WO2012028514A2 - Solar-thermal absorber for direct evaporation, in particular in a solar tower power station - Google Patents

Solar-thermal absorber for direct evaporation, in particular in a solar tower power station Download PDF

Info

Publication number
WO2012028514A2
WO2012028514A2 PCT/EP2011/064558 EP2011064558W WO2012028514A2 WO 2012028514 A2 WO2012028514 A2 WO 2012028514A2 EP 2011064558 W EP2011064558 W EP 2011064558W WO 2012028514 A2 WO2012028514 A2 WO 2012028514A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar
steam generator
absorber
thermal absorber
generator tubes
Prior art date
Application number
PCT/EP2011/064558
Other languages
German (de)
French (fr)
Other versions
WO2012028514A3 (en
Inventor
Jan BRÜCKNER
Martin Effert
Joachim Franke
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2012028514A2 publication Critical patent/WO2012028514A2/en
Publication of WO2012028514A3 publication Critical patent/WO2012028514A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/22Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight
    • F22B21/28Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight bent spirally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/064Construction of tube walls involving horizontally- or helically-disposed water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the invention relates to a solar thermal absorber, in particular for a solar tower power plant, comprising a continuous evaporator heating surface.
  • the invention further relates to a solar tower power plant with a solar thermal absorber.
  • Solar thermal power plants are an alternative to conventional electricity generation ago ⁇ .
  • running solar thermal power plants with parabolic trough collectors or Fres nel collectors Another option is the direct evaporation in so-called solar tower power plants
  • a solar thermal power plant with solar tower and direct evaporation consists of a solar field, the solar tower and a conventional power plant part in which the thermal energy of the water vapor is converted into electrical energy ⁇ .
  • the solar field consists of heliostats that focus their light on ei ⁇ nen housed in the tower absorbers.
  • the absorber consists of a heating area in which the inserted ⁇ radiated solar energy is used to heat supplied to feed water to evaporate and possibly also to overheat.
  • the generated steam is subsequently expanded in a turbine in a conventional power plant section, then condensed and returned to the absorber. guided.
  • the turbine drives a generator, which converts the me ⁇ chanic energy into electrical energy.
  • continuous steam generators are not subject to any pressure limitation, so that live steam pressures well above the critical pressure of water are possible.
  • This high live steam pressure promotes a high thermodynamic efficiency of a power plant.
  • Particular importance in the concept of direct evaporation of improving performance and loading ⁇ operational reliability of the integrated into the solar tower absorber which has a heating area in which the incident solar energy is used in order to heat supplied feed water to evaporate and possibly also to overheat.
  • the invention is now based on the object of specifying a so ⁇ larthermischen absorber of the type mentioned above, the reliability of which is improved even at different loading states compared to the conventional direct evaporation based absorbers. Furthermore, an improved solar tower power plant will be specified.
  • a solar thermal absorber comprising a heating surface with evaporator tubes, wherein the evaporator tubes for the flow of a flow medium are connected in pa ⁇ rallel and are arranged in a heating region approximately in a spiral coil.
  • the invention is based on the finding that very high heat flux densities can be expected due to the concentration of the incident light in the absorber. Furthermore, very large differences in the local heat flux densities occur in the evaporator heating surface. Also, the irradiation and thus the heat input via the steam generator tubes into the flow medium is not uniform, i. There are different heating zones in the absorber.
  • the absorber provided with spirally extending steam generator tubes, the tubes through the various heating zones ⁇ ver in the heating region of the absorber and not just a particular heating zone. Therefore, due to the approximate spiral winding in the heating region, only slight differences between the mass flow density and the fluid temperatures of the flow medium are present the parallel steam generator tubes of solar thermal absorber occur.
  • mass flow densities can be varied within wide limits via the pitch angle of the spiral and the number of parallel tubes and can be adapted in terms of design in advance in accordance with the operating requirements.
  • the absorber It is also possible to bore the absorber with evaporator tubes, in which only at certain sections of the heating surface, the evaporator tubes are designed with a slope, called a so-called partial spiral. In the other areas of Edelflä ⁇ che the steam generator tubes can then extend horizontally. Thus, it is particularly advantageous when running in the solar-thermal ⁇ rule absorber at least in a portion of the heating surface of the steam generator tubes either horizontally.
  • the absorber has the heating surface with each other by fins welded Dampferzeu ⁇ gerrohre.
  • the absorber is configured when the evaporator tubes have on their inner side a surface structure for generating a high heat transfer from its inner wall to the flow medium.
  • 1 shows a solar tower power plant
  • 2 shows a simplified representation of a solar thermal
  • the solar tower power plant 1 comprises a solar tower 2, at the upper end of a receiver 3 is arranged.
  • the receiver 3 comprises a solar thermal absorber 4.
  • a heliostat data field 6 with a number of heliostats 7 is placed concentrically around the solar tower 2 on the ground.
  • the heliostat field 6 with the He ⁇ liostaten 7 is designed for focusing the direct solar radiation I s .
  • the individual heliostats 7 are arranged and aligned such that the direct solar radiation I s is focused by the sun in the form of concentrated solar radiation I c onto the receiver 3. In the solar tower power plant 1, the solar radiation is thus concentrated on the tip of the solar tower 2 by a field of individually tracked mirrors, the heliostat 7.
  • a solar thermal absorber 4 for example, an absorber tube wall 5, which converts the radiation into heat and releases the heat to a heat transfer medium, such as water in the tube bundles.
  • a heat transfer medium such as water in the tube bundles.
  • the water is thereby directly evaporated.
  • the steam generated in the absorber by direct evaporation can be supplied as live steam to a conventional power plant process with a steam turbine.
  • the absorber 2 shows a solar thermal absorber 4, as it is integrated, for example in execution as absorber tube wall 5 in the creiver 3 of the solar tower power plant 1 of FIG 1. Shown is the absorber tube wall 5 here as Euclidean development of the peripheral surface of the absorber 4.
  • the absorber ⁇ pipe wall 5 substantially comprises a number of steam generators ger ger 8, a manifold 10 and a collector 12.
  • the manifold 10 is connected to the evaporator inlet 9 and connected to the collector 12 via the steam generator tubes 8 strö ⁇ tion technology.
  • the area formed by the steam generator tubes 8 is the heating area H or the continuous evaporator heating area 13 of the absorber tube wall 5.
  • the steam generator tubes 8 are oriented at an angle, for example between 5 ° and 40 °, from the horizontal, and thus run in a spiral is illustrated at least a portion of the absorber 5. Not one of them deviate ⁇ sponding variant in which the angle in the course of the steam generator tubes ⁇ 8 varies, so in different distances from the manifold having a different pitch.
  • the collector 12 in which the steam generator tubes 8 open, is connected to the evaporator outlet 11.
  • cold flow medium in particular cold water
  • the solarbe ⁇ heated absorber tube wall 5 the heat-transferring steam generator tubes 8 by the concentrated solar radiation I c are strongly heated, the steam generator tubes 8 to supply heat to the flow medium in the steam generator tubes.
  • the flow medium is thereby directly evaporated in the steam generator tubes 8 by the concentrated solar radiation I c . Due to the spiral arrangement of the steam generator tubes 8, these different heating zones pass through in the heating region H of the absorber 5 and not just a certain heating zone . As a result, large differences in the mass flow density and with respect to the fluid temperatures of the flow medium between the parallel steam generator tubes of the absorber tube wall 5 are avoided.
  • FIG. 3 shows a particular further development of the embodiment of an absorber tube wall 5 shown in FIG. 2.
  • the absorber tube wall 5 shown in FIG. 2 shows the absorber tube wall 5 shown in FIG.
  • FIG. 3 shows steam generator tubes 8, which in their course over the heating region H are partially arranged spirally and partially horizontally.
  • the absorber tube wall 5 is thus subdivided into several alternating areas.
  • the steam generator tubes 8 are arranged spirally ⁇ .
  • the steam generator tubes 8 extend horizontally.
  • the area 20 is followed by a region 19 which is arranged spirally, and then again an area 20 with horizontal duri ⁇ fenden steam generator tubes 8.
  • the number of regions 19 and 20 may vary beyond, and are in particular fitted arrival to different heat flux in the tube wall absorbers. 5

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The invention relates to a solar-thermal absorber (4), in particular for a solar tower power station (1), comprising a continuous flow evaporator heating surface (13) with steam generator pipes (8). Said steam generator pipes (8) are connected in parallel for the flow of a flow medium and are arranged in a heating area (H) approximately in a spiral winding. The invention also relates to a solar-tower power station (1) comprising a solar-thermal absorber (4) in the solar tower (2), said absorber (4) comprising a spiral piping of the evaporator heating surface, consisting of a plurality of evaporator generating pipes (8) which are connected in parallel.

Description

Beschreibung description
Solarthermischer Absorber zur Direktverdampfung, insbesonder in einem Solarturm-Kraftwerk Solar thermal absorber for direct evaporation, in particular in a solar tower power plant
Die Erfindung betrifft einen solarthermischen Absorber, insbesondere für ein Solarturm-Kraftwerk, umfassend eine Durchlaufverdampferheizfläche. Die Erfindung betrifft weiterhin ein Solarturmkraftwerk mit einem solarthermischen Absorber. The invention relates to a solar thermal absorber, in particular for a solar tower power plant, comprising a continuous evaporator heating surface. The invention further relates to a solar tower power plant with a solar thermal absorber.
Dem stetig steigenden Energiebedarf und dem Klimawandel muss mit dem Einsatz von nachhaltigen Energieträgern entgegengetreten werden. Sonnenenergie ist solch ein nachhaltiger Ener gieträger. Sie ist klimaschonend, in unerschöpflichem Maße vorhanden und stellt keine Belastung für nachkommende Genera tionen dar. The steadily rising energy demand and climate change must be tackled with the use of sustainable energy sources. Solar energy is such a sustainable energy source. It is climate-friendly, inexhaustible and does not burden future generations.
Solarthermische Kraftwerke stellen eine Alternative zur her¬ kömmlichen Stromerzeugung dar. Zurzeit werden solarthermische Kraftwerke mit Parabolrinnenkollektoren oder Fres nel-Kollektoren ausgeführt. Eine weitere Option stellt die direkte Verdampfung in sogenannten Solarturm Kraftwerken dar Solar thermal power plants are an alternative to conventional electricity generation ago ¬. Currently, running solar thermal power plants with parabolic trough collectors or Fres nel collectors. Another option is the direct evaporation in so-called solar tower power plants
Ein solarthermisches Kraftwerk mit Solarturm und direkter Verdampfung besteht aus einem Solarfeld, dem Solarturm und aus einem konventionellen Kraftwerksteil, in dem die thermische Energie des Wasserdampfes in elektrische Energie umge¬ wandelt wird. A solar thermal power plant with solar tower and direct evaporation consists of a solar field, the solar tower and a conventional power plant part in which the thermal energy of the water vapor is converted into electrical energy ¬ .
Das Solarfeld besteht aus Heliostaten, die ihr Licht auf ei¬ nen in dem Turm untergebrachten Absorber konzentrieren. Der Absorber besteht aus einer Heizfläche, in der die einge¬ strahlte Sonnenenergie dazu genutzt wird, um zugeführtes Speisewasser zu erwärmen, zu verdampfen und gegebenenfalls auch zu überhitzen. Der erzeugte Dampf wird anschließend in einem konventionellen Kraftwerkssteil in einer Turbine entspannt, anschließend kondensiert und dem Absorber wieder zu- geführt. Die Turbine treibt einen Generator an, der die me¬ chanische Energie in elektrische Energie wandelt. The solar field consists of heliostats that focus their light on ei ¬ nen housed in the tower absorbers. The absorber consists of a heating area in which the inserted ¬ radiated solar energy is used to heat supplied to feed water to evaporate and possibly also to overheat. The generated steam is subsequently expanded in a turbine in a conventional power plant section, then condensed and returned to the absorber. guided. The turbine drives a generator, which converts the me ¬ chanic energy into electrical energy.
In einem Solarturm-Kraftwerk ist die eingebrachte Sonnenenergie durch die Größe des Heliostatenfeldes begrenzt. Ein Teil der Einstrahlung wird vom Absorber reflektiert und ist für den thermodynamischen Kraftwerkprozess verloren. Diese Verluste wachsen mit der Größe der Heizfläche. Deshalb sind bei gegebener thermischer Leistung kompakte Absorber mit möglichst kleiner Heizfläche anzustreben. Dies führt durch die Konzentrierung der eingestrahlten Sonnenenergie auf kleine Flächen zu sehr hohen Wärmestromdichten, im Allgemeinen höheren Wärmestromdichten als in fossil befeuerten thermischen Kraftwerken. Deshalb ist bei dem Konzept der Direktverdampfung in einem Solarturm-Kraftwerk die Kühlung der Absorberheizfläche von zentraler Bedeutung. Zur Minimierung der Heizflächengröße ist auf größtmögliche Wärmestromdichten auszule¬ gen. Die Obergrenze der zulässigen Wärmestromdichten wird durch das Rohrmaterial und durch die Qualität der Kühlungsme¬ chanismen bestimmt. In a solar tower power plant, the solar energy input is limited by the size of the heliostat field. Part of the radiation is reflected by the absorber and is lost to the thermodynamic power plant process. These losses increase with the size of the heating surface. Therefore, for a given thermal performance compact absorbers with the smallest possible heating surface are desirable. This results in very high heat flux densities, generally higher heat flux densities, than in fossil-fired thermal power plants by concentrating the irradiated solar energy on small areas. Therefore, with the concept of direct evaporation in a solar tower power plant, the cooling of the absorber heating surface is of central importance. To minimize the Heizflächengröße is be interpreted ¬ gen on maximum heat flux densities. The upper limit of the allowable heat flux is determined by the pipe material and the quality of Kühlungsme ¬ mechanisms.
In einem direkt solar beheizten Zwangsdurchlaufdampferzeuger führt die Beheizung einer Anzahl von Dampferzeugerrohren die zusammen eine Verdampferheizfläche bilden, zu einer vollständigen Verdampfung eines Strömungsmediums - Wasser bzw. Was¬ serdampf - in den Dampferzeugerrohren in einem Durchgang. Das Strömungsmedium - üblicherweise Wasser - wird dabei in der Regel vor seiner Verdampfung einem der Verdampferheizfläche strömungsmediumsseitig vorgeschalteten Vorwärmer, üb¬ licherweise auch als Economizer bezeichnet, zugeführt und dort vorgewärmt. In a direct solar heated once-through steam generator, the heating of a number of steam generator tubes which together form an evaporator, resulting in complete evaporation of a flow medium - water or What ¬ serdampf - in the steam generator tubes in a single pass. The flow medium - usually water - is usually before its evaporation to the Verdampferheizfläche flow medium side upstream preheater, üb ¬ Licher referred to as an economizer, fed and preheated there.
Im Gegensatz zu einem Natur- oder Zwangumlaufdampferzeuger unterliegen Durchlaufdampferzeuger keiner Druckbegrenzung, so dass Frischdampfdrücke weit über dem kritischen Druck von Wasser möglich sind. Dieser hohe Frischdampfdruck begünstigt einen hohen thermodynamischen Wirkungsgrad eines Kraftwerks. Besondere Bedeutung kommt bei dem Konzept der Direktverdampfung der Verbesserung des Betriebsverhaltens und der Be¬ triebssicherheit des in den Solarturm integrierten Absorbers zu, der eine Heizfläche aufweist, in der die eingestrahlte Sonnenenergie dazu genutzt wird, um zugeführtes Speisewasser zu erwärmen, zu verdampfen und gegebenenfalls auch zu überhitzen. In contrast to a natural or forced circulation steam generator, continuous steam generators are not subject to any pressure limitation, so that live steam pressures well above the critical pressure of water are possible. This high live steam pressure promotes a high thermodynamic efficiency of a power plant. Particular importance in the concept of direct evaporation of improving performance and loading ¬ operational reliability of the integrated into the solar tower absorber which has a heating area in which the incident solar energy is used in order to heat supplied feed water to evaporate and possibly also to overheat.
Der Erfindung liegt nunmehr die Aufgabe zugrunde, einen so¬ larthermischen Absorber der oben genannten Art anzugeben, dessen Betriebssicherheit auch bei unterschiedlichen Belas- tungszuständen gegenüber den herkömmlichen auf Direktverdampfung basierenden Absorbern verbessert ist. Des Weiteren soll ein verbessertes Solarturm-Kraftwerk angegeben werden. The invention is now based on the object of specifying a so ¬ larthermischen absorber of the type mentioned above, the reliability of which is improved even at different loading states compared to the conventional direct evaporation based absorbers. Furthermore, an improved solar tower power plant will be specified.
Bezüglich des solarthermischen Absorbers wird diese Aufgabe erfindungsgemäß gelöst durch einen solarthermischen Absorber umfassend eine Heizfläche mit Verdampferrohren, wobei die Verdampferrohre für den Durchfluss eines Strömungsmediums pa¬ rallel geschaltet sind und in einem Heizbereich annähernd in einer Spiralwicklung angeordnet sind. With respect to the solar thermal absorber, this object is achieved by a solar thermal absorber comprising a heating surface with evaporator tubes, wherein the evaporator tubes for the flow of a flow medium are connected in pa ¬ rallel and are arranged in a heating region approximately in a spiral coil.
Die Erfindung geht dabei von der Erkenntnis aus, dass durch die Konzentrierung des eingestrahlten Lichts in dem Absorber mit sehr hohen Wärmestromdichten zu rechnen ist. Des Weiteren treten in der Verdampferheizfläche sehr große Unterschiede in den lokalen Wärmestromdichten auf. Auch ist die Bestrahlung und damit der Wärmeeintrag über die Dampferzeugerrohre in das Strömungsmedium nicht gleichmäßig, d.h. es gibt verschiedene Beheizungszonen im Absorber. The invention is based on the finding that very high heat flux densities can be expected due to the concentration of the incident light in the absorber. Furthermore, very large differences in the local heat flux densities occur in the evaporator heating surface. Also, the irradiation and thus the heat input via the steam generator tubes into the flow medium is not uniform, i. There are different heating zones in the absorber.
Wird der Absorber mit spiralförmig verlaufenden Dampferzeugerrohren ausgestattet, so durchlaufen die Rohre die ver¬ schiedenen Beheizungszonen im Heizbereich des Absorbers und nicht nur eine bestimmte Beheizungszone. Daher werden durch die annähernde Spiralwicklung im Heizbereich sowohl bezüglich der Massenstromdichte als auch bezüglich der Fluidtemperatu- ren des Strömungsmediums nur geringe Unterschiede zwischen den parallelen Dampferzeugerrohren des solarthermischen Absorbers auftreten. If the absorber provided with spirally extending steam generator tubes, the tubes through the various heating zones ¬ ver in the heating region of the absorber and not just a particular heating zone. Therefore, due to the approximate spiral winding in the heating region, only slight differences between the mass flow density and the fluid temperatures of the flow medium are present the parallel steam generator tubes of solar thermal absorber occur.
Dies ist besonders vorteilhaft sowohl in Bezug auf die Span¬ nungen innerhalb der Rohrwandstruktur als auch in Bezug auf Spannungen im anschließenden Austrittssammler, bei dem die Dampferzeugerrohre ausgangsseitig in strömungstechnischer Pa¬ rallelschaltung zusammengeführt sind. This is particularly advantageous both in terms of the clamping ¬ voltages within the wall structure as well as with respect to stresses in the subsequent discharge collector, in which the steam generator tubes have their outputs combined in fluid Pa ¬ parallel switching.
Weiterhin können über den Steigungswinkel der Spirale und über die Anzahl der Parallelrohre die Massenstromdichten in weiten Grenzen variiert und auslegungstechnisch vorab entsprechend den Betriebsanforderungen angepasst werden. Furthermore, the mass flow densities can be varied within wide limits via the pitch angle of the spiral and the number of parallel tubes and can be adapted in terms of design in advance in accordance with the operating requirements.
Möglich ist auch eine Berohrung des Absorbers mit Verdampferrohren, bei der nur an bestimmten Abschnitten der Heizfläche die Verdampferrohre mit einer Steigung ausgeführt werden, als sogenannte Teilspirale. In den anderen Bereichen der Heizflä¬ che können die Dampferzeugerrohre dann horizontal verlaufen. Somit ist es besonders Vorteilhaft, wenn in dem solarthermi¬ schen Absorber zumindest in einem Abschnitt der Heizfläche die Dampferzeugerrohre wahlweise horizontal verlaufen. It is also possible to bore the absorber with evaporator tubes, in which only at certain sections of the heating surface, the evaporator tubes are designed with a slope, called a so-called partial spiral. In the other areas of Heizflä ¬ che the steam generator tubes can then extend horizontally. Thus, it is particularly advantageous when running in the solar-thermal ¬ rule absorber at least in a portion of the heating surface of the steam generator tubes either horizontally.
In vorteilhafter Ausgestaltung weist in dem Absorber die Heizfläche miteinander über Flossen verschweißte Dampferzeu¬ gerrohre auf. In an advantageous embodiment in the absorber has the heating surface with each other by fins welded Dampferzeu ¬ gerrohre.
Besonders Vorteilhaft ist der Absorber ausgestaltet, wenn die Verdampferrohre auf ihrer Innenseite eine Oberflächenstruktur zum Erzeugen eines hohen Wärmeübergangs von ihrer Innenwand auf das Strömungsmedium aufweisen. Particularly advantageously, the absorber is configured when the evaporator tubes have on their inner side a surface structure for generating a high heat transfer from its inner wall to the flow medium.
Ein Ausführungsbeispiel der Erfindung wird anhand einer An embodiment of the invention will be described with reference to a
Zeichnung näher erläutert. Drawing explained in more detail.
Darin zeigt It shows
FIG 1 ein Solarturm-Kraftwerk, FIG 2 in vereinfachter Darstellung einen solarthermischen1 shows a solar tower power plant, 2 shows a simplified representation of a solar thermal
Absorber mit spiralförmig berohrter Heizfläche gemäß der Erfindung, und Absorber with spiral-heated heating surface according to the invention, and
FIG 3 eine ebenfalls vereinfachte Darstellung eines so¬ larthermischen Absorbers mit teilweise spiralförmig und teilweise horizontal verlaufenden Dampferzeu¬ gerrohren (Teilspirale) . 3 shows a likewise simplified representation of a so ¬ larthermischen absorber with partially spiral and partially horizontally extending Dampferzeu ¬ gerrohren (partial spiral).
FIG 1 zeigt ein Solarturm-Kraftwerk 1. Das Solarturm- Kraftwerk 1 umfasst einen Solarturm 2, an dessen oberem Ende ein Receiver 3 angeordnet ist. Der Receiver 3 umfasst einen solarthermischen Absorber 4. Ein Heliostatenfeld 6 mit einer Anzahl von Heliostaten 7 ist am Boden um den Solarturm 2 konzentrisch herum platziert. Das Heliostatenfeld 6 mit den He¬ liostaten 7 ist für eine Fokussierung der direkten Solarstrahlung Is ausgelegt. Dabei sind die einzelnen Heliostaten 7 so angeordnet und ausgerichtet, dass die direkte Solar- Strahlung Is von der Sonne in Form von konzentrierter Solarstrahlung Ic auf den Receiver 3 fokussiert wird. Bei dem Solarturm-Kraftwerk 1 wird somit die Sonnenstrahlung durch ein Feld einzeln nachgeführter Spiegel, den Heliostaten 7, auf die Spitze des Solarturms 2 konzentriert. In der Turmspitze befindet sich ein solarthermischer Absorber 4, beispielsweise eine Absorberrohrwand 5, die die Strahlung in Wärme umwandelt und die Wärme an ein Wärmeträgermedium, beispielsweise Wasser in den Rohrbündeln abgibt. Das Wasser wird hierdurch direkt verdampft. Der im Absorber durch Direktverdampfung erzeugte Dampf kann als Frischdampf einem konventionellen Kraftwerks- prozess mit einer Dampfturbine zugeführt werden. 1 shows a solar tower power plant 1. The solar tower power plant 1 comprises a solar tower 2, at the upper end of a receiver 3 is arranged. The receiver 3 comprises a solar thermal absorber 4. A heliostat data field 6 with a number of heliostats 7 is placed concentrically around the solar tower 2 on the ground. The heliostat field 6 with the He ¬ liostaten 7 is designed for focusing the direct solar radiation I s . The individual heliostats 7 are arranged and aligned such that the direct solar radiation I s is focused by the sun in the form of concentrated solar radiation I c onto the receiver 3. In the solar tower power plant 1, the solar radiation is thus concentrated on the tip of the solar tower 2 by a field of individually tracked mirrors, the heliostat 7. In the spire is a solar thermal absorber 4, for example, an absorber tube wall 5, which converts the radiation into heat and releases the heat to a heat transfer medium, such as water in the tube bundles. The water is thereby directly evaporated. The steam generated in the absorber by direct evaporation can be supplied as live steam to a conventional power plant process with a steam turbine.
FIG 2 zeigt einen solarthermischen Absorber 4, wie er beispielsweise in Ausführung als Absorberrohrwand 5 in den Re- ceiver 3 des Solarturmkraftwerks 1 der FIG 1 integriert ist. Dargestellt ist die Absorberrohrwand 5 hier als euklidische Abwicklung der Mantelfläche des Absorbers 4. Die Absorber¬ rohrwand 5 umfasst im Wesentlichen eine Anzahl an Dampferzeu- gerrohren 8, einen Verteiler 10 und einen Sammler 12. Der Verteiler 10 ist an den Verdampfereintritt 9 angeschlossen und mit dem Sammler 12 über die Dampferzeugerrohre 8 strö¬ mungstechnisch verbunden. Der Bereich, der durch die Dampferzeugerrohre 8 gebildet wird, ist der Heizbereich H bzw. die Durchlaufverdampferheizfläche 13 der Absorberrohrwand 5. Die Dampferzeugerrohre 8 sind unter einem Winkel, beispielsweise zwischen 5° und 40°, ausgehend von der Horizontalen ausgerichtet, und verlaufen somit spiralförmig um wenigstens einen Teil des Absorbers 5. Nicht dargestellt ist eine davon abwei¬ chende Variante, bei welcher der Winkel im Verlauf der Dampf¬ erzeugerrohre 8 variiert, also in unterschiedlichem Abstand zum Verteiler eine unterschiedliche Steigung aufweist. 2 shows a solar thermal absorber 4, as it is integrated, for example in execution as absorber tube wall 5 in the creiver 3 of the solar tower power plant 1 of FIG 1. Shown is the absorber tube wall 5 here as Euclidean development of the peripheral surface of the absorber 4. The absorber ¬ pipe wall 5 substantially comprises a number of steam generators ger ger 8, a manifold 10 and a collector 12. The manifold 10 is connected to the evaporator inlet 9 and connected to the collector 12 via the steam generator tubes 8 strö ¬ tion technology. The area formed by the steam generator tubes 8 is the heating area H or the continuous evaporator heating area 13 of the absorber tube wall 5. The steam generator tubes 8 are oriented at an angle, for example between 5 ° and 40 °, from the horizontal, and thus run in a spiral is illustrated at least a portion of the absorber 5. Not one of them deviate ¬ sponding variant in which the angle in the course of the steam generator tubes ¬ 8 varies, so in different distances from the manifold having a different pitch.
Der Sammler 12, in den die Dampferzeugerrohre 8 münden, ist an den Verdampferaustritt 11 angeschlossen. Am Verdampfereintritt 9 tritt kaltes Strömungsmedium, insbesondere kaltes Wasser, in den Verteiler 10 ein und wird auf die Vielzahl der wärmeübertragenden Rohre 8 verteilt. Im Betrieb der solarbe¬ heizten Absorberrohrwand 5 werden die wärmeübertragenden Dampferzeugerrohre 8 durch die konzentrierte Solarstrahlung Ic stark aufgeheizt, wobei die Dampferzeugerrohre 8 die Wärme an das Strömungsmedium in den Dampferzeugerrohren 8 abgeben. Das Strömungsmedium wird dabei in den Dampferzeugerrohren 8 durch die konzentrierte Solarstrahlung Ic direkt verdampft. Durch die spiralförmige Anordnung der Dampferzeugerrohre 8 durchlaufen diese verschiedene Beheizungszonen im Heizbereich H des Absorbers 5 und nicht nur eine bestimmte Beheizungszo¬ ne. Dadurch werden große Unterschiede bezüglich der Massen- stromdichte als auch bezüglich der Fluidtemperaturen des Strömungsmediums zwischen den parallelen Dampferzeugerrohren der Absorberrohrwand 5 vermieden. The collector 12, in which the steam generator tubes 8 open, is connected to the evaporator outlet 11. At the evaporator inlet 9, cold flow medium, in particular cold water, enters the distributor 10 and is distributed to the plurality of heat-transferring tubes 8. In operation, the solarbe ¬ heated absorber tube wall 5, the heat-transferring steam generator tubes 8 by the concentrated solar radiation I c are strongly heated, the steam generator tubes 8 to supply heat to the flow medium in the steam generator tubes. 8 The flow medium is thereby directly evaporated in the steam generator tubes 8 by the concentrated solar radiation I c . Due to the spiral arrangement of the steam generator tubes 8, these different heating zones pass through in the heating region H of the absorber 5 and not just a certain heating zone . As a result, large differences in the mass flow density and with respect to the fluid temperatures of the flow medium between the parallel steam generator tubes of the absorber tube wall 5 are avoided.
Im Betrieb des solarthermischen Dampferzeugers ist es beson¬ ders kritisch in Abhängigkeit des vorhandenen Wärmeangebots der primären Solarstrahlung immer genau den erforderlichen Speisewassermassenstrom durch die Absorberheizfläche, respektive die Absorberrohrwand 5, zur Verfügung zu stellen, um den geforderten bzw. gewünschten Fluidzustand am Absorberaus¬ tritt, respektive am Verdampferaustritt 11 auch während in¬ stationärer Vorgänge, insbesondere bei Wolkendurchzug durch das Heliostatenfeld 6 zu gewährleisten. Das am Verdampferaus- tritt 11 zur Verfügung stehende Wasser-/Dampfgemisch kann bei entsprechender Überhitzung als Frischdampf mit einer Frischdampftemperatur der nicht näher dargestellten Dampfturbine zur Erzeugung von elektrischer Energie zugestellt werden. FIG 3 zeigt eine besondere Weiterentwicklung der in FIG 2 dargestellten Ausführung einer Absorberrohrwand 5. Im Unterschied zu FIG 2 zeigt die in FIG 3 dargestellte Absorberrohr¬ wand 5 Dampferzeugerrohre 8, die in ihrem Verlauf über den Heizbereich H teilweise spiralförmig und teilweise horizontal angeordnet sind. Die Absorberrohrwand 5 ist folglich in meh¬ rere sich abwechselnde Bereiche unterteilt. In einem ersten Bereich 19 sind die Dampferzeugerrohre 8 spiralförmig ange¬ ordnet. In einem dem ersten Bereich 19 folgenden Bereich 20 verlaufen die Dampferzeugerrohre 8 horizontal. Dem Bereich 20 folgt wiederum ein Bereich 19 mit spiralförmig angeordneten, und anschließend wieder ein Bereich 20 mit horizontal verlau¬ fenden Dampferzeugerrohren 8. Die Anzahl an Bereichen 19 und 20 können darüber hinaus variieren und sind insbesondere an unterschiedliche Wärmestromdichten im Rohrwandabsorber 5 an- gepasst. In operation of the solar thermal steam generator, it is particular ¬ DERS critical in dependence on the existing heat supply of the primary solar radiation always exactly the required feed water mass flow through the Absorberheizfläche, respectively, to make the absorber tube wall 5, available to the required or desired fluid state at the Absorberaus ¬ occurs, respectively at the evaporator outlet 11 during in ¬ stationary operations, in particular to ensure cloud passage through the heliostat 6. The water / steam mixture available at the evaporator outlet 11 can be delivered as live steam with a live steam temperature of the steam turbine not shown in detail for generating electrical energy, with appropriate overheating. FIG. 3 shows a particular further development of the embodiment of an absorber tube wall 5 shown in FIG. 2. In contrast to FIG. 2, the absorber tube wall 5 shown in FIG. 3 shows steam generator tubes 8, which in their course over the heating region H are partially arranged spirally and partially horizontally. The absorber tube wall 5 is thus subdivided into several alternating areas. In a first region 19, the steam generator tubes 8 are arranged spirally ¬ . In a region 20 following the first region 19, the steam generator tubes 8 extend horizontally. In turn, the area 20 is followed by a region 19 which is arranged spirally, and then again an area 20 with horizontal duri ¬ fenden steam generator tubes 8. The number of regions 19 and 20 may vary beyond, and are in particular fitted arrival to different heat flux in the tube wall absorbers. 5

Claims

Patentansprüche claims
1. Solarthermischer Absorber (4), insbesondere für ein So- larturm-Kraftwerk (1), umfassend eine Durchlaufverdampfer- heizfläche (13) mit Dampferzeugerrohren (8), wobei die Dampferzeugerrohre (8) für den Durchfluss eines Strömungsmediums parallel geschaltet sind und in einem Heizbereich (H) annä¬ hernd in einer Spiralwicklung angeordnet sind. A solar thermal absorber (4), in particular for a solar tower power plant (1), comprising a continuous evaporator heating surface (13) with steam generator tubes (8), wherein the steam generator tubes (8) are connected in parallel for flow of a flow medium and a heating region (H) are Annae ¬ hernd disposed in a spiral winding.
2. Solarthermischer Absorber (4) nach Anspruch 1, 2. solar thermal absorber (4) according to claim 1,
bei dem über den Winkel der Spirale und/oder über die Anzahl der parallel geführten Dampferzeugerrohre (8) vorab bei der Betriebsauslegung eine gewünschte Massenstromdichte an Strö¬ mungsmedium eingestellt ist. in which is set by the angle of the spiral and / or on the number of parallel operations steam generator tubes (8) in advance at the operating design of a desired mass flow density of Strö ¬ mung medium.
3. Solarthermischer Absorber (4) nach Anspruch 1 oder 2, bei dem in wenigstens einem Abschnitt der Heizfläche (13) die Dampferzeugerrohre (8) horizontal verlaufen. 3. solar thermal absorber (4) according to claim 1 or 2, wherein in at least a portion of the heating surface (13), the steam generator tubes (8) extend horizontally.
4. Solarthermischer Absorber (4) nach einem der Ansprüche 1, 2 oder 3, bei dem die Heizfläche (13) eine Anzahl miteinander über Flossen verschweißte Dampferzeugerrohre (8) aufweist. 4. Solar thermal absorber (4) according to any one of claims 1, 2 or 3, wherein the heating surface (13) has a number of fins welded together via steam generator tubes (8).
5. Solarthermischer Absorber (4) nach einem der vorhergehen- den Ansprüche, bei dem die Dampferzeugerrohre (8) auf ihrer Innenseite eine Oberflächenstruktur zum Erzeugen eines hohen Wärmeübergangs von ihrer Innenwand auf das Strömungsmedium aufweisen . 5. solar thermal absorber (4) according to one of the preceding claims, wherein the steam generator tubes (8) on its inner side have a surface structure for generating a high heat transfer from its inner wall to the flow medium.
6. Solarturmkraftwerk (1) mit einem solarthermischen Absorber (4) nach einem der vorhergehenden Ansprüche. 6. solar tower power plant (1) with a solar thermal absorber (4) according to one of the preceding claims.
7. Solarturmkraftwerk (1) nach Anspruch 6, 7. Solar tower power plant (1) according to claim 6,
bei dem der solarthermische Absorber (4) strömungsmediumsei- tig in den Wasser-Dampf-Kreislauf einer Dampfturbinenanlage geschaltet ist. in which the solar thermal absorber (4) is connected in terms of flow medium in the water-steam cycle of a steam turbine plant.
PCT/EP2011/064558 2010-09-03 2011-08-24 Solar-thermal absorber for direct evaporation, in particular in a solar tower power station WO2012028514A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010040200A DE102010040200A1 (en) 2010-09-03 2010-09-03 Solar thermal absorber for direct evaporation, in particular a solar tower power plant
DE102010040200.1 2010-09-03

Publications (2)

Publication Number Publication Date
WO2012028514A2 true WO2012028514A2 (en) 2012-03-08
WO2012028514A3 WO2012028514A3 (en) 2012-06-21

Family

ID=44681083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/064558 WO2012028514A2 (en) 2010-09-03 2011-08-24 Solar-thermal absorber for direct evaporation, in particular in a solar tower power station

Country Status (2)

Country Link
DE (1) DE102010040200A1 (en)
WO (1) WO2012028514A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422179A (en) * 2013-09-04 2015-03-18 中广核太阳能开发有限公司 Solar tower type thermal power generation closed cavity type receiver and application method thereof
CN110793221A (en) * 2020-01-03 2020-02-14 浙江中控太阳能技术有限公司 Wind, light and heat power complementary system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1601310C3 (en) * 1968-02-20 1975-03-06 Siemens Ag, 1000 Berlin U. 8000 Muenchen Melting chamber continuous boiler
DE2035527A1 (en) * 1970-07-17 1972-01-20 Kraftwerk Union Ag Flow boiler
DE2251396B2 (en) * 1972-10-19 1979-12-06 Borsig Gmbh, 1000 Berlin Combustion chamber of a steam generator
US5390631A (en) * 1994-05-25 1995-02-21 The Babcock & Wilcox Company Use of single-lead and multi-lead ribbed tubing for sliding pressure once-through boilers
WO1997014930A2 (en) * 1995-10-17 1997-04-24 Siemens Aktiengesellschaft Method and device for producing solar steam
DE202005020943U1 (en) * 2005-04-01 2006-11-16 Pejm, Wojciech Invention relates to complete cooling system consisting of condenser, heat pump and heater

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422179A (en) * 2013-09-04 2015-03-18 中广核太阳能开发有限公司 Solar tower type thermal power generation closed cavity type receiver and application method thereof
CN110793221A (en) * 2020-01-03 2020-02-14 浙江中控太阳能技术有限公司 Wind, light and heat power complementary system
CN110793221B (en) * 2020-01-03 2020-04-17 浙江中控太阳能技术有限公司 Wind, light and heat power complementary system

Also Published As

Publication number Publication date
DE102010040200A1 (en) 2012-03-08
WO2012028514A3 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
EP0986695B1 (en) Energy generating installation
EP2419634B1 (en) Steam power plant having solar collectors
EP1984624B1 (en) Method and device to increase the energy production in a solar thermal power plant
WO2008113482A2 (en) Method and device for fired intermediate overheating during direct solar vapourisation in a solar thermal power station
WO2011124408A2 (en) Solar thermal power plant using indirect evaporation and method for operating such a solar thermal power plant
EP1820965A1 (en) Method and device to control the energy production in a solar thermal power plant
WO2011020776A2 (en) Solar thermal power plant having a heat exchanger in the feedwater preheating section and method for operating the power plant
WO2011104325A2 (en) Apparatus and method for generating superheated steam using solar energy on the basis of the forced flow concept, and use of the superheated steam
DE102010040208B4 (en) Solar thermal continuous evaporator heating surface with local cross-sectional constriction at its inlet
WO2012028512A2 (en) Solar-thermal once-through steam generator for direct evaporation, in particular in a solar-tower power plant
WO2012028514A2 (en) Solar-thermal absorber for direct evaporation, in particular in a solar tower power station
WO2012028492A2 (en) Solar-thermal absorber for direct evaporation, in particular in a solar tower power station
WO2010031375A2 (en) Method for overheating vapour
WO2012028517A2 (en) Solar-thermal continuous flow evaporator
WO2012028493A2 (en) Solar-thermal continuous flow evaporator
DE102012103621A1 (en) Solar-thermal power plant e.g. paraboloid power plant, for electricity generation, has heat accumulators comprising electrical heater attached to public, external electricity main and/or power plant-self electricity generator
EP2177757A1 (en) Method and device for intermediate heating with saturated steam for direct solar damping in a solar thermal power plant
WO2012110346A1 (en) Solar-thermal continuous evaporator having a local reduction in the cross-section on its inlet
WO2012028510A1 (en) Piping of an evaporator heating surface for a continuous flow steam generator in solar tower power stations with direct evaporation and natural circulation characteristics
DE102011075930A1 (en) Steam generator, in particular for a solar thermal power plant
DE102011004271A1 (en) Solar-thermal continuous steam generator for use in solar tower-power plant utilized to generate electricity, has steam generator pipe whose flow cross-section and passage area are varied in flow direction of medium to be evaporated
DE102011075929A1 (en) Device for generating superheated steam through solar energy, has start-up bottle arranged between evaporator and super-heater for separating water and steam, where steam generator is provided with heat carrier circuit
WO2012028502A2 (en) Solar-thermal continuous flow steam generator comprising a steam separator and star distributor which is connected downstream for solar tower power stations with direct evaporation
DE102010037209A1 (en) Method for operating a steam turbine of a solar thermal power plant and boiler plant for carrying out the method
DE102011075932A1 (en) Steam generator for solar-thermal power plant, has heating surface pipe arranged in meander form, where free cross section of heating surface pipe is increased in flow direction of medium to be evaporated

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11761299

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11761299

Country of ref document: EP

Kind code of ref document: A2