WO2012028514A2 - Absorbeur solaire thermique d'évaporation directe, en particulier dans une centrale solaire à tour - Google Patents

Absorbeur solaire thermique d'évaporation directe, en particulier dans une centrale solaire à tour Download PDF

Info

Publication number
WO2012028514A2
WO2012028514A2 PCT/EP2011/064558 EP2011064558W WO2012028514A2 WO 2012028514 A2 WO2012028514 A2 WO 2012028514A2 EP 2011064558 W EP2011064558 W EP 2011064558W WO 2012028514 A2 WO2012028514 A2 WO 2012028514A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar
steam generator
absorber
thermal absorber
generator tubes
Prior art date
Application number
PCT/EP2011/064558
Other languages
German (de)
English (en)
Other versions
WO2012028514A3 (fr
Inventor
Jan BRÜCKNER
Martin Effert
Joachim Franke
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2012028514A2 publication Critical patent/WO2012028514A2/fr
Publication of WO2012028514A3 publication Critical patent/WO2012028514A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/22Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight
    • F22B21/28Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight bent spirally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/064Construction of tube walls involving horizontally- or helically-disposed water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the invention relates to a solar thermal absorber, in particular for a solar tower power plant, comprising a continuous evaporator heating surface.
  • the invention further relates to a solar tower power plant with a solar thermal absorber.
  • Solar thermal power plants are an alternative to conventional electricity generation ago ⁇ .
  • running solar thermal power plants with parabolic trough collectors or Fres nel collectors Another option is the direct evaporation in so-called solar tower power plants
  • a solar thermal power plant with solar tower and direct evaporation consists of a solar field, the solar tower and a conventional power plant part in which the thermal energy of the water vapor is converted into electrical energy ⁇ .
  • the solar field consists of heliostats that focus their light on ei ⁇ nen housed in the tower absorbers.
  • the absorber consists of a heating area in which the inserted ⁇ radiated solar energy is used to heat supplied to feed water to evaporate and possibly also to overheat.
  • the generated steam is subsequently expanded in a turbine in a conventional power plant section, then condensed and returned to the absorber. guided.
  • the turbine drives a generator, which converts the me ⁇ chanic energy into electrical energy.
  • continuous steam generators are not subject to any pressure limitation, so that live steam pressures well above the critical pressure of water are possible.
  • This high live steam pressure promotes a high thermodynamic efficiency of a power plant.
  • Particular importance in the concept of direct evaporation of improving performance and loading ⁇ operational reliability of the integrated into the solar tower absorber which has a heating area in which the incident solar energy is used in order to heat supplied feed water to evaporate and possibly also to overheat.
  • the invention is now based on the object of specifying a so ⁇ larthermischen absorber of the type mentioned above, the reliability of which is improved even at different loading states compared to the conventional direct evaporation based absorbers. Furthermore, an improved solar tower power plant will be specified.
  • a solar thermal absorber comprising a heating surface with evaporator tubes, wherein the evaporator tubes for the flow of a flow medium are connected in pa ⁇ rallel and are arranged in a heating region approximately in a spiral coil.
  • the invention is based on the finding that very high heat flux densities can be expected due to the concentration of the incident light in the absorber. Furthermore, very large differences in the local heat flux densities occur in the evaporator heating surface. Also, the irradiation and thus the heat input via the steam generator tubes into the flow medium is not uniform, i. There are different heating zones in the absorber.
  • the absorber provided with spirally extending steam generator tubes, the tubes through the various heating zones ⁇ ver in the heating region of the absorber and not just a particular heating zone. Therefore, due to the approximate spiral winding in the heating region, only slight differences between the mass flow density and the fluid temperatures of the flow medium are present the parallel steam generator tubes of solar thermal absorber occur.
  • mass flow densities can be varied within wide limits via the pitch angle of the spiral and the number of parallel tubes and can be adapted in terms of design in advance in accordance with the operating requirements.
  • the absorber It is also possible to bore the absorber with evaporator tubes, in which only at certain sections of the heating surface, the evaporator tubes are designed with a slope, called a so-called partial spiral. In the other areas of Edelflä ⁇ che the steam generator tubes can then extend horizontally. Thus, it is particularly advantageous when running in the solar-thermal ⁇ rule absorber at least in a portion of the heating surface of the steam generator tubes either horizontally.
  • the absorber has the heating surface with each other by fins welded Dampferzeu ⁇ gerrohre.
  • the absorber is configured when the evaporator tubes have on their inner side a surface structure for generating a high heat transfer from its inner wall to the flow medium.
  • 1 shows a solar tower power plant
  • 2 shows a simplified representation of a solar thermal
  • the solar tower power plant 1 comprises a solar tower 2, at the upper end of a receiver 3 is arranged.
  • the receiver 3 comprises a solar thermal absorber 4.
  • a heliostat data field 6 with a number of heliostats 7 is placed concentrically around the solar tower 2 on the ground.
  • the heliostat field 6 with the He ⁇ liostaten 7 is designed for focusing the direct solar radiation I s .
  • the individual heliostats 7 are arranged and aligned such that the direct solar radiation I s is focused by the sun in the form of concentrated solar radiation I c onto the receiver 3. In the solar tower power plant 1, the solar radiation is thus concentrated on the tip of the solar tower 2 by a field of individually tracked mirrors, the heliostat 7.
  • a solar thermal absorber 4 for example, an absorber tube wall 5, which converts the radiation into heat and releases the heat to a heat transfer medium, such as water in the tube bundles.
  • a heat transfer medium such as water in the tube bundles.
  • the water is thereby directly evaporated.
  • the steam generated in the absorber by direct evaporation can be supplied as live steam to a conventional power plant process with a steam turbine.
  • the absorber 2 shows a solar thermal absorber 4, as it is integrated, for example in execution as absorber tube wall 5 in the creiver 3 of the solar tower power plant 1 of FIG 1. Shown is the absorber tube wall 5 here as Euclidean development of the peripheral surface of the absorber 4.
  • the absorber ⁇ pipe wall 5 substantially comprises a number of steam generators ger ger 8, a manifold 10 and a collector 12.
  • the manifold 10 is connected to the evaporator inlet 9 and connected to the collector 12 via the steam generator tubes 8 strö ⁇ tion technology.
  • the area formed by the steam generator tubes 8 is the heating area H or the continuous evaporator heating area 13 of the absorber tube wall 5.
  • the steam generator tubes 8 are oriented at an angle, for example between 5 ° and 40 °, from the horizontal, and thus run in a spiral is illustrated at least a portion of the absorber 5. Not one of them deviate ⁇ sponding variant in which the angle in the course of the steam generator tubes ⁇ 8 varies, so in different distances from the manifold having a different pitch.
  • the collector 12 in which the steam generator tubes 8 open, is connected to the evaporator outlet 11.
  • cold flow medium in particular cold water
  • the solarbe ⁇ heated absorber tube wall 5 the heat-transferring steam generator tubes 8 by the concentrated solar radiation I c are strongly heated, the steam generator tubes 8 to supply heat to the flow medium in the steam generator tubes.
  • the flow medium is thereby directly evaporated in the steam generator tubes 8 by the concentrated solar radiation I c . Due to the spiral arrangement of the steam generator tubes 8, these different heating zones pass through in the heating region H of the absorber 5 and not just a certain heating zone . As a result, large differences in the mass flow density and with respect to the fluid temperatures of the flow medium between the parallel steam generator tubes of the absorber tube wall 5 are avoided.
  • FIG. 3 shows a particular further development of the embodiment of an absorber tube wall 5 shown in FIG. 2.
  • the absorber tube wall 5 shown in FIG. 2 shows the absorber tube wall 5 shown in FIG.
  • FIG. 3 shows steam generator tubes 8, which in their course over the heating region H are partially arranged spirally and partially horizontally.
  • the absorber tube wall 5 is thus subdivided into several alternating areas.
  • the steam generator tubes 8 are arranged spirally ⁇ .
  • the steam generator tubes 8 extend horizontally.
  • the area 20 is followed by a region 19 which is arranged spirally, and then again an area 20 with horizontal duri ⁇ fenden steam generator tubes 8.
  • the number of regions 19 and 20 may vary beyond, and are in particular fitted arrival to different heat flux in the tube wall absorbers. 5

Abstract

L'invention concerne un absorbeur solaire thermique (4), en particulier pour une centrale solaire à tour (1), comprenant une surface chauffante d'évaporateur continu (13) dotée de tubes générateurs de vapeur (8), lesdits tubes générateurs de vapeur (8) étant montés en parallèle pour permettre le passage d'un milieu d'écoulement et sont disposés dans une zone de chauffage (H) approximativement en un enroulement en spirale. L'invention concerne en outre une centrale solaire à tour (1) équipée d'un absorbeur solaire thermique (4) dans une tour solaire (2), ledit absorbeur (4) présentant un agencement spiroïdal de la tubulure de la surface chauffante de l'évaporateur, consistant en une pluralité de tubes générateurs de vapeur (8) montés en parallèle.
PCT/EP2011/064558 2010-09-03 2011-08-24 Absorbeur solaire thermique d'évaporation directe, en particulier dans une centrale solaire à tour WO2012028514A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010040200.1 2010-09-03
DE102010040200A DE102010040200A1 (de) 2010-09-03 2010-09-03 Solarthermischer Absorber zur Direktverdampfung, insbesondere ein einem Solarturm-Kraftwerk

Publications (2)

Publication Number Publication Date
WO2012028514A2 true WO2012028514A2 (fr) 2012-03-08
WO2012028514A3 WO2012028514A3 (fr) 2012-06-21

Family

ID=44681083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/064558 WO2012028514A2 (fr) 2010-09-03 2011-08-24 Absorbeur solaire thermique d'évaporation directe, en particulier dans une centrale solaire à tour

Country Status (2)

Country Link
DE (1) DE102010040200A1 (fr)
WO (1) WO2012028514A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422179A (zh) * 2013-09-04 2015-03-18 中广核太阳能开发有限公司 太阳能塔式热发电闭合型腔式接收器及其应用方法
CN110793221A (zh) * 2020-01-03 2020-02-14 浙江中控太阳能技术有限公司 一种风光热电力互补系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1601310C3 (de) * 1968-02-20 1975-03-06 Siemens Ag, 1000 Berlin U. 8000 Muenchen Schmelzkammer-Durchlaufkessel
DE2035527A1 (de) * 1970-07-17 1972-01-20 Kraftwerk Union Ag Durchlaufkessel
DE2251396B2 (de) * 1972-10-19 1979-12-06 Borsig Gmbh, 1000 Berlin Brennkammer eines Dampferzeugers
US5390631A (en) * 1994-05-25 1995-02-21 The Babcock & Wilcox Company Use of single-lead and multi-lead ribbed tubing for sliding pressure once-through boilers
WO1997014930A2 (fr) * 1995-10-17 1997-04-24 Siemens Aktiengesellschaft Procede et dispositif de production de vapeur solaire
DE202005020943U1 (de) * 2005-04-01 2006-11-16 Pejm, Wojciech Kühlsystem für thermodynamische Niedertemperatursolarelektrokraftwerke

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422179A (zh) * 2013-09-04 2015-03-18 中广核太阳能开发有限公司 太阳能塔式热发电闭合型腔式接收器及其应用方法
CN110793221A (zh) * 2020-01-03 2020-02-14 浙江中控太阳能技术有限公司 一种风光热电力互补系统
CN110793221B (zh) * 2020-01-03 2020-04-17 浙江中控太阳能技术有限公司 一种风光热电力互补系统

Also Published As

Publication number Publication date
WO2012028514A3 (fr) 2012-06-21
DE102010040200A1 (de) 2012-03-08

Similar Documents

Publication Publication Date Title
EP0986695B1 (fr) Installation de production d'energie
EP2419634B1 (fr) Centrale thermique à vapeur comportant des capteurs solaires
EP1984624B1 (fr) Méthode et dispositif pour augmenter la production énergétique dans une centrale thermique solaire
WO2008113482A2 (fr) Procédé et dispositif de surchauffe intermédiaire par mise à feu lors de l'évaporation directe solaire dans une centrale thermique solaire
EP2521861A2 (fr) Centrale solaire thermique à évaporation indirecte et procédé permettant de faire fonctionner une telle centrale solaire thermique
EP1820965A1 (fr) Méthode et dispositif pour régler la production énergétique dans une centrale thermique solaire
WO2011020776A2 (fr) Centrale solaire thermique comprenant un échangeur de chaleur dans la section de préchauffage d'eau d'alimentation, et procédé d'exploitation de cette centrale
WO2011104325A2 (fr) Dispositif et procédé de production de vapeur d'eau surchauffée par l'énergie solaire selon le concept de circulation forcée et utilisation de cette vapeur d'eau surchauffée
DE102010040208B4 (de) Solarthermische Durchlaufverdampfer-Heizfläche mit lokaler Querschnittsverengung an ihrem Eintritt
WO2012028512A2 (fr) Générateur de vapeur héliothermique en continu pour l'évaporation directe notamment dans une centrale solaire à tour
WO2012028514A2 (fr) Absorbeur solaire thermique d'évaporation directe, en particulier dans une centrale solaire à tour
WO2012028492A2 (fr) Absorbeur solaire thermique d'évaporation directe, en particulier pour centrale solaire thermique
WO2010031375A2 (fr) Procédé de surchauffage de vapeur
WO2012028517A2 (fr) Évaporateur continu solaire thermique
WO2012028493A2 (fr) Évaporateur continu solaire thermique
DE102012103621A1 (de) Solarthermisches Kraftwerk mit elektrisch beheiztem Wärmespeicher
EP2177757A1 (fr) Procédé et dispositif de surchauffe intermédiaire à l'aide de vapeur saturée pendant l'évaporation directe solaire dans une centrale thermique solaire
WO2012110346A1 (fr) Évaporateur continu pour une centrale solaire thermique, à section localement rétrécie à l'entrée
WO2012028510A1 (fr) Tubulure d'une surface chauffante d'évaporation pour générateur de vapeur à évaporation directe et à caractéristique de circulation naturelle
DE102011075930A1 (de) Dampferzeuger, insbesondere für ein solarthermisches Kraftwerk
DE102011004271A1 (de) Durchlaufdampferzeuger für die indirekte Verdampfung insbesondere in einem Solarturm-Kraftwerk
DE102011075929A1 (de) Vorrichtung zum Erzeugen von überhitztem Wasserdampf mittels solarer Energie
WO2012028502A2 (fr) Générateur de vapeur continu solaire thermique doté d'un séparateur de vapeur et d'un répartiteur en étoile monté en aval pour centrales solaires à tour à évaporation directe
DE102010037209A1 (de) Verfahren zum Betreiben einer Dampfturbine eines solarthermischen Kraftwerkes sowie Kesselanlage zur Durchführung des Verfahrens
DE102011075932A1 (de) Dampferzeuger, insbesondere für ein solarthermisches Kraftwerk

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11761299

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11761299

Country of ref document: EP

Kind code of ref document: A2