WO2012026397A1 - 圧電セラミックスおよびその製造方法 - Google Patents

圧電セラミックスおよびその製造方法 Download PDF

Info

Publication number
WO2012026397A1
WO2012026397A1 PCT/JP2011/068744 JP2011068744W WO2012026397A1 WO 2012026397 A1 WO2012026397 A1 WO 2012026397A1 JP 2011068744 W JP2011068744 W JP 2011068744W WO 2012026397 A1 WO2012026397 A1 WO 2012026397A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
ceramic
orientation
plane
plate
Prior art date
Application number
PCT/JP2011/068744
Other languages
English (en)
French (fr)
Inventor
鈴木 達
打越 哲郎
目 義雄
恭也 三輪
慎一郎 川田
木村 雅彦
Original Assignee
独立行政法人物質・材料研究機構
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構, 株式会社村田製作所 filed Critical 独立行政法人物質・材料研究機構
Priority to JP2012530646A priority Critical patent/JPWO2012026397A1/ja
Publication of WO2012026397A1 publication Critical patent/WO2012026397A1/ja
Priority to US13/771,895 priority patent/US20130164533A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B5/00Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping
    • B28B5/02Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping on conveyors of the endless-belt or chain type
    • B28B5/026Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping on conveyors of the endless-belt or chain type the shaped articles being of indefinite length
    • B28B5/027Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping on conveyors of the endless-belt or chain type the shaped articles being of indefinite length the moulding surfaces being of the indefinite length type, e.g. belts, and being continuously fed
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/084Shaping or machining of piezoelectric or electrostrictive bodies by moulding or extrusion
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8561Bismuth-based oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6027Slip casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a piezoelectric material, particularly a crystal-oriented piezoelectric ceramic and a manufacturing method thereof.
  • Patent Document 1 a technique described in Patent Document 1 has been proposed.
  • the technique described in Patent Document 1 is to obtain piezoelectric ceramics with high crystal orientation by slip casting or sheet molding a ceramic slurry containing plate-like ceramic particles.
  • Patent Document 2 As another technique for obtaining high crystal orientation, a technique described in Patent Document 2 has been proposed.
  • the technique described in Patent Document 2 is to obtain a piezoelectric ceramic with high crystal orientation by slip casting or sheet forming a ceramic slurry in a magnetic field.
  • the main object of the present invention is to provide a piezoelectric ceramic having excellent electrical characteristics in which all three crystal axes of the piezoelectric ceramic particles are oriented, and a method for producing the same.
  • This invention Piezoelectric ceramics containing plate-like ceramic particles, Based on the X-ray diffraction pattern in a predetermined cross section of the piezoelectric ceramic, the degree of orientation of the first axis calculated by the Lottgering method is 0.30 or more, The cross-section having the maximum degree of orientation of the first axis is taken as a reference plane, and the degree of orientation of the second axis calculated by the Lottgering method based on the X-ray diffraction pattern in the cross-section orthogonal to the reference plane is 0.20 or more And
  • the degree of orientation of the second axis is a value in a cross section in which the degree of orientation of the second axis is the maximum among the cross sections orthogonal to the reference plane. It is a piezoelectric ceramic characterized by these.
  • the piezoelectric ceramic has a cross section in which the degree of orientation of two axes among the three axes of the crystal axes of the piezoelectric ceramic particles is maximum. In addition, since the remaining one axis is also oriented, a piezoelectric ceramic in which all three crystal axes of the piezoelectric ceramic particles are oriented is obtained.
  • the plate-like ceramic particles have no shape anisotropy when viewed from a direction parallel to the c-axis.
  • the plate-like ceramic particles when the plate-like ceramic particles are viewed from a direction parallel to the c-axis, if there is no shape anisotropy, the plate-like ceramic particles are densely arranged, and thereby the mechanical strength anisotropy of the ceramics is reduced. Since it becomes small, handling becomes easy and the piezoelectric characteristics are stabilized. Further, from the viewpoint of the manufacturing method, it becomes easy to manufacture the plate-like ceramic particles, and the piezoelectric ceramic can be manufactured at a low cost.
  • the plate-like ceramic particles preferably have an average particle size of 20 ⁇ m or less.
  • the plate-like ceramic particles when the average particle size of the plate-like ceramic particles is as small as 20 ⁇ m or less, the plate-like ceramic particles are densely arranged, which improves the piezoelectric characteristics and stabilizes the piezoelectric characteristics. Further, from the viewpoint of the manufacturing method, when the average particle diameter of the plate-like ceramic particles is as small as 20 ⁇ m or less, it is possible to easily orientate by applying a magnetic field from a predetermined direction and to produce a piezoelectric ceramic at a low cost. it can.
  • the plate-like ceramic particles are preferably a bismuth layered compound.
  • the load applied to the environment is reduced as compared with a lead compound having a large environmental pollution.
  • this invention A raw material process for producing a ceramic slurry containing plate-like ceramic particles; Forming a ceramic slurry into a sheet using a sheet forming method or a slip cast forming method; A magnetic field application step of applying a magnetic field to the sheet-like ceramic slurry, The direction in which the magnetic field is applied is a predetermined direction in substantially the same plane as the sheet-like ceramic slurry, A method for producing a piezoelectric ceramic, characterized in that
  • the ceramic slurry is formed into a sheet shape by sheet forming or slip cast forming, and a magnetic field is applied to the ceramic slurry formed into the sheet shape. Oriented axis and easy axis of magnetization. Further, the remaining one axis is also oriented, so that a piezoelectric ceramic in which all three crystal axes of the piezoelectric ceramic particles are oriented is obtained. Moreover, it becomes easy to arrange the plate-like ceramic particles in layers by sheet-forming or slip-casting the ceramic slurry.
  • a piezoelectric ceramic in which all three crystal axes of the piezoelectric ceramic particles are oriented. Therefore, for example, a piezoelectric ceramic having excellent electrical characteristics such as a high electromechanical coupling coefficient, stable frequency temperature characteristics, high dielectric constant, low loss, and large piezoelectric d constant can be obtained.
  • CaBi 4 is an SEM image pickup view of the Ti 4 O 15 granular particles.
  • CaBi 4 is an SEM image pickup view of the Ti 4 O 15 -0.31wt% MnO granular particles.
  • CaBi 4 is an SEM image pickup view of the Ti 4 O 15 plate-like particles. It is explanatory drawing for demonstrating the shaping
  • CaBi a 4 Ti 4 O 15 XRD chart of XRD chart and the surface S2 of the T surface of the ceramic sintered body (Sample No.1).
  • CaBi a 4 Ti 4 O 15 XRD chart of XRD chart and the surface S2 of the T surface of the ceramic sintered body (Sample No.2).
  • 4 is an XRD chart of a T plane and an SRD plane of an S2 plane of a CaBi 4 Ti 4 O 15 ceramic sintered body (sample No. 3).
  • CaBi a 4 Ti 4 O 15 XRD chart of XRD chart and the surface S2 of the T surface of the ceramic sintered body (Sample No.4).
  • CaBi a 4 Ti 4 O 15 XRD chart of XRD chart and the surface S2 of the T surface of the ceramic sintered body (Sample No.5).
  • 4 is an XRD chart of a T plane and an SRD plane of an S2 plane of a CaBi 4 Ti 4 O 15 -0.31 wt% MnO ceramic sintered body (sample No. 6).
  • 4 is an XRD chart of a T plane and an SRD plane of a ceramic sintered body (Sample No. 7) containing CaBi 4 Ti 4 O 15 -0.31 wt% MnO.
  • 3 is an XRD chart of a T plane and an SRD plane of a ceramic sintered body (sample No.
  • FIG. 3 is an SEM image of Bi 3 TiNbO 9 -0.08 wt% MnO plate-like particle powder.
  • 2 is an XRD chart of a T plane and an SRD plane of a Bi 3 TiNbO 9 -0.08 wt% MnO ceramic sintered body (sample No. 14).
  • 2 is an XRD chart of a T plane and an SRD plane of a Bi 3 TiNbO 9 -0.08 wt% MnO ceramic sintered body (sample No. 15).
  • 2 is an XRD chart of a T plane and an SRD plane of a Bi 3 TiNbO 9 -0.08 wt% MnO ceramic sintered body (sample No. 16). It is explanatory drawing for demonstrating the formation process by a sheet forming method.
  • the piezoelectric ceramic according to the present invention is a piezoelectric ceramic made of ceramic particles including plate-like ceramic particles. Then, based on the X-ray diffraction (XRD) pattern in a predetermined cross section of the piezoelectric ceramic, the degree of orientation of the first axis (for example, c-axis) calculated by the Lottgering method is 0.30 or more. The logger method will be described in detail later. Then, the second axis (for example, a axis) calculated by the Lottgering method based on the X-ray diffraction pattern in the cross section orthogonal to the reference plane, with the cross section showing the maximum degree of orientation of the first axis as the reference plane. The degree of orientation is 0.20 or more. The degree of orientation of the second axis is a value in a cross section in which the degree of orientation of the second axis is the maximum among the cross sections orthogonal to the reference plane.
  • XRD X-ray diffraction
  • the piezoelectric ceramic according to the present invention has a cross section in which the degree of orientation of the first axis calculated by the Lottgering method is based on an X-ray diffraction (XRD) pattern in a predetermined cross section of the piezoelectric ceramic.
  • XRD X-ray diffraction
  • This cross section is taken as a reference plane, and the second axis orientation degree calculated by the Lottgering method based on the X-ray diffraction pattern in the cross section perpendicular to the reference plane has a maximum cross section.
  • the orientation degree of the first axis is 0.30 or more, and the second orientation degree is 0.20 or more.
  • the piezoelectric ceramic according to the present invention has a cross section in which the degree of orientation in two axes out of the three axes of the crystal axes of the piezoelectric ceramic particles has a maximum value. Further, since the remaining one axis is also oriented, a piezoelectric ceramic in which all three crystal axes of the piezoelectric ceramic particles are oriented is obtained. Therefore, for example, a piezoelectric ceramic having excellent electrical characteristics such as a high electromechanical coupling coefficient, stable frequency temperature characteristics, high dielectric constant, low loss, and large piezoelectric d constant can be obtained.
  • the plate-like ceramic particles when the piezoelectric ceramics are viewed from above (when the piezoelectric ceramics are viewed from a direction parallel to the c-axis), those having no shape anisotropy are used so that the plate-like ceramic particles are dense. As a result, the anisotropy of the mechanical strength of the piezoelectric ceramic is reduced, so that the handling becomes easy and the piezoelectric characteristics can be stabilized. Further, from the viewpoint of the production method, as will be described in detail later, the production of the plate-like ceramic particles becomes easy, and the piezoelectric ceramic can be produced at a low cost.
  • the plate-like ceramic particles are densely arranged by setting the average particle size of the plate-like ceramic particles to 20 ⁇ m or less.
  • the piezoelectric characteristics of the piezoelectric ceramic can be improved, and the piezoelectric characteristics can be stabilized.
  • the average particle size of the plate-like ceramic particles is as small as 20 ⁇ m or less, it can be easily oriented by applying a magnetic field from a predetermined direction, and piezoelectric ceramics can be produced at low cost. it can.
  • CaBi 4 Ti 4 O 15 granular particle powder raw materials CaBi 4 Ti 4 O 15 granular particle powder, CaBi 4 Ti 4 O 15 -0.31 wt% MnO granular particle powder, and CaBi 4 Ti 4 O 15 plate-like particle powder are prepared.
  • CaBi 4 Ti 4 O 15 granular particle powder was prepared as follows. That is, calcium hydroxide, bismuth oxide and titanium oxide were prepared so that the composition was CaBi 4 Ti 4 O 15, and mixed and stirred by a ball mill using water as a solvent. The ceramic slurry thus obtained was dried and calcined at 900 ° C. using an electric furnace.
  • FIG. 1 shows an SEM image of CaBi 4 Ti 4 O 15 granular particle powder.
  • a CaBi 4 Ti 4 O 15 -0.31 wt% MnO granular particle powder was produced as follows. That is, calcium hydroxide, bismuth oxide, titanium oxide, and manganese carbonate were prepared so that the composition was CaBi 4 Ti 4 O 15 -0.31 wt% MnO, and mixed and stirred by a ball mill using water as a solvent. Manganese carbonate is used to promote sintering performed in a later step, and after calcining, becomes manganese oxide. The ceramic slurry thus obtained was dried and calcined at 1200 ° C.
  • the obtained calcined powder was pulverized with a ball mill for 100 hours using water as a solvent and then dried to obtain CaBi 4 Ti 4 O 15 -0.31 wt% MnO granular particle powder.
  • the added amount (0.31 wt%) of “MnO” is a value when the base composition “CaBi 4 Ti 4 O 15 ” is 100 wt%.
  • FIG. 2 shows an SEM image of CaBi 4 Ti 4 O 15 -0.31 wt% MnO granular particle powder.
  • CaBi 4 Ti 4 O 15 plate-like particle powder was produced as follows. That is, calcium hydroxide, bismuth oxide and titanium oxide were prepared so that the composition was CaBi 4 Ti 4 O 15, and mixed and stirred by a ball mill using water as a solvent. The ceramic slurry thus obtained was dried and calcined at 900 ° C. The obtained calcined powder and KCl were mixed at a weight ratio of 1: 1, and heat-treated at 1000 ° C. for 12 hours in an alumina crucible. After heat treatment, KCl was washed away with water, and the obtained powder was pulverized with a ball mill using water as a solvent and dried to obtain CaBi 4 Ti 4 O 15 plate-like particle powder. FIG.
  • the CaBi 4 Ti 4 O 15 plate-like particles preferably have an aspect ratio L / H, which is a ratio of the length dimension L and the thickness dimension H, of 3 or more.
  • the aspect ratio is less than 3
  • the shape anisotropy of the CaBi 4 Ti 4 O 15 plate-like particles is small, and the CaBi 4 Ti 4 O 15 plate-like particles are utilized by utilizing the shape anisotropy at the time of molding in the subsequent process. This is because it becomes difficult to align the orientations of the two.
  • the ceramic slurry thus obtained was slip cast molded to easily arrange CaBi 4 Ti 4 O 15 plate-like ceramic particles in layers.
  • a frame-shaped mold 14 is set on an unglazed alumina plate 10 on which a filter paper 12 is placed.
  • the ceramic slurry 1 is poured so as to extend from one side in the length direction inside the mold 14 toward the other side (in the direction of arrow P), and cast into a sheet shape.
  • the alumina plate 10 is porous and has water absorption, and is used to absorb distilled water contained in the ceramic slurry 1. And after pouring the ceramic slurry 1, until the ceramic slurry 1 hardens
  • the direction in which the magnetic field B is applied is one direction substantially in the same plane as the sheet-like ceramic slurry 1.
  • the in-plane direction of the sheet-shaped ceramic slurry 1 is orthogonal to the direction of gravity
  • the application direction of the magnetic field B is substantially in the same plane as the sheet-shaped ceramic slurry 1. Is set in a direction orthogonal to the extending direction P of the.
  • the strength of the magnetic field B was 12 Tesla in this example.
  • the molded body thus obtained was fired by holding it at the temperature shown in Table 1 for 2 hours to obtain a sintered body.
  • the obtained sintered bodies are each a surface (T-plane) having the gravitational direction G as a normal line, and a magnetic field B parallel to the gravitational direction G.
  • T-plane a surface having the gravitational direction G as a normal line
  • S2 plane a plane whose application direction is a normal line
  • each plane (T plane, S2 plane) was measured with an X-ray diffraction (XRD) measuring apparatus using Cu as a target.
  • XRD X-ray diffraction
  • Sample No. shown in FIG. Reference numeral 1 denotes a sintered body in which a ceramic slurry is slip cast formed in a magnetic field, but does not contain plate-like ceramic particles.
  • the c-axis ((001) axis) orientation in the T plane is not recognized, and as shown in the lower part, the a axis ((100) axis) and b in the S2 plane.
  • Axial ((010) axis) orientation is also not recognized. In this material, the a-axis and the b-axis are almost equivalent and are difficult to distinguish.
  • the easy magnetization axis is considered to be the a-axis
  • the a-axis and the b-axis are almost equivalent and difficult to distinguish. Therefore, even in the XRD chart of the S2 plane, the a-axis and the b-axis are not distinguished, and one peak intensity (FIG. 6).
  • the orientation was determined as the peak intensity of “200, 020” described in the above.
  • Sample No. shown in FIG. 2 is a sintered body in which a ceramic slurry containing plate-like ceramic particles is slip-cast in a magnetic field. Then, as shown in the upper part of FIG. 7, the c-axis ((001) axis) orientation in the T plane is recognized, and as shown in the lower part, the a axis ((100) axis) and b axis in the S2 plane. ((010) axis) orientation is also observed.
  • Sample No. shown in FIG. Reference numeral 3 denotes a sintered body containing plate-like ceramic particles but not slip cast-molded in a magnetic field.
  • the c-axis ((001) axis) orientation in the T plane is recognized, but as shown in the lower part, the a axis ((100) axis), b in the S2 plane.
  • Axial ((010) axis) orientation is not observed.
  • Sample No. shown in FIG. 4 is a sintered body in which a ceramic slurry containing plate-like ceramic particles is slip-cast in a magnetic field. 9, the c-axis ((001) axis) orientation in the T plane is recognized, and as shown in the lower stage, the a axis ((100) axis) and b axis in the S2 plane. ((010) axis) orientation is also observed.
  • Sample No. shown in FIG. Reference numeral 5 denotes a sintered body containing plate-like ceramic particles but not slip cast-molded from a ceramic slurry in a magnetic field. Then, as shown in the upper part of FIG. 10, the c-axis ((001) axis) orientation on the T plane is recognized, but as shown in the lower part, the a axis ((100) axis), b on the S2 plane. Axial ((010) axis) orientation is not observed.
  • Sample No. shown in FIG. 6 is a sintered body which does not contain plate-like ceramic particles and which is not slip casted in a magnetic field. Then, as shown in the upper part of FIG. 11, the c-axis ((001) axis) orientation in the T plane is not recognized, and as shown in the lower part, the a axis ((100) axis), b in the S2 plane. Axial ((010) axis) orientation is also not recognized.
  • Sample No. shown in FIGS. 7-No. 9 is a sintered body in which a ceramic slurry containing plate-like ceramic particles is slip-cast in a magnetic field. 12 to 14, the c-axis ((001) axis) orientation in the T plane is recognized as shown in the upper stage, and the a axis ((100) in the S2 plane is shown in the lower stage. (Axis), b-axis ((010) axis) orientation is also recognized.
  • Sample No. shown in FIG. Reference numeral 10 denotes a sintered body containing plate-like ceramic particles but not slip cast-molded in a magnetic field.
  • the c-axis ((001) axis) orientation on the T plane is recognized, but as shown in the lower part, the a axis ((100) axis), b on the S2 plane.
  • Axial ((010) axis) orientation is not observed.
  • Table 1 shows the c-axis orientation degree calculated based on the T-plane XRD chart and the a-axis and b-axis orientation degrees calculated based on the S2-plane XRD chart.
  • the degree of orientation the produced CaBi 4 Ti 4 O 15 granular particle powder was used as a reference sample.
  • ⁇ I (HKL) is the sum of X-ray peak intensities of specific crystal planes (HKL) in the ceramic sintered body to be evaluated
  • ⁇ I (hkl) is the total crystal plane of the ceramic sintered body to be evaluated ( hkl) is the sum of the X-ray peak intensities.
  • the degree of orientation in the S2 plane was calculated by treating it as a tetragonal crystal because the lattice constants of the a-axis and b-axis were almost the same and could not be separated.
  • ⁇ I 0 (HKL) is the sum of X-ray peak intensities of a specific crystal plane (HKL) in the reference sample
  • ⁇ I 0 (hkl) is the sum of X-ray peak intensities of all crystal planes (hkl) of the reference sample. It is.
  • sample no. 9 As can be seen from Table 1, sample no. 2, Sample No. 4 and sample no. 7-No.
  • the sintered body of No. 9 has a high degree of orientation with a c-axis orientation of 0.564 or more on the T plane, and a high degree of orientation with an a-axis or b-axis orientation on the S2 plane of 0.231 or more. It has been. This is because the c-axis is oriented in the direction of gravity during slip casting by using a ceramic slurry containing plate-like ceramic particles.
  • an a axis ((100) axis) that is considered to be an easy magnetization axis in the magnetic field application direction This is because is oriented.
  • a triaxially oriented piezoelectric ceramic was obtained in which the c-axis was oriented in the gravity direction during slip casting and the a-axis was oriented in the magnetic field application direction.
  • the sintered body of No. 1 has a low c-axis orientation degree on the T plane of 0.028 and a low a-axis and b-axis orientation degree on the S2 plane of 0.025. This is because although the ceramic slurry was slip cast molded in a magnetic field, the c-axis orientation and the a-axis and b-axis orientation were not sufficiently performed because the plate-like ceramic particles were not used.
  • the sintered body of No. 10 has a high degree of orientation with a c-axis orientation of 0.436 or more on the T plane, the degree of a-axis or b-axis orientation on the S2 plane is as low as 0.047 or less.
  • the sintered body of No. 6 has a low c-axis orientation of 0.139 on the T plane and a low a-axis and b-axis orientation of 0.02 on the S2 plane. This is because it does not contain plate-like ceramic particles, and the ceramic slurry is formed into a sheet by slip casting, and a magnetic field is not applied to the ceramic slurry formed into the sheet. This is because the axial and b-axis orientation was not sufficiently performed.
  • piezoelectric ceramic particles can be obtained by forming a ceramic slurry containing CaBi 4 Ti 4 O 15 plate-like ceramic particles into a sheet by slip casting, and applying a magnetic field to the ceramic slurry formed into the sheet. It can be seen that a piezoelectric ceramic in which all three of the crystal axes are oriented can be easily obtained.
  • Bi 4 Ti 3 O 12 -0.06 wt% MnO granular particle powder and Bi 4 Ti 3 O 12 -0.06 wt% MnO plate-like particle powder as raw materials are prepared.
  • Bi 4 Ti 3 O 12 -0.06 wt% MnO granular particle powder was produced as follows. That is, bismuth oxide, titanium oxide, and manganese carbonate were prepared so that the composition was Bi 4 Ti 3 O 12 -0.06 wt% MnO, and mixed and stirred by a ball mill using water as a solvent. The dried slurry thus obtained was calcined at 900 ° C. The obtained calcined powder was pulverized with a ball mill for 16 hours using water as a solvent, and then dried to obtain Bi 4 Ti 3 O 12 -0.06 wt% MnO granular particle powder.
  • Bi 4 Ti 3 O 12 -0.06 wt% MnO plate-like particle powder was prepared as follows. That is, bismuth oxide, titanium oxide, and manganese carbonate were prepared so that the composition was Bi 4 Ti 3 O 12 -0.06 wt% MnO, and mixed and stirred by a ball mill using water as a solvent. The ceramic slurry thus obtained was dried and calcined at 900 ° C. using an electric furnace. The obtained calcined powder and KCl were mixed at a weight ratio of 1: 1, and heat-treated at 1000 ° C. for 12 hours in an alumina crucible.
  • FIG. 16 shows an SEM image of Bi 4 Ti 3 O 12 ⁇ 0.06 wt% MnO plate-like particle powder.
  • the Bi 4 Ti 3 O 12 -0.06 wt% MnO plate-like particle preferably has an aspect ratio L / H that is a ratio of the length dimension L to the thickness dimension H of 3 or more.
  • Bi 4 Ti 3 O 12 -0.06 wt% MnO plate-like ceramic particles were easily arranged in layers by slip casting the ceramic slurry thus obtained. That is, as shown in FIG. 4, the ceramic slurry 1 is poured so as to extend from one side in the length direction inside the mold 14 toward the other side (in the direction of the arrow P) to form a sheet. Cast. And after pouring the ceramic slurry 1, until the ceramic slurry 1 hardens
  • the direction in which the magnetic field B is applied is one direction substantially in the same plane as the sheet-like ceramic slurry 1.
  • the in-plane direction of the sheet-shaped ceramic slurry 1 is orthogonal to the direction of gravity, and the application direction of the magnetic field B is substantially in the same plane as the sheet-shaped ceramic slurry 1. Is set in a direction orthogonal to the extending direction P of the.
  • the strength of the magnetic field B was 12 Tesla in this example.
  • the molded body thus obtained was fired by holding it at the temperature shown in Table 2 for 2 hours to obtain a sintered body.
  • Each of the obtained sintered bodies has a plane (T plane) whose normal direction is the gravitational direction, and a plane (S2) which is parallel to the gravitational direction and whose magnetic field application direction is normal. Surface), and each surface (T surface, S2 surface) was measured with an X-ray diffraction (XRD) measuring device using Cu as a target.
  • XRD X-ray diffraction
  • Sample No. shown in FIG. 11 is a sintered body in which a ceramic slurry containing plate-like ceramic particles is slip-cast in a magnetic field. Then, as shown in the upper part of FIG. 17, the c-axis ((001) axis) orientation on the T plane is recognized, and as shown in the lower part, the a axis ((100) axis) and b axis on the S2 plane. ((010) axis) orientation is also observed.
  • Sample No. shown in FIG. 12 is a sintered body that contains plate-like ceramic particles, but the ceramic slurry is not slip cast molded in a magnetic field.
  • the c-axis ((001) axis) orientation in the T plane is recognized, but as shown in the lower part, the a axis ((100) axis), b in the S2 plane.
  • Axial ((010) axis) orientation is not observed.
  • Sample No. shown in FIG. 13 is a sintered body in which the ceramic slurry is slip cast molded in a magnetic field, but does not contain plate-like ceramic particles.
  • the c-axis ((001) axis) orientation in the T plane is not recognized, but as shown in the lower part, the a axis ((100) axis) in the S2 plane, The b-axis ((010) axis) orientation is recognized.
  • Table 2 shows the c-axis orientation degree calculated based on the T-plane XRD chart and the a-axis and b-axis orientation degrees calculated based on the S2-plane XRD chart.
  • the degree of orientation the produced Bi 4 Ti 3 O 12 -0.06 wt% MnO granular particle powder was used as a reference sample.
  • the degree of orientation in the S2 plane was calculated by treating it as a tetragonal crystal because the a-axis and b-axis lattice constants were almost the same and could not be separated.
  • sample no. 11 has a high degree of orientation with a c-axis orientation of 0.678 on the T plane, and a high degree of orientation with an a-axis and b-axis orientation on the S2 plane of 0.486. Yes.
  • the c-axis is oriented in the direction of gravity during slip casting by using a ceramic slurry containing plate-like ceramic particles.
  • an a axis ((100) axis) that is considered to be an easy magnetization axis in the magnetic field application direction This is because is oriented.
  • a triaxially oriented piezoelectric ceramic was obtained in which the c-axis was oriented in the gravity direction during slip casting and the a-axis was oriented in the magnetic field application direction.
  • the sintered body of No. 12 has a high degree of c-axis orientation of 0.605 on the T plane, but the degree of a-axis and b-axis orientation on the S2 plane is as low as 0.170.
  • the sintered body of No. 13 has a high degree of a-axis and b-axis orientation on the S2 plane of 0.328, but a low degree of c-axis orientation on the T plane of 0.239. This is because although the ceramic slurry was slip cast molded in a magnetic field, the a-axis was oriented because the plate-like ceramic particles were not used, but the c-axis was not sufficiently oriented.
  • ceramic slurry containing Bi 4 Ti 3 O 12 -0.06 wt% MnO plate-like ceramic particles is formed into a sheet by slip casting, and a magnetic field is applied to the ceramic slurry formed into the sheet.
  • a piezoelectric ceramic in which all three crystal axes of the piezoelectric ceramic particles are oriented can be easily obtained.
  • Bi 3 TiNbO 9 -0.08 wt% MnO granular particle powder and Bi 3 TiNbO 9 -0.08 wt% MnO plate-like particle powder as raw materials are prepared.
  • Bi 3 TiNbO 9 -0.08 wt% MnO granular particle powder was produced as follows. That is, bismuth oxide, titanium oxide, niobium oxide, and manganese carbonate were mixed so that the composition was Bi 3 TiNbO 9 -0.08 wt% MnO, and mixed and stirred by a ball mill using water as a solvent. The dried slurry thus obtained was calcined at 900 ° C. using an electric furnace. The obtained calcined powder was pulverized with a ball mill for 16 hours using water as a solvent, and then dried to obtain Bi 3 TiNbO 9 -0.08 wt% MnO granular particle powder.
  • Bi 3 TiNbO 9 -0.08 wt% MnO plate-like particle powder was prepared as follows. That is, bismuth oxide, titanium oxide, niobium oxide, and manganese carbonate were mixed so that the composition was Bi 3 TiNbO 9 -0.08 wt% MnO, and mixed and stirred by a ball mill using water as a solvent. The ceramic slurry thus obtained was dried and calcined at 900 ° C. The obtained calcined powder and KCl were mixed at a weight ratio of 1: 1, and heat-treated at 1000 ° C. for 12 hours in an alumina crucible.
  • FIG. 20 shows an SEM image of Bi 3 TiNbO 9 -0.08 wt% MnO plate-like particle powder.
  • the Bi 3 TiNbO 9 -0.08 wt% MnO plate-like particle preferably has an aspect ratio L / H, which is a ratio of the length dimension L to the thickness dimension H, of 3 or more.
  • Bi 3 TiNbO 9 -0.08 wt% MnO plate-like ceramic particles were easily arranged in layers by slip casting the ceramic slurry thus obtained. That is, as shown in FIG. 4, the ceramic slurry 1 is poured so as to extend from one side in the length direction inside the mold 14 toward the other side (in the direction of the arrow P) to form a sheet. Cast. And after pouring the ceramic slurry 1, until the ceramic slurry 1 hardens
  • the direction in which the magnetic field B is applied is one direction substantially in the same plane as the sheet-like ceramic slurry 1.
  • the in-plane direction of the sheet-shaped ceramic slurry 1 is orthogonal to the direction of gravity, and the application direction of the magnetic field B is substantially in the same plane as the sheet-shaped ceramic slurry 1. Is set in a direction orthogonal to the extending direction P of the.
  • the strength of the magnetic field B was 12 Tesla in this example.
  • the molded body thus obtained was fired by holding at the temperature shown in Table 3 for 2 hours to obtain a sintered body.
  • the obtained sintered bodies were each subjected to a plane (T plane) having the normal direction as the gravitational direction, and a plane (parallel to the gravitational direction and having the magnetic field application direction as the normal line).
  • T plane plane having the normal direction as the gravitational direction
  • S2 plane plane (parallel to the gravitational direction and having the magnetic field application direction as the normal line).
  • XRD X-ray diffraction
  • Sample No. shown in FIG. 14 is a sintered body in which a ceramic slurry containing plate-like ceramic particles is slip-cast in a magnetic field.
  • the c-axis ((001) axis) orientation on the T plane is recognized, and as shown in the lower part, the a axis ((100) axis) and b axis on the S2 plane. ((010) axis) orientation is also observed.
  • Sample No. shown in FIG. Reference numeral 15 denotes a sintered body that contains plate-like ceramic particles but is not slip cast-molded in a magnetic field.
  • the c-axis ((001) axis) orientation in the T plane is recognized, but as shown in the lower part, the a axis ((100) axis) and b in the S2 plane.
  • Axial ((010) axis) orientation is not observed.
  • Sample No. shown in FIG. Reference numeral 16 denotes a sintered body in which the ceramic slurry is slip cast molded in a magnetic field, but does not contain plate-like ceramic particles.
  • the c-axis ((001) axis) orientation in the T plane is not recognized, but as shown in the lower stage, the a axis ((100) axis) in the S2 plane, The b-axis ((010) axis) orientation is recognized.
  • Table 3 shows the c-axis orientation calculated based on the T-plane XRD chart and the a-axis and b-axis orientation calculated based on the S2-plane XRD chart.
  • the produced Bi 3 TiNbO 9 -0.08 wt% MnO granular particle powder was used as a reference sample.
  • the degree of orientation in the S2 plane was calculated by treating it as a tetragonal crystal because the a-axis and b-axis lattice constants were almost the same and could not be separated.
  • sample no. The sintered body of No. 14 has a high degree of orientation with a c-axis orientation degree of 0.761 on the T-plane, and a high degree of orientation of 0.664 on the a-axis and b-axis orientation degrees on the S2 plane. Yes. This is because the c-axis is oriented in the direction of gravity during slip casting by using a ceramic slurry containing plate-like ceramic particles.
  • an a axis ((100) axis) that is considered to be an easy magnetization axis in the magnetic field application direction This is because is oriented.
  • a triaxially oriented piezoelectric ceramic was obtained in which the c-axis was oriented in the gravity direction during slip casting and the a-axis was oriented in the magnetic field application direction.
  • the sintered body of 15 has a high degree of orientation with a c-axis orientation of 0.411 on the T plane, but the a-axis and b-axis orientation on the S2 plane is as low as 0.096.
  • the sintered body of No. 16 has a high degree of a-axis and b-axis orientation on the S2 plane of 0.230, but a low degree of c-axis orientation on the T-plane of 0.103. This is because although the ceramic slurry was slip cast molded in a magnetic field, the a-axis was oriented because the plate-like ceramic particles were not used, but the c-axis was not sufficiently oriented.
  • the slip cast molding method has been described as an example of the piezoelectric ceramic molding method.
  • the method is not particularly limited as long as the plate-like ceramic particles can be arranged in layers.
  • a sheet forming method may be used.
  • the sheet forming method makes it easier to align the plate-like ceramic particles in a layer form as compared with the slip cast forming method, so that the sheet forming method provides a piezoelectric ceramic having a higher degree of orientation.
  • FIG. 24 is a schematic configuration diagram for explaining a forming process by a sheet forming method.
  • the tape-shaped carrier film 20 is transported at a constant speed in the direction of arrow P by a pair of transport rollers 28a and 28b.
  • the ceramic slurry 1 is continuously applied at a predetermined thickness using a coating device 22, and the sheet-like ceramic slurry 1 is formed in a state where the plate-like ceramic particles are arranged in layers.
  • the direction in which the magnetic field B is applied is one direction substantially in the same plane as the sheet-like ceramic slurry 1.
  • the sheet-shaped ceramic slurry 1 is orthogonal to the direction of gravity, and the direction in which the magnetic field B is applied is substantially in the same plane as the sheet-shaped ceramic slurry 1 and the conveying direction of the sheet-shaped ceramic slurry 1 (
  • the extending direction is set in a direction orthogonal to P (a direction perpendicular to the paper surface).
  • the molded body thus obtained is fired at a predetermined temperature to obtain a sintered body (piezoelectric ceramic).
  • the c-axis is oriented in the direction of gravity when the sheet is formed, and by magnetizing the ceramic slurry in a magnetic field, it is easy to magnetize in the magnetic field application direction.
  • the a axis (the (100) axis) that is considered to be the axis is oriented.
  • a triaxially oriented piezoelectric ceramic is obtained in which the c-axis is oriented in the direction of gravity during sheet forming and the a-axis is oriented in the magnetic field application direction.
  • the c-axis on the T plane is oriented at least in a direction other than the gravitational direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

【課題】圧電セラミック粒子の結晶軸の3軸全てが配向している電気特性の優れた圧電セラミックスおよびその製造方法を提供する。 【解決手段】板状セラミック粒子を含むセラミックスラリーを、磁場中でスリップキャスト成形またはシート成形してなる圧電セラミックスである。この圧電セラミックスの所定の断面におけるX線回折(XRD)パターンに基づいて、Lotgering(ロットゲーリング)法により算出した第1軸(例えばc軸)の配向度は0.30以上である。そして、第1軸の配向度が最大値を示す断面を基準面とし、この基準面に対して直交する断面におけるX線回折パターンに基づいて、Lotgering法により算出した第2軸(例えばa軸)の配向度は0.20以上である。第2軸の配向度は、基準面に対して直交する断面のうち、第2軸の配向度が最大値となるような断面における値である。

Description

圧電セラミックスおよびその製造方法
 この発明は、圧電材料、特に結晶配向した圧電セラミックスおよびその製造方法に関する。
 従来より、圧電セラミックスの結晶を配向させることによって、圧電セラミックスの電気特性が向上することが知られている。そこで、圧電セラミックスの結晶配向性を高くするために、例えば、特許文献1に記載の技術が提案されている。特許文献1に記載された技術は、板状セラミック粒子を含むセラミックスラリーをスリップキャストあるいはシート成形することで、結晶配向性の高い圧電セラミックスを得るものである。
 また、高い結晶配向性を得るための別の技術として、特許文献2に記載の技術も提案されている。特許文献2に記載された技術は、セラミックスラリーを磁場中でスリップキャストあるいはシート成形することで、結晶配向性の高い圧電セラミックスを得るものである。
特開2006-225188号公報 特開2004-6704号公報
 しかしながら、特許文献1の技術のように、板状セラミック粒子をスリップキャストあるいはシート成形しただけでは、セラミック粒子の結晶軸のうち、形状異方性のある1軸しか配向させることができなかった。同様に、特許文献2のような磁場中での成形では、セラミック粒子の結晶軸のうち、磁化容易軸(1軸)しか配向させることができなかった。すなわち、特許文献1の技術や特許文献2の技術は、セラミック粒子の結晶軸のうち、1軸しか配向させることができないという問題があった。このため、より高い圧電特性のニーズに対応することが困難であり、圧電セラミックスの電気特性の向上も困難となっていた。
 それゆえに、この発明の主たる目的は、圧電セラミック粒子の結晶軸の3軸全てが配向している電気特性の優れた圧電セラミックスおよびその製造方法を提供することである。
 この発明は、
 板状セラミック粒子を含む圧電セラミックスであって、
 圧電セラミックスの所定の断面におけるX線回折パターンに基づいて、Lotgering(ロットゲーリング)法により算出した第1軸の配向度が0.30以上であり、
 第1軸の配向度が最大値を示す断面を基準面とし、基準面に対して直交する断面におけるX線回折パターンに基づいて、Lotgering法により算出した第2軸の配向度が0.20以上であり、
 第2軸の配向度は、基準面に対して直交する断面のうち、第2軸の配向度が最大値となるような断面における値であること、
 を特徴とする、圧電セラミックスである。
 この発明では、圧電セラミックスは、圧電セラミック粒子の結晶軸の3軸うち、2軸の配向度が、それぞれ最大値を示す断面を有している。また、これにより残る1軸も配向することになるため、圧電セラミック粒子の結晶軸の3軸全てが配向している圧電セラミックスが得られる。
 また、この発明は、板状セラミック粒子が、c軸に平行な方向から見たとき、形状異方性が無いことが好ましい。
 この発明では、板状セラミック粒子をc軸に平行な方向から見たとき、形状異方性が無い場合、板状セラミック粒子が緻密に並び、そのことによりセラミックスの機械的強度の異方性が小さくなるため取り扱いが容易になり、また圧電特性が安定する。さらに、製造方法の面からみると、板状セラミック粒子の製造が容易になり、低コストで圧電セラミックスを作製することができる。
 また、この発明は、板状セラミック粒子が、平均粒径が20μm以下であることが好ましい。
 この発明では、板状セラミック粒子の平均粒径が20μm以下と小さい場合、板状セラミック粒子が緻密に並び、そのことにより圧電特性がアップし、また圧電特性が安定する。さらに、製造方法の面からみると、板状セラミック粒子の平均粒径が20μm以下と小さい場合、磁場を所定の方向から印加することで容易に配向し、低コストで圧電セラミックスを作製することができる。
 また、この発明は、板状セラミック粒子がビスマス層状化合物であることが好ましい。
 この発明では、板状セラミック粒子としてビスマス層状化合物を用いる場合、環境汚染が大きい鉛化合物と比較して、環境に与える負荷が低減される。
 また、この発明は、
 板状セラミック粒子を含むセラミックスラリーを作製する原料工程と、
 セラミックスラリーを、シート成形法またはスリップキャスト成形法を用いてシート状に形成する形成工程と、
 シート状のセラミックスラリーに磁場を印加する磁場印加工程と、を備え、
 磁場を印加する方向は、シート状のセラミックスラリーと略同一平面内の所定の方向であること、
 を特徴とする、圧電セラミックスの製造方法である。
 この発明では、シート成形またはスリップキャスト成形によりセラミックスラリーをシート状に成形し、そのシート状に成形されたセラミックスラリーに磁場を印加するため、圧電セラミック粒子の3つの結晶軸のうち、形状異方性のある軸と磁化容易軸が配向する。さらに、これにより残る1軸も配向することになるため、圧電セラミック粒子の結晶軸の3軸全てが配向している圧電セラミックスが得られる。また、セラミックスラリーをシート成形またはスリップキャスト成形することにより、板状セラミック粒子を層状に揃え易くなる。
 この発明によれば、圧電セラミック粒子の結晶軸の3軸全てが配向している圧電セラミックスを容易に得ることができる。従って、例えば、電気機械結合係数が高く、周波数温度特性が安定し、誘電率が高く、損失が小さく、圧電d定数が大きいなどの電気特性に優れた圧電セラミックスを得ることができる。
 この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の発明を実施するための形態の説明から一層明らかとなろう。
CaBi4Ti415粒状粒子粉末のSEM撮像図である。 CaBi4Ti415-0.31wt%MnO粒状粒子粉末のSEM撮像図である。 CaBi4Ti415板状粒子粉末のSEM撮像図である。 スリップキャスト成形法による成形工程を説明するための説明図である。 焼結体において、重力方向を法線とするT面と重力方向に平行かつ磁場印加方向を法線とする面であるS2面とを示す概略図である。 CaBi4Ti415セラミック焼結体(サンプルNo.1)のT面のXRDチャートおよびS2面のXRDチャートである。 CaBi4Ti415セラミック焼結体(サンプルNo.2)のT面のXRDチャートおよびS2面のXRDチャートである。 CaBi4Ti415セラミック焼結体(サンプルNo.3)のT面のXRDチャートおよびS2面のXRDチャートである。 CaBi4Ti415セラミック焼結体(サンプルNo.4)のT面のXRDチャートおよびS2面のXRDチャートである。 CaBi4Ti415セラミック焼結体(サンプルNo.5)のT面のXRDチャートおよびS2面のXRDチャートである。 CaBi4Ti415-0.31wt%MnOセラミック焼結体(サンプルNo.6)のT面のXRDチャートおよびS2面のXRDチャートである。 CaBi4Ti415-0.31wt%MnOを含むセラミック焼結体(サンプルNo.7)のT面のXRDチャートおよびS2面のXRDチャートである。 CaBi4Ti415-0.31wt%MnOを含むセラミック焼結体(サンプルNo.8)のT面のXRDチャートおよびS2面のXRDチャートである。 CaBi4Ti415-0.31wt%MnOを含むセラミック焼結体(サンプルNo.9)のT面のXRDチャートおよびS2面のXRDチャートである。 CaBi4Ti415-0.31wt%MnOを含むセラミック焼結体(サンプルNo.10)のT面のXRDチャートおよびS2面のXRDチャートである。 Bi4Ti312-0.06wt%MnO板状粒子粉末のSEM撮像図である。 Bi4Ti312-0.06wt%MnOセラミック焼結体(サンプルNo.11)のT面のXRDチャートおよびS2面のXRDチャートである。 Bi4Ti312-0.06wt%MnOセラミック焼結体(サンプルNo.12)のT面のXRDチャートおよびS2面のXRDチャートである。 Bi4Ti312-0.06wt%MnOセラミック焼結体(サンプルNo.13)のT面のXRDチャートおよびS2面のXRDチャートである。 Bi3TiNbO9-0.08wt%MnO板状粒子粉末のSEM撮像図である。 Bi3TiNbO9-0.08wt%MnOセラミック焼結体(サンプルNo.14)のT面のXRDチャートおよびS2面のXRDチャートである。 Bi3TiNbO9-0.08wt%MnOセラミック焼結体(サンプルNo.15)のT面のXRDチャートおよびS2面のXRDチャートである。 Bi3TiNbO9-0.08wt%MnOセラミック焼結体(サンプルNo.16)のT面のXRDチャートおよびS2面のXRDチャートである。 シート成形法による成形工程を説明するための説明図である。
 1 セラミックスラリー
 10 アルミナ板
 12 ろ紙
 14 鋳型
 20 キャリアフィルム
 22 塗布装置
 24 磁場印加装置
 28a,28b 搬送ローラ
 B 磁場
 P 延在方向
 G 重力方向
 (圧電セラミックス)
 本発明に係る圧電セラミックスは、板状セラミック粒子を含むセラミック粒子からなる圧電セラミックスである。そして、圧電セラミックスの所定の断面におけるX線回折(XRD)パターンに基づいて、Lotgering(ロットゲーリング)法により算出した第1軸(例えばc軸)の配向度が0.30以上である。なお、Lotgering法については、後で詳細に説明する。そして、第1軸の配向度が最大値を示す断面を基準面とし、この基準面に対して直交する断面におけるX線回折パターンに基づいて、Lotgering法により算出した第2軸(例えばa軸)の配向度が0.20以上である。第2軸の配向度は、基準面に対して直交する断面のうち、第2軸の配向度が最大値となるような断面における値である。
 言い換えると、本発明に係る圧電セラミックスは、圧電セラミックスの所定の断面におけるX線回折(XRD)パターンに基づいて、Lotgering法により算出した第1軸の配向度が最大値を示す断面を有している。そして、この断面を基準面とし、この基準面に対して直交する断面におけるX線回折パターンに基づいて、Lotgering法により算出した第2軸の配向度が最大値を示す断面を有している。そして、第1軸の配向度は0.30以上であり、第2配向度は0.20以上である。
 つまり、本発明に係る圧電セラミックスは、圧電セラミック粒子の結晶軸の3軸うち、2軸の配向度が、それぞれ最大値を示す断面を有している。また、これにより、残る1軸も配向することになるため、圧電セラミック粒子の結晶軸の3軸全てが配向している圧電セラミックスが得られる。従って、例えば、電気機械結合係数が高く、周波数温度特性が安定し、誘電率が高く、損失が小さく、圧電d定数が大きいなどの電気特性に優れた圧電セラミックスを得ることができる。
 また、板状セラミック粒子として、圧電セラミックスを上から見たとき(圧電セラミックスをc軸に平行な方向から見たとき)形状異方性が無いものを使用することによって、板状セラミック粒子が緻密に並ぶ、そのことにより、圧電セラミックスの機械的強度の異方性が小さくなるため取り扱いが容易になり、また圧電特性を安定させることができる。さらに、製造方法の面からみると、後で詳説するように板状セラミック粒子の製造が容易になり、低コストで圧電セラミックスを作製することができる。
 また、板状セラミック粒子の平均粒径を20μm以下に設定することによって、板状セラミック粒子が緻密に並ぶ。そのことにより、圧電セラミックスの圧電特性をアップさせることができ、また圧電特性を安定させることができる。さらに、製造方法の面からみると、板状セラミック粒子の平均粒径が20μm以下と小さいので、磁場を所定の方向から印加することで容易に配向し、低コストで圧電セラミックスを作製することができる。
 また、板状セラミック粒子としてビスマス層状化合物を使用することによって、環境汚染が大きい鉛化合物を使用した場合と比較して、環境に与える負荷を低減できる。
 (圧電セラミックスの製造方法)
 次に、本発明に係る圧電セラミックスの製造方法の実施形態について、CaBi4Ti415セラミックスを例にして説明する。
 まず、原料であるCaBi4Ti415粒状粒子粉末、CaBi4Ti415-0.31wt%MnO粒状粒子粉末、およびCaBi4Ti415板状粒子粉末を作製する。CaBi4Ti415粒状粒子粉末は、以下のようにして作製された。すなわち、水酸化カルシウム、酸化ビスマス、酸化チタンを、組成がCaBi4Ti415となるように調合し、水を溶媒としてボールミルにより混合撹拌した。こうして得られたセラミックスラリーを乾燥した後、電気炉を用いて900℃で仮焼した。得られた仮焼粉末を、水を溶媒としてボールミルで100時間粉砕した後、乾燥してCaBi4Ti415粒状粒子粉末を得た。図1は、CaBi4Ti415粒状粒子粉末のSEM像を示す。
 また、CaBi4Ti415-0.31wt%MnO粒状粒子粉末は、以下のようにして作製された。すなわち、水酸化カルシウム、酸化ビスマス、酸化チタン、炭酸マンガンを、組成がCaBi4Ti415-0.31wt%MnOとなるように調合し、水を溶媒としてボールミルにより混合撹拌した。炭酸マンガンは後工程で実施される焼結を促進するために用いられ、仮焼後は酸化マンガンとなる。こうして得られたセラミックスラリーを乾燥した後、1200℃で仮焼した。得られた仮焼粉末を、水を溶媒としてボールミルで100時間粉砕した後、乾燥してCaBi4Ti415-0.31wt%MnO粒状粒子粉末を得た。なお、「MnO」の添加量(0.31wt%)は、母組成「CaBi4Ti415」を100wt%としたときの値である。図2は、CaBi4Ti415-0.31wt%MnO粒状粒子粉末のSEM像を示す。
 また、CaBi4Ti415板状粒子粉末は、以下のようにして作製された。すなわち、水酸化カルシウム、酸化ビスマス、酸化チタンを、組成がCaBi4Ti415となるように調合し、水を溶媒としてボールミルにより混合撹拌した。こうして得られたセラミックスラリーを乾燥した後、900℃で仮焼した。得られた仮焼粉末とKClを重量比で1:1となるように混合し、アルミナるつぼ中で1000℃、12時間熱処理した。熱処理後、KClを水で洗浄除去し、得られた粉末を、水を溶媒としてボールミルで粉砕し、乾燥することによってCaBi4Ti415板状粒子粉末を得た。図3は、CaBi4Ti415板状粒子粉末のSEM像を示す。ここで、CaBi4Ti415板状粒子は、長さ寸法Lと厚み寸法Hとの比であるアスペクト比L/Hが3以上であることが好ましい。アスペクト比が3未満の場合には、CaBi4Ti415板状粒子の形状異方性が小さく、後工程での成形時に形状異方性を利用してCaBi4Ti415板状粒子の向きを揃えることが困難となるからである。
 以上のCaBi4Ti415粒状粒子粉末、CaBi4Ti415-0.31wt%MnO粒状粒子粉末、およびCaBi4Ti415板状粒子粉末を、表1のサンプルNo.1~No.10に示す比率で混合し、混合した粉末体積に対して5.7倍の体積の蒸留水を加え、分散剤を粉末100wt%に対し0.8wt%混合して超音波ホモジナイザーにて5分間混合した。CaBi4Ti415の板状粒子粉末だけでなく、粒状粒子粉末を混ぜて用いるのは、焼結後、緻密なセラミックスを得ることができるからである。分散剤は、粉末同士が接合するのを回避するために用いられる。なお、表1中の「粒状粒子/板状粒子比率」は、重量比である。
Figure JPOXMLDOC01-appb-T000001
 こうして得られたセラミックスラリーをスリップキャスト成形することにより、CaBi4Ti415板状セラミック粒子を層状に容易に揃えた。図4に示すように、ろ紙12を載せた素焼きのアルミナ板10の上には、額縁形状の鋳型14がセットされている。セラミックスラリー1を、この鋳型14の内側の長さ方向の一方の側から他方の側に向かって(矢印P方向に)延在するように流し込んで、シート状に鋳込む。アルミナ板10は多孔質で吸水性を持っており、セラミックスラリー1に含まれている蒸留水を吸水するために用いられる。そして、セラミックスラリー1を流し込んだ後、セラミックスラリー1が固まるまでの間、所定の磁場Bを印加して、シート状のセラミック成形体を成形した。磁場Bを印加する方向は、シート状セラミックスラリー1と略同一平面内の一つの方向である。本実施例では、シート状セラミックスラリー1の面内方向は重力方向に対して直交しており、磁場Bの印加方向は、このシート状セラミックスラリー1と略同一平面内で、シート状セラミックスラリー1の延在方向Pと直交する方向に設定されている。磁場Bの強さは、本実施例では12テスラを印加した。こうして得られた成形体を、表1に示す温度で2時間保持して焼成することにより、焼結体を得た。
 得られた焼結体(サンプルNo.1~No.10)を、図5に示すように、それぞれ重力方向Gを法線とする面(T面)、並びに、重力方向Gに平行かつ磁場B印加方向を法線とする面(S2面)でカットし、それぞれの面(T面、S2面)を、CuをターゲットとするX線回折(XRD)測定装置で測定した。測定した結果を図6~図15に示す。図6~図15の各上段には、T面のXRDチャート(XRDパターン)が示され、各下段には、S2面のXRDチャート(XRDパターン)が示されている。
 図6に示すサンプルNo.1は、セラミックスラリーを磁場中でスリップキャスト成形しているが、板状セラミック粒子を含まない焼結体である。そして、図6の上段に示すように、T面でのc軸((001)軸)配向性は認められず、下段に示すように、S2面でのa軸((100)軸),b軸((010)軸)配向性も認められない。なお、本材料では、a軸とb軸がほぼ等価であり、区別は困難である。磁化容易軸はa軸と考えられるが、a軸とb軸がほぼ等価で区別が困難なため、S2面のXRDチャートでも、a軸とb軸を区別せず、一つのピーク強度(図6等に記載の「200、020」のピーク強度)として、配向性の判定を行った。
 図7に示すサンプルNo.2は、板状セラミック粒子を含むセラミックスラリーを、磁場中でスリップキャスト成形している焼結体である。そして、図7の上段に示すように、T面でのc軸((001)軸)配向性が認められ、下段に示すように、S2面でのa軸((100)軸),b軸((010)軸)配向性も認められる。
 図8に示すサンプルNo.3は、板状セラミック粒子を含むが、セラミックスラリーを磁場中でスリップキャスト成形していない焼結体である。そして、図8の上段に示すように、T面でのc軸((001)軸)配向性は認められるが、下段に示すように、S2面でのa軸((100)軸),b軸((010)軸)配向性は認められない。
 図9に示すサンプルNo.4は、板状セラミック粒子を含むセラミックスラリーを、磁場中でスリップキャスト成形している焼結体である。そして、図9の上段に示すように、T面でのc軸((001)軸)配向性が認められ、下段に示すように、S2面でのa軸((100)軸),b軸((010)軸)配向性も認められる。
 図10に示すサンプルNo.5は、板状セラミック粒子を含むが、セラミックスラリーを磁場中でスリップキャスト成形していない焼結体である。そして、図10の上段に示すように、T面でのc軸((001)軸)配向性は認められるが、下段に示すように、S2面でのa軸((100)軸),b軸((010)軸)配向性は認められない。
 図11に示すサンプルNo.6は、板状セラミック粒子を含まず、さらに、セラミックスラリーを磁場中でスリップキャストしていない焼結体である。そして、図11の上段に示すように、T面でのc軸((001)軸)配向性は認められず、下段に示すように、S2面でのa軸((100)軸),b軸((010)軸)配向性も認められない。
 図12~図14にそれぞれ示すサンプルNo.7~No.9は、板状セラミック粒子を含むセラミックスラリーを、磁場中でスリップキャスト成形している焼結体である。そして、図12~図14のそれぞれの上段に示すように、T面でのc軸((001)軸)配向性が認められ、下段に示すように、S2面でのa軸((100)軸),b軸((010)軸)配向性も認められる。
 図15に示すサンプルNo.10は、板状セラミック粒子を含むが、セラミックスラリーを磁場中でスリップキャスト成形していない焼結体である。そして、図15の上段に示すように、T面でのc軸((001)軸)配向性は認められるが、下段に示すように、S2面でのa軸((100)軸),b軸((010)軸)配向性は認められない。
 また、T面のXRDチャートに基づいて計算したc軸の配向度、およびS2面のXRDチャートに基づいて計算したa軸,b軸の配向度を表1に示す。なお、配向度はXRDチャートの2θ=10~80°の範囲で指数付け可能なピークを対象として、Lotgering(ロットゲーリング)法により、以下の数式(1)から算出した。配向度の計算では、前記作製したCaBi4Ti415粒状粒子粉末を基準試料とした。
Figure JPOXMLDOC01-appb-M000002
 ここで、ΣI(HKL)は評価対象のセラミック焼結体における特定の結晶面(HKL)のX線ピーク強度の総和であり、ΣI(hkl)は評価対象のセラミック焼結体の全結晶面(hkl)のX線ピーク強度の総和である。また、S2面における配向度は、a軸とb軸の格子定数がほぼ同じで分離できないため、正方晶として扱って計算した。また、ΣI0(HKL)は基準試料における特定の結晶面(HKL)のX線ピーク強度の総和であり、ΣI0(hkl)は基準試料の全結晶面(hkl)のX線ピーク強度の総和である。
 表1からわかるように、サンプルNo.2、サンプルNo.4およびサンプルNo.7~No.9の焼結体は、T面でのc軸配向度が0.564以上の高い配向度が得られ、S2面でのa軸,b軸配向度も0.231以上の高い配向度が得られている。これは、板状セラミック粒子を含むセラミックスラリーを使用したことにより、スリップキャスト成形時において、c軸が重力方向に配向したからである。また、スリップキャスト成形によりセラミックスラリーをシート状に成形し、そのシート状に成形されたセラミックスラリーに磁場を印加したことにより、磁場印加方向に磁化容易軸と考えられるa軸((100)軸)が配向したからである。この結果、スリップキャスト成形時の重力方向にc軸が配向し、磁場印加方向にa軸が配向した、3軸配向圧電セラミックスが得られた。
 これに対して、サンプルNo.1の焼結体は、T面でのc軸配向度が0.028と低く、S2面でのa軸,b軸配向度も0.025と低い。これは、セラミックスラリーを磁場中でスリップキャスト成形したが、板状セラミック粒子を使用しなかったことにより、c軸配向およびa軸、b軸配向が十分に行われなかったからである。
 また、サンプルNo.3、サンプルNo.5およびサンプルNo.10の焼結体は、T面でのc軸配向度が0.436以上の高い配向度が得られるものの、S2面でのa軸,b軸配向度は0.047以下と低い。これは、板状セラミック粒子を含むが、スリップキャスト成形時に、セラミックスラリーをシート状に成形し、そのシート状に成形されたセラミックスラリーに磁場を印加しなかったことにより、c軸は重力方向に配向したが、磁場印加方向に磁化容易軸と考えられるa軸の配向が十分に行われなかったからである。
 また、サンプルNo.6の焼結体は、T面でのc軸配向度が0.139と低く、S2面でのa軸,b軸配向度も0.028と低い。これは、板状セラミック粒子を含まず、さらに、スリップキャスト成形によりセラミックスラリーをシート状に成形し、そのシート状に成形されたセラミックスラリーに磁場を印加しなかったことにより、c軸配向およびa軸、b軸配向が十分に行われなかったからである。
 以上のことから、スリップキャスト成形によりCaBi4Ti415板状セラミック粒子を含むセラミックスラリーをシート状に成形し、そのシート状に成形されたセラミックスラリーに磁場を印加することにより、圧電セラミック粒子の結晶軸の3軸全てが配向している圧電セラミックスを容易に得ることができることがわかる。
 さらに、本発明に係る圧電セラミックスの製造方法の別の実施形態について、Bi4Ti312セラミックスを例にして説明する。
 まず、原料であるBi4Ti312-0.06wt%MnO粒状粒子粉末、およびBi4Ti312-0.06wt%MnO板状粒子粉末を作製する。Bi4Ti312-0.06wt%MnO粒状粒子粉末は、以下のようにして作製された。すなわち、酸化ビスマス、酸化チタン、炭酸マンガンを、組成がBi4Ti312-0.06wt%MnOとなるように調合し、水を溶媒としてボールミルにより混合撹拌した。こうして得られたスラリーを乾燥したものを、900℃で仮焼した。得られた仮焼粉末を、水を溶媒としてボールミルで16時間粉砕した後、乾燥してBi4Ti312-0.06wt%MnO粒状粒子粉末を得た。
 また、Bi4Ti312-0.06wt%MnO板状粒子粉末は、以下のようにして作製された。すなわち、酸化ビスマス、酸化チタン、炭酸マンガンを、組成がBi4Ti312-0.06wt%MnOとなるように調合し、水を溶媒としてボールミルにより混合撹拌した。こうして得られたセラミックスラリーを乾燥した後、電気炉を用いて900℃で仮焼した。得られた仮焼粉末とKClを重量比で1:1となるように混合し、アルミナるつぼ中で1000℃、12時間熱処理した。熱処理後、KClを水で洗浄除去し、得られた粉末を、水を溶媒としてボールミルで粉砕し、乾燥することによってBi4Ti312-0.06wt%MnO板状粒子粉末を得た。図16は、Bi4Ti312-0.06wt%MnO板状粒子粉末のSEM像を示す。ここで、Bi4Ti312-0.06wt%MnO板状粒子は、長さ寸法Lと厚み寸法Hとの比であるアスペクト比L/Hが3以上であることが好ましい。
 以上のBi4Ti312-0.06wt%MnO粒状粒子粉末、およびBi4Ti312-0.06wt%MnO板状粒子粉末を、表2のサンプルNo.11~No.13に示す比率で混合し、混合した粉末体積に対して5.7倍の体積の蒸留水を加え、分散剤を粉末100wt%に対し0.8wt%混合して、超音波ホモジナイザーにて5分間混合した。
Figure JPOXMLDOC01-appb-T000003
 こうして得られたセラミックスラリーをスリップキャスト成形することにより、Bi4Ti312-0.06wt%MnO板状セラミック粒子を層状に容易に揃えた。すなわち、図4に示すように、セラミックスラリー1を、鋳型14の内側の長さ方向の一方の側から他方の側に向かって(矢印P方向に)延在するように流し込んで、シート状に鋳込む。そして、セラミックスラリー1を流し込んだ後、セラミックスラリー1が固まるまでの間、所定の磁場Bを印加して、シート状のセラミック成形体を成形した。磁場Bを印加する方向は、シート状セラミックスラリー1と略同一平面内の一つの方向である。本実施例では、シート状セラミックスラリー1の面内方向は重力方向に対して直交しており、磁場Bの印加方向は、このシート状セラミックスラリー1と略同一平面内で、シート状セラミックスラリー1の延在方向Pと直交する方向に設定されている。磁場Bの強さは、本実施例では12テスラを印加した。こうして得られた成形体を、表2に示す温度で2時間保持して焼成することにより、焼結体を得た。
 得られた焼結体(サンプルNo.11~No.13)を、それぞれ重力方向を法線とする面(T面)、並びに、重力方向に平行かつ磁場印加方向を法線とする面(S2面)でカットし、それぞれの面(T面、S2面)を、CuをターゲットとするX線回折(XRD)測定装置で測定した。測定した結果を図17~図19に示す。図17~図19の上段には、T面のXRDチャート(XRDパターン)が示され、各下段には、S2面のXRDチャート(XRDパターン)が示されている。
 図17に示すサンプルNo.11は、板状セラミック粒子を含むセラミックスラリーを、磁場中でスリップキャスト成形している焼結体である。そして、図17の上段に示すように、T面でのc軸((001)軸)配向性が認められ、下段に示すように、S2面でのa軸((100)軸),b軸((010)軸)配向性も認められる。
 図18に示すサンプルNo.12は、板状セラミック粒子を含むが、セラミックスラリーを磁場中でスリップキャスト成形していない焼結体である。そして、図18の上段に示すように、T面でのc軸((001)軸)配向性は認められるが、下段に示すように、S2面でのa軸((100)軸),b軸((010)軸)配向性は認められない。
 図19に示すサンプルNo.13は、セラミックスラリーを磁場中でスリップキャスト成形しているが、板状セラミック粒子を含まない焼結体である。そして、図19の上段に示すように、T面でのc軸((001)軸)配向性は認められないが、下段に示すように、S2面でのa軸((100)軸),b軸((010)軸)配向性は認められる。
 また、T面のXRDチャートに基づいて計算したc軸の配向度、およびS2面のXRDチャートに基づいて計算したa軸,b軸の配向度を表2に示す。なお、配向度はXRDチャートの2θ=10~80°の範囲で指数付け可能なピークを対象として、Lotgering(ロットゲーリング)法により、前記数式(1)から算出した。配向度の計算では、前記作製したBi4Ti312-0.06wt%MnO粒状粒子粉末を基準試料とした。また、S2面における配向度は、a軸とb軸の格子定数がほぼ同じで分離できないため、正方晶として扱って計算した。
 表2からわかるように、サンプルNo.11の焼結体は、T面でのc軸配向度が0.678の高い配向度が得られ、S2面でのa軸,b軸配向度も0.486の高い配向度が得られている。これは、板状セラミック粒子を含むセラミックスラリーを使用したことにより、スリップキャスト成形時において、c軸が重力方向に配向したからである。また、スリップキャスト成形によりセラミックスラリーをシート状に成形し、そのシート状に成形されたセラミックスラリーに磁場を印加したことにより、磁場印加方向に磁化容易軸と考えられるa軸((100)軸)が配向したからである。この結果、スリップキャスト成形時の重力方向にc軸が配向し、磁場印加方向にa軸が配向した、3軸配向圧電セラミックスが得られた。
 これに対して、サンプルNo.12の焼結体は、T面でのc軸配向度が0.605の高い配向度が得られるものの、S2面でのa軸,b軸配向度は0.170と低い。これは、板状セラミック粒子を含むが、スリップキャスト成形時に、セラミックスラリーをシート状に成形し、そのシート状に成形されたセラミックスラリーに磁場を印加しなかったことにより、c軸は重力方向に配向したが、磁場印加方向に磁化容易軸a軸の配向が十分に行われなかったからである。
 また、サンプルNo.13の焼結体は、S2面でのa軸,b軸配向度は0.328と高いものの、T面でのc軸配向度が0.239と低い。これは、セラミックスラリーを磁場中でスリップキャスト成形したが、板状セラミック粒子を使用しなかったことにより、a軸は配向したが、c軸の配向が十分に行われなかったからである。
 以上のことから、スリップキャスト成形によりBi4Ti312-0.06wt%MnO板状セラミック粒子を含むセラミックスラリーをシート状に成形し、そのシート状に成形されたセラミックスラリーに磁場を印加することにより、圧電セラミック粒子の結晶軸の3軸全てが配向している圧電セラミックスを容易に得ることができることがわかる。
 さらに、本発明に係る圧電セラミックスの製造方法の別の実施形態について、Bi3TiNbO9-0.08wt%MnOセラミックスを例にして説明する。
 まず、原料であるBi3TiNbO9-0.08wt%MnO粒状粒子粉末、およびBi3TiNbO9-0.08wt%MnO板状粒子粉末を作製する。Bi3TiNbO9-0.08wt%MnO粒状粒子粉末は、以下のようにして作製された。すなわち、酸化ビスマス、酸化チタン、酸化ニオブ、炭酸マンガンを、組成がBi3TiNbO9-0.08wt%MnOとなるように調合し、水を溶媒としてボールミルにより混合撹拌した。こうして得られたスラリーを乾燥したものを、電気炉を用いて900℃で仮焼した。得られた仮焼粉末を、水を溶媒としてボールミルで16時間粉砕した後、乾燥してBi3TiNbO9-0.08wt%MnO粒状粒子粉末を得た。
 また、Bi3TiNbO9-0.08wt%MnO板状粒子粉末は、以下のようにして作製された。すなわち、酸化ビスマス、酸化チタン、酸化ニオブ、炭酸マンガンを、組成がBi3TiNbO9-0.08wt%MnOとなるように調合し、水を溶媒としてボールミルにより混合撹拌した。こうして得られたセラミックスラリーを乾燥した後、900℃で仮焼した。得られた仮焼粉末とKClを重量比で1:1となるように混合し、アルミナるつぼ中で1000℃、12時間熱処理した。熱処理後、KClを水で洗浄除去し、得られた粉末を、水を溶媒としてボールミルで粉砕し、乾燥することによってBi3TiNbO9-0.08wt%MnO板状粒子粉末を得た。図20は、Bi3TiNbO9-0.08wt%MnO板状粒子粉末のSEM像を示す。ここで、Bi3TiNbO9-0.08wt%MnO板状粒子は、長さ寸法Lと厚み寸法Hとの比であるアスペクト比L/Hが3以上であることが好ましい。
 以上のBi3TiNbO9-0.08wt%MnO粒状粒子粉末、およびBi3TiNbO9-0.08wt%MnO板状粒子粉末を、表3のサンプルNo.14~~No.16に示す比率で混合し、混合した粉末体積に対して5.7倍の体積の蒸留水を加え、分散剤を粉末100wt%に対し0.8wt%混合して、超音波ホモジナイザーにて5分間混合した。
Figure JPOXMLDOC01-appb-T000004
 こうして得られたセラミックスラリーをスリップキャスト成形することにより、Bi3TiNbO9-0.08wt%MnO板状セラミック粒子を層状に容易に揃えた。すなわち、図4に示すように、セラミックスラリー1を、鋳型14の内側の長さ方向の一方の側から他方の側に向かって(矢印P方向に)延在するように流し込んで、シート状に鋳込む。そして、セラミックスラリー1を流し込んだ後、セラミックスラリー1が固まるまでの間、所定の磁場Bを印加して、シート状のセラミック成形体を成形した。磁場Bを印加する方向は、シート状セラミックスラリー1と略同一平面内の一つの方向である。本実施例では、シート状セラミックスラリー1の面内方向は重力方向に対して直交しており、磁場Bの印加方向は、このシート状セラミックスラリー1と略同一平面内で、シート状セラミックスラリー1の延在方向Pと直交する方向に設定されている。磁場Bの強さは、本実施例では12テスラを印加した。こうして得られた成形体を、表3に示す温度で2時間保持して焼成することにより、焼結体を得た。
 得られた焼結体(サンプルNo.14~~No.16)を、それぞれ重力方向を法線とする面(T面)、並びに、重力方向に平行かつ磁場印加方向を法線とする面(S2面)でカットし、それぞれの面(T面、S2面)を、CuをターゲットとするX線回折(XRD)測定装置で測定した。測定した結果を図21~図23に示す。図21~図23の上段には、T面のXRDチャート(XRDパターン)が示され、各下段には、S2面のXRDチャート(XRDパターン)が示されている。
 図21に示すサンプルNo.14は、板状セラミック粒子を含むセラミックスラリーを、磁場中でスリップキャスト成形している焼結体である。そして、図21の上段に示すように、T面でのc軸((001)軸)配向性が認められ、下段に示すように、S2面でのa軸((100)軸),b軸((010)軸)配向性も認められる。
 図22に示すサンプルNo.15は、板状セラミック粒子を含むが、セラミックスラリーを磁場中でスリップキャスト成形していない焼結体である。そして、図22の上段に示すように、T面でのc軸((001)軸)配向性は認められるが、下段に示すように、S2面でのa軸((100)軸),b軸((010)軸)配向性は認められない。
 図23に示すサンプルNo.16は、セラミックスラリーを磁場中でスリップキャスト成形しているが、板状セラミック粒子を含まない焼結体である。そして、図23の上段に示すように、T面でのc軸((001)軸)配向性は認められないが、下段に示すように、S2面でのa軸((100)軸),b軸((010)軸)配向性は認められる。
 また、T面のXRDチャートに基づいて計算したc軸の配向度、およびS2面のXRDチャートに基づいて計算したa軸,b軸の配向度を表3に示す。なお、配向度はXRDチャートの2θ=10~80°の範囲で指数付け可能なピークを対象として、Lotgering(ロットゲーリング)法により、前記数式(1)から算出した。配向度の計算では、前記作製したBi3TiNbO9-0.08wt%MnO粒状粒子粉末を基準試料とした。また、S2面における配向度は、a軸とb軸の格子定数がほぼ同じで分離できないため、正方晶として扱って計算した。
 表3からわかるように、サンプルNo.14の焼結体は、T面でのc軸配向度が0.761の高い配向度が得られ、S2面でのa軸,b軸配向度も0.664の高い配向度が得られている。これは、板状セラミック粒子を含むセラミックスラリーを使用したことにより、スリップキャスト成形時において、c軸が重力方向に配向したからである。また、スリップキャスト成形によりセラミックスラリーをシート状に成形し、そのシート状に成形されたセラミックスラリーに磁場を印加したことにより、磁場印加方向に磁化容易軸と考えられるa軸((100)軸)が配向したからである。この結果、スリップキャスト成形時の重力方向にc軸が配向し、磁場印加方向にa軸が配向した、3軸配向圧電セラミックスが得られた。
 これに対して、サンプルNo.15の焼結体は、T面でのc軸配向度が0.411の高い配向度が得られるものの、S2面でのa軸,b軸配向度は0.096と低い。これは、板状セラミック粒子を含むが、スリップキャスト成形時に、セラミックスラリーをシート状に成形し、そのシート状に成形されたセラミックスラリーに磁場を印加しなかったことにより、c軸は重力方向に配向したが、磁場印加方向に磁化容易軸と考えられるa軸の配向が十分に行われなかったからである。
 また、サンプルNo.16の焼結体は、S2面でのa軸,b軸配向度は0.230と高いものの、T面でのc軸配向度が0.103と低い。これは、セラミックスラリーを磁場中でスリップキャスト成形したが、板状セラミック粒子を使用しなかったことにより、a軸は配向したが、c軸の配向が十分に行われなかったからである。
 以上のことから、スリップキャスト成形によりBi3TiNbO9-0.08wt%MnO板状セラミック粒子を含むセラミックスラリーをシート状に成形し、そのシート状に成形されたセラミックスラリーに磁場を印加することにより、圧電セラミック粒子の結晶軸の3軸全てが配向している圧電セラミックスを容易に得ることができることがわかる。
 なお、この発明は、前記実施形態に限定されるものではなく、その要旨の範囲内で種々に変形される。前記実施例では、圧電セラミックスの成形方法として、スリップキャスト成形法を例にして説明したが、板状セラミック粒子を層状に揃えることが可能な方法であれば、特にこれに限定されるものではない。例えば、シート成形法であってもよい。特に、シート成形法は、スリップキャスト成形法と比較して、板状セラミック粒子をより層状に揃え易いため、シート成形法の方が配向度の高い圧電セラミックスが得られる。
 図24は、シート成形法による成形工程を説明するための概略構成図である。テープ状のキャリアフィルム20は、一対の搬送ローラ28a,28bによって矢印P方向に一定速度で搬送される。このキャリアフィルム20上に、塗布装置22を用いて前記セラミックスラリー1を所定厚さで連続塗布し、板状セラミック粒子を層状に揃えた状態でシート状のセラミックスラリー1を形成する。磁場Bを印加する方向は、シート状セラミックスラリー1と略同一平面内の一つの方向である。本実施例では、シート状セラミックスラリー1は重力方向に対して直交しており、磁場Bの印加方向は、このシート状セラミックスラリー1と略同一平面内で、シート状セラミックスラリー1の搬送方向(延在方向)Pと直交する方向(紙面に垂直な方向)に設定されている。こうして得られた成形体を、所定の温度で焼成することにより、焼結体(圧電セラミックス)を得る。
 ここで、板状セラミック粒子を含むセラミックスラリーを使用したことにより、シート成形時においてc軸が重力方向に配向し、また、セラミックスラリーを磁場中でシート成形したことにより、磁場印加方向に磁化容易軸と考えられるa軸((100)軸)が配向する。この結果、シート成形時の重力方向にc軸が配向し、磁場印加方向にa軸が配向した、3軸配向圧電セラミックスが得られる。
 なお、シート成形法として引き上げ法により圧電セラミックスを成形する場合は、T面でのc軸が、少なくとも重力方向でない方向に配向される。

Claims (5)

  1.  板状セラミック粒子を含む圧電セラミックスであって、
     前記圧電セラミックスの所定の断面におけるX線回折パターンに基づいて、Lotgering法により算出した第1軸の配向度が0.30以上であり、
     前記第1軸の配向度が最大値を示す断面を基準面とし、前記基準面に対して直交する断面におけるX線回折パターンに基づいて、Lotgering法により算出した第2軸の配向度が0.20以上であり、
     前記第2軸の配向度は、前記基準面に対して直交する断面のうち、第2軸の配向度が最大値となるような断面における値であること、
     を特徴とする、圧電セラミックス。
  2.  前記板状セラミック粒子が、c軸に平行な方向から見たとき、形状異方性が無いことを特徴とする、請求項1に記載の圧電セラミックス。
  3.  前記板状セラミック粒子が、平均粒径が20μm以下であることを特徴とする、請求項1または請求項2に記載の圧電セラミックス。
  4.  前記板状セラミック粒子がビスマス層状化合物であることを特徴とする、請求項1ないし請求項3のいずれかに記載の圧電セラミックス。
  5.  板状セラミック粒子を含むセラミックスラリーを作製する原料工程と、
     前記セラミックスラリーを、シート成形法またはスリップキャスト成形法を用いてシート状に形成する形成工程と、
     シート状の前記セラミックスラリーに磁場を印加する磁場印加工程と、を備え、
     前記磁場を印加する方向は、シート状のセラミックスラリーと略同一平面内の所定の方向であること、
     を特徴とする、圧電セラミックスの製造方法。
PCT/JP2011/068744 2010-08-26 2011-08-19 圧電セラミックスおよびその製造方法 WO2012026397A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012530646A JPWO2012026397A1 (ja) 2010-08-26 2011-08-19 圧電セラミックスおよびその製造方法
US13/771,895 US20130164533A1 (en) 2010-08-26 2013-02-20 Piezoelectric ceramic and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-189469 2010-08-26
JP2010189469 2010-08-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/771,895 Continuation US20130164533A1 (en) 2010-08-26 2013-02-20 Piezoelectric ceramic and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2012026397A1 true WO2012026397A1 (ja) 2012-03-01

Family

ID=45723397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068744 WO2012026397A1 (ja) 2010-08-26 2011-08-19 圧電セラミックスおよびその製造方法

Country Status (3)

Country Link
US (1) US20130164533A1 (ja)
JP (1) JPWO2012026397A1 (ja)
WO (1) WO2012026397A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121069A (ja) * 2000-10-10 2002-04-23 Kyocera Corp ビスマス層状化合物焼結体およびその製造方法
JP2004006704A (ja) * 2002-03-25 2004-01-08 Taiyo Yuden Co Ltd 圧電セラミック部品の製造方法及び圧電セラミック部品
JP2004007406A (ja) * 2002-03-25 2004-01-08 Murata Mfg Co Ltd 圧電素子およびその製造方法
WO2006043407A1 (ja) * 2004-10-21 2006-04-27 Murata Manufacturing Co., Ltd 非強磁性物質成形体の製造方法、及び非強磁性物質成形体
JP2009058378A (ja) * 2007-08-31 2009-03-19 Murata Mfg Co Ltd 磁気センサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121069A (ja) * 2000-10-10 2002-04-23 Kyocera Corp ビスマス層状化合物焼結体およびその製造方法
JP2004006704A (ja) * 2002-03-25 2004-01-08 Taiyo Yuden Co Ltd 圧電セラミック部品の製造方法及び圧電セラミック部品
JP2004007406A (ja) * 2002-03-25 2004-01-08 Murata Mfg Co Ltd 圧電素子およびその製造方法
WO2006043407A1 (ja) * 2004-10-21 2006-04-27 Murata Manufacturing Co., Ltd 非強磁性物質成形体の製造方法、及び非強磁性物質成形体
JP2009058378A (ja) * 2007-08-31 2009-03-19 Murata Mfg Co Ltd 磁気センサ

Also Published As

Publication number Publication date
JPWO2012026397A1 (ja) 2013-10-28
US20130164533A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
KR101318516B1 (ko) 세라믹, 압전 소자 및 그의 제조 방법
WO2011136136A1 (ja) 配向性max相セラミック及びその製造方法
Gio Enhancement in dielectric, ferroelectric, and piezoelectric properties of BaTiO3-modified Bi0. 5 (Na0. 4K0. 1) TiO3 lead-free ceramics
JP5676910B2 (ja) セラミクスの製造方法および圧電材料
EP2425467A1 (en) Tungsten bronze-type piezoelectric material and production method therefor
Kimura et al. Fabrication of grain‐oriented Bi2WO6 ceramics
Li et al. The preparation and piezoelectric property of textured KNN-based ceramics with plate-like NaNbO3 powders as template
Ge et al. Size dependence of the polarization and dielectric properties of KNbO 3 nanoparticles
JP6075702B2 (ja) 圧電セラミック電子部品
WO2016031995A1 (ja) 圧電磁器およびその製法、ならびに電子部品
Hou et al. The fine-grained KNN–LN ceramics densified from nanoparticles obtained by an economical sol–gel route
JP2011029537A (ja) 積層型電子部品およびその製法
WO2012026397A1 (ja) 圧電セラミックスおよびその製造方法
Liu et al. Effect of heating rate on the structure evolution of (K 0.5 Na 0.5) NbO 3–LiNbO 3 lead-free piezoelectric ceramics
Anjana et al. Low loss, temperature stable dielectric ceramics in ZnNb 2 O 6–Zn 3 Nb 2 O 8 system for LTCC applications
KR101352778B1 (ko) 입자 배향된 nkn계 압전체의 제조방법
JP2006265055A (ja) 圧電セラミックスの製造方法
Gul et al. Influence of particle size and sintering temperatures on electrical properties of 0.94 Na0. 5Bi0. 5TiO3-0.06 BaTiO3 lead free ceramics
JP5967228B2 (ja) 圧電配向セラミックスおよびその製造方法
Kim et al. Microstructure, phase evolution and microwave dielectric properties of Li2O and Ga2O3 doped zinc orthosilicate
JP2002121069A (ja) ビスマス層状化合物焼結体およびその製造方法
Komatsu et al. Grain orientation of Nd-modified bismuth titanate ceramics by forming at low magnetic field
Syazwan et al. Structural, microstructural and dielectric properties of nanostructured mechanically alloyed polycrystalline Bismuth Ferrite (BiFeO 3)
Das et al. Synthesis and Characterization of Mg and Ti Co-Doped Bismuth Ferrite for Piezoelectric Application
JP2001151567A (ja) 結晶配向ビスマス層状ペロブスカイト型磁器組成物及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819860

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012530646

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819860

Country of ref document: EP

Kind code of ref document: A1