WO2012028575A1 - Schaltung und verfahren zur einschaltstrombegrenzung - Google Patents
Schaltung und verfahren zur einschaltstrombegrenzung Download PDFInfo
- Publication number
- WO2012028575A1 WO2012028575A1 PCT/EP2011/064812 EP2011064812W WO2012028575A1 WO 2012028575 A1 WO2012028575 A1 WO 2012028575A1 EP 2011064812 W EP2011064812 W EP 2011064812W WO 2012028575 A1 WO2012028575 A1 WO 2012028575A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- switch
- thermistor
- circuit according
- threshold
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/02—Details
- H02H3/025—Disconnection after limiting, e.g. when limiting is not sufficient or for facilitating disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/02—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
Definitions
- the invention relates to a circuit and a method for current limiting.
- the circuit breaker comprises in particular a
- Overcurrent protection device and is used for example in
- the circuit breaker is a reusable, not automatically resetting fuse element. Like a fuse or circuit breaker, the
- circuit breaker ⁇ switch for high inrush currents are appropriately generously dimensioned and / or must have a sluggish tripping behavior.
- the actual safety function of the circuit breaker is weakened: If the tripping behavior of the
- Input current is designed, the circuit breaker triggers in case of failure only when exceeding this high input current.
- Inrush current limiting by means of resistance affects the function of the downstream consumer.
- the consumer is during a
- the capacitors are not yet sufficiently charged and / or converter (converter, high, low level, etc.) are just starting. If now after the start phase of the inrush current limiting resistor bridged and thus the inrush current limit inactive, this leads to a short but very high current pulse that survive only significantly oversized components or relays (contacts) undamaged.
- predetermined time anyway usually far too short, because the inrush current for transformers, solenoids, motors, contactors, etc. usually takes a period of several seconds to fall to the nominal value.
- the thermistor is preferably in the current path between a power source, e.g. a power grid, and a consumer arranged.
- a power source e.g. a power grid
- the thermistor is
- the bridging preferably takes as long as the consumer without separation from the
- Power source is operated via this. After separation from the energy source (e.g.
- time mentioned may be determined by a determined period of time or by a
- the measured value can e.g. be a current, a voltage or a temperature or based on such a size.
- a counter or a timer For example, a counter or a timer
- the thermistor may be provided to wait for the predetermined period of time and, for example, regardless of further measured values can be bridged after this period of time, the thermistor.
- the thermistor may be provided to wait for the predetermined period of time and, for example, regardless of further measured values can be bridged after this period of time, the thermistor.
- Measured value is determined and this measured value with the
- predetermined threshold eg by means of a comparator or by means of a digital circuit
- Supply voltage can be activated.
- the application of the supply voltage or a connection to an energy source can be detected, and after a predetermined period of time or upon occurrence of a predefinable condition the switch is activated and thus the thermistor can be bridged.
- Another training is that of the switch
- Series circuit comprising the thermistor and a fuse is arranged parallel to the switch.
- the fuse can be bridged by the switch together with the thermistor.
- the thermistor can be bridged by the switch.
- the fuse is a thermal fuse.
- Threshold circuit provided by means of which the switch is activated.
- Threshold circuit detects the application of the supply voltage and activates the switch after a predetermined period of time.
- the predetermined period of time can be determined by means of a timer.
- the threshold circuit may comprise a timer (e.g., a counter), based on which one
- predetermined period of time can be determined.
- the measured value may be a current or a voltage which is determined by the threshold value circuit.
- it may be a current flowing through the thermistor, or it may be a voltage before, after, or at
- the switch can be closed and the thermistor can be bridged.
- the switch is an electronic switch, in particular a transistor or a mosfet.
- the electronic switch is, for example, an electronically controllable switch, in particular a switching function, which can be detected via a control signal is.
- a comparison signal can also be used
- logic circuit e.g., gate
- thermistor possibly in series with the fuse
- the above object is also achieved by a method for inrush current limiting, in which a current path containing a thermistor is bridged as soon as a predetermined condition occurs.
- the thermistor is bridged by a switch which is arranged parallel to the thermistor and thus can short-circuit the thermistor.
- the device may be a light, a
- Light module or a lighting system act.
- the circuit may be part of an operating device for a
- Fig.l a schematic circuit for inrush current limiting for a downstream consumer.
- An inrush current limitation with a thermistor (NTC) is proposed.
- the thermistor is arranged in a current path or in a line between a consumer and a power supply network.
- NTC thermistor
- Thermistor in series with a fuse (e.g.
- thermal fuse arranged. Furthermore, it is an option that the thermistor, e.g. after expiration of a
- the thermistor is active during a switch-on phase and temporarily provides a high current for charging downstream consumers. After the switch-on phase, the thermistor can be permanently bridged, as long as the device
- Fig.l shows a schematic circuit 100 for
- the circuit 100 is connected via two connections L and N to a power supply network or to another
- Terminals L and N of the inrush current limiting yet another component may be arranged.
- the terminal L is a fuse 102 with a
- Node 109 and connected via a switch 105 to an output 107 of the circuit 100.
- the node 109 is connected to a threshold circuit 104. Furthermore, the node 109 is over a
- Thermistor 103 connected to the output 107.
- the switch 105 may act as an electronic switch
- the switch 105 is designed as part of a relay (normally open contacts of the relay), wherein a coil 106 of the relay of the threshold circuit 104th
- the load 101 is connected to the terminal 107 and to a terminal 108 of the circuit 100, wherein the
- Terminal 108 continues to connect N as well as the
- Threshold circuit 104 is connected.
- the threshold circuit 104 detects a voltage of the power supply and starts a timer with the time At or compares a measured current or a measured one Tension with a given
- Threshold (the threshold is reached in this case after the period At). For example, the
- Threshold circuit 104 for this purpose have a timer, a counter, a comparator or another evaluation unit. For example, a voltage at node 109 may be measured or evaluated by the threshold circuit.
- a voltage at node 109 may be measured or evaluated by the threshold circuit.
- the threshold value circuit 104 can have digital or analog components for this purpose.
- the inrush current flows through the thermal fuse 102 and the thermistor 103, whereby the thermistor 103 is heated by the current flow. As the temperature of the thermistor 103 rises, its ohmic resistance decreases. When the time At has expired, the threshold circuit controls
- the thermistor 103 and the thermal fuse 102 are bridged, the switch-on (or duration of the
- Inrush current limit is completed.
- the switch 105 remains closed until the
- Circuit 100 is no longer connected to the mains voltage (for example, until the device is turned off via a main switch).
- the thermal fuse 102 serves to protect the load 101 in the event that the switch 105 is defective or not closed in time. Thus, the thermal fuse 102 interrupts the current before the thermistor 103 (or the load 101) is overloaded.
- the period of time At can be determined by choosing a suitable
- Hot conductor 103 can be selected correspondingly large.
- the duration At is possible for the duration At to be several seconds.
- the thermistor 103 may have a steep characteristic.
- the ohmic resistance of the thermistor 103 in this case decreases sharply with increasing temperature.
- the ohmic resistance of the thermistor can be selected so that at a time period At ⁇ ls the capacitors of the capacitive load (almost completely) are charged. This can be at the end of the period At a in the Consumers provided converter or converter start without overloading the circuit 100.
- Thermistor 103 can be selected. In this case, the ohmic resistance decreases slowly with increasing temperature, the time period At can be selected to be correspondingly long.
- the presented solution may be flexible e.g. for capacitive loads, inductive loads or consumers with PTC behavior (e.g., filament), by setting the characteristic of the thermistor in combination with the period of time ⁇ t.
- PTC behavior e.g., filament
Landscapes
- Emergency Protection Circuit Devices (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
Abstract
Es wird eine Schaltung angegeben zur Strombegrenzung mit einem Heißleiter, der in einem Strompfad zu einem Verbraucher angeordnet ist und mit einem Schalter zur Überbrückung des Heißleiters. Weiterhin werden ein entsprechendes Verfahren sowie eine Vorrichtung mit einer Lichtquelle vorgeschlagen.
Description
Beschreibung
SCHALTUNG UND VERFAHREN ZUR EINSCHALTSTROMBEGRENZUNG
Die Erfindung betrifft eine Schaltung und ein Verfahren zur Strombegrenzung .
Zum Betrieb von elektrischen Verbrauchern mit hohen
Einschaltströmen an einem elektrischen
( Stromversorgungs- ) Netz wird ein Leitungsschutzschalter eingesetzt .
Der Leitungsschutzschalter umfasst insbesondere eine
Überstromschutzeinrichtung und wird beispielsweise im
Bereich von Niederspannungsnetzen eingesetzt. Er schützt Leitungen vor Beschädigung durch zu starke Erwärmung in Folge eines zu hohen Stroms. Beispielsweise handelt es sich bei dem Leitungsschutzschalter um ein wiederverwendbares, nicht selbsttätig rückstellendes Sicherungselement. Wie eine Sicherung oder ein Leistungsschalter kann der
Leitungsschutzschalter den Stromkreis bei Überlast
selbsttätig abschalten.
Hierbei ist es von Nachteil, dass der Leitungsschutz¬ schalter für hohe Einschaltströme entsprechend großzügig dimensioniert werden und/oder ein träges Auslöseverhalten aufweisen muss. Dies hat zur Folge, dass hierdurch die eigentliche Sicherheitsfunktion des Leitungsschutzschalters abgeschwächt wird: Wenn das Auslöseverhalten des
Leitungsschutzschalters entsprechend dem hohen
Eingangsstrom ausgelegt ist, löst der Leitungsschutzschalter auch im Fehlerfall erst bei einem Überschreiten dieses hohen Eingangsstroms aus.
Weiterhin ist es bekannt, Einschaltstrombegrenzer
vorzusehen, die den Einschaltstrom durch Vorschalten eines Widerstands reduzieren. Ein solcher Widerstand wird nach
einer vorgegebenen Zeitdauer, z.B. 300ms, per Relaiskontakt überbrückt. Ist eine längere Zeitdauer gefordert, sind zur Einschaltstrombegrenzung Hochleistungswiderstände nötig. Hierbei ist es von Nachteil, dass die
Einschaltstrombegrenzung mittels Widerstand die Funktion des nachgeschalteten Verbrauchers beeinträchtigt.
Beispielsweise wird der Verbraucher während einer
Startphase wegen des Widerstands nicht mit ausreichend Strom versorgt. Bei einem (vorwiegend) kapazitiven
Verbraucher sind so beispielsweise nach Ablauf der
Startphase die Kondensatoren noch nicht ausreichend stark aufgeladen und/oder Wandler (Konverter, Hoch-, Tiefsteller, etc.) laufen gerade an. Wird nun nach Ablauf der Startphase der den Einschaltstrom begrenzende Widerstand überbrückt und somit die Einschaltstrombegrenzung inaktiv, führt dies zu einem kurzen aber sehr hohen Stromimpuls, den nur deutlich überdimensionierte Bauteile oder Relais ( kontakte ) unbeschädigt überstehen.
Bei (vorwiegend) induktiven Verbrauchern ist die
vorgegebene Zeitdauer ohnehin meist viel zu kurz, weil der Einschaltstrom bei Transformatoren, Hubmagneten, Motoren, Schützen etc. zumeist eine Dauer von mehreren Sekunden benötigt, um auf den Nennwert abzufallen.
Die Aufgabe der Erfindung besteht darin, die vorstehend genannten Nachteile zu vermeiden und insbesondere eine Lösung für eine effiziente und kostengünstige
EinsehaltStrombegrenzung anzugeben .
Diese Aufgabe wird gemäß den Merkmalen der unabhängigen Patentansprüche gelöst. Weiterbildungen der Erfindung ergeben sich auch aus den abhängigen Ansprüchen.
Zur Lösung der Aufgabe wird eine Schaltung zur
Strombegrenzung vorgeschlagen
- mit einem Heißleiter, der in einem Strompfad zu einem Verbraucher angeordnet ist,
- mit einem Schalter zur Überbrückung des
Heißleiters .
Der Heißleiter ist vorzugsweise in dem Strompfad zwischen einer Energiequelle, z.B. einem Stromversorgungsnetz, und einem Verbraucher angeordnet. Der Heißleiter ist
vorzugsweise nach dem Einschalten, also insbesondere nach dem Verbinden des Verbrauchers mit der Energiequelle für eine vorgegebene Zeitdauer aktiv und wird dann überbrückt (d.h. abgeschaltet) . Die Überbrückung dauert bevorzugt so lange wie der Verbraucher ohne Trennung von der
Energiequelle über diese betrieben wird. Nach der Trennung von der Energiequelle (z.B. mittels eines
(Haupt- ) Schalters ) wird die Überbrückung des Heißleiters beendet, so dass bei einem erneuten Einschalten wieder der Heißleiter für die vorgegebene Zeitdauer aktiv ist und so erneut den Strom während der Einschaltphase begrenzen kann.
Hierbei sei angemerkt, dass die erwähnte Zeit bestimmt sein kann durch eine ermittelte Zeitdauer oder durch eine
Zeitdauer bis ein Messwert einen vorgegebenen Schwellwert erreicht. Der Messwert kann z.B. einen Strom, eine Spannung oder eine Temperatur sein bzw. auf einer solchen Größe beruhen .
So ist es möglich, dass die Zeit (dauer) mittels einer
(analogen oder digitalen) Komponente bestimmt wird.
Beispielsweise kann ein Zähler oder ein Zeitglied
vorgesehen sein, um die vorgegebene Zeitdauer abzuwarten und bspw. unabhängig von weiteren Messwerten kann nach Ablauf dieser Zeitdauer der Heißleiter überbrückt werden. Alternativ (oder zusätzlich) ist es möglich, dass ein
Messwert ermittelt wird und dieser Messwert mit dem
vorgegebenen Schwellwert (z.B. mittels eines Komparators oder mittels einer digitalen Schaltung) verglichen wird;
erreicht der Messwert mindestens den Schwellwert, so wird der Schalter aktiviert und der Heißleiter überbrückt
(inaktiv geschaltet) . Eine Weiterbildung ist es, dass der Schalter nach einer vorgegebenen Zeitdauer nach dem Anlegen einer
Versorgungsspannung aktivierbar ist.
Insbesondere kann das Anlegen der Versorgungsspannung oder eine Verbindung mit einer Energiequelle detektiert werden und nach einer vorgegebenen Zeitdauer oder bei Eintritt einer vorgebbaren Bedingung der Schalter aktiviert und somit der Heißleiter überbrückt werden. Eine andere Weiterbildung ist es, dass der Schalter
parallel zu dem Heißleiter angeordnet ist.
Insbesondere ist es eine Weiterbildung, dass eine
Serienschaltung umfassend den Heißleiter und eine Sicherung parallel zu dem Schalter angeordnet ist.
Somit kann die Sicherung zusammen mit dem Heißleiter von dem Schalter überbrückt werden. Alternativ kann nur der Heißleiter von dem Schalter überbrückt werden.
Ferner ist es eine Weiterbildung, dass die Sicherung eine thermische Sicherung ist.
Im Rahmen einer zusätzlichen Weiterbildung ist eine
Schwellwert-Schaltung vorgesehen, anhand derer der Schalter aktivierbar ist.
Eine nächste Weiterbildung besteht darin, dass die
Schwellwert-Schaltung das Anlegen der Versorgungsspannung detektiert und nach Ablauf einer vorgegebenen Zeitdauer den Schalter aktiviert.
Eine Ausgestaltung ist es, dass die vorgegebene Zeitdauer anhand eines Zeitglieds bestimmbar ist.
Beispielsweise kann die Schwellwert-Schaltung ein Zeitglied (z.B. einen Zähler) aufweisen, anhand dessen eine
vorgegebene Zeitdauer bestimmbar ist.
Eine alternative Aus führungs form besteht darin, dass die Schwellwert-Schaltung bei Eintritt einer vorgegebenen
Bedingung den Schalter aktiviert.
Eine nächste Ausgestaltung ist es, dass die vorgegebene Bedingung mindestens eine der folgenden Optionen umfasst:
- dass ein Messwert einen Schwellwert erreicht oder überschreitet;
- dass eine Versorgungsspannung anliegt.
Bei dem Messwert kann es sich um einen Strom oder eine Spannung handeln, der bzw. die von der Schwellwert- Schaltung ermittelt wird. Beispielsweise kann es sich um einen Strom handeln, der durch den Heißleiter fließt oder es kann sich um eine Spannung vor, nach oder an dem
Heißleiter handeln. Erreicht oder überschreitet der
Messwert den Schwellwert, so kann der Schalter geschlossen und der Heißleiter überbrückt werden.
Auch ist es eine Ausgestaltung, dass der Schalter ein
Arbeitskontakt eines Relais ist, der über eine Spule des Relais aktivierbar ist.
Eine Weiterbildung besteht darin, dass der Schalter ein elektronischer Schalter, insbesondere ein Transistor oder ein Mosfet ist. Bei dem elektronischen Schalter handelt es sich z.B. um einen elektronisch ansteuerbaren Schalter, insbesondere um eine Schaltfunktion, die über ein Steuersignal wahrnehmbar
ist. Beispielsweise kann auch ein Vergleichssignal
(Ergebnis eines Komparators) oder ein Signal eines
logischen Schaltkreises (z.B. Gatters) zur Überbrückung des Heißleiters (ggf. in Serienschaltung mit der Sicherung) bestimmt und eingesetzt werden.
Die vorstehend genannte Aufgabe wird auch gelöst durch ein Verfahren zur Einschaltstrombegrenzung, bei dem ein einen Heißleiter enthaltender Strompfad überbrückt wird sobald eine vorgegebene Bedingung eintritt.
Insbesondere wird der Heißleiter überbrückt durch einen Schalter, der parallel zu dem Heißleiter angeordnet ist und den Heißleiter somit kurzschließen kann.
Eine zusätzliche Ausgestaltung ist es, dass die vorgegebene Bedingung umfasst
- einen Ablauf einer vorgegebenen Zeitdauer und/oder
- ein Erreichen oder Überschreiten eines Schwellwerts durch einen ermittelten Messwert.
Weiterhin wird die oben genannte Aufgabe gelöst mittels einer Vorrichtung mit einer Lichtquelle umfassend die
Schaltung wie hierin beschrieben.
Bei der Vorrichtung kann es sich um eine Leuchte, ein
Leuchtmodul oder ein Leuchtsystem handeln. Insbesondere kann die Schaltung Teil eines Betriebsgeräts für eine
Lichtquelle, Leuchte oder Leuchtmodul sein.
Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnung dargestellt und erläutert.
Es zeigt:
Fig.l eine schematische Schaltung zur Einschaltstrombegrenzung für einen nachgeschalteten Verbraucher.
Es wird eine Einschaltstrombegrenzung mit einem Heißleiter (NTC) vorgeschlagen. Der Heißleiter ist in einem Strompfad bzw. in einer Leitung zwischen einem Verbraucher und einem Stromversorgungsnetz angeordnet. Optional ist der
Heißleiter in Reihe mit einer Sicherung (z.B. einer
thermischen Sicherung) angeordnet. Weiterhin ist es eine Option, dass der Heißleiter z.B. nach Ablauf einer
vorgegebenen Zeitdauer überbrückt (und inaktiv geschaltet) wird. So kann sichergestellt werden, dass der Heißleiter während einer Einschaltphase aktiv ist und vorübergehend einen hohen Strom zum Aufladen nachgeschalteter Verbraucher bereitstellt. Nach der Einschaltphase kann der Heißleiter dauerhaft überbrückt werden, solange bis das Gerät
umfassend die hier beschriebene Einschaltstrombegrenzung von dem Stromversorgungsnetz getrennt wird (dann kann z.B. ein Relais öffnen und die Überbrückung des Heißleiters beenden) . Fig.l zeigt eine schematische Schaltung 100 zur
Einschaltstrombegrenzung für einen nachgeschalteten
Verbraucher 101.
Die Schaltung 100 ist über zwei Anschlüsse L und N mit einem Stromversorgungsnetz oder mit einer sonstigen
elektrischen Energieversorgung verbunden. Optional kann zwischen der elektrischen Energieversorgung und den
Anschlüssen L und N der Einschaltstrombegrenzung noch eine weitere Komponente (z.B. ein Netzfilter o.ä.) angeordnet sein.
Der Anschluss L ist über eine Sicherung 102 mit einem
Knoten 109 und über einen Schalter 105 mit einem Ausgang 107 der Schaltung 100 verbunden.
Der Knoten 109 ist mit einer Schwellwert-Schaltung 104 verbunden. Weiterhin ist der Knoten 109 über einen
Heißleiter 103 mit dem Ausgang 107 verbunden. Der Schalter 105 kann als ein elektronischer Schalter
(Transistor, Mosfet, o.a.) ausgeführt sein, der von der Schwellwert-Schaltung 104 angesteuert wird. Im Beispiel gemäß Fig.l ist der Schalter 105 als Teil eines Relais (Arbeitskontakte des Relais) ausgeführt, wobei eine Spule 106 des Relais von der Schwellwert-Schaltung 104
angesteuert wird.
Der Verbraucher 101 ist mit dem Anschluss 107 und mit einem Anschluss 108 der Schaltung 100 verbunden, wobei der
Anschluss 108 weiterhin mit dem Anschluss N sowie der
Schwellwert-Schaltung 104 verbunden ist.
Wird die Schaltung 100 mit der Energieversorgung (über die Anschlüsse L und N) verbunden, ist der Schalter 105 noch geöffnet, die Schwellwert-Schaltung 104 detektiert eine Spannung der Energieversorgung und startet ein Zeitglied mit der Zeitdauer At oder vergleicht einen gemessenen Strom oder eine gemessene Spannung mit einem vorgegebenen
Schwellwert (der Schwellwert wird in diesem Fall nach der Zeitdauer At erreicht) . Beispielsweise kann die
Schwellwert-Schaltung 104 hierfür ein Zeitglied, einen Zähler, einen Komparator oder eine sonstige Auswerteeinheit aufweisen. Beispielsweise kann von der Schwellwert- Schaltung eine Spannung an dem Knoten 109 gemessen oder ausgewertet werden. Optional ist es möglich, dass ein
Strom, der durch den Heißleiter 103 fließt, bestimmt wird (z.B. mittels eines nicht dargestellten Widerstands, über dem ein Spannungsabfall bestimmt wird) . Die Messung kann kontinuierlich oder zu bestimmten Zeitpunkten erfolgen. Insbesondere kann die Schwellwert-Schaltung 104 hierfür digitale oder analoge Bauteile aufweisen.
Der Einschaltstrom fließt durch die thermische Sicherung 102 und den Heißleiter 103, wobei der Heißleiter 103 durch den Stromfluss erwärmt wird. Mit steigender Temperatur des Heißleiters 103 nimmt sein ohmscher Widerstand ab. Ist die Zeitdauer At abgelaufen, steuert die Schwellwert-Schaltung
104 die Spule 106 des Relais an und schließt den Schalter
105 (z.B. ausgeführt als Arbeitskontakte des Relais) . Damit sind der Heißleiter 103 sowie die thermische Sicherung 102 überbrückt, die Einschaltphase (bzw. Dauer der
Einschaltstrombegrenzung) ist abgeschlossen. Vorzugsweise bleibt der Schalter 105 so lange geschlossen bis die
Schaltung 100 nicht mehr mit der Netzspannung verbunden ist (beispielsweise bis das Gerät über einen Hauptschalter ausgeschaltet wird) .
Die thermische Sicherung 102 dient zur Absicherung des Verbrauchers 101 für den Fall, dass der Schalter 105 defekt ist oder nicht rechtzeitig geschlossen wird. So unterbricht die thermische Sicherung 102 den Strom ehe der Heißleiter 103 (oder der Verbraucher 101) überlastet wird.
Die Zeitdauer At kann durch die Wahl eines geeigneten
Heißleiters 103 entsprechend groß gewählt werden.
Beispielsweise ist es möglich, dass die Zeitdauer At mehrere Sekunden beträgt. Durch Wahl oder Einstellung der Charakteristik des Heißleiters 103 kann die
Einschaltstrombegrenzung dem Verbraucher 101 entsprechend angepasst werden. Beispielsweise kann für einen kapazitiven Verbraucher der Heißleiter 103 eine steile Charakteristik aufweisen. So nimmt der ohmsche Widerstand des Heißleiters 103 in diesem Fall mit steigender Temperatur stark ab. Vorzugsweise kann der ohmsche Widerstand des Heißleiters so gewählt werden, dass bei einer Zeitdauer At < ls die Kondensatoren des kapazitiven Verbrauchers (nahezu vollständig) aufgeladen sind. Damit kann nach Ablauf der Zeitdauer At ein in dem
Verbraucher vorgesehener Wandler oder Konverter starten ohne dabei die Schaltung 100 zu überlasten.
Weist der Verbraucher hauptsächlich Induktivitäten auf, kann entsprechend eine flache Charakteristik des
Heißleiters 103 gewählt werden. In diesem Fall sinkt der ohmsche Widerstand langsam mit steigender Temperatur, die Zeitdauer At kann entsprechend lang gewählt werden. Weitere Vorteile:
Die vorgestellte Lösung kann flexibel z.B. für kapazitive Verbraucher, induktive Verbraucher oder Verbraucher mit Kaltleiter-Verhalten (z.B. Glühwendel) eingesetzt werden, indem die Charakteristik des Heißleiters in Kombination mit der Zeitdauer At eingestellt bzw. vorgegeben wird.
Dies ermöglicht den Einsatz eines Leitungsschutzschalters, dessen Verhalten (nahezu) ausschließlich von der Summe der Nennströme bestimmt ist. Damit ist es nicht länger
notwendig, den Leitungsschutzschalter stärker als für die Schutzfunktion nötig zu dimensionieren. So können Kosten für die Ausführung des Leitungsschutzschalters eingespart werden als auch sind im Fehlerfall die Schaltung sowie der angeschlossene Verbraucher entsprechend der Auslegung des Leitungsschutzschalters effizient geschützt.
Bezugszeichenliste
L, N Anschlüsse der Energieversorgung
100 Schaltung zur Einschaltstrombegrenzung
101 Verbraucher
102 thermische Sicherung
103 Heißleiter
104 Schwellwert-Schaltung
105 Schalter (Arbeitskontakte des Relais)
106 Spule (des Relais)
107 Ausgang
108 Ausgang
109 Knoten
Claims
1. Schaltung (100) zur Strombegrenzung
- mit einem Heißleiter (103), der in einem Strompfad zu einem Verbraucher (101) angeordnet ist,
- mit einem Schalter (105) zur Überbrückung des
Heißleiters (103) .
2. Schaltung nach Anspruch 1, bei der der Schalter (100) nach einer vorgegebenen Zeitdauer nach einem Anlegen einer Versorgungsspannung aktivierbar ist.
3. Schaltung nach einem der vorhergehenden Ansprüche, bei der der Schalter (100) parallel zu dem Heißleiter (103) angeordnet ist.
4. Schaltung nach einem der vorhergehenden Ansprüche, bei der eine Serienschaltung umfassend den Heißleiter (103) und eine Sicherung (102) parallel zu dem
Schalter (105) angeordnet ist.
5. Schaltung nach Anspruch 4, bei der die Sicherung eine thermische Sicherung (102) ist.
6. Schaltung nach einem der vorhergehenden Ansprüche, bei der eine Schwellwert-Schaltung vorgesehen ist, anhand derer der Schalter aktivierbar ist.
7. Schaltung nach Anspruch 6, bei der die Schwellwert- Schaltung (104) das Anlegen der Versorgungsspannung detektiert und nach Ablauf einer vorgegebenen
Zeitdauer den Schalter aktiviert.
8. Schaltung nach Anspruch 7, bei der die vorgegebene
Zeitdauer anhand eines Zeitglieds bestimmbar ist.
9. Schaltung nach einem der Ansprüche 6 bis 8, bei der die Schwellwert-Schaltung (104) bei Eintritt einer vorgegebenen Bedingung den Schalter (105) aktiviert.
10. Schaltung nach Anspruch 9, bei der die vorgegebene
Bedingung mindestens eine der folgenden Optionen umfasst :
- dass ein Messwert einen Schwellwert erreicht oder überschreitet ;
- dass eine Versorgungsspannung anliegt.
11. Schaltung nach einem der vorhergehenden Ansprüche, bei der der Schalter (105) ein Arbeitskontakt eines Relais ist, der über eine Spule des Relais aktivierbar ist.
12. Schaltung nach einem der vorhergehenden Ansprüche, bei der der Schalter (105) ein elektronischer Schalter, insbesondere ein Transistor oder ein Mosfet ist.
13. Verfahren zur Einschaltstrombegrenzung,
- bei dem ein einen Heißleiter enthaltender Strompfad überbrückt wird, sobald eine vorgegebene Bedingung eintritt .
14. Verfahren nach Anspruch 13, bei dem die vorgegebene Bedingung umfasst
- einen Ablauf einer vorgegebenen Zeitdauer und/oder
- ein Erreichen oder Überschreiten eines Schwellwerts durch einen ermittelten Messwert.
15. Vorrichtung mit einer Lichtquelle umfassend die
Schaltung nach einem der Ansprüche 1 bis 12.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201010040174 DE102010040174A1 (de) | 2010-09-02 | 2010-09-02 | Schaltung und Verfahren zur Strombegrenzung |
DE102010040174.9 | 2010-09-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012028575A1 true WO2012028575A1 (de) | 2012-03-08 |
Family
ID=44677856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/064812 WO2012028575A1 (de) | 2010-09-02 | 2011-08-29 | Schaltung und verfahren zur einschaltstrombegrenzung |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102010040174A1 (de) |
WO (1) | WO2012028575A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018213623A1 (de) * | 2018-08-13 | 2020-02-13 | Lenze Drives Gmbh | Frequenzumrichter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4331250C1 (de) * | 1993-09-15 | 1994-09-08 | Fraunhofer Ges Forschung | Vorrichtung zur Begrenzung des Einschaltstromes in einem Laststromkreis |
US20090296298A1 (en) * | 2005-01-31 | 2009-12-03 | Deepakraj Malhar Divan | Active Current Surge Limiters |
DE202009013443U1 (de) * | 2009-10-05 | 2010-07-08 | Sunrise Power Transformers Gmbh | Der Spitzenstrombegrenzer des Ringkerntransformators |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19608819C2 (de) * | 1996-03-07 | 1999-09-09 | Heraeus Med Gmbh | Elektrische Versorgungs-Schaltung für Lampen |
US5994889A (en) * | 1998-07-24 | 1999-11-30 | Siemens Aktiengesellschaft | Circuit arrangement for limiting the current at make of a capacitative load |
-
2010
- 2010-09-02 DE DE201010040174 patent/DE102010040174A1/de not_active Ceased
-
2011
- 2011-08-29 WO PCT/EP2011/064812 patent/WO2012028575A1/de active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4331250C1 (de) * | 1993-09-15 | 1994-09-08 | Fraunhofer Ges Forschung | Vorrichtung zur Begrenzung des Einschaltstromes in einem Laststromkreis |
US20090296298A1 (en) * | 2005-01-31 | 2009-12-03 | Deepakraj Malhar Divan | Active Current Surge Limiters |
DE202009013443U1 (de) * | 2009-10-05 | 2010-07-08 | Sunrise Power Transformers Gmbh | Der Spitzenstrombegrenzer des Ringkerntransformators |
Also Published As
Publication number | Publication date |
---|---|
DE102010040174A1 (de) | 2012-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2418748B1 (de) | Energieversorgungsvorrichtung | |
EP3281266B1 (de) | Verfahren und vorrichtung zur energieversorgung einer niederspannungslast | |
WO2007121492A1 (de) | Schalteinrichtung | |
WO2015078525A1 (de) | Vorrichtung und verfahren zum schalten eines gleichstromes | |
DE112008000929T5 (de) | Stromunterbrechungsvorrichtung mit automatischer Betätigung beim Auftreten von Funken an einer elektrischen Leitung | |
WO2017059983A1 (de) | Elektronischer schutzschalter | |
AT405114B (de) | Ableitertrennschalter | |
DE112009004858T5 (de) | Wärme-Schutzschalter | |
EP3138170B1 (de) | Energieversorgungsgerät | |
EP2697881B1 (de) | Zweistufige abschaltvorrichtung | |
DE102007007249B4 (de) | Schaltungsanordnung zur Ansteuerung eines Schaltnetzteils | |
EP2639949B1 (de) | Stromversorgung mit Zwischenkreis | |
AT507083B1 (de) | Elektrische schutzeinrichtung und steuerungsverfahren der elektrischen schutzeinrichtung | |
DE202009005420U1 (de) | Elektronischer Schutzschalter | |
DE102015211059B3 (de) | Elektronischer Schutzschalter | |
DE2306013B2 (de) | Schaltungsanordnung zur Begrenzung der Verlustleistung von elektronischen Bauelementen | |
WO2017186476A1 (de) | Elektronische sicherung für ein fahrzeug | |
DE102014002058A1 (de) | Überstromschutzvorrichtung | |
WO2012028575A1 (de) | Schaltung und verfahren zur einschaltstrombegrenzung | |
DE2439066A1 (de) | Einrichtung zur begrenzung von stroemen | |
DE202015009409U1 (de) | Stromverteilungssystem zum Anschluss an ein Wechselspannungsnetz | |
EP1101266B1 (de) | Schaltungsanordnung zur einschaltstrombegrenzung für einen transformator | |
EP1986316A1 (de) | Entlastung des Bypasssystems von Sanftanlaufgeräten von Überströmen | |
BE1026445B1 (de) | Geräteschutzschalter mit intelligenter Grenzwertermittlung | |
WO1995026586A1 (de) | Thermischer überlastungsschutz für schalter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11761025 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11761025 Country of ref document: EP Kind code of ref document: A1 |