WO2011138213A2 - Générateur de vapeur héliothermique à circulation forcée comportant des tubes à paroi interne nervurée - Google Patents

Générateur de vapeur héliothermique à circulation forcée comportant des tubes à paroi interne nervurée Download PDF

Info

Publication number
WO2011138213A2
WO2011138213A2 PCT/EP2011/056703 EP2011056703W WO2011138213A2 WO 2011138213 A2 WO2011138213 A2 WO 2011138213A2 EP 2011056703 W EP2011056703 W EP 2011056703W WO 2011138213 A2 WO2011138213 A2 WO 2011138213A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar thermal
steam generator
transfer medium
heat transfer
heat exchanger
Prior art date
Application number
PCT/EP2011/056703
Other languages
German (de)
English (en)
Other versions
WO2011138213A3 (fr
Inventor
Jan BRÜCKNER
Joachim Franke
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2011138213A2 publication Critical patent/WO2011138213A2/fr
Publication of WO2011138213A3 publication Critical patent/WO2011138213A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • F03G6/067Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/06Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being molten; Use of molten metal, e.g. zinc, as heat transfer medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/16Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/16Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
    • F22B1/167Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour using an organic fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/062Construction of tube walls involving vertically-disposed water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/101Tubes having fins or ribs
    • F22B37/103Internally ribbed tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the invention relates to a solar thermal steam generator and a solar thermal power plant.
  • the heat transfer medium is heated in the parabolic trough collectors.
  • the hot heat transfer medium releases its energy in a downstream heat exchanger (steam generator) to the feed water coming from the condenser.
  • the generated steam is fed to a steam turbine.
  • Such steam generators can be designed as Zwang bornauerferzeu ⁇ ger with vertical or horizontal channel for the heat transfer medium.
  • the object of the invention is to further develop the solar thermal steam generator referred to and the corresponding solar thermal power plant ⁇ , so that the segregation of the two-phase flow is avoided in the evaporator tubes.
  • a solar thermal steam generator comprising a container having an inlet and an outlet for conducting a heat transfer medium, soft ter comprising heat exchanger tubes arranged in the container, through which a working medium can be guided and which are formed so that heat from the heat transfer medium to the Häme ⁇ medium is transferable, wherein the heat exchanger tubes have at least partially on their inner side ribs.
  • the ribs form a thread.
  • This embodiment of the internal ribbing of the tubes imposes a twist on a two-phase flow. Due to the centrifugal forces thereof resultie ⁇ Governing the phase is pressed against the pipe wall, while the steam is preferably located in the core flow with the higher density (water).
  • the heat exchanger tubes are arranged between an inlet header and an outlet header.
  • the ribs are arranged in particular in a region of incipient evaporation, since the problem of segregation above all arises here.
  • the heat exchanger tubes are arranged in a flow channel for the heat transfer medium.
  • Other ⁇ if the heat transfer medium would flow mainly along the inner wall of the container and not through the plantehielerrohr spashadow due to the lower flow resistance.
  • the cakeshielme medium is a thermal oil.
  • thermal oil over, for example, water is the much higher boiling point. So a temperature of over 300 ° C can be achieved, without that problems with steam conditions and elevated pressures play a role.
  • the heat transfer medium is a molten salt.
  • heat can be transported at temperatures significantly above 100 ° C, without the tube system being under pressure, as would be the case with steam.
  • the solar thermal steam generator is used or executed as a once-through steam generator.
  • continuous steam generators are not subject to any pressure limitation, so that live steam pressures well above the critical pressure of water are possible. This high live steam pressure promotes a high thermodynamic efficiency of a power plant.
  • a solar thermal power plant ⁇ plant comprises an inventive solar thermal steam generator.
  • the solar thermal power plant includes ⁇ is parabolic.
  • Parabolic trough technology is currently the most cost-effective variant for solar collector surfaces.
  • FIG. 1 shows a solar thermal power plant
  • Figure 2 is a solar thermal steam generator
  • FIG. 3 shows a heat exchanger tube with internal ribbing.
  • the solar thermal power plant 1 comprises a solar field 2, in which the solar radiation is concentrated and converted into heat energy.
  • the solar panel 2 can in ⁇ example parabolic trough collectors or Fresnel collectors exhibit.
  • Concentrated solar radiation is delivered to a heat transfer medium, such as thermal oil, which has a much higher boiling point than water, so that temperatures of 300-400 ° C can be achieved.
  • a heat transfer medium such as thermal oil, which has a much higher boiling point than water, so that temperatures of 300-400 ° C can be achieved.
  • the heat transfer medium is transported by means of a thermal oil pump 4 to the solar thermal steam generator 5, in which a working fluid, such as water, heated, evaporated and the steam generated is overheated, where ⁇ at the heat transfer medium cools again.
  • the cooled heat transfer medium is pumped back into the solar field 2, so that there is a closed heat transfer medium circuit 6 he ⁇ .
  • the superheated steam is introduced in the so-called conventional part of the solar thermal power plant 1 via a Frischdampflei ⁇ device 7 in a steam turbine 8 as a working fluid.
  • the steam turbine 8 drives a generator 9.
  • the working medium is expanded and then liquefied in a condenser 10.
  • a feedwater pump 11 pumps the liquefied working medium back to the solar thermal steam generator 5, whereby the circuit 12 of the working medium is closed.
  • FIG. 2 shows a solar-thermal steam generator 5 with an inlet 13 for the hot heat transfer medium at the upper end of a pressure-tight container 15 and an outlet 14 for the cooled heat-transfer medium at the lower end of the container 15.
  • Feed water 16 is supplied to the solar thermal steam generator 5 at its lower end and distributed via an inlet header 17 to heat exchanger tubes 18, which are arranged in the container 15 ⁇ .
  • the heat exchanger tubes 18 are formed so that heat from the heat transfer medium can be transferred to the working medium. So that the hot heat transfer medium due to the lower flow resistance is not past the entirety of the heat exchanger tubes 18 and mainly along the inner wall of the container 15 but through the heat exchanger pipe interspaces flows, the heat transfer medium m is guided in a flow channel 25 through the container 15 of the solar thermal heat recovery steam generator 5.
  • the flow channel 25 Erwei ⁇ tert of him at its upper end from the inlet 13 and is open at the bottom.
  • the container 15 is filled in operation within and au ⁇ outside the flow channel 25 with the heat exchanger medium.
  • FIG 3 shows a heat exchanger tube 18 with internal ribbing 21 in section during operation in the incipient evaporation.
  • the internal ribbing 21 of the steam generator tube 18 imprints the water in the area of the two-phase flow as well as a swirl 23. Due to the centrifugal forces resulting therefrom, the higher density phase, ie the water, is forced against the tube wall 24, while the vapor is mainly in the flow core 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

L'invention concerne un générateur de vapeur héliothermique (5) comportant une cuve (15) dotée d'une entrée (13) et d'une sortie (14) pour le passage d'un agent caloporteur, des tubes d'échange thermique (18) disposés dans la cuve (15), ces tubes étant traversés par un agent de travail et conçus pour le transfert de chaleur de l'agent caloporteur à l'agent de travail, lesdits tubes d'échange thermique (18) présentant au moins en partie des nervures (21) sur leur paroi interne.
PCT/EP2011/056703 2010-05-06 2011-04-28 Générateur de vapeur héliothermique à circulation forcée comportant des tubes à paroi interne nervurée WO2011138213A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010028681.8 2010-05-06
DE201010028681 DE102010028681A1 (de) 2010-05-06 2010-05-06 Solarthermischer Zwangdurchlauf-Dampferzeuger mit innenberippten Rohren

Publications (2)

Publication Number Publication Date
WO2011138213A2 true WO2011138213A2 (fr) 2011-11-10
WO2011138213A3 WO2011138213A3 (fr) 2013-11-21

Family

ID=44626325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/056703 WO2011138213A2 (fr) 2010-05-06 2011-04-28 Générateur de vapeur héliothermique à circulation forcée comportant des tubes à paroi interne nervurée

Country Status (2)

Country Link
DE (1) DE102010028681A1 (fr)
WO (1) WO2011138213A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884004A (zh) * 2012-12-19 2014-06-25 江苏飞亚化学工业有限责任公司 一种用于热量回收的蒸汽发生器
US11739931B2 (en) 2018-10-01 2023-08-29 Header-coil Company A/S Heat exchanger, such as for a solar power plant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105841522A (zh) * 2016-04-05 2016-08-10 中国科学院上海高等研究院 一种智能控制换热流速的熔盐换热器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6302194B1 (en) * 1991-03-13 2001-10-16 Siemens Aktiengesellschaft Pipe with ribs on its inner surface forming a multiple thread and steam generator for using the pipe
DE4427859A1 (de) * 1994-08-05 1995-10-26 Siemens Ag Rohr mit auf seiner Innenseite ein mehrgängiges Gewinde bildenden Rippen sowie Dampferzeuger zu seiner Verwendung
PT2161525T (pt) * 2008-09-08 2016-07-26 Balcke-Dürr GmbH Permutador de calor de construção modular
US20110083619A1 (en) * 2009-10-08 2011-04-14 Master Bashir I Dual enhanced tube for vapor generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884004A (zh) * 2012-12-19 2014-06-25 江苏飞亚化学工业有限责任公司 一种用于热量回收的蒸汽发生器
US11739931B2 (en) 2018-10-01 2023-08-29 Header-coil Company A/S Heat exchanger, such as for a solar power plant

Also Published As

Publication number Publication date
WO2011138213A3 (fr) 2013-11-21
DE102010028681A1 (de) 2011-11-10

Similar Documents

Publication Publication Date Title
DE2430208C3 (de) Atomkraftanlage mit Dampferzeuger und Zwischenüberhitzer für teilentspannten Dampf
WO2012045650A2 (fr) Générateur de vapeur continu à surchauffeur intermédiaire intégré
DE4126037A1 (de) Gas- und dampfturbinenkraftwerk mit einem solar beheizten dampferzeuger
WO2011138215A2 (fr) Partie solaire d'une centrale héliothermique et centrale héliothermique présentant des surfaces de collecteurs solaires pour agent caloporteur et agent de travail
EP2278220B1 (fr) Echangeur thermique destiné à la production de vapeur pour une centrale thermique solaire
EP2399071B1 (fr) Dégazeur d'eau d'alimentation d'une centrale héliothermique
WO2011104325A2 (fr) Dispositif et procédé de production de vapeur d'eau surchauffée par l'énergie solaire selon le concept de circulation forcée et utilisation de cette vapeur d'eau surchauffée
WO2011138213A2 (fr) Générateur de vapeur héliothermique à circulation forcée comportant des tubes à paroi interne nervurée
DE4126036A1 (de) Gas- und dampfturbinenkraftwerk mit einem solar beheizten dampferzeuger
EP2324287B1 (fr) Générateur de vapeur en continu
DE1426698B2 (de) Vorrichtung zum anfahren eines zwangsdurchlaufdampferzeugers
WO2015003898A1 (fr) Système de préchauffage et procédé utilisant un tel système de préchauffage
DE102010040208B4 (de) Solarthermische Durchlaufverdampfer-Heizfläche mit lokaler Querschnittsverengung an ihrem Eintritt
WO2011091885A2 (fr) Suppression d'instabilités statiques et dynamiques dans des générateurs de vapeur à circulation forcée de centrales thermiques solaires par élargissement des tubes chauffants
WO2012110332A1 (fr) Ligne de collecteurs solaires pour un générateur de vapeur continu solaire
DE1539728B1 (de) Schiffs-Atomkernreaktor zur Dampferzeugung und -ueberhitzung und Verfahren zum Betreiben des Kernreaktors
WO2011091882A2 (fr) Suppression d'instabilités dynamiques dans des générateurs de vapeur à circulation forcée de centrales thermiques solaires par l'utilisation de lignes de compensation de pression
DE102013204396A1 (de) Kondensatvorwärmer für einen Abhitzedampferzeuger
DE102010040200A1 (de) Solarthermischer Absorber zur Direktverdampfung, insbesondere ein einem Solarturm-Kraftwerk
WO2012028517A2 (fr) Évaporateur continu solaire thermique
WO2011091883A2 (fr) Suppression d'instabilités statiques dans des générateurs de vapeur à circulation forcée par circuit combiné d'écoulements dans le même sens et en sens inverse
WO2012123254A1 (fr) Échangeur de chaleur
WO2016116509A1 (fr) Générateur de vapeur à récupération de chaleur
WO2012156350A2 (fr) Générateur de vapeur notamment destiné à une centrale thermique solaire
DE102010040199A1 (de) Solarthermischer Druchlaufverdampfer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11719217

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 11719217

Country of ref document: EP

Kind code of ref document: A2