WO2012028027A1 - 智能对箱系统及设置有该智能对箱系统的集装箱正面吊 - Google Patents

智能对箱系统及设置有该智能对箱系统的集装箱正面吊 Download PDF

Info

Publication number
WO2012028027A1
WO2012028027A1 PCT/CN2011/076594 CN2011076594W WO2012028027A1 WO 2012028027 A1 WO2012028027 A1 WO 2012028027A1 CN 2011076594 W CN2011076594 W CN 2011076594W WO 2012028027 A1 WO2012028027 A1 WO 2012028027A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
spreader
container
host controller
space state
Prior art date
Application number
PCT/CN2011/076594
Other languages
English (en)
French (fr)
Inventor
刘志刚
周嵩云
罗建中
Original Assignee
湖南三一智能控制设备有限公司
三一集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 三一集团有限公司 filed Critical 湖南三一智能控制设备有限公司
Publication of WO2012028027A1 publication Critical patent/WO2012028027A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/065Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks non-masted
    • B66F9/0655Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks non-masted with a telescopic boom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/0755Position control; Position detectors

Definitions

  • the present invention relates to a container front hoist, and more particularly to a smart pair box system for a container front hoist and a container provided with the smart pair box system Front hanging.
  • BACKGROUND OF THE INVENTION During the operation of a container in front of a hanging box, the operator of the equipment must control the pitching and telescopic movement of the front boom of the container by operating the operating handle of the front hanging cab, as well as the rotation, side shifting, and expansion of the spreader. Action, to carry out the work of the front hanging box, stacking, etc.
  • the operation of the existing container front hoist generally adopts the feedforward open loop control mode.
  • FIG. 1 is a block diagram showing the control architecture of the container front hoisting box system in the prior art, as can be seen from FIG.
  • the operator sends a control signal to the host controller 3' by manipulating the control handle, and the host controller 3' controls the operation of the boom motion control valve 12 and the spreader motion control valve 23 based on the received control signal, thereby
  • the boom, the telescopic, and the spreader 2 of the front gantry are controlled by rotation, side shift, and telescopic movement to perform the work on the box.
  • This open-loop control architecture leads to a high degree of work efficiency in the operation of the front hoist, which is largely dependent on the proficiency of the operator's operational control, especially in the case of front hoisting and stacking, only four of the spreaders
  • the locks are aligned with the four lock holes of the container at the same time, or the edges of the suspended containers are aligned with the containers at the placed position, so that the boxes can be unpacked, unlocked or locked, and lifted.
  • This delicate work often requires very precise control of the operator of the device.
  • the operator is labor intensive during long hours of operation, especially when operating the box, which is time consuming and labor intensive.
  • FIG. 2 is a schematic diagram showing a comparison of the trajectory of the sling and the optimal trajectory of the sling system when the hand-operated container is hoisted in the prior art, as shown in FIG. 2, in the normal operation, the skilled operation
  • the hand often chooses to take the joint action of the boom, telescopic and spreader, that is, the boom is extended while raising the boom, so that the trajectory of the spreader is as shown by the trajectory "A" in Fig. 2.
  • the technical problem to be solved by the present invention is to provide an intelligent pair box system and a container front hanging provided with the smart box system, which can accurately and efficiently carry the box in the front hanging operation of the container .
  • a smart box system for a front hanging of a container comprising: a telescopic boom that is telescopic; a spreader disposed at a head of the boom, and The armrest can be moved, rotated, and telescoped along the head of the boom; the main controller controls the movement of the boom and the spreader, and the smart box system of the front hanging of the container further includes: a boom space state sensor, detecting the space of the boom State, and output the boom space state signal to the host controller; the spreader space state sensor detects the space state of the spreader and outputs the spreader space state signal to the host controller; the graphic processing sensor is disposed at the head of the boom Detecting the shape of the container and outputting the container shape signal; the distance measuring sensor is disposed at the head of the boom, detecting the position of the container, and outputting the container position signal; the processing unit receiving the container shape signal and the container position signal, and communicating with the host controller Connect, receive
  • the processing unit is an industrial computer or an embedded system.
  • the communication connection between the processing unit and the host controller is a CAN bus communication connection.
  • the boom space state sensor includes one or more length and pitch angle sensors mounted at the tail of the boom to detect the amount of expansion and the pitch of the boom.
  • the spreader space state sensor comprises: an angle sensor installed on the turntable of the spreader to detect the rotation angle of the spreader; and a displacement sensor installed on the side shifting oil rainbow of the spreader to detect the lateral shift amount of the spreader .
  • the graphics processing sensor is one or more video monitors mounted on the head of the boom.
  • the ranging sensor is one or more laser scanning range finder mounted on the head of the boom.
  • a boom motion control valve is included to control the pitch and telescopic motion of the boom.
  • the boom motion control valve includes a lift control proportional valve, a down control proportional valve, and a telescopic control proportional valve, respectively controlling the lifting, lowering, and telescopic of the boom.
  • a spreader action control valve is included to control the side shift, rotation and telescopic movement of the spreader.
  • the spreader action control valve includes a side shift control valve, a rotary control valve, and a telescopic control valve.
  • a container front hoist which may be provided with any of the above-described smart box systems.
  • the present invention has the following beneficial effects: Due to the container front suspension of the present invention, the host controller receives the boom space status signal and the spreader space status signal from the boom space state sensor and the spreader space state sensor, and The signals are output to the processing unit; the processing unit simultaneously receives the container shape signal and the container position signal, thereby calculating the relative position between the lock on the spreader and the container lock hole according to the above various signals, and calculating the hanging
  • the optimal motion path trajectory is output to the host controller, so the host controller controls the movement of the boom and the spreader according to the motion path trajectory, so that the spreader moves according to the optimal motion trajectory, achieving accurate and efficient
  • the pair of boxes reduces the dependence of the box work on the operator and reduces the labor intensity of the operator.
  • FIG. 1 is a block diagram showing a control structure of a container system for a front side of a container in the prior art
  • FIG. 2 is a view showing a movement of a spreader when operating a hand-operated container front-mounted container system in the prior art
  • FIG. 3 is a block diagram showing the architecture of a smart box system for a container front hoist according to a first embodiment of the present invention
  • FIG. 4 is a view showing a first embodiment of the present invention. The intelligent box system for the front hanging of the container, the whole container front hanging is shown together; Fig.
  • FIG. 5 is a flow chart showing the control of the smart box system of the container front hoist according to the first embodiment of the present invention in operation.
  • BEST MODE FOR CARRYING OUT THE INVENTION the present invention will be described in detail with reference to the accompanying drawings in conjunction with the embodiments.
  • the host controller 3 is disposed in the cab of the front side of the container, and receives the boom space output by the arm space state sensor.
  • the container shape signal detected by the graphic processing sensor and the container position signal detected by the ranging sensor disposed at the head of the boom 1 are simultaneously connected with the host controller 3 to receive the space state signal of the boom from the host controller 3 and
  • the sling space state signal calculates the relative position between the lock head and the container lock hole on the spreader 2 according to the above various signals, thereby planning the optimal motion path trajectory of the spreader 2, and then passing through the host controller 3
  • the communication link between the outputs outputs the optimal motion path trajectory to the host controller 3.
  • the host controller 3 controls the movement of the boom 1 and the spreader 2 according to the optimal motion path trajectory, so that the spreader 2 realizes an accurate and efficient automatic pairing box along the optimal motion trajectory.
  • the processing unit 5 is an industrial computer or an embedded system, which is installed in the history of the front crane, and functions to plan the optimal movement path of the spreader 2, and then communicates with the host controller 3.
  • the connection outputs the optimum motion path trajectory to the host controller 3. More preferably, in the embodiment, the industrial control machine or the embedded system and the host controller 3 are connected by CANBUS, and the communication mode can realize high reliability transmission of data. As shown in FIG.
  • the boom space state sensor includes one or more length and pitch angle sensors 11 mounted at the tail of the boom 1 so that the smart box system can detect the amount of expansion and contraction of the boom 1 and The pitch angle is output to the host controller 3 for calculating the relative position of the spreader lock.
  • the spreader space state sensor comprises an angle sensor 21 mounted on the turntable of the spreader 2 and a displacement sensor 22 mounted on the side shifting cylinder of the spreader 2 such that the smart pair box system The rotation angle and the amount of side shift of the spreader 2 can be detected and output to the host controller 3 for calculating the relative position of the spreader lock.
  • the above-described graphics processing sensor is a video monitor 41 mounted on the head of the boom 1, so that image collection and recognition of the container can be performed in real time.
  • a laser scanning range finder 42 installed on the head of the boom 1 to detect the position of the container.
  • the laser scanning range finder 42 detects small external disturbances, thereby enabling accurate distance detection.
  • the smart box system of the present embodiment further includes a boom motion control valve 12 provided in the main body of the container crane.
  • the host controller 3 controls the operations such as pitching and telescopic of the boom 1.
  • the boom motion control valve 12 may include a lift control proportional valve, a down control proportional valve, and a telescopic control proportional valve, respectively, for controlling the lifting, lowering, and telescopic movement of the boom 1, and the boom movement
  • the number and type of control valves 12 may depend on the specific conditions of the front suspension of the container and the needs of the work.
  • the smart box system of the present embodiment further includes a spreader action control valve 23 provided on the spreader 2.
  • the main controller 3 controls the movement of the spreader 2 such as side shifting, rotation, and expansion and contraction.
  • the spreader action control valve 23 may include a side shift control valve, a rotary control valve, and a telescopic control valve, respectively, to control the side shift, rotation and telescopic of the spreader 2 relative to the boom 1, and the spreader action control valve
  • the number and type of 23 can be determined by the specific conditions of the front suspension of the container and the needs of the work.
  • the host controller 3 acquires motion control algorithms such as pitch, telescopic, and lateral shift, rotation, and telescopic of the boom 1 according to an optimal motion path trajectory algorithm from the industrial computer or the embedded system, and then according to each motion control algorithm.
  • FIG. 5 is a flow chart showing the control of the smart box system of the container front hoist according to the first embodiment of the present invention in operation.
  • the working process of the smart box system of the container front hoist according to the first embodiment of the present invention is: a) detecting the front hoist by the length and pitch angle sensor 11 when the front hoist is approaching the target container The pitch angle of the boom 1 and the telescopic length of the boom 1 are detected by the displacement sensor 22, and the angle of rotation of the spreader 1 is detected by the angle sensor 21.
  • the relative positions of the four locks of the spreader are calculated; b) the outline of the suspended container is detected by the video monitor 41, and on the basis of this, the relative position of the container is detected by the laser scanning range finder 42 Calculate the relative position of the four lock holes and the four locks of the spreader 2. c) The relative position of the four locks of the spreader 2 and the relative positions of the four lock holes of the target container determine the optimal running path of the front lift to the box.
  • the host controller 3 acquires the motion control algorithms of the pitch, telescopic and side shifting, rotation, telescopic and the like of the boom 1 and according to each The motion control algorithm controls the corresponding opening or switching state of each control valve, automatically controls the rotation of the spreader, and the switching action of different standard size lock heads, and the pitch and telescopic movement of the boom 1 to make the spreader
  • the motion track is operated according to the obtained optimal path trajectory, so as to achieve the purpose of intelligently automatically moving the box to the front.
  • the intelligent control system determines whether the positional relationship between the lock head and the lock hole has an optimal path. If it is determined that the distance between the lock head and the lock hole cannot achieve the optimal path of the smart box, the system prompts the operator that the box cannot be automatically The operation hand returns to the manual control mode, and the operation of the boom 1 and the spreader 2 is manually operated. After the adjustment, the system detects the pitch angle of the boom 1 again, the telescopic length of the boom 1, the amount of lateral movement of the spreader 2, and the amount of rotation.
  • the present invention also provides a container front hoist that is provided with the smart box system described above. Thereby, an accurate and efficient automatic smart box can be realized, which reduces the dependence of the box work on the operator and reduces the labor intensity of the operator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)
  • Load-Engaging Elements For Cranes (AREA)

Description

智能对箱系统及设置有该智能对箱系统的集装箱正面吊 技术领域 本发明涉及集装箱正面吊, 更具体地, 涉及一种集装箱正面吊的智能对箱 系统及设置有该智能对箱系统的集装箱正面吊。 背景技术 集装箱正面吊在吊箱作业过程中, 均须由设备的操作员通过操控正面吊驾 驶室内的操作手柄控制集装箱正面吊臂架的俯仰、伸缩动作, 以及吊具的旋转、 侧移、 伸缩动作, 来进行正面吊的对箱、 堆垛等工作。 现有的集装箱正面吊的 这种操作一般均釆用前馈开环控制方式, 图 1示出了现有技术中集装箱正面吊 的对箱系统的控制架构框图示意图, 从图 1中可以看出, 操作手通过操纵控制 手柄向主机控制器 3'发出控制信号,主机控制器 3 '基于接收到的控制信号控制 臂架动作控制阀 12,以及吊具动作控制阀 23,的动作,从而对集装箱正面吊的臂 架 1,的俯仰、 伸缩和吊具 2,的旋转、 侧移、 伸缩动作进行控制, 进行对箱作业。 这种开环控制架构方式, 导致正面吊对箱的工作效率很大程度上依赖于操 作手的操作控制的熟练程度, 特别是在正面吊的对箱和堆垛过程中, 只有吊具 的四个锁头同时对准集装箱的四个锁孔, 或者所吊集装箱的边缘与放置位置的 集装箱对准后, 才能进行放箱、 解锁或闭锁、 起吊动作。 这种精细的作业往往 需要设备的操作手很精确的控制。 操作手在长时间操作时劳动强度大, 尤其是 在对箱操作时, 往往费时费力。 此外,只有操作手有很高的操作熟练程度时才能有较高的作业效率, 而且, 即便操作受的熟练程度很高, 也较难达到使吊具沿最佳的轨迹运动而达到最佳 的操作效率。 具体地, 图 2示出了现有技术中操作手操作集装箱正面吊的对箱 系统时吊具运动轨迹与最优运动轨迹对比示意图, 如图 2所示, 在正常操作情 况下, 熟练的操作手往往会选择釆取臂架俯仰、 伸缩和吊具的联合动作进行操 作, 即臂架伸出的同时抬高臂架, 这样吊具的运动轨迹为如图 2 中轨迹 "A"所 示的一条类抛物线, 而很难达到图 2中轨迹 "B"所示的最佳运行路径。 因此, 如何提高对箱精确度和效率, 减少对箱工作对操作手的依赖、 降低 操作手的劳动强度成为集装箱正面吊作业操作中急需解决的问题。 发明内容 本发明所要解决的技术问题是提供一种智能对箱系统及设置有该智能对 箱系统的集装箱正面吊, 该智能对箱系统能在集装箱正面吊作业过程中实现精 确且高效地对箱。 为解决上述技术问题, 根据本发明的一个方面, 提供了一种集装箱正面吊 的智能对箱系统, 包括: 可伸缩的臂架, 其可伸缩; 吊具, 设置在臂架的头部, 并可沿臂架的头部侧移、 旋转和伸缩; 主机控制器, 控制臂架和吊具的动作, 该集装箱正面吊的智能对箱系统还包括: 臂架空间状态传感器, 检测臂架的空 间状态, 并输出臂架空间状态信号至主机控制器; 吊具空间状态传感器, 检测 吊具的空间状态, 并输出吊具空间状态信号至主机控制器; 图形处理传感器, 设置在臂架的头部, 检测集装箱外形, 并输出集装箱外形信号; 测距传感器, 设置在臂架头部, 检测集装箱位置, 并输出集装箱位置信号; 处理单元, 接收 集装箱外形信号和集装箱位置信号, 并与主机控制器通讯连接, 接收来自主机 控制器的臂架空间状态信号和吊具空间状态信号, 根据上述各种信号计算吊具 上的锁头和集装箱锁孔之间的相对位置,计算吊具的最佳运动路径轨迹;其中, 主机控制器通过与处理单元的通讯连接获取计算得到的最佳运动路径轨迹, 并 根据最佳运动路径轨迹控制臂架和吊具的动作。 进一步地, 处理单元为工控机或嵌入式系统。 进一步地, 处理单元与主机控制器的通讯连接为 CAN总线通讯连接。 进一步地, 臂架空间状态传感器包括一个或多个长度和俯仰角度传感器, 安装在臂架尾部, 检测臂架的伸缩量和俯仰角度。 进一步地, 吊具空间状态传感器包括: 角度传感器, 安装在吊具的转盘上, 检测吊具的旋转角度; 以及位移传感器, 安装在吊具的侧移油虹上, 检测吊具 的侧移量。 进一步地, 图形处理传感器为一个或多个视频监视器,安装在臂架的头部。 进一步地,测距传感器为一个或多个激光扫描测距仪,安装在臂架的头部。 进一步地, 还包括臂架动作控制阀, 控制臂架的俯仰及伸缩动作。 进一步地, 臂架动作控制阀包括起升控制比例阀、 俯下控制比例阀和伸缩 控制比例阀, 分别控制臂架的起升、 俯下和伸缩。 进一步地, 还包括吊具动作控制阀, 控制吊具的侧移、 旋转及伸缩动作。 进一步地, 吊具动作控制阀包括侧移控制阀、 旋转控制阀和伸缩控制阀。 根据本发明的另一个方面, 还提供了一种集装箱正面吊, 其可以设置有上 述任何一种智能对箱系统。 本发明具有以下有益效果: 由于本发明的集装箱正面吊中, 主机控制器接收来自臂架空间状态传感器 和吊具空间状态传感器的臂架空间状态信号和吊具空间状态信号, 并通过通讯 连接将这些信号输出至处理单元; 该处理单元同时接收所述集装箱外形信号和 所述集装箱位置信号, 从而根据上述各种信号计算出吊具上的锁头和集装箱锁 孔之间的相对位置, 计算吊具的最佳运动路径轨迹, 将该轨迹输出至主机控制 器中, 因此主机控制器根据该运动路径轨迹控制臂架和吊具的动作, 使吊具按 照最佳运动轨迹运动, 达到精确而高效的对箱, 减少了对箱工作对操作手的依 赖, 降低了操作手的劳动强度。 附图说明 附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发明的示 意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1示出了现有技术中集装箱正面吊的对箱系统的控制架构框图示意图; 图 2示出了现有技术中操作手操作集装箱正面吊的对箱系统时吊具运动轨 迹与最佳运动轨迹对比示意图; 图 3示出了根据本发明的第一实施例的集装箱正面吊的智能对箱系统的架 构框图示意图; 图 4示出了根据本发明的第一实施例的集装箱正面吊的智能对箱系统, 图 中一并示出了整个集装箱正面吊; 图 5示出了根据本发明的第一实施例的集装箱正面吊的智能对箱系统在工 作中的控制流程图。 具体实施方式 下面将参考附图并结合实施例, 来详细说明本发明。 如图 3所示,根据本发明的第一实施例的集装箱正面吊的智能对箱系统中, 主机控制器 3设置在集装箱正面吊的驾驶室中, 接收臂架空间状态传感器输出 的臂架空间状态信号和吊具空间状态传感器输出的吊具空间状态信号, 并控制 臂架 1和吊具 2的动作; 处理单元 5设置在集装箱正面吊的驾驶室中, 接收设 置在臂架 1头部的图形处理传感器检测到的集装箱外形信号和设置在臂架 1头 部的测距传感器检测到的集装箱位置信号, 同时与主机控制器 3通讯连接, 接 收来自主机控制器 3的臂架空间状态信号和吊具空间状态信号, 根据上述各种 信号计算吊具 2上的锁头和集装箱锁孔之间的相对位置, 从而规划出吊具 2的 最佳运动路径轨迹, 进而通过与主机控制器 3之间的通讯连接将该最佳运动路 径轨迹输出给主机控制器 3。 主机控制器 3根据该最佳运动路径轨迹控制臂架 1和吊具 2的动作, 而使吊具 2沿最佳运动轨迹实现精确而高效的自动对箱, 参见图 2 , 可以看到该最佳运动轨迹 B。 优选地,该处理单元 5为工控机或嵌入式系统,安装在正面吊的驾马史室中 , 起到规划吊具 2的最佳运动路径轨迹, 进而通过与主机控制器 3之间的通讯连 接将该最佳运动路径轨迹输出给主机控制器 3的作用。 更优选地, 在本实施例 中工控机或嵌入式系统与主机控制器 3之间为 CANBUS连接, 该通讯方式能 实现数据的高可靠性传递。 如图 4所示, 优选地, 臂架空间状态传感器包括一个或多个长度和俯仰角 度传感器 11 , 其安装在臂架 1尾部, 从而该智能对箱系统能够检测该臂架 1的 伸缩量和俯仰角度并输出至主机控制器 3 , 用于计算吊具锁头的相对位置。 优 选地, 吊具空间状态传感器包括角度传感器 21和位移传感器 22 , 其中角度传 感器 21安装在吊具 2的转盘上, 位移传感器 22安装在吊具 2的侧移油缸上, 从而该智能对箱系统能够检测吊具 2的旋转角度和侧移量, 并输出至主机控制 器 3 , 用于计算吊具锁头的相对位置。 从图 4中还可以看出, 优选地, 上述图形处理传感器为视频监视器 41 , 安 装在臂架 1的头部, 从而能够实时对集装箱进行图像釆集和识别。 优选地, 上 述测距传感器为激光扫描测距仪 42 , 安装在臂架 1的头部, 对集装箱位置进行 检测, 该激光扫描测距仪 42 检测时所受外界干扰很小, 从而能够实现精确的 距离检测。 另外, 关于主机控制器 3对臂架 1的动作的控制, 如图 4中所示, 优选地, 本实施例的智能对箱系统还包括设置在集装箱正面吊主机中的臂架动作控制 阀 12 , 实现主机控制器 3对臂架 1的俯仰及伸缩等动作的控制。 更优选地, 该 臂架动作控制阀 12 可以包括起升控制比例阀、 俯下控制比例阀和伸缩控制比 例阀, 分别实现控制所述臂架 1的起升、 俯下和伸缩, 臂架动作控制阀 12的 数量和种类可依集装箱正面吊的具体情况和工作需要而定。 同样地, 关于主机控制器 3对吊具 2的动作的控制, 如图 4中所示, 优选 地, 本实施例的智能对箱系统还包括设置在吊具 2上的吊具动作控制阀 23 , 实 现主机控制器 3对吊具 2的侧移、 旋转及伸缩等动作的控制。 更优选地, 该吊 具动作控制阀 23 可以包括侧移控制阀、 旋转控制阀和伸缩控制阀, 分别实现 控制吊具 2相对与臂架 1的侧移、 旋转和伸缩, 吊具动作控制阀 23的数量和 种类可依集装箱正面吊的具体情况和工作需要而定。 主机控制器 3根据来自工控机或嵌入式系统的最佳运动路径轨迹算法, 获 取臂架 1的俯仰、 伸缩和吊具 2的侧移、 旋转和伸缩等运动控制算法, 进而根 据各运动控制算法控制相应的控制阀 (如比例阀或电磁阀 ) 的动作或开度, 实 现吊具 2按最佳路径智能自动对箱的目的。 图 5示出了根据本发明的第一实施例的集装箱正面吊的智能对箱系统在工 作中的控制流程图。 从图 5中可以看出, 根据本发明的第一实施例的集装箱正 面吊的智能对箱系统的工作过程为: a ) 在正面吊靠近目标集装箱时, 通过长度和俯仰角度传感器 11检测正面 吊的臂架 1的俯仰角度、 臂架 1的伸缩长度, 通过位移传感器 22检测出吊具 2 的侧移量, 通过角度传感器 21检测出吊具 1的旋转角度。 综合以上数据计算 出吊具的四个锁头的相对位置; b )通过视频监视器 41检测所吊集装箱的外形轮廓并在此基础上进而通过 激光扫描测距仪 42 检测集装箱的相对位置, 进而计算出其四个锁孔和吊具 2 的四个锁头的相对位置。 c ) 居吊具 2 的四个锁头的相对位置和目标集装箱的四个锁孔的相对位 置, 确定正面吊对箱的最佳运行路径。 d )以 c)中计算的正面吊对箱最佳路径为依据, 由主机控制器 3获取臂架 1 的俯仰、 伸缩和吊具 2的侧移、 旋转、 伸缩等运动控制算法, 并根据各运动控 制算法控制相应的各控制阀的动作开度或开关状态, 自动控制吊具的旋转等动 作和不同标准尺寸锁头距的转换动作, 以及臂架 1的俯仰和伸缩动作, 使吊具 的运动轨迹按所得的最佳路径轨迹运行, 从而达到正面吊智能自动对箱的目 的。 其中, 在计算出吊具 2的四个锁头的相对位置和目标集装箱的四个锁孔的 相对位置之后, 若不需要智能对箱, 则釆用手动控制方式进行对箱, 若需智能 对箱, 则智能控制系统判断锁头与锁孔的位置关系是否存在最佳路径, 若判断 出锁头与锁孔的距离无法实现智能对箱的最佳路径, 则系统提示操作手无法自 动对箱, 操作手返回手动控制方式, 手动操作臂架 1及吊具 2的动作, 调整之 后, 系统再次检测臂架 1的俯仰角度、 臂架 1的伸缩长度, 吊具 2的侧移量、 旋转量等, 并进行锁头和锁孔之间距离的计算, 并重复此判断过程直至判断存 在最佳对箱路径。 此外, 本使用新型还提供了一种集装箱正面吊, 其设置有上文所述的智能 对箱系统。 从而能实现精确而高效的自动智能对箱, 减少了对箱工作对操作手 的依赖, 降低了操作手的劳动强度。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领 i或的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之 内。

Claims

权 利 要 求 书
一种集装箱正面吊的智能对箱系统, 包括:
可伸缩的臂架 ( 1 );
吊具 (2), 设置在所述臂架 U)的头部, 并可沿所述臂架 U)的 头部侧移. 旋转和伸缩;
主机控制器 (3), 控制所述臂架 U)和所述吊具 (2) 的动作, 其特征在于, 所述集装箱正面吊的智能对箱系统还包括: 臂架空间状态传感器, 检测所述臂架 U)的空间状态, 并输出臂架 空间状态信号至所述主机控制器 (3);
吊具空间状态传感器, 检测所述吊具(2) 的空间状态, 并输出吊具 空间状态信号至所述主机控制器 (3);
图形处理传感器, 设置在所述臂架 U)的头部, 检测所述集装箱外 形, 并输出集装箱外形信号;
测距传感器, 设置在所述臂架 U)头部, 检测所述集装箱位置, 并 输出集装箱位置信号;
处理单元 (5), 接收所述集装箱外形信号和所述集装箱位置信号, 并与所述主机控制器 ( 3 ) 通讯连接, 接收来自所述主机控制器 ( 3 ) 的 所述臂架空间状态信号和所述吊具空间状态信号, 根据上述各种信号计 算所述吊具(2)上的锁头和所述集装箱锁孔之间的相对位置, 计算所述 吊具 (2) 的最佳运动路径轨迹;
其中, 所述主机控制器( 3 )通过与所述处理单元的通讯连接获取计 算得到的所述最佳运动路径轨迹, 并根据所述最佳运动路径轨迹控制所 述臂架 ( 1 ) 和所述吊具 (2) 的动作。
根据权利要求 i所述的智能对箱系统, 其特征在于, 所述处理单元 (5) 为工控机或嵌入式系统。
根据权利要求 2所述的智能对箱系统, 其特征在于, 所述处理单元 (5) 与所述主机控制器 (3) 的通讯连接为 CAN总线通讯连接。
P45221 根据权利要求 l所述的智能对箱系统, 其特征在于, 所述臂架空间状态 传感器包括一个或多个长度和俯仰角度传感器( 11 ),安装在所述臂架( 1 ) 尾部, 检测所述臂架 )的伸缩量和俯仰角度。
根据权利要求 1所述的智能对箱系统, 其特征在于, 所述吊具空间状态 传感器包括:
角度传感器 (2D, 安装在所述吊具 (2) 的转盘上, 检测所述吊具 (2) 的旋转角度; 以及
位移传感器 (22), 安装在所述吊具 (2) 的侧移油缸上, 检测所述 吊具 (2) 的侧移量。
根据权利要求 1所述的智能对箱系统, 其特征在于, 所述图形处理传感 器为一个或多个视频监视器 (4Π, 安装在所述臂架 U)的头部。 根据权利要求 1所述的智能对箱系统, 其特征在于, 所述测距传感器为 一个或多个激光扫描测距仪 (42), 安装在所述臂架 (1) 的头部。 根据权利要求 1所述的智能对箱系统, 其特征在于, 还包括臂架动作控 制阀 (12), 控制所述臂架 U)的俯仰及伸缩动作。
根据权利要求 8所述的智能对箱系统, 其特征在于, 所述臂架动作控制 阀 (12) 包括起升控制比例阀. 俯下控制比例阀和伸缩控制比例阀, 分 别控制所述臂架 (1) 的起升, 俯下和伸缩。
根据权利要求 i所述的智能对箱系统, 其特征在于, 还包括吊具动作控 制阀 (23), 控制所述吊具 (2) 的侧移, 旋转及伸缩动作。
根据权利要求 W所述的智能对箱系统, 其特征在于, 所述吊具动作控制 阀 (23) 包括侧移控制阀. 旋转控制阀和伸缩控制阀。
一种集装箱正面吊, 其特征在于, 设置有权利要求 i-U中任一项所述的 智能对箱系统。
8 P45221
PCT/CN2011/076594 2010-09-01 2011-06-29 智能对箱系统及设置有该智能对箱系统的集装箱正面吊 WO2012028027A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010205124864U CN201793325U (zh) 2010-09-01 2010-09-01 智能对箱系统及设置有该智能对箱系统的集装箱正面吊
CN201020512486.4 2010-09-01

Publications (1)

Publication Number Publication Date
WO2012028027A1 true WO2012028027A1 (zh) 2012-03-08

Family

ID=43848246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076594 WO2012028027A1 (zh) 2010-09-01 2011-06-29 智能对箱系统及设置有该智能对箱系统的集装箱正面吊

Country Status (2)

Country Link
CN (1) CN201793325U (zh)
WO (1) WO2012028027A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3103759A1 (en) * 2015-06-10 2016-12-14 SKS Toijala Works Oy Frame structure of mobile reach machine

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201793325U (zh) * 2010-09-01 2011-04-13 三一集团有限公司 智能对箱系统及设置有该智能对箱系统的集装箱正面吊
CN102285590B (zh) * 2011-04-21 2013-11-20 长沙科尊信息技术有限公司 基于红外结构光的集装箱吊具抓箱作业感知系统及方法
PL2984023T3 (pl) * 2013-04-12 2017-10-31 Dana Ltd Urządzenie i sposób sterowania dla blokowania kontenera
CN103407894B (zh) * 2013-08-27 2015-12-23 徐州重型机械有限公司 集装箱正面吊运起重机吊具缓冲油缸的控制系统及起重机
CN103818828B (zh) * 2014-03-05 2015-12-09 上海振华重工电气有限公司 集装箱起重机吊具对箱引导系统
CN104973521B (zh) * 2014-04-08 2016-10-19 中国农业机械化科学研究院 特形物体起吊运输挂装车及其起吊挂装方法
CN104999464B (zh) * 2014-09-10 2017-09-26 国家电网公司 换流站带电水冲洗机器人及方法
CN105905788B (zh) * 2016-06-20 2018-07-27 重庆交通大学 自适应塔吊平衡吊装装置
DE102017112661A1 (de) * 2017-06-08 2018-12-13 Konecranes Global Corporation Automatisch geführtes Portalhubgerät für Container und Verfahren zum Betrieb eines solchen Portalhubgeräts
CN107522114B (zh) * 2017-09-27 2024-06-18 湖南中铁五新重工有限公司 自动化正面吊
CN108748060B (zh) * 2018-08-16 2021-06-04 浙江海洋大学 一种定位精确的船舶码头集装箱拆卸装置
CN110407101A (zh) * 2019-07-25 2019-11-05 上海振华重工(集团)股份有限公司 一种集装箱跨运车对箱同步双液压系统及其同步方法
CN111039174B (zh) * 2019-11-15 2021-02-26 南京港龙潭集装箱有限公司 一种正面吊智能制动系统及制动方法
CN111115471B (zh) * 2020-02-15 2021-08-06 中联恒通机械有限公司 一种视觉系统、正面吊及其自动抓箱控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176485A (en) * 1988-12-06 1993-01-05 Yellow Freight System, Inc. Freight manipulator with articulated cantilever boom
EP0890543A2 (en) * 1997-07-08 1999-01-13 Sisu Terminal Systems OY Side lift intended for handling of ISO containers
DE19743871A1 (de) * 1997-10-04 1999-04-15 Noell Stahl Und Maschinenbau G Groß-Reachstacker
CN101096262A (zh) * 2006-06-28 2008-01-02 上海振华港口机械(集团)股份有限公司 集装箱起重机的集卡车对位系统和方法
CN201793325U (zh) * 2010-09-01 2011-04-13 三一集团有限公司 智能对箱系统及设置有该智能对箱系统的集装箱正面吊

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176485A (en) * 1988-12-06 1993-01-05 Yellow Freight System, Inc. Freight manipulator with articulated cantilever boom
EP0890543A2 (en) * 1997-07-08 1999-01-13 Sisu Terminal Systems OY Side lift intended for handling of ISO containers
DE19743871A1 (de) * 1997-10-04 1999-04-15 Noell Stahl Und Maschinenbau G Groß-Reachstacker
CN101096262A (zh) * 2006-06-28 2008-01-02 上海振华港口机械(集团)股份有限公司 集装箱起重机的集卡车对位系统和方法
CN201793325U (zh) * 2010-09-01 2011-04-13 三一集团有限公司 智能对箱系统及设置有该智能对箱系统的集装箱正面吊

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3103759A1 (en) * 2015-06-10 2016-12-14 SKS Toijala Works Oy Frame structure of mobile reach machine

Also Published As

Publication number Publication date
CN201793325U (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
WO2012028027A1 (zh) 智能对箱系统及设置有该智能对箱系统的集装箱正面吊
JP7394793B2 (ja) 好ましくはオフショア風力タービン設置船であるオフショア船、このような船を提供するためのクレーン、および好ましくはモノパイルを起立させるためのこのようなクレーンを使用するための方法
JPWO2019139102A1 (ja) ショベル及びショベルの管理システム
US20160201408A1 (en) Pipe loader system and method
US11932517B2 (en) Crane and device for controlling same
BR102015026423B1 (pt) Método para controlar de modo automático a operação de um conjunto de elevação de um veículo de trabalho
US20110004379A1 (en) Interference prevention control device of work machine
EP1784353A1 (en) Stopping the skew motion of a container
CN107953975B (zh) 船用机械臂止荡机构
CN101774508B (zh) 履带起重机整机稳定性的闭环式检测系统及其控制方法
WO2022143193A1 (zh) 一种塔机自动吊运方法
CN111115471B (zh) 一种视觉系统、正面吊及其自动抓箱控制方法
CN105246817A (zh) 用于集装箱锁定的装置和控制方法
CN110436327A (zh) 放射性废物桶多桶机械吊装设备
JP5766980B2 (ja) クレーン及びその制御方法
US11814269B2 (en) Counterweight system for lifting machines
CN102530725B (zh) 汽车起重机防摆控制技术
CN108383018B (zh) 一种折臂起重机配重系统的控制方法
JPH04235895A (ja) クレーンにおける長尺吊荷の鉛直地切り制御装置
CN108726381B (zh) 一种多功能抢险救援车多臂协调作业控制系统
JP7275761B2 (ja) 作業機械用吊りシステム
CN108892046A (zh) 一种起重机控制方法及控制系统
CN214422133U (zh) 一种吊钩摆角检测装置及起重机
CN108341338A (zh) 一种门座式起重机吊具的智能调心控制系统
JP2000226862A (ja) クレーン仕様の油圧ショベルに於ける自動垂直吊り装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821053

Country of ref document: EP

Kind code of ref document: A1