WO1997014930A2 - Procede et dispositif de production de vapeur solaire - Google Patents

Procede et dispositif de production de vapeur solaire Download PDF

Info

Publication number
WO1997014930A2
WO1997014930A2 PCT/DE1996/001887 DE9601887W WO9714930A2 WO 1997014930 A2 WO1997014930 A2 WO 1997014930A2 DE 9601887 W DE9601887 W DE 9601887W WO 9714930 A2 WO9714930 A2 WO 9714930A2
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
tube
water
receiver tube
steam
Prior art date
Application number
PCT/DE1996/001887
Other languages
German (de)
English (en)
Other versions
WO1997014930A3 (fr
Inventor
Hans-Christian TRÄNKENSCHUH
Reinhard Rippel
Hans-Jürgen CIRKEL
Wolfgang Köhler
Wolfgang Kastner
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1997014930A2 publication Critical patent/WO1997014930A2/fr
Publication of WO1997014930A3 publication Critical patent/WO1997014930A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/101Tubes having fins or ribs
    • F22B37/103Internally ribbed tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • F24S10/753Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations the conduits being parallel to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • F24S2010/751Special fins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the invention relates to a method and a device for generating solar steam.
  • solar power plants the solar radiation incident on the ground serves as a heat source for generating solar steam for a subsequent energy conversion.
  • Examples of solar thermal power plants are tower and dish power plants.
  • the solar radiation is concentrated on a receiver in the tower with mirrors, the heliostats, placed on racks on the ground, and is used there to heat a heat transfer medium, for example water.
  • the mirrors have to be automatically adjusted in the daily course of the sun by mechanical adjustment and therefore require a control device with a corresponding supply line.
  • the parabolic mirror and receiver form a fixed unit.
  • the receiver is fixed in the focal point of the parabolic mirror.
  • the parabolic mirror focuses the sunlight on the receiver.
  • the receiver comprises at least one receiver tube.
  • the heat transfer medium is vaporized directly in the receiver tube to form solar steam. This process is referred to as direct evaporation.
  • a heat exchanger is known from German Offenlegungsschrift 25 36 800, which consists of a thin-walled inner tube and a thin-walled outer tube which is arranged coaxially with respect to the inner tube. Both tubes are made of a material with good thermal conductivity.
  • the outer tube has a series of helical shafts along a substantial area of the inner one
  • the waves form a series of helical wave crests and wave troughs on the inner and outer surface of the tube.
  • the wave troughs on the inner surface touch helical sealing points on the outer surface of the inner tube and thus form at least one helically extending channel around the inner tube for the medium for heat exchange.
  • Several helical channels are obtained if the corrugations consist of several helical lines.
  • the medium in the operating state is only in the liquid state. It only flows in one direction, i.e. in the direction of the pipe or in the direction of the channel formed.
  • the outer channel is bidided by a web extending helically around an inner tube or by an outer tube which is wound helically around an inner tube.
  • the invention is based on the object of specifying a method for generating solar steam, in particular in a tower or dish power plant, in which at the same time the overall efficiency of the solar power plant is increased and the operating costs are reduced.
  • a device for performing the method is to be specified.
  • the first-mentioned object is achieved according to the invention by a method for generating solar steam with at least one receiver tube, wherein the receiver tube is flowed through by water at least over part of its length and part of the water flows through perpendicularly to it
  • a device for generating solar steam which comprises at least one receiver with at least one receiver tube, water flowing through the receiver tube, in which means are provided with which part of the water in the Flow through the receiver tube receives a velocity component oriented perpendicular to the flow direction.
  • the velocity component perpendicular to the flow direction enables a water film to form and / or be retained on the inside of the receiver tube at all times when the solar power plant is in operation.
  • a boiling crisis and the consequent deterioration in the heat transfer between the material of the tube jacket and the heat transfer medium flowing through the receiver tube, the water, can thus be avoided.
  • This improves the overall efficiency of the solar power plant and at the same time increases the service life of the receiver tube. Due to the longer service life of the receiver tube, the costs for operating the solar power plant, for example a tower or dish power plant, are reduced.
  • the entire length of the receiver tube is preferably flowed through by water. During the operation of the solar power plant, there is partially water or wet steam in the entire receiver tube and therefore no solar superheated steam.
  • wet steam consists partly of steam and partly water.
  • the prerequisite that a portion of water or wet steam is present in the entire receiver tube is a necessary prerequisite for the generation or maintenance of a water film on the inside of the receiver tube.
  • the water for feeding into the receiver tube is extracted from the steam cycle of a fossil-fueled one
  • Receiver tubes each arranged at least one rib.
  • an additional swirl is imparted to the heat-absorbing water, as a result of which the water film on the inside of the receiver tubes also with very high steam contents of the wet steam, i.e. in other words the solar steam, is still preserved.
  • the advantages of internally finned tubes when used in Benson steam generator technology are the publication "Evaporator concepts for Benson steam generators, current status and new developments" by J.Franke et al. , VGB Kraftwerkstechnik 73, 1993, Issue 4, pages 352 - 361.
  • the rib is preferably arranged helically.
  • the helical arrangement of the rib enables simple technical implementation.
  • a pitch angle oc between a plane perpendicular to the tube axis and the flanks of the rib is less than 60 °, preferably less than 55. Heat transfer measurements have shown that the improvement in heat transfer is particularly pronounced at these gradient angles ⁇ .
  • the receiver tubes are arranged parallel to one another.
  • the receiver tubes are preferably welded to one another and arranged in one plane. This enables the receiver tubes to be packed tightly, which in turn results in an increase in the overall efficiency of the solar power plant.
  • the receiver tubes are separated from one another by webs.
  • the use of webs which separate the receiver tubes from one another increases the absorption area for the incident solar radiation.
  • FIG. 1 to 3 show devices for generating solar steam in schematic representations.
  • a device for generating solar steam comprises a receiver 2 with a receiver tube 4.
  • the device is part of a solar power plant, for example a tower or dish power plant.
  • the heat transfer medium for example water, flows through the receiver tube 4 in the flow direction 6 at least over part of its length.
  • Six ribs 12 are arranged helically on the inside 10 of the receiver tube 4. Two adjacent ribs 12 delimit a channel 18.
  • the water that flows through the receiver tube 4 is evaporated according to the principle of direct evaporation and thus solar steam is generated in the receiver tube 4.
  • the receiver tube 4 for example from the water vapor cycle of a fossil-fired power plant, that a portion of water is always present in the receiver tube 4 at all times during operation, despite the evaporation. This produces wet steam, ie steam and water are present in the receiver tube 4 at the same time.
  • the proportion of the water flowing in the channels 18 receives an additional swirl through the ribs 12, i.e. some of the water receives a speed component perpendicular to the direction of flow 6. In the receiver tube 4 there are thus portions of water which each flow in different directions. This effect is also achieved when only one rib 12 is used.
  • the flanks 30 of the ribs 12 enclose a pitch angle oc with a plane 32 perpendicular to the tube axis 30.
  • This pitch angle ⁇ is less than 60. In an embodiment that is not further illustrated, it is smaller than 55, for example 50. This enables a water film to form or remain on the inside 10 of the receiver tube 4 at all times during operation. Accordingly, a boiling crisis on the inside 10 of the receiver tube 4 is avoided and the heat transfer between the tube jacket 20 of the receiver tube 4 and the water flowing in the receiver tube 4 is improved.
  • receiver tubes 4 of the receiver 2 are welded together and arranged in one plane.
  • the pipe jackets 20 of the receiver pipes 4 are welded directly to one another by welds 24, which are arranged parallel to the longitudinal beads 28.
  • the longitudinal beads 28 are part of the receiver tubes 4 and facilitate the assembly welding the receiver tubes 4.
  • the welded receiver tubes 4 form a tube wall 14.
  • the receiver tubes 4 are packed tightly, ie that for a given tube diameter the receiver tubes 4 in this tube wall 14 contain the greatest possible amount of heat ⁇ medium medium water flows through the receiver 2.
  • webs 16 are arranged in the tube wall 14 between the receiver tubes 4. These webs 16, for example made of the same material as the receiver tubes 4, are connected to the receiver tubes 4 by welds 24. The webs 16 enlarge the absorption area for the incident solar radiation. The heat of the solar radiation absorbed by the webs is passed on to the receiver tubes 4 via the weld seams 24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Dispersion Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

L'invention concerne un procédé de production de vapeur solaire faisant intervenir au moins un tube (4) récepteur parcouru, sur au moins une partie de sa longueur, par de l'eau et pourvu d'un moyen qui confère à une partie de l'eau une composante vitesse orientée perpendiculairement à la direction (6) d'écoulement. Un tel moyen permet d'éviter une crise d'ébullition dans le tube (4) récepteur.
PCT/DE1996/001887 1995-10-17 1996-10-01 Procede et dispositif de production de vapeur solaire WO1997014930A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19538673.6 1995-10-17
DE19538673 1995-10-17

Publications (2)

Publication Number Publication Date
WO1997014930A2 true WO1997014930A2 (fr) 1997-04-24
WO1997014930A3 WO1997014930A3 (fr) 1997-07-31

Family

ID=7775096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001887 WO1997014930A2 (fr) 1995-10-17 1996-10-01 Procede et dispositif de production de vapeur solaire

Country Status (2)

Country Link
MA (1) MA23989A1 (fr)
WO (1) WO1997014930A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2112441A2 (fr) * 2008-04-21 2009-10-28 Joma-Polytec Kunststofftechnik GmbH Absorbeur solaire et collecteur solaire correspondant
WO2009129167A3 (fr) * 2008-04-16 2010-06-24 Alstom Technology Ltd Générateur de vapeur solaire
WO2012028514A3 (fr) * 2010-09-03 2012-06-21 Siemens Aktiengesellschaft Absorbeur solaire thermique d'évaporation directe, en particulier dans une centrale solaire à tour
DE102010040208B4 (de) * 2010-09-03 2012-08-16 Siemens Aktiengesellschaft Solarthermische Durchlaufverdampfer-Heizfläche mit lokaler Querschnittsverengung an ihrem Eintritt
DE102011004266A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Sonnenkollektor mit innenberippten Rohren
WO2012028492A3 (fr) * 2010-09-03 2014-04-03 Siemens Aktiengesellschaft Absorbeur solaire thermique d'évaporation directe, en particulier pour centrale solaire thermique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2800439A1 (de) * 1978-01-05 1979-07-12 Spilling Heinz Dipl Ing Sonnenkollektor
FR2438804A1 (fr) * 1978-10-10 1980-05-09 Babcock & Wilcox Co Chaudiere solaire
EP0503116A1 (fr) * 1991-03-13 1992-09-16 Siemens Aktiengesellschaft Tube avec plusieurs nervures hélicoidales sur sa paroi interne et générateur de vapeur en faisant usage
DE4126038A1 (de) * 1991-08-06 1993-02-11 Siemens Ag Gas- und dampfturbinenkraftwerk mit einem solarbeheizten dampferzeuger
DE4331784A1 (de) * 1993-09-18 1995-03-23 Deutsche Forsch Luft Raumfahrt Rinnenkollektor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2800439A1 (de) * 1978-01-05 1979-07-12 Spilling Heinz Dipl Ing Sonnenkollektor
FR2438804A1 (fr) * 1978-10-10 1980-05-09 Babcock & Wilcox Co Chaudiere solaire
EP0503116A1 (fr) * 1991-03-13 1992-09-16 Siemens Aktiengesellschaft Tube avec plusieurs nervures hélicoidales sur sa paroi interne et générateur de vapeur en faisant usage
DE4126038A1 (de) * 1991-08-06 1993-02-11 Siemens Ag Gas- und dampfturbinenkraftwerk mit einem solarbeheizten dampferzeuger
DE4331784A1 (de) * 1993-09-18 1995-03-23 Deutsche Forsch Luft Raumfahrt Rinnenkollektor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FORSCHUNGSVERBUND SONNENENERGIE: "THEMEN 93/94", DE, Seiten 57-64, XP000647082 M. M]LLER UND K. HENNECKE: "Solare Farmkraftwerke und Direktverdampfung in Parabolrinnen-Kollektoren" *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009129167A3 (fr) * 2008-04-16 2010-06-24 Alstom Technology Ltd Générateur de vapeur solaire
CN102046969A (zh) * 2008-04-16 2011-05-04 阿尔斯托姆科技有限公司 太阳能蒸汽发生器
US8607567B2 (en) 2008-04-16 2013-12-17 Alstom Technology Ltd Solar steam generator
EP2112441A2 (fr) * 2008-04-21 2009-10-28 Joma-Polytec Kunststofftechnik GmbH Absorbeur solaire et collecteur solaire correspondant
EP2112441A3 (fr) * 2008-04-21 2012-06-06 Joma-Polytec GmbH Absorbeur solaire et collecteur solaire correspondant
WO2012028514A3 (fr) * 2010-09-03 2012-06-21 Siemens Aktiengesellschaft Absorbeur solaire thermique d'évaporation directe, en particulier dans une centrale solaire à tour
DE102010040208B4 (de) * 2010-09-03 2012-08-16 Siemens Aktiengesellschaft Solarthermische Durchlaufverdampfer-Heizfläche mit lokaler Querschnittsverengung an ihrem Eintritt
WO2012028492A3 (fr) * 2010-09-03 2014-04-03 Siemens Aktiengesellschaft Absorbeur solaire thermique d'évaporation directe, en particulier pour centrale solaire thermique
DE102011004266A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Sonnenkollektor mit innenberippten Rohren
WO2012110341A1 (fr) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Capteur solaire comportant des tubes à nervures intérieures

Also Published As

Publication number Publication date
WO1997014930A3 (fr) 1997-07-31
MA23989A1 (fr) 1997-07-01

Similar Documents

Publication Publication Date Title
DE2631196C3 (de) Sonnenbeheizter Kessel
EP1820965A1 (fr) Méthode et dispositif pour régler la production énergétique dans une centrale thermique solaire
WO2011104325A2 (fr) Dispositif et procédé de production de vapeur d'eau surchauffée par l'énergie solaire selon le concept de circulation forcée et utilisation de cette vapeur d'eau surchauffée
WO1997014930A2 (fr) Procede et dispositif de production de vapeur solaire
EP0720714A1 (fr) Chaudière à vapeur du type à circulation ouverte, et procédé de faire fonctionner une telle chaudière
DE19538670A1 (de) Verfahren zur Erzeugung von Energie und Kraftwerksanlage zur Durchführung des Verfahrens
DE2935889A1 (de) Dampferzeuger
DE102010040208B4 (de) Solarthermische Durchlaufverdampfer-Heizfläche mit lokaler Querschnittsverengung an ihrem Eintritt
DE10056077A1 (de) Verfahren und Vorrichtung zur Bestimmung der Abbildungseigenschaften eines optischen Spiegelelementes
WO2012028512A2 (fr) Générateur de vapeur héliothermique en continu pour l'évaporation directe notamment dans une centrale solaire à tour
DE102010040206A1 (de) Solarthermischer Absorber zur Direktverdampfung, insbesondere in einem Solarturm-Kraftwerk
DE3226167C2 (de) Sonnenenergie-Umwandlungsanlage
DE102009026546B4 (de) Sonnenkollektor
DE4406365A1 (de) Verfahren und Vorrichtung zum Reinigen und/oder Destillieren von Flüssigkeiten
WO2012028517A2 (fr) Évaporateur continu solaire thermique
WO2011138213A2 (fr) Générateur de vapeur héliothermique à circulation forcée comportant des tubes à paroi interne nervurée
EP2600058A1 (fr) Dispositif de transfert d'un liquide de travail dans un état gazeux ou vaporeux, notamment pour la production de vapeur d'eau
WO2012028514A2 (fr) Absorbeur solaire thermique d'évaporation directe, en particulier dans une centrale solaire à tour
WO2012156350A2 (fr) Générateur de vapeur notamment destiné à une centrale thermique solaire
EP2497987A1 (fr) Conduite de vapeur flexible en particulier pour centrales solaires thermiques
WO1998038457A1 (fr) Centrale solaire, en particulier centrale solaire a canaux paraboliques
WO2012028493A2 (fr) Évaporateur continu solaire thermique
DE2850285A1 (de) Kollektoreinheit
DE102017210008A1 (de) Solarkraftwerk sowie Verfahren zum Betrieb eines Solarkraftwerks
DE102011004276A1 (de) Durchlaufverdampfer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN IL MX US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): CN IL MX US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase