group 711 to a constant reference voltage. The reference voltage is set by the controller 712 based on the charge amount of the battery cell 10 or an external instruction.
 一方、バッテリシステム群711の充電時には、他の電力系統から与えられる交流の電力がDC/ACインバータ722によりAC/DC(交流/直流)変換され、さらにDC/DCコンバータ721によりDC/DC(直流/直流)変換される。DC/DCコンバータ721からバッテリシステム群711に電力が与えられることにより、バッテリシステム群711に含まれる複数のバッテリセル10(図3)が充電される。 On the other hand, when the battery system group 711 is charged, AC power supplied from another power system is AC / DC (AC / DC) converted by the DC / AC inverter 722, and further DC / DC (DC) is converted by the DC / DC converter 721. / DC) converted. When power is supplied from the DC / DC converter 721 to the battery system group 711, a plurality of battery cells 10 (FIG. 3) included in the battery system group 711 are charged.
 バッテリシステム群711の充電時に、コントローラ712は、算出された充電量に基づいてバッテリシステム群711の充電を停止するか否かまたは充電電流(または充電電力)を制限するか否かを判定し、判定結果に基づいて電力変換装置720を制御する。具体的には、バッテリシステム群711に含まれる複数のバッテリセル10(図3)のうちいずれかのバッテリセル10の充電量が予め定められたしきい値よりも大きくなると、コントローラ712は、バッテリシステム群711の充電が停止されまたは充電電流(または充電電力)が制限されるようにDC/DCコンバータ721およびDC/ACインバータ722を制御する。これにより、各バッテリセル10の過充電が防止される。コントローラ712は、外部の指示に基づいてバッテリシステム群711の充電を停止するか否かまたは充電電流(または充電電力)を制限するか否かを判定し、判定結果に基づいて電力変換装置720を制御してもよい。 When charging the battery system group 711, the controller 712 determines whether to stop charging the battery system group 711 or limit the charging current (or charging power) based on the calculated charge amount, The power conversion device 720 is controlled based on the determination result. Specifically, when the charge amount of any one of the plurality of battery cells 10 (FIG. 3) included in the battery system group 711 is larger than a predetermined threshold, the controller 712 The DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the charging of the system group 711 is stopped or the charging current (or charging power) is limited. Thereby, overcharge of each battery cell 10 is prevented. The controller 712 determines whether to stop the charging of the battery system group 711 based on an external instruction or whether to limit the charging current (or charging power), and determines the power conversion device 720 based on the determination result. You may control.
 充電電流(または充電電力)の制限は、バッテリシステム群711の電圧が一定の基準電圧となるように制限されることにより行われる。また、基準電圧は、バッテリセル10の充電量または外部の指示に基づいて、コントローラ712により設定される。 The charging current (or charging power) is limited by limiting the voltage of the battery system group 711 to a constant reference voltage. The reference voltage is set by the controller 712 based on the charge amount of the battery cell 10 or an external instruction.
 なお、電源装置700と外部との間で互いに電力を供給可能であれば、電力変換装置720がDC/DCコンバータ721およびDC/ACインバータ722のうちいずれか一方のみを有してもよい。また、電源装置700と外部との間で互いに電力を供給可能であれば、電力変換装置720が設けられなくてもよい。 Note that the power conversion device 720 may include only one of the DC / DC converter 721 and the DC / AC inverter 722 as long as power can be supplied between the power supply device 700 and the outside. Further, the power conversion device 720 may not be provided as long as power can be supplied between the power supply device 700 and the outside.
 (2)バッテリシステムの設置
 本実施の形態では、複数のバッテリシステム500が共通のラックに収容される。図33は、複数のバッテリシステム500を収容するラックの斜視図である。
(2) Installation of Battery System In the present embodiment, a plurality of battery systems 500 are accommodated in a common rack. FIG. 33 is a perspective view of a rack that houses a plurality of battery systems 500.
 図33に示すように、ラック750は、側面部751,752、上面部753、底面部754、背面部755および複数の仕切り部756からなる。側面部751,752は互いに平行に上下に延びる。側面部751,752の上端部を互いに連結するように上面部753が水平に延び、側面部751,752の下端部を互いに連結するように底面部754が水平に延びる。側面部751の一側辺および側面部752の一側辺に沿うように側面部751,752に対して垂直に背面部755が上下に延びる。上面部753と底面部754との間において、複数の仕切り部756が上面部753および底面部754に対して平行に互いに等間隔で設けられる。 33, the rack 750 includes side portions 751 and 752, a top surface portion 753, a bottom surface portion 754, a back surface portion 755, and a plurality of partition portions 756. The side surface portions 751 and 752 extend vertically in parallel with each other. The upper surface portion 753 extends horizontally so as to connect the upper end portions of the side surface portions 751 and 752 to each other, and the bottom surface portion 754 extends horizontally so as to connect the lower end portions of the side surface portions 751 and 752 to each other. A back surface portion 755 extends vertically up and down perpendicular to the side surface portions 751 and 752 along one side of the side surface portion 751 and one side of the side surface portion 752. Between the top surface portion 753 and the bottom surface portion 754, a plurality of partition portions 756 are provided in parallel to the top surface portion 753 and the bottom surface portion 754 at equal intervals.
 上面部753、複数の仕切り部756および底面部754の間には、複数の収容スペース757が設けられる。各収容スペース757は、ラック750の前面(背面部755と反対側の面)に開口する。バッテリシステム500は、ラック750の前面から各収容スペース757内に収容される。 A plurality of storage spaces 757 are provided between the top surface portion 753, the plurality of partition portions 756, and the bottom surface portion 754. Each accommodation space 757 opens on the front surface of the rack 750 (the surface opposite to the back surface portion 755). The battery system 500 is housed in each housing space 757 from the front surface of the rack 750.
 図34は、バッテリシステム500が図33のラック750の収容スペース757内に収容された状態を示す模式的平面図である。図34に示すように、ラック750の背面部755にバッテリシステム500の側壁550dが対向するように、バッテリシステム500がラック750の収容スペース757内に収容される。本実施の形態におけるバッテリシステム500の側壁550aには、2つの送風機581(図30)に代えて、2つの通気口583が設けられる。 FIG. 34 is a schematic plan view showing a state where the battery system 500 is housed in the housing space 757 of the rack 750 of FIG. As shown in FIG. 34, the battery system 500 is accommodated in the accommodation space 757 of the rack 750 so that the side wall 550 d of the battery system 500 faces the back surface portion 755 of the rack 750. Instead of two blowers 581 (FIG. 30), two vent holes 583 are provided on the side wall 550a of battery system 500 in the present embodiment.
 ラック750の背面部755には、収容スペース757ごとに、通信接続部763、オンオフ切替部764および電力接続部765が設けられる。通信接続部763は、バッテリシステム500のバッテリECU101と重なる位置に設けられる。オンオフ切替部764は、バッテリシステム500のサービスプラグ520と重なる位置に設けられる。電力接続部765は、バッテリシステム500のHVコネクタ510と重なる位置に設けられる。通信接続部763は、コントローラ712と電気的に接続される。電力接続部765は、電力変換装置720と電気的に接続される。 The rear surface portion 755 of the rack 750 is provided with a communication connection portion 763, an on / off switching portion 764 and a power connection portion 765 for each storage space 757. Communication connection unit 763 is provided at a position overlapping battery ECU 101 of battery system 500. The on / off switching unit 764 is provided at a position overlapping the service plug 520 of the battery system 500. The power connection unit 765 is provided at a position overlapping the HV connector 510 of the battery system 500. The communication connection unit 763 is electrically connected to the controller 712. The power connection unit 765 is electrically connected to the power conversion device 720.
 ラック750の側面部752には、収容スペース757ごとに、2つの冷却用ファン761が設けられる。2つの冷却用ファン761は、バッテリシステム500の側壁550aの2つの通気口583と重なる位置にそれぞれ設けられる。ラック750の側面部751には、収容スペース757ごとに、2つの排気口762が設けられる。2つの排気口762は、バッテリシステム500の側壁550cの2つの排気口582と重なる位置にそれぞれ設けられる。 Two cooling fans 761 are provided for each storage space 757 on the side surface 752 of the rack 750. The two cooling fans 761 are provided at positions overlapping the two vent holes 583 of the side wall 550a of the battery system 500, respectively. Two exhaust ports 762 are provided in the side surface portion 751 of the rack 750 for each storage space 757. The two exhaust ports 762 are provided at positions overlapping the two exhaust ports 582 of the side wall 550c of the battery system 500, respectively.
 バッテリシステム500がラック750の収容スペース757内に収容されることにより、バッテリシステム500のバッテリECU101とラック750の通信接続部763とが接続される。これにより、バッテリECU101とコントローラ712とが通信可能に接続される。 When the battery system 500 is housed in the housing space 757 of the rack 750, the battery ECU 101 of the battery system 500 and the communication connection unit 763 of the rack 750 are connected. Thereby, battery ECU101 and controller 712 are connected so that communication is possible.
 また、バッテリシステム500のサービスプラグ520とラック750のオンオフ切替部764とが接続される。これにより、サービスプラグ520がオンされる。その結果、バッテリシステム500のバッテリモジュール100A~100Fが直列接続される。 Also, the service plug 520 of the battery system 500 and the on / off switching unit 764 of the rack 750 are connected. As a result, the service plug 520 is turned on. As a result, the battery modules 100A to 100F of the battery system 500 are connected in series.
 さらに、バッテリシステム500のHVコネクタ510がラック750の電力接続部765と接続される。これにより、HVコネクタ510が電力変換装置720と接続される。その結果、バッテリシステム500のバッテリモジュール100A~100Fとの間で電力の供給が行われる。 Furthermore, the HV connector 510 of the battery system 500 is connected to the power connection portion 765 of the rack 750. Thereby, the HV connector 510 is connected to the power converter 720. As a result, power is supplied to the battery modules 100A to 100F of the battery system 500.
 このように、バッテリシステム500がラック750の収容スペース757内に収容されることにより、サービスプラグ520がオンされるとともにHVコネクタ510が電力変換装置720と接続される。一方、バッテリシステム500がラック750の収容スペース757内に収容されていない状態では、サービスプラグ520がオフされるとともにHVコネクタ510が電力変換装置720と接続されない。そのため、バッテリシステム500がラック750の収容スペース757内に収容されていない状態では、バッテリモジュール100A~100F間の電流経路が確実に遮断される。したがって、容易にかつ安全にバッテリシステム500のメンテナンス作業を行うことができる。 Thus, when the battery system 500 is accommodated in the accommodation space 757 of the rack 750, the service plug 520 is turned on and the HV connector 510 is connected to the power converter 720. On the other hand, in a state where battery system 500 is not housed in housing space 757 of rack 750, service plug 520 is turned off and HV connector 510 is not connected to power converter 720. Therefore, when the battery system 500 is not accommodated in the accommodation space 757 of the rack 750, the current path between the battery modules 100A to 100F is reliably interrupted. Therefore, the maintenance work of the battery system 500 can be performed easily and safely.
 また、バッテリシステム500がラック750の収容スペース757内に収容された状態で、冷却用ファン761により、通気口583を通してケーシング550内に冷却気体が導入される。これにより、ケーシング550内でバッテリモジュール100A~100Fの各バッテリセル10(図3)の熱が冷却気体により吸収される。ケーシング550内で熱を吸収した冷却気体は、ケーシング550の排気口582およびラック750の排気口762を通して排出される。このようにして、バッテリモジュール100A~100Fの各バッテリセル10が冷却される。 In the state where the battery system 500 is housed in the housing space 757 of the rack 750, the cooling gas is introduced into the casing 550 through the vent 583 by the cooling fan 761. Thereby, the heat of each battery cell 10 (FIG. 3) of the battery modules 100A to 100F is absorbed by the cooling gas in the casing 550. The cooling gas that has absorbed heat in the casing 550 is discharged through the exhaust port 582 of the casing 550 and the exhaust port 762 of the rack 750. In this way, the battery cells 10 of the battery modules 100A to 100F are cooled.
 この場合、ラック750に冷却用ファン761が設けられることにより、バッテリシステム500ごとに送風機581(図30)を設ける必要がない。それにより、バッテリシステム500のコストが削減される。ただし、各バッテリシステム500のケーシング550内に冷却気体を導入することが可能であれば、各バッテリシステム500に送風機581が設けられてもよい。 In this case, by providing the cooling fan 761 in the rack 750, it is not necessary to provide the blower 581 (FIG. 30) for each battery system 500. Thereby, the cost of the battery system 500 is reduced. However, if it is possible to introduce the cooling gas into the casing 550 of each battery system 500, each battery system 500 may be provided with a blower 581.
 本例では、全てのバッテリシステム500が1つのラック750に収容されるが、全てのバッテリシステム500が複数のラック750に分けて収容されてもよい。また、各バッテリシステム500がコントローラ712および電力変換装置720と接続されるように個別に設置されてもよい。 In this example, all the battery systems 500 are accommodated in one rack 750, but all the battery systems 500 may be accommodated in a plurality of racks 750. Further, each battery system 500 may be individually installed so as to be connected to the controller 712 and the power conversion device 720.
 (3)効果
 本実施の形態に係る電源装置700においては、コントローラ712によりバッテリシステム群711と外部との間の電力の供給が制御される。それにより、バッテリシステム群711に含まれる各バッテリセル10の過放電および過充電が防止される。
(3) Effects In power supply device 700 according to the present embodiment, power supply between battery system group 711 and the outside is controlled by controller 712. Thereby, overdischarge and overcharge of each battery cell 10 included in the battery system group 711 are prevented.
 本実施の形態に係る電源装置700には、第1~第5のいずれかの実施の形態に係るバッテリシステム500が設けられる。この場合、複数のバッテリセル10と検出回路20とを接続するために煩雑な配線作業を行う必要がないので、電圧検出線の配線の煩雑さが改善される。したがって、電源装置700のメンテナンスが容易になる。 The power supply apparatus 700 according to the present embodiment is provided with the battery system 500 according to any one of the first to fifth embodiments. In this case, since it is not necessary to perform complicated wiring work to connect the plurality of battery cells 10 and the detection circuit 20, the complexity of wiring of the voltage detection lines is improved. Therefore, maintenance of the power supply device 700 is facilitated.
 [8]他の実施の形態
 (1)上記実施の形態に係るバッテリモジュール100においては、筒型のバッテリセルとして円筒型のバッテリセル10が用いられたが、これに限定されない。例えば、楕円形、長円形または多角形の断面を有する柱状のバッテリセルが用いられてもよいし、他の形状を有する柱状のバッテリセルが用いられてもよい。これらのバッテリセルが用いられたバッテリモジュールは、円筒型のバッテリセル10が用いられたバッテリモジュール100と同様に、電圧検出線の配線の煩雑さを軽減できるという効果を有する。
[8] Other Embodiments (1) In the battery module 100 according to the above embodiment, the cylindrical battery cell 10 is used as the cylindrical battery cell. However, the present invention is not limited to this. For example, a columnar battery cell having an elliptical, oval, or polygonal cross section may be used, or a columnar battery cell having another shape may be used. The battery module using these battery cells has an effect of reducing the complexity of the wiring of the voltage detection lines, like the battery module 100 using the cylindrical battery cell 10.
 一方、円筒型のバッテリセル10は、内圧に対して高い強度を有している。そのため、円筒型のバッテリセル10を用いる場合、他の柱状のバッテリセルを用いる場合に比べて、バッテリセルの金属パッケージを軽量化することが可能になる。その結果、多数のバッテリセルを必要とするバッテリモジュールおよびバッテリシステムに円筒型のバッテリセル10を用いる場合、バッテリモジュールおよびバッテリシステムを軽量化することが可能となる。 On the other hand, the cylindrical battery cell 10 has high strength against the internal pressure. Therefore, when the cylindrical battery cell 10 is used, the metal package of the battery cell can be reduced in weight compared to the case where other columnar battery cells are used. As a result, when the cylindrical battery cell 10 is used in a battery module and a battery system that require a large number of battery cells, the battery module and the battery system can be reduced in weight.
 このようなバッテリシステムを駆動源として電動自動車等の移動体に搭載することにより移動体が軽量化される。移動体を軽量化するにあたり、バッテリシステムの軽量化の寄与は大きい。 By mounting such a battery system on a moving body such as an electric vehicle using the battery system as a drive source, the moving body is reduced in weight. In reducing the weight of the moving body, the contribution of the weight reduction of the battery system is great.
 (2)上記実施の形態に係るバッテリモジュール100において、筒型のバッテリセル10の対向する一方の端面にプラス電極10aが形成され、他方の端面にマイナス電極10bが形成されるが、これに限定されない。例えば、プラス電極10aおよびマイナス電極10bが、バッテリセル10の同一の端面に形成されてもよい。この場合、各バッテリセル10のプラス電極10aおよびマイナス電極10bの両方がバッテリブロック10Bの1つの側面に配置されるので、1枚のFPC基板50により、各バッテリセル10の電圧検出を行うことができる。 (2) In the battery module 100 according to the above embodiment, the positive electrode 10a is formed on one end face of the cylindrical battery cell 10 and the negative electrode 10b is formed on the other end face. Not. For example, the plus electrode 10 a and the minus electrode 10 b may be formed on the same end surface of the battery cell 10. In this case, since both the positive electrode 10a and the negative electrode 10b of each battery cell 10 are arranged on one side surface of the battery block 10B, the voltage detection of each battery cell 10 can be performed by one FPC board 50. it can.
 (3)上記実施の形態に係るバッテリモジュール100においては、バッテリブロック10Bには6個のバッテリセル10が上段に配置され、6個のバッテリセル10が下段に配置されるが、これに限定されない。バッテリブロック10Bにはより多数のバッテリセル10が配置されてもよいし、より少数のバッテリセル10が配置されてもよい。また、複数のバッテリセル10が3段以上で配置されてもよいし、1段で配置されてもよい。 (3) In the battery module 100 according to the above embodiment, in the battery block 10B, the six battery cells 10 are arranged in the upper stage and the six battery cells 10 are arranged in the lower stage. However, the present invention is not limited to this. . A larger number of battery cells 10 may be arranged in the battery block 10B, or a smaller number of battery cells 10 may be arranged. Further, the plurality of battery cells 10 may be arranged in three or more stages, or may be arranged in one stage.
 (4)上記実施の形態に係るバッテリモジュール100においては、複数のバッテリセル10のプラス電極10aおよびマイナス電極10bとFPC基板50に設けられた導体線51とが、バスバー40,40aを介して接続されるが、これに限定されない。バスバー40,40aを介さずに、複数のバッテリセル10のプラス電極10aおよびマイナス電極10bとFPC基板50に設けられた導体線51とが直接接続されてもよく、または、複数のバッテリセル10のプラス電極10aおよびマイナス電極10bとFPC基板50に設けられた導体線51とが別の導体線または導体材料を介して接続されてもよい。 (4) In the battery module 100 according to the above embodiment, the plus electrodes 10a and minus electrodes 10b of the plurality of battery cells 10 and the conductor wires 51 provided on the FPC board 50 are connected via the bus bars 40, 40a. However, it is not limited to this. The positive electrodes 10a and the negative electrodes 10b of the plurality of battery cells 10 and the conductor wires 51 provided on the FPC board 50 may be directly connected without passing through the bus bars 40, 40a, or the plurality of battery cells 10 The plus electrode 10a and the minus electrode 10b may be connected to the conductor line 51 provided on the FPC board 50 via another conductor line or a conductor material.
 (5)上記実施の形態に係るバッテリモジュール100は、バッテリセル10を外部から保護するためにケーシング110に収容されているが、これに限定されない。例えば、バッテリモジュール100は、ケーシング110に収容されなくてもよい。この場合であっても、バッテリモジュール100は、バッテリシステム500のケーシング550内に収容および固定されるので、バッテリセル10、検出回路20およびFPC基板50等の部品を外部から保護することができる。 (5) The battery module 100 according to the above embodiment is accommodated in the casing 110 in order to protect the battery cell 10 from the outside, but is not limited thereto. For example, the battery module 100 may not be accommodated in the casing 110. Even in this case, since the battery module 100 is housed and fixed in the casing 550 of the battery system 500, components such as the battery cell 10, the detection circuit 20, and the FPC board 50 can be protected from the outside.
 (6)上記実施の形態に係るバッテリシステム500は6個のバッテリモジュール100を備えるが、これに限定されない。バッテリシステム500は7個以上のバッテリモジュール100を備えてもよいし、5個以下のバッテリモジュール100を備えてもよい。 (6) Although the battery system 500 according to the above embodiment includes the six battery modules 100, the present invention is not limited to this. The battery system 500 may include seven or more battery modules 100, or may include five or less battery modules 100.
 (7)上記実施の形態に係る電動自動車600または船舶等の移動体はバッテリモジュール100(バッテリシステム500)を備えるとともに、負荷としてモータ602を備える電気機器である。本発明に係る電気機器は、電動自動車600および船舶等の移動体に限定されず、洗濯機、冷蔵庫またはエアコンディショナ等であってもよい。例えば、洗濯機は負荷としてモータを備える電気機器であり、冷蔵庫またはエアコンディショナは負荷としてコンプレッサを備える電気機器である。 (7) A moving body such as the electric automobile 600 or a ship according to the above embodiment is an electric device including the battery module 100 (battery system 500) and the motor 602 as a load. The electric device according to the present invention is not limited to a moving body such as the electric automobile 600 and a ship, and may be a washing machine, a refrigerator, an air conditioner, or the like. For example, a washing machine is an electric device including a motor as a load, and a refrigerator or an air conditioner is an electric device including a compressor as a load.
 (8)上記実施の形態において、FPC基板50に代えてリジッドプリント回路基板が用いられてもよい。この場合、配線部材70は剛性を有するため、配線部材70の取り扱いおよびバッテリブロック10Bへの取り付けが容易になる。 (8) In the above embodiment, a rigid printed circuit board may be used instead of the FPC board 50. In this case, since the wiring member 70 has rigidity, handling of the wiring member 70 and attachment to the battery block 10B are facilitated.
 [9]請求項の各構成要素と実施の形態の各部との対応関係
 以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが、本発明は下記の例に限定されない。
[9] Correspondence relationship between each constituent element of claim and each part of the embodiment Hereinafter, an example of correspondence between each constituent element of the claim and each part of the embodiment will be described. It is not limited.
 上記実施の形態においては、バッテリセル10がバッテリセルの例であり、バッテリブロック10Bがバッテリブロックの例であり、検出回路20が電圧検出回路の例である。FPC基板50が配線部材の一例であり、FPC基板50Fおよびリジッド基板50Rが配線部材の他の例であり、例配線部材70が配線部材のさらに他の例である。FPC基板50,50Fがフレキシブルプリント回路基板の例であり、プラス電極10aが正極端子の例であり、マイナス電極10bが負極端子の例であり、導体線51が電圧検出線の例であり、バッテリモジュール100,バッテリモジュール100A~100Fがバッテリモジュールの例である。 In the above embodiment, the battery cell 10 is an example of a battery cell, the battery block 10B is an example of a battery block, and the detection circuit 20 is an example of a voltage detection circuit. The FPC board 50 is an example of a wiring member, the FPC board 50F and the rigid board 50R are other examples of the wiring member, and the example wiring member 70 is still another example of the wiring member. The FPC boards 50 and 50F are examples of flexible printed circuit boards, the positive electrode 10a is an example of a positive terminal, the negative electrode 10b is an example of a negative terminal, the conductor line 51 is an example of a voltage detection line, a battery Module 100 and battery modules 100A to 100F are examples of battery modules.
 側面Ecが第1の面の例であり、側面Edが第3の面の例である。第1、第2および第5の実施の形態においては、側面Eaが第2の面の例であり、側面Eeが第4の面の例であり、側面Efが第5の面の例である。第3および第4の実施の形態においては、側面Eeが第2の面の例であり、側面Eaが第4の面の例であり、側面Ebが第5の面の例である。 The side surface Ec is an example of the first surface, and the side surface Ed is an example of the third surface. In the first, second and fifth embodiments, the side surface Ea is an example of the second surface, the side surface Ee is an example of the fourth surface, and the side surface Ef is an example of the fifth surface. . In the third and fourth embodiments, the side surface Ee is an example of the second surface, the side surface Ea is an example of the fourth surface, and the side surface Eb is an example of the fifth surface.
 ケーシング110が筺体の例であり、側壁110eがバッテリブロックの第4の面に対応する筺体の部分の例であり、側壁110fがバッテリブロックの第5の面に対応する筺体の部分の例である。バッテリモジュール100A~100Cのスリット109およびバッテリモジュール100D~100Fのスリット108が入口の例であり、バッテリモジュール100A~100Cのスリット108およびバッテリモジュール100D~100Fのスリット109が出口の例である。バスバー40が接続部材の例であり、バッテリシステム500がバッテリシステムの例であり、モータ602がモータまたは動力源の例であり、駆動輪603が駆動輪の例であり、電動自動車600が電動車両の例である。 The casing 110 is an example of a housing, the side wall 110e is an example of the housing portion corresponding to the fourth surface of the battery block, and the side wall 110f is an example of the housing portion corresponding to the fifth surface of the battery block. . The slits 109 of the battery modules 100A to 100C and the slits 108 of the battery modules 100D to 100F are examples of inlets, and the slits 108 of the battery modules 100A to 100C and the slits 109 of battery modules 100D to 100F are examples of outlets. The bus bar 40 is an example of a connection member, the battery system 500 is an example of a battery system, the motor 602 is an example of a motor or a power source, the driving wheels 603 are examples of driving wheels, and the electric automobile 600 is an electric vehicle. It is an example.
 車体610、船体、機体または胴体が移動本体部の例であり、モータ602が動力源の例であり、電動自動車600、船舶、航空機または歩行ロボットが移動体の例である。コントローラ712が制御部の例であり、電力貯蔵装置710が電力貯蔵装置の例であり、電力変換装置720が電力変換装置の例であり、電源装置700が電源装置の例である。モータ602またはコンプレッサが負荷の例であり、電動自動車600、船舶、航空機、歩行ロボット、洗濯機、冷蔵庫またはエアコンディショナが電気機器の例である。 The vehicle body 610, the hull, the fuselage, or the fuselage are examples of the moving body, the motor 602 is an example of the power source, and the electric automobile 600, the ship, the aircraft, or the walking robot is an example of the moving body. The controller 712 is an example of a control unit, the power storage device 710 is an example of a power storage device, the power conversion device 720 is an example of a power conversion device, and the power supply device 700 is an example of a power supply device. A motor 602 or a compressor is an example of a load, and an electric vehicle 600, a ship, an aircraft, a walking robot, a washing machine, a refrigerator, or an air conditioner is an example of an electric device.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。 As the constituent elements of the claims, various other elements having configurations or functions described in the claims can be used.
 本発明は、電力を駆動源とする種々の移動体、電力の貯蔵装置またはモバイル機器等に有効に利用することができる。 The present invention can be effectively used for various mobile objects using electric power as a drive source, power storage devices, mobile devices, and the like.

Claims (12)

  1. 複数の筒型のバッテリセルにより構成されるバッテリブロックと、
     各バッテリセルの端子間電圧を検出するための電圧検出回路と、
     前記バッテリブロックに設けられた配線部材とを備え、
     前記配線部材は、各バッテリセルの正極端子または負極端子と前記電圧検出回路とを電気的に接続するための電圧検出線を有する、バッテリモジュール。
    A battery block composed of a plurality of cylindrical battery cells;
    A voltage detection circuit for detecting a voltage between terminals of each battery cell;
    A wiring member provided in the battery block,
    The said wiring member is a battery module which has a voltage detection line for electrically connecting the positive electrode terminal or negative electrode terminal of each battery cell, and the said voltage detection circuit.
  2. 前記配線部材は、フレキシブルプリント回路基板を含み、
     前記フレキシブルプリント回路基板は、前記電圧検出線が柔軟性材料からなる基板に一体的に形成された構成を有する、請求項1記載のバッテリモジュール。
    The wiring member includes a flexible printed circuit board,
    The battery module according to claim 1, wherein the flexible printed circuit board has a configuration in which the voltage detection line is integrally formed on a board made of a flexible material.
  3. 前記バッテリブロックは、互いに異なる第1および第2の面を有し、
     各バッテリセルの前記正極端子および前記負極端子のうち少なくとも一方の端子は前記バッテリブロックの前記第1の面に配列され、前記電圧検出回路は前記バッテリブロックの前記第2の面に配置される、請求項1または2記載のバッテリモジュール。
    The battery block has first and second surfaces different from each other;
    At least one of the positive electrode terminal and the negative electrode terminal of each battery cell is arranged on the first surface of the battery block, and the voltage detection circuit is arranged on the second surface of the battery block. The battery module according to claim 1 or 2.
  4. 前記バッテリブロックは、前記第1の面と対向しかつ前記第2の面と異なる第3の面をさらに有し、
     各バッテリセルの前記正極端子および前記負極端子のうち他方の端子は前記バッテリブロックの前記第3の面に配列され、前記フレキシブルプリント回路基板は、前記バッテリブロックの前記第2の面上から前記第1の面上および前記第3の面上に延びている、請求項3記載のバッテリモジュール。
    The battery block further includes a third surface facing the first surface and different from the second surface;
    The other terminal of the positive electrode terminal and the negative electrode terminal of each battery cell is arranged on the third surface of the battery block, and the flexible printed circuit board is formed on the second surface of the battery block from the second surface. The battery module according to claim 3, wherein the battery module extends on one side and on the third side.
  5. 前記複数のバッテリセルを収容する筺体をさらに備え、
     前記バッテリブロックは、前記第1、第2および第3の面と異なりかつ互いに対向する第4および第5の面をさらに有し、
     前記バッテリブロックの前記第4の面に対応する前記筺体の部分には冷却用空気が流入可能な入口が形成され、前記バッテリブロックの前記第5の面に対応する前記筺体の部分には冷却用空気が流出可能な出口が形成される、請求項4記載のバッテリモジュール。
    Further comprising a housing for housing the plurality of battery cells;
    The battery block further includes fourth and fifth surfaces that are different from the first, second, and third surfaces and face each other,
    An inlet through which cooling air can flow is formed in a portion of the housing corresponding to the fourth surface of the battery block, and a cooling portion is formed in the portion of the housing corresponding to the fifth surface of the battery block. The battery module according to claim 4, wherein an outlet through which air can flow is formed.
  6. 前記配線部材は、前記電圧検出線と前記電圧検出線に接続された接続部材とを含み、
     前記接続部材により隣り合うバッテリセルの前記正極端子と前記負極端子とが互いに接続されるように、前記配線部材が前記バッテリブロックに取り付けられる、請求項1記載のバッテリモジュール。
    The wiring member includes the voltage detection line and a connection member connected to the voltage detection line,
    The battery module according to claim 1, wherein the wiring member is attached to the battery block such that the positive electrode terminal and the negative electrode terminal of adjacent battery cells are connected to each other by the connection member.
  7. 複数のバッテリモジュールを備え、
     前記複数のバッテリモジュールの各々は、
     複数の筒型のバッテリセルからなるバッテリブロックと、
     各バッテリセルの端子間電圧を検出するための電圧検出回路と、
     前記バッテリブロックに設けられたフレキシブルプリント回路基板とを備え、
     前記フレキシブルプリント回路基板は、各バッテリセルの正極端子または負極端子と前記電圧検出回路とを電気的に接続するための電圧検出線が柔軟性材料からなる基板に一体的に形成された構成を有する、バッテリシステム。
    With multiple battery modules,
    Each of the plurality of battery modules is
    A battery block comprising a plurality of cylindrical battery cells;
    A voltage detection circuit for detecting a voltage between terminals of each battery cell;
    A flexible printed circuit board provided in the battery block,
    The flexible printed circuit board has a configuration in which a voltage detection line for electrically connecting a positive electrode terminal or a negative electrode terminal of each battery cell and the voltage detection circuit is integrally formed on a substrate made of a flexible material. , Battery system.
  8. 請求項7記載のバッテリシステムと、
     前記バッテリシステムの前記複数のバッテリモジュールからの電力により駆動されるモータと、
     前記モータの回転力により回転する駆動輪とを備える、電動車両。
    A battery system according to claim 7;
    A motor driven by electric power from the plurality of battery modules of the battery system;
    An electric vehicle comprising drive wheels that are rotated by the rotational force of the motor.
  9. 請求項1記載の1または複数のバッテリモジュールと、
     移動本体部と、
     前記1または複数のバッテリモジュールからの電力を前記移動本体部を移動させるための動力に変換する動力源とを備える、移動体。
    One or more battery modules according to claim 1;
    A moving body,
    And a power source that converts electric power from the one or more battery modules into power for moving the moving main body.
  10. 請求項1記載の1または複数のバッテリモジュールと、
     前記1または複数のバッテリモジュールの放電または充電に関する制御を行う制御部とを備える、電力貯蔵装置。
    One or more battery modules according to claim 1;
    A power storage device comprising: a control unit that performs control related to discharging or charging of the one or more battery modules.
  11. 外部に接続可能な電源装置であって、
     請求項10記載の電力貯蔵装置と、
     前記電力貯蔵装置の前記1または複数のバッテリモジュールと前記外部との間で電力変換を行う電力変換装置とを備え、
     前記制御部は、前記電力変換装置を制御する、電源装置。
    An externally connectable power supply,
    The power storage device according to claim 10;
    A power conversion device that performs power conversion between the one or more battery modules of the power storage device and the outside;
    The said control part is a power supply device which controls the said power converter device.
  12. 請求項1記載の1または複数のバッテリモジュールと、
     前記1または複数のバッテリモジュールからの電力により駆動される負荷とを備える、電気機器。
    One or more battery modules according to claim 1;
    An electric device comprising a load driven by electric power from the one or more battery modules.
PCT/JP2011/000498 2010-01-29 2011-01-28 Battery module, battery system provided with same, electric drive vehicle, mobile unit, power storage device, power supply device, and electric equipment WO2011093105A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-019497 2010-01-29
JP2010019497 2010-01-29

Publications (1)

Publication Number Publication Date
WO2011093105A1 true WO2011093105A1 (en) 2011-08-04

Family

ID=44319096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000498 WO2011093105A1 (en) 2010-01-29 2011-01-28 Battery module, battery system provided with same, electric drive vehicle, mobile unit, power storage device, power supply device, and electric equipment

Country Status (1)

Country Link
WO (1) WO2011093105A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029319A1 (en) * 2010-08-31 2012-03-08 三洋電機株式会社 Battery module, battery system, electric vehicle, moving object, power storage device, power supply device, and electrical apparatus
WO2013129574A1 (en) * 2012-02-28 2013-09-06 新神戸電機株式会社 Electrochemical cell module
CN106935781A (en) * 2017-01-06 2017-07-07 动能创科股份有限公司 A kind of connection method of battery pack
CN108602565A (en) * 2016-05-13 2018-09-28 极光飞行科学公司 Solar electric power system and method
IT201700037085A1 (en) * 2017-04-04 2018-10-04 Fiamm Energy Tech S P A INTEGRATED BATTERY AN APPARATUS FOR THE ASSEMBLY OF INTERCELLENT CONNECTORS PROVIDED WITH SOLIDAL APPENDICES
WO2018199222A1 (en) * 2017-04-28 2018-11-01 株式会社Gsユアサ Current detecting device, management device, and battery for starting engine
CN109844985A (en) * 2016-10-05 2019-06-04 世倍特集团有限责任公司 Energy unit holding unit for motor vehicles
US10554073B2 (en) 2016-05-13 2020-02-04 Aurora Flight Sciences Corporation, a subsidiary of The Boeing Company Solar power system and method thereof
CN111564581A (en) * 2019-01-29 2020-08-21 重庆峘能电动车科技有限公司 Single-box battery, battery arrangement device and electric automobile
CN112858912A (en) * 2021-02-27 2021-05-28 罗文红 Graphene battery power storage test system and test method
JP2021529419A (en) * 2018-06-25 2021-10-28 アルマ マター ストゥディオラム−ウニベルシタ ディ ボローニャ Power module and how to assemble it
WO2023068004A1 (en) * 2021-10-21 2023-04-27 三洋電機株式会社 Wiring board, manufacturing method thereof, and battery pack provided with wiring board

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208118A (en) * 1999-01-13 2000-07-28 Hitachi Ltd Set battery consisting of nonaqueous electrolyte secondary batteries
JP2000223160A (en) * 1999-01-29 2000-08-11 Sanyo Electric Co Ltd Power supply device
JP2002170535A (en) * 2000-12-04 2002-06-14 Hitachi Ltd Power supply device
JP2003045409A (en) * 2001-07-31 2003-02-14 Yazaki Corp Power source device
JP2005056721A (en) * 2003-08-05 2005-03-03 Sanyo Electric Co Ltd Battery pack
JP2008287993A (en) * 2007-05-16 2008-11-27 Sony Corp Battery pack
WO2010113455A1 (en) * 2009-03-31 2010-10-07 三洋電機株式会社 Battery module, battery system, and electric vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208118A (en) * 1999-01-13 2000-07-28 Hitachi Ltd Set battery consisting of nonaqueous electrolyte secondary batteries
JP2000223160A (en) * 1999-01-29 2000-08-11 Sanyo Electric Co Ltd Power supply device
JP2002170535A (en) * 2000-12-04 2002-06-14 Hitachi Ltd Power supply device
JP2003045409A (en) * 2001-07-31 2003-02-14 Yazaki Corp Power source device
JP2005056721A (en) * 2003-08-05 2005-03-03 Sanyo Electric Co Ltd Battery pack
JP2008287993A (en) * 2007-05-16 2008-11-27 Sony Corp Battery pack
WO2010113455A1 (en) * 2009-03-31 2010-10-07 三洋電機株式会社 Battery module, battery system, and electric vehicle

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029319A1 (en) * 2010-08-31 2012-03-08 三洋電機株式会社 Battery module, battery system, electric vehicle, moving object, power storage device, power supply device, and electrical apparatus
WO2013129574A1 (en) * 2012-02-28 2013-09-06 新神戸電機株式会社 Electrochemical cell module
CN104137298A (en) * 2012-02-28 2014-11-05 新神户电机株式会社 Electrochemical cell module
JPWO2013129574A1 (en) * 2012-02-28 2015-07-30 新神戸電機株式会社 Electrochemical cell / module
CN104137298B (en) * 2012-02-28 2016-10-26 日立化成株式会社 electrochemical element assembly
US10084210B2 (en) 2012-02-28 2018-09-25 Hitachi Chemical Company, Ltd. Electrochemical cell module
EP3455135A4 (en) * 2016-05-13 2020-01-01 Aurora Flight Sciences Corporation Solar power system and method thereof
CN108602565A (en) * 2016-05-13 2018-09-28 极光飞行科学公司 Solar electric power system and method
AU2017264948B2 (en) * 2016-05-13 2022-04-21 Aurora Flight Sciences Corporation Solar power system and method thereof
US10554073B2 (en) 2016-05-13 2020-02-04 Aurora Flight Sciences Corporation, a subsidiary of The Boeing Company Solar power system and method thereof
CN109844985A (en) * 2016-10-05 2019-06-04 世倍特集团有限责任公司 Energy unit holding unit for motor vehicles
CN106935781A (en) * 2017-01-06 2017-07-07 动能创科股份有限公司 A kind of connection method of battery pack
CN106935781B (en) * 2017-01-06 2020-07-21 天津清源电动车辆有限责任公司 Battery pack connection method
IT201700037085A1 (en) * 2017-04-04 2018-10-04 Fiamm Energy Tech S P A INTEGRATED BATTERY AN APPARATUS FOR THE ASSEMBLY OF INTERCELLENT CONNECTORS PROVIDED WITH SOLIDAL APPENDICES
WO2018199222A1 (en) * 2017-04-28 2018-11-01 株式会社Gsユアサ Current detecting device, management device, and battery for starting engine
US11493013B2 (en) 2017-04-28 2022-11-08 Gs Yuasa International Ltd. Current detector, management device, battery for starting engine
JP2021529419A (en) * 2018-06-25 2021-10-28 アルマ マター ストゥディオラム−ウニベルシタ ディ ボローニャ Power module and how to assemble it
CN111564581A (en) * 2019-01-29 2020-08-21 重庆峘能电动车科技有限公司 Single-box battery, battery arrangement device and electric automobile
CN112858912A (en) * 2021-02-27 2021-05-28 罗文红 Graphene battery power storage test system and test method
WO2023068004A1 (en) * 2021-10-21 2023-04-27 三洋電機株式会社 Wiring board, manufacturing method thereof, and battery pack provided with wiring board

Similar Documents

Publication Publication Date Title
WO2011093105A1 (en) Battery module, battery system provided with same, electric drive vehicle, mobile unit, power storage device, power supply device, and electric equipment
JP6160729B2 (en) Battery module
WO2011105095A1 (en) Battery module, battery system, electric vehicle, mobile body, power storage device, power supply device, and electric apparatus
WO2012042913A1 (en) Battery module, battery system comprising same, electric vehicle, mobile body, electric power storage device, electric power supply device, and electric device
WO2011024477A1 (en) Battery module, battery system and electrically driven vehicle
US9024572B2 (en) Battery module, battery system and electric vehicle
US8994300B2 (en) Battery module, and electric vehicle, movable body, battery system, power storage device, and power supply device including the same
US20120298433A1 (en) Battery module, battery system, electric vehicle, movable body, power storage device, and power supply device
US20110104521A1 (en) Battery system and electric vehicle including the same
WO2012011237A1 (en) Battery module, battery system, electric vehicle, mobile body, power storage device, and power source device
US11682797B2 (en) Systems and methods for providing individual battery cell circuit protection
WO2012132178A1 (en) Battery system, electric vehicle, mobile body, power storage device, and power source device
JP2011155829A (en) Battery system and electric vehicle including the same
JP2011049155A (en) Battery system and electric vehicle including the same
WO2012026093A1 (en) Battery module, battery system, electric vehicle, mobile body, electric power storage device, and electric power supply device
JP3986242B2 (en) Battery system for electric vehicles
WO2012029319A1 (en) Battery module, battery system, electric vehicle, moving object, power storage device, power supply device, and electrical apparatus
WO2012029317A1 (en) Battery system, electrically driven vehicle provided with same, moving body, power storage apparatus, power supply apparatus, and electrical equipment
JP2011119235A (en) Battery system and electric vehicle comprising same
WO2012042912A1 (en) Battery system, electric vehicle provided therewith, mobile body, electric-power storage apparatus, power-supply apparatus, and electrical device
JP2021136054A (en) Battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11736820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP