WO2012029319A1 - Battery module, battery system, electric vehicle, moving object, power storage device, power supply device, and electrical apparatus - Google Patents

Battery module, battery system, electric vehicle, moving object, power storage device, power supply device, and electrical apparatus Download PDF

Info

Publication number
WO2012029319A1
WO2012029319A1 PCT/JP2011/004895 JP2011004895W WO2012029319A1 WO 2012029319 A1 WO2012029319 A1 WO 2012029319A1 JP 2011004895 W JP2011004895 W JP 2011004895W WO 2012029319 A1 WO2012029319 A1 WO 2012029319A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery module
power
electrode
terminal
Prior art date
Application number
PCT/JP2011/004895
Other languages
French (fr)
Japanese (ja)
Inventor
由知 西原
計美 大倉
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012029319A1 publication Critical patent/WO2012029319A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module, a battery system, an electric vehicle, a moving body, a power storage device, a power supply device, and an electric device.
  • a battery system including a plurality of battery cells that can be charged and discharged is used as a driving source for a moving body such as an electric automobile.
  • the battery system described in Patent Document 1 includes a battery block (battery block) formed by stacking a plurality of battery cells (battery cells) and a pair of end plates that are fixed so as to sandwich the stacked battery cells in the stacking direction. (End face frame), a connector for connecting the pair of end face frames, and an output line (power line) connected to the electrode terminal of the battery block.
  • JP 2010-80353 A JP 2010-80353 A
  • an output line is connected to the electrode terminal of one of the battery cells in order to take out the power of the battery block.
  • it is necessary to connect the electrode terminal of a some battery cell, and a voltage detection circuit with a some voltage detection line. In this case, the routing of the output line and the plurality of voltage detection lines becomes complicated, and the wiring work in the battery system becomes complicated.
  • An object of the present invention is to provide a battery module, a battery system, an electric vehicle, a moving body, a power storage device, a power supply device, and an electric device that can simplify a wiring structure and facilitate wiring work.
  • a battery module is provided in a battery block including a plurality of battery cells, a voltage detection circuit that detects a voltage of each battery cell, a holding member that holds the voltage detection circuit, and a plurality of holding members.
  • a relay terminal electrically connected to one of the electrode terminals of the battery cell, and a plurality of wirings connecting the plurality of electrode terminals of the plurality of battery cells and the voltage detection circuit, the relay terminal and the plurality of wirings Is arranged so as not to overlap each other on the holding member.
  • FIG. 1 is an external perspective view of a battery module.
  • FIG. 2 is a plan view of the battery module.
  • FIG. 3 is an end view of the battery module.
  • FIG. 4 is a schematic plan view for explaining the details of the connection between the bus bar and the printed circuit board.
  • FIG. 5 is a plan view of one side of the end face frame of FIGS.
  • FIG. 6 is an external perspective view showing a procedure for attaching the relay member to the battery block.
  • FIG. 7 is an external perspective view showing a procedure for attaching the relay member to the battery block.
  • FIG. 8 is an external perspective view for explaining the attachment of the gas duct to the battery block.
  • FIG. 9 is a block diagram for explaining the configuration and operation of a voltage detection circuit and a communication circuit mounted on a printed circuit board.
  • FIG. 10 is an external perspective view showing the battery module according to the second embodiment.
  • FIG. 11 is a plan view of the battery module.
  • FIG. 12 is an external perspective view for explaining the connection of the power supply line to the battery module according to the second embodiment.
  • FIG. 13 is an exploded perspective view of the battery module according to the third embodiment.
  • FIG. 14 is an exploded perspective view of the battery module according to the fourth embodiment.
  • FIG. 15 is a perspective view of the lid member of FIG. 14 as viewed obliquely from below.
  • FIG. 16 is a perspective view of the lid member of FIG. 14 as viewed obliquely from above.
  • FIG. 17 is an exploded perspective view of the battery module according to the fifth embodiment.
  • 18 is a perspective view of the lid member of FIG. 17 as viewed obliquely from below.
  • FIG. 19 is a perspective view of the lid member of FIG. 17 as viewed obliquely from above.
  • FIG. 20 is an exploded perspective view of the battery module according to the sixth embodiment.
  • FIG. 21 is a block diagram illustrating a configuration of a battery system including the battery module according to the first embodiment.
  • FIG. 22 is a schematic plan view showing a first configuration example of the battery system of FIG.
  • FIG. 23 is a schematic plan view showing a second configuration example of the battery system of FIG.
  • FIG. 24 is a schematic plan view showing a third configuration example of the battery system of FIG.
  • FIG. 25 is a schematic plan view showing a fourth configuration example of the battery system of FIG.
  • FIG. 26 is a schematic plan view showing a fifth configuration example of the battery system of FIG.
  • FIG. 27 is a block diagram illustrating a configuration of an electric automobile including a battery system.
  • FIG. 28 is a block diagram illustrating a configuration of a power supply device including a battery system.
  • the battery system using the battery module according to the present embodiment is mounted on an electric vehicle (for example, an electric automobile) using electric power as a drive source.
  • FIG. 1 is an external perspective view of the battery module 100
  • FIG. 2 is a plan view of the battery module 100
  • FIG. 3 is an end view of the battery module 100.
  • FIGS. 1 to 3 and FIGS. 4 to 8 and 10 to 19 described later as shown by arrows X, Y, and Z, three directions orthogonal to each other are defined as an X direction, a Y direction, and a Z direction.
  • the X direction and the Y direction are directions parallel to the horizontal plane
  • the Z direction is a direction orthogonal to the horizontal plane.
  • the upward direction is the direction in which the arrow Z faces.
  • each battery cell 10 is a secondary battery such as a lithium ion battery or a nickel metal hydride battery.
  • the plurality of battery cells 10 are integrally fixed by a pair of end face frames 92, a pair of upper end frames 93, and a pair of lower end frames 94 in a state of being arranged in the X direction.
  • the plurality of battery cells 10, the pair of end face frames 92, the pair of upper end frames 93, and the pair of lower end frames 94 constitute a substantially rectangular parallelepiped battery block 10BB.
  • the end face frame 92 is formed of a metal or an alloy such as an aluminum alloy die cast
  • the upper end frame 93 and the lower end frame 94 are formed of a metal or an alloy such as a cold rolled steel plate.
  • the printed circuit board 21 is attached to one end face frame 92 of the pair of end face frames 92.
  • a voltage detection circuit 20 and a communication circuit 24 are mounted on the printed circuit board 21.
  • the voltage detection circuit 20 detects the terminal voltage of each battery cell 10.
  • the communication circuit 24 transmits the terminal voltage of each battery cell 10 detected by the voltage detection circuit 20 to the outside of the battery module 100 (such as a battery ECU 101 and a main control unit 300 in FIG. 21 described later). Details of the voltage detection circuit 20 and the communication circuit 24 will be described later.
  • Battery block 10BB has an upper surface parallel to the XY plane.
  • Battery block 10BB has one end face and the other end face parallel to the YZ plane. Furthermore, the battery block 10BB has one side surface parallel to the XZ plane and the other side surface.
  • Each battery cell 10 has a gas vent valve 10v in the center of the upper surface portion.
  • the pressure inside the battery cell 10 rises to a predetermined value, the gas inside the battery cell 10 is discharged from the gas vent valve 10v of the battery cell 10. Thereby, the excessive raise of the pressure inside the battery cell 10 is prevented.
  • Each battery cell 10 has a plus electrode 10a and a minus electrode 10b on the top surface so as to be arranged in the Y direction. As shown in FIG. 3, each electrode 10a, 10b is inclined and provided so as to protrude upward.
  • the battery cells 10 adjacent to one end face frame 92 to the battery cells 10 adjacent to the other end face frame 92 are referred to as first to eighteenth battery cells 10.
  • each battery cell 10 is arranged so that the positional relationship between the plus electrode 10 a and the minus electrode 10 b in the Y direction is reversed between each two adjacent battery cells 10.
  • the positive electrodes 10a and the negative electrodes 10b of the two adjacent battery cells 10 are alternately arranged in the X direction. Further, in the vicinity of the other side surface of the battery block 10BB, the minus electrodes 10b and the plus electrodes 10a of the two adjacent battery cells 10 are alternately arranged in the X direction.
  • one electrode 10a, 10b of the plurality of battery cells 10 constitutes the first terminal row TL1 (FIG. 2) aligned in the X direction, and the plurality of battery cells 10
  • the other electrode 10a, 10b constitutes a second terminal row TL2 (FIG. 2) in which the other electrodes 10a, 10b are aligned in the X direction.
  • the first terminal row TL1 and the second terminal row TL2 are arranged in parallel to each other with an interval therebetween.
  • the bus bar 40 is attached to each of the two electrodes 10a and 10b adjacent in the X direction. Thereby, the some battery cell 10 is connected in series. Specifically, a common bus bar 40 is attached to the negative electrode 10 b of the first battery cell 10 and the positive electrode 10 a of the second battery cell 10. A common bus bar 40 is attached to the negative electrode 10b of the second battery cell 10 and the positive electrode 10a of the third battery cell 10. Similarly, a common bus bar 40 is attached to the minus electrode 10b of each odd-numbered battery cell 10 and the plus electrode 10a of the even-numbered battery cell 10 adjacent thereto. A common bus bar 40 is attached to the minus electrode 10b of each even-numbered battery cell 10 and the plus electrode 10a of the odd-numbered battery cell 10 adjacent thereto.
  • the bus bar 40a is attached to the plus electrode 10a of the first battery cell 10 and the minus electrode 10b of the 18th battery cell 10, respectively.
  • bus bar 40 attached to each two adjacent electrodes 10a and 10b has a substantially rectangular shape.
  • the bus bar 40 has a pair of electrode connection holes arranged in the longitudinal direction.
  • the bus bar 40a attached to one electrode 10a, 10b has a substantially square shape.
  • One electrode connection hole is formed in the bus bar 40a.
  • a male screw is formed on the positive electrode 10a and the negative electrode 10b of each battery cell 10.
  • the bus bar 40 is attached to the adjacent plus electrode 10a and minus electrode 10b, the plus electrode 10a and minus electrode 10b are fitted into the electrode connection holes formed in each bus bar 40.
  • a nut (not shown) is attached to the male threads of the plus electrode 10a and the minus electrode 10b.
  • the positive electrode 10a of the first battery cell 10 adjacent to one end face frame 92 is the positive electrode 10a having the highest potential in the battery module 100.
  • One end of a relay member 41 having a substantially L shape is attached to the plus electrode 10 a of the first battery cell 10.
  • the minus electrode 10b of the 18th battery cell 10 adjacent to the other end face frame 92 is the minus electrode 10b having the lowest potential in the battery module 100.
  • One end of a relay member 41 having a substantially L shape is also attached to the negative electrode 10b of the eighteenth battery cell 10.
  • a plurality (three in this example) of screw holes 99a, 99b, and 99c are formed in the upper surface portions of the pair of end face frames 92 so as to be aligned in the Y direction. In the Y direction, the screw holes 99a, 99b, and 99c are located between the first terminal row TL1 and the second terminal row TL2.
  • the other end portion of the relay member 41 connected to the plus electrode 10a of the first battery cell 10 is disposed on the screw hole 99c (FIG. 2) closest to the second terminal row TL2.
  • the other end portion of the relay member 41 connected to the negative electrode 10b of the 18th battery cell 10 on the screw hole 99a (FIG. 2) closest to the second terminal row TL2. Is placed.
  • Each relay member 41 has, for example, a structure in which nickel plating is applied to the surface of tough pitch copper, similarly to the bus bars 40 and 40a.
  • a power supply line 501 (see FIG. 7 to be described later) for supplying the power of the plurality of battery cells 10 to an external device (for example, a load such as a motor) is connected to the other end portion of these relay members 41. Details of the end face frame 92 and the relay member 41 will be described later.
  • a long flexible printed circuit board (hereinafter, referred to as “X”) extends in the X direction between one side surface of the battery block 10BB and the first terminal row TL1 located in the vicinity of the one side surface. 50 (abbreviated as FPC board).
  • the FPC board 50 is connected to the plurality of bus bars 40.
  • a long FPC board 50 is disposed so as to extend in the X direction between the other side surface of the battery block 10BB and the second terminal row TL2 located in the vicinity of the other side surface. Is done.
  • the FPC board 50 is connected to the plurality of bus bars 40, 40a.
  • These FPC boards 50 have a configuration in which a plurality of conductor wires 51 and 52 (see FIG. 4 described later) are formed on an insulating layer, and have flexibility and flexibility.
  • polyimide is used as the material of the insulating layer constituting the FPC board 50
  • copper is used as the material of the conductor wires 51 and 52 (see FIG. 4 described later).
  • PTC Positive Temperature Coefficient
  • Each FPC board 50 is folded at a right angle toward the inside in the vicinity of the upper end portion of one end face frame 92 (the end face frame 92 to which the printed circuit board 21 is attached), and is further folded downward to form the printed circuit board 21. Connected.
  • the voltage detection circuit 20 mounted on the printed circuit board 21 is electrically connected to all the bus bars 40, 40a of the battery module 100 via the conductor wires 51, 52 and the PTC element 60.
  • FIG. 4 is a schematic plan view for explaining the details of the connection between the bus bars 40, 40 a and the printed circuit board 21.
  • the printed circuit board 21 is provided with a voltage detection circuit 20.
  • the FPC board 50 is provided with a plurality of conductor lines 51 and 52 so as to correspond to the plurality of bus bars 40 and 40a.
  • Each conductor line 51 is provided so as to extend in parallel to the Y direction between the bus bars 40, 40a and the PTC element 60 disposed in the vicinity of the bus bar 40, and each conductor line 52 includes the PTC element 60 and the FPC board. 50 is provided so as to extend in parallel with the X direction.
  • each conductor wire 51 is provided so as to be exposed on the lower surface side of the FPC board 50.
  • One end of each conductor wire 51 exposed on the lower surface side is electrically connected to each bus bar 40, 40a by, for example, soldering or welding. Thereby, the FPC board 50 is fixed to each bus bar 40, 40a.
  • each conductor line 51 and one end of each conductor line 52 are provided so as to be exposed on the upper surface side of the FPC board 50.
  • a pair of terminals (not shown) of the PTC element 60 are connected to the other end of each conductor wire 51 and one end of each conductor wire 52 by, for example, soldering.
  • the printed circuit board 21 is provided with a plurality of connection terminals 22 corresponding to the plurality of conductor lines 52 of the FPC board 50.
  • the plurality of connection terminals 22 and the voltage detection circuit 20 are electrically connected on the printed circuit board 21 via a plurality of conductor lines (not shown).
  • the other end of each conductor wire 52 of the FPC board 50 is connected to the corresponding connection terminal 22 by, for example, soldering or welding.
  • each bus bar 40, 40 a is electrically connected to the voltage detection circuit 20 via the PTC element 60. Thereby, the terminal voltage of each battery cell 10 is detected by the voltage detection circuit 20.
  • the voltage detection circuit 20 and the communication circuit 24 are electrically connected on the printed circuit board 21 via a plurality of conductor lines (not shown). Thereby, the terminal voltage of each battery cell 10 detected by the voltage detection circuit 20 is transmitted to the outside of the battery module 100 (battery ECU 101 and main control unit 300 in FIG. 21 to be described later) via the communication circuit 24.
  • the PTC element 60 has a resistance temperature characteristic in which the resistance value rapidly increases when the temperature exceeds a certain value. Therefore, when a short circuit occurs in the voltage detection circuit 20 or the conductor wire 52, the temperature of the PTC element 60 increases due to the current flowing through the short circuit path. In this case, the resistance value of the PTC element 60 is increased. This prevents a large current from flowing through the short circuit path including the PTC element 60.
  • FIG. 5 is a plan view of one surface side of the end face frame 92 of FIGS.
  • the end face frame 92 includes a holding plate 92a, an upper protruding edge 92b, a lower protruding edge 92c, and a board mounting portion 92d.
  • the holding plate 92a has a rectangular shape and has one surface and the other surface. In battery block 10BB, the other surface of holding plate 92a is in contact with battery cell 10.
  • the upper protrusion 92b is formed to extend in the Y direction along the upper end on one surface of the holding plate 92a. Both ends of the upper protruding edge 92b are formed in a U-shape that opens outward. Thereby, concave portions 92u for connection of the upper end frame 93 are formed at both ends of the upper protruding edge 92b. A connection hole 92e is formed in the recess 92u.
  • the lower projecting edge 92c is formed to extend in the Y direction along the lower end on one surface of the holding plate 92a. Both ends of the lower projecting edge 92c are formed in a U-shape that opens outward. Thereby, concave portions 92u for connection of the lower end frame 94 are formed on both sides of the lower protruding edge 92c. A connection hole 92e is formed in the recess 92u.
  • substrate attachment portions 92d are respectively formed at the lower portions of both end portions of the upper protruding edge 92b and at the upper portions of both end portions of the lower protruding edge 92c.
  • a screw hole NH for attaching the printed circuit board 21 is formed in each board attaching portion 92b.
  • the height of each board attachment portion 92d from one surface of the holding plate 92a in the X direction is smaller than the height of the upper protruding edge 92b and the lower protruding edge 92c from one surface of the holding plate 92a.
  • Screw holes 99a, 99b, and 99c are formed in the screw members 991, 992, and 993, respectively.
  • the screw members 991, 992, 993 may be resin nuts.
  • notches 92g are formed between one end of the upper protruding edge 92b and the screw hole 99a and between the other end of the upper protruding edge 92b and the screw hole 99c, respectively.
  • the two notches 92g vertically penetrate the upper protruding edge 92b (see FIG. 2).
  • a part of the two FPC boards 50 that connect the plurality of bus bars 40, 40a and the printed circuit board 21 are disposed in the notches 92g (see FIGS. 1 to 3). This prevents the two FPC boards 50 from being shifted in the Y direction. In addition, since the two FPC boards 50 can be easily positioned on the battery block 10BB when the battery module 100 is assembled, the assembling work of the battery module 100 is facilitated.
  • the two FPC boards 50 are arranged in the notch 92g, when the upper protruding edge 92b comes into contact with another member, the two FPC boards 50 are connected to the end face frame 92 and the other members. It is prevented from being pinched by. This prevents the two FPC boards 50 from being damaged.
  • 6 and 7 are external perspective views showing a procedure for attaching the relay member 41 to the battery block 10BB. 6 and 7 mainly show one end face frame 92 to which the printed circuit board 21 is attached and its peripheral portion.
  • connection holes 41a and 41b are formed in one end and the other end of the relay member 41, respectively.
  • the plus electrode 10 a of the first battery cell 10 is fitted into the connection hole 41 a of the relay member 41.
  • the one end part of the relay member 41 overlaps with the bus bar 40a.
  • the other end of the relay member 41 is disposed on the upper surface of the upper protruding edge 92b of the end face frame 92 so that the connection hole 41b of the relay member 41 overlaps the screw hole 99c.
  • an annular connection portion 501a is provided at one end of a power supply line 501 for connecting the battery module 100 and an external device (for example, a load such as a motor).
  • an external device for example, a load such as a motor.
  • the bus bar 40a and the power supply line 501 are connected to each other via the relay member 41.
  • a relay for supplying electric power of the plurality of battery cells 10 to an external device (for example, a load such as a motor) by the screw member 993 formed with the screw hole 99c and the screw N1.
  • a terminal CT (see FIG. 3) is configured.
  • the relay member 41 is attached to the screw members 991, 992, and 993 made of an insulating material. Therefore, the relay member 41 and the power supply line 501 are insulated from the end face frame 92 in a state where the relay member 41 and the power supply line 501 are attached to the end face frame 92.
  • the relay member 41 is attached to one end face frame 92 of the pair of end face frames 92 constituting the battery block 10BB has been described, but the relay member 41 is similarly attached to the other end face frame 92.
  • the printed circuit board 21 is not attached to the other end face frame 92.
  • the other end of the relay member 41 is fixed on the screw hole 99a among the three screw holes 99a, 99b, 99c.
  • the relay for supplying the electric power of the plurality of battery cells 10 to an external device (for example, a load such as a motor) by the screw member 991 having the screw hole 99a and the screw N1.
  • a terminal CT (see FIG. 3) is configured.
  • FIG. 8 is an external perspective view for explaining the attachment of the gas duct to the battery block 10BB.
  • a gas duct GD extending in the X direction is provided in the battery module 100 according to the present embodiment.
  • the gas duct GD has a concave cross section.
  • the gas duct GD is arranged so that the opening faces downward.
  • a protruding piece GDx is formed at one end of the gas duct GD.
  • a through hole GDy is formed in the protruding piece GDx.
  • a gas duct GD is arranged on the upper surface of the battery block 10BB so that the through hole GDy of the protruding piece GDx overlaps the screw hole 99b of the end face frame 92 and covers the gas vent valves 10v of all the battery cells 10.
  • the screw N2 is screwed into the screw hole 99b of the end face frame 92 through the through hole GDy of the protruding piece GDx.
  • gas duct GD is fixed to the upper surface of battery block 10BB.
  • the gas discharged from the gas vent valves 10v of the plurality of battery cells 10 is guided to the outside without diffusing through the inside of the gas duct GD (FIG. 8). (See the thick dotted arrow).
  • FIG. 9 is a block diagram for explaining the configuration and operation of the voltage detection circuit 20 and the communication circuit 24 mounted on the printed circuit board 21.
  • the voltage detection circuit 20 includes a multiplexer 20a, an A / D (analog / digital) converter 20b, and a plurality of differential amplifiers 20c.
  • Each differential amplifier 20c of the voltage detection circuit 20 has two input terminals and one output terminal. Each differential amplifier 20c differentially amplifies the voltage input to the two input terminals, and outputs the amplified voltage from the output terminal. The two input terminals of each differential amplifier 20c are electrically connected to the plus electrode and the minus electrode of each battery cell 10 through the conductor line 51, the PTC element 60, and the conductor line 52, respectively.
  • each differential amplifier 20c The voltage between the positive electrode and the negative electrode of each battery cell 10 is differentially amplified by each differential amplifier 20c.
  • the output voltage of each differential amplifier 20 c corresponds to the terminal voltage of each battery cell 10. Terminal voltages output from the plurality of differential amplifiers 20c are applied to the multiplexer 20a.
  • the multiplexer 20a sequentially outputs the terminal voltages supplied from the plurality of differential amplifiers 20c to the A / D converter 20b.
  • the A / D converter 20 b converts the terminal voltage output from the multiplexer 20 a into a digital value and supplies the digital value to the communication circuit 24.
  • the terminal voltage applied to the communication circuit 24 is transmitted to the outside of the battery module 100 (battery ECU 101 and main control unit 300 in FIG. 21 described later).
  • the voltage detection circuit 20 is made of, for example, an ASIC (Application Specific Integrated Circuit).
  • the communication circuit 24 is realized by hardware such as a CPU (Central Processing Unit) and a memory, and software such as a computer program. In this case, the function of the communication circuit 24 is realized by the CPU executing the computer program stored in the memory.
  • the communication circuit 24 may be configured by hardware such as an ASIC.
  • the FPC board 50 including the plurality of conductor wires 51 and 52 is disposed so as not to overlap the screw member 991 in which the screw hole 99a is formed.
  • the power supply line 501 for connecting the battery module 100 and the load can be easily connected to the other end portion of the relay member 41 on the screw hole 99a of the other end face frame 92.
  • the wiring structure of the battery module 100 becomes simple and the wiring work becomes easy.
  • the relay member 41 is disposed so as not to overlap the FPC board 50 including the plurality of conductor wires 51 and 52. Thereby, the plurality of conductor wires 51 and 52 and the relay member 41 do not interfere with each other. Therefore, the wiring structure of the battery module 100 becomes simpler and the wiring work becomes easier.
  • the plurality of conductor wires 51 and 52 and the relay member 41 do not contact with each other, a short circuit between the plurality of conductor wires 51 and 52 and the relay member 41 is prevented, and vibration caused by traveling of the electric vehicle described later is caused.
  • the plurality of conductor lines 51 and 52 are prevented from being disconnected. Thereby, the reliability of the battery module 100 is improved.
  • the relay member 41 having a substantially L shape is used so that the relay member 41 and the FPC board 50 do not overlap each other.
  • the relay member 41 may have another shape such as a U shape or a V shape as long as it does not overlap the FPC board 50.
  • One end face frame 92 has a pair of notches 92g. Part of the FPC board 50 is disposed in each of the pair of notches 92g. Thereby, the FPC board 50 is smoothly guided to the printed circuit board 21 from the upper surface of the battery block 10BB. Thereby, the wiring work between the plurality of electrodes 10a, 10b of the plurality of battery cells 10 and the printed circuit board 21 is further facilitated.
  • a pair of FPC boards 50 extend in the X direction outside the first terminal row TL1 and the second terminal row TL2.
  • the other end portion of the relay member 41 is disposed on the screw hole 99c between the pair of notches 92g, the FPC board 50 and the relay member 41 are reliably prevented from overlapping each other.
  • the X direction is an example of the first direction
  • the first battery cell 10 is an example of a battery cell located at one end
  • one end face frame 92 is an example of a holding member.
  • the positive electrodes 10a and the negative electrodes 10b of the plurality of battery cells 10 are examples of a plurality of power supply terminals
  • the plurality of conductor lines 51 and 52 formed on the two FPC boards 50 are examples of wirings.
  • the member 41 is an example of a first connecting member.
  • the two notches 92g are examples of the guide portion
  • the upper surface of the battery block 10BB is an example of one surface of the battery block
  • the plurality of conductor wires 51 and 52 formed on one FPC board 50 are the first ones.
  • a wiring group It is an example of a wiring group, and the plurality of conductor lines 51 and 52 formed on the other FPC board 50 are examples of the second wiring group, and the Y direction is an example of the second direction. Furthermore, one notch 92g is an example of a first guide part, and the other notch 92g is an example of a second guide part.
  • a battery module includes a battery block including a plurality of battery cells, a voltage detection circuit that detects the voltage of each battery cell, a holding member that holds the voltage detection circuit, and a holding member.
  • a relay terminal electrically connected to any one of the electrode terminals of the plurality of battery cells, and a plurality of wires connecting the plurality of electrode terminals of the plurality of battery cells and the voltage detection circuit, The plurality of wirings are arranged so as not to overlap each other on the holding member.
  • the voltage detection circuit is held by the holding member.
  • the plurality of electrode terminals of the plurality of battery cells and the voltage detection circuit are connected by a plurality of wires. Thereby, the terminal voltage of the plurality of battery cells is detected by the voltage detection circuit.
  • a relay terminal provided on the holding member is electrically connected to one of the electrode terminals of the plurality of battery cells.
  • the power supply line for connecting a battery module and an external device can be connected to a relay terminal.
  • the relay terminal and the plurality of wires are arranged on the holding member so as not to overlap each other, the relay terminal and the power supply line connected to the relay terminal do not interfere with the plurality of wires. Therefore, the wiring structure is simplified and wiring work is facilitated.
  • the plurality of battery cells are arranged to be aligned in the first direction, and the holding member is provided adjacent to the battery cell located at one end of the plurality of battery cells, and the battery cell located at the one end is arranged.
  • the electrode terminal and the relay terminal are connected via the first connection member, and the first connection member and the plurality of wires are arranged so as not to overlap each other.
  • a holding member for holding the voltage detection circuit is provided so as to be adjacent to the battery cell located at one end. Since the 1st connection member which connects the electrode terminal of the battery cell and relay terminal which are located in one end part does not overlap with a plurality of wirings, the 1st connection member and a plurality of wirings do not interfere. Therefore, the wiring structure becomes simpler and the wiring work becomes easier.
  • the battery module has a guide unit that guides a plurality of wires from a plurality of electrode terminals of a plurality of battery cells to a voltage detection circuit.
  • the guide unit guides the plurality of wires from the plurality of electrode terminals of the plurality of battery cells to the voltage detection circuit. This further facilitates the wiring work between the plurality of electrode terminals of the plurality of battery cells and the voltage detection circuit.
  • the battery block has one surface on which a plurality of electrode terminals of a plurality of battery cells are arranged, and the plurality of electrode terminals of the plurality of battery cells are arranged in parallel with each other along a first direction on the one surface.
  • the second terminal row includes a plurality of wirings including first and second wiring groups extending in the first direction on the outer surface of the first and second terminal rows on the one surface.
  • a first guide portion and a second guide portion which are provided so as to be arranged in a second direction intersecting with the first direction and respectively guide the first and second wiring groups, and the relay terminal includes the first guide portion and the first guide portion. It is provided between the second guide part.
  • the first and second wiring groups extend in the first direction outside the first and second terminal rows.
  • the first and second wiring groups are guided to the voltage detection circuit from the plurality of electrode terminals of the plurality of battery cells by the first and second guide portions, respectively.
  • the relay terminal since the relay terminal is provided between the first guide portion and the second guide portion, the relay terminal and the plurality of wires are reliably prevented from overlapping each other on the holding member.
  • Second Embodiment A battery module according to a second embodiment will be described while referring to differences from the battery module 100 according to the first embodiment.
  • FIG. 10 is an external perspective view showing the battery module 100 according to the second embodiment, and FIG. 11 is a plan view of the battery module 100. In FIG. 11, illustration of the plurality of PTC elements 60 is omitted.
  • the plurality of battery cells 10, the pair of end face frames 92, the pair of upper end frames 93, and the pair of lower end frames 94 constitute a substantially rectangular parallelepiped battery block 10BB.
  • each end face frame 92 is made of a rectangular plate member having one surface and the other surface.
  • the other surface of the end face frame 92 is in contact with the battery cell 10.
  • the printed circuit board 21 is provided on one surface of the end face frame 92.
  • the end face frame 92, the upper end frame 93, and the lower end frame 94 used in the present embodiment are formed of an insulating resin.
  • Each battery cell 10 has a plus electrode 10a and a minus electrode 10b on the top surface so as to be arranged in the Y direction. Also in this battery module 100, one electrode 10a, 10b of the plurality of battery cells 10 constitutes a first terminal row TL1 aligned in the X direction, and the other electrode 10a, 10b of the plurality of battery cells 10 is X A second terminal row TL2 aligned in the direction is configured. The first terminal row TL1 and the second terminal row TL2 are arranged in parallel to each other with an interval therebetween.
  • Two adjacent electrodes 10a and 10b are fitted into a flat bus bar 40p.
  • the electrodes 10a and 10b are laser welded to the bus bar 40p.
  • the plurality of bus bars 40p are arranged along the first terminal row TL1 and the second terminal row TL2, and the plurality of battery cells 10 are connected in series.
  • Each bus bar 40p is provided with an attachment piece 42p (FIG. 11) for connecting the bus bar 40p to FPC boards 50a and 50b described later.
  • a plurality of attachment pieces 42p are provided from a plurality of bus bars 40p arranged along the first terminal row TL1 toward the gas vent valves 10v of the plurality of battery cells 10. Projects a certain length in the Y direction.
  • a plurality of attachment pieces 42p project from the plurality of bus bars 40p arranged along the second terminal row TL2 toward the gas vent valves 10v of the plurality of battery cells 10 by a certain length in the Y direction.
  • two insulating rib members GL1, extending in the X direction between the first terminal row TL1 and the second terminal row TL2, are provided on the upper surface of the battery block 10BB.
  • GL2 is provided on the upper surface of the battery block 10BB.
  • the two rib members GL1 and GL2 are arranged so as to sandwich the gas vent valves 10v of the plurality of battery cells 10, and partition the space immediately above the battery block 10BB into three regions along the Y direction. .
  • each rib member GL1, GL2 is located on the upper surface of one end surface frame 92, and the other end portion of each rib member GL1, GL2 is located on the upper surface of the other end surface frame 92.
  • the rib members GL1 and GL2 for example, rod-shaped members having a rectangular cross section can be used.
  • the two rod-shaped members are attached to the upper surface of the battery block 10BB as adhesive members or the like as the rib members GL1 and GL2.
  • each spacer protrudes above the battery block 10BB at a predetermined position in the Y direction.
  • Two protrusions may be provided. Thereby, two protrusion row
  • two protrusion rows may constitute the rib members GL1 and GL2, respectively.
  • FPC board 50a and 50b are arranged between the first terminal row TL1 and the second terminal row TL2.
  • One FPC board 50a is disposed between the gas vent valves 10v of the plurality of battery cells 10 and the first terminal row TL1 so as not to overlap the gas vent valves 10v of the plurality of battery cells 10.
  • One side portion of one FPC board 50a is connected in common to the plurality of attachment pieces 42p of the plurality of bus bars 40p provided in the first terminal row TL1.
  • the width of the FPC board 50a is set to be equal to the interval between the rib member GL1 and the plurality of bus bars 40p provided in the first terminal row TL1 in advance. Accordingly, the FPC board 50a can be easily positioned in the Y direction by the mounting pieces 42p of the plurality of bus bars 40p provided on the rib member GL1 and the first terminal row TL1.
  • the other FPC board 50b is disposed between the gas vent valves 10v of the plurality of battery cells 10 and the second terminal row TL2 so as not to overlap the gas vent valves 10v of the plurality of battery cells 10. .
  • One side portion of the other FPC board 50b is connected in common to the plurality of attachment pieces 42p of the bus bar 40p provided in the second terminal row TL2.
  • the width of the FPC board 50b is set to be equal to the interval between the rib member GL2 and the plurality of bus bars 40p provided in the second terminal row TL2 in advance. Accordingly, the FPC board 50b can be easily positioned in the Y direction by the mounting pieces 42p of the plurality of bus bars 40p provided on the rib member GL2 and the second terminal row TL2.
  • a protective member 95 having a pair of side surface portions and a bottom surface portion is attached to the end surface frame 92 so as to protect both end portions and the lower portion of the printed circuit board 21.
  • the two FPC boards 50 a and 50 b are folded downward at the upper end portion of the protection member 95 and connected to the printed circuit board 21.
  • the printed circuit board 21 is protected by being covered with a protective member 95. Also in the present embodiment, the voltage detection circuit 20 and the communication circuit 24 are mounted on the printed circuit board 21. Note that the protection member 95 may not be attached to the end face frame 92.
  • a cooling plate 96 is provided in contact with the lower surfaces of the plurality of battery cells 10.
  • the cooling plate 96 has a refrigerant inlet 96a and a refrigerant outlet 96b. Inside the cooling plate 96, a circulation path connected to the refrigerant inlet 96a and the refrigerant outlet 96b is formed.
  • a coolant such as cooling water flows into the coolant inlet 96a
  • the coolant passes through the circulation path inside the cooling plate 96 and flows out from the coolant outlet 96b. Thereby, the cooling plate 96 is cooled.
  • the plurality of battery cells 10 are cooled.
  • Screw holes 99a, 99b, and 99c are formed in the three screw members, respectively.
  • the screw member may be a resin or metal nut.
  • the screw hole 99a is located on the extension line of the first terminal row TL1 in the X direction, and the screw hole 99b is located in the center of the upper face of the end face frame 92 in the Y direction.
  • the screw hole 99c is located on the extension line of the second terminal row TL2 in the X direction.
  • the screw hole 99a is located on the extension line of the second terminal row TL2 in the X direction, and the screw hole 99b is located in the center of the upper face of the end face frame 92 in the Y direction.
  • the screw hole 99c is located on the extension line of the first terminal row TL1 in the X direction.
  • a part of the other FPC board 50b is arranged.
  • the other FPC board 50b is provided between the two screw holes 99a and 99b in the Y direction and between the two screw holes 99b and 99c in the Y direction. And a part of one FPC board 50a is arranged.
  • FIG. 12 is an external perspective view for explaining the connection of the power supply line 501 to the battery module 100 according to the second embodiment.
  • the bus bar 40p has a substantially rectangular shape, similar to the bus bar 40 in the first embodiment.
  • the bus bar 40p has a pair of electrode connection holes arranged in the longitudinal direction.
  • the positive electrode 10a of the battery cell 10 adjacent to one end face frame 92 to which the protective member 95 is attached is fitted into one electrode connection hole of the bus bar 40p, and the other electrode of the bus bar 40p is over the screw hole 99c of the end face frame 92. With the connection holes overlapping, the plus electrode 10a is laser welded to the bus bar 40p.
  • the screw N1 is screwed into the screw hole 99c of the end face frame 92 through the annular connection portion 501a of the power line 501 and the other electrode connection hole of the bus bar 40p.
  • the bus bar 40p and the power supply line 501 are connected to each other.
  • a relay terminal for supplying electric power of the plurality of battery cells 10 to an external device (for example, a load such as a motor) by the screw member having the screw hole 99c and the screw N1.
  • CT is configured.
  • the attachment piece 42p of the bus bar 40p connected to the relay terminal CT is located on the upper surface of the one end face frame 92 in the X direction.
  • the relay terminal CT in one end face frame 92 is provided outside the rib member GL2 and the mounting piece 42p of the bus bar 40p.
  • the other FPC board 50b is positioned in the Y direction by the rib member GL2 and the mounting pieces 42p of the plurality of bus bars 40p provided in the second terminal row TL2, so that the FPC board 50b is connected to the relay terminal CT. Is reliably prevented. Thereby, the attachment operation
  • the rib member GL2 for positioning the FPC board 50b and the mounting piece 42p of the bus bar 40p are provided on the upper surface of one end face frame 92 as described above.
  • the FPC board 50b is more reliably prevented from overlapping the relay terminal CT.
  • the rib member GL2 that guides the printed circuit board 21 while positioning the FPC board 50b and the mounting piece 42p of the bus bar 40p are provided on the upper surface of the end face frame 92.
  • the power line 501 is connected to the bus bar 40p in one end face frame 92 of the pair of end face frames 92 constituting the battery block 10BB has been described, but the power line 501 is similarly applied to the other end face frame 92. Is connected to the bus bar 40p. In the other end face frame 92, the bus bar 40p laser-welded to the negative electrode 10b of the battery cell 10 adjacent to the other end face frame 92 on the screw hole 99a of the three screw holes 99a, 99b, 99c. A power line 501 is connected.
  • the relay terminal CT for supplying the power of the plurality of battery cells 10 to an external device (for example, a load such as a motor) by the screw member having the screw hole 99a and the screw N1. (See FIG. 11).
  • the attachment piece 42p of the bus bar 40p connected to the relay terminal CT is also located on the upper surface of the other end face frame 92 in the X direction.
  • the relay terminal CT in the other end face frame 92 is provided outside the rib member GL2 and the mounting piece 42p of the bus bar 40p.
  • the other FPC board 50b is positioned in the Y direction by the rib member GL2 and the mounting pieces 42p of the plurality of bus bars 40p provided in the second terminal row TL2, so that the FPC board 50b is connected to the relay terminal CT. Is reliably prevented. Thereby, the attachment operation
  • the rib member GL2 for positioning the FPC board 50b and the mounting piece 42p of the bus bar 40p are provided on the upper surface of the other end face frame 92 as described above.
  • the FPC board 50b is more reliably prevented from overlapping the relay terminal CT.
  • the rib member GL2 that guides the printed circuit board 21 while positioning the FPC board 50b and the mounting piece 42p of the bus bar 40p are provided on the upper surface of the end face frame 92.
  • a pair of FPC boards 50a and 50b extend in the X direction between the first terminal row TL1 and the second terminal row TL2. Further, a part of the bus bar 40p connected to the positive electrode 10a of the battery cell 10 adjacent to one end face frame 92 is disposed on the screw hole 99c on the extension line of the second terminal row TL2 in the X direction. This reliably prevents the pair of FPC boards 50a and 50b and the bus bar 40p connected to the plus electrode 10a of the battery cell 10 adjacent to one end face frame 92 from overlapping each other.
  • the bus bar 40p connected to the positive electrode 10a of the battery cell 10 adjacent to one end face frame 92 of FIG. 10 is an example of the first connecting member.
  • the plurality of conductor lines 51 and 52 formed on one FPC board 50a are examples of the first wiring group
  • the plurality of conductor lines 51 and 52 formed on the other FPC board 50b are the second wiring. It is an example of a group
  • the Y direction is an example of the second direction.
  • the plurality of mounting pieces 42p of the plurality of bus bars 40p arranged along the rib member GL1 and the first terminal row TL1 is an example of the first guide portion
  • the rib member GL2 and the second terminal row TL2 The plurality of attachment pieces 42p of the plurality of bus bars 40p arranged along the line is an example of the second guide portion.
  • the battery block has one surface on which a plurality of electrode terminals of a plurality of battery cells are arranged, and the plurality of electrode terminals of the plurality of battery cells are arranged in parallel with each other along a first direction on the one surface.
  • the second terminal row includes a plurality of wirings including first and second wiring groups extending in the first direction on the inner side of the first and second terminal rows on one surface, and the guide portion includes The first and second guide portions are provided so as to be arranged in a second direction intersecting with the first direction and guide the first and second wiring groups, respectively, and the relay terminal includes the first and second relay terminals. Provided on one outer side of the guide.
  • the first and second wiring groups extend in the first direction inside the first and second terminal rows.
  • the first and second wiring groups are guided to the voltage detection circuit from the plurality of electrode terminals of the plurality of battery cells by the first and second guide portions, respectively.
  • the relay terminal since the relay terminal is provided outside one of the first and second guide portions, it is reliably prevented that the relay terminal and the plurality of wires overlap each other on the holding member.
  • FIG. 13 is an exploded perspective view of the battery module 100 according to the third embodiment.
  • the plurality of battery cells 10, the plurality of spacers SP, and the end face frame 92 constitute a substantially rectangular parallelepiped battery block 10BB.
  • the plurality of battery cells 10 and the plurality of spacers SP are arranged alternately in the X direction.
  • An end face frame 92 is provided adjacent to the battery cell 10 located at one end in the X direction.
  • the spacer SP is made of a rectangular plate member.
  • the end face frame 92 is made of a rectangular plate-like member having one surface and the other surface. In battery block 10BB, the other surface of end surface frame 92 is in contact with battery cell 10.
  • the printed circuit board 21 is provided on one surface of the end face frame 92.
  • the end face frame 92 and the spacer SP used in the present embodiment are formed of an insulating resin.
  • Each guide hook g is provided at the upper end of each spacer SP so as to be aligned in the Y direction.
  • Each guide hook g is composed of two key-like protrusions facing each other.
  • Each battery cell 10 has a plus electrode 10a and a minus electrode 10b on the top surface so as to be arranged in the Y direction. Also in this battery module 100, one electrode 10a, 10b of the plurality of battery cells 10 constitutes a first terminal row TL1 aligned in the X direction, and the other electrode 10a, 10b of the plurality of battery cells 10 is X A second terminal row TL2 aligned in the direction is configured. The first terminal row TL1 and the second terminal row TL2 are arranged in parallel to each other with an interval therebetween.
  • a positive electrode 10a of a battery cell 10 located at one end (hereinafter referred to as one end side battery cell 10) and a negative electrode 10b of a battery cell 10 located at the other end (hereinafter referred to as other end side battery cell 10) Except for each, two adjacent electrodes 10a and 10b are fitted into a flat bus bar 40q. In this state, the electrodes 10a and 10b are laser welded to the bus bar 40q.
  • the plus electrode 10a of the battery cell 10 is laser-welded to the bus bar 40q.
  • the plurality of bus bars 40q are arranged along the first terminal row TL1 and the second terminal row TL2, and the plurality of battery cells 10 are connected in series.
  • a plurality of wirings 53 are provided corresponding to the plurality of bus bars 40q and the negative electrode 10b of the battery cell 10 at the other end.
  • Each wiring 53 is composed of, for example, a conductor wire and a resin-coated tube that covers the conductor wire.
  • a connection piece 53 t is attached to one end of each wiring 53.
  • a connection piece 53t is connected to each of the plurality of bus bars 40q and the negative electrode 10b of the other end side battery cell 10 by laser welding.
  • the two guide hooks g formed on the plurality of spacers SP are arranged between the first terminal row TL1 and the second terminal row TL2 in the first terminal row TL1. Located in the vicinity and in the vicinity of the second terminal row TL2.
  • the wiring 53 connected to the bus bar 40q of the first terminal row TL1 is held by a plurality of guide hooks g located in the vicinity of the first terminal row TL1.
  • the plurality of wirings 53 are bundled by the plurality of guide hooks g and guided to the end face frame 92 so as to extend in the X direction in the vicinity of the first terminal row TL1.
  • the wiring 53 connected to the bus bar 40q of the second terminal row TL2 and the negative electrode 10b of the other end side battery cell 10 is held by a plurality of guide hooks g located in the vicinity of the second terminal row TL2.
  • the plurality of wirings 53 are bundled by the plurality of guide hooks g and guided to the end face frame 92 so as to extend in the X direction in the vicinity of the second terminal row TL2.
  • the plurality of wirings 53 disposed so as to extend in the X direction in the vicinity of the first terminal row TL1 are referred to as a first wiring group 53x, and are disposed so as to extend in the X direction in the vicinity of the second terminal row TL2.
  • the plurality of wirings 53 to be used are referred to as a second wiring group 53y.
  • Screw holes 99a, 99b, and 99c are formed in the three screw members, respectively.
  • the screw member may be a resin or metal nut.
  • the screw hole 99a is located on the extension line of the first terminal row TL1 in the X direction
  • the screw hole 99b is located in the center of the upper surface of the end face frame 92 in the Y direction
  • the screw hole 99c is the first hole in the X direction. It is located on the extension line of the second terminal row TL2.
  • the positive electrode 10a of the one end side battery cell 10 is fitted into one electrode connection hole of the bus bar 40q, and the other electrode connection hole of the bus bar 40q overlaps with the screw hole 99c of the end face frame 92. Laser welded.
  • the screw N1 is screwed into the screw hole 99c of the end face frame 92 through the annular connection portion 501a of the power supply line 501 and the other electrode connection hole of the bus bar 40q.
  • bus bar 40q and power supply line 501 are connected to each other.
  • the relay terminal CT for supplying the power of the plurality of battery cells 10 to an external device is provided by the screw member in which the screw hole 99c is formed and the screw N1. Composed.
  • One end of another power line 501 is connected to the negative electrode 10b of the other end side battery cell 10 by laser welding.
  • guide hooks g are formed on the upper surface of the end face frame 92 between the screw holes 99a and 99b and between the screw holes 99b and 99c, respectively.
  • a part of the first wiring group 53x is arranged in a guide hook g formed between the screw hole 99a and the screw hole 99b.
  • a part of the second wiring group 53y is arranged in the guide hook g formed between the screw hole 99b and the screw hole 99c.
  • a connector 531 is provided at the other end of the first wiring group 53x.
  • a connector 532 is also provided at the other end of the second wiring group 53y.
  • Connectors 531 b and 532 b corresponding to the connectors 531 and 532 are mounted on the printed circuit board 21 provided on the end face frame 92.
  • the connector 531 of the first wiring group 53x is connected to the connector 531b mounted on the printed circuit board 21, and the connector 532 of the second wiring group 53y is connected to the connector 532b mounted on the printed circuit board 21.
  • a plurality of wirings 53 extend in the X direction between the first terminal row TL1 and the second terminal row TL2. Further, a part of the bus bar 40q connected to the plus electrode 10a of the battery cell 10 adjacent to the end face frame 92 is disposed on the screw hole 99c on the extension line of the second terminal row TL2 in the X direction.
  • the plurality of wirings 53 are held by a plurality of guide hooks g provided between the first terminal row TL1 and the second terminal row TL2. Thereby, the wiring work between the plurality of electrodes 10a, 10b of the plurality of battery cells 10 and the printed circuit board 21 is further facilitated. In addition, the plurality of wirings 53 and the bus bar 40q connected to the plus electrode 10a of the battery cell 10 adjacent to the one end face frame 92 are reliably prevented from overlapping each other.
  • the end face frame 92 is an example of a holding member
  • the bus bar 40q connected to the one end side battery cell 10 in FIG. 13 is an example of a first connecting member.
  • the two guide hooks g formed on the end face frame 92 are examples of guide portions, and the upper surface of the battery block 10BB is an example of one surface of the battery block.
  • the Y direction is an example of the second direction
  • one guide hook g formed on the end face frame 92 is an example of the first guide portion
  • the other guide hook g formed on the end face frame 92 is It is an example of the 2nd guide part.
  • the battery block has one surface on which a plurality of electrode terminals of a plurality of battery cells are arranged, and the plurality of electrode terminals of the plurality of battery cells are arranged in parallel with each other along a first direction on the one surface.
  • the second terminal row includes a plurality of wirings including first and second wiring groups extending in the first direction on the inner side of the first and second terminal rows on one surface, and the guide portion includes The first and second guide portions are provided so as to be arranged in a second direction intersecting with the first direction and guide the first and second wiring groups, respectively, and the relay terminal includes the first and second relay terminals. Provided on one outer side of the guide.
  • the first and second wiring groups extend in the first direction inside the first and second terminal rows.
  • the first and second wiring groups are guided to the voltage detection circuit from the plurality of electrode terminals of the plurality of battery cells by the first and second guide portions, respectively.
  • the relay terminal since the relay terminal is provided outside one of the first and second guide portions, it is reliably prevented that the relay terminal and the plurality of wires overlap each other on the holding member.
  • FIG. 14 is an exploded perspective view of the battery module according to the fourth embodiment.
  • the battery module 100 according to the present embodiment is arranged in a casing (housing) CA.
  • the upper part of the casing CA is open.
  • the battery module 100 further includes a gas duct GD and a lid member 80.
  • the lid member 80 is made of an insulating material such as resin and has a rectangular plate shape.
  • the positive electrode 10a and the negative electrode 10b of each battery cell 10 are provided along the Z direction so as to protrude upward.
  • a bus bar 40x having a substantially L shape is attached to the plus electrode 10a of the first battery cell 10 and the minus electrode 10b of the 18th battery cell 10 instead of the bus bar 40a of FIGS. It is done.
  • An electrode connection hole 47x is formed at one end of the bus bar 40x.
  • a power line connection hole 47y is formed at the other end of the bus bar 40x.
  • the bus bar 40x has a configuration in which, for example, nickel plating is applied to the surface of tough pitch copper.
  • the bus bar 40x is connected to the FPC board 50 together with the plurality of bus bars 40.
  • a wiring member 70 a member in which the FPC board 50 and the plurality of bus bars 40, 40x are integrally connected.
  • the battery block 10BB is provided with a gas duct GD, a wiring member 70, and a lid member 80.
  • the wiring member 70 and the gas duct GD are attached to the lower surface of the lid member 80.
  • the gas duct GD, the wiring member 70, and the cover member 80 can be handled integrally.
  • Battery block 10BB is housed in casing CA, and lid member 80 is fitted to casing CA so as to close the opening of casing CA. Thereby, the battery box BB that houses the battery module 100 is formed.
  • the lid member 80 is formed so as to cover the plurality of battery cells 10 between the upper protruding edges 92b of the pair of end face frames 92.
  • the lid member 80 is provided in the battery block 10BB, the upper surfaces of the upper protruding edges 92b of the pair of end surface frames 92 are exposed to the outside.
  • the other end of one bus bar 40x overlaps the upper protruding edge 92b of one end face frame 92, and the other end of the other bus bar 40x overlaps the upper protruding edge 92b of the other end face frame 92. Is provided on the battery block 10BB.
  • FIG. 15 is a perspective view of the lid member 80 of FIG. 14 as viewed obliquely from below.
  • FIG. 16 is a perspective view of the lid member 80 of FIG. 14 as viewed obliquely from above.
  • the side 80a of the lid member 80 is along the side E1 (FIG. 14) in one direction of the battery block 10BB (FIG. 14), and the side 80b of the lid 80 is on the side E2 (FIG. 14) in the other direction of the battery block 10BB.
  • the surface of the lid member 80 facing the battery block 10BB is called a back surface
  • the surface of the lid member 80 on the opposite side is called a front surface. In this example, the surface of the lid member 80 is directed upward.
  • FPC fitting portions 84 are formed on the back surface of the lid member 80 so as to extend along the side sides 80a and the side sides 80b of the lid member 80, respectively.
  • the FPC board 50 of the wiring member 70 is fitted into the FPC fitting portion 84.
  • the FPC fitting portion 84 provided along the side 80a and the side 80b of the lid member 80 is referred to as the FPC fitting 84 on the side 80a side and the FPC fitting 84 on the side 80b side, respectively.
  • a notch 84 ⁇ / b> S for drawing out the FPC board 50 fitted to the FPC fitting portion 84 to the outside of the lid member 80 is formed on one end side of the lid member 80.
  • the cutout 84 ⁇ / b> S constitutes one end of the FPC fitting portion 84.
  • a plurality of concave portions 81 and 82 are provided along the FPC fitting portions 84 on the side 80a side and the side 80b side.
  • nine concave portions 81 are provided along the FPC fitting portion 84 on the side 80a side.
  • One recess 82, eight recesses 81, and another one recess 82 are provided along the side 80 b of the lid member 80.
  • the concave portions 81 and 82 have a substantially rectangular shape, and the length of the concave portion 81 in the X direction is larger than the length of the concave portion 82 in the X direction.
  • the length of the recess 82 in the Y direction is larger than the length of the recess 81 in the Y direction.
  • a part of the recess 82 extends toward the end side of the lid member 80 that intersects the side sides 80a and 80b.
  • the shape and length of the recess 81 are substantially equal to the shape and length of the bus bar 40, and the shape and length of the recess 82 are substantially equal to the shape and length of a part of the bus bar 40x (one end where the electrode connection hole 47x is formed). .
  • a plurality of openings 83 are formed so as to penetrate from the bottom surfaces of the plurality of recesses 81 and 82 to the surface of the lid member 80 (FIG. 16).
  • Two openings 83 (FIG. 16) are formed in each recess 81, and one opening 83 (FIG. 16) is formed in each recess 82.
  • the recess 81 and the opening 83 provided along the side 80a of the lid member 80 are referred to as the recess 81 on the side 80a and the opening 83 on the side 80a, respectively, and along the side 80b of the lid 80.
  • the recesses 81 and 82 and the opening 83 thus provided are referred to as the recesses 81 and 82 on the side 80b side and the opening 83 on the side 80b side, respectively.
  • the bus bar 40 of the wiring member 70 is fitted into the recess 81 of the lid member 80, and a part of the bus bar 40 x of the wiring member 70 is fitted into the recess 82.
  • the electrode connection hole 43 of the bus bar 40 is exposed to the surface side of the lid member 80 in the opening 83.
  • the electrode connection hole 47 x of the bus bar 40 x is exposed to the surface side of the lid member 80 in the opening 83 in a state where a part of the bus bar 40 x is fitted in the recess 82.
  • a duct fitting portion 87 is formed so as to extend in the X direction between the plurality of recesses 81 on the side 80a side and the plurality of recesses 81, 82 on the side 80b side.
  • the gas duct GD is fitted in the duct fitting portion 87.
  • a plurality of pairs of connection grooves 85 are formed so as to extend from the plurality of recesses 81 on the side 80a side to the FPC fitting portion 84 on the side 80a side.
  • a plurality of pairs of connection grooves 85 are formed so as to extend from the plurality of recesses 81 on the side 80b side to the FPC fitting portion 84 on the side 80b side.
  • a plurality of connection grooves 86 are formed to extend from the plurality of recesses 82 on the side 80b side to the FPC fitting portion 84 on the side 80b side.
  • Each bus bar 40 is provided with a pair of attachment pieces 42 for connecting the bus bar 40 to the FPC board 50.
  • Each bus bar 40x is provided with an attachment piece 46 for connecting the bus bar 40x to the FPC board 50.
  • a pair of attachment pieces 42 of the plurality of bus bars 40 are respectively disposed in the plurality of pairs of connection grooves 85. In the plurality of connection grooves 86, the mounting pieces 46 of the plurality of bus bars 40x are respectively arranged.
  • the gas duct GD and the wiring member 70 are attached to the lid member 80 as described above.
  • the lid member 80 is attached to the battery block 10BB.
  • the plus electrodes 10a (FIG. 14) and the minus electrodes 10b (FIG. 14) of the plurality of battery cells 10 are fitted into the electrode connection holes 43 of the plurality of bus bars 40.
  • the plus electrodes 10a or the minus electrodes 10b of the plurality of battery cells 10 are inserted into the electrode connection holes 47x of the plurality of bus bars 40x.
  • the gas duct GD is disposed on the upper surface of the battery block 10BB so as to cover the gas vent valves 10v of the plurality of battery cells 10.
  • each opening 83 (FIG. 16) of the lid member 80 a nut (not shown) is screwed into the male threads of the plus electrode 10a and the minus electrode 10b. Thereby, adjacent battery cells 10 are electrically connected via the bus bar 40. As a result, the plurality of battery cells 10 are connected in series. Further, a part of the two FPC boards 50 is drawn out from the notch 84S on one end side of the lid member 80. Each part of the FPC board 50 drawn out is folded at a right angle toward the inside in the vicinity of the upper end portion of one end face frame 92 (end face frame 92 to which the printed circuit board 21 is attached), and further folded downward. Connected to the printed circuit board 21. Thereby, the plurality of bus bars 40, 40x are connected to the voltage detection circuit 20 (FIG. 14) on the printed circuit board 21 via the FPC board 50.
  • the screw N1 is screwed into the screw hole 99c of the one end face frame 92 through the connection part 501a of the power supply line 501 and the power supply line connection hole 47y of the one bus bar 40x (FIG. 14).
  • the other end part of one bus-bar 40x and the power wire 501 are connected to the relay terminal CT (FIG. 3) comprised from the screw member 993 (FIG. 5) and the screw N1.
  • the screw N1 is screwed into the screw hole 99a of the other end face frame 92 through the connection part 501a of the power supply line 501 and the power supply line connection hole 47y of the other bus bar 40x (FIG. 14).
  • the other end of the other bus bar 40x and the power supply line 501 are connected to the relay terminal CT (FIG. 3) including the screw member 991 (FIG. 5) and the screw N1.
  • the battery block 10BB is housed in the casing CA, and the lid member 80 is fitted to the casing CA so as to close the opening of the casing CA.
  • the lid member 80 may be screwed to the casing CA after being fitted to the casing CA. Thereby, the lid member 80 is reliably fixed to the casing CA.
  • an adhesive may be applied in advance to the both sides 80a and 80b of the lid member 80 and the upper end sides of both sides along the X direction of the casing CA.
  • the both sides 80a and 80b of the lid member 80 are joined to the upper end sides of both sides of the casing CA, and the lid member 80 is securely fixed to the casing CA. Is done.
  • two notches 92g are formed on the upper protruding edge 92b of the end face frame 92.
  • the two notches 92g function as a first guide part and a second guide part, respectively.
  • the relay terminal CT the relay terminal CT, the bus bar 40x, and the FPC board 50 can be arranged on the end face frame 92 so as not to overlap each other. Therefore, the wiring structure of the battery module 100 is simplified and wiring work is facilitated.
  • two FPC boards 50 are fitted into the two FPC fitting portions 84 of the lid member 80, respectively.
  • the two FPC boards 50 can be easily positioned with respect to the lid member 80.
  • the two FPC fitting portions 84 of the lid member 80 function as a first guide portion and a second guide portion, respectively.
  • the two FPC boards 50 are connected to the plurality of bus bars 40 and 40x in a state where the two FPC boards 50 are fitted into the two FPC fitting portions 84, respectively.
  • the plurality of attachment pieces 42 of the plurality of bus bars 40 connected to the first terminal row TL1 function as a first guide portion.
  • the plurality of mounting pieces 42 and 46 of the plurality of bus bars 40 and 40x connected to the second terminal row TL2 function as a second guide portion.
  • a bus bar 40x having a substantially L shape is used instead of the bus bar 40a and the relay member 41 of the first embodiment.
  • the bus bar 40x is connected to the electrodes 10a and 10b of the battery cell 10 and connected to the FPC board 50, whereby the electrodes 10a and 10b of the battery cell 10 and the voltage detection circuit 20 are electrically connected.
  • the bus bar 40x is connected to the electrodes 10a and 10b of the battery cell 10 and to the relay terminal CT (FIG. 3), whereby the electrodes 10a and 10b of the plurality of battery cells 10 and the power supply line 501 are electrically connected. Connected to. Thereby, the number of parts is reduced, and the battery module 100 can be assembled more easily.
  • the bus bar 40x the bus bar 40a and the relay member 41 of the first embodiment may be used.
  • the gas duct GD, the wiring member 70, and the lid member 80 can be handled integrally by providing the gas duct GD and the wiring member 70 integrally with the lid member 80. Therefore, the battery module 100 can be easily assembled by attaching the lid member 80 integrally provided with the gas duct GD and the wiring member 70 to the battery block 10BB. Further, the gas discharged from the gas vent valve 10v of the battery cell 10 can be efficiently discharged to the outside through the gas duct GD.
  • the battery box BB that houses the battery module 100 is formed, whereby the strength of the battery module 100 is improved. Further, since the battery block 10BB of the battery module 100 is fixed to the casing CA of the battery box BB and the lid member 80 is fitted to the casing CA, the battery block 10BB and the lid member 80 can be reliably fixed. .
  • the inside of the battery box BB may be molded with resin. In this case, condensation of the battery cell 10 can be prevented. Further, the resin molded in the battery box BB can affect the heat conduction characteristics of the battery module 100. For example, by molding the inside of the battery box BB with a resin having a higher thermal conductivity than air, the heat in the battery box BB can be released to the outside. On the other hand, by molding the inside of the battery box BB with a resin having a thermal conductivity lower than that of air, the inflow of heat from the outside into the battery box BB can be blocked.
  • the lid member 80 is formed so as to cover the plurality of battery cells 10 between the upper protruding edges 92b of the pair of end face frames 92, but the lid member 80 covers the entire upper surface of the battery block 10BB. It may be formed as follows. In this case, the inside of the battery box BB is closed by the lid member 80. Thus, by providing a hole in at least one of the casing CA and the lid member 80, the battery box BB may be exhausted without providing the gas duct GD.
  • the concave portion 82 is formed on the back surface of the lid member 80 so as to be substantially equal to the shape and length of the entire bus bar 40x. That is, the recess 82 is formed in a substantially L shape.
  • the opening 83 is formed at one end, and a screw hole penetrating from the bottom surface of the recess 82 to the surface of the lid member 80 is formed at the other end.
  • the screw hole is formed so as to overlap the power line connection hole 47y of the bus bar 40x fitted in the recess 82 in a state where the lid member 80 is attached to the battery block 10BB.
  • the bus bar 40x and the connection portion 501a of the power supply line 501 can be fixed to the end face frame 92 by inserting the screw N1 into the screw hole from above the lid member 80.
  • the lid member 80 is used to close the upper opening of the casing CA, but the lid member 80 does not necessarily close the upper opening of the casing CA.
  • the battery module 100 may not be disposed in the casing CA.
  • the lid member 80 may be attached on the upper surface of the battery block 10BB instead of closing the upper opening of the casing CA.
  • a plurality of battery modules 100 may be arranged in one casing CA. Even in such a case, instead of the single lid member 80 closing the upper opening of the single casing CA, a plurality of lid members 80 may be attached to the upper surfaces of the plurality of battery blocks 10BB, respectively.
  • the lid member 80 provided integrally with the gas duct GD and the wiring member 70 is disposed on the upper surface of the battery block 10BB.
  • a nut (not shown) is screwed into the male threads of the plus electrode 10a and the minus electrode 10b of the plurality of battery cells 10 in each opening 83 in FIG.
  • the cover member 80 is easily attached to battery block 10BB.
  • FIG. 17 is an exploded perspective view of the battery module according to the fifth embodiment.
  • the battery module 100 according to the fifth embodiment and the battery module 100 according to the fourth embodiment of FIG. 14 differ in the positional relationship between the lid member 80 and the wiring member 70.
  • gas duct GD is attached to the lower surface of lid member 80
  • wiring member 70 is attached to the upper surface of lid member 80.
  • the lid member 80 is formed so as to cover the entire upper surface of the battery block 10BB. Also in the present embodiment, the gas duct GD, the wiring member 70, and the lid member 80 can be handled integrally.
  • FIG. 18 is a perspective view of the lid member 80 of FIG. 17 as viewed obliquely from below.
  • FIG. 19 is a perspective view of the lid member 80 of FIG. 17 as viewed obliquely from above.
  • the back surface of the lid member 80 is formed with a point where the duct fitting portion 87 is formed and a screw hole 83x penetrating from the bottom surface of the recess 82 (FIG. 19) to the surface of the lid member 80. Except for this point, it has substantially the same configuration as the surface of the lid member 80 of FIG.
  • the surface of the lid member 80 is such that the duct fitting portion 87 is not formed, and that the concave portion 82 is formed in a substantially L shape so that it is substantially equal to the shape and length of the bus bar 40x. Except for this, it has substantially the same configuration as the back surface of the lid member 80 of FIG.
  • the FPC fitting portion 84 is formed so that the FPC board 50 partially folded back can be fitted.
  • a notch 84 ⁇ / b> S for drawing out the FPC board 50 fitted to the FPC fitting portion 84 to the outside of the lid member 80 is formed on one end side of the lid member 80.
  • the cutout 84 ⁇ / b> S constitutes one end of the FPC fitting portion 84.
  • the gas duct GD and the wiring member 70 are attached to the lid member 80.
  • the bus bars 40, 40 x of the wiring member 70 are attached to the surface of the lid member 80.
  • the lid member 80 is attached to the battery block 10BB, and the plurality of bus bars 40, 40x are connected to the plus electrode 10a and the minus electrode 10b of the plurality of battery cells 10.
  • a part of the two FPC boards 50 is pulled out from the two cutouts 84 ⁇ / b> S on one end side of the lid member 80.
  • the part of each FPC board 50 drawn out is folded downward at the upper end of one end face frame 92 (end face frame 92 to which the printed circuit board 21 is attached) and connected to the printed circuit board 21. Accordingly, the plurality of bus bars 40, 40x are connected to the voltage detection circuit 20 (FIG. 17) on the printed circuit board 21 via the FPC board 50.
  • the other end of one bus bar 40x overlaps the upper protruding edge 92b of one end face frame 92 with the lid member 80 in between, and the other end face of the other bus bar 40x has the lid member 80 in between. It overlaps with the upper protruding edge 92b of the frame 92.
  • the screw N1 is screwed into the screw hole 99c of one end face frame 92 through the connection portion 501a of the power supply line 501, the screw hole 83x, and the power supply line connection hole 47y of the one bus bar 40x (FIG. 17).
  • the other end part of one bus-bar 40x and the power wire 501 are connected to the relay terminal CT (FIG. 3) comprised from the screw member 993 (FIG. 5) and the screw N1.
  • the screw N1 is screwed into the screw hole 99a of the other end face frame 92 through the connection portion 501a of the power supply line 501, the screw hole 83x, and the power supply line connection hole 47y of the other bus bar 40x (FIG. 17).
  • the other end of the other bus bar 40x and the power supply line 501 are connected to the relay terminal CT (FIG. 3) including the screw member 991 (FIG. 5) and the screw N1.
  • two notches 92g are formed on the upper protruding edge 92b of the end face frame 92.
  • the two notches 92g function as a first guide part and a second guide part, respectively.
  • the relay terminal CT the relay terminal CT, the bus bar 40x, and the FPC board 50 can be arranged on the end face frame 92 so as not to overlap each other. Therefore, the wiring structure of the battery module 100 is simplified and wiring work is facilitated.
  • two FPC boards 50 are fitted into the two FPC fitting portions 84 of the lid member 80, respectively.
  • the two FPC boards 50 can be easily positioned with respect to the lid member 80.
  • the two FPC fitting portions 84 of the lid member 80 function as a first guide portion and a second guide portion, respectively.
  • the two FPC boards 50 are connected to the plurality of bus bars 40 and 40x in a state where the two FPC boards 50 are fitted into the two FPC fitting portions 84, respectively.
  • the plurality of attachment pieces 42 of the plurality of bus bars 40 connected to the first terminal row TL1 function as a first guide portion.
  • the plurality of mounting pieces 42 and 46 of the plurality of bus bars 40 and 40x connected to the second terminal row TL2 function as a second guide portion.
  • a bus bar 40x having a substantially L shape is used in place of the bus bar 40a and the relay member 41 of the first embodiment. Thereby, the number of parts is reduced, and the battery module 100 can be assembled more easily.
  • the bus bar 40x instead of the bus bar 40x, the bus bar 40a and the relay member 41 of the first embodiment may be used.
  • the gas duct GD, the wiring member 70, and the lid member 80 can be handled integrally by providing the gas duct GD and the wiring member 70 integrally with the lid member 80. Therefore, the battery module 100 can be easily assembled by attaching the lid member 80 provided with the gas duct GD and the wiring member 70 to the battery block 10BB. Further, the gas discharged from the gas vent valve 10v of the battery cell 10 can be efficiently discharged to the outside through the gas duct GD.
  • the strength of the battery module 100 is improved by forming the battery box BB that houses the battery module 100. Further, since the battery block 10BB of the battery module 100 is fixed to the casing CA of the battery box BB and the lid member 80 is fitted to the casing CA, the battery block 10BB and the lid member 80 can be reliably fixed. .
  • the opening of the casing CA is closed by the lid member 80. Therefore, the inside of the battery box BB may be molded with resin. In this case, condensation of the battery cell 10 can be prevented. Further, the resin molded in the battery box BB can affect the heat conduction characteristics of the battery module 100. For example, by molding the inside of the battery box BB with a resin having a higher thermal conductivity than air, the heat in the battery box BB can be released to the outside. On the other hand, by molding the inside of the battery box BB with a resin having a thermal conductivity lower than that of air, the inflow of heat from the outside into the battery box BB can be blocked.
  • the inside of the battery box BB is closed by the lid member 80.
  • the battery box BB may be exhausted without providing the gas duct GD.
  • FIG. 20 is an exploded perspective view of the battery module according to the sixth embodiment. As shown in FIG. 20, in the battery module 100 according to the present embodiment, as in the first embodiment, the positive electrode 10a and the negative electrode 10b of each battery cell 10 protrude upward, respectively. It is provided with an inclination.
  • the gas duct GD, the wiring member 70, and the lid member 80 are individually attached to the battery block 10BB. That is, in the present embodiment, the wiring member 70 and the gas duct GD are not attached to the lid member 80. Therefore, the lid member 80 is not formed with the FPC fitting portion 84, the concave portions 81 and 82, and the connection grooves 85 and 86 shown in FIG. Further, the plurality of openings 83 in FIG. 16 are not formed in the lid member 80.
  • the gas duct GD and the wiring member 70 are first attached to the upper surface of the battery block 10BB, as in the first embodiment.
  • the wiring member 70 By attaching the wiring member 70 to the upper surface of the battery block 10BB, adjacent battery cells 10 are electrically connected via the bus bar 40. As a result, the plurality of battery cells 10 are connected in series. Further, a part of the two FPC boards 50 of the wiring members 70 are folded back at right angles toward the inside in the vicinity of the upper end portion of one end face frame 92 (end face frame 92 to which the printed circuit board 21 is attached). It is folded downward and connected to the printed circuit board 21. As a result, the plurality of bus bars 40, 40 x are connected to the voltage detection circuit 20 on the printed circuit board 21 via the FPC board 50.
  • the screw N1 is screwed into the screw hole 99c of the one end face frame 92 through the connection portion 501a of the power supply line 501 and the power supply line connection hole 47y of the one bus bar 40x.
  • the other end part of one bus-bar 40x and the power wire 501 are connected to the relay terminal CT (FIG. 3) comprised from the screw member 993 (FIG. 5) and the screw N1.
  • the screw N1 is screwed into the screw hole 99a of the other end face frame 92 through the connection portion 501a of the power supply line 501 and the power supply line connection hole 47y of the other bus bar 40x.
  • the other end of the other bus bar 40x and the power supply line 501 are connected to the relay terminal CT (FIG. 3) including the screw member 991 (FIG. 5) and the screw N1.
  • the battery block 10BB is disposed in the casing CA whose upper portion is opened, and the lid member 80 is attached to the upper end portion of the casing CA so as to close the opening of the casing CA.
  • one side and the other side of the lid member 80 along the X direction are referred to as a side side 80a and a side side 80b, respectively, and one side and the other side of the lid member 80 along the Y direction are respectively referred to as an end side 80c and an end side.
  • Called side 80d one side surface and the other side surface of the casing CA parallel to the XZ plane are referred to as side surfaces 80a and 80b, respectively, and one end surface and the other end surface of the casing CA parallel to the YZ plane are referred to as end surfaces 80c and 80d, respectively.
  • the dimension of the lid member 80 in the Y direction is almost the same as the dimension of the opening of the casing CA in the Y direction (distance between the pair of side surfaces CA1 and CA2 of the casing CA). Set to be equal.
  • the dimension of the lid member 80 in the X direction is the dimension of the opening of the casing CA in the X direction (the distance between the pair of end surfaces CA3 and CA4 of the casing CA). It is set to be smaller than that.
  • the lid member 80 and the casing CA are screwed in a state where the pair of side sides 80a and 80b of the lid member 80 are in contact with the upper end portions of the pair of side surfaces CA1 and CA2 of the casing CA, or an adhesive is used.
  • the cover member 80 can be attached to the upper end of the casing CA.
  • the dimension of the lid member 80 in the X direction is set to be smaller than the dimension of the opening of the casing CA in the X direction.
  • the lid member 80 is formed so as to cover the plurality of battery cells 10 between the upper protruding edges 92 b of the pair of end face frames 92. Thereby, between the cover member 80 and the upper end part of the casing CA with the cover member 80 fitted to the casing CA (between the end side 80c of the cover member 80 and the end surface CA3 of the casing CA, and the cover member).
  • a gap corresponding to the upper projecting edge 92b is formed between the end side 80d of 80 and the end surface CA4 of the casing CA.
  • the power line 501 connected to the relay terminal CT (FIG. 3) at the upper protruding edge 92b of the end face frame 92 of the battery module 100 can be easily moved to the outside of the casing CA from the gap between the lid member 80 and the upper end portion of the casing CA. It can be pulled out.
  • the battery box BB that houses the battery module 100 is formed.
  • the lid member 80 is formed so as to cover the plurality of battery cells 10 between the upper projecting edges 92b of the pair of end face frames 92. Has been. Thereby, the power supply line 501 connected to the battery block 10BB can be easily pulled out through the gap between the lid member 80 and the upper end of the casing CA.
  • the wiring member 70, the lid member 80, and the gas duct GD are individually attached to the battery block 10BB. Therefore, it is not necessary to form the FPC fitting portion 84, the concave portions 81 and 82, and the connection grooves 85 and 86 for attaching the wiring member 70 and the gas duct GD to the lid member 80. Therefore, the configuration of the lid member 80 is simplified, and the cost of the lid member 80 is reduced.
  • a gap corresponding to the upper protruding edge 92b is formed between the lid member 80 and the upper end portion of the casing CA. Therefore, after the power supply line 501 is drawn out from the casing CA, the inside of the battery box BB may be molded with resin. In this case, condensation of the battery cell 10 can be prevented. Further, the resin molded in the battery box BB can affect the heat conduction characteristics of the battery module 100. For example, by molding the inside of the battery box BB with a resin having a higher thermal conductivity than air, the heat in the battery box BB can be released to the outside. On the other hand, by molding the inside of the battery box BB with a resin having a thermal conductivity lower than that of air, the inflow of heat from the outside into the battery box BB can be blocked.
  • the lid member 80 is formed so as to cover the plurality of battery cells 10 between the upper protruding edges 92b of the pair of end face frames 92, but the lid member 80 covers the entire upper surface of the battery block 10BB. It may be formed as follows. In this case, the inside of the battery box BB is closed by the lid member 80. Therefore, by providing a hole in at least one of the casing CA and the lid member 80, the power supply line 501 may be drawn from the casing CA through the hole.
  • FIG. 21 is a block diagram illustrating a configuration of a battery system including the battery module 100 according to the first embodiment.
  • the battery system 500 includes a plurality of battery modules 100 (four in this example), a battery ECU 101, and a contactor 102.
  • the plurality of battery modules 100 are connected to the battery ECU 101 via the communication line 560.
  • the communication line 560 is connected to the communication circuit 24 (see FIG. 1 and the like).
  • Battery ECU 101 is connected to main controller 300 of the electric vehicle via bus 104.
  • the plurality of battery modules 100 of the battery system 500 are connected to each other through the power line 501.
  • all the battery cells 10 of the plurality of battery modules 100 are connected in series.
  • the power supply line 501 connected to the highest potential positive electrode 10a (FIG. 2) of the plurality of battery modules 100 and the power supply line 501 connected to the lowest potential negative electrode 10b (FIG. 2) of the plurality of battery modules 100 are In addition, it is connected to a load such as a motor of an electric vehicle via the contactor 102.
  • the communication circuit 24 and the battery ECU 101 of each battery module 100 are connected in series via a communication line 560. Thereby, the communication circuit 24 of each battery module 100 can communicate with the other battery modules 100 and the battery ECU 101.
  • a communication line 560 for example, a harness is used.
  • the communication circuit 24 of each battery module 100 gives information regarding the terminal voltage of each battery cell 10, the current flowing through the plurality of battery cells 10 and the temperature of the battery module 100 to the other battery modules 100 or the battery ECU 101, for example.
  • information regarding these terminal voltage, current, and temperature is referred to as cell information.
  • the battery ECU 101 calculates the charge amount of each battery cell 10 based on, for example, cell information given from the communication circuit 24 of each battery module 100, and performs charge / discharge control of each battery module 100 based on the charge amount. Further, the battery ECU 101 detects an abnormality of each battery module 100 based on the cell information given from the communication circuit 24 of each battery module 100.
  • the abnormality of the battery module 100 is, for example, overdischarge, overcharge, or temperature abnormality of the battery cell 10.
  • the battery ECU 101 calculates the charge amount of each battery cell 10 and detects overdischarge, overcharge, temperature abnormality, etc. of the battery cell 10, but is not limited thereto.
  • the communication circuit 24 of each battery module 100 may calculate the charge amount of each battery cell 10 and detect overdischarge, overcharge, or temperature abnormality of the battery cell 10, and give the result to the battery ECU 101.
  • the contactor 102 is inserted in the power supply line 501 connected to the battery module 100.
  • the battery ECU 101 detects an abnormality in the battery module 100, the battery ECU 101 turns off the contactor 102. Thereby, when an abnormality occurs, no current flows through each battery module 100, and thus abnormal heat generation of the battery module 100 is prevented.
  • the battery ECU 101 controls the ON and OFF of the contactor 102, but is not limited to this.
  • the communication circuit 24 may control on and off of the contactor 102.
  • the charge amount of each battery module 100 (charge amount of the battery cell 10) is given from the battery ECU 101 to the main control unit 300.
  • the main control unit 300 controls the power of the electric vehicle (for example, the rotational speed of the motor) based on the amount of charge.
  • the main control unit 300 controls each power generation device (not shown) connected to the power line 501 to charge each battery module 100.
  • the power generation device is, for example, a motor connected to the power supply line 501 described above.
  • the motor converts the electric power supplied from the battery system 500 during acceleration of the electric vehicle into motive power for driving drive wheels (not shown).
  • the motor generates regenerative power when the electric vehicle is decelerated. Each battery module 100 is charged by this regenerative power.
  • the communication circuit 24 may have a function for calculating information such as SOH (State Of Health: life of the battery cell 10) and SOC based on the detection result of the voltage detection circuit 20. In this case, the communication circuit 24 transmits the calculated SOH and SOC to the battery ECU 101.
  • SOH State Of Health: life of the battery cell 10
  • the battery system 500 of FIG. 21 may include the battery module 100 according to any of the second to sixth embodiments instead of the battery module 100 according to the first embodiment.
  • a battery system according to another embodiment of the present invention includes one or a plurality of battery modules. At least one of the plurality of battery modules is the battery module according to any one of the first to sixth embodiments.
  • the battery system includes at least one battery module described above. Therefore, the wiring structure of the battery module is simplified and wiring work is facilitated. As a result, the assembly work of the battery system is facilitated, and the manufacturing cost can be sufficiently reduced.
  • FIG. 22 is a schematic plan view showing a first configuration example of the battery system 500 of FIG.
  • the battery system 500 includes four battery modules 100, a battery ECU 101, a contactor 102, an HV (High Voltage) connector 520, and a service plug 530.
  • Each battery module 100 has the same configuration as the battery module 100 according to the first embodiment.
  • the four battery modules 100 are referred to as battery modules 100a, 100b, 100c, and 100d, respectively.
  • the end face frame 92 to which the printed circuit board 21 is attached is called an end face frame 92A
  • the end face frame 92 to which the printed circuit board 21 is not attached Is referred to as an end face frame 92B.
  • the battery modules 100a, 100b, 100c, 100d, the battery ECU 101, the contactor 102, the HV connector 520, and the service plug 530 are accommodated in a box-shaped casing 550.
  • Casing 550 has side portions 550a, 550b, 550c, and 550d.
  • the side surface portions 550a and 550c are parallel to each other, and the side surface portions 550b and 550d are parallel to each other and perpendicular to the side surfaces 550a and 550c.
  • the battery modules 100a and 100b are arranged in a line at intervals.
  • the battery modules 100a and 100b are arranged so that the end face frame 92B of the battery module 100a and the end face frame 92A of the battery module 100b face each other.
  • Battery modules 100c and 100d are arranged in a line at intervals.
  • the battery modules 100a and 100b are arranged so that the end face frame 92A of the battery module 100c and the end face frame 92B of the battery module 100d face each other.
  • the battery modules 100a and 100b arranged in a row are referred to as a module row T1
  • the battery modules 100c and 100d arranged in a row are referred to as a module row T2.
  • the module row T1 is arranged along the side surface portion 550a, and the module row T2 is arranged in parallel with the module row T1.
  • the end surface frame 92A of the battery module 100a is directed to the side surface portion 550d
  • the end surface frame 92B of the battery module 100b is directed to the side surface portion 550b.
  • the end surface frame 92B of the battery module 100c is directed to the side surface portion 550d
  • the end surface frame 92A of the battery module 100d is directed to the side surface portion 550b.
  • the battery ECU 101, the service plug 530, the HV connector 520, and the contactor 102 are arranged in this order from the side surface portion 550d to the side surface portion 550b.
  • the potential of the positive electrode 10a (FIG. 2) of the battery cell 10 adjacent to the end face frame 92A is the highest
  • the negative electrode 10b of the battery cell 10 adjacent to the end face frame 92b is the lowest.
  • the positive electrode 10a having the highest potential in each of the battery modules 100a to 100d is referred to as a high potential electrode 10A
  • the negative electrode 10b having the lowest potential in each of the battery modules 100a to 100d is referred to as a low potential electrode 10B.
  • one end of the relay member 41 is connected to the high potential electrode 10A, and the other end of the relay member 41 is connected to the relay terminal CT provided on the upper surface of the end face frame 92A.
  • One end of the relay member 41 is connected to the low potential electrode 10B, and the other end of the relay member 41 is connected to the relay terminal CT provided on the upper surface of the end face frame 92B.
  • the other end of the relay member 41 connected to the low potential electrode 10B of the battery module 100a and the other end of the relay member 41 connected to the high potential electrode 10A of the battery module 100b are connected to the relay terminal CT and the power supply line D01. Are connected to each other.
  • the other end of the relay member 41 connected to the high potential electrode 10A of the battery module 100c and the other end of the relay member 41 connected to the low potential electrode 10B of the battery module 100d are connected to the relay terminal CT and the power line D02. Are connected to each other.
  • the power lines D01 and D02 correspond to the power lines 501 that connect the battery modules 100 in FIG.
  • a harness, a lead wire, or the like is used as the power supply lines D01 and D02.
  • the other end of the relay member 41 connected to the high potential electrode 10A of the battery module 100a is connected to the service plug 530 via the relay terminal CT and the power supply line D1, and the relay connected to the low potential electrode 10B of the battery module 100c.
  • the other end of the member 41 is connected to the service plug 530 via the relay terminal CT and the power supply line D2.
  • the power supply lines D1 and D2 correspond to the power supply lines 501 that connect the battery modules 100 in FIG.
  • the battery modules 100a, 100b, 100c, and 100d are connected in series.
  • the potential of the high potential electrode 10A of the battery module 100d is the highest, and the potential of the low potential electrode 10B of the battery module 100b is the lowest.
  • the service plug 530 is turned off by an operator when the battery system 500 is maintained, for example.
  • the service plug 530 is turned off, the series circuit composed of the battery modules 100a and 100b and the series circuit composed of the battery modules 100c and 100d are electrically separated. In this case, the current path between the plurality of battery modules 100a to 100d is interrupted. This ensures safety during maintenance.
  • the other end of the relay member 41 connected to the low potential electrode 10B of the battery module 100b is connected to the contactor 102 via the relay terminal CT and the power supply line D3, and the relay member connected to the high potential electrode 10A of the battery module 100d.
  • the other end of 41 is connected to the contactor 102 via the relay terminal CT and the power supply line D4.
  • Contactor 102 is connected to HV connector 520 through power supply lines D5 and D6.
  • the HV connector 520 is connected to a load such as a motor of an electric vehicle.
  • the power supply lines D3 and D4 correspond to the power supply line 501 connecting the battery module 100 and the contactor 102 of FIG.
  • the power supply lines D5 and D6 correspond to the power supply line 501 extending from the contactor 102 in FIG. 21 to the outside.
  • the battery module 100b is connected to the HV connector 520 via the power lines D3 and D5
  • the battery module 100d is connected to the HV connector 520 via the power lines D4 and D6.
  • electric power is supplied from the battery modules 100a, 100b, 100c, and 100d to the load.
  • the battery modules 100a, 100b, 100c, and 100d are charged with the contactor 102 turned on.
  • the contactor 102 When the contactor 102 is turned off, the connection between the battery module 100b and the HV connector 520 and the connection between the battery module 100d and the HV connector 520 are cut off.
  • the contactor 102 is also turned off by the operator together with the service plug 530. In this case, the current path between the plurality of battery modules 100a to 100d is reliably interrupted. Thereby, safety at the time of maintenance is sufficiently ensured.
  • the total voltage of the series circuit including the battery modules 100a and 100b is equal to the total voltage of the series circuit including the battery modules 100c and 100d. . This prevents a high voltage from being generated in the battery system 500 during maintenance.
  • the printed circuit board 21 (see FIG. 1 and the like) of the battery module 100a and the printed circuit board 21 of the battery module 100b are connected to each other via a communication line P11.
  • the printed circuit board 21 of the battery module 100a and the printed circuit board 21 of the battery module 100c are connected to each other via the communication line P12.
  • the printed circuit board 21 of the battery module 100c and the printed circuit board 21 of the battery module 100d are connected to each other via a communication line P13.
  • the printed circuit board 21 of the battery module 100b is connected to the battery ECU 101 via the communication line P14.
  • the communication lines P11 to P14 correspond to the communication line 560 in FIG.
  • a bus is configured by the communication lines P11 to P14.
  • the cell information detected by the voltage detection circuit 20 of the battery module 100a is given to the battery ECU 101 via the communication lines P11 and P14. Further, a predetermined control signal is given from the battery ECU 101 to the printed circuit board 21 of the battery module 100a via the communication lines P14 and P11.
  • the cell information detected by the voltage detection circuit 20 of the battery module 100b is given to the battery ECU 101 via the communication line P14.
  • a predetermined control signal is given from the battery ECU 101 to the printed circuit board 21 of the battery module 100b via the communication line P14.
  • the cell information detected by the voltage detection circuit 20 of the battery module 100c is given to the battery ECU 101 via the communication lines P12, P11, and P14.
  • a predetermined control signal is given from the battery ECU 101 to the printed circuit board 21 of the battery module 100c through the communication lines P14, P11, and P12.
  • the cell information detected by the voltage detection circuit 20 of the battery module 100d is given to the battery ECU 101 via the communication lines P13, P12, P11, and P14.
  • a predetermined control signal is given from the battery ECU 101 to the printed circuit board 21 of the battery module 100d through the communication lines P14, P11, P12, and P13.
  • the battery system 500 includes the battery module 100 according to the first embodiment. This simplifies the wiring structure of the battery module 100 and facilitates wiring work. As a result, the assembly operation of the battery system 500 is facilitated, and the manufacturing cost can be sufficiently reduced.
  • the service plug 530 is connected to the relay member 41 via the relay terminal CT on the upper surfaces of the end surface frames 92A and 92B of the battery modules 100a and 100c.
  • the contactor 102 is connected to the relay member 41 via the relay terminal CT on the upper surfaces of the end face frames 92B and 92A of the battery modules 100b and 100d. Therefore, service plug 530 and contactor 102 can be easily connected to battery modules 100a to 100d.
  • the battery system 500 may include the battery module 100 according to any one of the second to sixth embodiments instead of the battery module 100 according to the first embodiment. Even in this case, the assembling work of the battery system 500 is facilitated, and the manufacturing cost can be sufficiently reduced.
  • FIG. 23 is a schematic plan view showing a second configuration example of the battery system 500 of FIG. The battery system 500 of FIG. 23 will be described while referring to differences from the battery system 500 of FIG.
  • the relay member 41 is not connected to the low potential electrode 10B of the battery module 100a, the high potential electrode 10A of the battery module 100b, the high potential electrode 10A of the battery module 100c, and the low potential electrode 10B of the battery module 100d.
  • the low potential electrode 10B of the battery module 100a and the high potential electrode 10A of the battery module 100b are connected to each other via the power line D01.
  • the high potential electrode 10A of the battery module 100c and the low potential electrode 10B of the battery module 100d are connected to each other via the power supply line D02.
  • one end of the relay member 41 is connected to the high potential electrode 10A, and the other end of the relay member 41 is connected to the relay terminal CT provided on the upper surface of the end face frame 92A.
  • one end of the relay member 41 is connected to the low potential electrode 10B, and the other end of the relay member 41 is connected to the relay terminal CT provided on the upper surface of the end face frame 92B.
  • the relay terminal CT and relay member 41 and the FPC board 50 are arranged so as not to overlap each other. This simplifies the wiring structure of the battery module 100 and facilitates wiring work. Therefore, the assembly work of the battery system 500 is facilitated, and the manufacturing cost can be sufficiently reduced.
  • FIG. 24 is a schematic plan view showing a third configuration example of the battery system 500 of FIG. A difference between the battery system 500 of FIG. 24 and the battery system 500 of FIG. 23 will be described.
  • the low potential electrode 10B of the battery module 100a and the high potential electrode 10A of the battery module 100b are connected to each other via a strip-shaped bus bar D03.
  • the high potential electrode 10A of the battery module 100c and the low potential electrode 10B of the battery module 100d are connected to each other via a strip-shaped bus bar D04.
  • the bus bars D03 and D04 correspond to the power supply line 501 that connects the battery modules 100 in FIG.
  • FIG. 25 is a schematic plan view showing a fourth configuration example of the battery system 500 of FIG.
  • the battery system 500 of FIG. 25 will be described while referring to differences from the battery system 500 of FIG.
  • the relay member 41 is not connected to the low potential electrode 10B of the battery module 100a and the low potential electrode 10B of the battery module 100d.
  • the other end of the relay member 41 connected to the low potential electrode 10B of the battery module 100a and the high potential electrode 10A of the battery module 100b is connected to each other via the relay terminal CT and the power supply line D01.
  • the other end of the relay member 41 connected to the high potential electrode 10A of the battery module 100c and the low potential electrode 10B of the battery module 100d are connected to each other via the relay terminal CT and the power supply line D02.
  • FIG. 26 is a schematic plan view showing a fifth configuration example of the battery system 500 of FIG.
  • the battery system 500 of FIG. 26 will be described while referring to differences from the battery system 500 of FIG.
  • the battery ECU 101, the service plug 530, the HV connector 520, and the contactor 102 are arranged in this order from the side surface portion 550d to the side surface portion 550b in the region between the module row T1 and the side surface portion 550a.
  • the distance between the battery module 100b and the battery ECU 101 is shorter than that of the battery system 500 of FIG.
  • the length of the communication line P14 that connects the printed circuit board 21 of the battery module 100b and the battery ECU 101 can be shortened. This makes it difficult for the communication line P14 to be disconnected. As a result, the reliability of the battery system 500 is improved.
  • the battery modules 100a and 100d are the first battery modules.
  • the battery modules 100b and 100c are examples of the second battery module, the power lines D01 and D02 in FIGS. 23 and 26 and the bus bars D03 and D04 in FIG. 24 are examples of the second connection members,
  • the power conversion unit 601 and the motor 602 are examples of external devices, and the contactor 102 and the service plug 530 are examples of switching devices.
  • a battery system is connectable to an external device, and includes a first battery module including the battery module, a second battery module including a plurality of battery cells, A second connection member that electrically connects an electrode terminal of one battery cell of one battery module and an electrode terminal of one battery cell of the second battery module; an external device; and first and second batteries And an opening / closing device that opens and closes an electrical connection with the module, and the relay terminal of the first battery module is connected to the opening / closing device.
  • the electrode terminal of one battery cell of the first battery module and the electrode terminal of one battery cell of the second battery module are electrically connected by the second connecting member. Thereby, the some battery cell of a 1st and 2nd battery module can be connected in series.
  • the relay terminal of the first battery module is connected to the switchgear.
  • the first battery module is composed of the battery module described above, the wiring structure of the first battery module is simplified and the wiring work is facilitated. As a result, the assembly work of the battery system is facilitated, and the manufacturing cost can be sufficiently reduced. Further, the switchgear can be easily connected to the relay terminal of the first battery module.
  • the electric vehicle according to the present embodiment includes any one of battery systems 500 shown in FIGS.
  • an electric vehicle will be described as an example of an electric vehicle.
  • FIG. 27 is a block diagram illustrating a configuration of an electric vehicle including the battery system 500.
  • electric vehicle 600 according to the present embodiment includes a vehicle body 610.
  • the vehicle body 610 is provided with the main control unit 300 and the battery system 500, the power conversion unit 601, the motor 602, the drive wheels 603, the accelerator device 604, the brake device 605, and the rotation speed sensor 606 of FIG.
  • motor 602 is an alternating current (AC) motor
  • power conversion unit 601 includes an inverter circuit.
  • the battery system 500 is connected to the motor 602 via the power conversion unit 601 and to the main control unit 300.
  • the main control unit 300 is given a charge amount of the plurality of battery modules 100 (FIG. 21) and a current value flowing through the battery modules 100 from the battery ECU 101 (FIG. 21) constituting the battery system 500.
  • an accelerator device 604, a brake device 605, and a rotation speed sensor 606 are connected to the main control unit 300.
  • the main control unit 300 includes, for example, a CPU and a memory, or a microcomputer.
  • the accelerator device 604 includes an accelerator pedal 604a included in the electric automobile 600 and an accelerator detection unit 604b that detects an operation amount (depression amount) of the accelerator pedal 604a.
  • the accelerator detector 604b detects the operation amount of the accelerator pedal 604a based on a state where the driver is not operated. The detected operation amount of the accelerator pedal 604a is given to the main controller 300.
  • the brake device 605 includes a brake pedal 605a included in the electric automobile 600 and a brake detection unit 605b that detects an operation amount (depression amount) of the brake pedal 605a by the driver.
  • the operation amount is detected by the brake detection unit 605b.
  • the detected operation amount of the brake pedal 605a is given to the main control unit 300.
  • the rotation speed sensor 606 detects the rotation speed of the motor 602. The detected rotation speed is given to the main control unit 300.
  • the main controller 300 is given the charge amount of the battery module 100, the current value flowing through the battery module 100, the operation amount of the accelerator pedal 604a, the operation amount of the brake pedal 605a, and the rotation speed of the motor 602. .
  • the main control unit 300 performs charge / discharge control of the battery module 100 and power conversion control of the power conversion unit 601 based on these pieces of information.
  • the electric power of the battery module 100 is supplied from the battery system 500 to the power conversion unit 601 when the electric automobile 600 is started and accelerated based on the accelerator operation.
  • the main control unit 300 calculates a rotational force (command torque) to be transmitted to the drive wheels 603 based on the given operation amount of the accelerator pedal 604a, and outputs a control signal based on the command torque to the power conversion unit 601. To give.
  • the power conversion unit 601 that has received the control signal converts the power supplied from the battery system 500 into power (drive power) necessary for driving the drive wheels 603. As a result, the driving power converted by the power converter 601 is supplied to the motor 602, and the rotational force of the motor 602 based on the driving power is transmitted to the driving wheels 603.
  • the motor 602 functions as a power generator.
  • the power conversion unit 601 converts the regenerative power generated by the motor 602 into power suitable for charging the battery module 100 and supplies the power to the battery module 100. Thereby, the battery module 100 is charged.
  • the electric automobile 600 includes the battery system 500 of any of FIGS.
  • the battery system 500 is provided with a battery module according to any one of the first to sixth embodiments.
  • the wiring structure of the battery module 100 is simplified and wiring work is facilitated.
  • the assembly work of the electric automobile 600 becomes easy, and the manufacturing cost can be sufficiently reduced.
  • maintenance of the electric vehicle 600 is facilitated.
  • An electric vehicle includes the above battery system, a motor driven by electric power from the battery system, And a drive wheel that is rotated by a rotational force.
  • the motor In the electric vehicle, the motor is driven by the electric power from the battery system.
  • the drive wheel is rotated by the rotational force of the motor to move the electric vehicle.
  • the wiring structure of the battery module is simplified and wiring work is facilitated.
  • the assembly work of the electric vehicle is facilitated, and the manufacturing cost can be sufficiently reduced.
  • maintenance of the electric vehicle is facilitated.
  • the battery system 500 of any of FIGS. 21 to 26 may be mounted on another mobile body such as a ship, an aircraft, an elevator, or a walking robot.
  • a ship equipped with the battery system 500 includes, for example, a hull instead of the vehicle body 610 in FIG. 27, a screw instead of the drive wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605.
  • a deceleration input unit is provided.
  • the driver operates the acceleration input unit instead of the accelerator device 604 when accelerating the hull, and operates the deceleration input unit instead of the brake device 605 when decelerating the hull.
  • the hull corresponds to the moving main body
  • the motor corresponds to the power source
  • the screw corresponds to the drive unit.
  • the ship does not have to include a deceleration input unit.
  • the motor receives electric power from the battery system 500 and converts the electric power into power, and the hull moves by rotating the screw with the converted power.
  • an aircraft equipped with the battery system 500 includes, for example, a fuselage instead of the vehicle body 610 of FIG. 27, a propeller instead of the drive wheels 603, an acceleration input unit instead of the accelerator device 604, and a brake.
  • a deceleration input unit is provided instead of the device 605.
  • the airframe corresponds to the moving main body
  • the motor corresponds to the power source
  • the propeller corresponds to the drive unit.
  • the aircraft may not include a deceleration input unit.
  • the motor receives electric power from the battery system 500 and converts the electric power into motive power, and the propeller is rotated by the converted motive power, whereby the airframe moves.
  • the elevator equipped with the battery system 500 includes, for example, a saddle instead of the vehicle body 610 in FIG. 27, a lifting rope attached to the saddle instead of the driving wheel 603, and an acceleration input unit instead of the accelerator device 604. And a deceleration input unit instead of the brake device 605.
  • the kite corresponds to the moving main body
  • the motor corresponds to the power source
  • the lifting rope corresponds to the drive unit.
  • the motor receives electric power from the battery system 500 and converts the electric power into motive power, and the elevating rope is wound up by the converted motive power, so that the kite moves up and down.
  • a walking robot equipped with the battery system 500 includes, for example, a torso instead of the vehicle body 610 in FIG. 27, a foot instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605.
  • a deceleration input unit is provided instead of.
  • the body corresponds to the moving main body
  • the motor corresponds to the power source
  • the foot corresponds to the drive unit.
  • the motor receives electric power from the battery system 500 and converts the electric power into power, and the torso moves by driving the foot with the converted power.
  • the power source receives power from the battery system 500 and converts the power into power, and the drive unit is moved by the power converted by the power source. Move.
  • the battery system 500 of any of FIGS. 21 to 26 is also provided in such various moving objects.
  • the battery system 500 is provided with a battery module according to any one of the first to sixth embodiments. Thereby, the assembly work of a moving body becomes easy and manufacturing cost can fully be reduced. In addition, maintenance of the moving body is facilitated.
  • a moving body according to still another embodiment of the present invention is configured to transfer the power from the battery system, the moving main body, and the battery system to the moving main body.
  • the electric power from the battery system is converted into power by the power source, and the moving main body moves by the power.
  • the wiring structure of the battery module is simplified and the wiring work is facilitated.
  • the assembly work of the moving body is facilitated, and the manufacturing cost can be sufficiently reduced.
  • maintenance of the moving body is facilitated.
  • the power supply apparatus includes any one of the battery systems 500 shown in FIGS.
  • FIG. 28 is a block diagram illustrating a configuration of a power supply device including a battery system 500.
  • the power supply device 700 includes a power storage device 710 and a power conversion device 720.
  • the power storage device 710 includes a battery system group 711 and a system controller 712.
  • the battery system group 711 includes any one of the battery systems 500 shown in FIGS.
  • the plurality of battery systems 500 may be connected to each other in parallel, or may be connected to each other in series.
  • the plurality of battery systems 500 may be connected by a combination of series and parallel.
  • a subsystem group including a plurality of battery systems 500 connected in series may be connected in parallel to each other.
  • the system controller 712 is an example of a system control unit, and includes, for example, a CPU and a memory, or a microcomputer.
  • the system controller 712 is connected to the battery ECU 101 (see FIG. 21) of each battery system 500.
  • the battery ECU 101 of each battery system 500 calculates the charge amount of each battery cell 10 based on the terminal voltage of each battery cell 10, and gives the calculated charge amount to the system controller 712.
  • the system controller 712 controls the power conversion device 720 based on the charge amount of each battery cell 10 given from each battery ECU 101, thereby controlling the discharge or charging of the plurality of battery cells 10 included in each battery system 500. I do.
  • the power converter 720 includes a DC / DC (DC / DC) converter 721 and a DC / AC (DC / AC) inverter 722.
  • the DC / DC converter 721 has input / output terminals 721a and 721b, and the DC / AC inverter 722 has input / output terminals 722a and 722b.
  • the input / output terminal 721 a of the DC / DC converter 721 is connected to the battery system group 711 of the power storage device 710.
  • the input / output terminal 721b of the DC / DC converter 721 and the input / output terminal 722a of the DC / AC inverter 722 are connected to each other and to the power output unit PU1.
  • the input / output terminal 722b of the DC / AC inverter 722 is connected to the power output unit PU2 and to another power system.
  • the power output units PU1, PU2 include, for example, outlets.
  • various loads are connected to the power output units PU1 and PU2.
  • Other power systems include, for example, commercial power sources or solar cells. This is an external example in which power output units PU1, PU2 and another power system are connected to a power supply device.
  • the DC / DC converter 721 and the DC / AC inverter 722 are controlled by the system controller 712, whereby the plurality of battery cells 10 included in the battery system group 711 are discharged and charged.
  • DC / DC direct current / direct current
  • DC / AC direct current / alternating current
  • the power DC / DC converted by the DC / DC converter 721 is supplied to the power output unit PU1.
  • the power DC / AC converted by the DC / AC inverter 722 is supplied to the power output unit PU2.
  • DC power is output to the outside from the power output unit PU1, and AC power is output to the outside from the power output unit PU2.
  • the electric power converted into alternating current by the DC / AC inverter 722 may be supplied to another electric power system.
  • the system controller 712 performs the following control as an example of control related to the discharge of the plurality of battery cells 10 included in each battery system 500.
  • the system controller 712 determines whether or not to stop discharging based on the charge amount of each battery cell 10 given from each battery ECU 101 (see FIG. 21), and based on the determination result.
  • the power converter 720 is controlled. Specifically, when the charge amount of any one of the plurality of battery cells 10 included in the battery system group 711 becomes smaller than a predetermined threshold value, the system controller 712 stops discharging. Or the DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the discharge current (or discharge power) is limited. Thereby, overdischarge of each battery cell 10 is prevented.
  • AC power supplied from another power system is AC / DC (AC / DC) converted by the DC / AC inverter 722, and further DC / DC (DC) is converted by the DC / DC converter 721. / DC) converted.
  • AC / DC AC / DC
  • DC DC / DC
  • the system controller 712 performs the following control as an example of control related to charging of the plurality of battery cells 10 included in each battery system 500.
  • the system controller 712 determines whether or not to stop charging based on the charge amount of each battery cell 10 given from each battery ECU 101 (see FIG. 21), and based on the determination result.
  • the power converter 720 is controlled. Specifically, when the charge amount of any one of the plurality of battery cells 10 included in the battery system group 711 exceeds a predetermined threshold value, the system controller 712 stops charging. Or the DC / DC converter 721 and the DC / AC inverter 722 are controlled such that the charging current (or charging power) is limited. Thereby, overcharge of each battery cell 10 is prevented.
  • power supply device 700 according to the present embodiment is provided with battery system 500 of any of FIGS.
  • the battery system 500 is provided with a battery module according to any one of the first to sixth embodiments.
  • the assembly work of the power supply apparatus 700 becomes easy, and the manufacturing cost can be sufficiently reduced.
  • maintenance of the power supply device 700 is facilitated.
  • system controller 712 is an example of a system control unit.
  • a power storage device includes the above-described battery system and a system control unit that performs control related to charging or discharging of a battery module of the battery system.
  • control related to charging or discharging of the battery module is performed by the system control unit. Thereby, deterioration, overdischarge, and overcharge of the battery module can be prevented.
  • the wiring structure of the battery module is simplified and the wiring work is facilitated.
  • the assembly work of the power storage device is facilitated, and the manufacturing cost can be sufficiently reduced.
  • maintenance of the power storage device is facilitated.
  • a power supply device is connectable to the outside, and is controlled by the above-described power storage device and a system control unit of the power storage device, and a battery module of the battery system of the power storage device And a power conversion device that performs power conversion with the outside.
  • power conversion is performed between the battery module and the outside by the power conversion device.
  • Control related to charging or discharging of the battery module is performed by controlling the power conversion device by the system control unit of the power storage device. Thereby, deterioration, overdischarge, and overcharge of the battery module can be prevented.
  • the wiring structure of the battery module is simplified and the wiring work is facilitated.
  • the assembly work of the power supply device is facilitated, and the manufacturing cost can be sufficiently reduced.
  • maintenance of the power supply device is facilitated.
  • the system controller 712 may have the same function as that of the battery ECU 101 instead of the battery ECU 101 provided in each battery system 500.
  • the power conversion apparatus 720 may include only one of the DC / DC converter 721 and the DC / AC inverter 722. Further, the power conversion device 720 may not be provided as long as power can be supplied between the power supply device 700 and the outside.
  • a plurality of battery systems 500 are provided, but not limited to this, only one battery system 500 may be provided.
  • a shunt resistor is connected in series to the plurality of battery cells 10, and current detection for detecting the current flowing through the battery module 100 on the printed circuit board 21.
  • a circuit may be implemented. For example, when one bus bar 40 is used as a shunt resistor, one bus bar 40 and a current detection circuit are connected via a conductor line.
  • the current detection circuit for example, the voltage across the shunt resistor is converted into a digital value by an A / D converter. The converted digital value is divided by the resistance value of the shunt resistor. Thereby, the value of the current flowing through the battery module 100 is calculated.
  • the conductor line that connects the shunt resistor and the current detection circuit is formed on one of the two FPC boards 50 of the first, second, fourth, fifth, and sixth embodiments.
  • the Or the wiring containing the conductor wire which connects a shunt resistance and a current detection circuit is hold
  • an equalization circuit for equalizing the plurality of battery cells 10 may be mounted on the printed circuit board 21, an equalization circuit for equalizing the plurality of battery cells 10 may be mounted.
  • the equalization circuit is provided so as to correspond to each of the plurality of battery cells 10.
  • Each equalizing circuit is constituted by, for example, a series circuit of a resistor and a switching element or a charger.
  • the battery ECU 101 in FIG. 21 controls the switching elements or chargers of the plurality of equalization circuits. Thereby, the equalization process which adjusts the charge condition of the some battery cell 10 is performed.
  • the state of charge includes terminal voltage, SOC (charge rate), remaining capacity, open circuit voltage, depth of discharge, integrated current value, or difference in charged amount.
  • SOC charge rate
  • the charge state of the plurality of battery cells 10 is the terminal voltage of the plurality of battery cells 10.
  • the battery cell 10 having a flat and substantially rectangular parallelepiped shape is used as the battery cell constituting the battery module. Not only this but the battery cell 10 which comprises the battery module 100 can also use a laminate-type battery cell.
  • the laminate type battery cell is manufactured as follows, for example. First, an element in which a plus electrode and a minus electrode are arranged with a separator interposed therebetween is accommodated in a bag made of a resin film. Subsequently, the bag in which the element is accommodated is sealed, and the electrolytic solution is injected into the formed sealed space. Thereby, a laminate-type battery cell is completed.
  • a battery cell 10 constituting the battery module 100 a battery cell having a substantially cylindrical shape can be used.
  • the relay member 41 has a structure in which nickel plating is applied to the surface of tough pitch copper, but the relay member 41 may be configured by a harness, a lead wire, or the like. Even in this case, the relay member 41 is preferably arranged so as not to overlap the plurality of conductor lines 51 and 52 or the wiring 53 that connect the electrodes 10 a and 10 b of the plurality of battery cells 10 and the voltage detection circuit 20. .
  • the relay member 41 When the relay member 41 is configured by a harness, a lead wire, or the like, the relay member 41 is relayed to the upper surface, one side surface, or the other side surface of the battery block 10BB so that the relay member 41 does not overlap the plurality of conductor wires 51, 52 or the wiring 53.
  • a guide hook g (FIG. 13) for fixing the member 41 may be provided.
  • the battery module 100 is housed in the casing CA, but is not limited thereto.
  • the battery module 100 may not be stored in the casing CA.
  • the gas duct GD and the wiring member 70 are integrally provided on the lid member 80. Therefore, the wiring member 70, the gas duct GD, and the lid member 80 can be handled integrally. As a result, the battery module 100 can be easily assembled by attaching the lid member 80 to the battery block 10BB.
  • a moving body such as the electric automobile 600 (FIG. 27) or a ship according to the above embodiment is an electric device including the battery system 500 and the motor 602 as a load.
  • the electric device according to the present invention is not limited to a moving body such as the electric automobile 600 and a ship, and may be a washing machine, a refrigerator, an air conditioner, or the like.
  • a washing machine is an electric device including a motor as a load
  • a refrigerator or an air conditioner is an electric device including a compressor as a load.
  • the electrical device includes the battery system described above and a load driven by electric power from the battery system.
  • the load is driven by electric power from the battery system.
  • the wiring structure of the battery module is simplified and the wiring work is facilitated.
  • the assembling work of the electric equipment is facilitated, and the manufacturing cost can be sufficiently reduced.
  • maintenance of the electric equipment is facilitated.
  • the battery module 100 is an example of a battery module
  • the X direction is an example of the first direction
  • the plurality of battery cells 10 are examples of a plurality of battery cells
  • the first and second The battery cell 10 (first battery cell 10) adjacent to one end face frame 92 in the embodiment and the one end side battery cell 10 in the third embodiment are examples of battery cells positioned at one end
  • the pair of end face frames 92 in the first, second, fourth, fifth and sixth embodiments one end face frame 92 and the end face frame 92 in the third embodiment are examples of holding members
  • the battery block 10BB is an example of a battery block
  • the relay terminal CT is an example of a relay terminal.
  • the voltage detection circuit 20 is an example of a voltage detection circuit
  • the positive electrodes 10a and the negative electrodes 10b of the plurality of battery cells 10 are examples of a plurality of power supply terminals
  • the first, second, fourth, fifth, and The plurality of conductor lines 51, 52 formed on the two FPC boards 50, 50a, 50b in the sixth embodiment and the plurality of wirings 53 in the third embodiment are examples of wiring
  • the relay member 41 The bus bar 40p connected to the plus electrode 10a of the battery cell 10 adjacent to one end face frame 92 of FIG. 10, the bus bar 40q connected to the one end side battery cell 10 of FIG. 13, and the bus bar 40x of FIGS. It is an example of the 1st connection member.
  • the two guide hooks g formed on the end face frame 92 in the form of the above, and the FPC fitting portion 84 of the lid member 80 and the plurality of mounting pieces 42 of the plurality of bus bars 40, 40x in the fourth and fifth embodiments, 46 is an example of the guide unit
  • the upper surface of the battery block 10BB is an example of one surface of the battery block
  • the first terminal row TL1 is an example of the first terminal row
  • the second terminal row TL2 is the second side. It is an example of a terminal row.
  • the wiring group 53x is an example of a first wiring group, and a plurality of conductor lines 51, formed on the other FPC boards 50, 50b in the first, second, fourth, fifth and sixth embodiments.
  • 52 and the second wiring group 53y in the third embodiment are examples of the second wiring group, and the Y direction is an example of the second direction.
  • one notch 92g in the first, fourth, fifth and sixth embodiments and one guide hook g formed in the end face frame 92 in the third embodiment are provided in the first guide portion.
  • the other notch 92g in the first, fourth, fifth and sixth embodiments and the other guide hook g formed in the end face frame 92 in the third embodiment are the second guide. It is an example of a part.
  • the plurality of mounting pieces 42p of the plurality of bus bars 40p arranged along the rib member GL1 and the first terminal row TL1 in the second embodiment is an example of the first guide portion, and the second embodiment.
  • the plurality of mounting pieces 42p of the plurality of bus bars 40p arranged along the rib member GL2 and the second terminal row TL2 in the form of is a second guide part.
  • the plurality of mounting pieces 42 of the plurality of bus bars 40 connected to one notch 92g, one FPC fitting portion 84 of the lid member 80, and the first terminal row TL1 in the fourth and fifth embodiments.
  • the plurality of mounting pieces 42 and 46 of the bus bars 40 and 40x are examples of the second guide portion.
  • the battery system 500 is an example of a battery system
  • the electric automobile 600 is an example of an electric vehicle
  • the battery modules 100a and 100d in FIGS. 23, 24, and 26 are examples of a first battery module.
  • 23, 24 and 26 are examples of the second battery module
  • the power supply lines D01 and D02 in FIGS. 23 and 26 and the bus bars D03 and D04 in FIG. 24 are the second connection members.
  • the power conversion unit 601 and the motor 602 are examples of external devices
  • the contactor 102 and the service plug 530 are examples of switching devices
  • the motor 602 is an example of a motor
  • the drive wheels 603 are examples of drive wheels. It is.
  • the vehicle body 610, the ship hull, the aircraft fuselage, the elevator cage or the body of the walking robot are examples of the moving main body, and the motor 602, the drive wheel 603, the screw, the propeller, the hoisting motor of the lifting rope or the walking
  • a robot foot is an example of a power source.
  • An electric vehicle 600, a ship, an aircraft, an elevator, or a walking robot are examples of moving objects.
  • the system controller 712 is an example of a system control unit
  • the power storage device 710 is an example of a power storage device
  • the power supply device 700 is an example of a power supply device
  • the power conversion device 720 is an example of a power conversion device.

Abstract

A battery module of the present invention is provided with: a battery block containing a plurality of battery cells; a voltage detection circuit for detecting the voltage of each battery cell; a holding member for holding the voltage detection circuit; a relay terminal provided to the holding member, and electrically connected to an electrode terminal of one of the plurality of battery cells; and a plurality of wires for connecting the plurality of electrode terminals of the plurality of battery cells to the voltage detection circuit. The relay terminal and the plurality of wires are arranged so as to avoid overlapping each other on the holding member. The voltage detection circuit is held by the holding member in the battery module. The plurality of electrode terminals of the plurality of battery cells are connected to the voltage detection circuit by the plurality of wires. The relay terminal provided to the holding member is electrically connected to the electrode terminal of one of the plurality of battery cells. The relay terminal and the plurality of wires are arranged so as to avoid overlapping each other on the holding member.

Description

バッテリモジュール、バッテリシステム、電動車両、移動体、電力貯蔵装置、電源装置および電気機器Battery module, battery system, electric vehicle, moving object, power storage device, power supply device, and electric device
 本発明は、バッテリモジュール、バッテリシステム、電動車両、移動体、電力貯蔵装置、電源装置および電気機器に関する。 The present invention relates to a battery module, a battery system, an electric vehicle, a moving body, a power storage device, a power supply device, and an electric device.
 電動自動車等の移動体の駆動源として、充放電が可能な複数のバッテリセルを含むバッテリシステムが用いられる。特許文献1に記載されたバッテリシステムは、複数の電池セル(バッテリセル)を積層してなる電池ブロック(バッテリブロック)と、積層された電池セルを積層方向に挟み込むように固定する一対のエンドプレート(端面枠)と、一対の端面枠を連結する連結具と、電池ブロックの電極端子に接続される出力ライン(電源線)とを備える。
特開2010-80353号公報
A battery system including a plurality of battery cells that can be charged and discharged is used as a driving source for a moving body such as an electric automobile. The battery system described in Patent Document 1 includes a battery block (battery block) formed by stacking a plurality of battery cells (battery cells) and a pair of end plates that are fixed so as to sandwich the stacked battery cells in the stacking direction. (End face frame), a connector for connecting the pair of end face frames, and an output line (power line) connected to the electrode terminal of the battery block.
JP 2010-80353 A
 上記のバッテリシステムにおいて、電池ブロックの電力を取り出すためにいずれかの電池セルの電極端子に出力ラインが接続される。また、複数の電池セルの端子電圧を検出するためには、複数の電池セルの電極端子と電圧検出回路とを複数の電圧検出線で接続する必要がある。この場合、出力ラインおよび複数の電圧検出線の引き回しが複雑になり、バッテリシステムにおける配線作業も煩雑になる。 In the above battery system, an output line is connected to the electrode terminal of one of the battery cells in order to take out the power of the battery block. Moreover, in order to detect the terminal voltage of a some battery cell, it is necessary to connect the electrode terminal of a some battery cell, and a voltage detection circuit with a some voltage detection line. In this case, the routing of the output line and the plurality of voltage detection lines becomes complicated, and the wiring work in the battery system becomes complicated.
 本発明の目的は、配線構造の単純化および配線作業の容易化が可能なバッテリモジュール、バッテリシステム、電動車両、移動体、電力貯蔵装置、電源装置および電気機器を提供することである。 An object of the present invention is to provide a battery module, a battery system, an electric vehicle, a moving body, a power storage device, a power supply device, and an electric device that can simplify a wiring structure and facilitate wiring work.
 本発明の一局面に従うバッテリモジュールは、複数のバッテリセルを含むバッテリブロックと、各バッテリセルの電圧を検出する電圧検出回路と、電圧検出回路を保持する保持部材と、保持部材に設けられ、複数のバッテリセルのいずれかの電極端子に電気的に接続される中継端子と、複数のバッテリセルの複数の電極端子と電圧検出回路とを接続する複数の配線とを備え、中継端子と複数の配線とは、保持部材上で互いに重ならないように配置されたものである。 A battery module according to one aspect of the present invention is provided in a battery block including a plurality of battery cells, a voltage detection circuit that detects a voltage of each battery cell, a holding member that holds the voltage detection circuit, and a plurality of holding members. A relay terminal electrically connected to one of the electrode terminals of the battery cell, and a plurality of wirings connecting the plurality of electrode terminals of the plurality of battery cells and the voltage detection circuit, the relay terminal and the plurality of wirings Is arranged so as not to overlap each other on the holding member.
 本発明によれば、バッテリモジュールの配線構造の単純化および配線作業の容易化が可能となる。 According to the present invention, it is possible to simplify the wiring structure of the battery module and facilitate the wiring work.
図1はバッテリモジュールの外観斜視図である。FIG. 1 is an external perspective view of a battery module. 図2はバッテリモジュールの平面図である。FIG. 2 is a plan view of the battery module. 図3はバッテリモジュールの端面図である。FIG. 3 is an end view of the battery module. 図4はバスバーとプリント回路基板との接続の詳細を説明するための模式的平面図である。FIG. 4 is a schematic plan view for explaining the details of the connection between the bus bar and the printed circuit board. 図5は図1~図3の端面枠の一面側の平面図である。FIG. 5 is a plan view of one side of the end face frame of FIGS. 図6はバッテリブロックへの中継部材の取り付け手順を示す外観斜視図である。FIG. 6 is an external perspective view showing a procedure for attaching the relay member to the battery block. 図7はバッテリブロックへの中継部材の取り付け手順を示す外観斜視図である。FIG. 7 is an external perspective view showing a procedure for attaching the relay member to the battery block. 図8はバッテリブロックへのガスダクトの取り付けを説明するための外観斜視図である。FIG. 8 is an external perspective view for explaining the attachment of the gas duct to the battery block. 図9はプリント回路基板に実装される電圧検出回路および通信回路の構成および動作を説明するためのブロック図である。FIG. 9 is a block diagram for explaining the configuration and operation of a voltage detection circuit and a communication circuit mounted on a printed circuit board. 図10は第2の実施の形態に係るバッテリモジュールを示す外観斜視図である。FIG. 10 is an external perspective view showing the battery module according to the second embodiment. 図11はバッテリモジュールの平面図である。FIG. 11 is a plan view of the battery module. 図12は第2の実施の形態に係るバッテリモジュールへの電源線の接続を説明するための外観斜視図である。FIG. 12 is an external perspective view for explaining the connection of the power supply line to the battery module according to the second embodiment. 図13は第3の実施の形態に係るバッテリモジュールの分解斜視図である。FIG. 13 is an exploded perspective view of the battery module according to the third embodiment. 図14は第4の実施の形態に係るバッテリモジュールの分解斜視図である。FIG. 14 is an exploded perspective view of the battery module according to the fourth embodiment. 図15は図14の蓋部材を斜め下方から見た斜視図である。FIG. 15 is a perspective view of the lid member of FIG. 14 as viewed obliquely from below. 図16は図14の蓋部材を斜め上方から見た斜視図である。FIG. 16 is a perspective view of the lid member of FIG. 14 as viewed obliquely from above. 図17は第5の実施の形態に係るバッテリモジュールの分解斜視図である。FIG. 17 is an exploded perspective view of the battery module according to the fifth embodiment. 図18は図17の蓋部材を斜め下方から見た斜視図である。18 is a perspective view of the lid member of FIG. 17 as viewed obliquely from below. 図19は図17の蓋部材を斜め上方から見た斜視図である。FIG. 19 is a perspective view of the lid member of FIG. 17 as viewed obliquely from above. 図20は第6の実施の形態に係るバッテリモジュールの分解斜視図である。FIG. 20 is an exploded perspective view of the battery module according to the sixth embodiment. 図21は第1の実施の形態に係るバッテリモジュールを備えるバッテリシステムの構成を示すブロック図である。FIG. 21 is a block diagram illustrating a configuration of a battery system including the battery module according to the first embodiment. 図22は図21のバッテリシステムの第1の構成例を示す模式的平面図である。FIG. 22 is a schematic plan view showing a first configuration example of the battery system of FIG. 図23は図21のバッテリシステムの第2の構成例を示す模式的平面図である。FIG. 23 is a schematic plan view showing a second configuration example of the battery system of FIG. 図24は図21のバッテリシステムの第3の構成例を示す模式的平面図である。FIG. 24 is a schematic plan view showing a third configuration example of the battery system of FIG. 図25は図21のバッテリシステムの第4の構成例を示す模式的平面図である。FIG. 25 is a schematic plan view showing a fourth configuration example of the battery system of FIG. 図26は図21のバッテリシステムの第5の構成例を示す模式的平面図である。FIG. 26 is a schematic plan view showing a fifth configuration example of the battery system of FIG. 図27はバッテリシステムを備える電動自動車の構成を示すブロック図である。FIG. 27 is a block diagram illustrating a configuration of an electric automobile including a battery system. 図28はバッテリシステムを備える電源装置の構成を示すブロック図である。FIG. 28 is a block diagram illustrating a configuration of a power supply device including a battery system.
 [1]第1の実施の形態
 以下、第1の実施の形態に係るバッテリモジュールについて図面を参照しながら説明する。なお、本実施の形態に係るバッテリモジュールを用いたバッテリシステムは、電力を駆動源とする電動車両(例えば電動自動車)に搭載される。
[1] First Embodiment Hereinafter, a battery module according to a first embodiment will be described with reference to the drawings. Note that the battery system using the battery module according to the present embodiment is mounted on an electric vehicle (for example, an electric automobile) using electric power as a drive source.
 (1)バッテリモジュールの構造
 第1の実施の形態に係るバッテリモジュール100の構造について説明する。図1はバッテリモジュール100の外観斜視図であり、図2はバッテリモジュール100の平面図であり、図3はバッテリモジュール100の端面図である。
(1) Structure of battery module The structure of the battery module 100 according to the first embodiment will be described. 1 is an external perspective view of the battery module 100, FIG. 2 is a plan view of the battery module 100, and FIG. 3 is an end view of the battery module 100.
 なお、図1~図3ならびに後述する図4~図8および図10~図19においては、矢印X,Y,Zで示すように、互いに直交する三方向をX方向、Y方向およびZ方向と定義する。本例では、X方向およびY方向が水平面に平行な方向であり、Z方向が水平面に直交する方向である。また、上方向は矢印Zが向く方向である。 In FIGS. 1 to 3 and FIGS. 4 to 8 and 10 to 19 described later, as shown by arrows X, Y, and Z, three directions orthogonal to each other are defined as an X direction, a Y direction, and a Z direction. Define. In this example, the X direction and the Y direction are directions parallel to the horizontal plane, and the Z direction is a direction orthogonal to the horizontal plane. Further, the upward direction is the direction in which the arrow Z faces.
 図1~図3に示すように、バッテリモジュール100においては、扁平な略直方体形状を有する複数のバッテリセル10がX方向に並ぶように配置される。各バッテリセル10は、例えばリチウムイオン電池またはニッケル水素電池等の二次電池である。 As shown in FIGS. 1 to 3, in the battery module 100, a plurality of battery cells 10 having a flat, substantially rectangular parallelepiped shape are arranged in the X direction. Each battery cell 10 is a secondary battery such as a lithium ion battery or a nickel metal hydride battery.
 複数のバッテリセル10は、X方向に並ぶように配置された状態で一対の端面枠92、一対の上端枠93および一対の下端枠94により一体的に固定される。複数のバッテリセル10、一対の端面枠92、一対の上端枠93および一対の下端枠94により略直方体形状のバッテリブロック10BBが構成される。本実施の形態において、端面枠92は、例えばアルミニウム合金ダイカスト等の金属または合金により形成され、上端枠93および下端枠94は、例えば冷間圧延鋼板等の金属または合金により形成される。 The plurality of battery cells 10 are integrally fixed by a pair of end face frames 92, a pair of upper end frames 93, and a pair of lower end frames 94 in a state of being arranged in the X direction. The plurality of battery cells 10, the pair of end face frames 92, the pair of upper end frames 93, and the pair of lower end frames 94 constitute a substantially rectangular parallelepiped battery block 10BB. In the present embodiment, the end face frame 92 is formed of a metal or an alloy such as an aluminum alloy die cast, and the upper end frame 93 and the lower end frame 94 are formed of a metal or an alloy such as a cold rolled steel plate.
 一対の端面枠92のうち一方の端面枠92にプリント回路基板21が取り付けられる。プリント回路基板21には、電圧検出回路20および通信回路24が実装される。電圧検出回路20は、各バッテリセル10の端子電圧を検出する。通信回路24は、電圧検出回路20により検出された各バッテリセル10の端子電圧をバッテリモジュール100の外部(後述する図21のバッテリECU101および主制御部300等)に送信する。電圧検出回路20および通信回路24の詳細は後述する。 The printed circuit board 21 is attached to one end face frame 92 of the pair of end face frames 92. A voltage detection circuit 20 and a communication circuit 24 are mounted on the printed circuit board 21. The voltage detection circuit 20 detects the terminal voltage of each battery cell 10. The communication circuit 24 transmits the terminal voltage of each battery cell 10 detected by the voltage detection circuit 20 to the outside of the battery module 100 (such as a battery ECU 101 and a main control unit 300 in FIG. 21 described later). Details of the voltage detection circuit 20 and the communication circuit 24 will be described later.
 バッテリブロック10BBは、XY平面に平行な上面を有する。また、バッテリブロック10BBは、YZ平面に平行な一端面および他端面を有する。さらに、バッテリブロック10BBは、XZ平面に平行な一側面および他側面を有する。 Battery block 10BB has an upper surface parallel to the XY plane. Battery block 10BB has one end face and the other end face parallel to the YZ plane. Furthermore, the battery block 10BB has one side surface parallel to the XZ plane and the other side surface.
 各バッテリセル10は、上面部分の中央にガス抜き弁10vを有する。バッテリセル10内部の圧力が所定の値まで上昇した場合、バッテリセル10内部のガスがバッテリセル10のガス抜き弁10vから排出される。これにより、バッテリセル10内部の圧力の過度な上昇が防止される。 Each battery cell 10 has a gas vent valve 10v in the center of the upper surface portion. When the pressure inside the battery cell 10 rises to a predetermined value, the gas inside the battery cell 10 is discharged from the gas vent valve 10v of the battery cell 10. Thereby, the excessive raise of the pressure inside the battery cell 10 is prevented.
 各バッテリセル10は、Y方向に並ぶように上面部分にプラス電極10aおよびマイナス電極10bを有する。図3に示すように、各電極10a,10bは、上方に向かって突出するように傾斜して設けられる。以下の説明においては、一方の端面枠92に隣り合うバッテリセル10から他方の端面枠92に隣り合うバッテリセル10までを1番目~18番目のバッテリセル10と呼ぶ。 Each battery cell 10 has a plus electrode 10a and a minus electrode 10b on the top surface so as to be arranged in the Y direction. As shown in FIG. 3, each electrode 10a, 10b is inclined and provided so as to protrude upward. In the following description, the battery cells 10 adjacent to one end face frame 92 to the battery cells 10 adjacent to the other end face frame 92 are referred to as first to eighteenth battery cells 10.
 図2に示すように、バッテリモジュール100において、各バッテリセル10は、隣り合う各2つのバッテリセル10間でY方向におけるプラス電極10aおよびマイナス電極10bの位置関係が互いに逆になるように配置される。 As shown in FIG. 2, in the battery module 100, each battery cell 10 is arranged so that the positional relationship between the plus electrode 10 a and the minus electrode 10 b in the Y direction is reversed between each two adjacent battery cells 10. The
 これにより、バッテリブロック10BBの一側面の近傍では、隣り合う各2つのバッテリセル10のプラス電極10aおよびマイナス電極10bがX方向に交互に並ぶ。また、バッテリブロック10BBの他側面の近傍では、隣り合う各2つのバッテリセル10のマイナス電極10bおよびプラス電極10aがX方向に交互に並ぶ。 Thereby, in the vicinity of one side surface of the battery block 10BB, the positive electrodes 10a and the negative electrodes 10b of the two adjacent battery cells 10 are alternately arranged in the X direction. Further, in the vicinity of the other side surface of the battery block 10BB, the minus electrodes 10b and the plus electrodes 10a of the two adjacent battery cells 10 are alternately arranged in the X direction.
 このように、このバッテリモジュール100においては、複数のバッテリセル10の一方の電極10a,10bがX方向に整列された第1の端子列TL1(図2)を構成し、複数のバッテリセル10の他方の電極10a,10bがX方向に整列された第2の端子列TL2(図2)を構成する。第1の端子列TL1と第2の端子列TL2とは間隔をおいて互いに並列に配置される。 Thus, in this battery module 100, one electrode 10a, 10b of the plurality of battery cells 10 constitutes the first terminal row TL1 (FIG. 2) aligned in the X direction, and the plurality of battery cells 10 The other electrode 10a, 10b constitutes a second terminal row TL2 (FIG. 2) in which the other electrodes 10a, 10b are aligned in the X direction. The first terminal row TL1 and the second terminal row TL2 are arranged in parallel to each other with an interval therebetween.
 X方向において隣り合う各2つの電極10a,10bにバスバー40が取り付けられる。これにより、複数のバッテリセル10が直列接続される。具体的には、1番目のバッテリセル10のマイナス電極10bと2番目のバッテリセル10のプラス電極10aとに共通のバスバー40が取り付けられる。また、2番目のバッテリセル10のマイナス電極10bと3番目のバッテリセル10のプラス電極10aとに共通のバスバー40が取り付けられる。同様にして、各奇数番目のバッテリセル10のマイナス電極10bとそれに隣り合う偶数番目のバッテリセル10のプラス電極10aとに共通のバスバー40が取り付けられる。各偶数番目のバッテリセル10のマイナス電極10bとそれに隣り合う奇数番目のバッテリセル10のプラス電極10aとに共通のバスバー40が取り付けられる。 The bus bar 40 is attached to each of the two electrodes 10a and 10b adjacent in the X direction. Thereby, the some battery cell 10 is connected in series. Specifically, a common bus bar 40 is attached to the negative electrode 10 b of the first battery cell 10 and the positive electrode 10 a of the second battery cell 10. A common bus bar 40 is attached to the negative electrode 10b of the second battery cell 10 and the positive electrode 10a of the third battery cell 10. Similarly, a common bus bar 40 is attached to the minus electrode 10b of each odd-numbered battery cell 10 and the plus electrode 10a of the even-numbered battery cell 10 adjacent thereto. A common bus bar 40 is attached to the minus electrode 10b of each even-numbered battery cell 10 and the plus electrode 10a of the odd-numbered battery cell 10 adjacent thereto.
 また、1番目のバッテリセル10のプラス電極10aおよび18番目のバッテリセル10のマイナス電極10bには、バスバー40aがそれぞれ取り付けられる。 The bus bar 40a is attached to the plus electrode 10a of the first battery cell 10 and the minus electrode 10b of the 18th battery cell 10, respectively.
 なお、隣り合う各2つの電極10a,10bに取り付けられるバスバー40は略長方形状を有する。バスバー40には長手方向に並ぶ一対の電極接続孔が形成されている。また、1個の電極10a,10bに取り付けられるバスバー40aは略正方形状を有する。バスバー40aには1つの電極接続孔が形成されている。これらのバスバー40,40aは、例えばタフピッチ銅の表面にニッケルめっきが施された構成を有する。 In addition, the bus bar 40 attached to each two adjacent electrodes 10a and 10b has a substantially rectangular shape. The bus bar 40 has a pair of electrode connection holes arranged in the longitudinal direction. The bus bar 40a attached to one electrode 10a, 10b has a substantially square shape. One electrode connection hole is formed in the bus bar 40a. These bus bars 40, 40a have a structure in which, for example, nickel plating is applied to the surface of tough pitch copper.
 各バッテリセル10のプラス電極10aおよびマイナス電極10bには雄ねじが形成されている。バスバー40が隣り合うプラス電極10aおよびマイナス電極10bに取り付けられる際には、プラス電極10aおよびマイナス電極10bが各バスバー40に形成された電極接続孔に嵌め込まれる。この状態で、図示しないナットがプラス電極10aおよびマイナス電極10bの雄ねじに取り付けられる。 A male screw is formed on the positive electrode 10a and the negative electrode 10b of each battery cell 10. When the bus bar 40 is attached to the adjacent plus electrode 10a and minus electrode 10b, the plus electrode 10a and minus electrode 10b are fitted into the electrode connection holes formed in each bus bar 40. In this state, a nut (not shown) is attached to the male threads of the plus electrode 10a and the minus electrode 10b.
 一方の端面枠92に隣り合う1番目のバッテリセル10のプラス電極10aは、バッテリモジュール100における最も高電位のプラス電極10aである。1番目のバッテリセル10のプラス電極10aには、略L字形状を有する中継部材41の一端部が取り付けられる。 The positive electrode 10a of the first battery cell 10 adjacent to one end face frame 92 is the positive electrode 10a having the highest potential in the battery module 100. One end of a relay member 41 having a substantially L shape is attached to the plus electrode 10 a of the first battery cell 10.
 他方の端面枠92に隣り合う18番目のバッテリセル10のマイナス電極10bは、バッテリモジュール100における最も低電位のマイナス電極10bである。18番目のバッテリセル10のマイナス電極10bにも、略L字形状を有する中継部材41の一端部が取り付けられる。 The minus electrode 10b of the 18th battery cell 10 adjacent to the other end face frame 92 is the minus electrode 10b having the lowest potential in the battery module 100. One end of a relay member 41 having a substantially L shape is also attached to the negative electrode 10b of the eighteenth battery cell 10.
 一対の端面枠92の上面部分には、それぞれY方向に並ぶように複数(本例では3つ)のねじ孔99a,99b,99cが形成されている。Y方向において、ねじ孔99a,99b,99cは第1の端子列TL1と第2の端子列TL2との間に位置する。 A plurality (three in this example) of screw holes 99a, 99b, and 99c are formed in the upper surface portions of the pair of end face frames 92 so as to be aligned in the Y direction. In the Y direction, the screw holes 99a, 99b, and 99c are located between the first terminal row TL1 and the second terminal row TL2.
 一方の端面枠92においては、第2の端子列TL2に最も近いねじ孔99c(図2)上に1番目のバッテリセル10のプラス電極10aに接続された中継部材41の他端部が配置される。同様に、他方の端面枠92においては、第2の端子列TL2に最も近いねじ孔99a(図2)上に18番目のバッテリセル10のマイナス電極10bに接続された中継部材41の他端部が配置される。 In one end face frame 92, the other end portion of the relay member 41 connected to the plus electrode 10a of the first battery cell 10 is disposed on the screw hole 99c (FIG. 2) closest to the second terminal row TL2. The Similarly, in the other end face frame 92, the other end portion of the relay member 41 connected to the negative electrode 10b of the 18th battery cell 10 on the screw hole 99a (FIG. 2) closest to the second terminal row TL2. Is placed.
 各中継部材41は、バスバー40,40aと同様に、例えばタフピッチ銅の表面にニッケルめっきが施された構成を有する。これらの中継部材41の他端部に、複数のバッテリセル10の電力を外部装置(例えば、モータ等の負荷)に供給するための電源線501(後述する図7参照)が接続される。端面枠92および中継部材41の詳細は後述する。 Each relay member 41 has, for example, a structure in which nickel plating is applied to the surface of tough pitch copper, similarly to the bus bars 40 and 40a. A power supply line 501 (see FIG. 7 to be described later) for supplying the power of the plurality of battery cells 10 to an external device (for example, a load such as a motor) is connected to the other end portion of these relay members 41. Details of the end face frame 92 and the relay member 41 will be described later.
 バッテリブロック10BBの上面においては、バッテリブロック10BBの一側面とその一側面の近傍に位置する第1の端子列TL1との間でX方向に延びるように長尺状のフレキシブルプリント回路基板(以下、FPC基板と略記する)50が配置される。FPC基板50は、複数のバスバー40に接続される。 On the upper surface of the battery block 10BB, a long flexible printed circuit board (hereinafter, referred to as “X”) extends in the X direction between one side surface of the battery block 10BB and the first terminal row TL1 located in the vicinity of the one side surface. 50 (abbreviated as FPC board). The FPC board 50 is connected to the plurality of bus bars 40.
 同様に、バッテリブロック10BBの上面においては、バッテリブロック10BBの他側面とその他側面の近傍に位置する第2の端子列TL2との間でX方向に延びるように長尺状のFPC基板50が配置される。FPC基板50は、複数のバスバー40,40aに接続される。 Similarly, on the upper surface of the battery block 10BB, a long FPC board 50 is disposed so as to extend in the X direction between the other side surface of the battery block 10BB and the second terminal row TL2 located in the vicinity of the other side surface. Is done. The FPC board 50 is connected to the plurality of bus bars 40, 40a.
 これらのFPC基板50は、絶縁層上に複数の導体線51,52(後述する図4参照)が形成された構成を有し、屈曲性および可撓性を有する。FPC基板50を構成する絶縁層の材料としては例えばポリイミドが用いられ、導体線51,52(後述する図4参照)の材料としては例えば銅が用いられる。FPC基板50上においては、複数のバスバー40,40aにそれぞれ近接するように複数のPTC(Positive Temperature Coefficient:正温度係数)素子60が配置される。PTC素子60の詳細は後述する。 These FPC boards 50 have a configuration in which a plurality of conductor wires 51 and 52 (see FIG. 4 described later) are formed on an insulating layer, and have flexibility and flexibility. For example, polyimide is used as the material of the insulating layer constituting the FPC board 50, and copper is used as the material of the conductor wires 51 and 52 (see FIG. 4 described later). On the FPC board 50, a plurality of PTC (Positive Temperature Coefficient) elements 60 are arranged so as to be close to the plurality of bus bars 40 and 40a, respectively. Details of the PTC element 60 will be described later.
 各FPC基板50は、一方の端面枠92(プリント回路基板21が取り付けられる端面枠92)の上端部分近傍で内側に向かって直角に折り返され、さらに下方に向かって折り返され、プリント回路基板21に接続される。 Each FPC board 50 is folded at a right angle toward the inside in the vicinity of the upper end portion of one end face frame 92 (the end face frame 92 to which the printed circuit board 21 is attached), and is further folded downward to form the printed circuit board 21. Connected.
 これにより、プリント回路基板21に実装された電圧検出回路20は、導体線51,52およびPTC素子60を介してバッテリモジュール100の全てのバスバー40,40aに電気的に接続される。 Thereby, the voltage detection circuit 20 mounted on the printed circuit board 21 is electrically connected to all the bus bars 40, 40a of the battery module 100 via the conductor wires 51, 52 and the PTC element 60.
 複数のバスバー40,40aとプリント回路基板21との接続について詳細を説明する。図4は、バスバー40,40aとプリント回路基板21との接続の詳細を説明するための模式的平面図である。 Details of the connection between the plurality of bus bars 40 and 40a and the printed circuit board 21 will be described. FIG. 4 is a schematic plan view for explaining the details of the connection between the bus bars 40, 40 a and the printed circuit board 21.
 図4に示すように、プリント回路基板21には、電圧検出回路20が設けられる。FPC基板50には、複数のバスバー40,40aに対応するように複数の導体線51,52が設けられる。各導体線51は、バスバー40,40aとそのバスバー40の近傍に配置されたPTC素子60との間でY方向に平行に延びるように設けられ、各導体線52は、PTC素子60とFPC基板50の一端部との間でX方向に平行に延びるように設けられる。 As shown in FIG. 4, the printed circuit board 21 is provided with a voltage detection circuit 20. The FPC board 50 is provided with a plurality of conductor lines 51 and 52 so as to correspond to the plurality of bus bars 40 and 40a. Each conductor line 51 is provided so as to extend in parallel to the Y direction between the bus bars 40, 40a and the PTC element 60 disposed in the vicinity of the bus bar 40, and each conductor line 52 includes the PTC element 60 and the FPC board. 50 is provided so as to extend in parallel with the X direction.
 各導体線51の一端部は、FPC基板50の下面側に露出するように設けられる。下面側に露出する各導体線51の一端部が、例えば半田付けまたは溶接により各バスバー40,40aに電気的に接続される。それにより、FPC基板50が各バスバー40,40aに固定される。 One end of each conductor wire 51 is provided so as to be exposed on the lower surface side of the FPC board 50. One end of each conductor wire 51 exposed on the lower surface side is electrically connected to each bus bar 40, 40a by, for example, soldering or welding. Thereby, the FPC board 50 is fixed to each bus bar 40, 40a.
 各導体線51の他端部および各導体線52の一端部は、FPC基板50の上面側に露出するように設けられる。PTC素子60の一対の端子(図示せず)が、例えば半田付けにより各導体線51の他端部および各導体線52の一端部に接続される。 The other end of each conductor line 51 and one end of each conductor line 52 are provided so as to be exposed on the upper surface side of the FPC board 50. A pair of terminals (not shown) of the PTC element 60 are connected to the other end of each conductor wire 51 and one end of each conductor wire 52 by, for example, soldering.
 プリント回路基板21には、FPC基板50の複数の導体線52に対応した複数の接続端子22が設けられる。複数の接続端子22と電圧検出回路20とは図示しない複数の導体線を介してプリント回路基板21上で電気的に接続される。FPC基板50の各導体線52の他端部は、例えば半田付けまたは溶接により対応する接続端子22に接続される。このようにして、各バスバー40,40aがPTC素子60を介して電圧検出回路20に電気的に接続される。これにより、電圧検出回路20により各バッテリセル10の端子電圧が検出される。 The printed circuit board 21 is provided with a plurality of connection terminals 22 corresponding to the plurality of conductor lines 52 of the FPC board 50. The plurality of connection terminals 22 and the voltage detection circuit 20 are electrically connected on the printed circuit board 21 via a plurality of conductor lines (not shown). The other end of each conductor wire 52 of the FPC board 50 is connected to the corresponding connection terminal 22 by, for example, soldering or welding. In this way, each bus bar 40, 40 a is electrically connected to the voltage detection circuit 20 via the PTC element 60. Thereby, the terminal voltage of each battery cell 10 is detected by the voltage detection circuit 20.
 電圧検出回路20と通信回路24とは図示しない複数の導体線を介してプリント回路基板21上で電気的に接続される。これにより、電圧検出回路20により検出された各バッテリセル10の端子電圧が通信回路24を介してバッテリモジュール100の外部(後述する図21のバッテリECU101および主制御部300等)に送信される。 The voltage detection circuit 20 and the communication circuit 24 are electrically connected on the printed circuit board 21 via a plurality of conductor lines (not shown). Thereby, the terminal voltage of each battery cell 10 detected by the voltage detection circuit 20 is transmitted to the outside of the battery module 100 (battery ECU 101 and main control unit 300 in FIG. 21 to be described later) via the communication circuit 24.
 ここで、PTC素子60は、温度がある値を超えると抵抗値が急激に増加する抵抗温度特性を有する。そのため、電圧検出回路20または導体線52等で短絡が生じると、その短絡経路を流れる電流によりPTC素子60の温度が上昇する。この場合、PTC素子60の抵抗値が大きくなる。これにより、PTC素子60を含む短絡経路に大電流が流れることが防止される。 Here, the PTC element 60 has a resistance temperature characteristic in which the resistance value rapidly increases when the temperature exceeds a certain value. Therefore, when a short circuit occurs in the voltage detection circuit 20 or the conductor wire 52, the temperature of the PTC element 60 increases due to the current flowing through the short circuit path. In this case, the resistance value of the PTC element 60 is increased. This prevents a large current from flowing through the short circuit path including the PTC element 60.
 (2)端面枠および中継部材の詳細
 図1~図3の一対の端面枠92は、それぞれYZ方向に平行な一面および他面を有する。一方の端面枠92の一面にプリント回路基板21が取り付けられる。図5は、図1~図3の端面枠92の一面側の平面図である。
(2) Details of End Face Frame and Relay Member The pair of end face frames 92 in FIGS. 1 to 3 each have one surface and another surface parallel to the YZ direction. The printed circuit board 21 is attached to one surface of one end face frame 92. FIG. 5 is a plan view of one surface side of the end face frame 92 of FIGS.
 端面枠92は、保持板92a、上側突縁92b、下側突縁92cおよび基板取付部92dにより構成される。保持板92aは、長方形状を有しかつ一面および他面を有する。バッテリブロック10BBにおいては、保持板92aの他面がバッテリセル10に接する。 The end face frame 92 includes a holding plate 92a, an upper protruding edge 92b, a lower protruding edge 92c, and a board mounting portion 92d. The holding plate 92a has a rectangular shape and has one surface and the other surface. In battery block 10BB, the other surface of holding plate 92a is in contact with battery cell 10.
 上側突縁92bは、保持板92aの一面上において上端に沿ってY方向に延びるように形成される。上側突縁92bの両端は外方に開口するU字形状に形成される。それにより、上側突縁92bの両端に上端枠93の接続用の凹部92uが形成される。凹部92u内に接続孔92eが形成される。 The upper protrusion 92b is formed to extend in the Y direction along the upper end on one surface of the holding plate 92a. Both ends of the upper protruding edge 92b are formed in a U-shape that opens outward. Thereby, concave portions 92u for connection of the upper end frame 93 are formed at both ends of the upper protruding edge 92b. A connection hole 92e is formed in the recess 92u.
 下側突縁92cは、保持板92aの一面上において下端に沿ってY方向に延びるように形成される。下側突縁92cの両端は外方に開口するU字形状に形成される。それにより、下側突縁92cの両側に下端枠94の接続用の凹部92uが形成される。凹部92u内に接続孔92eが形成される。 The lower projecting edge 92c is formed to extend in the Y direction along the lower end on one surface of the holding plate 92a. Both ends of the lower projecting edge 92c are formed in a U-shape that opens outward. Thereby, concave portions 92u for connection of the lower end frame 94 are formed on both sides of the lower protruding edge 92c. A connection hole 92e is formed in the recess 92u.
 保持板92aの一面上において、上側突縁92bの両端部の下部、および下側突縁92cの両端部の上部にそれぞれ基板取付部92dが形成される。各基板取付部92bには、プリント回路基板21を取り付けるためのねじ孔NHが形成されている。なお、X方向における保持板92aの一面からの各基板取付部92dの高さは、保持板92aの一面からの上側突縁92bおよび下側突縁92cの高さに比べて小さい。 On one surface of the holding plate 92a, substrate attachment portions 92d are respectively formed at the lower portions of both end portions of the upper protruding edge 92b and at the upper portions of both end portions of the lower protruding edge 92c. A screw hole NH for attaching the printed circuit board 21 is formed in each board attaching portion 92b. In addition, the height of each board attachment portion 92d from one surface of the holding plate 92a in the X direction is smaller than the height of the upper protruding edge 92b and the lower protruding edge 92c from one surface of the holding plate 92a.
 上側突縁92bの上面中央部には、Y方向に並ぶように3つの孔部が形成され、これらの孔部にそれぞれ絶縁性樹脂からなるねじ部材991,992,993が嵌め込まれる。ねじ部材991,992,993にはそれぞれねじ孔99a,99b,99cが形成されている。ねじ部材991,992,993は、樹脂製のナットであってもよい。 Three holes are formed in the center of the upper surface of the upper protrusion 92b so as to be aligned in the Y direction, and screw members 991, 992, and 993 made of an insulating resin are fitted in these holes, respectively. Screw holes 99a, 99b, and 99c are formed in the screw members 991, 992, and 993, respectively. The screw members 991, 992, 993 may be resin nuts.
 Y方向において、上側突縁92bの一端部とねじ孔99aとの間および上側突縁92bの他端部とねじ孔99cとの間にそれぞれ切り欠き92gが形成されている。2つの切り欠き92gは、上側突縁92bを上下に貫通する(図2参照)。 In the Y direction, notches 92g are formed between one end of the upper protruding edge 92b and the screw hole 99a and between the other end of the upper protruding edge 92b and the screw hole 99c, respectively. The two notches 92g vertically penetrate the upper protruding edge 92b (see FIG. 2).
 これらの切り欠き92gの内部に、複数のバスバー40,40aとプリント回路基板21とを接続する2枚のFPC基板50の一部が配置される(図1~図3参照)。これにより、2枚のFPC基板50がそれぞれY方向にずれることが防止される。また、バッテリモジュール100の組立時に、バッテリブロック10BB上で2枚のFPC基板50を容易に位置決めすることができるので、バッテリモジュール100の組立作業が容易になる。 A part of the two FPC boards 50 that connect the plurality of bus bars 40, 40a and the printed circuit board 21 are disposed in the notches 92g (see FIGS. 1 to 3). This prevents the two FPC boards 50 from being shifted in the Y direction. In addition, since the two FPC boards 50 can be easily positioned on the battery block 10BB when the battery module 100 is assembled, the assembling work of the battery module 100 is facilitated.
 さらに、2枚のFPC基板50が、切り欠き92g内に配置されるので、上側突縁92bが他の部材に当接した場合に、2枚のFPC基板50が端面枠92と他の部材とで挟まれることが防止される。これにより、2枚のFPC基板50の破損が防止される。 Further, since the two FPC boards 50 are arranged in the notch 92g, when the upper protruding edge 92b comes into contact with another member, the two FPC boards 50 are connected to the end face frame 92 and the other members. It is prevented from being pinched by. This prevents the two FPC boards 50 from being damaged.
 図6および図7は、バッテリブロック10BBへの中継部材41の取り付け手順を示す外観斜視図である。図6および図7では、主としてプリント回路基板21が取り付けられた一方の端面枠92およびその周辺部が示される。 6 and 7 are external perspective views showing a procedure for attaching the relay member 41 to the battery block 10BB. 6 and 7 mainly show one end face frame 92 to which the printed circuit board 21 is attached and its peripheral portion.
 図6に示すように、中継部材41の一端部および他端部には、それぞれ接続孔41a,41bが形成されている。中継部材41の接続孔41aに、1番目のバッテリセル10のプラス電極10aが嵌め込まれる。これにより、バスバー40a上に中継部材41の一端部が重なる状態になる。また、ねじ孔99c上に中継部材41の接続孔41bが重なるように、端面枠92の上側突縁92bの上面に中継部材41の他端部が配置される。 As shown in FIG. 6, connection holes 41a and 41b are formed in one end and the other end of the relay member 41, respectively. The plus electrode 10 a of the first battery cell 10 is fitted into the connection hole 41 a of the relay member 41. Thereby, the one end part of the relay member 41 overlaps with the bus bar 40a. Further, the other end of the relay member 41 is disposed on the upper surface of the upper protruding edge 92b of the end face frame 92 so that the connection hole 41b of the relay member 41 overlaps the screw hole 99c.
 図7に示すように、バッテリモジュール100と外部装置(例えば、モータ等の負荷)とを接続するための電源線501の一端部に、環状の接続部501aが設けられている。端面枠92の上側突縁92b上に中継部材41の他端部が配置された状態で、ねじN1が電源線501の接続部501aおよび中継部材41の接続孔41bを通して端面枠92のねじ孔99cにねじ込まれる。これにより、中継部材41の他端部および電源線501が端面枠92の上側突縁92bの上面に固定される。これにより、バスバー40aと電源線501とが中継部材41を介して互いに接続される。この場合、一方の端面枠92においては、ねじ孔99cが形成されたねじ部材993およびねじN1により、複数のバッテリセル10の電力を外部装置(例えば、モータ等の負荷)に供給するための中継端子CT(図3参照)が構成される。 As shown in FIG. 7, an annular connection portion 501a is provided at one end of a power supply line 501 for connecting the battery module 100 and an external device (for example, a load such as a motor). In a state where the other end portion of the relay member 41 is disposed on the upper protruding edge 92b of the end face frame 92, the screw N1 passes through the connection portion 501a of the power supply line 501 and the connection hole 41b of the relay member 41, and the screw hole 99c of the end face frame 92. Screwed into. As a result, the other end of the relay member 41 and the power supply line 501 are fixed to the upper surface of the upper protruding edge 92 b of the end face frame 92. Thereby, the bus bar 40a and the power supply line 501 are connected to each other via the relay member 41. In this case, in one end face frame 92, a relay for supplying electric power of the plurality of battery cells 10 to an external device (for example, a load such as a motor) by the screw member 993 formed with the screw hole 99c and the screw N1. A terminal CT (see FIG. 3) is configured.
 上述のように、中継部材41は絶縁性材料からなるねじ部材991,992,993に取り付けられる。そのため、端面枠92に中継部材41および電源線501が取り付けられた状態で、中継部材41および電源線501は端面枠92から絶縁される。 As described above, the relay member 41 is attached to the screw members 991, 992, and 993 made of an insulating material. Therefore, the relay member 41 and the power supply line 501 are insulated from the end face frame 92 in a state where the relay member 41 and the power supply line 501 are attached to the end face frame 92.
 上記ではバッテリブロック10BBを構成する一対の端面枠92のうち一方の端面枠92に中継部材41を取り付ける例を説明したが、他方の端面枠92にも同様にして中継部材41が取り付けられる。なお、他方の端面枠92にはプリント回路基板21は取り付けられない。また、他方の端面枠92においては、3つのねじ孔99a,99b,99cのうちねじ孔99a上で中継部材41の他端部が固定される。この場合、他方の端面枠92においては、ねじ孔99aが形成されたねじ部材991およびねじN1により、複数のバッテリセル10の電力を外部装置(例えば、モータ等の負荷)に供給するための中継端子CT(図3参照)が構成される。 In the above description, the example in which the relay member 41 is attached to one end face frame 92 of the pair of end face frames 92 constituting the battery block 10BB has been described, but the relay member 41 is similarly attached to the other end face frame 92. The printed circuit board 21 is not attached to the other end face frame 92. In the other end face frame 92, the other end of the relay member 41 is fixed on the screw hole 99a among the three screw holes 99a, 99b, 99c. In this case, in the other end face frame 92, the relay for supplying the electric power of the plurality of battery cells 10 to an external device (for example, a load such as a motor) by the screw member 991 having the screw hole 99a and the screw N1. A terminal CT (see FIG. 3) is configured.
 図8は、バッテリブロック10BBへのガスダクトの取り付けを説明するための外観斜視図である。図8に示すように、本実施の形態に係るバッテリモジュール100においては、X方向に延びるガスダクトGDが設けられる。ガスダクトGDは、凹状の断面を有する。ガスダクトGDは開口部が下方を向くように配置される。 FIG. 8 is an external perspective view for explaining the attachment of the gas duct to the battery block 10BB. As shown in FIG. 8, in the battery module 100 according to the present embodiment, a gas duct GD extending in the X direction is provided. The gas duct GD has a concave cross section. The gas duct GD is arranged so that the opening faces downward.
 ガスダクトGDの一端部に突出片GDxが形成されている。突出片GDxには貫通孔GDyが形成されている。端面枠92のねじ孔99b上に突出片GDxの貫通孔GDyが重なるようにかつ全てのバッテリセル10のガス抜き弁10vを覆うように、バッテリブロック10BBの上面にガスダクトGDが配置される。この状態で、ねじN2が、突出片GDxの貫通孔GDyを通して端面枠92のねじ孔99bにねじ込まれる。これにより、ガスダクトGDがバッテリブロック10BBの上面に固定される。 A protruding piece GDx is formed at one end of the gas duct GD. A through hole GDy is formed in the protruding piece GDx. A gas duct GD is arranged on the upper surface of the battery block 10BB so that the through hole GDy of the protruding piece GDx overlaps the screw hole 99b of the end face frame 92 and covers the gas vent valves 10v of all the battery cells 10. In this state, the screw N2 is screwed into the screw hole 99b of the end face frame 92 through the through hole GDy of the protruding piece GDx. Thereby, gas duct GD is fixed to the upper surface of battery block 10BB.
 このように、バッテリブロック10BBの上面にガスダクトGDが取り付けられることにより、複数のバッテリセル10のガス抜き弁10vから排出されるガスがガスダクトGDの内部を通して拡散することなく外部に導かれる(図8の太い点線矢印参照)。 Thus, by attaching the gas duct GD to the upper surface of the battery block 10BB, the gas discharged from the gas vent valves 10v of the plurality of battery cells 10 is guided to the outside without diffusing through the inside of the gas duct GD (FIG. 8). (See the thick dotted arrow).
 (3)電圧検出回路および通信回路の構成および動作
 図9は、プリント回路基板21に実装される電圧検出回路20および通信回路24の構成および動作を説明するためのブロック図である。電圧検出回路20は、マルチプレクサ20a、A/D(アナログ/デジタル)変換器20bおよび複数の差動増幅器20cを含む。
(3) Configuration and Operation of Voltage Detection Circuit and Communication Circuit FIG. 9 is a block diagram for explaining the configuration and operation of the voltage detection circuit 20 and the communication circuit 24 mounted on the printed circuit board 21. The voltage detection circuit 20 includes a multiplexer 20a, an A / D (analog / digital) converter 20b, and a plurality of differential amplifiers 20c.
 電圧検出回路20の各差動増幅器20cは2つの入力端子および1つの出力端子を有する。各差動増幅器20cは、2つの入力端子に入力された電圧を差動増幅し、増幅された電圧を出力端子から出力する。各差動増幅器20cの2つの入力端子は、導体線51、PTC素子60および導体線52を介して各バッテリセル10のプラス電極およびマイナス電極にそれぞれ電気的に接続される。 Each differential amplifier 20c of the voltage detection circuit 20 has two input terminals and one output terminal. Each differential amplifier 20c differentially amplifies the voltage input to the two input terminals, and outputs the amplified voltage from the output terminal. The two input terminals of each differential amplifier 20c are electrically connected to the plus electrode and the minus electrode of each battery cell 10 through the conductor line 51, the PTC element 60, and the conductor line 52, respectively.
 各バッテリセル10のプラス電極とマイナス電極との間の電圧が各差動増幅器20cにより差動増幅される。各差動増幅器20cの出力電圧は各バッテリセル10の端子電圧に相当する。複数の差動増幅器20cから出力される端子電圧はマルチプレクサ20aに与えられる。マルチプレクサ20aは、複数の差動増幅器20cから与えられる端子電圧を順次A/D変換器20bに出力する。A/D変換器20bは、マルチプレクサ20aから出力される端子電圧をデジタル値に変換し、通信回路24に与える。上述のように、通信回路24に与えられた端子電圧は、バッテリモジュール100の外部(後述する図21のバッテリECU101および主制御部300等)に送信される。 The voltage between the positive electrode and the negative electrode of each battery cell 10 is differentially amplified by each differential amplifier 20c. The output voltage of each differential amplifier 20 c corresponds to the terminal voltage of each battery cell 10. Terminal voltages output from the plurality of differential amplifiers 20c are applied to the multiplexer 20a. The multiplexer 20a sequentially outputs the terminal voltages supplied from the plurality of differential amplifiers 20c to the A / D converter 20b. The A / D converter 20 b converts the terminal voltage output from the multiplexer 20 a into a digital value and supplies the digital value to the communication circuit 24. As described above, the terminal voltage applied to the communication circuit 24 is transmitted to the outside of the battery module 100 (battery ECU 101 and main control unit 300 in FIG. 21 described later).
 電圧検出回路20は、例えばASIC(Application Specific Integrated Circuit:特定用途向け集積回路)からなる。通信回路24は、CPU(中央演算処理装置)およびメモリ等のハードウェア、およびコンピュータプログラム等のソフトウェアにより実現される。この場合、CPUがメモリに記憶されたコンピュータプログラムを実行することにより、通信回路24の機能が実現される。通信回路24がASIC等のハードウェアにより構成されてもよい。 The voltage detection circuit 20 is made of, for example, an ASIC (Application Specific Integrated Circuit). The communication circuit 24 is realized by hardware such as a CPU (Central Processing Unit) and a memory, and software such as a computer program. In this case, the function of the communication circuit 24 is realized by the CPU executing the computer program stored in the memory. The communication circuit 24 may be configured by hardware such as an ASIC.
 (4)第1の実施の形態の効果
 (4-1)
 中継部材41の一端部が一方の端面枠92に隣り合うバッテリセル10のプラス電極10aに接続され、中継部材41の他端部が一方の端面枠92のねじ孔99c上に配置される。この状態で、ねじN1を用いて中継部材41の他端部と電源線501とが接続される。一方の端面枠92においては、複数の導体線51,52を含むFPC基板50がねじ孔99cが形成されたねじ部材993上に重ならないように配置される。これにより、一方の端面枠92のねじ孔99c上で、バッテリモジュール100と負荷とを接続するための電源線501を中継部材41の他端部に容易に接続することができる。
(4) Effects of the first embodiment (4-1)
One end of the relay member 41 is connected to the positive electrode 10 a of the battery cell 10 adjacent to one end face frame 92, and the other end of the relay member 41 is disposed on the screw hole 99 c of the one end face frame 92. In this state, the other end of the relay member 41 and the power line 501 are connected using the screw N1. In one end face frame 92, the FPC board 50 including the plurality of conductor wires 51 and 52 is disposed so as not to overlap the screw member 993 in which the screw holes 99c are formed. Thereby, the power supply line 501 for connecting the battery module 100 and the load can be easily connected to the other end portion of the relay member 41 on the screw hole 99c of the one end face frame 92.
 同様に、他方の端面枠92においては、複数の導体線51,52を含むFPC基板50がねじ孔99aが形成されたねじ部材991上に重ならないように配置される。これにより、他方の端面枠92のねじ孔99a上で、バッテリモジュール100と負荷とを接続するための電源線501を中継部材41の他端部に容易に接続することができる。 Similarly, in the other end face frame 92, the FPC board 50 including the plurality of conductor wires 51 and 52 is disposed so as not to overlap the screw member 991 in which the screw hole 99a is formed. Thereby, the power supply line 501 for connecting the battery module 100 and the load can be easily connected to the other end portion of the relay member 41 on the screw hole 99a of the other end face frame 92.
 これらより、バッテリモジュール100の配線構造が単純になるとともに配線作業が容易になる。 From these, the wiring structure of the battery module 100 becomes simple and the wiring work becomes easy.
 さらに、中継部材41は、複数の導体線51,52を含むFPC基板50に重ならないように配置される。それにより、複数の導体線51,52と中継部材41とが干渉しない。したがって、バッテリモジュール100の配線構造がより単純になるとともに配線作業がより容易になる。 Furthermore, the relay member 41 is disposed so as not to overlap the FPC board 50 including the plurality of conductor wires 51 and 52. Thereby, the plurality of conductor wires 51 and 52 and the relay member 41 do not interfere with each other. Therefore, the wiring structure of the battery module 100 becomes simpler and the wiring work becomes easier.
 また、複数の導体線51,52と中継部材41とが接触しないので、複数の導体線51,52および中継部材41間の短絡が防止されるとともに、後述する電動車両の走行に伴う振動等により複数の導体線51,52が断線することが防止される。それにより、バッテリモジュール100の信頼性が向上する。 Further, since the plurality of conductor wires 51 and 52 and the relay member 41 do not contact with each other, a short circuit between the plurality of conductor wires 51 and 52 and the relay member 41 is prevented, and vibration caused by traveling of the electric vehicle described later is caused. The plurality of conductor lines 51 and 52 are prevented from being disconnected. Thereby, the reliability of the battery module 100 is improved.
 なお、本実施の形態においては、中継部材41とFPC基板50とが互いに重ならないように、略L字形状を有する中継部材41が用いられる。これに限らず、FPC基板50に重ならないのであれば、中継部材41はU字形状またはV字形状等の他の形状を有してもよい。 In the present embodiment, the relay member 41 having a substantially L shape is used so that the relay member 41 and the FPC board 50 do not overlap each other. However, the relay member 41 may have another shape such as a U shape or a V shape as long as it does not overlap the FPC board 50.
 (4-2)
 一方の端面枠92には、一対の切り欠き92gが形成されている。一対の切り欠き92gにそれぞれFPC基板50の一部が配置される。これにより、FPC基板50がバッテリブロック10BBの上面から円滑にプリント回路基板21に案内される。これにより、複数のバッテリセル10の複数の電極10a,10bとプリント回路基板21との間の配線作業がさらに容易になる。
(4-2)
One end face frame 92 has a pair of notches 92g. Part of the FPC board 50 is disposed in each of the pair of notches 92g. Thereby, the FPC board 50 is smoothly guided to the printed circuit board 21 from the upper surface of the battery block 10BB. Thereby, the wiring work between the plurality of electrodes 10a, 10b of the plurality of battery cells 10 and the printed circuit board 21 is further facilitated.
 (4-3)
 バッテリブロック10BBの上面においては、第1の端子列TL1および第2の端子列TL2の外側で一対のFPC基板50がX方向に延びる。この場合、中継部材41の他端部が一対の切り欠き92gの間のねじ孔99c上に配置されるので、FPC基板50と中継部材41とが互いに重なることが確実に防止される。
(4-3)
On the upper surface of the battery block 10BB, a pair of FPC boards 50 extend in the X direction outside the first terminal row TL1 and the second terminal row TL2. In this case, since the other end portion of the relay member 41 is disposed on the screw hole 99c between the pair of notches 92g, the FPC board 50 and the relay member 41 are reliably prevented from overlapping each other.
 (4-4)
 本実施の形態においては、X方向が第1の方向の例であり、1番目のバッテリセル10が一端部に位置するバッテリセルの例であり、一方の端面枠92が保持部材の例である。また、複数のバッテリセル10のプラス電極10aおよびマイナス電極10bが複数の電源端子の例であり、2枚のFPC基板50に形成された複数の導体線51,52が配線の例であり、中継部材41が第1の接続部材の例である。さらに、2つの切り欠き92gが案内部の例であり、バッテリブロック10BBの上面がバッテリブロックの一面の例であり、一方のFPC基板50に形成された複数の導体線51,52が第1の配線群の例であり、他方のFPC基板50に形成された複数の導体線51,52が第2の配線群の例であり、Y方向が第2の方向の例である。さらに、一方の切り欠き92gが第1の案内部の例であり、他方の切り欠き92gが第2の案内部の例である。
(4-4)
In the present embodiment, the X direction is an example of the first direction, the first battery cell 10 is an example of a battery cell located at one end, and one end face frame 92 is an example of a holding member. . Further, the positive electrodes 10a and the negative electrodes 10b of the plurality of battery cells 10 are examples of a plurality of power supply terminals, and the plurality of conductor lines 51 and 52 formed on the two FPC boards 50 are examples of wirings. The member 41 is an example of a first connecting member. Further, the two notches 92g are examples of the guide portion, the upper surface of the battery block 10BB is an example of one surface of the battery block, and the plurality of conductor wires 51 and 52 formed on one FPC board 50 are the first ones. It is an example of a wiring group, and the plurality of conductor lines 51 and 52 formed on the other FPC board 50 are examples of the second wiring group, and the Y direction is an example of the second direction. Furthermore, one notch 92g is an example of a first guide part, and the other notch 92g is an example of a second guide part.
 本発明の一実施の形態に係るバッテリモジュールは、複数のバッテリセルを含むバッテリブロックと、各バッテリセルの電圧を検出する電圧検出回路と、電圧検出回路を保持する保持部材と、保持部材に設けられ、複数のバッテリセルのいずれかの電極端子に電気的に接続される中継端子と、複数のバッテリセルの複数の電極端子と電圧検出回路とを接続する複数の配線とを備え、中継端子と複数の配線とは、保持部材上で互いに重ならないように配置されたものである。 A battery module according to an embodiment of the present invention includes a battery block including a plurality of battery cells, a voltage detection circuit that detects the voltage of each battery cell, a holding member that holds the voltage detection circuit, and a holding member. A relay terminal electrically connected to any one of the electrode terminals of the plurality of battery cells, and a plurality of wires connecting the plurality of electrode terminals of the plurality of battery cells and the voltage detection circuit, The plurality of wirings are arranged so as not to overlap each other on the holding member.
 そのバッテリモジュールにおいては、電圧検出回路が保持部材により保持される。複数のバッテリセルの複数の電極端子と電圧検出回路とが複数の配線により接続される。これにより、複数のバッテリセルの端子電圧が電圧検出回路により検出される。 In the battery module, the voltage detection circuit is held by the holding member. The plurality of electrode terminals of the plurality of battery cells and the voltage detection circuit are connected by a plurality of wires. Thereby, the terminal voltage of the plurality of battery cells is detected by the voltage detection circuit.
 複数のバッテリセルのいずれかの電極端子に、保持部材に設けられた中継端子が電気的に接続される。これにより、中継端子にバッテリモジュールと外部装置とを接続するための電源線を接続することができる。この場合、中継端子と複数の配線とは保持部材上で互いに重ならないように配置されるので、中継端子および中継端子に接続される電源線と複数の配線とが干渉しない。したがって、配線構造が単純になるとともに配線作業が容易になる。 A relay terminal provided on the holding member is electrically connected to one of the electrode terminals of the plurality of battery cells. Thereby, the power supply line for connecting a battery module and an external device can be connected to a relay terminal. In this case, since the relay terminal and the plurality of wires are arranged on the holding member so as not to overlap each other, the relay terminal and the power supply line connected to the relay terminal do not interfere with the plurality of wires. Therefore, the wiring structure is simplified and wiring work is facilitated.
 複数のバッテリセルは、第1の方向に並ぶように配置され、保持部材は、複数のバッテリセルのうち一端部に位置するバッテリセルに隣り合うように設けられ、一端部に位置するバッテリセルの電極端子と中継端子とは、第1の接続部材を介して接続され、第1の接続部材と複数の配線とは、互いに重ならないように配置される。 The plurality of battery cells are arranged to be aligned in the first direction, and the holding member is provided adjacent to the battery cell located at one end of the plurality of battery cells, and the battery cell located at the one end is arranged. The electrode terminal and the relay terminal are connected via the first connection member, and the first connection member and the plurality of wires are arranged so as not to overlap each other.
 そのバッテリモジュールにおいては、電圧検出回路を保持する保持部材が一端部に位置するバッテリセルに隣り合うように設けられる。一端部に位置するバッテリセルの電極端子と中継端子とを接続する第1の接続部材が複数の配線と重ならないので、第1の接続部材と複数の配線とが干渉しない。したがって、配線構造がより単純になるとともに配線作業がより容易になる。 In the battery module, a holding member for holding the voltage detection circuit is provided so as to be adjacent to the battery cell located at one end. Since the 1st connection member which connects the electrode terminal of the battery cell and relay terminal which are located in one end part does not overlap with a plurality of wirings, the 1st connection member and a plurality of wirings do not interfere. Therefore, the wiring structure becomes simpler and the wiring work becomes easier.
 バッテリモジュールは、複数の配線を複数のバッテリセルの複数の電極端子から電圧検出回路に案内する案内部を有する。 The battery module has a guide unit that guides a plurality of wires from a plurality of electrode terminals of a plurality of battery cells to a voltage detection circuit.
 この場合、バッテリモジュールにおいては、案内部により複数の配線が複数のバッテリセルの複数の電極端子から電圧検出回路に案内される。これにより、複数のバッテリセルの複数の電極端子と電圧検出回路との間の配線作業がさらに容易になる。 In this case, in the battery module, the guide unit guides the plurality of wires from the plurality of electrode terminals of the plurality of battery cells to the voltage detection circuit. This further facilitates the wiring work between the plurality of electrode terminals of the plurality of battery cells and the voltage detection circuit.
 バッテリブロックは、複数のバッテリセルの複数の電極端子が並ぶ一面を有し、複数のバッテリセルの複数の電極端子は、一面上で第1の方向に沿って互いに並列に整列された第1および第2の端子列を構成し、複数の配線は、一面上において第1および第2の端子列の外側で第1の方向に延びる第1および第2の配線群を含み、案内部は、第1の方向に交差する第2の方向に並ぶように設けられるとともに第1および第2の配線群をそれぞれ案内する第1および第2の案内部を含み、中継端子は、第1の案内部と第2の案内部との間に設けられる。 The battery block has one surface on which a plurality of electrode terminals of a plurality of battery cells are arranged, and the plurality of electrode terminals of the plurality of battery cells are arranged in parallel with each other along a first direction on the one surface. The second terminal row includes a plurality of wirings including first and second wiring groups extending in the first direction on the outer surface of the first and second terminal rows on the one surface. A first guide portion and a second guide portion which are provided so as to be arranged in a second direction intersecting with the first direction and respectively guide the first and second wiring groups, and the relay terminal includes the first guide portion and the first guide portion. It is provided between the second guide part.
 バッテリブロックの一面上においては、第1および第2の端子列の外側で第1および第2の配線群が第1の方向に延びる。また、第1および第2の配線群がそれぞれ第1および第2の案内部により複数のバッテリセルの複数の電極端子から電圧検出回路に案内される。この場合、中継端子が第1の案内部と第2の案内部との間に設けられるので、保持部材上で中継端子と複数の配線とが互いに重なることが確実に防止される。 On the one surface of the battery block, the first and second wiring groups extend in the first direction outside the first and second terminal rows. The first and second wiring groups are guided to the voltage detection circuit from the plurality of electrode terminals of the plurality of battery cells by the first and second guide portions, respectively. In this case, since the relay terminal is provided between the first guide portion and the second guide portion, the relay terminal and the plurality of wires are reliably prevented from overlapping each other on the holding member.
 [2]第2の実施の形態
 第2の実施の形態に係るバッテリモジュールについて、第1の実施の形態に係るバッテリモジュール100と異なる点を説明する。
[2] Second Embodiment A battery module according to a second embodiment will be described while referring to differences from the battery module 100 according to the first embodiment.
 (1)バッテリモジュールの構造
 図10は、第2の実施の形態に係るバッテリモジュール100を示す外観斜視図であり、図11はバッテリモジュール100の平面図である。なお、図11では、複数のPTC素子60の図示は省略する。
(1) Structure of Battery Module FIG. 10 is an external perspective view showing the battery module 100 according to the second embodiment, and FIG. 11 is a plan view of the battery module 100. In FIG. 11, illustration of the plurality of PTC elements 60 is omitted.
 本実施の形態に係るバッテリモジュール100においても、複数のバッテリセル10、一対の端面枠92、一対の上端枠93および一対の下端枠94により略直方体形状のバッテリブロック10BBが構成される。本実施の形態において、各端面枠92は、一面および他面を有する長方形状の板状部材からなる。 Also in the battery module 100 according to the present embodiment, the plurality of battery cells 10, the pair of end face frames 92, the pair of upper end frames 93, and the pair of lower end frames 94 constitute a substantially rectangular parallelepiped battery block 10BB. In the present embodiment, each end face frame 92 is made of a rectangular plate member having one surface and the other surface.
 バッテリブロック10BBにおいては、端面枠92の他面がバッテリセル10に接する。端面枠92の一面にプリント回路基板21が設けられる。本実施の形態で用いられる端面枠92、上端枠93および下端枠94は絶縁性樹脂により形成される。 In the battery block 10BB, the other surface of the end face frame 92 is in contact with the battery cell 10. The printed circuit board 21 is provided on one surface of the end face frame 92. The end face frame 92, the upper end frame 93, and the lower end frame 94 used in the present embodiment are formed of an insulating resin.
 各バッテリセル10は、Y方向に並ぶように上面部分にプラス電極10aおよびマイナス電極10bを有する。このバッテリモジュール100においても、複数のバッテリセル10の一方の電極10a,10bがX方向に整列された第1の端子列TL1を構成し、複数のバッテリセル10の他方の電極10a,10bがX方向に整列された第2の端子列TL2を構成する。第1の端子列TL1と第2の端子列TL2とは間隔をおいて互いに並列に配置される。 Each battery cell 10 has a plus electrode 10a and a minus electrode 10b on the top surface so as to be arranged in the Y direction. Also in this battery module 100, one electrode 10a, 10b of the plurality of battery cells 10 constitutes a first terminal row TL1 aligned in the X direction, and the other electrode 10a, 10b of the plurality of battery cells 10 is X A second terminal row TL2 aligned in the direction is configured. The first terminal row TL1 and the second terminal row TL2 are arranged in parallel to each other with an interval therebetween.
 隣り合う各2つの電極10a,10bが、平板状のバスバー40pに嵌め込まれる。その状態で、電極10a,10bがバスバー40pにレーザ溶接される。それにより、複数のバスバー40pが第1の端子列TL1および第2の端子列TL2に沿って配列され、複数のバッテリセル10が直列に接続される。 Two adjacent electrodes 10a and 10b are fitted into a flat bus bar 40p. In this state, the electrodes 10a and 10b are laser welded to the bus bar 40p. Accordingly, the plurality of bus bars 40p are arranged along the first terminal row TL1 and the second terminal row TL2, and the plurality of battery cells 10 are connected in series.
 各バスバー40pには、当該バスバー40pを後述するFPC基板50a,50bに接続するための取付片42p(図11)が設けられている。複数のバッテリセル10が直列に接続された状態で、第1の端子列TL1に沿って配列された複数のバスバー40pから複数のバッテリセル10のガス抜き弁10vに向かって複数の取付片42pがY方向に一定長さ突出する。同様に、第2の端子列TL2に沿って配列された複数のバスバー40pから複数のバッテリセル10のガス抜き弁10vに向かって複数の取付片42pがY方向に一定長さ突出する。 Each bus bar 40p is provided with an attachment piece 42p (FIG. 11) for connecting the bus bar 40p to FPC boards 50a and 50b described later. With a plurality of battery cells 10 connected in series, a plurality of attachment pieces 42p are provided from a plurality of bus bars 40p arranged along the first terminal row TL1 toward the gas vent valves 10v of the plurality of battery cells 10. Projects a certain length in the Y direction. Similarly, a plurality of attachment pieces 42p project from the plurality of bus bars 40p arranged along the second terminal row TL2 toward the gas vent valves 10v of the plurality of battery cells 10 by a certain length in the Y direction.
 バッテリブロック10BBの上面には、図10および図11に示すように、第1の端子列TL1および第2の端子列TL2の間でX方向に沿って延びる絶縁性の2本のリブ部材GL1,GL2が設けられる。Y方向において、2本のリブ部材GL1,GL2は、複数のバッテリセル10のガス抜き弁10vを挟み込むように配置され、バッテリブロック10BBの直上の空間をY方向に沿って3つの領域に区画する。 On the upper surface of the battery block 10BB, as shown in FIGS. 10 and 11, two insulating rib members GL1, extending in the X direction between the first terminal row TL1 and the second terminal row TL2, are provided. GL2 is provided. In the Y direction, the two rib members GL1 and GL2 are arranged so as to sandwich the gas vent valves 10v of the plurality of battery cells 10, and partition the space immediately above the battery block 10BB into three regions along the Y direction. .
 X方向において、各リブ部材GL1,GL2の一端部は一方の端面枠92の上面上に位置し、各リブ部材GL1,GL2の他端部は他方の端面枠92の上面上に位置する。 In the X direction, one end portion of each rib member GL1, GL2 is located on the upper surface of one end surface frame 92, and the other end portion of each rib member GL1, GL2 is located on the upper surface of the other end surface frame 92.
 リブ部材GL1,GL2として、例えば断面矩形の棒状部材を用いることができる。この場合、2本の棒状部材をリブ部材GL1,GL2としてバッテリブロック10BBの上面に接着剤等で取り付ける。 As the rib members GL1 and GL2, for example, rod-shaped members having a rectangular cross section can be used. In this case, the two rod-shaped members are attached to the upper surface of the battery block 10BB as adhesive members or the like as the rib members GL1 and GL2.
 バッテリブロック10BBにおいて、複数のバッテリセル10および図示しない複数のスペーサがX方向に交互に並ぶように配置される場合、Y方向における予め定められた位置で各スペーサにバッテリブロック10BBの上方に突出する2個の突起部を設けてもよい。これにより、バッテリブロック10BBの上面に、X方向に沿う2本の突起部列が形成される。この場合、上記の2本の棒状部材の代わりに、2本の突起部列がそれぞれリブ部材GL1,GL2を構成してもよい。 When a plurality of battery cells 10 and a plurality of spacers (not shown) are alternately arranged in the X direction in the battery block 10BB, each spacer protrudes above the battery block 10BB at a predetermined position in the Y direction. Two protrusions may be provided. Thereby, two protrusion row | line | columns along a X direction are formed in the upper surface of battery block 10BB. In this case, instead of the two rod-shaped members described above, two protrusion rows may constitute the rib members GL1 and GL2, respectively.
 バッテリブロック10BBの上面においては、第1の端子列TL1と第2の端子列TL2との間に、2枚のFPC基板50a,50bが配置される。一方のFPC基板50aは、複数のバッテリセル10のガス抜き弁10vに重ならないように、複数のバッテリセル10のガス抜き弁10vと第1の端子列TL1との間に配置される。一方のFPC基板50aの一側部が、第1の端子列TL1に設けられた複数のバスバー40pの複数の取付片42pに共通して接続される。この場合、FPC基板50aの幅は、予めリブ部材GL1と第1の端子列TL1に設けられた複数のバスバー40pとの間隔に等しくなるように設定される。これにより、リブ部材GL1および第1の端子列TL1に設けられた複数のバスバー40pの取付片42pにより、FPC基板50aをY方向で容易に位置決めすることができる。 On the upper surface of the battery block 10BB, two FPC boards 50a and 50b are arranged between the first terminal row TL1 and the second terminal row TL2. One FPC board 50a is disposed between the gas vent valves 10v of the plurality of battery cells 10 and the first terminal row TL1 so as not to overlap the gas vent valves 10v of the plurality of battery cells 10. One side portion of one FPC board 50a is connected in common to the plurality of attachment pieces 42p of the plurality of bus bars 40p provided in the first terminal row TL1. In this case, the width of the FPC board 50a is set to be equal to the interval between the rib member GL1 and the plurality of bus bars 40p provided in the first terminal row TL1 in advance. Accordingly, the FPC board 50a can be easily positioned in the Y direction by the mounting pieces 42p of the plurality of bus bars 40p provided on the rib member GL1 and the first terminal row TL1.
 同様に、他方のFPC基板50bは、複数のバッテリセル10のガス抜き弁10vに重ならないように、複数のバッテリセル10のガス抜き弁10vと第2の端子列TL2との間に配置される。他方のFPC基板50bの一側部が、第2の端子列TL2に設けられたバスバー40pの複数の取付片42pに共通して接続される。この場合、FPC基板50bの幅は、予めリブ部材GL2と第2の端子列TL2に設けられた複数のバスバー40pとの間隔に等しくなるように設定される。これにより、リブ部材GL2および第2の端子列TL2に設けられた複数のバスバー40pの取付片42pにより、FPC基板50bをY方向で容易に位置決めすることができる。 Similarly, the other FPC board 50b is disposed between the gas vent valves 10v of the plurality of battery cells 10 and the second terminal row TL2 so as not to overlap the gas vent valves 10v of the plurality of battery cells 10. . One side portion of the other FPC board 50b is connected in common to the plurality of attachment pieces 42p of the bus bar 40p provided in the second terminal row TL2. In this case, the width of the FPC board 50b is set to be equal to the interval between the rib member GL2 and the plurality of bus bars 40p provided in the second terminal row TL2 in advance. Accordingly, the FPC board 50b can be easily positioned in the Y direction by the mounting pieces 42p of the plurality of bus bars 40p provided on the rib member GL2 and the second terminal row TL2.
 プリント回路基板21の両端部および下部を保護するように、一対の側面部および底面部を有する保護部材95が端面枠92に取り付けられる。2枚のFPC基板50a,50bは、保護部材95の上端部分で下方に向かって折り返され、プリント回路基板21に接続される。 A protective member 95 having a pair of side surface portions and a bottom surface portion is attached to the end surface frame 92 so as to protect both end portions and the lower portion of the printed circuit board 21. The two FPC boards 50 a and 50 b are folded downward at the upper end portion of the protection member 95 and connected to the printed circuit board 21.
 プリント回路基板21は、保護部材95で覆われることにより保護される。本実施の形態においても、プリント回路基板21には電圧検出回路20および通信回路24が実装される。なお、端面枠92には、保護部材95が取り付けられなくてもよい。 The printed circuit board 21 is protected by being covered with a protective member 95. Also in the present embodiment, the voltage detection circuit 20 and the communication circuit 24 are mounted on the printed circuit board 21. Note that the protection member 95 may not be attached to the end face frame 92.
 複数のバッテリセル10の下面に接するように冷却板96が設けられる。冷却板96は冷媒流入口96aおよび冷媒流出口96bを有する。冷却板96の内部には冷媒流入口96aおよび冷媒流出口96bにつながる循環経路が形成されている。冷媒流入口96aに冷却水等の冷媒が流入すると、冷媒は冷却板96内部の循環経路を通過して冷媒流出口96bから流出する。これにより冷却板96が冷却される。その結果、複数のバッテリセル10が冷却される。 A cooling plate 96 is provided in contact with the lower surfaces of the plurality of battery cells 10. The cooling plate 96 has a refrigerant inlet 96a and a refrigerant outlet 96b. Inside the cooling plate 96, a circulation path connected to the refrigerant inlet 96a and the refrigerant outlet 96b is formed. When a coolant such as cooling water flows into the coolant inlet 96a, the coolant passes through the circulation path inside the cooling plate 96 and flows out from the coolant outlet 96b. Thereby, the cooling plate 96 is cooled. As a result, the plurality of battery cells 10 are cooled.
 一対の端面枠92の上面には、Y方向に並ぶように3つの孔部が形成され、これらの孔部にそれぞれ絶縁性樹脂または金属からなるねじ部材が嵌め込まれる。3つのねじ部材にはそれぞれねじ孔99a,99b,99cが形成されている。ねじ部材は、樹脂製または金属製のナットであってもよい。 Three holes are formed on the upper surfaces of the pair of end face frames 92 so as to be aligned in the Y direction, and screw members made of insulating resin or metal are fitted into these holes, respectively. Screw holes 99a, 99b, and 99c are formed in the three screw members, respectively. The screw member may be a resin or metal nut.
 保護部材95が取り付けられた一方の端面枠92において、ねじ孔99aはX方向における第1の端子列TL1の延長線上に位置し、ねじ孔99bはY方向における端面枠92の上面中央に位置し、ねじ孔99cはX方向における第2の端子列TL2の延長線上に位置する。保護部材95が取り付けられていない他方の端面枠92において、ねじ孔99aはX方向における第2の端子列TL2の延長線上に位置し、ねじ孔99bはY方向における端面枠92の上面中央に位置し、ねじ孔99cはX方向における第1の端子列TL1の延長線上に位置する。 In one end face frame 92 to which the protection member 95 is attached, the screw hole 99a is located on the extension line of the first terminal row TL1 in the X direction, and the screw hole 99b is located in the center of the upper face of the end face frame 92 in the Y direction. The screw hole 99c is located on the extension line of the second terminal row TL2 in the X direction. In the other end face frame 92 to which the protective member 95 is not attached, the screw hole 99a is located on the extension line of the second terminal row TL2 in the X direction, and the screw hole 99b is located in the center of the upper face of the end face frame 92 in the Y direction. The screw hole 99c is located on the extension line of the first terminal row TL1 in the X direction.
 保護部材95が取り付けられた一方の端面枠92の上面では、Y方向における2つのねじ孔99a,99bの間、およびY方向における2つのねじ孔99b,99cの間にそれぞれ一方のFPC基板50aおよび他方のFPC基板50bの一部が配置される。保護部材95が取り付けられていない他方の端面枠92の上面では、Y方向における2つのねじ孔99a,99bの間、およびY方向における2つのねじ孔99b,99cの間にそれぞれ他方のFPC基板50bおよび一方のFPC基板50aの一部が配置される。 On the upper surface of one end face frame 92 to which the protection member 95 is attached, one FPC board 50a and two screw holes 99a and 99b in the Y direction and between the two screw holes 99b and 99c in the Y direction, respectively. A part of the other FPC board 50b is arranged. On the upper surface of the other end face frame 92 to which the protective member 95 is not attached, the other FPC board 50b is provided between the two screw holes 99a and 99b in the Y direction and between the two screw holes 99b and 99c in the Y direction. And a part of one FPC board 50a is arranged.
 (2)電源線の接続
 図12は、第2の実施の形態に係るバッテリモジュール100への電源線501の接続を説明するための外観斜視図である。
(2) Connection of Power Supply Line FIG. 12 is an external perspective view for explaining the connection of the power supply line 501 to the battery module 100 according to the second embodiment.
 バスバー40pは、第1の実施の形態におけるバスバー40と同様に、略長方形状を有する。また、バスバー40pには長手方向に並ぶ一対の電極接続孔が形成されている。 The bus bar 40p has a substantially rectangular shape, similar to the bus bar 40 in the first embodiment. The bus bar 40p has a pair of electrode connection holes arranged in the longitudinal direction.
 保護部材95が取り付けられた一方の端面枠92に隣り合うバッテリセル10のプラス電極10aがバスバー40pの一方の電極接続孔に嵌め込まれかつ端面枠92のねじ孔99c上にバスバー40pの他方の電極接続孔が重なる状態で、プラス電極10aがバスバー40pにレーザ溶接される。 The positive electrode 10a of the battery cell 10 adjacent to one end face frame 92 to which the protective member 95 is attached is fitted into one electrode connection hole of the bus bar 40p, and the other electrode of the bus bar 40p is over the screw hole 99c of the end face frame 92. With the connection holes overlapping, the plus electrode 10a is laser welded to the bus bar 40p.
 この状態で、図12に示すように、ねじN1が電源線501の環状の接続部501aおよびバスバー40pの他方の電極接続孔を通して端面枠92のねじ孔99cにねじ込まれる。これにより、バスバー40pと電源線501とが互いに接続される。この場合、一方の端面枠92においては、ねじ孔99cが形成されたねじ部材およびねじN1により、複数のバッテリセル10の電力を外部装置(例えば、モータ等の負荷)に供給するための中継端子CTが構成される。このとき、X方向において、中継端子CTに接続されたバスバー40pの取付片42pは、一方の端面枠92の上面上に位置する。 In this state, as shown in FIG. 12, the screw N1 is screwed into the screw hole 99c of the end face frame 92 through the annular connection portion 501a of the power line 501 and the other electrode connection hole of the bus bar 40p. Thereby, the bus bar 40p and the power supply line 501 are connected to each other. In this case, in one end face frame 92, a relay terminal for supplying electric power of the plurality of battery cells 10 to an external device (for example, a load such as a motor) by the screw member having the screw hole 99c and the screw N1. CT is configured. At this time, the attachment piece 42p of the bus bar 40p connected to the relay terminal CT is located on the upper surface of the one end face frame 92 in the X direction.
 このように、一方の端面枠92における中継端子CTが、リブ部材GL2およびバスバー40pの取付片42pの外側に設けられる。この場合、他方のFPC基板50bが、リブ部材GL2と第2の端子列TL2に設けられた複数のバスバー40pの取付片42pとによりY方向で位置決めされることにより、FPC基板50bが中継端子CTに重なることが確実に防止される。それにより、ねじ孔99cへのねじN1の取り付け作業を容易かつ確実に行うことができる。特に、本例では、上記のように一方の端面枠92の上面上にFPC基板50bを位置決めするリブ部材GL2およびバスバー40pの取付片42pが設けられている。したがって、FPC基板50bが中継端子CTに重なることがより確実に防止される。このように、FPC基板50bを位置決めしつつプリント回路基板21に案内するリブ部材GL2およびバスバー40pの取付片42pは、端面枠92の上面上に設けられることが好ましい。 In this way, the relay terminal CT in one end face frame 92 is provided outside the rib member GL2 and the mounting piece 42p of the bus bar 40p. In this case, the other FPC board 50b is positioned in the Y direction by the rib member GL2 and the mounting pieces 42p of the plurality of bus bars 40p provided in the second terminal row TL2, so that the FPC board 50b is connected to the relay terminal CT. Is reliably prevented. Thereby, the attachment operation | work of the screw N1 to the screw hole 99c can be performed easily and reliably. In particular, in this example, the rib member GL2 for positioning the FPC board 50b and the mounting piece 42p of the bus bar 40p are provided on the upper surface of one end face frame 92 as described above. Therefore, the FPC board 50b is more reliably prevented from overlapping the relay terminal CT. Thus, it is preferable that the rib member GL2 that guides the printed circuit board 21 while positioning the FPC board 50b and the mounting piece 42p of the bus bar 40p are provided on the upper surface of the end face frame 92.
 上記ではバッテリブロック10BBを構成する一対の端面枠92のうち一方の端面枠92において、電源線501をバスバー40pに接続する例を説明したが、他方の端面枠92においても同様にして電源線501がバスバー40pに接続される。なお、他方の端面枠92においては、3つのねじ孔99a,99b,99cのうちねじ孔99a上で、他方の端面枠92に隣り合うバッテリセル10のマイナス電極10bにレーザ溶接されたバスバー40pに電源線501が接続される。したがって、他方の端面枠92においては、ねじ孔99aが形成されたねじ部材およびねじN1により、複数のバッテリセル10の電力を外部装置(例えば、モータ等の負荷)に供給するための中継端子CT(図11参照)が構成される。このとき、X方向において、中継端子CTに接続されたバスバー40pの取付片42pも、他方の端面枠92の上面上に位置する。 In the above, the example in which the power line 501 is connected to the bus bar 40p in one end face frame 92 of the pair of end face frames 92 constituting the battery block 10BB has been described, but the power line 501 is similarly applied to the other end face frame 92. Is connected to the bus bar 40p. In the other end face frame 92, the bus bar 40p laser-welded to the negative electrode 10b of the battery cell 10 adjacent to the other end face frame 92 on the screw hole 99a of the three screw holes 99a, 99b, 99c. A power line 501 is connected. Therefore, in the other end face frame 92, the relay terminal CT for supplying the power of the plurality of battery cells 10 to an external device (for example, a load such as a motor) by the screw member having the screw hole 99a and the screw N1. (See FIG. 11). At this time, the attachment piece 42p of the bus bar 40p connected to the relay terminal CT is also located on the upper surface of the other end face frame 92 in the X direction.
 このように、他方の端面枠92における中継端子CTが、リブ部材GL2およびバスバー40pの取付片42pの外側に設けられる。この場合、他方のFPC基板50bが、リブ部材GL2と第2の端子列TL2に設けられた複数のバスバー40pの取付片42pとによりY方向で位置決めされることにより、FPC基板50bが中継端子CTに重なることが確実に防止される。それにより、ねじ孔99aへのねじN1の取り付け作業を容易かつ確実に行うことができる。特に、本例では、上記のように他方の端面枠92の上面上にFPC基板50bを位置決めするリブ部材GL2およびバスバー40pの取付片42pが設けられている。したがって、FPC基板50bが中継端子CTに重なることがより確実に防止される。このように、FPC基板50bを位置決めしつつプリント回路基板21に案内するリブ部材GL2およびバスバー40pの取付片42pは、端面枠92の上面上に設けられることが好ましい。 Thus, the relay terminal CT in the other end face frame 92 is provided outside the rib member GL2 and the mounting piece 42p of the bus bar 40p. In this case, the other FPC board 50b is positioned in the Y direction by the rib member GL2 and the mounting pieces 42p of the plurality of bus bars 40p provided in the second terminal row TL2, so that the FPC board 50b is connected to the relay terminal CT. Is reliably prevented. Thereby, the attachment operation | work of the screw N1 to the screw hole 99a can be performed easily and reliably. In particular, in this example, the rib member GL2 for positioning the FPC board 50b and the mounting piece 42p of the bus bar 40p are provided on the upper surface of the other end face frame 92 as described above. Therefore, the FPC board 50b is more reliably prevented from overlapping the relay terminal CT. Thus, it is preferable that the rib member GL2 that guides the printed circuit board 21 while positioning the FPC board 50b and the mounting piece 42p of the bus bar 40p are provided on the upper surface of the end face frame 92.
 (3)第2の実施の形態の効果
 (3-1)
 バッテリブロック10BBの上面においては、第1の端子列TL1および第2の端子列TL2の間で一対のFPC基板50a,50bがX方向に延びる。また、一方の端面枠92に隣り合うバッテリセル10のプラス電極10aに接続されたバスバー40pの一部がX方向における第2の端子列TL2の延長線上のねじ孔99c上に配置される。これにより、一対のFPC基板50a,50bと一方の端面枠92に隣り合うバッテリセル10のプラス電極10aに接続されたバスバー40pとが互いに重なることが確実に防止される。
(3) Effects of the second embodiment (3-1)
On the upper surface of the battery block 10BB, a pair of FPC boards 50a and 50b extend in the X direction between the first terminal row TL1 and the second terminal row TL2. Further, a part of the bus bar 40p connected to the positive electrode 10a of the battery cell 10 adjacent to one end face frame 92 is disposed on the screw hole 99c on the extension line of the second terminal row TL2 in the X direction. This reliably prevents the pair of FPC boards 50a and 50b and the bus bar 40p connected to the plus electrode 10a of the battery cell 10 adjacent to one end face frame 92 from overlapping each other.
 (3-2)
 本実施の形態においては、図10の一方の端面枠92に隣り合うバッテリセル10のプラス電極10aに接続されたバスバー40pが第1の接続部材の例である。また、一方のFPC基板50aに形成された複数の導体線51,52が第1の配線群の例であり、他方のFPC基板50bに形成された複数の導体線51,52が第2の配線群の例であり、Y方向が第2の方向の例である。
(3-2)
In the present embodiment, the bus bar 40p connected to the positive electrode 10a of the battery cell 10 adjacent to one end face frame 92 of FIG. 10 is an example of the first connecting member. Also, the plurality of conductor lines 51 and 52 formed on one FPC board 50a are examples of the first wiring group, and the plurality of conductor lines 51 and 52 formed on the other FPC board 50b are the second wiring. It is an example of a group, and the Y direction is an example of the second direction.
 さらに、リブ部材GL1および第1の端子列TL1に沿って配列される複数のバスバー40pの複数の取付片42pが第1の案内部の例であり、リブ部材GL2および第2の端子列TL2に沿って配列される複数のバスバー40pの複数の取付片42pが第2の案内部の例である。 Further, the plurality of mounting pieces 42p of the plurality of bus bars 40p arranged along the rib member GL1 and the first terminal row TL1 is an example of the first guide portion, and the rib member GL2 and the second terminal row TL2 The plurality of attachment pieces 42p of the plurality of bus bars 40p arranged along the line is an example of the second guide portion.
 バッテリブロックは、複数のバッテリセルの複数の電極端子が並ぶ一面を有し、複数のバッテリセルの複数の電極端子は、一面上で第1の方向に沿って互いに並列に整列された第1および第2の端子列を構成し、複数の配線は、一面上において第1および第2の端子列の内側で第1の方向に延びる第1および第2の配線群を含み、案内部は、第1の方向に交差する第2の方向に並ぶように設けられるとともに第1および第2の配線群をそれぞれ案内する第1および第2の案内部を含み、中継端子は、第1および第2の案内部の一方の外側に設けられる。 The battery block has one surface on which a plurality of electrode terminals of a plurality of battery cells are arranged, and the plurality of electrode terminals of the plurality of battery cells are arranged in parallel with each other along a first direction on the one surface. The second terminal row includes a plurality of wirings including first and second wiring groups extending in the first direction on the inner side of the first and second terminal rows on one surface, and the guide portion includes The first and second guide portions are provided so as to be arranged in a second direction intersecting with the first direction and guide the first and second wiring groups, respectively, and the relay terminal includes the first and second relay terminals. Provided on one outer side of the guide.
 バッテリブロックの一面上においては、第1および第2の端子列の内側で第1および第2の配線群が第1の方向に延びる。また、第1および第2の配線群がそれぞれ第1および第2の案内部により複数のバッテリセルの複数の電極端子から電圧検出回路に案内される。この場合、中継端子が第1および第2の案内部の一方の外側に設けられるので、保持部材上で中継端子と複数の配線とが互いに重なることが確実に防止される。 On the one surface of the battery block, the first and second wiring groups extend in the first direction inside the first and second terminal rows. The first and second wiring groups are guided to the voltage detection circuit from the plurality of electrode terminals of the plurality of battery cells by the first and second guide portions, respectively. In this case, since the relay terminal is provided outside one of the first and second guide portions, it is reliably prevented that the relay terminal and the plurality of wires overlap each other on the holding member.
 [3]第3の実施の形態
 第3の実施の形態に係るバッテリモジュールについて、第1の実施の形態に係るバッテリモジュール100と異なる点を説明する。
[3] Third Embodiment A battery module according to a third embodiment will be described while referring to differences from the battery module 100 according to the first embodiment.
 (1)バッテリモジュールの構造
 図13は、第3の実施の形態に係るバッテリモジュール100の分解斜視図である。本実施の形態に係るバッテリモジュール100においては、複数のバッテリセル10、複数のスペーサSPおよび端面枠92により略直方体形状のバッテリブロック10BBが構成される。図13に示すように、複数のバッテリセル10および複数のスペーサSPがX方向に交互に並ぶように配置される。X方向における一端部に位置するバッテリセル10に隣り合うように端面枠92が設けられる。
(1) Structure of Battery Module FIG. 13 is an exploded perspective view of the battery module 100 according to the third embodiment. In the battery module 100 according to the present embodiment, the plurality of battery cells 10, the plurality of spacers SP, and the end face frame 92 constitute a substantially rectangular parallelepiped battery block 10BB. As shown in FIG. 13, the plurality of battery cells 10 and the plurality of spacers SP are arranged alternately in the X direction. An end face frame 92 is provided adjacent to the battery cell 10 located at one end in the X direction.
 スペーサSPは、長方形状の板状部材からなる。また、端面枠92は、一面および他面を有する長方形状の板状部材からなる。バッテリブロック10BBにおいては、端面枠92の他面がバッテリセル10に接する。端面枠92の一面にプリント回路基板21が設けられる。本実施の形態で用いられる端面枠92およびスペーサSPは絶縁性樹脂により形成される。 The spacer SP is made of a rectangular plate member. The end face frame 92 is made of a rectangular plate-like member having one surface and the other surface. In battery block 10BB, the other surface of end surface frame 92 is in contact with battery cell 10. The printed circuit board 21 is provided on one surface of the end face frame 92. The end face frame 92 and the spacer SP used in the present embodiment are formed of an insulating resin.
 各スペーサSPの上端には、Y方向に並ぶように2つのガイドフックgが設けられている。各ガイドフックgは、互いに対向する2つの鍵状の突起により構成される。 Two guide hooks g are provided at the upper end of each spacer SP so as to be aligned in the Y direction. Each guide hook g is composed of two key-like protrusions facing each other.
 各バッテリセル10は、Y方向に並ぶように上面部分にプラス電極10aおよびマイナス電極10bを有する。このバッテリモジュール100においても、複数のバッテリセル10の一方の電極10a,10bがX方向に整列された第1の端子列TL1を構成し、複数のバッテリセル10の他方の電極10a,10bがX方向に整列された第2の端子列TL2を構成する。第1の端子列TL1と第2の端子列TL2とは間隔をおいて互いに並列に配置される。 Each battery cell 10 has a plus electrode 10a and a minus electrode 10b on the top surface so as to be arranged in the Y direction. Also in this battery module 100, one electrode 10a, 10b of the plurality of battery cells 10 constitutes a first terminal row TL1 aligned in the X direction, and the other electrode 10a, 10b of the plurality of battery cells 10 is X A second terminal row TL2 aligned in the direction is configured. The first terminal row TL1 and the second terminal row TL2 are arranged in parallel to each other with an interval therebetween.
 一端部に位置するバッテリセル10(以下、一端側バッテリセル10と呼ぶ)のプラス電極10aおよび他端部に位置するバッテリセル10(以下、他端側バッテリセル10と呼ぶ)のマイナス電極10bを除いて、隣り合う各2つの電極10a,10bが、平板状のバスバー40qに嵌め込まれる。その状態で、電極10a,10bがバスバー40qにレーザ溶接される。 A positive electrode 10a of a battery cell 10 located at one end (hereinafter referred to as one end side battery cell 10) and a negative electrode 10b of a battery cell 10 located at the other end (hereinafter referred to as other end side battery cell 10) Except for each, two adjacent electrodes 10a and 10b are fitted into a flat bus bar 40q. In this state, the electrodes 10a and 10b are laser welded to the bus bar 40q.
 また、一端側バッテリセル10のプラス電極10aに、平板状のバスバー40qの一部が嵌め込まれる。その状態で、一端側バッテリセル10のプラス電極10aがバスバー40qにレーザ溶接される。それにより、複数のバスバー40qが第1の端子列TL1および第2の端子列TL2に沿って配列され、複数のバッテリセル10が直列に接続される。 Further, a part of the flat bus bar 40q is fitted into the plus electrode 10a of the battery cell 10 at one end. In this state, the plus electrode 10a of the one end side battery cell 10 is laser-welded to the bus bar 40q. Thereby, the plurality of bus bars 40q are arranged along the first terminal row TL1 and the second terminal row TL2, and the plurality of battery cells 10 are connected in series.
 複数のバスバー40qおよび他端側バッテリセル10のマイナス電極10bに対応して複数の配線53が設けられる。各配線53は、例えば導体線およびその導体線を被覆する樹脂製の被覆チューブから構成される。各配線53の一端部に接続片53tが取り付けられる。複数のバスバー40qおよび他端側バッテリセル10のマイナス電極10bの各々に、接続片53tがレーザ溶接により接続される。 A plurality of wirings 53 are provided corresponding to the plurality of bus bars 40q and the negative electrode 10b of the battery cell 10 at the other end. Each wiring 53 is composed of, for example, a conductor wire and a resin-coated tube that covers the conductor wire. A connection piece 53 t is attached to one end of each wiring 53. A connection piece 53t is connected to each of the plurality of bus bars 40q and the negative electrode 10b of the other end side battery cell 10 by laser welding.
 ここで、バッテリブロック10BBの上面において、複数のスペーサSPに形成された2つのガイドフックgは、第1の端子列TL1と第2の端子列TL2との間で、第1の端子列TL1の近傍および第2の端子列TL2の近傍に位置する。 Here, on the upper surface of the battery block 10BB, the two guide hooks g formed on the plurality of spacers SP are arranged between the first terminal row TL1 and the second terminal row TL2 in the first terminal row TL1. Located in the vicinity and in the vicinity of the second terminal row TL2.
 第1の端子列TL1のバスバー40qに接続された配線53が、第1の端子列TL1の近傍に位置する複数のガイドフックgにより保持される。これにより、複数の配線53が、複数のガイドフックgによりにより束ねられ、第1の端子列TL1の近傍でX方向に延びるように端面枠92に案内される。 The wiring 53 connected to the bus bar 40q of the first terminal row TL1 is held by a plurality of guide hooks g located in the vicinity of the first terminal row TL1. Thus, the plurality of wirings 53 are bundled by the plurality of guide hooks g and guided to the end face frame 92 so as to extend in the X direction in the vicinity of the first terminal row TL1.
 一方、第2の端子列TL2のバスバー40qおよび他端側バッテリセル10のマイナス電極10bに接続された配線53が、第2の端子列TL2の近傍に位置する複数のガイドフックgにより保持される。これにより、複数の配線53が、複数のガイドフックgにより束ねられ、第2の端子列TL2の近傍でX方向に延びるように端面枠92に案内される。 On the other hand, the wiring 53 connected to the bus bar 40q of the second terminal row TL2 and the negative electrode 10b of the other end side battery cell 10 is held by a plurality of guide hooks g located in the vicinity of the second terminal row TL2. . Thus, the plurality of wirings 53 are bundled by the plurality of guide hooks g and guided to the end face frame 92 so as to extend in the X direction in the vicinity of the second terminal row TL2.
 以下、第1の端子列TL1の近傍でX方向に延びるように配置される複数の配線53を第1の配線群53xと呼び、第2の端子列TL2の近傍でX方向に延びるように配置される複数の配線53を第2の配線群53yと呼ぶ。 Hereinafter, the plurality of wirings 53 disposed so as to extend in the X direction in the vicinity of the first terminal row TL1 are referred to as a first wiring group 53x, and are disposed so as to extend in the X direction in the vicinity of the second terminal row TL2. The plurality of wirings 53 to be used are referred to as a second wiring group 53y.
 端面枠92の上面には、Y方向に並ぶように3つの孔部が形成され、これらの孔部にそれぞれ絶縁性樹脂または金属からなるねじ部材が嵌め込まれる。3つのねじ部材にはそれぞれねじ孔99a,99b,99cが形成される。ねじ部材は、樹脂製または金属製のナットであってもよい。 Three holes are formed on the upper surface of the end face frame 92 so as to be aligned in the Y direction, and screw members made of insulating resin or metal are fitted into these holes, respectively. Screw holes 99a, 99b, and 99c are formed in the three screw members, respectively. The screw member may be a resin or metal nut.
 端面枠92において、ねじ孔99aはX方向における第1の端子列TL1の延長線上に位置し、ねじ孔99bはY方向における端面枠92の上面中央に位置し、ねじ孔99cはX方向における第2の端子列TL2の延長線上に位置する。 In the end face frame 92, the screw hole 99a is located on the extension line of the first terminal row TL1 in the X direction, the screw hole 99b is located in the center of the upper surface of the end face frame 92 in the Y direction, and the screw hole 99c is the first hole in the X direction. It is located on the extension line of the second terminal row TL2.
 一端側バッテリセル10のプラス電極10aがバスバー40qの一方の電極接続孔に嵌め込まれかつ端面枠92のねじ孔99c上にバスバー40qの他方の電極接続孔が重なる状態で、プラス電極10aがバスバー40qにレーザ溶接される。この状態で、ねじN1が電源線501の環状の接続部501aおよびバスバー40qの他方の電極接続孔を通して端面枠92のねじ孔99cにねじ込まれる。これにより、バスバー40qと電源線501とが互いに接続される。この場合、端面枠92においては、ねじ孔99cが形成されたねじ部材およびねじN1により、複数のバッテリセル10の電力を外部装置(例えば、モータ等の負荷)に供給するための中継端子CTが構成される。他端側バッテリセル10のマイナス電極10bには他の電源線501の一端部がレーザ溶接により接続される。 The positive electrode 10a of the one end side battery cell 10 is fitted into one electrode connection hole of the bus bar 40q, and the other electrode connection hole of the bus bar 40q overlaps with the screw hole 99c of the end face frame 92. Laser welded. In this state, the screw N1 is screwed into the screw hole 99c of the end face frame 92 through the annular connection portion 501a of the power supply line 501 and the other electrode connection hole of the bus bar 40q. Thereby, bus bar 40q and power supply line 501 are connected to each other. In this case, in the end face frame 92, the relay terminal CT for supplying the power of the plurality of battery cells 10 to an external device (for example, a load such as a motor) is provided by the screw member in which the screw hole 99c is formed and the screw N1. Composed. One end of another power line 501 is connected to the negative electrode 10b of the other end side battery cell 10 by laser welding.
 Y方向において、端面枠92の上面にはねじ孔99aとねじ孔99bとの間およびねじ孔99bとねじ孔99cとの間にそれぞれガイドフックgが形成されている。 In the Y direction, guide hooks g are formed on the upper surface of the end face frame 92 between the screw holes 99a and 99b and between the screw holes 99b and 99c, respectively.
 端面枠92の上面では、ねじ孔99aとねじ孔99bとの間に形成されたガイドフックgに第1の配線群53xの一部が配置される。また、ねじ孔99bとねじ孔99cとの間に形成されたガイドフックgに第2の配線群53yの一部が配置される。 On the upper surface of the end face frame 92, a part of the first wiring group 53x is arranged in a guide hook g formed between the screw hole 99a and the screw hole 99b. In addition, a part of the second wiring group 53y is arranged in the guide hook g formed between the screw hole 99b and the screw hole 99c.
 第1の配線群53xの他端部にはコネクタ531が設けられている。第2の配線群53yの他端部にもコネクタ532が設けられている。端面枠92に設けられるプリント回路基板21には、コネクタ531,532にそれぞれ対応するコネクタ531b,532bが実装されている。 A connector 531 is provided at the other end of the first wiring group 53x. A connector 532 is also provided at the other end of the second wiring group 53y. Connectors 531 b and 532 b corresponding to the connectors 531 and 532 are mounted on the printed circuit board 21 provided on the end face frame 92.
 第1の配線群53xのコネクタ531がプリント回路基板21に実装されたコネクタ531bに接続され、第2の配線群53yのコネクタ532がプリント回路基板21に実装されたコネクタ532bに接続される。 The connector 531 of the first wiring group 53x is connected to the connector 531b mounted on the printed circuit board 21, and the connector 532 of the second wiring group 53y is connected to the connector 532b mounted on the printed circuit board 21.
 (2)第3の実施の形態の効果
 (2-1)
 バッテリブロック10BBの上面においては、第1の端子列TL1および第2の端子列TL2の間で、複数の配線53がX方向に延びる。また、端面枠92に隣り合うバッテリセル10のプラス電極10aに接続されたバスバー40qの一部がX方向における第2の端子列TL2の延長線上のねじ孔99c上に配置される。
(2) Effects of the third embodiment (2-1)
On the upper surface of the battery block 10BB, a plurality of wirings 53 extend in the X direction between the first terminal row TL1 and the second terminal row TL2. Further, a part of the bus bar 40q connected to the plus electrode 10a of the battery cell 10 adjacent to the end face frame 92 is disposed on the screw hole 99c on the extension line of the second terminal row TL2 in the X direction.
 複数の配線53は、第1の端子列TL1および第2の端子列TL2の間に設けられた複数の複数のガイドフックgに保持される。これにより、複数のバッテリセル10の複数の電極10a,10bとプリント回路基板21との間の配線作業がさらに容易になる。また、複数の配線53と一方の端面枠92に隣り合うバッテリセル10のプラス電極10aに接続されたバスバー40qとが互いに重なることが確実に防止される。 The plurality of wirings 53 are held by a plurality of guide hooks g provided between the first terminal row TL1 and the second terminal row TL2. Thereby, the wiring work between the plurality of electrodes 10a, 10b of the plurality of battery cells 10 and the printed circuit board 21 is further facilitated. In addition, the plurality of wirings 53 and the bus bar 40q connected to the plus electrode 10a of the battery cell 10 adjacent to the one end face frame 92 are reliably prevented from overlapping each other.
 (2-2)
 本実施の形態においては、端面枠92が保持部材の例であり、図13の一端側バッテリセル10に接続されたバスバー40qが第1の接続部材の例である。
(2-2)
In the present embodiment, the end face frame 92 is an example of a holding member, and the bus bar 40q connected to the one end side battery cell 10 in FIG. 13 is an example of a first connecting member.
 また、端面枠92に形成された2つのガイドフックgが案内部の例であり、バッテリブロック10BBの上面がバッテリブロックの一面の例である。 Further, the two guide hooks g formed on the end face frame 92 are examples of guide portions, and the upper surface of the battery block 10BB is an example of one surface of the battery block.
 さらに、Y方向が第2の方向の例であり、端面枠92に形成された一方のガイドフックgが第1の案内部の例であり、端面枠92に形成された他方のガイドフックgが第2の案内部の例である。 Furthermore, the Y direction is an example of the second direction, one guide hook g formed on the end face frame 92 is an example of the first guide portion, and the other guide hook g formed on the end face frame 92 is It is an example of the 2nd guide part.
 バッテリブロックは、複数のバッテリセルの複数の電極端子が並ぶ一面を有し、複数のバッテリセルの複数の電極端子は、一面上で第1の方向に沿って互いに並列に整列された第1および第2の端子列を構成し、複数の配線は、一面上において第1および第2の端子列の内側で第1の方向に延びる第1および第2の配線群を含み、案内部は、第1の方向に交差する第2の方向に並ぶように設けられるとともに第1および第2の配線群をそれぞれ案内する第1および第2の案内部を含み、中継端子は、第1および第2の案内部の一方の外側に設けられる。 The battery block has one surface on which a plurality of electrode terminals of a plurality of battery cells are arranged, and the plurality of electrode terminals of the plurality of battery cells are arranged in parallel with each other along a first direction on the one surface. The second terminal row includes a plurality of wirings including first and second wiring groups extending in the first direction on the inner side of the first and second terminal rows on one surface, and the guide portion includes The first and second guide portions are provided so as to be arranged in a second direction intersecting with the first direction and guide the first and second wiring groups, respectively, and the relay terminal includes the first and second relay terminals. Provided on one outer side of the guide.
 バッテリブロックの一面上においては、第1および第2の端子列の内側で第1および第2の配線群が第1の方向に延びる。また、第1および第2の配線群がそれぞれ第1および第2の案内部により複数のバッテリセルの複数の電極端子から電圧検出回路に案内される。この場合、中継端子が第1および第2の案内部の一方の外側に設けられるので、保持部材上で中継端子と複数の配線とが互いに重なることが確実に防止される。 On the one surface of the battery block, the first and second wiring groups extend in the first direction inside the first and second terminal rows. The first and second wiring groups are guided to the voltage detection circuit from the plurality of electrode terminals of the plurality of battery cells by the first and second guide portions, respectively. In this case, since the relay terminal is provided outside one of the first and second guide portions, it is reliably prevented that the relay terminal and the plurality of wires overlap each other on the holding member.
 [4]第4の実施の形態
 第4の実施の形態に係るバッテリモジュールについて、第1の実施の形態に係るバッテリモジュール100と異なる点を説明する。
[4] Fourth Embodiment A battery module according to a fourth embodiment will be described while referring to differences from the battery module 100 according to the first embodiment.
 (1)バッテリモジュールの構造
 図14は、第4の実施の形態に係るバッテリモジュールの分解斜視図である。図14に示すように、本実施の形態に係るバッテリモジュール100は、ケーシング(筺体)CA内に配置される。ケーシングCAの上部は開口している。バッテリモジュール100は、ガスダクトGDおよび蓋部材80をさらに備える。蓋部材80は、樹脂等の絶縁性材料からなり、矩形板状を有する。
(1) Structure of Battery Module FIG. 14 is an exploded perspective view of the battery module according to the fourth embodiment. As shown in FIG. 14, the battery module 100 according to the present embodiment is arranged in a casing (housing) CA. The upper part of the casing CA is open. The battery module 100 further includes a gas duct GD and a lid member 80. The lid member 80 is made of an insulating material such as resin and has a rectangular plate shape.
 図14のバッテリモジュール100においては、各バッテリセル10のプラス電極10aおよびマイナス電極10bがそれぞれ上方に向かって突出するようにZ方向に沿って設けられる。 In the battery module 100 of FIG. 14, the positive electrode 10a and the negative electrode 10b of each battery cell 10 are provided along the Z direction so as to protrude upward.
 本実施の形態では、1番目のバッテリセル10のプラス電極10aおよび18番目のバッテリセル10のマイナス電極10bに、図1~図3のバスバー40aの代わりに略L字形状を有するバスバー40xが取り付けられる。 In the present embodiment, a bus bar 40x having a substantially L shape is attached to the plus electrode 10a of the first battery cell 10 and the minus electrode 10b of the 18th battery cell 10 instead of the bus bar 40a of FIGS. It is done.
 バスバー40xの一端部には電極接続孔47xが形成されている。バスバー40xの他端部には電源線接続孔47yが形成されている。バスバー40xは、例えばタフピッチ銅の表面にニッケルめっきが施された構成を有する。バスバー40xは複数のバスバー40とともにFPC基板50に接続される。以下では、FPC基板50と複数のバスバー40,40xとが一体的に接続された部材を配線部材70と呼ぶ。 An electrode connection hole 47x is formed at one end of the bus bar 40x. A power line connection hole 47y is formed at the other end of the bus bar 40x. The bus bar 40x has a configuration in which, for example, nickel plating is applied to the surface of tough pitch copper. The bus bar 40x is connected to the FPC board 50 together with the plurality of bus bars 40. Hereinafter, a member in which the FPC board 50 and the plurality of bus bars 40, 40x are integrally connected is referred to as a wiring member 70.
 バッテリブロック10BBに、ガスダクトGD、配線部材70および蓋部材80が設けられる。配線部材70およびガスダクトGDは蓋部材80の下面に取り付けられる。これにより、ガスダクトGD、配線部材70および蓋部材80を一体的に取り扱うことができる。ケーシングCA内にバッテリブロック10BBが収納されるとともに、ケーシングCAの開口を閉塞するように蓋部材80がケーシングCAに嵌合される。これにより、バッテリモジュール100を収納するバッテリボックスBBが形成される。 The battery block 10BB is provided with a gas duct GD, a wiring member 70, and a lid member 80. The wiring member 70 and the gas duct GD are attached to the lower surface of the lid member 80. Thereby, the gas duct GD, the wiring member 70, and the cover member 80 can be handled integrally. Battery block 10BB is housed in casing CA, and lid member 80 is fitted to casing CA so as to close the opening of casing CA. Thereby, the battery box BB that houses the battery module 100 is formed.
 本例では、蓋部材80は一対の端面枠92の上側突縁92bの間で、複数のバッテリセル10を覆うように形成されている。蓋部材80がバッテリブロック10BBに設けられる場合、一対の端面枠92の上側突縁92bの上面が外部に露出する。配線部材70は、一方のバスバー40xの他端部が一方の端面枠92の上側突縁92bに重なるようにかつ他方のバスバー40xの他端部が他方の端面枠92の上側突縁92bに重なるようにバッテリブロック10BB上に設けられる。 In this example, the lid member 80 is formed so as to cover the plurality of battery cells 10 between the upper protruding edges 92b of the pair of end face frames 92. When the lid member 80 is provided in the battery block 10BB, the upper surfaces of the upper protruding edges 92b of the pair of end surface frames 92 are exposed to the outside. In the wiring member 70, the other end of one bus bar 40x overlaps the upper protruding edge 92b of one end face frame 92, and the other end of the other bus bar 40x overlaps the upper protruding edge 92b of the other end face frame 92. Is provided on the battery block 10BB.
 図15は、図14の蓋部材80を斜め下方から見た斜視図である。図16は、図14の蓋部材80を斜め上方から見た斜視図である。以下、X方向に沿った蓋部材80の一辺および他辺をそれぞれ側辺80aおよび側辺80bと呼ぶ。蓋部材80の側辺80aはバッテリブロック10BB(図14)の一方向の側面E1(図14)に沿い、蓋部材80の側辺80bはバッテリブロック10BBの他方向の側面E2(図14)に沿う。また、バッテリブロック10BBに対向する蓋部材80の面を裏面と呼び、その反対側の蓋部材80の面を表面と呼ぶ。本例では、蓋部材80の表面が上方に向けられる。 FIG. 15 is a perspective view of the lid member 80 of FIG. 14 as viewed obliquely from below. FIG. 16 is a perspective view of the lid member 80 of FIG. 14 as viewed obliquely from above. Hereinafter, the one side and the other side of the lid member 80 along the X direction are referred to as a side 80a and a side 80b, respectively. The side 80a of the lid member 80 is along the side E1 (FIG. 14) in one direction of the battery block 10BB (FIG. 14), and the side 80b of the lid 80 is on the side E2 (FIG. 14) in the other direction of the battery block 10BB. Along. Further, the surface of the lid member 80 facing the battery block 10BB is called a back surface, and the surface of the lid member 80 on the opposite side is called a front surface. In this example, the surface of the lid member 80 is directed upward.
 図15に示すように、蓋部材80の裏面には、蓋部材80の側辺80aおよび側辺80bに沿って延びるように、FPC嵌合部84がそれぞれ形成される。FPC嵌合部84内に、配線部材70のFPC基板50が嵌合される。以下、蓋部材80の側辺80aおよび側辺80bに沿うように設けられたFPC嵌合部84をそれぞれ側辺80a側のFPC嵌合部84および側辺80b側のFPC嵌合部84と呼ぶ。蓋部材80の一端辺には、FPC嵌合部84に嵌合されたFPC基板50を蓋部材80の外部に引き出すための切り欠き84Sが形成されている。切り欠き84Sは、FPC嵌合部84の一端部を構成する。 As shown in FIG. 15, FPC fitting portions 84 are formed on the back surface of the lid member 80 so as to extend along the side sides 80a and the side sides 80b of the lid member 80, respectively. The FPC board 50 of the wiring member 70 is fitted into the FPC fitting portion 84. Hereinafter, the FPC fitting portion 84 provided along the side 80a and the side 80b of the lid member 80 is referred to as the FPC fitting 84 on the side 80a side and the FPC fitting 84 on the side 80b side, respectively. . A notch 84 </ b> S for drawing out the FPC board 50 fitted to the FPC fitting portion 84 to the outside of the lid member 80 is formed on one end side of the lid member 80. The cutout 84 </ b> S constitutes one end of the FPC fitting portion 84.
 側辺80a側および側辺80b側のFPC嵌合部84に沿うように、複数の凹部81,82が設けられる。本例では、側辺80a側のFPC嵌合部84に沿うように9つの凹部81が設けられる。蓋部材80の側辺80bに沿うように1つの凹部82、8つの凹部81および他の1つの凹部82が設けられる。 A plurality of concave portions 81 and 82 are provided along the FPC fitting portions 84 on the side 80a side and the side 80b side. In this example, nine concave portions 81 are provided along the FPC fitting portion 84 on the side 80a side. One recess 82, eight recesses 81, and another one recess 82 are provided along the side 80 b of the lid member 80.
 凹部81,82は略矩形状を有し、凹部81のX方向における長さは凹部82のX方向における長さよりも大きい。一方、凹部82のY方向における長さは凹部81のY方向における長さよりも大きい。凹部82の一部は、側辺80a,80bに交差する蓋部材80の端辺に向かって延びている。 The concave portions 81 and 82 have a substantially rectangular shape, and the length of the concave portion 81 in the X direction is larger than the length of the concave portion 82 in the X direction. On the other hand, the length of the recess 82 in the Y direction is larger than the length of the recess 81 in the Y direction. A part of the recess 82 extends toward the end side of the lid member 80 that intersects the side sides 80a and 80b.
 凹部81の形状および長さはバスバー40の形状および長さとほぼ等しく、凹部82の形状および長さはバスバー40xの一部(電極接続孔47xが形成された一端部)の形状および長さとほぼ等しい。 The shape and length of the recess 81 are substantially equal to the shape and length of the bus bar 40, and the shape and length of the recess 82 are substantially equal to the shape and length of a part of the bus bar 40x (one end where the electrode connection hole 47x is formed). .
 複数の凹部81,82の底面から蓋部材80の表面に貫通するように、複数の開口83が形成される(図16)。各凹部81内には2つの開口83(図16)が形成され、各凹部82内には1つの開口83(図16)が形成される。以下、蓋部材80の側辺80aに沿うように設けられた凹部81および開口83をそれぞれ側辺80a側の凹部81および側辺80a側の開口83と呼び、蓋部材80の側辺80bに沿うように設けられた凹部81,82および開口83をそれぞれ側辺80b側の凹部81,82および側辺80b側の開口83と呼ぶ。 A plurality of openings 83 are formed so as to penetrate from the bottom surfaces of the plurality of recesses 81 and 82 to the surface of the lid member 80 (FIG. 16). Two openings 83 (FIG. 16) are formed in each recess 81, and one opening 83 (FIG. 16) is formed in each recess 82. Hereinafter, the recess 81 and the opening 83 provided along the side 80a of the lid member 80 are referred to as the recess 81 on the side 80a and the opening 83 on the side 80a, respectively, and along the side 80b of the lid 80. The recesses 81 and 82 and the opening 83 thus provided are referred to as the recesses 81 and 82 on the side 80b side and the opening 83 on the side 80b side, respectively.
 蓋部材80の凹部81には配線部材70のバスバー40が嵌合され、凹部82には配線部材70のバスバー40xの一部が嵌合される。バスバー40が凹部81に嵌合された状態で、バスバー40の電極接続孔43は開口83内で蓋部材80の表面側に露出する。同様に、バスバー40xの一部が凹部82に嵌合された状態で、バスバー40xの電極接続孔47xは開口83内で蓋部材80の表面側に露出する。 The bus bar 40 of the wiring member 70 is fitted into the recess 81 of the lid member 80, and a part of the bus bar 40 x of the wiring member 70 is fitted into the recess 82. In a state where the bus bar 40 is fitted in the recess 81, the electrode connection hole 43 of the bus bar 40 is exposed to the surface side of the lid member 80 in the opening 83. Similarly, the electrode connection hole 47 x of the bus bar 40 x is exposed to the surface side of the lid member 80 in the opening 83 in a state where a part of the bus bar 40 x is fitted in the recess 82.
 側辺80a側の複数の複数の凹部81と側辺80b側の複数の凹部81,82との間でX方向に延びるようにダクト嵌合部87が形成される。ダクト嵌合部87内に、ガスダクトGDが嵌合される。 A duct fitting portion 87 is formed so as to extend in the X direction between the plurality of recesses 81 on the side 80a side and the plurality of recesses 81, 82 on the side 80b side. The gas duct GD is fitted in the duct fitting portion 87.
 側辺80a側の複数の凹部81から側辺80a側のFPC嵌合部84にそれぞれ延びるように複数対の接続溝85が形成される。側辺80b側の複数の凹部81から側辺80b側のFPC嵌合部84にそれぞれ延びるように複数対の接続溝85が形成される。側辺80b側の複数の凹部82から側辺80b側のFPC嵌合部84にそれぞれ延びるように複数の接続溝86が形成される。 A plurality of pairs of connection grooves 85 are formed so as to extend from the plurality of recesses 81 on the side 80a side to the FPC fitting portion 84 on the side 80a side. A plurality of pairs of connection grooves 85 are formed so as to extend from the plurality of recesses 81 on the side 80b side to the FPC fitting portion 84 on the side 80b side. A plurality of connection grooves 86 are formed to extend from the plurality of recesses 82 on the side 80b side to the FPC fitting portion 84 on the side 80b side.
 各バスバー40には、当該バスバー40をFPC基板50に接続するための一対の取付片42が設けられている。各バスバー40xには、当該バスバー40xをFPC基板50に接続するための取付片46が設けられている。複数対の接続溝85内には、複数のバスバー40の一対の取付片42がそれぞれ配置される。複数の接続溝86内には、複数のバスバー40xの取付片46がそれぞれ配置される。 Each bus bar 40 is provided with a pair of attachment pieces 42 for connecting the bus bar 40 to the FPC board 50. Each bus bar 40x is provided with an attachment piece 46 for connecting the bus bar 40x to the FPC board 50. A pair of attachment pieces 42 of the plurality of bus bars 40 are respectively disposed in the plurality of pairs of connection grooves 85. In the plurality of connection grooves 86, the mounting pieces 46 of the plurality of bus bars 40x are respectively arranged.
 上記のようにして、ガスダクトGDおよび配線部材70が蓋部材80に取り付けられる。その状態で、蓋部材80がバッテリブロック10BBに取り付けられる。複数のバスバー40の電極接続孔43には、複数のバッテリセル10のプラス電極10a(図14)およびマイナス電極10b(図14)が嵌め込まれる。複数のバスバー40xの電極接続孔47xには、複数のバッテリセル10のプラス電極10aまたはマイナス電極10bが挿入される。ガスダクトGDは、複数のバッテリセル10のガス抜き弁10vを覆うようにバッテリブロック10BBの上面に配置される。 The gas duct GD and the wiring member 70 are attached to the lid member 80 as described above. In this state, the lid member 80 is attached to the battery block 10BB. The plus electrodes 10a (FIG. 14) and the minus electrodes 10b (FIG. 14) of the plurality of battery cells 10 are fitted into the electrode connection holes 43 of the plurality of bus bars 40. The plus electrodes 10a or the minus electrodes 10b of the plurality of battery cells 10 are inserted into the electrode connection holes 47x of the plurality of bus bars 40x. The gas duct GD is disposed on the upper surface of the battery block 10BB so as to cover the gas vent valves 10v of the plurality of battery cells 10.
 蓋部材80の各開口83(図16)内において、図示しないナットがプラス電極10aおよびマイナス電極10bの雄ねじに螺合される。これにより、隣り合うバッテリセル10がバスバー40を介して電気的に接続される。その結果、複数のバッテリセル10が直列接続される。また、蓋部材80の一端辺の切り欠き84Sから2枚のFPC基板50の一部が引き出される。引き出された各FPC基板50の部分は、一方の端面枠92(プリント回路基板21が取り付けられる端面枠92)の上端部分近傍で内側に向かって直角に折り返され、さらに下方に向かって折り返され、プリント回路基板21に接続される。これにより、複数のバスバー40,40xがFPC基板50を介してプリント回路基板21上の電圧検出回路20(図14)に接続される。 In each opening 83 (FIG. 16) of the lid member 80, a nut (not shown) is screwed into the male threads of the plus electrode 10a and the minus electrode 10b. Thereby, adjacent battery cells 10 are electrically connected via the bus bar 40. As a result, the plurality of battery cells 10 are connected in series. Further, a part of the two FPC boards 50 is drawn out from the notch 84S on one end side of the lid member 80. Each part of the FPC board 50 drawn out is folded at a right angle toward the inside in the vicinity of the upper end portion of one end face frame 92 (end face frame 92 to which the printed circuit board 21 is attached), and further folded downward. Connected to the printed circuit board 21. Thereby, the plurality of bus bars 40, 40x are connected to the voltage detection circuit 20 (FIG. 14) on the printed circuit board 21 via the FPC board 50.
 このとき、一方のバスバー40xの他端部が一方の端面枠92の上側突縁92bに重なるとともに、他方のバスバー40xの他端部が他方の端面枠92の上側突縁92bに重なる。 At this time, the other end of one bus bar 40x overlaps with the upper protruding edge 92b of one end face frame 92, and the other end of the other bus bar 40x overlaps with the upper protruding edge 92b of the other end face frame 92.
 この状態で、ねじN1が電源線501の接続部501aおよび一方のバスバー40xの電源線接続孔47yを通して一方の端面枠92のねじ孔99cにねじ込まれる(図14)。これにより、一方のバスバー40xの他端部および電源線501がねじ部材993(図5)およびねじN1から構成される中継端子CT(図3)に接続される。 In this state, the screw N1 is screwed into the screw hole 99c of the one end face frame 92 through the connection part 501a of the power supply line 501 and the power supply line connection hole 47y of the one bus bar 40x (FIG. 14). Thereby, the other end part of one bus-bar 40x and the power wire 501 are connected to the relay terminal CT (FIG. 3) comprised from the screw member 993 (FIG. 5) and the screw N1.
 同様に、ねじN1が電源線501の接続部501aおよび他方のバスバー40xの電源線接続孔47yを通して他方の端面枠92のねじ孔99aにねじ込まれる(図14)。これにより、他方のバスバー40xの他端部および電源線501がねじ部材991(図5)およびねじN1から構成される中継端子CT(図3)に接続される。 Similarly, the screw N1 is screwed into the screw hole 99a of the other end face frame 92 through the connection part 501a of the power supply line 501 and the power supply line connection hole 47y of the other bus bar 40x (FIG. 14). Thus, the other end of the other bus bar 40x and the power supply line 501 are connected to the relay terminal CT (FIG. 3) including the screw member 991 (FIG. 5) and the screw N1.
 その後、上記のように、ケーシングCA内にバッテリブロック10BBが収納されるとともに、ケーシングCAの開口を閉塞するように蓋部材80がケーシングCAに嵌合される。 Thereafter, as described above, the battery block 10BB is housed in the casing CA, and the lid member 80 is fitted to the casing CA so as to close the opening of the casing CA.
 このとき、蓋部材80は、ケーシングCAに嵌合された後、ケーシングCAにねじ止めされてもよい。これにより、蓋部材80がケーシングCAに確実に固定される。 At this time, the lid member 80 may be screwed to the casing CA after being fitted to the casing CA. Thereby, the lid member 80 is reliably fixed to the casing CA.
 または、蓋部材80をケーシングCAに嵌合する前に、予め蓋部材80の両側辺80a,80bおよびケーシングCAのX方向に沿った両側面の上端辺に接着剤を塗布してもよい。この場合、蓋部材80がケーシングCAに嵌合されることにより、蓋部材80の両側辺80a,80bとケーシングCAの両側面の上端辺とが接合され、蓋部材80がケーシングCAに確実に固定される。 Alternatively, before the lid member 80 is fitted into the casing CA, an adhesive may be applied in advance to the both sides 80a and 80b of the lid member 80 and the upper end sides of both sides along the X direction of the casing CA. In this case, when the lid member 80 is fitted into the casing CA, the both sides 80a and 80b of the lid member 80 are joined to the upper end sides of both sides of the casing CA, and the lid member 80 is securely fixed to the casing CA. Is done.
 (2)第4の実施の形態の効果
 本実施の形態においても、端面枠92の上側突縁92bには2つの切り欠き92g(図14参照)が形成されている。この場合、2つの切り欠き92gはそれぞれ第1の案内部および第2の案内部として機能する。
(2) Effects of Fourth Embodiment Also in the present embodiment, two notches 92g (see FIG. 14) are formed on the upper protruding edge 92b of the end face frame 92. In this case, the two notches 92g function as a first guide part and a second guide part, respectively.
 これにより、バスバー40xが中継端子CT(図3)に接続された状態で、中継端子CTおよびバスバー40xとFPC基板50とを端面枠92上で互いに重ならないように配置することができる。したがって、バッテリモジュール100の配線構造が単純になるとともに配線作業が容易になる。 Thereby, in a state where the bus bar 40x is connected to the relay terminal CT (FIG. 3), the relay terminal CT, the bus bar 40x, and the FPC board 50 can be arranged on the end face frame 92 so as not to overlap each other. Therefore, the wiring structure of the battery module 100 is simplified and wiring work is facilitated.
 上記のように、本実施の形態では、蓋部材80の2個のFPC嵌合部84内にそれぞれ2枚のFPC基板50が嵌合される。この場合、蓋部材80に対して2枚のFPC基板50を容易に位置決めすることができる。蓋部材80がバッテリブロック10BBに取り付けられることにより、蓋部材80の2個のFPC嵌合部84はそれぞれ第1の案内部および第2の案内部として機能する。また、本実施の形態において、2枚のFPC基板50は、それぞれ2個のFPC嵌合部84に嵌合された状態で、複数のバスバー40,40xに接続される。この場合、第1の端子列TL1に接続される複数のバスバー40の複数の取付片42は第1の案内部として機能する。また、第2の端子列TL2に接続される複数のバスバー40,40xの複数の取付片42,46は第2の案内部として機能する。これにより、バッテリモジュール100の配線構造がより単純になるとともに配線作業がより容易になる。 As described above, in the present embodiment, two FPC boards 50 are fitted into the two FPC fitting portions 84 of the lid member 80, respectively. In this case, the two FPC boards 50 can be easily positioned with respect to the lid member 80. By attaching the lid member 80 to the battery block 10BB, the two FPC fitting portions 84 of the lid member 80 function as a first guide portion and a second guide portion, respectively. In the present embodiment, the two FPC boards 50 are connected to the plurality of bus bars 40 and 40x in a state where the two FPC boards 50 are fitted into the two FPC fitting portions 84, respectively. In this case, the plurality of attachment pieces 42 of the plurality of bus bars 40 connected to the first terminal row TL1 function as a first guide portion. The plurality of mounting pieces 42 and 46 of the plurality of bus bars 40 and 40x connected to the second terminal row TL2 function as a second guide portion. Thereby, the wiring structure of the battery module 100 becomes simpler and the wiring work becomes easier.
 本実施の形態では、第1の実施の形態のバスバー40aおよび中継部材41に代えて、略L字形状を有するバスバー40xが用いられる。バスバー40xがバッテリセル10の電極10a,10bに接続されるとともにFPC基板50に接続されることにより、バッテリセル10の電極10a,10bと電圧検出回路20とが電気的に接続される。また、バスバー40xがバッテリセル10の電極10a,10bに接続されるとともに中継端子CT(図3)に接続されることにより、複数のバッテリセル10の電極10a,10bと電源線501とが電気的に接続される。これにより、部品点数が低減され、バッテリモジュール100をさらに容易に組み立てることが可能となる。なお、バスバー40xに代えて第1の実施の形態のバスバー40aおよび中継部材41を用いてもよい。 In this embodiment, instead of the bus bar 40a and the relay member 41 of the first embodiment, a bus bar 40x having a substantially L shape is used. The bus bar 40x is connected to the electrodes 10a and 10b of the battery cell 10 and connected to the FPC board 50, whereby the electrodes 10a and 10b of the battery cell 10 and the voltage detection circuit 20 are electrically connected. In addition, the bus bar 40x is connected to the electrodes 10a and 10b of the battery cell 10 and to the relay terminal CT (FIG. 3), whereby the electrodes 10a and 10b of the plurality of battery cells 10 and the power supply line 501 are electrically connected. Connected to. Thereby, the number of parts is reduced, and the battery module 100 can be assembled more easily. Instead of the bus bar 40x, the bus bar 40a and the relay member 41 of the first embodiment may be used.
 上記のように、このバッテリモジュール100においては、ガスダクトGDおよび配線部材70が蓋部材80に一体的に設けられることにより、ガスダクトGD、配線部材70および蓋部材80を一体的に取り扱うことができる。そのため、ガスダクトGDおよび配線部材70が一体的に設けられた蓋部材80をバッテリブロック10BBに取り付けることにより、バッテリモジュール100を容易に組み立てることが可能となる。また、バッテリセル10のガス抜き弁10vから排出されたガスを、ガスダクトGDを通して効率よく外部に放出することができる。 As described above, in the battery module 100, the gas duct GD, the wiring member 70, and the lid member 80 can be handled integrally by providing the gas duct GD and the wiring member 70 integrally with the lid member 80. Therefore, the battery module 100 can be easily assembled by attaching the lid member 80 integrally provided with the gas duct GD and the wiring member 70 to the battery block 10BB. Further, the gas discharged from the gas vent valve 10v of the battery cell 10 can be efficiently discharged to the outside through the gas duct GD.
 本例においては、バッテリモジュール100を収納するバッテリボックスBBが形成されることにより、バッテリモジュール100の強度が向上する。また、バッテリモジュール100のバッテリブロック10BBがバッテリボックスBBのケーシングCAに固定されるとともに、蓋部材80がケーシングCAに嵌合するので、バッテリブロック10BBと蓋部材80とを確実に固定することができる。 In this example, the battery box BB that houses the battery module 100 is formed, whereby the strength of the battery module 100 is improved. Further, since the battery block 10BB of the battery module 100 is fixed to the casing CA of the battery box BB and the lid member 80 is fitted to the casing CA, the battery block 10BB and the lid member 80 can be reliably fixed. .
 (3)変形例
 本例において、ケーシングCAの開口の一部が蓋部材80により閉塞されている。そのため、バッテリボックスBB内が樹脂によりモールドされてもよい。この場合、バッテリセル10の結露を防止することができる。また、バッテリボックスBB内にモールドされた樹脂は、バッテリモジュール100の熱伝導特性に影響を及ぼすことができる。例えば、バッテリボックスBB内を空気よりも高い熱伝導率を有する樹脂でモールドすることにより、バッテリボックスBB内の熱を外部に放出することができる。一方、バッテリボックスBB内を空気よりも低い熱伝導率を有する樹脂でモールドすることにより、外部からバッテリボックスBB内への熱の流入を遮断することができる。
(3) Modified Example In this example, a part of the opening of the casing CA is closed by the lid member 80. Therefore, the inside of the battery box BB may be molded with resin. In this case, condensation of the battery cell 10 can be prevented. Further, the resin molded in the battery box BB can affect the heat conduction characteristics of the battery module 100. For example, by molding the inside of the battery box BB with a resin having a higher thermal conductivity than air, the heat in the battery box BB can be released to the outside. On the other hand, by molding the inside of the battery box BB with a resin having a thermal conductivity lower than that of air, the inflow of heat from the outside into the battery box BB can be blocked.
 上記の例では、蓋部材80は一対の端面枠92の上側突縁92bの間で、複数のバッテリセル10を覆うように形成されているが、蓋部材80はバッテリブロック10BBの上面全体を覆うように形成されてもよい。この場合、バッテリボックスBB内が蓋部材80により閉鎖される。そこで、ケーシングCAおよび蓋部材80の少なくとも一方に孔部を設けることにより、ガスダクトGDを設けることなくバッテリボックスBB内の排気を行ってもよい。 In the above example, the lid member 80 is formed so as to cover the plurality of battery cells 10 between the upper protruding edges 92b of the pair of end face frames 92, but the lid member 80 covers the entire upper surface of the battery block 10BB. It may be formed as follows. In this case, the inside of the battery box BB is closed by the lid member 80. Thus, by providing a hole in at least one of the casing CA and the lid member 80, the battery box BB may be exhausted without providing the gas duct GD.
 蓋部材80がバッテリブロック10BBの上面全体を覆うように形成される場合、蓋部材80の裏面には、上記の凹部82がバスバー40x全体の形状および長さとほぼ等しくなるように形成される。すなわち、凹部82は、略L字形状で形成される。この凹部82においては、一端部に上記の開口83が形成されるとともに、他端部に凹部82の底面から蓋部材80の表面に貫通するねじ孔が形成される。ねじ孔は、蓋部材80がバッテリブロック10BBに取り付けられた状態で、凹部82に嵌合されたバスバー40xの電源線接続孔47yに重なるように形成される。この場合、蓋部材80の上方からねじN1をねじ孔に挿入することによりバスバー40xおよび電源線501の接続部501aを端面枠92に固定することができる。 When the lid member 80 is formed so as to cover the entire upper surface of the battery block 10BB, the concave portion 82 is formed on the back surface of the lid member 80 so as to be substantially equal to the shape and length of the entire bus bar 40x. That is, the recess 82 is formed in a substantially L shape. In the recess 82, the opening 83 is formed at one end, and a screw hole penetrating from the bottom surface of the recess 82 to the surface of the lid member 80 is formed at the other end. The screw hole is formed so as to overlap the power line connection hole 47y of the bus bar 40x fitted in the recess 82 in a state where the lid member 80 is attached to the battery block 10BB. In this case, the bus bar 40x and the connection portion 501a of the power supply line 501 can be fixed to the end face frame 92 by inserting the screw N1 into the screw hole from above the lid member 80.
 上記の例では、蓋部材80はケーシングCAの上部の開口を閉塞するために用いられるが、蓋部材80はケーシングCAの上部の開口を必ずしも閉塞しなくてもよい。 In the above example, the lid member 80 is used to close the upper opening of the casing CA, but the lid member 80 does not necessarily close the upper opening of the casing CA.
 例えば、バッテリモジュール100がケーシングCA内に配置されない場合がある。この場合、蓋部材80は、ケーシングCAの上部の開口を閉塞する代わりに、バッテリブロック10BBの上面上に取り付けられてもよい。 For example, the battery module 100 may not be disposed in the casing CA. In this case, the lid member 80 may be attached on the upper surface of the battery block 10BB instead of closing the upper opening of the casing CA.
 また、1つのケーシングCA内に複数のバッテリモジュール100が配置される場合がある。このような場合でも、1つの蓋部材80が1つのケーシングCAの上部の開口を閉塞する代わりに、複数の蓋部材80が複数のバッテリブロック10BBの上面上にそれぞれ取り付けられてもよい。 In addition, a plurality of battery modules 100 may be arranged in one casing CA. Even in such a case, instead of the single lid member 80 closing the upper opening of the single casing CA, a plurality of lid members 80 may be attached to the upper surfaces of the plurality of battery blocks 10BB, respectively.
 これらの取り付け時においては、例えばガスダクトGDおよび配線部材70が一体的に設けられた蓋部材80がバッテリブロック10BBの上面上に配置される。この状態で、図16の各開口83内において、図示しないナットを複数のバッテリセル10のプラス電極10aおよびマイナス電極10bの雄ねじに螺合する。これにより、バッテリブロック10BBを構成する複数のバッテリセル10が電気的に接続されるとともに、蓋部材80がバッテリブロック10BBに容易に取り付けられる。 At the time of these attachments, for example, the lid member 80 provided integrally with the gas duct GD and the wiring member 70 is disposed on the upper surface of the battery block 10BB. In this state, a nut (not shown) is screwed into the male threads of the plus electrode 10a and the minus electrode 10b of the plurality of battery cells 10 in each opening 83 in FIG. Thereby, while the some battery cell 10 which comprises battery block 10BB is electrically connected, the cover member 80 is easily attached to battery block 10BB.
 [5]第5の実施の形態
 第5の実施の形態に係るバッテリモジュールについて、第4の実施の形態に係るバッテリモジュール100と異なる点を説明する。
[5] Fifth Embodiment A battery module according to the fifth embodiment will be described while referring to differences from the battery module 100 according to the fourth embodiment.
 (1)バッテリモジュールの構造
 図17は、第5の実施の形態に係るバッテリモジュールの分解斜視図である。第5の実施の形態に係るバッテリモジュール100と図14の第4の実施の形態に係るバッテリモジュール100とでは、蓋部材80と配線部材70との位置関係が異なる。本実施の形態に係るバッテリモジュール100においては、ガスダクトGDは蓋部材80の下面に取り付けられ、配線部材70は蓋部材80の上面に取り付けられる。また、蓋部材80はバッテリブロック10BBの上面全体を覆うように形成されている。本実施の形態においても、ガスダクトGD、配線部材70および蓋部材80を一体的に取り扱うことができる。
(1) Structure of Battery Module FIG. 17 is an exploded perspective view of the battery module according to the fifth embodiment. The battery module 100 according to the fifth embodiment and the battery module 100 according to the fourth embodiment of FIG. 14 differ in the positional relationship between the lid member 80 and the wiring member 70. In battery module 100 according to the present embodiment, gas duct GD is attached to the lower surface of lid member 80, and wiring member 70 is attached to the upper surface of lid member 80. The lid member 80 is formed so as to cover the entire upper surface of the battery block 10BB. Also in the present embodiment, the gas duct GD, the wiring member 70, and the lid member 80 can be handled integrally.
 図18は、図17の蓋部材80を斜め下方から見た斜視図である。図19は、図17の蓋部材80を斜め上方から見た斜視図である。図18に示すように、蓋部材80の裏面は、ダクト嵌合部87が形成される点、および凹部82(図19)の底面から蓋部材80の表面に貫通するねじ孔83xが形成される点を除いて図16の蓋部材80の表面とほぼ同じ構成を有する。 FIG. 18 is a perspective view of the lid member 80 of FIG. 17 as viewed obliquely from below. FIG. 19 is a perspective view of the lid member 80 of FIG. 17 as viewed obliquely from above. As shown in FIG. 18, the back surface of the lid member 80 is formed with a point where the duct fitting portion 87 is formed and a screw hole 83x penetrating from the bottom surface of the recess 82 (FIG. 19) to the surface of the lid member 80. Except for this point, it has substantially the same configuration as the surface of the lid member 80 of FIG.
 図19に示すように、蓋部材80の表面は、ダクト嵌合部87が形成されない点、および凹部82がバスバー40xの形状および長さとほぼ等しくなるように略L字形状で形成される点を除いて図15の蓋部材80の裏面とほぼ同じ構成を有する。図19の例では、一部が折り返されたFPC基板50を嵌合することができるように、FPC嵌合部84が形成されている。本例においても、蓋部材80の一端辺には、FPC嵌合部84に嵌合されたFPC基板50を蓋部材80の外部に引き出すための切り欠き84Sが形成されている。切り欠き84Sは、FPC嵌合部84の一端部を構成する。 As shown in FIG. 19, the surface of the lid member 80 is such that the duct fitting portion 87 is not formed, and that the concave portion 82 is formed in a substantially L shape so that it is substantially equal to the shape and length of the bus bar 40x. Except for this, it has substantially the same configuration as the back surface of the lid member 80 of FIG. In the example of FIG. 19, the FPC fitting portion 84 is formed so that the FPC board 50 partially folded back can be fitted. Also in this example, a notch 84 </ b> S for drawing out the FPC board 50 fitted to the FPC fitting portion 84 to the outside of the lid member 80 is formed on one end side of the lid member 80. The cutout 84 </ b> S constitutes one end of the FPC fitting portion 84.
 ガスダクトGDおよび配線部材70が蓋部材80に取り付けられる。この場合、配線部材70のバスバー40,40xが蓋部材80の表面に取り付けられる。この状態で、バッテリブロック10BBに蓋部材80が取り付けられ、複数のバスバー40,40xが複数のバッテリセル10のプラス電極10aおよびマイナス電極10bに接続される。また、蓋部材80の一端辺の2箇所の切り欠き84Sから2枚のFPC基板50の一部が引き出される。引き出された各FPC基板50の部分は、一方の端面枠92(プリント回路基板21が取り付けられる端面枠92)の上端部で下方に向かって折り返され、プリント回路基板21に接続される。これにより、複数のバスバー40,40xがFPC基板50を介してプリント回路基板21上の電圧検出回路20(図17)に接続される。 The gas duct GD and the wiring member 70 are attached to the lid member 80. In this case, the bus bars 40, 40 x of the wiring member 70 are attached to the surface of the lid member 80. In this state, the lid member 80 is attached to the battery block 10BB, and the plurality of bus bars 40, 40x are connected to the plus electrode 10a and the minus electrode 10b of the plurality of battery cells 10. In addition, a part of the two FPC boards 50 is pulled out from the two cutouts 84 </ b> S on one end side of the lid member 80. The part of each FPC board 50 drawn out is folded downward at the upper end of one end face frame 92 (end face frame 92 to which the printed circuit board 21 is attached) and connected to the printed circuit board 21. Accordingly, the plurality of bus bars 40, 40x are connected to the voltage detection circuit 20 (FIG. 17) on the printed circuit board 21 via the FPC board 50.
 このとき、一方のバスバー40xの他端部が蓋部材80を挟んで一方の端面枠92の上側突縁92bに重なるとともに、他方のバスバー40xの他端部が蓋部材80を挟んで他方の端面枠92の上側突縁92bに重なる。 At this time, the other end of one bus bar 40x overlaps the upper protruding edge 92b of one end face frame 92 with the lid member 80 in between, and the other end face of the other bus bar 40x has the lid member 80 in between. It overlaps with the upper protruding edge 92b of the frame 92.
 この状態で、ねじN1が電源線501の接続部501a、ねじ孔83xおよび一方のバスバー40xの電源線接続孔47yを通して一方の端面枠92のねじ孔99cにねじ込まれる(図17)。これにより、一方のバスバー40xの他端部および電源線501がねじ部材993(図5)およびねじN1から構成される中継端子CT(図3)に接続される。 In this state, the screw N1 is screwed into the screw hole 99c of one end face frame 92 through the connection portion 501a of the power supply line 501, the screw hole 83x, and the power supply line connection hole 47y of the one bus bar 40x (FIG. 17). Thereby, the other end part of one bus-bar 40x and the power wire 501 are connected to the relay terminal CT (FIG. 3) comprised from the screw member 993 (FIG. 5) and the screw N1.
 同様に、ねじN1が電源線501の接続部501a、ねじ孔83xおよび他方のバスバー40xの電源線接続孔47yを通して他方の端面枠92のねじ孔99aにねじ込まれる(図17)。これにより、他方のバスバー40xの他端部および電源線501がねじ部材991(図5)およびねじN1から構成される中継端子CT(図3)に接続される。 Similarly, the screw N1 is screwed into the screw hole 99a of the other end face frame 92 through the connection portion 501a of the power supply line 501, the screw hole 83x, and the power supply line connection hole 47y of the other bus bar 40x (FIG. 17). Thus, the other end of the other bus bar 40x and the power supply line 501 are connected to the relay terminal CT (FIG. 3) including the screw member 991 (FIG. 5) and the screw N1.
 (2)第5の実施の形態の効果
 本実施の形態においても、端面枠92の上側突縁92bには2つの切り欠き92g(図17)が形成されている。この場合、2つの切り欠き92gはそれぞれ第1の案内部および第2の案内部として機能する。
(2) Effects of Fifth Embodiment Also in the present embodiment, two notches 92g (FIG. 17) are formed on the upper protruding edge 92b of the end face frame 92. In this case, the two notches 92g function as a first guide part and a second guide part, respectively.
 これにより、バスバー40xが中継端子CT(図3)に接続された状態で、中継端子CTおよびバスバー40xとFPC基板50とを端面枠92上で互いに重ならないように配置することができる。したがって、バッテリモジュール100の配線構造が単純になるとともに配線作業が容易になる。 Thereby, in a state where the bus bar 40x is connected to the relay terminal CT (FIG. 3), the relay terminal CT, the bus bar 40x, and the FPC board 50 can be arranged on the end face frame 92 so as not to overlap each other. Therefore, the wiring structure of the battery module 100 is simplified and wiring work is facilitated.
 上記のように、本実施の形態では、蓋部材80の2個のFPC嵌合部84内にそれぞれ2枚のFPC基板50が嵌合される。この場合、蓋部材80に対して2枚のFPC基板50を容易に位置決めすることができる。蓋部材80がバッテリブロック10BBに取り付けられることにより、蓋部材80の2個のFPC嵌合部84は、それぞれ第1の案内部および第2の案内部として機能する。また、本実施の形態において、2枚のFPC基板50は、それぞれ2個のFPC嵌合部84に嵌合された状態で、複数のバスバー40,40xに接続される。この場合、第1の端子列TL1に接続される複数のバスバー40の複数の取付片42は第1の案内部として機能する。また、第2の端子列TL2に接続される複数のバスバー40,40xの複数の取付片42,46は第2の案内部として機能する。これにより、バッテリモジュール100の配線構造がより単純になるとともに配線作業がより容易になる。 As described above, in the present embodiment, two FPC boards 50 are fitted into the two FPC fitting portions 84 of the lid member 80, respectively. In this case, the two FPC boards 50 can be easily positioned with respect to the lid member 80. By attaching the lid member 80 to the battery block 10BB, the two FPC fitting portions 84 of the lid member 80 function as a first guide portion and a second guide portion, respectively. In the present embodiment, the two FPC boards 50 are connected to the plurality of bus bars 40 and 40x in a state where the two FPC boards 50 are fitted into the two FPC fitting portions 84, respectively. In this case, the plurality of attachment pieces 42 of the plurality of bus bars 40 connected to the first terminal row TL1 function as a first guide portion. The plurality of mounting pieces 42 and 46 of the plurality of bus bars 40 and 40x connected to the second terminal row TL2 function as a second guide portion. Thereby, the wiring structure of the battery module 100 becomes simpler and the wiring work becomes easier.
 第4の実施の形態と同様に、第1の実施の形態のバスバー40aおよび中継部材41に代えて、略L字形状を有するバスバー40xが用いられる。これにより、部品点数が低減され、バッテリモジュール100をさらに容易に組み立てることが可能となる。なお、バスバー40xに代えて第1の実施の形態のバスバー40aおよび中継部材41を用いてもよい。 As in the fourth embodiment, a bus bar 40x having a substantially L shape is used in place of the bus bar 40a and the relay member 41 of the first embodiment. Thereby, the number of parts is reduced, and the battery module 100 can be assembled more easily. Instead of the bus bar 40x, the bus bar 40a and the relay member 41 of the first embodiment may be used.
 上記のように、このバッテリモジュール100においても、ガスダクトGDおよび配線部材70が蓋部材80に一体的に設けられることにより、ガスダクトGD、配線部材70および蓋部材80を一体的に取り扱うことができる。そのため、ガスダクトGDおよび配線部材70が設けられた蓋部材80をバッテリブロック10BBに取り付けることにより、バッテリモジュール100を容易に組み立てることが可能となる。また、バッテリセル10のガス抜き弁10vから排出されたガスを、ガスダクトGDを通して効率よく外部に放出することができる。 As described above, also in this battery module 100, the gas duct GD, the wiring member 70, and the lid member 80 can be handled integrally by providing the gas duct GD and the wiring member 70 integrally with the lid member 80. Therefore, the battery module 100 can be easily assembled by attaching the lid member 80 provided with the gas duct GD and the wiring member 70 to the battery block 10BB. Further, the gas discharged from the gas vent valve 10v of the battery cell 10 can be efficiently discharged to the outside through the gas duct GD.
 本例においても、バッテリモジュール100を収納するバッテリボックスBBが形成されることにより、バッテリモジュール100の強度が向上する。また、バッテリモジュール100のバッテリブロック10BBがバッテリボックスBBのケーシングCAに固定されるとともに、蓋部材80がケーシングCAに嵌合するので、バッテリブロック10BBと蓋部材80とを確実に固定することができる。 Also in this example, the strength of the battery module 100 is improved by forming the battery box BB that houses the battery module 100. Further, since the battery block 10BB of the battery module 100 is fixed to the casing CA of the battery box BB and the lid member 80 is fitted to the casing CA, the battery block 10BB and the lid member 80 can be reliably fixed. .
 (3)変形例
 本例において、ケーシングCAの開口が蓋部材80により閉塞されている。そのため、バッテリボックスBB内が樹脂によりモールドされてもよい。この場合、バッテリセル10の結露を防止することができる。また、バッテリボックスBB内にモールドされた樹脂は、バッテリモジュール100の熱伝導特性に影響を及ぼすことができる。例えば、バッテリボックスBB内を空気よりも高い熱伝導率を有する樹脂でモールドすることにより、バッテリボックスBB内の熱を外部に放出することができる。一方、バッテリボックスBB内を空気よりも低い熱伝導率を有する樹脂でモールドすることにより、外部からバッテリボックスBB内への熱の流入を遮断することができる。
(3) Modification In this example, the opening of the casing CA is closed by the lid member 80. Therefore, the inside of the battery box BB may be molded with resin. In this case, condensation of the battery cell 10 can be prevented. Further, the resin molded in the battery box BB can affect the heat conduction characteristics of the battery module 100. For example, by molding the inside of the battery box BB with a resin having a higher thermal conductivity than air, the heat in the battery box BB can be released to the outside. On the other hand, by molding the inside of the battery box BB with a resin having a thermal conductivity lower than that of air, the inflow of heat from the outside into the battery box BB can be blocked.
 本実施の形態では、バッテリボックスBB内が蓋部材80により閉鎖される。そこで、ケーシングCAおよび蓋部材80の少なくとも一方に孔部を設けることにより、ガスダクトGDを設けることなくバッテリボックスBB内の排気を行ってもよい。 In the present embodiment, the inside of the battery box BB is closed by the lid member 80. Thus, by providing a hole in at least one of the casing CA and the lid member 80, the battery box BB may be exhausted without providing the gas duct GD.
 [6]第6の実施の形態
 第6の実施の形態に係るバッテリモジュールについて、第4の実施の形態に係るバッテリモジュール100と異なる点を説明する。
[6] Sixth Embodiment A battery module according to a sixth embodiment will be described while referring to differences from the battery module 100 according to the fourth embodiment.
 (1)バッテリモジュールの構造
 図20は、第6の実施の形態に係るバッテリモジュールの分解斜視図である。図20に示すように、本実施の形態に係るバッテリモジュール100においては、第1の実施の形態と同様に、各バッテリセル10のプラス電極10aおよびマイナス電極10bがそれぞれ上方に向かって突出するように傾斜して設けられる。
(1) Structure of Battery Module FIG. 20 is an exploded perspective view of the battery module according to the sixth embodiment. As shown in FIG. 20, in the battery module 100 according to the present embodiment, as in the first embodiment, the positive electrode 10a and the negative electrode 10b of each battery cell 10 protrude upward, respectively. It is provided with an inclination.
 また、本実施の形態においては、バッテリブロック10BBに、ガスダクトGD、配線部材70および蓋部材80が個別に取り付けられる。すなわち、本実施の形態では、配線部材70およびガスダクトGDが蓋部材80に取り付けられない。そのため、蓋部材80には、図15のFPC嵌合部84、凹部81,82、および接続溝85,86が形成されない。また、蓋部材80には、図16の複数の開口83も形成されない。 In the present embodiment, the gas duct GD, the wiring member 70, and the lid member 80 are individually attached to the battery block 10BB. That is, in the present embodiment, the wiring member 70 and the gas duct GD are not attached to the lid member 80. Therefore, the lid member 80 is not formed with the FPC fitting portion 84, the concave portions 81 and 82, and the connection grooves 85 and 86 shown in FIG. Further, the plurality of openings 83 in FIG. 16 are not formed in the lid member 80.
 本実施の形態に係るバッテリモジュール100の作製時には、第1の実施の形態と同様に、まずバッテリブロック10BBの上面にガスダクトGDおよび配線部材70が取り付けられる。 When producing the battery module 100 according to the present embodiment, the gas duct GD and the wiring member 70 are first attached to the upper surface of the battery block 10BB, as in the first embodiment.
 バッテリブロック10BBの上面に配線部材70が取り付けられることにより、隣り合うバッテリセル10がバスバー40を介して電気的に接続される。その結果、複数のバッテリセル10が直列接続される。また、配線部材70のうちの2枚のFPC基板50の一部が一方の端面枠92(プリント回路基板21が取り付けられる端面枠92)の上端部分近傍で内側に向かって直角に折り返され、さらに下方に向かって折り返され、プリント回路基板21に接続される。これにより、複数のバスバー40,40xがFPC基板50を介してプリント回路基板21上の電圧検出回路20に接続される。 By attaching the wiring member 70 to the upper surface of the battery block 10BB, adjacent battery cells 10 are electrically connected via the bus bar 40. As a result, the plurality of battery cells 10 are connected in series. Further, a part of the two FPC boards 50 of the wiring members 70 are folded back at right angles toward the inside in the vicinity of the upper end portion of one end face frame 92 (end face frame 92 to which the printed circuit board 21 is attached). It is folded downward and connected to the printed circuit board 21. As a result, the plurality of bus bars 40, 40 x are connected to the voltage detection circuit 20 on the printed circuit board 21 via the FPC board 50.
 この状態で、ねじN1が電源線501の接続部501aおよび一方のバスバー40xの電源線接続孔47yを通して一方の端面枠92のねじ孔99cにねじ込まれる。これにより、一方のバスバー40xの他端部および電源線501がねじ部材993(図5)およびねじN1から構成される中継端子CT(図3)に接続される。 In this state, the screw N1 is screwed into the screw hole 99c of the one end face frame 92 through the connection portion 501a of the power supply line 501 and the power supply line connection hole 47y of the one bus bar 40x. Thereby, the other end part of one bus-bar 40x and the power wire 501 are connected to the relay terminal CT (FIG. 3) comprised from the screw member 993 (FIG. 5) and the screw N1.
 同様に、ねじN1が電源線501の接続部501aおよび他方のバスバー40xの電源線接続孔47yを通して他方の端面枠92のねじ孔99aにねじ込まれる。これにより、他方のバスバー40xの他端部および電源線501がねじ部材991(図5)およびねじN1から構成される中継端子CT(図3)に接続される。 Similarly, the screw N1 is screwed into the screw hole 99a of the other end face frame 92 through the connection portion 501a of the power supply line 501 and the power supply line connection hole 47y of the other bus bar 40x. Thus, the other end of the other bus bar 40x and the power supply line 501 are connected to the relay terminal CT (FIG. 3) including the screw member 991 (FIG. 5) and the screw N1.
 その後、上部が開口したケーシングCA内にバッテリブロック10BBが配置され、ケーシングCAの開口を閉塞するように蓋部材80がケーシングCAの上端部に取り付けられる。 Thereafter, the battery block 10BB is disposed in the casing CA whose upper portion is opened, and the lid member 80 is attached to the upper end portion of the casing CA so as to close the opening of the casing CA.
 以下の説明において、X方向に沿った蓋部材80の一辺および他辺をそれぞれ側辺80aおよび側辺80bと呼び、Y方向に沿った蓋部材80の一辺および他辺をそれぞれ端辺80cおよび端辺80dと呼ぶ。また、XZ平面に平行なケーシングCAの一側面および他側面をそれぞれ側面80a,80bと呼び、YZ平面に平行なケーシングCAの一端面および他端面をそれぞれ端面80c,80dと呼ぶ。 In the following description, one side and the other side of the lid member 80 along the X direction are referred to as a side side 80a and a side side 80b, respectively, and one side and the other side of the lid member 80 along the Y direction are respectively referred to as an end side 80c and an end side. Called side 80d. Further, one side surface and the other side surface of the casing CA parallel to the XZ plane are referred to as side surfaces 80a and 80b, respectively, and one end surface and the other end surface of the casing CA parallel to the YZ plane are referred to as end surfaces 80c and 80d, respectively.
 Y方向における蓋部材80の寸法(蓋部材80の一対の側辺80a,80b間の距離)はY方向におけるケーシングCAの開口の寸法(ケーシングCAの一対の側面CA1,CA2間の距離)とほぼ等しくなるように設定される。一方、X方向における蓋部材80の寸法(蓋部材80の一対の端辺80c,80d間の距離)はX方向におけるケーシングCAの開口の寸法(ケーシングCAの一対の端面CA3,CA4間の距離)よりも小さくなるように設定される。この場合、例えば蓋部材80の一対の側辺80a,80bがケーシングCAの一対の側面CA1,CA2の上端部分に接する状態で蓋部材80とケーシングCAとをねじ止めする、または接着剤を用いて接合することにより、蓋部材80をケーシングCAの上端部に取り付けることができる。 The dimension of the lid member 80 in the Y direction (distance between the pair of side sides 80a and 80b) is almost the same as the dimension of the opening of the casing CA in the Y direction (distance between the pair of side surfaces CA1 and CA2 of the casing CA). Set to be equal. On the other hand, the dimension of the lid member 80 in the X direction (the distance between the pair of end sides 80c and 80d of the lid member 80) is the dimension of the opening of the casing CA in the X direction (the distance between the pair of end surfaces CA3 and CA4 of the casing CA). It is set to be smaller than that. In this case, for example, the lid member 80 and the casing CA are screwed in a state where the pair of side sides 80a and 80b of the lid member 80 are in contact with the upper end portions of the pair of side surfaces CA1 and CA2 of the casing CA, or an adhesive is used. By joining, the cover member 80 can be attached to the upper end of the casing CA.
 ここで、本実施の形態では、上記のように、X方向における蓋部材80の寸法はX方向におけるケーシングCAの開口の寸法よりも小さくなるように設定される。さらに、蓋部材80は一対の端面枠92の上側突縁92bの間で、複数のバッテリセル10を覆うように形成されている。これにより、蓋部材80がケーシングCAに嵌合された状態で、蓋部材80とケーシングCAの上端部との間(蓋部材80の端辺80cとケーシングCAの端面CA3との間、および蓋部材80の端辺80dとケーシングCAの端面CA4との間)には上側突縁92bに対応する隙間が形成される。したがって、バッテリモジュール100の端面枠92の上側突縁92bで中継端子CT(図3)に接続された電源線501を蓋部材80とケーシングCAの上端部との隙間からケーシングCAの外部に容易に引き出すことができる。上記のようにして、バッテリモジュール100を収納するバッテリボックスBBが形成される。 Here, in the present embodiment, as described above, the dimension of the lid member 80 in the X direction is set to be smaller than the dimension of the opening of the casing CA in the X direction. Further, the lid member 80 is formed so as to cover the plurality of battery cells 10 between the upper protruding edges 92 b of the pair of end face frames 92. Thereby, between the cover member 80 and the upper end part of the casing CA with the cover member 80 fitted to the casing CA (between the end side 80c of the cover member 80 and the end surface CA3 of the casing CA, and the cover member). A gap corresponding to the upper projecting edge 92b is formed between the end side 80d of 80 and the end surface CA4 of the casing CA. Therefore, the power line 501 connected to the relay terminal CT (FIG. 3) at the upper protruding edge 92b of the end face frame 92 of the battery module 100 can be easily moved to the outside of the casing CA from the gap between the lid member 80 and the upper end portion of the casing CA. It can be pulled out. As described above, the battery box BB that houses the battery module 100 is formed.
 (2)第6の実施の形態の効果
 上記のように、本実施の形態では、蓋部材80は一対の端面枠92の上側突縁92bの間で、複数のバッテリセル10を覆うように形成されている。それにより、バッテリブロック10BBに接続される電源線501を蓋部材80とケーシングCAの上端部との間の隙間を通して外部に容易に引き出すことができる。
(2) Effects of Sixth Embodiment As described above, in the present embodiment, the lid member 80 is formed so as to cover the plurality of battery cells 10 between the upper projecting edges 92b of the pair of end face frames 92. Has been. Thereby, the power supply line 501 connected to the battery block 10BB can be easily pulled out through the gap between the lid member 80 and the upper end of the casing CA.
 また、本実施の形態では、配線部材70、蓋部材80およびガスダクトGDが個別にバッテリブロック10BBに取り付けられる。したがって、蓋部材80に配線部材70、およびガスダクトGDを取り付けるためのFPC嵌合部84、凹部81,82、および接続溝85,86を形成する必要がなくなる。そのため、蓋部材80の構成が単純化し、蓋部材80の低コスト化が実現される。 In this embodiment, the wiring member 70, the lid member 80, and the gas duct GD are individually attached to the battery block 10BB. Therefore, it is not necessary to form the FPC fitting portion 84, the concave portions 81 and 82, and the connection grooves 85 and 86 for attaching the wiring member 70 and the gas duct GD to the lid member 80. Therefore, the configuration of the lid member 80 is simplified, and the cost of the lid member 80 is reduced.
 (3)変形例
 本例において、蓋部材80とケーシングCAの上端部との間には上側突縁92bに対応する隙間が形成される。そのため、電源線501がケーシングCA内から引き出された後、バッテリボックスBB内が樹脂によりモールドされてもよい。この場合、バッテリセル10の結露を防止することができる。また、バッテリボックスBB内にモールドされた樹脂は、バッテリモジュール100の熱伝導特性に影響を及ぼすことができる。例えば、バッテリボックスBB内を空気よりも高い熱伝導率を有する樹脂でモールドすることにより、バッテリボックスBB内の熱を外部に放出することができる。一方、バッテリボックスBB内を空気よりも低い熱伝導率を有する樹脂でモールドすることにより、外部からバッテリボックスBB内への熱の流入を遮断することができる。
(3) Modification In this example, a gap corresponding to the upper protruding edge 92b is formed between the lid member 80 and the upper end portion of the casing CA. Therefore, after the power supply line 501 is drawn out from the casing CA, the inside of the battery box BB may be molded with resin. In this case, condensation of the battery cell 10 can be prevented. Further, the resin molded in the battery box BB can affect the heat conduction characteristics of the battery module 100. For example, by molding the inside of the battery box BB with a resin having a higher thermal conductivity than air, the heat in the battery box BB can be released to the outside. On the other hand, by molding the inside of the battery box BB with a resin having a thermal conductivity lower than that of air, the inflow of heat from the outside into the battery box BB can be blocked.
 上記の例では、蓋部材80は一対の端面枠92の上側突縁92bの間で、複数のバッテリセル10を覆うように形成されているが、蓋部材80はバッテリブロック10BBの上面全体を覆うように形成されてもよい。この場合、バッテリボックスBB内が蓋部材80により閉鎖される。そこで、ケーシングCAおよび蓋部材80の少なくとも一方に孔部を設けることにより、ケーシングCA内から孔部を通して電源線501が引き出されてもよい。 In the above example, the lid member 80 is formed so as to cover the plurality of battery cells 10 between the upper protruding edges 92b of the pair of end face frames 92, but the lid member 80 covers the entire upper surface of the battery block 10BB. It may be formed as follows. In this case, the inside of the battery box BB is closed by the lid member 80. Therefore, by providing a hole in at least one of the casing CA and the lid member 80, the power supply line 501 may be drawn from the casing CA through the hole.
 [7]バッテリシステム
 以下、第1の実施の形態に係るバッテリモジュール100を備えるバッテリシステムについて説明する。
[7] Battery System Hereinafter, a battery system including the battery module 100 according to the first embodiment will be described.
 (1)バッテリシステムの概略構成
 図21は、第1の実施の形態に係るバッテリモジュール100を備えるバッテリシステムの構成を示すブロック図である。図21に示すように、このバッテリシステム500は、複数のバッテリモジュール100(本例では4個)、バッテリECU101およびコンタクタ102を含む。バッテリシステム500において、複数のバッテリモジュール100は、通信線560を介してバッテリECU101に接続されている。各バッテリモジュール100において、通信線560は通信回路24(図1等参照)に接続される。また、バッテリECU101は、バス104を介して電動車両の主制御部300に接続される。
(1) Schematic Configuration of Battery System FIG. 21 is a block diagram illustrating a configuration of a battery system including the battery module 100 according to the first embodiment. As shown in FIG. 21, the battery system 500 includes a plurality of battery modules 100 (four in this example), a battery ECU 101, and a contactor 102. In the battery system 500, the plurality of battery modules 100 are connected to the battery ECU 101 via the communication line 560. In each battery module 100, the communication line 560 is connected to the communication circuit 24 (see FIG. 1 and the like). Battery ECU 101 is connected to main controller 300 of the electric vehicle via bus 104.
 バッテリシステム500の複数のバッテリモジュール100は、電源線501を通して互いに接続される。バッテリシステム500においては、複数のバッテリモジュール100の全てのバッテリセル10が直列接続される。複数のバッテリモジュール100の最も高電位のプラス電極10a(図2)に接続される電源線501および複数のバッテリモジュール100の最も低電位のマイナス電極10b(図2)に接続される電源線501は、コンタクタ102を介して電動車両のモータ等の負荷に接続される。 The plurality of battery modules 100 of the battery system 500 are connected to each other through the power line 501. In the battery system 500, all the battery cells 10 of the plurality of battery modules 100 are connected in series. The power supply line 501 connected to the highest potential positive electrode 10a (FIG. 2) of the plurality of battery modules 100 and the power supply line 501 connected to the lowest potential negative electrode 10b (FIG. 2) of the plurality of battery modules 100 are In addition, it is connected to a load such as a motor of an electric vehicle via the contactor 102.
 図21に示すように、各バッテリモジュール100の通信回路24およびバッテリECU101は、通信線560を介して直列に接続される。これにより、各バッテリモジュール100の通信回路24は、他のバッテリモジュール100およびバッテリECU101と通信を行うことができる。通信線560としては、例えばハーネスが用いられる。 As shown in FIG. 21, the communication circuit 24 and the battery ECU 101 of each battery module 100 are connected in series via a communication line 560. Thereby, the communication circuit 24 of each battery module 100 can communicate with the other battery modules 100 and the battery ECU 101. As the communication line 560, for example, a harness is used.
 各バッテリモジュール100の通信回路24は、例えば各バッテリセル10の端子電圧、複数のバッテリセル10に流れる電流およびバッテリモジュール100の温度に関する情報を他のバッテリモジュール100またはバッテリECU101に与える。以下、これらの端子電圧、電流および温度に関する情報をセル情報と呼ぶ。 The communication circuit 24 of each battery module 100 gives information regarding the terminal voltage of each battery cell 10, the current flowing through the plurality of battery cells 10 and the temperature of the battery module 100 to the other battery modules 100 or the battery ECU 101, for example. Hereinafter, information regarding these terminal voltage, current, and temperature is referred to as cell information.
 バッテリECU101は、例えば各バッテリモジュール100の通信回路24から与えられたセル情報に基づいて各バッテリセル10の充電量を算出し、その充電量に基づいて各バッテリモジュール100の充放電制御を行う。また、バッテリECU101は、各バッテリモジュール100の通信回路24から与えられたセル情報に基づいて各バッテリモジュール100の異常を検出する。バッテリモジュール100の異常とは、例えば、バッテリセル10の過放電、過充電または温度異常等である。 The battery ECU 101 calculates the charge amount of each battery cell 10 based on, for example, cell information given from the communication circuit 24 of each battery module 100, and performs charge / discharge control of each battery module 100 based on the charge amount. Further, the battery ECU 101 detects an abnormality of each battery module 100 based on the cell information given from the communication circuit 24 of each battery module 100. The abnormality of the battery module 100 is, for example, overdischarge, overcharge, or temperature abnormality of the battery cell 10.
 なお、本例では、バッテリECU101が上記の各バッテリセル10の充電量の算出ならびにバッテリセル10の過放電、過充電および温度異常等の検出を行うが、これに限定されない。各バッテリモジュール100の通信回路24が、各バッテリセル10の充電量の算出およびバッテリセル10の過放電、過充電または温度異常等の検出を行い、その結果をバッテリECU101に与えてもよい。 In this example, the battery ECU 101 calculates the charge amount of each battery cell 10 and detects overdischarge, overcharge, temperature abnormality, etc. of the battery cell 10, but is not limited thereto. The communication circuit 24 of each battery module 100 may calculate the charge amount of each battery cell 10 and detect overdischarge, overcharge, or temperature abnormality of the battery cell 10, and give the result to the battery ECU 101.
 バッテリモジュール100に接続された電源線501には、コンタクタ102が介挿される。バッテリECU101は、バッテリモジュール100の異常を検出した場合、コンタクタ102をオフする。これにより、異常時には、各バッテリモジュール100に電流が流れないので、バッテリモジュール100の異常発熱が防止される。なお、本例では、バッテリECU101がコンタクタ102のオンおよびオフを制御するが、これに限定されない。通信回路24がコンタクタ102のオンおよびオフを制御してもよい。 The contactor 102 is inserted in the power supply line 501 connected to the battery module 100. When the battery ECU 101 detects an abnormality in the battery module 100, the battery ECU 101 turns off the contactor 102. Thereby, when an abnormality occurs, no current flows through each battery module 100, and thus abnormal heat generation of the battery module 100 is prevented. In this example, the battery ECU 101 controls the ON and OFF of the contactor 102, but is not limited to this. The communication circuit 24 may control on and off of the contactor 102.
 バッテリECU101から主制御部300に各バッテリモジュール100の充電量(バッテリセル10の充電量)が与えられる。主制御部300は、その充電量に基づいて電動車両の動力(例えばモータの回転速度)を制御する。また、各バッテリモジュール100の充電量が少なくなると、主制御部300は、電源線501に接続された図示しない発電装置を制御して各バッテリモジュール100を充電する。 The charge amount of each battery module 100 (charge amount of the battery cell 10) is given from the battery ECU 101 to the main control unit 300. The main control unit 300 controls the power of the electric vehicle (for example, the rotational speed of the motor) based on the amount of charge. When the charge amount of each battery module 100 decreases, the main control unit 300 controls each power generation device (not shown) connected to the power line 501 to charge each battery module 100.
 なお、発電装置は例えば上記の電源線501に接続されたモータである。この場合、モータは、電動車両の加速時にバッテリシステム500から供給された電力を、図示しない駆動輪を駆動するための動力に変換する。また、モータは、電動車両の減速時に回生電力を発生する。この回生電力により各バッテリモジュール100が充電される。 Note that the power generation device is, for example, a motor connected to the power supply line 501 described above. In this case, the motor converts the electric power supplied from the battery system 500 during acceleration of the electric vehicle into motive power for driving drive wheels (not shown). The motor generates regenerative power when the electric vehicle is decelerated. Each battery module 100 is charged by this regenerative power.
 本例において、通信回路24は、電圧検出回路20の検出結果に基づいてSOH(State Of Health:バッテリセル10の寿命)およびSOC等の情報を算出する機能を有してもよい。この場合、通信回路24は、算出したSOHおよびSOCをバッテリECU101に送信する。 In this example, the communication circuit 24 may have a function for calculating information such as SOH (State Of Health: life of the battery cell 10) and SOC based on the detection result of the voltage detection circuit 20. In this case, the communication circuit 24 transmits the calculated SOH and SOC to the battery ECU 101.
 図21のバッテリシステム500は、第1の実施の形態に係るバッテリモジュール100に代えて、第2~第6のいずれかの実施の形態に係るバッテリモジュール100を備えてもよい。 The battery system 500 of FIG. 21 may include the battery module 100 according to any of the second to sixth embodiments instead of the battery module 100 according to the first embodiment.
 (2)第1~第6のいずれかの実施の形態に係るバッテリモジュールを備えるバッテリシステムの効果
 本発明の他の実施の形態に係るバッテリシステムは、1または複数のバッテリモジュールを備え、1または複数のバッテリモジュールのうちの少なくとも1つは、第1~第6のいずれかの実施の形態に係るバッテリモジュールである。
(2) Effect of Battery System Comprising Battery Module According to Any of First to Sixth Embodiments A battery system according to another embodiment of the present invention includes one or a plurality of battery modules. At least one of the plurality of battery modules is the battery module according to any one of the first to sixth embodiments.
 そのバッテリシステムは、上記のバッテリモジュールを少なくとも1つ備える。したがって、バッテリモジュールの配線構造が単純になるとともに配線作業が容易になる。その結果、バッテリシステムの組み立て作業が容易となり、製造コストを十分に低減することができる。 The battery system includes at least one battery module described above. Therefore, the wiring structure of the battery module is simplified and wiring work is facilitated. As a result, the assembly work of the battery system is facilitated, and the manufacturing cost can be sufficiently reduced.
 (3)バッテリシステムの第1の構成例
 図22は、図21のバッテリシステム500の第1の構成例を示す模式的平面図である。図22に示すように、このバッテリシステム500は、4個のバッテリモジュール100、バッテリECU101、コンタクタ102、HV(HighVoltage;高圧)コネクタ520およびサービスプラグ530を備える。各バッテリモジュール100は、第1の実施の形態に係るバッテリモジュール100と同様の構成を有する。
(3) First Configuration Example of Battery System FIG. 22 is a schematic plan view showing a first configuration example of the battery system 500 of FIG. As shown in FIG. 22, the battery system 500 includes four battery modules 100, a battery ECU 101, a contactor 102, an HV (High Voltage) connector 520, and a service plug 530. Each battery module 100 has the same configuration as the battery module 100 according to the first embodiment.
 以下の説明において、4個のバッテリモジュール100をそれぞれバッテリモジュール100a,100b,100c,100dと呼ぶ。また、バッテリモジュール100a,100b,100c,100dにそれぞれ設けられる一対の端面枠92のうちプリント回路基板21が取り付けられる端面枠92を端面枠92Aと呼び、プリント回路基板21が取り付けられない端面枠92を端面枠92Bと呼ぶ。 In the following description, the four battery modules 100 are referred to as battery modules 100a, 100b, 100c, and 100d, respectively. Of the pair of end face frames 92 provided in the battery modules 100a, 100b, 100c, and 100d, the end face frame 92 to which the printed circuit board 21 is attached is called an end face frame 92A, and the end face frame 92 to which the printed circuit board 21 is not attached. Is referred to as an end face frame 92B.
 バッテリモジュール100a,100b,100c,100d、バッテリECU101、コンタクタ102、HVコネクタ520およびサービスプラグ530は、箱型のケーシング550内に収容される。 The battery modules 100a, 100b, 100c, 100d, the battery ECU 101, the contactor 102, the HV connector 520, and the service plug 530 are accommodated in a box-shaped casing 550.
 ケーシング550は、側面部550a,550b,550c,550dを有する。側面部550a,550cは互いに平行であり、側面部550b,550dは互いに平行でありかつ側面550a,550cに対して垂直である。 Casing 550 has side portions 550a, 550b, 550c, and 550d. The side surface portions 550a and 550c are parallel to each other, and the side surface portions 550b and 550d are parallel to each other and perpendicular to the side surfaces 550a and 550c.
 ケーシング550内において、バッテリモジュール100a,100bは、間隔をおいて一列に並ぶように配置される。この場合、バッテリモジュール100aの端面枠92Bとバッテリモジュール100bの端面枠92Aとが互いに向き合うように、バッテリモジュール100a,100bが配置される。 In the casing 550, the battery modules 100a and 100b are arranged in a line at intervals. In this case, the battery modules 100a and 100b are arranged so that the end face frame 92B of the battery module 100a and the end face frame 92A of the battery module 100b face each other.
 バッテリモジュール100c,100dは、間隔をおいて一列に並ぶように配置される。この場合、バッテリモジュール100cの端面枠92Aとバッテリモジュール100dの端面枠92Bとが互いに向き合うように、バッテリモジュール100a,100bが配置される。 Battery modules 100c and 100d are arranged in a line at intervals. In this case, the battery modules 100a and 100b are arranged so that the end face frame 92A of the battery module 100c and the end face frame 92B of the battery module 100d face each other.
 以下、一列に並ぶように配置されたバッテリモジュール100a,100bをモジュール列T1と呼び、一列に並ぶように配置されたバッテリモジュール100c,100dをモジュール列T2と呼ぶ。 Hereinafter, the battery modules 100a and 100b arranged in a row are referred to as a module row T1, and the battery modules 100c and 100d arranged in a row are referred to as a module row T2.
 ケーシング550内において、側面部550aに沿ってモジュール列T1が配置され、モジュール列T1と並列にモジュール列T2が配置される。モジュール列T1において、バッテリモジュール100aの端面枠92Aが側面部550dに向けられ、バッテリモジュール100bの端面枠92Bが側面部550bに向けられる。また、モジュール列T2において、バッテリモジュール100cの端面枠92Bが側面部550dに向けられ、バッテリモジュール100dの端面枠92Aが側面部550bに向けられる。 In the casing 550, the module row T1 is arranged along the side surface portion 550a, and the module row T2 is arranged in parallel with the module row T1. In the module row T1, the end surface frame 92A of the battery module 100a is directed to the side surface portion 550d, and the end surface frame 92B of the battery module 100b is directed to the side surface portion 550b. In the module row T2, the end surface frame 92B of the battery module 100c is directed to the side surface portion 550d, and the end surface frame 92A of the battery module 100d is directed to the side surface portion 550b.
 モジュール列T2と側面部550cとの間の領域に、バッテリECU101、サービスプラグ530、HVコネクタ520およびコンタクタ102がこの順で側面部550dから側面部550bへ並ぶように配置される。 In the region between the module row T2 and the side surface portion 550c, the battery ECU 101, the service plug 530, the HV connector 520, and the contactor 102 are arranged in this order from the side surface portion 550d to the side surface portion 550b.
 バッテリモジュール100a,100b,100c,100dの各々において、端面枠92Aに隣り合うバッテリセル10のプラス電極10a(図2)の電位が最も高く、端面枠92bに隣り合うバッテリセル10のマイナス電極10b(図2)の電位が最も低い。以下、各バッテリモジュール100a~100dにおいて最も電位が高いプラス電極10aを高電位電極10Aと呼び、各バッテリモジュール100a~100dにおいて最も電位が低いマイナス電極10bを低電位電極10Bと呼ぶ。 In each of the battery modules 100a, 100b, 100c, 100d, the potential of the positive electrode 10a (FIG. 2) of the battery cell 10 adjacent to the end face frame 92A is the highest, and the negative electrode 10b of the battery cell 10 adjacent to the end face frame 92b ( The potential in Fig. 2) is the lowest. Hereinafter, the positive electrode 10a having the highest potential in each of the battery modules 100a to 100d is referred to as a high potential electrode 10A, and the negative electrode 10b having the lowest potential in each of the battery modules 100a to 100d is referred to as a low potential electrode 10B.
 各バッテリモジュール100a~100dにおいて、高電位電極10Aに中継部材41の一端部が接続され、端面枠92Aの上面に設けられる中継端子CTに中継部材41の他端部が接続される。また、低電位電極10Bに中継部材41の一端部が接続され、端面枠92Bの上面に設けられる中継端子CTに中継部材41の他端部が接続される。 In each of the battery modules 100a to 100d, one end of the relay member 41 is connected to the high potential electrode 10A, and the other end of the relay member 41 is connected to the relay terminal CT provided on the upper surface of the end face frame 92A. One end of the relay member 41 is connected to the low potential electrode 10B, and the other end of the relay member 41 is connected to the relay terminal CT provided on the upper surface of the end face frame 92B.
 バッテリモジュール100aの低電位電極10Bに接続された中継部材41の他端部とバッテリモジュール100bの高電位電極10Aに接続された中継部材41の他端部とは、中継端子CTおよび電源線D01を介して互いに接続される。 The other end of the relay member 41 connected to the low potential electrode 10B of the battery module 100a and the other end of the relay member 41 connected to the high potential electrode 10A of the battery module 100b are connected to the relay terminal CT and the power supply line D01. Are connected to each other.
 バッテリモジュール100cの高電位電極10Aに接続された中継部材41の他端部とバッテリモジュール100dの低電位電極10Bに接続された中継部材41の他端部とは、中継端子CTおよび電源線D02を介して互いに接続される。 The other end of the relay member 41 connected to the high potential electrode 10A of the battery module 100c and the other end of the relay member 41 connected to the low potential electrode 10B of the battery module 100d are connected to the relay terminal CT and the power line D02. Are connected to each other.
 電源線D01,D02は、図21の複数のバッテリモジュール100間を接続する電源線501に相当する。電源線D01,D02として、ハーネスまたはリード線等が用いられる。 The power lines D01 and D02 correspond to the power lines 501 that connect the battery modules 100 in FIG. A harness, a lead wire, or the like is used as the power supply lines D01 and D02.
 バッテリモジュール100aの高電位電極10Aに接続された中継部材41の他端部は中継端子CTおよび電源線D1を介してサービスプラグ530に接続され、バッテリモジュール100cの低電位電極10Bに接続された中継部材41の他端部は中継端子CTおよび電源線D2を介してサービスプラグ530に接続される。電源線D1,D2は、図21の複数のバッテリモジュール100間を接続する電源線501に相当する。 The other end of the relay member 41 connected to the high potential electrode 10A of the battery module 100a is connected to the service plug 530 via the relay terminal CT and the power supply line D1, and the relay connected to the low potential electrode 10B of the battery module 100c. The other end of the member 41 is connected to the service plug 530 via the relay terminal CT and the power supply line D2. The power supply lines D1 and D2 correspond to the power supply lines 501 that connect the battery modules 100 in FIG.
 サービスプラグ530がオンされた状態では、バッテリモジュール100a,100b,100c,100dが直列接続される。この場合、バッテリモジュール100dの高電位電極10Aの電位が最も高く、バッテリモジュール100bの低電位電極10Bの電位が最も低い。 When the service plug 530 is turned on, the battery modules 100a, 100b, 100c, and 100d are connected in series. In this case, the potential of the high potential electrode 10A of the battery module 100d is the highest, and the potential of the low potential electrode 10B of the battery module 100b is the lowest.
 サービスプラグ530は、例えばバッテリシステム500のメンテナンス時に作業者によりオフされる。サービスプラグ530がオフされた場合には、バッテリモジュール100a,100bからなる直列回路とバッテリモジュール100c,100dからなる直列回路とが電気的に分離される。この場合、複数のバッテリモジュール100a~100d間の電流経路が遮断される。これにより、メンテナンス時の安全性が確保される。 The service plug 530 is turned off by an operator when the battery system 500 is maintained, for example. When the service plug 530 is turned off, the series circuit composed of the battery modules 100a and 100b and the series circuit composed of the battery modules 100c and 100d are electrically separated. In this case, the current path between the plurality of battery modules 100a to 100d is interrupted. This ensures safety during maintenance.
 バッテリモジュール100bの低電位電極10Bに接続された中継部材41の他端部は中継端子CTおよび電源線D3を介してコンタクタ102に接続され、バッテリモジュール100dの高電位電極10Aに接続された中継部材41の他端部は中継端子CTおよび電源線D4を介してコンタクタ102に接続される。コンタクタ102は、電源線D5,D6を介してHVコネクタ520に接続される。HVコネクタ520は、電動車両のモータ等の負荷に接続される。電源線D3,D4は、図21のバッテリモジュール100とコンタクタ102とを接続する電源線501に相当する。電源線D5,D6は、図21のコンタクタ102から外部に延びる電源線501に相当する。 The other end of the relay member 41 connected to the low potential electrode 10B of the battery module 100b is connected to the contactor 102 via the relay terminal CT and the power supply line D3, and the relay member connected to the high potential electrode 10A of the battery module 100d. The other end of 41 is connected to the contactor 102 via the relay terminal CT and the power supply line D4. Contactor 102 is connected to HV connector 520 through power supply lines D5 and D6. The HV connector 520 is connected to a load such as a motor of an electric vehicle. The power supply lines D3 and D4 correspond to the power supply line 501 connecting the battery module 100 and the contactor 102 of FIG. The power supply lines D5 and D6 correspond to the power supply line 501 extending from the contactor 102 in FIG. 21 to the outside.
 コンタクタ102がオンされた状態では、バッテリモジュール100bが電源線D3,D5を介してHVコネクタ520に接続されるとともに、バッテリモジュール100dが電源線D4,D6を介してHVコネクタ520に接続される。それにより、バッテリモジュール100a,100b,100c,100dから負荷に電力が供給される。また、コンタクタ102がオンされた状態で、バッテリモジュール100a,100b,100c,100dの充電が行われる。 In the state where the contactor 102 is turned on, the battery module 100b is connected to the HV connector 520 via the power lines D3 and D5, and the battery module 100d is connected to the HV connector 520 via the power lines D4 and D6. Thereby, electric power is supplied from the battery modules 100a, 100b, 100c, and 100d to the load. In addition, the battery modules 100a, 100b, 100c, and 100d are charged with the contactor 102 turned on.
 コンタクタ102がオフされると、バッテリモジュール100bとHVコネクタ520との接続およびバッテリモジュール100dとHVコネクタ520との接続が遮断される。 When the contactor 102 is turned off, the connection between the battery module 100b and the HV connector 520 and the connection between the battery module 100d and the HV connector 520 are cut off.
 バッテリシステム500のメンテナンス時には、サービスプラグ530とともにコンタクタ102も作業者によりオフされる。この場合、複数のバッテリモジュール100a~100d間の電流経路が確実に遮断される。これにより、メンテナンス時の安全性が十分に確保される。また、各バッテリモジュール100a,100b,100c,100dの電圧が互いに等しい場合には、バッテリモジュール100a,100bからなる直列回路の総電圧とバッテリモジュール100c,100dからなる直列回路の総電圧とが等しくなる。そのため、メンテナンス時にバッテリシステム500内に高い電圧が発生することが防止される。 During maintenance of the battery system 500, the contactor 102 is also turned off by the operator together with the service plug 530. In this case, the current path between the plurality of battery modules 100a to 100d is reliably interrupted. Thereby, safety at the time of maintenance is sufficiently ensured. When the voltages of the battery modules 100a, 100b, 100c, and 100d are equal to each other, the total voltage of the series circuit including the battery modules 100a and 100b is equal to the total voltage of the series circuit including the battery modules 100c and 100d. . This prevents a high voltage from being generated in the battery system 500 during maintenance.
 バッテリモジュール100aのプリント回路基板21(図1等参照)とバッテリモジュール100bのプリント回路基板21とは、通信線P11を介して互いに接続される。バッテリモジュール100aのプリント回路基板21とバッテリモジュール100cのプリント回路基板21とは、通信線P12を介して互いに接続される。バッテリモジュール100cのプリント回路基板21とバッテリモジュール100dのプリント回路基板21とは、通信線P13を介して互いに接続される。バッテリモジュール100bのプリント回路基板21は通信線P14を介してバッテリECU101に接続される。通信線P11~P14は、図21の通信線560に相当する。通信線P11~P14によりバスが構成される。 The printed circuit board 21 (see FIG. 1 and the like) of the battery module 100a and the printed circuit board 21 of the battery module 100b are connected to each other via a communication line P11. The printed circuit board 21 of the battery module 100a and the printed circuit board 21 of the battery module 100c are connected to each other via the communication line P12. The printed circuit board 21 of the battery module 100c and the printed circuit board 21 of the battery module 100d are connected to each other via a communication line P13. The printed circuit board 21 of the battery module 100b is connected to the battery ECU 101 via the communication line P14. The communication lines P11 to P14 correspond to the communication line 560 in FIG. A bus is configured by the communication lines P11 to P14.
 例えば、バッテリモジュール100aの電圧検出回路20により検出されたセル情報は、通信線P11,P14を介してバッテリECU101に与えられる。また、バッテリECU101から通信線P14,P11を介してバッテリモジュール100aのプリント回路基板21に所定の制御信号が与えられる。 For example, the cell information detected by the voltage detection circuit 20 of the battery module 100a is given to the battery ECU 101 via the communication lines P11 and P14. Further, a predetermined control signal is given from the battery ECU 101 to the printed circuit board 21 of the battery module 100a via the communication lines P14 and P11.
 バッテリモジュール100bの電圧検出回路20により検出されたセル情報は、通信線P14を介してバッテリECU101に与えられる。また、バッテリECU101から通信線P14を介してバッテリモジュール100bのプリント回路基板21に所定の制御信号が与えられる。 The cell information detected by the voltage detection circuit 20 of the battery module 100b is given to the battery ECU 101 via the communication line P14. In addition, a predetermined control signal is given from the battery ECU 101 to the printed circuit board 21 of the battery module 100b via the communication line P14.
 バッテリモジュール100cの電圧検出回路20により検出されたセル情報は、通信線P12,P11,P14を介してバッテリECU101に与えられる。また、バッテリECU101から通信線P14,P11,P12を介してバッテリモジュール100cのプリント回路基板21に所定の制御信号が与えられる。 The cell information detected by the voltage detection circuit 20 of the battery module 100c is given to the battery ECU 101 via the communication lines P12, P11, and P14. In addition, a predetermined control signal is given from the battery ECU 101 to the printed circuit board 21 of the battery module 100c through the communication lines P14, P11, and P12.
 バッテリモジュール100dの電圧検出回路20により検出されたセル情報は、通信線P13,P12,P11,P14を介してバッテリECU101に与えられる。また、バッテリECU101から通信線P14,P11,P12,P13を介してバッテリモジュール100dのプリント回路基板21に所定の制御信号が与えられる。 The cell information detected by the voltage detection circuit 20 of the battery module 100d is given to the battery ECU 101 via the communication lines P13, P12, P11, and P14. In addition, a predetermined control signal is given from the battery ECU 101 to the printed circuit board 21 of the battery module 100d through the communication lines P14, P11, P12, and P13.
 上記のバッテリシステム500は、第1の実施の形態に係るバッテリモジュール100を備える。これにより、バッテリモジュール100の配線構造が単純になるとともに配線作業が容易になる。その結果、バッテリシステム500の組み立て作業が容易となり、製造コストを十分に低減することができる。 The battery system 500 includes the battery module 100 according to the first embodiment. This simplifies the wiring structure of the battery module 100 and facilitates wiring work. As a result, the assembly operation of the battery system 500 is facilitated, and the manufacturing cost can be sufficiently reduced.
 特に、このバッテリシステム500においては、サービスプラグ530がバッテリモジュール100a,100cの端面枠92A,92Bの上面上で中継端子CTを介して中継部材41に接続される。また、コンタクタ102がバッテリモジュール100b,100dの端面枠92B,92Aの上面上で中継端子CTを介して中継部材41に接続される。したがって、バッテリモジュール100a~100dにサービスプラグ530およびコンタクタ102を容易に接続することができる。 In particular, in the battery system 500, the service plug 530 is connected to the relay member 41 via the relay terminal CT on the upper surfaces of the end surface frames 92A and 92B of the battery modules 100a and 100c. Further, the contactor 102 is connected to the relay member 41 via the relay terminal CT on the upper surfaces of the end face frames 92B and 92A of the battery modules 100b and 100d. Therefore, service plug 530 and contactor 102 can be easily connected to battery modules 100a to 100d.
 上記に限らず、バッテリシステム500は、第1の実施の形態に係るバッテリモジュール100に代えて第2~第6のいずれかの実施の形態に係るバッテリモジュール100を備えてもよい。この場合においても、バッテリシステム500の組み立て作業が容易となり、製造コストを十分に低減することができる。 Not limited to the above, the battery system 500 may include the battery module 100 according to any one of the second to sixth embodiments instead of the battery module 100 according to the first embodiment. Even in this case, the assembling work of the battery system 500 is facilitated, and the manufacturing cost can be sufficiently reduced.
 (4)バッテリシステムの第2の構成例
 図23は、図21のバッテリシステム500の第2の構成例を示す模式的平面図である。図23のバッテリシステム500について、図22のバッテリシステム500と異なる点を説明する。
(4) Second Configuration Example of Battery System FIG. 23 is a schematic plan view showing a second configuration example of the battery system 500 of FIG. The battery system 500 of FIG. 23 will be described while referring to differences from the battery system 500 of FIG.
 本例では、バッテリモジュール100aの低電位電極10B、バッテリモジュール100bの高電位電極10A、バッテリモジュール100cの高電位電極10Aおよびバッテリモジュール100dの低電位電極10Bに中継部材41が接続されない。 In this example, the relay member 41 is not connected to the low potential electrode 10B of the battery module 100a, the high potential electrode 10A of the battery module 100b, the high potential electrode 10A of the battery module 100c, and the low potential electrode 10B of the battery module 100d.
 バッテリモジュール100aの低電位電極10Bとバッテリモジュール100bの高電位電極10Aとは、電源線D01を介して互いに接続される。バッテリモジュール100cの高電位電極10Aとバッテリモジュール100dの低電位電極10Bとは、電源線D02を介して互いに接続される。 The low potential electrode 10B of the battery module 100a and the high potential electrode 10A of the battery module 100b are connected to each other via the power line D01. The high potential electrode 10A of the battery module 100c and the low potential electrode 10B of the battery module 100d are connected to each other via the power supply line D02.
 本例においても、バッテリモジュール100a,100dでは、高電位電極10Aに中継部材41の一端部が接続され、端面枠92Aの上面に設けられる中継端子CTに中継部材41の他端部が接続される。また、バッテリモジュール100b,100cでは、低電位電極10Bに中継部材41の一端部が接続され、端面枠92Bの上面に設けられる中継端子CTに中継部材41の他端部が接続される。 Also in this example, in the battery modules 100a and 100d, one end of the relay member 41 is connected to the high potential electrode 10A, and the other end of the relay member 41 is connected to the relay terminal CT provided on the upper surface of the end face frame 92A. . In the battery modules 100b and 100c, one end of the relay member 41 is connected to the low potential electrode 10B, and the other end of the relay member 41 is connected to the relay terminal CT provided on the upper surface of the end face frame 92B.
 中継端子CTおよび中継部材41とFPC基板50とは互いに重ならないように配置される。これにより、バッテリモジュール100の配線構造が単純になるとともに配線作業が容易になる。したがって、バッテリシステム500の組み立て作業が容易となり、製造コストを十分に低減することができる。 The relay terminal CT and relay member 41 and the FPC board 50 are arranged so as not to overlap each other. This simplifies the wiring structure of the battery module 100 and facilitates wiring work. Therefore, the assembly work of the battery system 500 is facilitated, and the manufacturing cost can be sufficiently reduced.
 (5)バッテリシステムの第3の構成例
 図24は、図21のバッテリシステム500の第3の構成例を示す模式的平面図である。図24のバッテリシステム500について、図23のバッテリシステム500と異なる点を説明する。
(5) Third Configuration Example of Battery System FIG. 24 is a schematic plan view showing a third configuration example of the battery system 500 of FIG. A difference between the battery system 500 of FIG. 24 and the battery system 500 of FIG. 23 will be described.
 本例では、バッテリモジュール100aの低電位電極10Bとバッテリモジュール100bの高電位電極10Aとは、帯状のバスバーD03を介して互いに接続される。バッテリモジュール100cの高電位電極10Aとバッテリモジュール100dの低電位電極10Bとは、帯状のバスバーD04を介して互いに接続される。バスバーD03,D04は、図21の複数のバッテリモジュール100間を接続する電源線501に相当する。 In this example, the low potential electrode 10B of the battery module 100a and the high potential electrode 10A of the battery module 100b are connected to each other via a strip-shaped bus bar D03. The high potential electrode 10A of the battery module 100c and the low potential electrode 10B of the battery module 100d are connected to each other via a strip-shaped bus bar D04. The bus bars D03 and D04 correspond to the power supply line 501 that connects the battery modules 100 in FIG.
 (6)バッテリシステムの第4の構成例
 図25は、図21のバッテリシステム500の第4の構成例を示す模式的平面図である。図25のバッテリシステム500について、図22のバッテリシステム500と異なる点を説明する。
(6) Fourth Configuration Example of Battery System FIG. 25 is a schematic plan view showing a fourth configuration example of the battery system 500 of FIG. The battery system 500 of FIG. 25 will be described while referring to differences from the battery system 500 of FIG.
 本例では、バッテリモジュール100aの低電位電極10Bおよびバッテリモジュール100dの低電位電極10Bに中継部材41が接続されない。 In this example, the relay member 41 is not connected to the low potential electrode 10B of the battery module 100a and the low potential electrode 10B of the battery module 100d.
 バッテリモジュール100aの低電位電極10Bとバッテリモジュール100bの高電位電極10Aに接続された中継部材41の他端部とは、中継端子CTおよび電源線D01を介して互いに接続される。バッテリモジュール100cの高電位電極10Aに接続された中継部材41の他端部とバッテリモジュール100dの低電位電極10Bとは、中継端子CTおよび電源線D02を介して互いに接続される。 The other end of the relay member 41 connected to the low potential electrode 10B of the battery module 100a and the high potential electrode 10A of the battery module 100b is connected to each other via the relay terminal CT and the power supply line D01. The other end of the relay member 41 connected to the high potential electrode 10A of the battery module 100c and the low potential electrode 10B of the battery module 100d are connected to each other via the relay terminal CT and the power supply line D02.
 (7)バッテリシステムの第5の構成例
 図26は、図21のバッテリシステム500の第5の構成例を示す模式的平面図である。図26のバッテリシステム500について、図23のバッテリシステム500と異なる点を説明する。
(7) Fifth Configuration Example of Battery System FIG. 26 is a schematic plan view showing a fifth configuration example of the battery system 500 of FIG. The battery system 500 of FIG. 26 will be described while referring to differences from the battery system 500 of FIG.
 本例では、モジュール列T1と側面部550aとの間の領域に、バッテリECU101、サービスプラグ530、HVコネクタ520およびコンタクタ102がこの順で側面部550dから側面部550bへ並ぶように配置される。 In this example, the battery ECU 101, the service plug 530, the HV connector 520, and the contactor 102 are arranged in this order from the side surface portion 550d to the side surface portion 550b in the region between the module row T1 and the side surface portion 550a.
 この場合、図23のバッテリシステム500に比べて、バッテリモジュール100bとバッテリECU101との間の距離が短くなる。この場合、バッテリモジュール100bのプリント回路基板21とバッテリECU101とを接続する通信線P14の長さを短くすることができる。これにより、通信線P14が断線しにくくなる。その結果、バッテリシステム500の信頼性が向上する。 In this case, the distance between the battery module 100b and the battery ECU 101 is shorter than that of the battery system 500 of FIG. In this case, the length of the communication line P14 that connects the printed circuit board 21 of the battery module 100b and the battery ECU 101 can be shortened. This makes it difficult for the communication line P14 to be disconnected. As a result, the reliability of the battery system 500 is improved.
 (8)第2、第3および第5の構成例に係るバッテリシステムの効果
 第2、第3および第5の構成例に係るバッテリシステムにおいては、バッテリモジュール100a,100dが第1のバッテリモジュールの例であり、バッテリモジュール100b,100cが第2のバッテリモジュールの例であり、図23および図26の電源線D01,D02ならびに図24のバスバーD03,D04が第2の接続部材の例であり、電力変換部601およびモータ602が外部装置の例であり、コンタクタ102およびサービスプラグ530が開閉装置の例である。
(8) Effects of Battery Systems According to Second, Third, and Fifth Configuration Examples In the battery systems according to the second, third, and fifth configuration examples, the battery modules 100a and 100d are the first battery modules. The battery modules 100b and 100c are examples of the second battery module, the power lines D01 and D02 in FIGS. 23 and 26 and the bus bars D03 and D04 in FIG. 24 are examples of the second connection members, The power conversion unit 601 and the motor 602 are examples of external devices, and the contactor 102 and the service plug 530 are examples of switching devices.
 本発明のさらに他の実施の形態に係るバッテリシステムは、外部装置に接続可能であり、上記のバッテリモジュールからなる第1のバッテリモジュールと、複数のバッテリセルを含む第2のバッテリモジュールと、第1のバッテリモジュールの一のバッテリセルの電極端子と第2のバッテリモジュールの一のバッテリセルの電極端子とを電気的に接続する第2の接続部材と、外部装置と第1および第2のバッテリモジュールとの間の電気的接続を開閉する開閉装置とを備え、第1のバッテリモジュールの中継端子は、開閉装置に接続されるものである。 A battery system according to still another embodiment of the present invention is connectable to an external device, and includes a first battery module including the battery module, a second battery module including a plurality of battery cells, A second connection member that electrically connects an electrode terminal of one battery cell of one battery module and an electrode terminal of one battery cell of the second battery module; an external device; and first and second batteries And an opening / closing device that opens and closes an electrical connection with the module, and the relay terminal of the first battery module is connected to the opening / closing device.
 そのバッテリシステムにおいては、第1のバッテリモジュールの一のバッテリセルの電極端子と第2のバッテリモジュールの一のバッテリセルの電極端子とが第2の接続部材により電気的に接続される。これにより、第1および第2のバッテリモジュールの複数のバッテリセルを直列に接続することができる。 In the battery system, the electrode terminal of one battery cell of the first battery module and the electrode terminal of one battery cell of the second battery module are electrically connected by the second connecting member. Thereby, the some battery cell of a 1st and 2nd battery module can be connected in series.
 第1のバッテリモジュールの中継端子が開閉装置に接続される。この場合、第1のバッテリモジュールが上記のバッテリモジュールからなるので、第1のバッテリモジュールの配線構造が単純になるとともに配線作業が容易になる。その結果、バッテリシステムの組み立て作業が容易となり、製造コストを十分に低減することができる。また、開閉装置を第1のバッテリモジュールの中継端子に容易に接続することができる。 The relay terminal of the first battery module is connected to the switchgear. In this case, since the first battery module is composed of the battery module described above, the wiring structure of the first battery module is simplified and the wiring work is facilitated. As a result, the assembly work of the battery system is facilitated, and the manufacturing cost can be sufficiently reduced. Further, the switchgear can be easily connected to the relay terminal of the first battery module.
 [8]第7の実施の形態
 (1)構成および動作
 以下、第7の実施の形態に係る電動車両について説明する。本実施の形態に係る電動車両は、図21~図26のいずれかのバッテリシステム500を備える。なお、以下では、電動車両の一例として電動自動車を説明する。
[8] Seventh Embodiment (1) Configuration and Operation Hereinafter, an electric vehicle according to a seventh embodiment will be described. The electric vehicle according to the present embodiment includes any one of battery systems 500 shown in FIGS. In the following, an electric vehicle will be described as an example of an electric vehicle.
 図27は、バッテリシステム500を備える電動自動車の構成を示すブロック図である。図27に示すように、本実施の形態に係る電動自動車600は、車体610を備える。車体610に、図21の主制御部300およびバッテリシステム500、電力変換部601、モータ602、駆動輪603、アクセル装置604、ブレーキ装置605、ならびに回転速度センサ606が設けられる。モータ602が交流(AC)モータである場合には、電力変換部601はインバータ回路を含む。 FIG. 27 is a block diagram illustrating a configuration of an electric vehicle including the battery system 500. As shown in FIG. 27, electric vehicle 600 according to the present embodiment includes a vehicle body 610. The vehicle body 610 is provided with the main control unit 300 and the battery system 500, the power conversion unit 601, the motor 602, the drive wheels 603, the accelerator device 604, the brake device 605, and the rotation speed sensor 606 of FIG. When motor 602 is an alternating current (AC) motor, power conversion unit 601 includes an inverter circuit.
 バッテリシステム500は、電力変換部601を介してモータ602に接続されるとともに、主制御部300に接続される。主制御部300には、バッテリシステム500を構成するバッテリECU101(図21)から複数のバッテリモジュール100(図21)の充電量およびバッテリモジュール100に流れる電流値が与えられる。また、主制御部300には、アクセル装置604、ブレーキ装置605および回転速度センサ606が接続される。主制御部300は、例えばCPUおよびメモリ、またはマイクロコンピュータからなる。 The battery system 500 is connected to the motor 602 via the power conversion unit 601 and to the main control unit 300. The main control unit 300 is given a charge amount of the plurality of battery modules 100 (FIG. 21) and a current value flowing through the battery modules 100 from the battery ECU 101 (FIG. 21) constituting the battery system 500. In addition, an accelerator device 604, a brake device 605, and a rotation speed sensor 606 are connected to the main control unit 300. The main control unit 300 includes, for example, a CPU and a memory, or a microcomputer.
 アクセル装置604は、電動自動車600が備えるアクセルペダル604aと、アクセルペダル604aの操作量(踏み込み量)を検出するアクセル検出部604bとを含む。運転者によりアクセルペダル604aが操作されると、アクセル検出部604bは、運転者により操作されていない状態を基準としてアクセルペダル604aの操作量を検出する。検出されたアクセルペダル604aの操作量が主制御部300に与えられる。 The accelerator device 604 includes an accelerator pedal 604a included in the electric automobile 600 and an accelerator detection unit 604b that detects an operation amount (depression amount) of the accelerator pedal 604a. When the accelerator pedal 604a is operated by the driver, the accelerator detector 604b detects the operation amount of the accelerator pedal 604a based on a state where the driver is not operated. The detected operation amount of the accelerator pedal 604a is given to the main controller 300.
 ブレーキ装置605は、電動自動車600が備えるブレーキペダル605aと、運転者によるブレーキペダル605aの操作量(踏み込み量)を検出するブレーキ検出部605bとを含む。運転者によりブレーキペダル605aが操作されると、ブレーキ検出部605bによりその操作量が検出される。検出されたブレーキペダル605aの操作量が主制御部300に与えられる。回転速度センサ606は、モータ602の回転速度を検出する。検出された回転速度は、主制御部300に与えられる。 The brake device 605 includes a brake pedal 605a included in the electric automobile 600 and a brake detection unit 605b that detects an operation amount (depression amount) of the brake pedal 605a by the driver. When the brake pedal 605a is operated by the driver, the operation amount is detected by the brake detection unit 605b. The detected operation amount of the brake pedal 605a is given to the main control unit 300. The rotation speed sensor 606 detects the rotation speed of the motor 602. The detected rotation speed is given to the main control unit 300.
 上記のように、主制御部300には、バッテリモジュール100の充電量、バッテリモジュール100を流れる電流値、アクセルペダル604aの操作量、ブレーキペダル605aの操作量、およびモータ602の回転速度が与えられる。主制御部300は、これらの情報に基づいてバッテリモジュール100の充放電制御および電力変換部601の電力変換制御を行う。例えば、アクセル操作に基づく電動自動車600の発進時および加速時には、バッテリシステム500から電力変換部601にバッテリモジュール100の電力が供給される。 As described above, the main controller 300 is given the charge amount of the battery module 100, the current value flowing through the battery module 100, the operation amount of the accelerator pedal 604a, the operation amount of the brake pedal 605a, and the rotation speed of the motor 602. . The main control unit 300 performs charge / discharge control of the battery module 100 and power conversion control of the power conversion unit 601 based on these pieces of information. For example, the electric power of the battery module 100 is supplied from the battery system 500 to the power conversion unit 601 when the electric automobile 600 is started and accelerated based on the accelerator operation.
 さらに、主制御部300は、与えられたアクセルペダル604aの操作量に基づいて、駆動輪603に伝達すべき回転力(指令トルク)を算出し、その指令トルクに基づく制御信号を電力変換部601に与える。 Further, the main control unit 300 calculates a rotational force (command torque) to be transmitted to the drive wheels 603 based on the given operation amount of the accelerator pedal 604a, and outputs a control signal based on the command torque to the power conversion unit 601. To give.
 上記の制御信号を受けた電力変換部601は、バッテリシステム500から供給された電力を、駆動輪603を駆動するために必要な電力(駆動電力)に変換する。これにより、電力変換部601により変換された駆動電力がモータ602に供給され、その駆動電力に基づくモータ602の回転力が駆動輪603に伝達される。 The power conversion unit 601 that has received the control signal converts the power supplied from the battery system 500 into power (drive power) necessary for driving the drive wheels 603. As a result, the driving power converted by the power converter 601 is supplied to the motor 602, and the rotational force of the motor 602 based on the driving power is transmitted to the driving wheels 603.
 一方、ブレーキ操作に基づく電動自動車600の減速時には、モータ602は発電装置として機能する。この場合、電力変換部601は、モータ602により発生された回生電力をバッテリモジュール100の充電に適した電力に変換し、バッテリモジュール100に与える。それにより、バッテリモジュール100が充電される。 On the other hand, when the electric automobile 600 is decelerated based on the brake operation, the motor 602 functions as a power generator. In this case, the power conversion unit 601 converts the regenerative power generated by the motor 602 into power suitable for charging the battery module 100 and supplies the power to the battery module 100. Thereby, the battery module 100 is charged.
 (2)第7の実施の形態の効果
 上記のように、本実施の形態に係る電動自動車600は、図21~図26のいずれかのバッテリシステム500を備える。バッテリシステム500には、第1~第6のいずれかの実施の形態に係るバッテリモジュールが設けられる。
(2) Effect of Seventh Embodiment As described above, the electric automobile 600 according to the present embodiment includes the battery system 500 of any of FIGS. The battery system 500 is provided with a battery module according to any one of the first to sixth embodiments.
 この場合、バッテリモジュール100の配線構造が単純になるとともに配線作業が容易になる。その結果、電動自動車600の組み立て作業が容易となり、製造コストを十分に低減することができる。また、電動自動車600のメンテナンスも容易になる。 In this case, the wiring structure of the battery module 100 is simplified and wiring work is facilitated. As a result, the assembly work of the electric automobile 600 becomes easy, and the manufacturing cost can be sufficiently reduced. In addition, maintenance of the electric vehicle 600 is facilitated.
 (3)第7の実施の形態に係る電動車両の効果
 本発明のさらに他の実施の形態に係る電動車両は、上記のバッテリシステムと、バッテリシステムからの電力により駆動されるモータと、モータの回転力により回転する駆動輪とを備えるものである。
(3) Effect of Electric Vehicle According to Seventh Embodiment An electric vehicle according to still another embodiment of the present invention includes the above battery system, a motor driven by electric power from the battery system, And a drive wheel that is rotated by a rotational force.
 その電動車両においては、上記のバッテリシステムからの電力によりモータが駆動される。そのモータの回転力により駆動輪が回転することにより、電動車両が移動する。 In the electric vehicle, the motor is driven by the electric power from the battery system. The drive wheel is rotated by the rotational force of the motor to move the electric vehicle.
 この場合、バッテリモジュールの配線構造が単純になるとともに配線作業が容易になる。その結果、電動車両の組み立て作業が容易となり、製造コストを十分に低減することができる。また、電動車両のメンテナンスも容易になる。 In this case, the wiring structure of the battery module is simplified and wiring work is facilitated. As a result, the assembly work of the electric vehicle is facilitated, and the manufacturing cost can be sufficiently reduced. In addition, maintenance of the electric vehicle is facilitated.
 (4)他の移動体
 図21~図26のいずれかのバッテリシステム500が船、航空機、エレベータまたは歩行ロボット等の他の移動体に搭載されてもよい。
(4) Other Mobile Body The battery system 500 of any of FIGS. 21 to 26 may be mounted on another mobile body such as a ship, an aircraft, an elevator, or a walking robot.
 バッテリシステム500が搭載された船は、例えば、図27の車体610の代わりに船体を備え、駆動輪603の代わりにスクリューを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。運転者は、船体を加速させる際にアクセル装置604の代わりに加速入力部を操作し、船体を減速させる際にブレーキ装置605の代わりに減速入力部を操作する。この場合、船体が移動本体部に相当し、モータが動力源に相当し、スクリューが駆動部に相当する。なお、船は、減速入力部を備えなくてもよい。この場合、運転者が加速入力部を操作して船体の加速を停止することにより、水の抵抗によって船体が減速する。このような構成において、モータがバッテリシステム500からの電力を受けてその電力を動力に変換し、変換された動力によってスクリューが回転されることにより船体が移動する。 A ship equipped with the battery system 500 includes, for example, a hull instead of the vehicle body 610 in FIG. 27, a screw instead of the drive wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. Instead, a deceleration input unit is provided. The driver operates the acceleration input unit instead of the accelerator device 604 when accelerating the hull, and operates the deceleration input unit instead of the brake device 605 when decelerating the hull. In this case, the hull corresponds to the moving main body, the motor corresponds to the power source, and the screw corresponds to the drive unit. The ship does not have to include a deceleration input unit. In this case, when the driver operates the acceleration input unit to stop the acceleration of the hull, the hull is decelerated due to the resistance of water. In such a configuration, the motor receives electric power from the battery system 500 and converts the electric power into power, and the hull moves by rotating the screw with the converted power.
 同様に、バッテリシステム500が搭載された航空機は、例えば、図27の車体610の代わりに機体を備え、駆動輪603の代わりにプロペラを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。この場合、機体が移動本体部に相当し、モータが動力源に相当し、プロペラが駆動部に相当する。なお、航空機は、減速入力部を備えなくてもよい。この場合、運転者が加速入力部を操作して加速を停止することにより、空気抵抗によって機体が減速する。このような構成において、モータがバッテリシステム500からの電力を受けてその電力を動力に変換し、変換された動力によってプロペラが回転されることにより機体が移動する。 Similarly, an aircraft equipped with the battery system 500 includes, for example, a fuselage instead of the vehicle body 610 of FIG. 27, a propeller instead of the drive wheels 603, an acceleration input unit instead of the accelerator device 604, and a brake. A deceleration input unit is provided instead of the device 605. In this case, the airframe corresponds to the moving main body, the motor corresponds to the power source, and the propeller corresponds to the drive unit. Note that the aircraft may not include a deceleration input unit. In this case, when the driver operates the acceleration input unit to stop the acceleration, the airframe decelerates due to the air resistance. In such a configuration, the motor receives electric power from the battery system 500 and converts the electric power into motive power, and the propeller is rotated by the converted motive power, whereby the airframe moves.
 バッテリシステム500が搭載されたエレベータは、例えば、図27の車体610の代わりに籠を備え、駆動輪603の代わりに籠に取り付けられる昇降用ロープを備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。この場合、籠が移動本体部に相当し、モータが動力源に相当し、昇降用ロープが駆動部に相当する。このような構成において、モータがバッテリシステム500からの電力を受けてその電力を動力に変換し、変換された動力によって昇降用ロープが巻き上げられることにより籠が昇降する。 The elevator equipped with the battery system 500 includes, for example, a saddle instead of the vehicle body 610 in FIG. 27, a lifting rope attached to the saddle instead of the driving wheel 603, and an acceleration input unit instead of the accelerator device 604. And a deceleration input unit instead of the brake device 605. In this case, the kite corresponds to the moving main body, the motor corresponds to the power source, and the lifting rope corresponds to the drive unit. In such a configuration, the motor receives electric power from the battery system 500 and converts the electric power into motive power, and the elevating rope is wound up by the converted motive power, so that the kite moves up and down.
 バッテリシステム500が搭載された歩行ロボットは、例えば、図27の車体610の代わりに胴体を備え、駆動輪603の代わりに足を備え、アクセル装置604の代わりに加速入力部を備え、ブレーキ装置605の代わりに減速入力部を備える。この場合、胴体が移動本体部に相当し、モータが動力源に相当し、足が駆動部に相当する。このような構成において、モータがバッテリシステム500からの電力を受けてその電力を動力に変換し、変換された動力によって足が駆動されることにより胴体が移動する。 A walking robot equipped with the battery system 500 includes, for example, a torso instead of the vehicle body 610 in FIG. 27, a foot instead of the driving wheel 603, an acceleration input unit instead of the accelerator device 604, and a brake device 605. A deceleration input unit is provided instead of. In this case, the body corresponds to the moving main body, the motor corresponds to the power source, and the foot corresponds to the drive unit. In such a configuration, the motor receives electric power from the battery system 500 and converts the electric power into power, and the torso moves by driving the foot with the converted power.
 このように、バッテリシステム500が搭載された移動体においては、動力源がバッテリシステム500からの電力を受けてその電力を動力に変換し、駆動部が動力源により変換された動力により移動本体部を移動させる。 As described above, in the moving body on which the battery system 500 is mounted, the power source receives power from the battery system 500 and converts the power into power, and the drive unit is moved by the power converted by the power source. Move.
 (5)他の移動体についての効果
 このような種々の移動体においても、図21~図26のいずれかのバッテリシステム500が設けられる。バッテリシステム500には、第1~第6のいずれかの実施の形態に係るバッテリモジュールが設けられる。これにより、移動体の組み立て作業が容易となり、製造コストを十分に低減することができる。また、移動体のメンテナンスも容易になる。
(5) Effects on Other Moving Objects The battery system 500 of any of FIGS. 21 to 26 is also provided in such various moving objects. The battery system 500 is provided with a battery module according to any one of the first to sixth embodiments. Thereby, the assembly work of a moving body becomes easy and manufacturing cost can fully be reduced. In addition, maintenance of the moving body is facilitated.
 (6)第7の実施の形態に係る移動体の効果
 本発明のさらに他の実施の形態に係る移動体は、上記のバッテリシステムと、移動本体部と、バッテリシステムからの電力を移動本体部を移動させるための動力に変換する動力源と、動力源により変換された動力により移動本体部を移動させる駆動部とを備えるものである。
(6) Effects of moving body according to seventh embodiment A moving body according to still another embodiment of the present invention is configured to transfer the power from the battery system, the moving main body, and the battery system to the moving main body. A power source that converts the power into the power for moving the motor and a drive unit that moves the moving main body by the power converted by the power source.
 その移動体においては、上記のバッテリシステムからの電力が動力源により動力に変換され、その動力により移動本体部が移動する。 In the moving body, the electric power from the battery system is converted into power by the power source, and the moving main body moves by the power.
 その移動体には、上記のバッテリシステムが用いられるので、バッテリモジュールの配線構造が単純になるとともに配線作業が容易になる。その結果、移動体の組み立て作業が容易となり、製造コストを十分に低減することができる。また、移動体のメンテナンスも容易になる。 Since the above battery system is used for the moving body, the wiring structure of the battery module is simplified and the wiring work is facilitated. As a result, the assembly work of the moving body is facilitated, and the manufacturing cost can be sufficiently reduced. In addition, maintenance of the moving body is facilitated.
 [9]第8の実施の形態
 第8の実施の形態に係る電源装置について説明する。本実施の形態に係る電源装置は、図21~図26のいずれかのバッテリシステム500を備える。
[9] Eighth Embodiment A power supply device according to an eighth embodiment will be described. The power supply apparatus according to the present embodiment includes any one of the battery systems 500 shown in FIGS.
 (1)構成および動作
 図28は、バッテリシステム500を備える電源装置の構成を示すブロック図である。図28に示すように、電源装置700は、電力貯蔵装置710および電力変換装置720を備える。電力貯蔵装置710は、バッテリシステム群711およびシステムコントローラ712を備える。バッテリシステム群711は、図21~図26のいずれかのバッテリシステム500を含む。複数のバッテリシステム500間において、複数のバッテリシステム500は互いに並列に接続されてもよく、または互いに直列に接続されてもよい。複数のバッテリシステム500は、直列および並列の組み合わせにより接続されてもよい。例えば、直列に接続された複数のバッテリシステム500からなるサブシステム群が互いに並列に接続されてもよい。
(1) Configuration and Operation FIG. 28 is a block diagram illustrating a configuration of a power supply device including a battery system 500. As illustrated in FIG. 28, the power supply device 700 includes a power storage device 710 and a power conversion device 720. The power storage device 710 includes a battery system group 711 and a system controller 712. The battery system group 711 includes any one of the battery systems 500 shown in FIGS. Among the plurality of battery systems 500, the plurality of battery systems 500 may be connected to each other in parallel, or may be connected to each other in series. The plurality of battery systems 500 may be connected by a combination of series and parallel. For example, a subsystem group including a plurality of battery systems 500 connected in series may be connected in parallel to each other.
 システムコントローラ712は、システム制御部の例であり、例えばCPUおよびメモリ、またはマイクロコンピュータからなる。システムコントローラ712は、各バッテリシステム500のバッテリECU101(図21参照)に接続される。各バッテリシステム500のバッテリECU101は、各バッテリセル10の端子電圧に基づいて各バッテリセル10の充電量を算出し、算出された充電量をシステムコントローラ712に与える。システムコントローラ712は、各バッテリECU101から与えられた各バッテリセル10の充電量に基づいて電力変換装置720を制御することにより、各バッテリシステム500に含まれる複数のバッテリセル10の放電または充電に関する制御を行う。 The system controller 712 is an example of a system control unit, and includes, for example, a CPU and a memory, or a microcomputer. The system controller 712 is connected to the battery ECU 101 (see FIG. 21) of each battery system 500. The battery ECU 101 of each battery system 500 calculates the charge amount of each battery cell 10 based on the terminal voltage of each battery cell 10, and gives the calculated charge amount to the system controller 712. The system controller 712 controls the power conversion device 720 based on the charge amount of each battery cell 10 given from each battery ECU 101, thereby controlling the discharge or charging of the plurality of battery cells 10 included in each battery system 500. I do.
 電力変換装置720は、DC/DC(直流/直流)コンバータ721およびDC/AC(直流/交流)インバータ722を含む。DC/DCコンバータ721は入出力端子721a,721bを有し、DC/ACインバータ722は入出力端子722a,722bを有する。DC/DCコンバータ721の入出力端子721aは電力貯蔵装置710のバッテリシステム群711に接続される。DC/DCコンバータ721の入出力端子721bおよびDC/ACインバータ722の入出力端子722aは互いに接続されるとともに電力出力部PU1に接続される。DC/ACインバータ722の入出力端子722bは電力出力部PU2に接続されるとともに他の電力系統に接続される。電力出力部PU1,PU2は例えばコンセントを含む。電力出力部PU1,PU2には、例えば種々の負荷が接続される。他の電力系統は、例えば商用電源または太陽電池を含む。電力出力部PU1,PU2および他の電力系統が電源装置に接続される外部の例である。 The power converter 720 includes a DC / DC (DC / DC) converter 721 and a DC / AC (DC / AC) inverter 722. The DC / DC converter 721 has input / output terminals 721a and 721b, and the DC / AC inverter 722 has input / output terminals 722a and 722b. The input / output terminal 721 a of the DC / DC converter 721 is connected to the battery system group 711 of the power storage device 710. The input / output terminal 721b of the DC / DC converter 721 and the input / output terminal 722a of the DC / AC inverter 722 are connected to each other and to the power output unit PU1. The input / output terminal 722b of the DC / AC inverter 722 is connected to the power output unit PU2 and to another power system. The power output units PU1, PU2 include, for example, outlets. For example, various loads are connected to the power output units PU1 and PU2. Other power systems include, for example, commercial power sources or solar cells. This is an external example in which power output units PU1, PU2 and another power system are connected to a power supply device.
 DC/DCコンバータ721およびDC/ACインバータ722がシステムコントローラ712によって制御されることにより、バッテリシステム群711に含まれる複数のバッテリセル10の放電および充電が行われる。 The DC / DC converter 721 and the DC / AC inverter 722 are controlled by the system controller 712, whereby the plurality of battery cells 10 included in the battery system group 711 are discharged and charged.
 バッテリシステム群711の放電時には、バッテリシステム群711から与えられる電力がDC/DCコンバータ721によりDC/DC(直流/直流)変換され、さらにDC/ACインバータ722によりDC/AC(直流/交流)変換される。 When the battery system group 711 is discharged, power supplied from the battery system group 711 is DC / DC (direct current / direct current) converted by the DC / DC converter 721, and further DC / AC (direct current / alternating current) conversion is performed by the DC / AC inverter 722. Is done.
 DC/DCコンバータ721によりDC/DC変換された電力が電力出力部PU1に供給される。DC/ACインバータ722によりDC/AC変換された電力が電力出力部PU2に供給される。電力出力部PU1から外部に直流の電力が出力され、電力出力部PU2から外部に交流の電力が出力される。DC/ACインバータ722により交流に変換された電力が他の電力系統に供給されてもよい。 The power DC / DC converted by the DC / DC converter 721 is supplied to the power output unit PU1. The power DC / AC converted by the DC / AC inverter 722 is supplied to the power output unit PU2. DC power is output to the outside from the power output unit PU1, and AC power is output to the outside from the power output unit PU2. The electric power converted into alternating current by the DC / AC inverter 722 may be supplied to another electric power system.
 システムコントローラ712は、各バッテリシステム500に含まれる複数のバッテリセル10の放電に関する制御の一例として、次の制御を行う。バッテリシステム群711の放電時に、システムコントローラ712は、各バッテリECU101(図21参照)から与えられる各バッテリセル10の充電量に基づいて放電を停止するか否かを判定し、判定結果に基づいて電力変換装置720を制御する。具体的には、バッテリシステム群711に含まれる複数のバッテリセル10のうちいずれかのバッテリセル10の充電量が予め定められたしきい値よりも小さくなると、システムコントローラ712は、放電が停止されるまたは放電電流(または放電電力)が制限されるようにDC/DCコンバータ721およびDC/ACインバータ722を制御する。これにより、各バッテリセル10の過放電が防止される。 The system controller 712 performs the following control as an example of control related to the discharge of the plurality of battery cells 10 included in each battery system 500. When the battery system group 711 is discharged, the system controller 712 determines whether or not to stop discharging based on the charge amount of each battery cell 10 given from each battery ECU 101 (see FIG. 21), and based on the determination result. The power converter 720 is controlled. Specifically, when the charge amount of any one of the plurality of battery cells 10 included in the battery system group 711 becomes smaller than a predetermined threshold value, the system controller 712 stops discharging. Or the DC / DC converter 721 and the DC / AC inverter 722 are controlled so that the discharge current (or discharge power) is limited. Thereby, overdischarge of each battery cell 10 is prevented.
 一方、バッテリシステム群711の充電時には、他の電力系統から与えられる交流の電力がDC/ACインバータ722によりAC/DC(交流/直流)変換され、さらにDC/DCコンバータ721によりDC/DC(直流/直流)変換される。DC/DCコンバータ721からバッテリシステム群711に電力が与えられることにより、バッテリシステム群711に含まれる複数のバッテリセル10が充電される。 On the other hand, when the battery system group 711 is charged, AC power supplied from another power system is AC / DC (AC / DC) converted by the DC / AC inverter 722, and further DC / DC (DC) is converted by the DC / DC converter 721. / DC) converted. When power is supplied from the DC / DC converter 721 to the battery system group 711, the plurality of battery cells 10 included in the battery system group 711 are charged.
 システムコントローラ712は、各バッテリシステム500に含まれる複数のバッテリセル10の充電に関する制御の一例として、次の制御を行う。バッテリシステム群711の充電時に、システムコントローラ712は、各バッテリECU101(図21参照)から与えられる各バッテリセル10の充電量に基づいて充電を停止するか否かを判定し、判定結果に基づいて電力変換装置720を制御する。具体的には、バッテリシステム群711に含まれる複数のバッテリセル10のうちいずれかのバッテリセル10の充電量が予め定められたしきい値よりも大きくなると、システムコントローラ712は、充電が停止されるまたは充電電流(または充電電力)が制限されるようにDC/DCコンバータ721およびDC/ACインバータ722を制御する。これにより、各バッテリセル10の過充電が防止される。 The system controller 712 performs the following control as an example of control related to charging of the plurality of battery cells 10 included in each battery system 500. When charging the battery system group 711, the system controller 712 determines whether or not to stop charging based on the charge amount of each battery cell 10 given from each battery ECU 101 (see FIG. 21), and based on the determination result. The power converter 720 is controlled. Specifically, when the charge amount of any one of the plurality of battery cells 10 included in the battery system group 711 exceeds a predetermined threshold value, the system controller 712 stops charging. Or the DC / DC converter 721 and the DC / AC inverter 722 are controlled such that the charging current (or charging power) is limited. Thereby, overcharge of each battery cell 10 is prevented.
 (2)第8の実施の形態の効果
 (2-1)
 上記のように、本実施の形態に係る電源装置700には、図21~図26のいずれかのバッテリシステム500が設けられる。バッテリシステム500には、第1~第6のいずれかの実施の形態に係るバッテリモジュールが設けられる。これにより、電源装置700の組み立て作業が容易となり、製造コストを十分に低減することができる。また、電源装置700のメンテナンスも容易になる。
(2) Effects of the eighth embodiment (2-1)
As described above, power supply device 700 according to the present embodiment is provided with battery system 500 of any of FIGS. The battery system 500 is provided with a battery module according to any one of the first to sixth embodiments. Thereby, the assembly work of the power supply apparatus 700 becomes easy, and the manufacturing cost can be sufficiently reduced. In addition, maintenance of the power supply device 700 is facilitated.
 (2-2)
 本実施の形態においては、システムコントローラ712がシステム制御部の例である。
(2-2)
In the present embodiment, the system controller 712 is an example of a system control unit.
 本発明のさらに他の実施の形態に係る電力貯蔵装置は、上記のバッテリシステムと、バッテリシステムのバッテリモジュールの充電または放電に関する制御を行うシステム制御部とを備えるものである。 A power storage device according to still another embodiment of the present invention includes the above-described battery system and a system control unit that performs control related to charging or discharging of a battery module of the battery system.
 その電力貯蔵装置においては、システム制御部により、バッテリモジュールの充電または放電に関する制御が行われる。それにより、バッテリモジュールの劣化、過放電および過充電を防止することができる。 In the power storage device, control related to charging or discharging of the battery module is performed by the system control unit. Thereby, deterioration, overdischarge, and overcharge of the battery module can be prevented.
 その電力貯蔵装置には、上記のバッテリシステムが用いられるので、バッテリモジュールの配線構造が単純になるとともに配線作業が容易になる。その結果、電力貯蔵装置の組み立て作業が容易となり、製造コストを十分に低減することができる。また、電力貯蔵装置のメンテナンスも容易になる。 Since the above battery system is used for the power storage device, the wiring structure of the battery module is simplified and the wiring work is facilitated. As a result, the assembly work of the power storage device is facilitated, and the manufacturing cost can be sufficiently reduced. In addition, maintenance of the power storage device is facilitated.
 本発明のさらに他の実施の形態に係る電源装置は、外部に接続可能であり、上記の電力貯蔵装置と、電力貯蔵装置のシステム制御部により制御され、電力貯蔵装置のバッテリシステムのバッテリモジュールと外部との間で電力変換を行う電力変換装置とを備えるものである。 A power supply device according to still another embodiment of the present invention is connectable to the outside, and is controlled by the above-described power storage device and a system control unit of the power storage device, and a battery module of the battery system of the power storage device And a power conversion device that performs power conversion with the outside.
 その電源装置においては、バッテリモジュールと外部との間で電力変換装置により電力変換が行われる。電力変換装置が電力貯蔵装置のシステム制御部により制御されることにより、バッテリモジュールの充電または放電に関する制御が行われる。それにより、バッテリモジュールの劣化、過放電および過充電を防止することができる。 In the power supply device, power conversion is performed between the battery module and the outside by the power conversion device. Control related to charging or discharging of the battery module is performed by controlling the power conversion device by the system control unit of the power storage device. Thereby, deterioration, overdischarge, and overcharge of the battery module can be prevented.
 その電源装置には、上記のバッテリシステムが用いられるので、バッテリモジュールの配線構造が単純になるとともに配線作業が容易になる。その結果、電源装置の組み立て作業が容易となり、製造コストを十分に低減することができる。また、電源装置のメンテナンスも容易になる。 Since the above battery system is used for the power supply device, the wiring structure of the battery module is simplified and the wiring work is facilitated. As a result, the assembly work of the power supply device is facilitated, and the manufacturing cost can be sufficiently reduced. In addition, maintenance of the power supply device is facilitated.
 (3)電源装置の変形例
 図28の電源装置700において、各バッテリシステム500にバッテリECU101が設けられる代わりに、システムコントローラ712がバッテリECU101と同様の機能を有してもよい。
(3) Modification of Power Supply Device In the power supply device 700 of FIG. 28, the system controller 712 may have the same function as that of the battery ECU 101 instead of the battery ECU 101 provided in each battery system 500.
 電源装置700と外部との間で互いに電力を供給可能であれば、電力変換装置720がDC/DCコンバータ721およびDC/ACインバータ722のうちいずれか一方のみを有してもよい。また、電源装置700と外部との間で互いに電力を供給可能であれば、電力変換装置720が設けられなくてもよい。 As long as power can be supplied between the power supply apparatus 700 and the outside, the power conversion apparatus 720 may include only one of the DC / DC converter 721 and the DC / AC inverter 722. Further, the power conversion device 720 may not be provided as long as power can be supplied between the power supply device 700 and the outside.
 図28の電源装置700においては、複数のバッテリシステム500が設けられるが、これに限らず、1つのバッテリシステム500のみが設けられてもよい。 28, a plurality of battery systems 500 are provided, but not limited to this, only one battery system 500 may be provided.
 [10]その他の実施の形態
 (1)上記実施の形態において、複数のバッテリセル10に直列にシャント抵抗が接続され、プリント回路基板21上にバッテリモジュール100を流れる電流を検出するための電流検出回路が実装されてもよい。例えば、シャント抵抗として1つのバスバー40が用いられる場合には、1つのバスバー40と電流検出回路とが導体線を介して接続される。電流検出回路においては、例えばA/D変換器によりシャント抵抗の両端の電圧がデジタル値に変換される。変換されたデジタル値がシャント抵抗の抵抗値で除算される。これにより、バッテリモジュール100を流れる電流の値が算出される。本例においては、シャント抵抗と電流検出回路とを接続する導体線が、第1、第2、第4、第5および第6の実施の形態の2枚のFPC基板50のいずれかに形成される。または、シャント抵抗と電流検出回路とを接続する導体線を含む配線が、第3の実施の形態の複数のガイドフックgに保持される。
[10] Other Embodiments (1) In the above embodiment, a shunt resistor is connected in series to the plurality of battery cells 10, and current detection for detecting the current flowing through the battery module 100 on the printed circuit board 21. A circuit may be implemented. For example, when one bus bar 40 is used as a shunt resistor, one bus bar 40 and a current detection circuit are connected via a conductor line. In the current detection circuit, for example, the voltage across the shunt resistor is converted into a digital value by an A / D converter. The converted digital value is divided by the resistance value of the shunt resistor. Thereby, the value of the current flowing through the battery module 100 is calculated. In this example, the conductor line that connects the shunt resistor and the current detection circuit is formed on one of the two FPC boards 50 of the first, second, fourth, fifth, and sixth embodiments. The Or the wiring containing the conductor wire which connects a shunt resistance and a current detection circuit is hold | maintained at the several guide hook g of 3rd Embodiment.
 (2)プリント回路基板21には、複数のバッテリセル10の均等化を行う均等化回路が実装されてもよい。均等化回路は、複数のバッテリセル10にそれぞれ対応するように設けられる。各均等化回路は、例えば抵抗およびスイッチング素子の直列回路または充電器で構成される。この場合、例えば図21のバッテリECU101が複数の均等化回路のスイッチング素子または充電器を制御する。これにより、複数のバッテリセル10の充電状態を調整する均等化処理が行われる。 (2) On the printed circuit board 21, an equalization circuit for equalizing the plurality of battery cells 10 may be mounted. The equalization circuit is provided so as to correspond to each of the plurality of battery cells 10. Each equalizing circuit is constituted by, for example, a series circuit of a resistor and a switching element or a charger. In this case, for example, the battery ECU 101 in FIG. 21 controls the switching elements or chargers of the plurality of equalization circuits. Thereby, the equalization process which adjusts the charge condition of the some battery cell 10 is performed.
 充電状態は、端子電圧、SOC(充電率)、残容量、開放電圧、放電深度、電流積算値または蓄電量差を含む。上記の実施の形態では、複数のバッテリセル10の充電状態は複数のバッテリセル10の端子電圧である。 The state of charge includes terminal voltage, SOC (charge rate), remaining capacity, open circuit voltage, depth of discharge, integrated current value, or difference in charged amount. In the above embodiment, the charge state of the plurality of battery cells 10 is the terminal voltage of the plurality of battery cells 10.
 (3)上記の実施の形態ではバッテリモジュールを構成するバッテリセルとして、扁平な略直方体形状を有するバッテリセル10が用いられる。これに限らず、バッテリモジュール100を構成するバッテリセル10としては、ラミネート型のバッテリセルを用いることもできる。 (3) In the above embodiment, the battery cell 10 having a flat and substantially rectangular parallelepiped shape is used as the battery cell constituting the battery module. Not only this but the battery cell 10 which comprises the battery module 100 can also use a laminate-type battery cell.
 ラミネート型のバッテリセルは例えば次のように作製される。まず、セパレータを挟んでプラス電極およびマイナス電極が配置された要素を樹脂製のフィルムからなる袋内に収容する。続いて、要素が収容された袋を密閉し、形成された密閉空間に電解液を注入する。これにより、ラミネート型のバッテリセルが完成する。 The laminate type battery cell is manufactured as follows, for example. First, an element in which a plus electrode and a minus electrode are arranged with a separator interposed therebetween is accommodated in a bag made of a resin film. Subsequently, the bag in which the element is accommodated is sealed, and the electrolytic solution is injected into the formed sealed space. Thereby, a laminate-type battery cell is completed.
 さらに、バッテリモジュール100を構成するバッテリセル10としては、略円柱形状を有するバッテリセルを用いることもできる。 Furthermore, as the battery cell 10 constituting the battery module 100, a battery cell having a substantially cylindrical shape can be used.
 (4)上記の実施の形態では、中継部材41はタフピッチ銅の表面にニッケルめっきが施された構成を有するが、中継部材41はハーネスまたはリード線等により構成されてもよい。この場合においても、中継部材41は、複数のバッテリセル10の電極10a,10bと電圧検出回路20とを接続する複数の導体線51,52または配線53に重ならないように配置されることが好ましい。 (4) In the above embodiment, the relay member 41 has a structure in which nickel plating is applied to the surface of tough pitch copper, but the relay member 41 may be configured by a harness, a lead wire, or the like. Even in this case, the relay member 41 is preferably arranged so as not to overlap the plurality of conductor lines 51 and 52 or the wiring 53 that connect the electrodes 10 a and 10 b of the plurality of battery cells 10 and the voltage detection circuit 20. .
 中継部材41がハーネスまたはリード線等により構成される場合には、中継部材41が複数の導体線51,52または配線53に重ならないように、バッテリブロック10BBの上面、一側面または他側面に中継部材41を固定するためのガイドフックg(図13)を設けてもよい。 When the relay member 41 is configured by a harness, a lead wire, or the like, the relay member 41 is relayed to the upper surface, one side surface, or the other side surface of the battery block 10BB so that the relay member 41 does not overlap the plurality of conductor wires 51, 52 or the wiring 53. A guide hook g (FIG. 13) for fixing the member 41 may be provided.
 (5)第4および第5の実施の形態において、バッテリモジュール100はケーシングCA内に収納されるが、これに限定されない。バッテリモジュール100はケーシングCAに収納されなくてもよい。この場合でも、ガスダクトGDおよび配線部材70が蓋部材80に一体的に設けられる。そのため、配線部材70、ガスダクトGDおよび蓋部材80を一体的に取り扱うことができる。その結果、蓋部材80をバッテリブロック10BBに取り付けることにより、バッテリモジュール100を容易に組み立てることが可能となる。 (5) In the fourth and fifth embodiments, the battery module 100 is housed in the casing CA, but is not limited thereto. The battery module 100 may not be stored in the casing CA. Even in this case, the gas duct GD and the wiring member 70 are integrally provided on the lid member 80. Therefore, the wiring member 70, the gas duct GD, and the lid member 80 can be handled integrally. As a result, the battery module 100 can be easily assembled by attaching the lid member 80 to the battery block 10BB.
 また、バスバー40,40xとバッテリセル10の電極10a,10bとを溶接またはねじにより接続することが容易になる。また、配線が複雑化することなくFPC基板50の導体線51,52とバスバー40,40aとの間の接続を行うことができる。 Moreover, it becomes easy to connect the bus bars 40 and 40x and the electrodes 10a and 10b of the battery cell 10 by welding or screws. Further, the connection between the conductor lines 51 and 52 of the FPC board 50 and the bus bars 40 and 40a can be performed without complicating the wiring.
 (6)上記実施の形態に係る電動自動車600(図27)または船舶等の移動体はバッテリシステム500を備えるとともに、負荷としてモータ602を備える電気機器である。本発明に係る電気機器は、電動自動車600および船舶等の移動体に限定されず、洗濯機、冷蔵庫またはエアコンディショナ等であってもよい。例えば、洗濯機は負荷としてモータを備える電気機器であり、冷蔵庫またはエアコンディショナは負荷としてコンプレッサを備える電気機器である。 (6) A moving body such as the electric automobile 600 (FIG. 27) or a ship according to the above embodiment is an electric device including the battery system 500 and the motor 602 as a load. The electric device according to the present invention is not limited to a moving body such as the electric automobile 600 and a ship, and may be a washing machine, a refrigerator, an air conditioner, or the like. For example, a washing machine is an electric device including a motor as a load, and a refrigerator or an air conditioner is an electric device including a compressor as a load.
 このように、本実施の形態に係る電気機器は、上記のバッテリシステムと、バッテリシステムからの電力により駆動される負荷とを備える。この電気機器においては、負荷がバッテリシステムからの電力により駆動される。 As described above, the electrical device according to the present embodiment includes the battery system described above and a load driven by electric power from the battery system. In this electric device, the load is driven by electric power from the battery system.
 この電気機器には、上記バッテリシステムが用いられるので、バッテリモジュールの配線構造が単純になるとともに配線作業が容易になる。その結果、電気機器の組み立て作業が容易となり、製造コストを十分に低減することができる。また、電気機器のメンテナンスも容易になる。 Since the above battery system is used for this electrical device, the wiring structure of the battery module is simplified and the wiring work is facilitated. As a result, the assembling work of the electric equipment is facilitated, and the manufacturing cost can be sufficiently reduced. In addition, maintenance of the electric equipment is facilitated.
 [11]請求項の各構成要素と実施の形態の各部との対応関係
 以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが、本発明は下記の例に限定されない。
[11] Correspondence relationship between each constituent element of claim and each part of embodiment The following describes an example of the correspondence between each constituent element of the claim and each part of the embodiment. It is not limited.
 上記実施の形態においては、バッテリモジュール100がバッテリモジュールの例であり、X方向が第1の方向の例であり、複数のバッテリセル10が複数のバッテリセルの例であり、第1および第2の実施の形態における一方の端面枠92に隣り合うバッテリセル10(1番目のバッテリセル10)および第3の実施の形態における一端側バッテリセル10が一端部に位置するバッテリセルの例であり、第1、第2、第4、第5および第6の実施の形態における一対の端面枠92のうち一方の端面枠92および第3の実施の形態における端面枠92が保持部材の例であり、バッテリブロック10BBがバッテリブロックの例であり、中継端子CTが中継端子の例である。 In the above embodiment, the battery module 100 is an example of a battery module, the X direction is an example of the first direction, the plurality of battery cells 10 are examples of a plurality of battery cells, and the first and second The battery cell 10 (first battery cell 10) adjacent to one end face frame 92 in the embodiment and the one end side battery cell 10 in the third embodiment are examples of battery cells positioned at one end, Of the pair of end face frames 92 in the first, second, fourth, fifth and sixth embodiments, one end face frame 92 and the end face frame 92 in the third embodiment are examples of holding members, The battery block 10BB is an example of a battery block, and the relay terminal CT is an example of a relay terminal.
 また、電圧検出回路20が電圧検出回路の例であり、複数のバッテリセル10のプラス電極10aおよびマイナス電極10bが複数の電源端子の例であり、第1、第2、第4、第5および第6の実施の形態における2枚のFPC基板50,50a,50bに形成された複数の導体線51,52および第3の実施の形態における複数の配線53が配線の例であり、中継部材41、図10の一方の端面枠92に隣り合うバッテリセル10のプラス電極10aに接続されたバスバー40p、図13の一端側バッテリセル10に接続されたバスバー40qおよび図14および図17のバスバー40xが第1の接続部材の例である。 Further, the voltage detection circuit 20 is an example of a voltage detection circuit, the positive electrodes 10a and the negative electrodes 10b of the plurality of battery cells 10 are examples of a plurality of power supply terminals, and the first, second, fourth, fifth, and The plurality of conductor lines 51, 52 formed on the two FPC boards 50, 50a, 50b in the sixth embodiment and the plurality of wirings 53 in the third embodiment are examples of wiring, and the relay member 41 The bus bar 40p connected to the plus electrode 10a of the battery cell 10 adjacent to one end face frame 92 of FIG. 10, the bus bar 40q connected to the one end side battery cell 10 of FIG. 13, and the bus bar 40x of FIGS. It is an example of the 1st connection member.
 さらに、第1、第4、第5および第6の実施の形態における2つの切り欠き92g、第2の実施の形態におけるリブ部材GL1,GL2および複数のバスバー40pの取付片42p、第3の実施の形態における端面枠92に形成された2つのガイドフックg、ならびに第4および第5の実施の形態における蓋部材80のFPC嵌合部84および複数のバスバー40,40xの複数の取付片42,46が案内部の例であり、バッテリブロック10BBの上面がバッテリブロックの一面の例であり、第1の端子列TL1が第1の端子列の例であり、第2の端子列TL2が第2の端子列の例である。 Furthermore, the two notches 92g in the first, fourth, fifth and sixth embodiments, the rib members GL1, GL2 and the mounting pieces 42p of the plurality of bus bars 40p in the second embodiment, the third embodiment The two guide hooks g formed on the end face frame 92 in the form of the above, and the FPC fitting portion 84 of the lid member 80 and the plurality of mounting pieces 42 of the plurality of bus bars 40, 40x in the fourth and fifth embodiments, 46 is an example of the guide unit, the upper surface of the battery block 10BB is an example of one surface of the battery block, the first terminal row TL1 is an example of the first terminal row, and the second terminal row TL2 is the second side. It is an example of a terminal row.
 また、第1、第2、第4、第5および第6の実施の形態における一方のFPC基板50,50aに形成された複数の導体線51,52ならびに第3の実施の形態における第1の配線群53xが第1の配線群の例であり、第1、第2、第4、第5および第6の実施の形態における他方のFPC基板50,50bに形成された複数の導体線51,52ならびに第3の実施の形態における第2の配線群53yが第2の配線群の例であり、Y方向が第2の方向の例である。 The plurality of conductor lines 51 and 52 formed on one FPC board 50 and 50a in the first, second, fourth, fifth and sixth embodiments and the first in the third embodiment. The wiring group 53x is an example of a first wiring group, and a plurality of conductor lines 51, formed on the other FPC boards 50, 50b in the first, second, fourth, fifth and sixth embodiments. 52 and the second wiring group 53y in the third embodiment are examples of the second wiring group, and the Y direction is an example of the second direction.
 さらに、第1、第4、第5および第6の実施の形態における一方の切り欠き92gならびに第3の実施の形態における端面枠92に形成された一方のガイドフックgが第1の案内部の例であり、第1、第4、第5および第6の実施の形態における他方の切り欠き92gならびに第3の実施の形態における端面枠92に形成された他方のガイドフックgが第2の案内部の例である。 Furthermore, one notch 92g in the first, fourth, fifth and sixth embodiments and one guide hook g formed in the end face frame 92 in the third embodiment are provided in the first guide portion. For example, the other notch 92g in the first, fourth, fifth and sixth embodiments and the other guide hook g formed in the end face frame 92 in the third embodiment are the second guide. It is an example of a part.
 また、第2の実施の形態におけるリブ部材GL1および第1の端子列TL1に沿って配列される複数のバスバー40pの複数の取付片42pが第1の案内部の例であり、第2の実施の形態におけるリブ部材GL2および第2の端子列TL2に沿って配列される複数のバスバー40pの複数の取付片42pが第2の案内部の例である。 Further, the plurality of mounting pieces 42p of the plurality of bus bars 40p arranged along the rib member GL1 and the first terminal row TL1 in the second embodiment is an example of the first guide portion, and the second embodiment. The plurality of mounting pieces 42p of the plurality of bus bars 40p arranged along the rib member GL2 and the second terminal row TL2 in the form of is a second guide part.
 さらに、第4および第5の実施の形態における一方の切り欠き92g、蓋部材80の一方のFPC嵌合部84、第1の端子列TL1に接続される複数のバスバー40の複数の取付片42が第1の案内部の例であり、第4および第5の実施の形態における他方の切り欠き92g、蓋部材80の他方のFPC嵌合部84、第2の端子列TL2に接続される複数のバスバー40,40xの複数の取付片42,46が第2の案内部の例である。 Furthermore, the plurality of mounting pieces 42 of the plurality of bus bars 40 connected to one notch 92g, one FPC fitting portion 84 of the lid member 80, and the first terminal row TL1 in the fourth and fifth embodiments. Is an example of the first guide part, and a plurality of parts connected to the other notch 92g, the other FPC fitting part 84 of the lid member 80, and the second terminal row TL2 in the fourth and fifth embodiments. The plurality of mounting pieces 42 and 46 of the bus bars 40 and 40x are examples of the second guide portion.
 また、バッテリシステム500がバッテリシステムの例であり、電動自動車600が電動車両の例であり、図23、図24および図26のバッテリモジュール100a,100dが第1のバッテリモジュールの例であり、図23、図24および図26のバッテリモジュール100b,100cが第2のバッテリモジュールの例であり、図23および図26の電源線D01,D02ならびに図24のバスバーD03,D04が第2の接続部材の例であり、電力変換部601およびモータ602が外部装置の例であり、コンタクタ102およびサービスプラグ530が開閉装置の例であり、モータ602がモータの例であり、駆動輪603が駆動輪の例である。 Further, the battery system 500 is an example of a battery system, the electric automobile 600 is an example of an electric vehicle, the battery modules 100a and 100d in FIGS. 23, 24, and 26 are examples of a first battery module. 23, 24 and 26 are examples of the second battery module, and the power supply lines D01 and D02 in FIGS. 23 and 26 and the bus bars D03 and D04 in FIG. 24 are the second connection members. For example, the power conversion unit 601 and the motor 602 are examples of external devices, the contactor 102 and the service plug 530 are examples of switching devices, the motor 602 is an example of a motor, and the drive wheels 603 are examples of drive wheels. It is.
 さらに、車体610、船の船体、航空機の機体、エレベータの籠または歩行ロボットの胴体が移動本体部の例であり、モータ602、駆動輪603、スクリュー、プロペラ、昇降用ロープの巻上モータまたは歩行ロボットの足が動力源の例である。電動自動車600、船、航空機、エレベータまたは歩行ロボットが移動体の例である。システムコントローラ712がシステム制御部の例であり、電力貯蔵装置710が電力貯蔵装置の例であり、電源装置700が電源装置の例であり、電力変換装置720が電力変換装置の例である。 Further, the vehicle body 610, the ship hull, the aircraft fuselage, the elevator cage or the body of the walking robot are examples of the moving main body, and the motor 602, the drive wheel 603, the screw, the propeller, the hoisting motor of the lifting rope or the walking A robot foot is an example of a power source. An electric vehicle 600, a ship, an aircraft, an elevator, or a walking robot are examples of moving objects. The system controller 712 is an example of a system control unit, the power storage device 710 is an example of a power storage device, the power supply device 700 is an example of a power supply device, and the power conversion device 720 is an example of a power conversion device.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。 As the constituent elements of the claims, various other elements having configurations or functions described in the claims can be used.

Claims (12)

  1. 複数のバッテリセルを含むバッテリブロックと、
     各バッテリセルの電圧を検出する電圧検出回路と、
     前記電圧検出回路を保持する保持部材と、
     前記保持部材に設けられ、前記複数のバッテリセルのいずれかの電極端子に電気的に接続される中継端子と、
     前記複数のバッテリセルの複数の電極端子と前記電圧検出回路とを接続する複数の配線とを備え、
     前記中継端子と前記複数の配線とは、前記保持部材上で互いに重ならないように配置された、バッテリモジュール。
    A battery block including a plurality of battery cells;
    A voltage detection circuit for detecting the voltage of each battery cell;
    A holding member for holding the voltage detection circuit;
    A relay terminal provided on the holding member and electrically connected to any electrode terminal of the plurality of battery cells;
    A plurality of wires connecting the plurality of electrode terminals of the plurality of battery cells and the voltage detection circuit;
    The battery module, wherein the relay terminal and the plurality of wires are arranged so as not to overlap each other on the holding member.
  2. 前記複数のバッテリセルは、第1の方向に並ぶように配置され、
     前記保持部材は、複数のバッテリセルのうち一端部に位置するバッテリセルに隣り合うように設けられ、
     前記一端部に位置するバッテリセルの電極端子と前記中継端子とは、第1の接続部材を介して接続され、
     前記第1の接続部材と前記複数の配線とは、互いに重ならないように配置された、請求項1記載のバッテリモジュール。
    The plurality of battery cells are arranged in a first direction,
    The holding member is provided adjacent to a battery cell located at one end of the plurality of battery cells,
    The electrode terminal of the battery cell located at the one end and the relay terminal are connected via a first connecting member,
    The battery module according to claim 1, wherein the first connection member and the plurality of wirings are arranged so as not to overlap each other.
  3. 前記複数の配線を前記複数のバッテリセルの複数の電極端子から前記電圧検出回路に案内する案内部を有する、請求項2記載のバッテリモジュール。 The battery module according to claim 2, further comprising a guide portion that guides the plurality of wirings from a plurality of electrode terminals of the plurality of battery cells to the voltage detection circuit.
  4. 前記バッテリブロックは、前記複数のバッテリセルの複数の電極端子が並ぶ一面を有し、
     前記複数のバッテリセルの前記複数の電極端子は、前記一面上で前記第1の方向に沿って互いに並列に整列された第1および第2の端子列を構成し、
     前記複数の配線は、前記一面上において前記第1および第2の端子列の外側で前記第1の方向に延びる第1および第2の配線群を含み、
     前記案内部は、前記第1の方向に交差する第2の方向に並ぶように設けられるとともに前記第1および第2の配線群をそれぞれ案内する第1および第2の案内部を含み、
     前記中継端子は、前記第1の案内部と前記第2の案内部との間に設けられる、請求項3記載のバッテリモジュール。
    The battery block has one surface where a plurality of electrode terminals of the plurality of battery cells are arranged,
    The plurality of electrode terminals of the plurality of battery cells constitute first and second terminal rows arranged in parallel with each other along the first direction on the one surface,
    The plurality of wirings include first and second wiring groups extending in the first direction outside the first and second terminal rows on the one surface,
    The guide part includes a first guide part and a second guide part provided so as to be arranged in a second direction intersecting the first direction and guiding the first and second wiring groups, respectively.
    The battery module according to claim 3, wherein the relay terminal is provided between the first guide portion and the second guide portion.
  5. 前記バッテリブロックは、前記複数のバッテリセルの複数の電極端子が並ぶ一面を有し、
     前記複数のバッテリセルの前記複数の電極端子は、前記一面上で前記第1の方向に沿って互いに並列に整列された第1および第2の端子列を構成し、
     前記複数の配線は、前記一面上において前記第1および第2の端子列の内側で前記第1の方向に延びる第1および第2の配線群を含み、
     前記案内部は、前記第1の方向に交差する第2の方向に並ぶように設けられるとともに前記第1および第2の配線群をそれぞれ案内する第1および第2の案内部を含み、
     前記中継端子は、前記第1および第2の案内部の一方の外側に設けられる、請求項3記載のバッテリモジュール。
    The battery block has one surface where a plurality of electrode terminals of the plurality of battery cells are arranged,
    The plurality of electrode terminals of the plurality of battery cells constitute first and second terminal rows arranged in parallel with each other along the first direction on the one surface,
    The plurality of wirings include first and second wiring groups extending in the first direction on the one surface and inside the first and second terminal rows,
    The guide part includes a first guide part and a second guide part provided so as to be arranged in a second direction intersecting the first direction and guiding the first and second wiring groups, respectively.
    The battery module according to claim 3, wherein the relay terminal is provided outside one of the first and second guide portions.
  6. 1または複数のバッテリモジュールを備え、
     前記1または複数のバッテリモジュールのうちの少なくとも1つは、請求項1に記載のバッテリモジュールである、バッテリシステム。
    One or more battery modules,
    The battery system according to claim 1, wherein at least one of the one or more battery modules is the battery module according to claim 1.
  7. 外部装置に接続可能であり、
     請求項1に記載のバッテリモジュールからなる第1のバッテリモジュールと、
     複数のバッテリセルを含む第2のバッテリモジュールと、
     前記第1のバッテリモジュールの一のバッテリセルの電極端子と前記第2のバッテリモジュールの一のバッテリセルの電極端子とを電気的に接続する第2の接続部材と、
     前記外部装置と前記第1および第2のバッテリモジュールとの間の電気的接続を開閉する開閉装置とを備え、
     前記第1のバッテリモジュールの前記中継端子は、前記開閉装置に接続される、バッテリシステム。
    Can be connected to an external device,
    A first battery module comprising the battery module according to claim 1;
    A second battery module including a plurality of battery cells;
    A second connecting member that electrically connects an electrode terminal of one battery cell of the first battery module and an electrode terminal of one battery cell of the second battery module;
    An opening / closing device for opening and closing an electrical connection between the external device and the first and second battery modules;
    The battery system, wherein the relay terminal of the first battery module is connected to the switchgear.
  8. 請求項6または7記載のバッテリシステムと、
     前記バッテリシステムからの電力により駆動されるモータと、
     前記モータの回転力により回転する駆動輪とを備える、電動車両。
    The battery system according to claim 6 or 7,
    A motor driven by power from the battery system;
    An electric vehicle comprising drive wheels that are rotated by the rotational force of the motor.
  9. 請求項6または7記載のバッテリシステムと、
     移動本体部と、
     前記バッテリシステムからの電力を前記移動本体部を移動させるための動力に変換する動力源と、
     前記動力源により変換された動力により前記移動本体部を移動させる駆動部とを備える、移動体。
    The battery system according to claim 6 or 7,
    A moving body,
    A power source that converts electric power from the battery system into power for moving the moving main body;
    A moving body comprising: a drive unit that moves the moving main body unit by power converted by the power source.
  10. 請求項6または7記載のバッテリシステムと、
     前記バッテリシステムの前記バッテリモジュールの充電または放電に関する制御を行うシステム制御部とを備える、電力貯蔵装置。
    The battery system according to claim 6 or 7,
    A power storage device comprising: a system control unit that performs control related to charging or discharging of the battery module of the battery system.
  11. 外部に接続可能であり、
     請求項10記載の電力貯蔵装置と、
     前記電力貯蔵装置の前記システム制御部により制御され、前記電力貯蔵装置の前記バッテリシステムの前記バッテリモジュールと前記外部との間で電力変換を行う電力変換装置とを備える、電源装置。
    Can be connected to the outside,
    The power storage device according to claim 10;
    A power supply device comprising: a power conversion device that is controlled by the system control unit of the power storage device and performs power conversion between the battery module of the battery system of the power storage device and the outside.
  12. 請求項6または7記載のバッテリシステムと、
     前記バッテリシステムからの電力により駆動される負荷とを備える、電気機器。
    The battery system according to claim 6 or 7,
    An electric device comprising a load driven by electric power from the battery system.
PCT/JP2011/004895 2010-08-31 2011-08-31 Battery module, battery system, electric vehicle, moving object, power storage device, power supply device, and electrical apparatus WO2012029319A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-194822 2010-08-31
JP2010194822 2010-08-31

Publications (1)

Publication Number Publication Date
WO2012029319A1 true WO2012029319A1 (en) 2012-03-08

Family

ID=45772441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004895 WO2012029319A1 (en) 2010-08-31 2011-08-31 Battery module, battery system, electric vehicle, moving object, power storage device, power supply device, and electrical apparatus

Country Status (1)

Country Link
WO (1) WO2012029319A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197049A (en) * 2012-03-22 2013-09-30 Toshiba Corp Battery and method of manufacturing battery
JP2015170490A (en) * 2014-03-07 2015-09-28 株式会社豊田自動織機 battery restraint jig
JP2016018766A (en) * 2014-07-11 2016-02-01 本田技研工業株式会社 Power storage module
TWI704247B (en) * 2018-10-17 2020-09-11 日商愛發科股份有限公司 Contact type power supply apparatus and contact unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045409A (en) * 2001-07-31 2003-02-14 Yazaki Corp Power source device
JP2005056721A (en) * 2003-08-05 2005-03-03 Sanyo Electric Co Ltd Battery pack
JP2006139928A (en) * 2004-11-10 2006-06-01 Nissan Motor Co Ltd Battery system
JP2010025925A (en) * 2008-06-17 2010-02-04 Sanyo Electric Co Ltd Voltage detecting device of assembled battery, and battery system with the same
JP2010080353A (en) * 2008-09-27 2010-04-08 Sanyo Electric Co Ltd Battery system
WO2010113455A1 (en) * 2009-03-31 2010-10-07 三洋電機株式会社 Battery module, battery system, and electric vehicle
WO2011093105A1 (en) * 2010-01-29 2011-08-04 三洋電機株式会社 Battery module, battery system provided with same, electric drive vehicle, mobile unit, power storage device, power supply device, and electric equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045409A (en) * 2001-07-31 2003-02-14 Yazaki Corp Power source device
JP2005056721A (en) * 2003-08-05 2005-03-03 Sanyo Electric Co Ltd Battery pack
JP2006139928A (en) * 2004-11-10 2006-06-01 Nissan Motor Co Ltd Battery system
JP2010025925A (en) * 2008-06-17 2010-02-04 Sanyo Electric Co Ltd Voltage detecting device of assembled battery, and battery system with the same
JP2010080353A (en) * 2008-09-27 2010-04-08 Sanyo Electric Co Ltd Battery system
WO2010113455A1 (en) * 2009-03-31 2010-10-07 三洋電機株式会社 Battery module, battery system, and electric vehicle
WO2011093105A1 (en) * 2010-01-29 2011-08-04 三洋電機株式会社 Battery module, battery system provided with same, electric drive vehicle, mobile unit, power storage device, power supply device, and electric equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197049A (en) * 2012-03-22 2013-09-30 Toshiba Corp Battery and method of manufacturing battery
JP2015170490A (en) * 2014-03-07 2015-09-28 株式会社豊田自動織機 battery restraint jig
JP2016018766A (en) * 2014-07-11 2016-02-01 本田技研工業株式会社 Power storage module
TWI704247B (en) * 2018-10-17 2020-09-11 日商愛發科股份有限公司 Contact type power supply apparatus and contact unit

Similar Documents

Publication Publication Date Title
JP6160729B2 (en) Battery module
WO2012042913A1 (en) Battery module, battery system comprising same, electric vehicle, mobile body, electric power storage device, electric power supply device, and electric device
US10186737B2 (en) Traction battery integrated thermal plate and tray
US8962168B2 (en) Storage battery module
WO2011105095A1 (en) Battery module, battery system, electric vehicle, mobile body, power storage device, power supply device, and electric apparatus
WO2011024477A1 (en) Battery module, battery system and electrically driven vehicle
WO2011093105A1 (en) Battery module, battery system provided with same, electric drive vehicle, mobile unit, power storage device, power supply device, and electric equipment
US20120298433A1 (en) Battery module, battery system, electric vehicle, movable body, power storage device, and power supply device
US11682797B2 (en) Systems and methods for providing individual battery cell circuit protection
WO2011089910A1 (en) Battery module, electric vehicle provided with same, mobile object, battery system, power storage device, and power source device
KR20110013324A (en) Battery system and motorized vehicle having the same
WO2012011237A1 (en) Battery module, battery system, electric vehicle, mobile body, power storage device, and power source device
JP2013533579A (en) Battery module with new structure
JP2011119240A (en) Battery system and electric vehicle including the same
JP2012028186A (en) Battery module, battery system, and electric vehicle
US10431803B2 (en) Traction battery assembly having multipiece busbar module
US9929388B2 (en) Traction battery assembly
US9356270B2 (en) Multi-tier traction battery assembly with alignment feature
WO2012026093A1 (en) Battery module, battery system, electric vehicle, mobile body, electric power storage device, and electric power supply device
JP3986242B2 (en) Battery system for electric vehicles
WO2012029319A1 (en) Battery module, battery system, electric vehicle, moving object, power storage device, power supply device, and electrical apparatus
WO2012147331A1 (en) Battery module, battery system, electric vehicle, moving body, power storage device, and power supply device
WO2012029317A1 (en) Battery system, electrically driven vehicle provided with same, moving body, power storage apparatus, power supply apparatus, and electrical equipment
US9553288B2 (en) Step configuration for traction battery housing
WO2012042912A1 (en) Battery system, electric vehicle provided therewith, mobile body, electric-power storage apparatus, power-supply apparatus, and electrical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP