WO2012028510A1 - Tubulure d'une surface chauffante d'évaporation pour générateur de vapeur à évaporation directe et à caractéristique de circulation naturelle - Google Patents
Tubulure d'une surface chauffante d'évaporation pour générateur de vapeur à évaporation directe et à caractéristique de circulation naturelle Download PDFInfo
- Publication number
- WO2012028510A1 WO2012028510A1 PCT/EP2011/064551 EP2011064551W WO2012028510A1 WO 2012028510 A1 WO2012028510 A1 WO 2012028510A1 EP 2011064551 W EP2011064551 W EP 2011064551W WO 2012028510 A1 WO2012028510 A1 WO 2012028510A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steam generator
- solar
- quotient
- pipe
- straight line
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/06—Devices for producing mechanical power from solar energy with solar energy concentrating means
- F03G6/065—Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/006—Methods of steam generation characterised by form of heating method using solar heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B29/00—Steam boilers of forced-flow type
- F22B29/06—Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
- F22B29/061—Construction of tube walls
- F22B29/062—Construction of tube walls involving vertically-disposed water tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
- F24S20/20—Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
Definitions
- the invention relates to a solar thermal continuous steam generator, in particular for a solar tower power plant, with substantially vertically arranged steam generator tubes which have a pipe inside diameter d and which are connected in parallel for the flow of a coolant.
- the invention further relates to a solar tower power plant with a solar thermal continuous steam generator.
- solar thermal power plants are one of the SUST ⁇ term alternatives to conventional power generation.
- solar thermal power plants were lectors with Parabolrinnenkol- or executed Fresnel collectors.
- Another option is the direct evaporation in so-called solar tower power plants.
- a solar thermal power plant with So ⁇ larturm and direct expansion consists of a solar array, a solar tower and of a conventional power plant part in which the thermal energy of the steam is converted into electric energy.
- the solar field consists of heliostats that focus the solar radiation on an absorber placed in the solar tower.
- the absorber consists of a heating surface in which the irradiated solar energy is used to heat supplied feed water, to evaporate and possibly also to overheat.
- the generated steam is then in a conventional power plant section in a turbine relaxed, optionally reheated and then condensed and fed back to the absorber.
- the turbine drives a generator, which converts the mechanical energy into electrical energy.
- the solar energy input is limited by the size of the heliostat field. Part of the radiation is reflected by the absorber and is lost to the thermodynamic power plant process. These losses increase with the size of the heating surface. Therefore, for a given thermal performance compact absorbers with the smallest possible heating surface are desirable. By concentrating the interspersed solar energy on small areas, this leads to very high heat flux densities, generally higher heat flux densities than in fossil-fired thermal power plants. Therefore, with the concept of direct evaporation in a solar tower power plant, the cooling of the absorber heating surface is of central importance. To minimize the size of the heating surface, it must be designed for maximum heat flow densities. The upper limit of the allowable heat flux is determined by the pipe material and the quality ofméungsme ⁇ mechanisms.
- Static and dynamic instabilities can occur in evaporator heating surfaces, which have caused damage in conventional power plants in the past. This risk is increased due to the high energy density of solar thermal systems.
- the unavoidable differences in the heat input to the individual tubes can lead to temperature differences between individual tubes at the evaporator outlet, causing damage due to impermissible thermal stresses.
- the mass flow density of the coolant in the pipe is in addition to the pipe inside diameter a determining factor for the fluidic design of the parallel pipe system, which acts as Verdampferlik Structure.
- the proportion of friction pressure if the total pressure drop of the continuous evaporator can be very high, whereby such evaporators have a typical characteristic, according to the back in a parallel pipe system mass flow rate in the single tube at its stronger heating and increases in its weaker heating - in comparison to the flow of a pipe with medium heating. This characteristic is a cause of larger temperature differences between individual tubes at the evaporator outlet for heating surfaces with vertically arranged tubes.
- the invention is therefore based on the object to provide a solar thermal steam generator for maximum heat flow. Furthermore, a correspondingly improved So ⁇ larturm power plant with high thermodynamic efficiency is to be specified.
- this object is achieved for a solar thermal steam generator of the type mentioned above in that the evaporator or evaporators are designed as Naturalviersammlung lake because they are in contrast to a natural or forced circulation steam generator no pressure limit, so that live steam pressures far above the critical pressure of water possible are.
- This high live steam pressure promotes a high thermodynamic efficiency of a power plant.
- a continuous steam generator in comparison to a circulating steam generator a simple construction and is thus produced with very little effort.
- the pipe inside diameter d is a function of a quotient K and points, determined by value pairs of pipe inside diameter d and quotient K, lie in a coordinate system between a straight line A and a straight line B.
- the summed mass flow rate is used to form the quotient K.
- An advantageous embodiment of the invention is that the pipe inside diameter d assigned to each quotient K deviates by at most 30% from the pipe inside diameter d associated with this quotient K on the straight line A, wherein it is smaller by at most 10% than that on the straight line A. this inner pipe diameter d associated with this quotient K d.
- the solar thermal continuous steam generator is integrated according to a particularly advantageous embodiment with its evaporator ⁇ heating surface in a solar tower power plant and directly to steam generation by focused solar radiation acted upon.
- the configuration of the continuous steam generator according to the invention is very advantageous because it lowers the mass flow density in the steam flowed through the steam and the inner pipe diameter d is determined such that the proportion of the geodesic pressure drop across the entire pressure drop forces a change in the characteristics of continuous evaporators , according to which - starting from the design state - the mass flow rate in the individual pipe is increased during its stronger heating and decreases in its weaker heating.
- This so-called natural circulation characteristic in which the geodesic pressure loss component in the total pressure Loss predominates or the friction pressure loss is smaller than the geodesic pressure loss leads to a significant Ver ⁇ uniformity of the steam and thus the tube wall temperatures at the outlet of the evaporator and always ensures a secure flow through all steam generator tubes.
- FIG. 1 shows a solar tower power plant
- FIG. 2 shows an evaporator of a solar thermal steam generator according to the prior art
- the solar tower power plant 1 comprises a solar tower 2, at the vertically upper end of an absorber 3 is arranged.
- a heliostat field 4 with a number of heliostats 5 is placed on the ground around the solar tower 2.
- the heliostat 4 with the heliostat 5 is designed for focusing the direct solar radiation 6.
- the individual heliostats 5 are arranged and aligned such that the direct solar radiation 6 is focused by the sun in the form of concentrated solar radiation 7 onto the absorber 3.
- the solar tower power plant 1 thus the solar radiation through a field individually tracked mirrors, the heliostat 5, on the Top of solar tower 2 concentrated.
- the absorber 3 converts the radiation into heat and returns it to a townenvironme ⁇ dium, for example water, from which supplies the heat to a conventional power station process with a steam turbine.
- an evaporator 8 is of a known solar-thermal ⁇ 's circulation steam generator 9 shown with direct evaporation, which is integrated as an absorber 3 in the solar tower 2 of Fig. 1
- the steam generator tubes 10 are connected on the inlet side with an inlet distributor 11 and on the outlet side with an outlet collector 12 fluidically.
- Overflow pipes 13 connect the outlet header 12 with a drum 14, into which a feedwater line 15 opens.
- a feedwater pump 16 is connected in the feedwater pipe 15, a feedwater pump 16 is connected.
- a circulation pump 20 is connected in the downpipe 18, a circulation pump 20 is connected.
- the downpipe 18 opens into the inlet distributor 11.
- the circulating pump 20 draws boiler water from the drum 14 and presses it into the inlet manifold 11. There, the boiler water is distributed to the plurality of heat-transferring pipes 10.
- the evaporator 8 is divided into parallel Schuvinrohre.
- the heat-transferring tubes 10 are heated by the concentrated solar radiation 7, wherein the heat-transferring tubes 10 deliver the heat to the boiler water.
- the resulting steam / water mixture is passed via the discharge collector 12 and the overflow tubes 13 into the unheated drum 14 where it is separated into saturated dry steam as far as possible and to circulating water flowing back to the evaporator 8.
- the feed water supply is controlled so that the water level in the drum 14 remains constant.
- the saturated steam leaves the drum 14 via the steam line 17 and can be overheated in another heating surface and then be supplied as live steam of a steam turbine not shown for the generation of electrical energy ⁇ .
- FIG 3 shows the principle of a forced continuous steam generator, in which the passage of the water-steam flow through the evaporator is forced by a feed pump 16.
- the feed water is conveyed by the feed pump 16 into the inlet manifold 11 and successively the evaporator 8 and the superheater 22 flows through (in solar thermal power plants typically eliminates a feed ⁇ water preheater).
- the heating of the feed water to the saturated steam temperature, the evaporation and a first overheating take place continuously in one pass, so that no drum is needed.
- a separation device 23 is provided for the circulation process when starting the system.
- K is the quotient of the summed mass flow rate M (kg / s) of all the steam generator tubes at 100% steam output and the sum of all the external tube diameter of the respective Ver ⁇ dampferroisthetic.
- each point in the field between this straight line A and a straight line B represents a pair of values in which the proportions of friction pressure drop and geodetic pressure drop are in such a favorable relationship - in general, then the geodesic pressure drop is greater than the friction pressure drop - that in the multiple heating of a single
- the value pairs formed from internal pipe diameters d and quotients K lie between the straight lines A and B of the coordinate system according to FIG. 4.
- a pipe internal diameter d assigned to a quotient K should at least 10% smaller or 30% greater than the pipe inside diameter d assigned to this quotient K on the straight line A
- the total pressure drop in the steam generator tubes 10, ie the difference between the pressure in the lower inlet distributor 11 and the pressure in the overhead outlet collector 12, is composed of the proportions friction pressure drop, geodesic pressure drop and acceleration pressure drop.
- the proportion of the acceleration pressure drop is 1 to 2% of the total pressure drop and therefore can be neglected here.
- the geodetic pressure drop of a single steam generator tube 10 decreases when the steam generator tube is heated more frequently than other steam generator tubes due to increased vapor formation because the water-steam column becomes lighter.
- the throughput through the reheated steam generator tube 10 therefore increases due to this effect until the sum of increased friction pressure drop and reduced geodetic pressure drop reaches the pressure drop predetermined by the coupling via inlet distributor 11 and outlet collector 12. This increase in throughput is desirable to keep the steam exit temperature at the end of the steam generator tube 10 low, despite the multiple heating.
- This inventively comparatively large influence of geodetically caused pressure drop is the cause of the change in the characteristic of a solar thermal steam generator towards a behavior in which larger temperature differences at the tube end of the evaporator are avoided because a stronger heating of a single steam generator tube 10 by a higher flow rate of the coolant is largely compensated by the same.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
L'invention concerne un générateur de vapeur (21) solaire thermique comprenant des tubes disposés sensiblement verticalement et présentant un diamètre intérieur d, qui sont branchés en parallèle pour permettre le passage d'un fluide de refroidissement. Le diamètre intérieur (d) des tubes est une fonction d'un quotient K, des points déterminés par des paires de valeurs du diamètre intérieur (d) des tubes et du quotient K se situant par ailleurs dans un système de coordonnées entre une ligne droite A et une ligne droite B et pour former le quotient K, le débit massique totalisé de tous les tubes, à 100% de débit de vapeur, est divisé par la somme de tous les diamètres intérieurs des tubes de la surface chauffante d'évaporation concernée. L'invention concerne en outre une centrale solaire à tour, équipée d'un générateur de vapeur continu.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010040214.1 | 2010-09-03 | ||
DE102010040214A DE102010040214A1 (de) | 2010-09-03 | 2010-09-03 | Berohrung einer Verdampferheizfläche für Durchlaufdampferzeuger in Solarturm-Kraftwerken mit direkter Verdampfung und Naturumlauf-Charakteristik |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012028510A1 true WO2012028510A1 (fr) | 2012-03-08 |
Family
ID=45375834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/064551 WO2012028510A1 (fr) | 2010-09-03 | 2011-08-24 | Tubulure d'une surface chauffante d'évaporation pour générateur de vapeur à évaporation directe et à caractéristique de circulation naturelle |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102010040214A1 (fr) |
WO (1) | WO2012028510A1 (fr) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992018807A1 (fr) * | 1991-04-18 | 1992-10-29 | Siemens Aktiengesellschaft | Generateur de vapeur en continu avec cheminee a gaz constituee de conduits assembles pratiquement verticalement |
WO2009105689A2 (fr) * | 2008-02-22 | 2009-08-27 | Esolar, Inc. | Récepteurs solaires à réflexions internes et motifs de réflectivité limitant le flux |
-
2010
- 2010-09-03 DE DE102010040214A patent/DE102010040214A1/de not_active Ceased
-
2011
- 2011-08-24 WO PCT/EP2011/064551 patent/WO2012028510A1/fr active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992018807A1 (fr) * | 1991-04-18 | 1992-10-29 | Siemens Aktiengesellschaft | Generateur de vapeur en continu avec cheminee a gaz constituee de conduits assembles pratiquement verticalement |
WO2009105689A2 (fr) * | 2008-02-22 | 2009-08-27 | Esolar, Inc. | Récepteurs solaires à réflexions internes et motifs de réflectivité limitant le flux |
Also Published As
Publication number | Publication date |
---|---|
DE102010040214A1 (de) | 2012-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1519108B1 (fr) | Procédé pour la génération de vapeur surchauffée, générateur de vapeur pour centrale et centrale d'énergie | |
DE19723543C2 (de) | Energieerzeugungsanlage | |
DE102010041903B4 (de) | Durchlaufdampferzeuger mit integriertem Zwischenüberhitzer | |
DE102009056707A1 (de) | Dampfkraftwerk mit Solarkollektoren | |
EP2521861A2 (fr) | Centrale solaire thermique à évaporation indirecte et procédé permettant de faire fonctionner une telle centrale solaire thermique | |
WO2011020776A2 (fr) | Centrale solaire thermique comprenant un échangeur de chaleur dans la section de préchauffage d'eau d'alimentation, et procédé d'exploitation de cette centrale | |
EP2438351A2 (fr) | Évaporateur continu | |
WO2018172107A1 (fr) | Centrale électrique servant à produire une énergie électrique et procédé servant à faire fonctionner une centrale électrique | |
DE4126036A1 (de) | Gas- und dampfturbinenkraftwerk mit einem solar beheizten dampferzeuger | |
DE102010040208B4 (de) | Solarthermische Durchlaufverdampfer-Heizfläche mit lokaler Querschnittsverengung an ihrem Eintritt | |
WO2012028512A2 (fr) | Générateur de vapeur héliothermique en continu pour l'évaporation directe notamment dans une centrale solaire à tour | |
DE102015100568B4 (de) | Wärmespeichereinrichtung | |
DE102010040204A1 (de) | Solarthermischer Durchlaufverdampfer | |
DE102010040200A1 (de) | Solarthermischer Absorber zur Direktverdampfung, insbesondere ein einem Solarturm-Kraftwerk | |
WO2012028510A1 (fr) | Tubulure d'une surface chauffante d'évaporation pour générateur de vapeur à évaporation directe et à caractéristique de circulation naturelle | |
EP2600058A1 (fr) | Dispositif de transfert d'un liquide de travail dans un état gazeux ou vaporeux, notamment pour la production de vapeur d'eau | |
WO2012028492A2 (fr) | Absorbeur solaire thermique d'évaporation directe, en particulier pour centrale solaire thermique | |
DE102011056796B4 (de) | Solarthermisches Kraftwerk und Verfahren zur Regelung des Wärmeträgermediummassenstroms | |
DE102011004271A1 (de) | Durchlaufdampferzeuger für die indirekte Verdampfung insbesondere in einem Solarturm-Kraftwerk | |
WO2012028493A2 (fr) | Évaporateur continu solaire thermique | |
WO2012028502A2 (fr) | Générateur de vapeur continu solaire thermique doté d'un séparateur de vapeur et d'un répartiteur en étoile monté en aval pour centrales solaires à tour à évaporation directe | |
WO2012110346A1 (fr) | Évaporateur continu pour une centrale solaire thermique, à section localement rétrécie à l'entrée | |
DE102011004270A1 (de) | Durchlaufdampferzeuger für die indirekte Verdampfung insbesondere in einem Solarturm-Kraftwerk | |
DE102011004267A1 (de) | Solarthermischer Dampferzeuger | |
DE102012103621A1 (de) | Solarthermisches Kraftwerk mit elektrisch beheiztem Wärmespeicher |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11771046 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11771046 Country of ref document: EP Kind code of ref document: A1 |