WO1995026586A1 - Thermischer überlastungsschutz für schalter - Google Patents

Thermischer überlastungsschutz für schalter Download PDF

Info

Publication number
WO1995026586A1
WO1995026586A1 PCT/AT1995/000060 AT9500060W WO9526586A1 WO 1995026586 A1 WO1995026586 A1 WO 1995026586A1 AT 9500060 W AT9500060 W AT 9500060W WO 9526586 A1 WO9526586 A1 WO 9526586A1
Authority
WO
WIPO (PCT)
Prior art keywords
overload protection
switching element
thermal overload
thyristor
electrically controllable
Prior art date
Application number
PCT/AT1995/000060
Other languages
English (en)
French (fr)
Inventor
Josef Brandstätter
Original Assignee
Felten & Guilleaume Austria Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Felten & Guilleaume Austria Ag filed Critical Felten & Guilleaume Austria Ag
Priority to AU18853/95A priority Critical patent/AU1885395A/en
Publication of WO1995026586A1 publication Critical patent/WO1995026586A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/06Arrangements for supplying operative power
    • H02H1/063Arrangements for supplying operative power primary power being supplied by fault current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/048Fuse resistors
    • H01H2085/0483Fuse resistors with temperature dependent resistor, e.g. thermistor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • H02H3/334Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means to produce an artificial unbalance for other protection or monitoring reasons or remote control
    • H02H3/335Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means to produce an artificial unbalance for other protection or monitoring reasons or remote control the main function being self testing of the device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • H02H5/042Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature using temperature dependent resistors

Definitions

  • the invention relates to thermal overload protection for switches, e.g. Residual current circuit breaker, with a thermally influenceable control element, such as a bimetallic switch or a PTC resistor, which actuates a switch element in such a way that the switch releases the electrical system to be monitored via a mechanism.
  • switches e.g. Residual current circuit breaker
  • a thermally influenceable control element such as a bimetallic switch or a PTC resistor
  • Residual current circuit breakers FL switches
  • FL switches Residual current circuit breakers
  • Fl switches Residual current circuit breakers
  • the back-up fuse is often chosen to be as high as possible in practice, which means that protection of the internal FI elements in the event of overload current (> 1.1 x I M of the FI) by interrupting the back-up fuse is not more is given. This can lead to destruction or premature aging due to the current density in some FI components.
  • REPLACEMENT SHEET (RULE2 ⁇ Monitoring is known from DE-A-1 588 723.
  • a bimetallic strip is provided as a thermally influenceable control element, which actuates a mechanical switching element in order to simulate a fault current in the circuit breaker and in this way interrupt the switching contacts of the primary lines.
  • the invention has for its object to provide improved thermal overload protection for switches.
  • the switching element is an electrically controllable switch, for example a thyristor, the control line of which is energized by the thermally influenceable control element.
  • a major advantage of the overload protection according to the invention is that the electrically controllable switching element can be used not only for the purpose of thermal overload protection, but also for other purposes, as will be shown below.
  • test branch is provided which also applies voltage to the control line of the electrically controllable switching element.
  • a Fl switch can be triggered in three different ways, e.g. for triggering due to a differential current between two conductors (main task of the FI), for triggering after pressing the test button (simulated fault current) only for test purposes, and for triggering by triggering the thermal protection, which simulates a fault current as when the test button is pressed .
  • this can be developed in such a way that the control line of the electrically controllable switching element is connected to the output of a summation current transformer of a residual current circuit breaker, which increases the technical complexity of the FI The switch can be reduced considerably, since only one switching element is required for all three possibilities of triggering the residual current circuit breaker.
  • the electrically controllable switching element it is possible for the electrically controllable switching element to apply a magnetic release to voltage.
  • a fault current is not simulated, but it is e.g. a shunt release is directly connected to the voltage, which e.g. of a Fl switch operated.
  • a type pulse current sensitive residual current circuit breakers
  • AC type AC current sensitive residual current circuit breakers
  • the electrically controllable switching element simulates a fault current in the summation current transformer
  • the same mains voltage half-wave is always switched through by an electrically controllable switching element designed as a thyristor, but this has the disadvantage that only the opposite the AC sensitive residual current circuit breaker more expensive pulse current sensitive residual current circuit breaker with its special core material can be used.
  • the electrically controllable switching element is connected to voltage via a rectifier, preferably a bridge rectifier, or that the electrically controllable switching element is a triac.
  • FIG. 1 shows an embodiment of a basic circuit arrangement according to the invention, in which a thyristor can be switched with the aid of a PTC resistor which is assigned to a thermally monitored component of a circuit breaker.
  • FIG. 2 shows the arrangement of the circuit from FIG. 1 in an embodiment of an F1 switch, in which a fault current in a summation current transformer can be simulated via the thyristor.
  • FIG. 3 shows an embodiment which has been further developed compared to FIG. 2 and in which the thyristor can also be controlled via a test button.
  • FIG. 4 shows an embodiment of the invention corresponding essentially to FIG. 3, which can also be used with AC-sensitive fault current circuit breakers and
  • Fig. 5 shows an embodiment of the invention, in which not a fault current is simulated via the switching element (thyristor), but a shunt release is directly connected to voltage.
  • a circuit for thermal overload protection in which a series circuit comprising an ohmic resistor 2 and a resistor 3 with a positive temperature coefficient (PTC resistor) is arranged in parallel with an electrically controllable switching element 1 designed as a thyristor is, wherein a control line 4 of the thyristor 1 is connected between the ohmic resistor 2 and the PTC resistor 3.
  • PTC resistor positive temperature coefficient
  • the PTC resistor 3 takes the temperature of a component of a circuit breaker to be monitored, for example one Total current transformer. At normal temperature, the PTC resistor has practically no resistance, so that the control current in the control line 4 of the thyristor 1 is not sufficient to ignite it. However, if the summation current transformer and consequently also the PTC resistor 3 heats up above a predetermined value, this quickly becomes high-resistance, so that the thyristor 1 is ignited by the now higher control current and, for example, a trigger relay is energized in order to thereby activate a switching mechanism of the Operate circuit breaker.
  • FIG. 1 the circuit shown in FIG. 1 is used for a residual current circuit breaker, the structure of which, insofar as it is important here, is shown in FIG. 2.
  • the Fl switch according to Fig. 2 has a total current transformer 5, which a differential current e.g. can detect between a phase 6 and a neutral conductor 7 and opens the switching contacts 10 and 11 of the phase 6 and the neutral conductor 7 in a manner known per se via a permanent magnet release 8 and a switching lock 9.
  • a differential current e.g. can detect between a phase 6 and a neutral conductor 7 and opens the switching contacts 10 and 11 of the phase 6 and the neutral conductor 7 in a manner known per se via a permanent magnet release 8 and a switching lock 9.
  • phase 6 is connected to the neutral conductor 7 via a switch contact 12, also actuated by the switch lock 9, a test button 13 and a test resistor 14. If the test button 13 is pressed and its contact is closed, this is equivalent to a fault current and the FL switch is actuated.
  • the thermal overload protection shown in FIG. 1 is connected in parallel with the test button 13, the PTC resistor 3 being thermally coupled to the summation current transformer 5. If the temperature in the total current transformer 5 exceeds a predetermined value, the thyristor 1 ignites in the manner described and a fault current is also simulated, as a result of which the FL switch is actuated.
  • FIG. 3 shows an embodiment of the invention corresponding essentially to FIG. 2, the test button 13 in the embodiment of FIG. 3 being parallel to the ohmic see series resistor 2 was switched, which is in series with the PTC resistor 3.
  • the test button 13 is connected via a series resistor 15 to the control line 4 of the thyristor 1, a diode 16 preventing the current from flowing through the low-resistance PTC resistor 3 when the test button 13 is actuated, instead of the thyristor 1 to ignite.
  • test element 13 can also be used to test the switching element 1 of the RCD, designed as a thyristor.
  • FIGS. 2 and 3 have the disadvantage that they can only be used in the case of pulse current-sensitive and therefore more expensive Fl switches, since only the same mains half-wave is switched through by the thyristor 1 becomes.
  • a varistor 20 is arranged between the network-side connections 18, 19 of the bridge circuit 17.
  • a series connection of an ohmic resistor 21 and a capacitor 22 is provided in parallel with the thyristor 1
  • a parallel circuit comprising resistor 23 and capacitor 24 is provided parallel to the gate 4 and cathode path of thyristor 1 4 is connected in the same way to the phase 6 and the neutral conductor 7 as shown in FIGS.
  • thyristor 1 can be ignited not only with the aid of the PTC resistor 3 and with the test button 13, but also with the aid of a control current which comes from the summation current transformer 5, the actual task of a Switch. Since the evaluation circuit associated with the summation current transformer 5 can be designed in a manner known per se, it is not described in more detail here. It is only noted that the evaluation circuit supplies a control current when a certain fault current is exceeded, through which the thyristor 1 can be ignited.
  • the thyristor 1 is connected via a bridge rectifier 26 to a supply line 27 for the shunt release 25 and is protected against overvoltages by a varistor 28.
  • the present invention is applicable not only to residual current circuit breakers, but also more generally to switches or circuit breakers in which thermal monitoring of the switch or components thereof is desirable.
  • the invention can be represented as follows, for example:
  • a residual current circuit breaker has a thyristor 1, the ignition of which in the total current transformer 5 simulates a residual current.
  • Parallel to the thyristor 1 is an ohmic resistor 2 and a PTC resistor are connected in series 3, wherein the control line 4 can see the thyristor 1 between the ohmic resistance • 2 and the PTC resistor 3 is connected.
  • the PTC resistor 3 detects the temperature in the summation current converter 5.
  • the PTC resistor 3 becomes high-resistance and the thyristor 1 is ignited by the control current 4 which now flows through the control line 4, as a result of which a fault current is simulated ⁇ liert and the contacts 10, 11 of the residual current circuit breaker are opened.
  • a series connection of a test button 13 and a series resistor 15 is provided. If the test button 13 is pressed and the contact is closed, the thyristor 1 is also ignited and a fault current in the summation current transformer 5 is simulated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

Ein Fehlerstromschutzschalter weist einen Thyristor (1) auf, durch dessen Zünden im Summenstromwandler (5) ein Fehlerstrom simuliert wird. Parallel zum Thyristor (1) sind ein ohmscher Widerstand (2) und ein PTC-Widerstand (3) in Serie geschaltet, wobei die Steuerleitung (4) des Thyristors (1) zwischen dem ohmschen Widerstand (2) und dem PTC-Widerstand (3) angeschlossen ist. Der PTC-Widerstand (3) erfaßt die Temperatur im Summenstromwandler (5). Überschreitet die Temperatur im Summenstromwandler (5) einen vorgegebenen Wert, wird der PTC-Widerstand (3) hochohmig und der Thyristor (1) durch den nun durch die Steuerleitung (4) fließenden Steuerstrom gezündet, wodurch ein Fehlerstrom simuliert und die Kontakte (10, 11) des Fehlerstromschutzschalters geöffnet werden. Parallel zum ohmschen Widerstand (2), der in Serie zum PTC-Widerstand (3) liegt, ist eine Serienschaltung aus einer Prüftaste (13) und einem Vorwiderstand (15) vorgesehen. Wird die Prüftaste (13) gedrückt und der Kontakt geschlossen, wird der Thyristor (1) ebenfalls gezündet und ein Fehlerstrom im Summenstromwandler (5) simuliert.

Description

Thermischer Überlastungsschutz für Schalter
Die Erfindung betrifft einen thermischen Überlastschutz für Schalter, z.B. Fehlerstromschutzschalter, mit einem thermisch beeinflußbaren Steuerelement, wie einem Bimetallschalter oder einem PTC- iderstand, das ein Schalterelement derart betätigt, daß der Schalter die zu überwachende elektrische Anlage über einen Mechanismus freischaltet.
Fehlerstromschutzschalter (Fl-Schalter), eine bevorzugte An¬ wendungsform der Erfindung, werden in grundsätzlich zum Schutz von Personen und Tieren bei direktem oder indirektem Berühren von unter Spannung stehenden Teilen in elektrischen Anlagen eingesetzt. Um diese Aufgabe immer zuverlässig erfüllen zu können, müssen Fl-Schalter immer in Kombination mit richtig dimensionierten Vorsicherungen eingesetzt werden. Diese Vor¬ sicherungen sollten bei richtiger Auslegung den Schutz sowohl gegen thermische Überlastung bei Kurzschlüssen in der Anlage als auch bei längerandauernden Überlastströmen übernehmen.
Aus Gründen der Selektivität zu nachgeschalteten Überstrom- organen in den Endstromkreisen wird die Vorsicherung in der Praxis häufig möglichst hoch gewählt, wodurch ein Schutz der inneren FI-Elemente bei Überlaststrom (> 1,1 x IM des FI) durch Unterbrechen über die Vorsicherung nicht mehr gegeben ist. Dadurch kann aufgrund der Stromdichte in einigen FI-Komponen¬ ten eine Zerstörung oder vorschnelle Alterung auftreten.
Aber auch schon bei Überströmen zwischen den Nennwerten der Vorsicherung und des FI-Schalters kann es zu einer übermäßigen Erwärmung im Fl-Schalter kommen, ohne daß die Vorsicherung auslöst. Um eine Beschädigung des Fl-Schalters zu verhindern, müßte dieser auf den Normalbetrieb bezogen unwirtschaftlich überdimensioniert werden, oder eben einen zusätzlichen Über¬ lastschutz beinhalten.
Ein gattungsgemäßer Fehlerstromschutzschalter mit Temperatur-
ERSATZBLATT(REGEL2φ Überwachung ist aus der DE-A-1 588 723 bekannt. Als thermisch beeinflußbares Steuerelement ist dabei ein Bimetallstreifen vorgesehen, der ein mechanisches Schaltelement betätigt, um einen Fehlerstrom im Schutzschalter zu simulieren und auf diese Weise die Schaltkontakte der Primärleitungen zu unter¬ brechen.
Der Erfindung liegt die Aufgabe zugrunde, einen verbesserten thermischen Überlastungsschutz für Schalter zur Verfügung zu stellen.
Gelöst wird diese Aufgabe dadurch, daß das Schaltelement ein elektrisch steuerbarer Schalter, beispielsweise ein Thyristor, ist, dessen Steuerleitung durch das thermisch beeinflußbare Steuerelement an Spannung gelegt wird.
Ein wesentlicher Vorteil des erfindungsgemäßen Überlastschut- zes ist, daß das elektrisch steuerbare Schaltelement nicht nur für den Zweck des thermischen Überlastschutzes herangezogen werden kann, sondern auch für andere Zwecke, wie in der Folge gezeigt werden wird.
Inbesondere kann dabei gemäß der Erfindung vorgesehen sein, daß eine Prüf aste vorgesehen ist, die die Steuerleitung des elektrisch steuerbaren Schaltelementes ebenfalls an Spannung legt.
Es kann dabei auf drei verschiedene Arten zur Auslösung eines Fl-Schalters kommen, u.zw. zur Auslösung aufgrund eines Diffe- renzstromes zwischen zwei Leitern (Hauptaufgabe des FI ), zur Auslösung nach Betätigung der Prüftaste (simulierter Fehler¬ strom) nur für Prüfzwecke, und zur Auslösung durch Ansprechen des Thermoschutzes, wodurch wie bei Betätigung der Prüftaste ein Fehlerstrom simuliert wird.
Gemäß einer weiteren, bevorzugten Ausführungsform der Erfin¬ dung kann diese so weitergebildet sein, daß die Steuerleitung des elektrisch steuerbaren Schaltelementes mit dem Ausgang eines Summenstromwandlers eines Fehlerstromschutzschalters verbunden ist, wodurch sich der technische Aufwand des FI- Schalters erheblich verringern läßt, da für alle drei Möglich¬ keiten, den Fehlerstromschutzschalter auszulösen, nur ein einziges Schaltelement benötigt wird.
In dieser Ausführungsform der Erfindung ist es möglich, daß das elektrisch steuerbare Schaltelement einen Magnetauslöser an Spannung legt. Bei dieser Ausführungsform wird nicht ein Fehlerstrom simuliert, sondern es wird vom Schaltelement z.B. ein Arbeitsstromauslöser direkt an Spannung gelegt, der das Schaltschloß z.B. eines Fl-Schalters betätigt.
Je nach Art des Fehlerstromes unterscheidet man zwischen puls- stromsensitiven Fehlerstromschutzschaltern (A-Type) und wech- selstromsensitiven Fehlerstromschutzschaltern (AC-Type).
In einer Ausführungsform der Erfindung, die dadurch gekenn¬ zeichnet ist, daß das elektrisch steuerbare Schaltelement einen Fehlerstrom im Summenstromwandler simuliert, wird von einem als Thyristor ausgebildeten elektrisch steuerbaren Schaltelement immer die jeweils gleiche Netzspannungshalbwelle durchgeschaltet, was jedoch den Nachteil hat, daß nur die gegenüber dem wechselstromsensitiven Fehlerstromschutzschalter teureren pulsstromsensitiven Fehlerstromschutzschalter mit ihrem speziellen Kernmaterial zum Einsatz kommen können.
Um bei der vorliegenden Erfindung auch wechselstromsensitive Fehlerstromschutzschalter verwenden zu können, ist daher in einer Weiterbildung der Erfindung vorgesehen, daß das elek- trisch steuerbare Schaltelement über einen Gleichrichter, vorzugsweise einem Brückengleichrichter, an Spannung liegt, oder daß das elektrisch steuerbare Schaltelement ein Triac ist.
Beide letztgenannten Ausführungsformen haben den Vorteil, daß jede Netzhalbwelle unabhängig von ihrer Polarität (bei der Ausführungsform mit einem Gleichrichter in für den Thyristor gleichgerichteter Form) durchgeschaltet werden kann, wodurch bei der Erfindung auch billigere wechselstromsensitive Fehler- stromschutzschalter zum Einsatz kommen können. Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den übrigen Unteransprüchen und der nachfolgenden Beschreibung von Ausführungsbeispielen gemäß der Erfindung unter Bezugnahme auf die Zeichnungen. Es zeigt:
Fig. 1 eine Ausführungsform einer grundsätzlichen Schaltungs¬ anordnung gemäß der Erfindung, bei der ein Thyristor mit Hilfe eines PTC-Widerstandes, der einem thermisch zu überwachenden Bauteil eines Schutzschalters zugeordnet ist, geschaltet wer- den kann.
Fig. 2 die Anordnung der Schaltung von Fig. 1 in einer Aus- führungsform eines Fl-Schalters, bei der über den Thyristor ein Fehlerstrom in einem Summenstromwandler simuliert werden kann.
Fig. 3 eine gegenüber Fig. 2 weiterentwickelte Ausführungs- form, bei der der Thyristor auch über eine Prüftaste angesteu¬ ert werden kann.
Fig. 4 eine im wesentlichen Fig. 3 entsprechende Ausführungs¬ form der Erfindung, die auch bei wechselstromsensitiven Feh¬ lerstromschutzschaltern eingesetzt werden kann und
Fig. 5 eine Ausführungsform der Erfindung, bei der über das Schaltelement (Thyristor) nicht ein Fehlerstrom simuliert, sondern ein Arbeitsstromauslöser direkt an Spannung gelegt wird.
In Fig. 1 ist eine Schaltung für einen thermischen Überlast¬ schutz dargestellt, bei dem parallel zu einem als Thyristor ausgebildeten, elektrisch steuerbaren Schaltelement 1 eine Serienschaltung aus einem ohmschen Widerstand 2 und einem Widerstand 3 mit positivem Temperaturkoeffizienten (PTC-Wider- stand) angeordnet ist, wobei eine Steuerleitung 4 des Thyri¬ stors 1 zwischen dem ohmschen Widerstand 2 und dem PTC-Wider- stand 3 angeschlossen ist.
Der PTC-Widerstand 3 nimmt die Temperatur eines zu überwachen- den Bauteiles eines Schutzschalters, beispielsweise eines Summenstromwandlers, an. Bei Normaltemperatur weist der PTC- Widerstand praktisch keinen Widerstand auf, so daß der Steuer¬ strom in der Steuerleitung 4 des Thyristors 1 nicht zum Zünden desselben ausreicht. Erwärmt sich jedoch der Summen- stromwandler und folglich auch der PTC-Widerstand 3 über einen vorgegebenen Wert, wird dieser rasch hochohmig, so daß der Thyristor 1 durch den nun höheren Steuerstrom gezündet wird und z.B. ein Auslöserelais an Spannung legt, um dadurch einen Schaltmechanismus des Schutzschalters zu betätigen.
Beispielsweise kommt die in Fig. 1 dargestellte Schaltung bei einem Fehlerstromschutzschalter zum Einsatz, dessen Aufbau, soweit er hier von Bedeutung ist, in Fig. 2 dargestellt ist.
Der Fl-Schalter gemäß Fig. 2 weist einen Summenstromwandler 5 auf, der einen Differenzstrom z.B. zwischen einer Phase 6 und einem Null-Leiter 7 erfassen kann und auf an sich bekannte Weise über einen Permanentmagnetauslöser 8 und ein Schalt¬ schloß 9 die Schaltkontakte 10 und 11 der Phase 6 und des Null-Leiters 7 öffnet.
Um einen Fehlerstrom zu simulieren und die Funktionsfähigkeit des FI-Schalters überprüfen zu können, ist die Phase 6 über einen ebenfalls vom Schaltschloß 9 betätigten Schaltkontakt 12, eine Prüftaste 13 und einen Prüfwiderstand 14 mit dem Null-Leiter 7 verbunden. Wird die Prüftaste 13 gedrückt und deren Kontakt geschlossen, kommt dies einem Fehlerstrom gleich und der Fl-Schalter wird betätigt.
Parallel zur Prüftaste 13 ist der in Fig. 1 dargestellte ther¬ mische Überlastungsschutz geschaltet, wobei der PTC-Widerstand 3 mit dem Summenstromwandler 5 thermisch gekoppelt ist. Über¬ schreitet die Temperatur im Summenstromwandler 5 einen vor¬ gegebenen Wert, zündet der Thyristor 1 auf die beschriebene Weise und es wird ebenfalls ein Fehlerstrom simuliert, wodurch der Fl-Schalter betätigt wird.
In Fig. 3 ist eine im wesentlichen Fig. 2 entsprechende Aus¬ führungsform der Erfindung dargestellt, wobei die Prüftaste 13 bei der Ausführungsform von Fig. 3 jedoch parallel zum ohm- sehen Vorwiderstand 2 geschaltet wurde, der in Serie zum PTC- Widerstand 3 liegt. Die Prüftaste 13 ist über einen Vorwider¬ stand 15 an die Steuerleitung 4 des Thyristors 1 angeschlos¬ sen, wobei durch eine Diode 16 verhindert wird, daß der Strom beim Betätigen der Prüftaste 13 über den niederohmigen PTC- Widerstand 3 fließt, anstatt den Thyristor 1 zu zünden.
Die in Fig. 3 dargestellte Ausführungsform weist gegenüber der in Fig. 2 dargestellten Ausführungsform den Vorteil auf, daß mit Hilfe der Prüftaste 13 auch das als Thyristor ausgebildete Schaltelement 1 des FI-Schalters getestet werden kann.
Die in den Fig. 2 und 3 beschriebenen Ausführungsformen wei¬ sen, wie bereits erwähnt, den Nachteil auf, daß sie nur bei pulsstromsensitiven und somit teureren Fl-Schaltern zum Ein¬ satz kommen können, da vom Thyristor 1 immer nur die gleiche Netzhalbwelle durchgeschaltet wird.
Mit Hilfe der in Fig. 4 dargestellten Ausführungsform wird dieser Nachteil dadurch vermieden, daß parallel zum Thyristor 1 eine Brückenschaltung 17 als Gleichrichter vorgeschaltet ist, so daß vom Thyristor 1 bei beiden Netzhalbwellen (zwi¬ schen Phase 6 und Null-Leiter 7) durchgeschaltet werden kann.
Um die Schaltung gemäß Fig. 4 vor Überspannung zu schützen, ist zwischen den netzseitigen Anschlüssen 18, 19 der Brücken¬ schaltung 17 ein Varistor 20 angeordnet. Um die Sicherheit der Schaltfunktion des Thyristors 1 zu gewährleisten, ist parallel zum Thyristor 1 eine Serienschaltung eines ohmschen Widerstan- des 21 und eines Kondensators 22 vorgesehen und parallel zur Strecke Gate 4 und Kathode des Thyristors 1 eine Parallel¬ schaltung aus Widerstand 23 und Kondensator 24. Im übrigen ist die in Fig. 4 dargestellte Ausführungsform auf gleiche Weise an die Phase 6 und den Null-Leiter 7 angeschlossen, wie in den Fig. 2 und 3 dargestellt.
In Fig. 5 ist eine weitere Ausführungsform der Erfindung dar¬ gestellt, bei der mit Hilfe des Schaltelementes 1 kein Feh¬ lerstrom im Summenstromwandler 5 simuliert sondern ein Ar- beitsstromauslöser 25 direkt an das Netz geschaltet wird. Der Thyristor 1 kann im in Fig. 5 dargestellten Ausführungsbei- spiel nicht nur mit Hilfe des PTC-Widerstandes 3 und mittels der Prüftaste 13 gezündet werden, sondern auch mit Hilfe eines Steuerstromes, der vom Summenstromwandler 5 stammt, der ei- gentlichen Aufgabe eines Fl-Schalters. Da die dem Summenstrom¬ wandler 5 zugeordnete Auswerteschaltung auf an sich bekannte Weise ausgebildet sein kann, wird sie hier nicht näher be¬ schrieben. Es wird nur vermerkt, daß die Auswerteschaltung bei Überschreiten eines bestimmten Fehlerstromes einen Steuerstrom liefert, durch den der Thyristor 1 gezündet werden kann.
Der Thyristor 1 ist über einen Brückengleichrichter 26 mit einer Versorgungsleitung 27 für den Arbeitsstromauslöser 25 verbunden und durch einen Varistor 28 gegen Überspannungen geschützt.
Es versteht sich, daß die vorliegende Erfindung nicht nur auf Fehlerstromschutzschalter anwendbar ist, sondern auch ganz allgemein auf Schalter oder Schutzschalter, in denen eine thermische Überwachung des Schalters oder von Komponenten desselben wünschenswert ist.
Zusammenfassend kann die Erfindung beispielsweise wie folgt dargestellt werden:
Ein Fehlerstromschutzschalter weist einen Thyristor 1 auf, durch dessen Zünden im Summenstromwandler 5 ein Fehlerstrom simuliert wird. Parallel zum Thyristor 1 sind ein ohmscher Widerstand 2 und ein PTC-Widerstand 3 in Serie geschaltet, wobei die Steuerleitung 4 des Thyristors 1 zwischen dem ohm- sehen Widerstand 2 und dem PTC-Widerstand 3 angeschlossen ist. Der PTC-Widerstand 3 erfaßt die Temperatur im Summenstromwand¬ ler 5. Überschreitet die Temperatur im Summenstromwandler 5 einen vorgegebenen Wert, wird der PTC-Widerstand 3 hochohmig und der Thyristor 1 durch den nun durch die Steuerleitung 4 fließenden Steuerstrom gezündet, wodurch ein Fehlerstrom simu¬ liert und die Kontakte 10, 11 des Fehlerstromschutzschalters geöffnet werden.
Parallel zum ohmschen Widerstand 2, der in Serie zum PTC-Wi- derstand 3 liegt, ist eine Serienschaltung aus einer Prüftaste 13 und einem Vorwiderstand 15 vorgesehen. Wird die Prüftaste 13 gedrückt und der Kontakt geschlossen, wird der Thyristor 1 ebenfalls gezündet und ein Fehlerstrom im Summenstromwandler 5 simuliert.

Claims

Patentansprüche:
1. Thermischer Überlastschutz für Schalter, z.B. Fehlerstrom- schutzschalter, mit einem thermisch beeinflußbaren Steuer¬ element (3), wie einem Bimetallschalter oder einem PTC- Widerstand, das ein Schaltelement (1) derart betätigt, daß der Schalter die zu überwachende elektrische Anlage über einen Mechanismus freischaltet, dadurch gekennzeichnet, daß das Schaltelement ( 1 ) ein elektrisch steuerbarer Schalter, beispielsweise ein Thyristor, ist, dessen Steu¬ erleitung (4) durch das thermisch beeinflußbare Steuer¬ element (3) an Spannung gelegt wird.
2. Thermischer Überlastschutz nach Anspruch 1, dadurch ge¬ kennzeichnet, daß eine Prüftaste (13) vorgesehen ist, die die Steuerleitung (4) des elektrisch steuerbaren Schaltelementes (1) ebenfalls an Spannung legt.
3. Thermischer Überlastschutz nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß parallel zum elektrisch steuerbaren Schaltelement ( 1 ) eine Serienschaltung aus einem ohmschen Widerstand (2) und dem thermisch beeinflußbaren Steuer¬ element (3) angeordnet ist und daß die Steuerleitung (4) des elektrisch steuerbaren Schaltelementes ( 1 ) zwischen dem ohmschen Widerstand ( 2 ) und dem thermisch beeinflu߬ baren Steuerelement (3) angeschlossen ist.
4. Thermischer Überlastschutz nach Anspruch 2 und 3, dadurch gekennzeichnet, daß parallel zum ohmschen Widerstand (2) die Prüftaste (13) und ein weiterer ohmscher Widerstand (15) in Serie geschaltet sind.
5. Thermischer Überlastschutz nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Steuerleitung (4) des elektrisch steuerbaren Schaltelementes ( 1 ) mit dem Ausgang eines Summenstromwandlers ( 5 ) eines Fehlerstromschutz- schalters verbunden ist.
6. Thermischer Überlastschutz nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das elektrisch steuerbare Schaltelement ( 1 ) einen Magnetauslöser ( 25 ) an Spannung legt.
7. Thermischer Überlastschutz nach Anspruch 5, dadurch ge¬ kennzeichnet, daß das elektrisch steuerbare Schaltelement (1) einen Fehlerstrom im Summenstromwandler (5) simuliert.
8. Thermischer Überlastschutz nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das elektrisch steuerbare Schaltelement (1) über einen Gleichrichter (17), vorzugs¬ weise einen Brückengleichrichter, an Spannung liegt.
'9. Thermischer Überlastschutz nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das elektrisch steuerbare Schaltelement (1) ein Triac ist.
10. Thermischer Überlastschutz nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, daß das thermisch beeinflußbare Steuerelement (3 ) dem Summenstromwandler ( 5 ) zugeordnet ist.
PCT/AT1995/000060 1994-03-28 1995-03-22 Thermischer überlastungsschutz für schalter WO1995026586A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU18853/95A AU1885395A (en) 1994-03-28 1995-03-22 Thermal overload protection for switches

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA662/94 1994-03-28
AT66294 1994-03-28

Publications (1)

Publication Number Publication Date
WO1995026586A1 true WO1995026586A1 (de) 1995-10-05

Family

ID=3496515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT1995/000060 WO1995026586A1 (de) 1994-03-28 1995-03-22 Thermischer überlastungsschutz für schalter

Country Status (3)

Country Link
AU (1) AU1885395A (de)
CZ (1) CZ75595A3 (de)
WO (1) WO1995026586A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2754949A1 (fr) * 1996-10-18 1998-04-24 Schneider Electric Sa Interrupteur differentiel a protection thermique
DE19842470A1 (de) * 1998-09-16 2000-03-23 Siemens Ag Fehlerstrom-Schutzeinrichtung mit Überlastschutz
WO2002054557A1 (en) * 2000-12-28 2002-07-11 Abb Service S.R.L. Low-voltage electronic residual current circuit breaker
EP1445846A1 (de) * 2003-02-04 2004-08-11 Schneider Electric Industries SAS Unterbrechungsvorrichtung mit Differentialschutz und Thermoschutz
US7468871B2 (en) 2002-11-08 2008-12-23 Eaton Electric Limited Residual current devices
WO2009089995A1 (de) 2008-01-17 2009-07-23 Siemens Aktiengesellschaft Fehlerstromschutzschalter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1136836A (en) * 1966-01-25 1968-12-18 Uninorm Anstalt Leakage current protection switch with excess current release
US3803455A (en) * 1973-01-02 1974-04-09 Gen Electric Electric circuit breaker static trip unit with thermal override

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1136836A (en) * 1966-01-25 1968-12-18 Uninorm Anstalt Leakage current protection switch with excess current release
US3803455A (en) * 1973-01-02 1974-04-09 Gen Electric Electric circuit breaker static trip unit with thermal override

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2754949A1 (fr) * 1996-10-18 1998-04-24 Schneider Electric Sa Interrupteur differentiel a protection thermique
DE19842470A1 (de) * 1998-09-16 2000-03-23 Siemens Ag Fehlerstrom-Schutzeinrichtung mit Überlastschutz
US6697244B1 (en) 1998-09-16 2004-02-24 Siemens Aktiengesellschaft Fault-current protection device with an overload protection device
WO2002054557A1 (en) * 2000-12-28 2002-07-11 Abb Service S.R.L. Low-voltage electronic residual current circuit breaker
US7468871B2 (en) 2002-11-08 2008-12-23 Eaton Electric Limited Residual current devices
EP1445846A1 (de) * 2003-02-04 2004-08-11 Schneider Electric Industries SAS Unterbrechungsvorrichtung mit Differentialschutz und Thermoschutz
WO2009089995A1 (de) 2008-01-17 2009-07-23 Siemens Aktiengesellschaft Fehlerstromschutzschalter
DE102008004868A1 (de) * 2008-01-17 2009-07-30 Siemens Aktiengesellschaft Fehlerstromschutzschalter
DE102008004868A8 (de) * 2008-01-17 2009-11-12 Siemens Aktiengesellschaft Fehlerstromschutzschalter

Also Published As

Publication number Publication date
CZ75595A3 (en) 1995-11-15
AU1885395A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
EP0495771B1 (de) Fehlerstromschutzschalter
DE69937860T2 (de) Schutzschalter mit Lichtbogenfehlerschutz und PTC-Elemente zum Schutz gegen Kurzschluss und Überlastung
DE69618605T2 (de) Elektrischer schalter
DE2538705A1 (de) Stromempfindliches schutzschaltsystem
DE112008000929T5 (de) Stromunterbrechungsvorrichtung mit automatischer Betätigung beim Auftreten von Funken an einer elektrischen Leitung
EP0350477A2 (de) Abtrennvorrichtung für Überspannungsableiter
EP2229685B1 (de) Lichtbogenschutzmodul
WO1998056095A2 (en) Overcurrent protection circuit
DE102008017499A1 (de) Fehlerstrom-Schutzschalter-Vorrichtung
WO1995026586A1 (de) Thermischer überlastungsschutz für schalter
CH623173A5 (de)
EP2548214B1 (de) Fehlerstromschutzschalter
EP0497752B1 (de) Abtrennvorrichtung für Überspannungsableiter
WO2003079388A1 (de) Leitungsschutzschalter mit fehlerstromabschaltung
AT406531B (de) Fehlerstromschutzschalter
EP0561149B1 (de) Anordnung zur Stromversorgung einer Elektronik aus einem Drehstromnetz
DE19946098C2 (de) Fehlerstromschutzeinrichtung
EP0350829A2 (de) Selektive Kurzschlussstromschutzeinrichtung
DE69108614T2 (de) Abtrennbarer Überspannungsableiter für Niederspannungseinrichtungen.
EP0139886B1 (de) Schutzschalter
AT408044B (de) Fehlerstromschutzschalter
DE3338821A1 (de) Schutzeinrichtung in elektrischen geraeten mit einem auf leitfaehige fluessigkeiten ansprechenden sensor
DE2425212A1 (de) Redundanz-fehlerstromschutzschalter
DE19944409A1 (de) Verfahren zur fehlerartabhängig empfindlichen Auslösung einer Differenzstromschutzeinrichtung, und Differenzstromschutzeinrichtung mit fehlerartabhängiger Empfindlichkeit
EP4367701A1 (de) Schutzschaltgerät

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BG HU PL SI SK

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase