WO2012026240A1 - セメント組成物と、混合材の製造方法及びセメント組成物の製造方法 - Google Patents
セメント組成物と、混合材の製造方法及びセメント組成物の製造方法 Download PDFInfo
- Publication number
- WO2012026240A1 WO2012026240A1 PCT/JP2011/066198 JP2011066198W WO2012026240A1 WO 2012026240 A1 WO2012026240 A1 WO 2012026240A1 JP 2011066198 W JP2011066198 W JP 2011066198W WO 2012026240 A1 WO2012026240 A1 WO 2012026240A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- cement composition
- parts
- cement
- producing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/14—Cements containing slag
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28C—PREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28C5/00—Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
- B28C5/003—Methods for mixing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/08—Slag cements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Definitions
- the present invention relates to a cement composition, a method for producing a mixed material, and a method for producing a cement composition.
- a cement composition is manufactured by kneading a plurality of types of materials such as water, cement, aggregate, and admixture (see, for example, Patent Document 1).
- cement is a material that emits a large amount of carbon dioxide (CO 2 ) during the production of the cement composition, and it is difficult to say that environmental load reduction is considered from the environmental viewpoint. For this reason, it is conceivable to add admixtures such as blast furnace slag and fly ash as an alternative to the reduced cement so that the strength of the cement composition is expressed even if the amount of cement used is reduced.
- the amount of cement used is reduced and the amount of admixtures such as blast furnace slag and fly ash is increased as an alternative, the amount of CO 2 emitted during the production of the cement composition can be reduced.
- the strength of the cement composition may be reduced by reducing the amount of cement used.
- the amount of use may vary greatly among a plurality of types of materials to be mixed. For example, the usage amount of a certain material may become extremely small compared to the usage amount of another material. In such a case, even if many types of materials are kneaded at a time, the materials may not be mixed uniformly, and when a cement composition is manufactured, there is a possibility that appropriate strength may not be expressed. There is a problem.
- the present invention has been made in view of the above problems, the purpose of one of which, to provide a cement composition which can achieve both emission reduction and strength development of CO 2 Further, another object thereof is a method for producing a mixed material suitable for producing a cement composition capable of achieving both reduction of CO 2 emission, strength development and quality assurance, and production of the cement composition. It is to provide a method.
- the cement composition of the present invention comprises 5 to 30 parts by weight of cement, 0 to 20 parts by weight of silica fume, 0 to 50 parts by weight of fly ash, and 42 to 75 parts by weight.
- a blast furnace slag 100 parts by weight of a binder (B), water (W) corresponding to a unit water amount of 80 to 185 kg / m 3 , an aggregate (A), and a chemical admixture (AD).
- B binder
- W water
- A aggregate
- AD chemical admixture
- It is a cement composition characterized by having. According to such a cement composition, it is possible to achieve both reduction in CO 2 emission and strength development.
- the unit water amount of the water (W) is 100 to 150 kg / m 3 . According to such a cement composition, it is possible to achieve both reduction of CO 2 emission and strength development.
- the unit cement amount is desirably 18 to 89 kg / m 3 . According to such a cement composition, since the unit cement amount occupying the entire cement composition is small, it is possible to achieve both further reduction of CO 2 emission and strength development.
- the cement is 5 to 20 parts by weight and the fly ash is 5 to 50 parts by weight. According to such a cement composition, it is possible to further improve the balance between reduction of CO 2 emission and strength development.
- the cement is preferably 5 to 15 parts by weight. According to such a cement composition, it is possible to further improve the balance with strength development while further reducing the amount of CO 2 emission.
- a water binder ratio (W / B) which is a weight ratio of the water (W) and the binder (B) is 35% or more and 45% or less.
- the standard curing 28-day compressive strength is desirably 16 to 70 N / mm 2 .
- Such a cement composition preferably has at least one additive selected from alkali components, gypsum, triisopropanolamine, and limestone fine powder.
- the alkali component is preferably calcium hydroxide.
- the gypsum is preferably natural anhydrous gypsum. Moreover, it is desirable that a weight ratio of the gypsum to the binder (B) is 1.2% or more and 6.0% or less. Moreover, it is desirable that the weight ratio of the limestone fine powder to the binder (B) is 0.3% or more and 108.0% or less. Moreover, it is desirable that the weight ratio of the triisopropanolamine to the binder (B) is less than 1.0%.
- the silica fume is preferably a silica fume derived from zirconia.
- the fly ash is preferably a fly ash that satisfies the value of fly ash type I defined by JIS A6201.
- the cement is preferably sulfate-resistant Portland cement. According to such a cement composition, it is possible to improve the fluidity in the fresh properties of the cement composition.
- the method for producing the mixed material of the present invention comprises 5 to 30 parts by weight of cement, 0 to 20 parts by weight of silica fume, 0 to 50 parts by weight of fly ash, 42 to A method for producing a mixed material, comprising mixing 75 parts by weight of blast furnace slag and producing 100 parts by weight of a mixed material.
- the mixed binder includes a quantity of cement, silica fume, fly ash, blast furnace slag suitable for the production of a cement composition capable of achieving both reduction in CO 2 emission, strength development and quality assurance. Therefore, a container such as a silo for storing each material individually is not required. For this reason, it is possible to reduce storage space and cost.
- cement, silica fume, fly ash, and blast furnace slag can be mixed in advance at a factory or the like.
- At least one of three materials 5-30 parts by weight cement, 0-20 parts by weight silica fume, 0-50 parts by weight fly ash, and 42-75 parts by weight blast furnace slag. It is a manufacturing method of the mixed material characterized by mixing the said material and manufacturing a mixed material.
- the cement contains at least one of silica fume, fly ash, and blast furnace slag, and can achieve reduction in CO 2 emission, strength development, and quality assurance. It is possible to produce a mixture that can be used as a binder suitable for the production of the composition.
- the mixed material includes an amount of cement suitable for manufacturing a cement composition capable of achieving both reduction in CO 2 emission, strength development and quality assurance, silica fume, fly ash, and blast furnace slag. Therefore, a container such as a silo for individually storing all materials is not required. For this reason, it is possible to reduce a storage space and cost by reducing the container to be used.
- cement and at least one material of silica fume, fly ash, and blast furnace slag can be mixed in advance at a factory or the like. For this reason, it is possible to accurately measure materials by using equipment such as factories, ensuring a higher quality than when all materials are mixed in a raw plant, and having uniform quality, excellent versatility. It is possible to provide a mixed material. Moreover, since the binder already mixed is used, it is possible to shorten the kneading time in the raw plant. Furthermore, for example, it is possible to manufacture a mixed material suitable as a mixed material mixed with the ground for ground improvement.
- a binder and an aggregate suitable for producing a cement composition capable of achieving both reduction in CO 2 emission, strength development and quality assurance are mixed. It is possible to provide a mixed material.
- At least one of four types of materials 5-30 parts by weight cement, 0-20 parts by weight silica fume, 0-50 parts by weight fly ash, and 42-75 parts by weight blast furnace slag.
- the mixed material includes two or more types of the materials among the four types of materials, a large amount of the material mixed with a small amount of the two or more types of materials is mixed.
- a method for producing a mixed material, wherein the material or the aggregate is preliminarily mixed.
- the mixed material includes a quantity of cement, silica fume, fly ash, blast furnace slag, and an amount suitable for manufacturing a cement composition capable of achieving both reduction in CO 2 emission, strength development and quality assurance. Since at least two kinds of aggregate materials are included, a container such as a silo for individually storing all the materials is not required.
- the mixed material to be manufactured includes one kind of material among the four kinds of materials
- the one kind of material and the aggregate are mixed in advance, so that one kind of material to be mixed is a trace amount. Even if it exists, it is possible to mix uniformly by mixing beforehand with the aggregate mixed in large quantities.
- the mixed material to be manufactured includes two or more types of materials among the four types of materials
- the amount of the mixed materials with a small amount of the two or more types of materials mixed is large. Since the material or aggregate is mixed in advance, even if there is a small amount of material in the two types of materials to be mixed, a small amount of material can be changed into a material that is mixed in a large amount or a material that is mixed in a large amount.
- the aggregate in which one kind of material is mixed is desirably a fine aggregate.
- the mixed material already mixed is used, it is possible to shorten the mixing time in a raw plant. Further, such a mixed material can produce a mixed material suitable as a mixed material mixed with the ground for ground improvement, for example.
- the cement is preferably 5 to 20 parts by weight, and the fly ash is preferably 5 to 50 parts by weight.
- the cement is 5 to 20 parts by weight, since the fly ash is 5-50 parts by weight, achieve both reduction of CO 2 emissions and strength development and quality assurance It is possible to produce a mixture that can be used as a more suitable binder for the production of a cement composition that can be used.
- the cement is preferably 5 to 15 parts by weight.
- the cement is 5 to 15 parts by weight, it is possible to produce a cement composition capable of achieving both reduction in CO 2 emission, strength development and quality assurance. It is possible to produce a mixture that can be used as a suitable binder.
- At least two of the four materials 5-30 parts by weight cement, 0-20 parts by weight silica fume, 0-50 parts by weight fly ash, and 42-75 parts by weight blast furnace slag.
- the above-mentioned material is mixed.
- At least two of the three types of materials of 0 to 20 parts by weight of silica fume, 0 to 50 parts by weight of fly ash, and 42 to 75 parts by weight of blast furnace slag are mixed. This is a method for producing a mixed material.
- a method for producing a mixed material at least two of three types of materials of 0 to 20 parts by weight of silica fume, 0 to 50 parts by weight of fly ash, and 42 to 75 parts by weight of blast furnace slag are used. It is possible to provide a mixed material in which various kinds of materials are mixed. Such a mixed material is also suitable, for example, as a mixed material mixed with the ground for ground improvement.
- the mixed material includes at least two of silica fume, fly ash, and blast furnace slag in an amount suitable for producing a cement composition capable of achieving both reduction in CO 2 emission, strength development, and quality assurance. Since different types of materials are included, no silo or other container is required to store all materials individually.
- the present invention is a method for producing a cement composition, which comprises mixing a mixture produced by the above method for producing a mixture and water (W).
- the unit water amount of the water (W) is 100 to 150 kg / m 3 .
- the unit cement amount is desirably 18 to 89 kg / m 3 .
- CO and cement composition which can achieve both 2 emissions reduction and strength development, we can achieve both reduction and strength development and quality assurance of the CO 2 emissions It is possible to provide a method for producing a mixed material suitable for producing a cement composition and a method for producing a cement composition.
- water, cement, fine aggregate, coarse aggregate and the like are included as a cement composition capable of achieving both reduction in CO 2 emission and strength development according to the present invention.
- a method for producing a mixed material suitable for producing a cement composition capable of achieving both reduction in CO 2 emission, strength development and quality assurance according to the present invention, and Description will be made by taking concrete as an example, which is a cement composition manufactured by the method for manufacturing a cement composition, and includes water, cement, fine aggregate, coarse aggregate, and the like.
- the concrete may first achieve both emission reduction and strength development of CO 2 will be described.
- the amount of cement with a large amount of CO 2 emission is reduced, and an admixture (binding material) with a small amount of CO 2 emission is used as an alternative material for cement.
- an admixture (binding material) with a small amount of CO 2 emission is used as an alternative material for cement.
- the strength of the concrete may be reduced by reducing the amount of cement used.
- a concrete having a material structure that takes into consideration the balance between CO 2 reduction and the fresh property and strength expression of the concrete has been developed by the following studies.
- each sample of concrete in which the mixing ratio and the like are different is indicated by a sample number (sample No.), and the conditions and results for each sample in each table are associated with each other.
- ordinary Portland cement and sulfate-resistant Portland cement are examined as cement
- silica fume derived from ferrosilicon and silica fume derived from zirconia are examined as silica fume
- fly ash defined by JIS A6201 is considered as fly ash.
- Ash type I and fly ash type II were examined.
- the alkali component promotes curing of slag, fly ash, etc. by alkali stimulation.
- a calcium hydroxide solution simulating sludge water is used as the alkali component.
- the gypsum includes dihydrate gypsum, hemihydrate gypsum, and anhydrous gypsum. In this embodiment, anhydrous gypsum was used.
- anhydrous gypsum includes anhydrous gypsum (by-product by-product) that is produced as a by-product during fluorine production, and anhydrous gypsum that is naturally produced.
- natural anhydrous gypsum was used.
- the gypsum is part of the blast furnace slag described above.
- a strength enhancer mainly composed of triisopropanolamine is used.
- the compounding of the chemical admixture (AD) was examined.
- the chemical admixture (AD) include a water reducing agent, a high performance AE water reducing agent, an AE water reducing agent, and a high performance water reducing agent.
- Table 1 shows the details of the raw materials used in this example.
- Table 2 shows the blending amount of each raw material in this example.
- Table 3 shows the proportions of main ingredients of each raw material. The raw materials were mixed as shown in Tables 2 and 3. Note that% in the column of Sample No. in Tables 2 and 3 indicates the ratio of cement (OPC) or (SR) to the binder (OPC (SR) + SF + FA + GGBS).
- the proportion of cement in this comparative example corresponds to the minimum value of the proportion of cement used in blast furnace cement type B (JIS R 5211).
- the minimum value of the cement ratio is 30% (the maximum value of the slag ratio is 70%).
- the cement ratio is set to 30% or less. That is, the amount of cement used is minimized.
- the water binder ratio (W / B) is water (W1 + W2 + W3) / binder (OPC + SF + FA + GGBS).
- the fine aggregate rate (s / a) is fine aggregate (S) / aggregate (S + G1 + G2).
- CaSO 4 is part of GGBS.
- Table 4 is a table showing concrete mixing conditions.
- Table 5 is a table showing concrete production conditions (mixing method).
- Table 6 shows the test results of the fresh property test.
- the slump value is smaller than the target value (15 cm, 21 cm), whereas in this example (sample No. 1 to 4, sample No. 12 to 22), the target is almost the target. Within the range of values, (Sample No. 5 to 11, Sample No. 23 to 35) almost exceeded the target value. That is, regarding the workability, the present example is better than the comparative example.
- the air amount and temperature are almost the same as those in the comparative example.
- Table 7 shows the test results of the compressive strength test.
- Table 8 shows the test results of the dry shrinkage test for sample Nos. 5 to 11 and sample Nos. 23 to 35.
- the amount of cement used with a large amount of CO 2 emission is reduced as much as possible, and the admixture (binding material) with a small amount of CO 2 emission is increased.
- the ratio of cement to the binder is 5-30%, silica fume is 0-20%, fly ash is 0-50%, blast furnace slag is 42-75%, and the unit water volume is 80-185 kg / m. It was set to 3 . Furthermore, at least one additive of calcium hydroxide (Ca (OH) 2 ), gypsum (CaSO 4 ), strength enhancer (SI), and limestone fine powder (LSP), which is an alkaline component, is blended. Gypsum is part of the blast furnace slag. Furthermore, concrete was composed of an aggregate including fine aggregate and coarse aggregate, water, and a chemical admixture such as a high-performance AE water reducing agent. Thereby, the discharge amount of CO 2 is low, it is possible to obtain an excellent concrete fresh properties and strength development.
- cement paste which does not contain a fine aggregate and a coarse aggregate as an aggregate was mentioned as an example as a cement composition
- the cement paste which does not contain a fine aggregate and a coarse aggregate as an aggregate and the mortar which does not contain a coarse aggregate may be sufficient.
- a material to be mixed is contained in a very small amount in the material to be mixed, the material may not be mixed properly depending on the mixing method.
- the mixing method For example, when each material to be mixed is directly fed into the mixer, when it is supplied through a narrow tube connected to the mixer, a small amount of material may adhere to the periphery of the thin tube and hardly be supplied into the mixer. . Therefore, it is suitable for a case where a plurality of types of materials as in the present application are mixed and a material containing a minute amount is mixed, and furthermore, to achieve both reduction of CO 2 emission, strength development and quality assurance. A method for producing concrete that can be used will be described.
- the concrete manufacturing method of the present application suitable for concrete that can achieve both reduction in CO 2 emission, strength development and quality assurance is achieved by using a mixer to combine a binder that is kneaded with water, aggregate, etc. First, mix (premix) in advance before kneading.
- sample No. shown in Table 3 For example, 5 parts by weight of cement, 5 parts by weight of silica fume, 15 parts by weight of fly ash, and 75 parts by weight of blast furnace slag are weighed and mixed to form 100 parts by weight of a binder. As shown in FIG. 1, they are mixed in advance at a factory or the like (mixed material manufacturing step S1).
- a cement, silica fume, fly ash, and blast furnace slag are mixed in advance.
- the above four kinds of materials are not necessarily included.
- at least one of three materials 5-30 parts by weight cement, 0-20 parts by weight silica fume, 0-50 parts by weight fly ash, and 42-75 parts by weight blast furnace slag.
- a mixed material in which materials are mixed in advance may be used as the binder.
- cement silica fume, fly ash, and blast furnace slag
- a binder that is a mixture of at least one of the three types of materials, and any remaining or all remaining materials that are not mixed.
- a mixer When kneading with a mixer, it may be kneaded with water or aggregate.
- a mixed material in which aggregate is mixed in advance in addition to cement, silica fume, fly ash, and blast furnace slag may be used.
- the aggregate is mixed in a larger amount than other materials. Therefore, by mixing at least one of the four materials with the other materials in the state of being mixed with the aggregate, even if the specific material is a minute amount, it becomes almost uniform in advance. It is possible to mix as such. At this time, it is desirable that a minute amount of material is mixed in the fine aggregate as described above.
- the mixed binder includes a quantity of cement, silica fume, fly ash, blast furnace slag suitable for the production of a cement composition capable of achieving both reduction in CO 2 emission, strength development and quality assurance.
- a container such as a silo for individually storing all the materials is not required. For this reason, it is possible to reduce storage space and cost.
- a mixed material in which at least two kinds of materials such as cement, silica fume, fly ash, blast furnace slag, and aggregate are mixed in advance can be mixed in advance in a factory, etc.
- materials can be accurately measured, and higher quality is ensured than when all materials are mixed in a raw plant. Is possible.
- such a mixed material can produce a mixed material suitable not only as a binder, but also as a mixed material mixed with the ground for ground improvement, for example.
- cement is included in one of the materials.
- 0 to 20 parts by weight of silica fume, 0 to 50 parts by weight of fly ash, and 42 to 75 parts by weight of blast furnace slag You may mix at least 2 types of materials of 3 types of materials.
- the mixed material manufactured by such a manufacturing method can be mixed with 5 to 30 parts by weight of cement, aggregate, and water to produce a cement composition, and the cement is mixed with the ground. Therefore, it can be used for ground improvement.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
このようなセメント組成物によれば、CO2の排出量の低減と強度発現との両立を図ることが可能である。
このようなセメント組成物によれば、CO2の排出量のさらなる低減と強度発現との両立を図ることが可能である。
このようなセメント組成物によれば、セメント組成物全体に占める単位セメント量が少ないので、CO2の排出量のさらなる低減と強度発現との両立を図ることが可能である。
このようなセメント組成物によれば、CO2の排出量の低減と強度発現とのバランスをさらに良くすることができる。
このようなセメント組成物によれば、CO2の排出量をより一層低減しつつ強度発現とのバランスをさらに良くすることができる。
前述したようにCO2排出量の多いセメントの使用量を極力少なくし、CO2排出量の少ない結合材を増やすようにした。本実施形態では、高炉スラグ、フライアッシュ、シリカフュームを結合材として用いた。但し、結合材は、CO2排出の他に強度発現やフレッシュ性状に影響するため、セメント、高炉スラグ、フライアッシュ、シリカフューム、水の使用割合のバランスを検討した。
本実施形態では、セメントとして普通ポルトランドセメントと耐硫酸塩ポルトランドセメントとについて検討し、シリカフュームとしては、フェロシリコン起源のシリカフュームとジルコニア起源のシリカフュームについて検討し、フライアッシュとしては、JISA6201により規定されたフライアッシュI種とフライアッシュII種とについて検討した。
強度の向上を図るため、アルカリ成分、石膏、強度増進剤、石灰石微粉末の配合について検討を行った。
アルカリ成分は、アルカリの刺激によりスラグ、フライアッシュなどの硬化を促進させるものである。本実施形態ではアルカリ成分としてスラッジ水を模擬した水酸化カルシウム溶液を使用した。
また、石膏には、二水石膏、半水石膏、無水石膏があるが、本実施形態では無水石膏を使用した。さらに、無水石膏には、フッ素製造時に副生する(産業副産物の)無水石膏や、天然に産出する無水石膏等があるが、本実施形態では天然の無水石膏を使用した。なお、石膏は、前述した高炉スラグの一部とする。
また、本実施形態では、トリイソプロパノールアミンを主成分とする強度増進剤を使用した。
さらに、化学混和剤(AD)の配合について検討を行った。化学混和剤(AD)としては、例えば、減水剤、高性能AE減水剤、AE減水剤、高性能減水剤がある。
CO2を低減するにはセメントを含む結合材の量を低減することが有効である。一方、強度は水結合材比(水量と結合材量の割合)に依存する。従って、結合材の量を低減させる場合の水量(単位水量)も併せて検討した。
表1は本実施例で使用した原料の詳細である。
表4は、コンクリートの配調合条件を示す表である。また、表5は、コンクリートの製造条件(練混ぜ方法)を示す表である。
(1)フレッシュ性状試験(サンプルNo.1~35)
フレッシュ性状試験として、練り上がりのスランプ、空気量、温度を測定した。なお、スランプ及び空気量の試験方法は、それぞれJIS A 1101(BS 1881 Part102)、JIS A 1128(BS 1881 Part106)に準拠した。また、コンクリートの温度は温度計によって測定した。
(2)圧縮強度試験(サンプルNo.1~35)
φ100*200mm(150*150*150mm)の供試体を作成し、20℃(23℃)および50℃で各々水中養生後、JIS A 1108(BS EN 206)に準じて圧縮強度を測定した。
(3)乾燥収縮試験(サンプルNo.5~11,サンプルNo.23~35)
100*100*400mm(75*75*285mm)の供試体を作成して材齢7日まで水中養生後、JIS A 1129(ASTM C 157)に準じて乾燥による収縮変化(長さ変化)を測定した。
[注]上記の( )内の規準及び寸法は、サンプルNo.11の場合に適用した。
フレッシュ性状試験の試験結果を表6に示す。
[注]上記の( )内の温度は、サンプルNo.11の場合に適用した。
表8に示すように、乾燥による長さ変化(収縮量)は、比較例よりも本実施例の方が小さくなっている。つまり、本実施例では、比較例よりもひび割れが生じにくいと言える。
さらに、細骨材及び粗骨材を含む骨材と、水と、高性能AE減水剤等の化学混和剤とによりコンクリートを構成した。
こうすることにより、CO2の排出量が低く、フレッシュ性状や強度発現の優れたコンクリートを得ることが可能である。
上記のようにして、CO2の排出量の低減と強度発現との両立を図ることのできるコンクリートの配合が明らかになった。このようなコンクリートの配合割合は、例えば表3に示すシリカフュームのように、結合材に含まれる割合が全体の2.5%と、他の材料と比較して極めて微量である場合がある。
Claims (29)
- 5~30重量部のセメントと、0~20重量部のシリカフュームと、0~50重量部のフライアッシュと、42~75重量部の高炉スラグと、を有する結合材(B)100重量部と、
単位水量80~185kg/m3に相当する水(W)と、
骨材(A)と、
化学混和剤(AD)と、
を有することを特徴とするセメント組成物。 - 請求項1に記載のセメント組成物であって、
前記水(W)の前記単位水量が100~150kg/m3であることを特徴とするセメント組成物。 - 請求項1または請求項2に記載のセメント組成物であって、
単位セメント量が18~89kg/m3であることを特徴とするセメント組成物。 - 請求項1乃至請求項3に記載のセメント組成物であって、
前記セメントを5~20重量部とし、前記フライアッシュを5~50重量部としたことを特徴とするセメント組成物。 - 請求項1乃至請求項4のいずれかに記載のセメント組成物であって、
前記セメントは、5~15重量部であることを特徴とするセメント組成物。 - 請求項1乃至請求項5のいずれかに記載のセメント組成物であって、
前記水(W)と前記結合材(B)との重量比である水結合材比(W/B)が35%以上45%以下であることを特徴とするセメント組成物。 - 請求項1乃至請求項6のいずれかに記載のセメント組成物であって、
標準養生28日圧縮強度が16~70N/mm2であることを特徴とするセメント組成物。 - 請求項1乃至請求項7のいずれかに記載のセメント組成物であって、
アルカリ成分、石膏、トリイソプロパノールアミン、石灰石微粉のうちの少なくとも1種以上の添加材を有することを特徴とするセメント組成物。 - 請求項8に記載のセメント組成物であって、
前記アルカリ成分は、水酸化カルシウムであることを特徴とするセメント組成物。 - 請求項9に記載のセメント組成物であって、
前記結合材(B)に対する前記水酸化カルシウムの重量比が0.1%未満であることを特徴とするセメント組成物。 - 請求項8乃至請求項10のいずれかに記載のセメント組成物であって、
前記石膏は、天然の無水石膏であることを特徴とするセメント組成物。 - 請求項8乃至請求項11のいずれかに記載のセメント組成物であって、
前記結合材(B)に対する前記石膏の重量比が1.2%以上6.0%以下であることを特徴とするセメント組成物。 - 請求項8乃至請求項12のいずれかに記載のセメント組成物であって、
前記結合材(B)に対する前記石灰石微粉の重量比が0.3%以上108.0%以下であることを特徴とするセメント組成物。 - 請求項8乃至請求項13のいずれかに記載のセメント組成物であって、
前記結合材(B)に対する前記トリイソプロパノールアミンの重量比が1.0%未満であることを特徴とするセメント組成物。 - 請求項1乃至請求項14のいずれかに記載のセメント組成物であって、
前記シリカフュームはジルコニア起源のシリカフュームであることを特徴とするセメント組成物。 - 請求項1乃至請求項15のいずれかに記載のセメント組成物であって、
前記フライアッシュは、JISA6201により規定されたフライアッシュI種の値を満たすフライアッシュであることを特徴とするセメント組成物。 - 請求項1乃至請求項16のいずれかに記載のセメント組成物であって、
前記セメントは、耐硫酸塩ポルトランドセメントであることを特徴とするセメント組成物。 - 5~30重量部のセメントと、0~20重量部のシリカフュームと、0~50重量部のフライアッシュと、42~75重量部の高炉スラグと、を混合して100重量部の混合材を製造することを特徴とする混合材の製造方法。
- 5~30重量部のセメントと、
0~20重量部のシリカフューム、0~50重量部のフライアッシュ、及び、42~75重量部の高炉スラグの3種類の材料のうちの少なくとも1種類の前記材料と、を混合して混合材を製造することを特徴とする混合材の製造方法。 - 請求項18または請求項19に記載の混合材の製造方法にて製造された混合材と、
骨材と、を混合することを特徴とする混合材の製造方法。 - 5~30重量部のセメントと、0~20重量部のシリカフュームと、0~50重量部のフライアッシュと、42~75重量部の高炉スラグとの4種類の材料のうちの少なくとも1種類の前記材料を含む混合材の製造方法であって、
前記混合材が前記4種類の材料のうちの1種類の前記材料を含む場合には、当該1種類の材料と骨材とを予め混合し、
前記混合材が前記4種類の材料のうちの2種類以上の前記材料を含む場合には、当該2種類以上の材料のうちの混合される量が少ない前記材料を、混合される量が多い前記材料または前記骨材に予め混合することを特徴とする混合材の製造方法。 - 請求項18乃至請求項21のいずれかに記載の混合材の製造方法であって、
前記セメントは5~20重量部であり、前記フライアッシュは5~50重量部であることを特徴とする混合材の製造方法。 - 請求項18乃至請求項22のいずれかに記載の混合材の製造方法であって、
前記セメントは、5~15重量部であることを特徴とする混合材の製造方法。 - 5~30重量部のセメントと、0~20重量部のシリカフュームと、0~50重量部のフライアッシュと、42~75重量部の高炉スラグとの4種類の材料のうちの少なくとも2種類の前記材料を混合することを特徴とする混合材の製造方法。
- 0~20重量部のシリカフュームと、0~50重量部のフライアッシュと、42~75重量部の高炉スラグとの3種類の材料のうちの少なくとも2種類の前記材料を混合することを特徴とする混合材の製造方法。
- 請求項18乃至請求項23のいずれかに記載の混合材の製造方法にて製造した混合材と、
水(W)と、を混合することを特徴とするセメント組成物の製造方法。 - 請求項26に記載のセメント組成物の製造方法であって、
単位水量80~185kg/m3に相当する前記水(W)を混合することを特徴とするセメント組成物の製造方法。 - 請求項26または請求項27に記載のセメント組成物の製造方法であって、
前記水(W)の前記単位水量が100~150kg/m3であることを特徴とするセメント組成物の製造方法。 - 請求項27または請求項28に記載のセメント組成物の製造方法であって、
単位セメント量が18~89kg/m3であることを特徴とするセメント組成物の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NZ60873511A NZ608735A (en) | 2010-08-26 | 2011-07-15 | Cement composition, method for producing mixed material and method for producing cement composition |
CA2809225A CA2809225C (en) | 2010-08-26 | 2011-07-15 | Cement composition, method for producing mixed material and method for producing cement composition |
MYPI2013000629A MY178492A (en) | 2010-08-26 | 2011-07-15 | Cement composition, method for producing mixed material and method for producing cement composition |
US13/819,277 US20130213274A1 (en) | 2010-08-26 | 2011-07-15 | Cement composition, method for producing mixed material, and method for producing cement composition |
AU2011294528A AU2011294528B2 (en) | 2010-08-26 | 2011-07-15 | Cement composition, method for producing mixed material and method for producing cement composition |
SG2013012802A SG188253A1 (en) | 2010-08-26 | 2011-07-15 | Cement composition, process for production of mixed material, and process for production of cement composition |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-190103 | 2010-08-26 | ||
JP2010190103A JP5807322B2 (ja) | 2010-08-26 | 2010-08-26 | セメント組成物 |
JP2010232963A JP2012086992A (ja) | 2010-10-15 | 2010-10-15 | 混合材の製造方法及びセメント組成物の製造方法 |
JP2010-232963 | 2010-10-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012026240A1 true WO2012026240A1 (ja) | 2012-03-01 |
Family
ID=45723249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/066198 WO2012026240A1 (ja) | 2010-08-26 | 2011-07-15 | セメント組成物と、混合材の製造方法及びセメント組成物の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130213274A1 (ja) |
AU (1) | AU2011294528B2 (ja) |
CA (1) | CA2809225C (ja) |
MY (1) | MY178492A (ja) |
NZ (1) | NZ608735A (ja) |
SG (1) | SG188253A1 (ja) |
WO (1) | WO2012026240A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015045194A1 (ja) * | 2013-09-25 | 2015-04-02 | 太平洋セメント株式会社 | セメント組成物およびコンクリート |
JP2016141614A (ja) * | 2015-02-05 | 2016-08-08 | 株式会社大林組 | 混合セメント、及び、混合セメントの組成物 |
JP2021155292A (ja) * | 2020-03-27 | 2021-10-07 | 住友大阪セメント株式会社 | 被覆材、被覆材の製造方法、コンクリート成形体、管状成形体、管状成形体の製造方法、及び、スラリー |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9115026B2 (en) * | 2012-08-21 | 2015-08-25 | Taisei Corporation | Cementitious matrix and fiber reinforced cement based mixture |
JP6207935B2 (ja) * | 2013-09-03 | 2017-10-04 | 住友大阪セメント株式会社 | 高強度コンクリートの製造方法 |
PT3119730T (pt) | 2014-03-21 | 2020-07-22 | Carbicrete Inc | Método para fabricar produtos de construção carbonatados e aglutinados a partir de resíduos do fabrico de aço |
JP6251626B2 (ja) * | 2014-04-11 | 2017-12-20 | 株式会社 北岡組 | コンクリート組成物及びコンクリートの製造方法 |
AT517029B1 (de) | 2015-03-24 | 2017-02-15 | Holcim Technology Ltd | Mischzementzusammensetzung |
US20170022105A1 (en) * | 2015-06-23 | 2017-01-26 | Trung Hau Manufacturing Co., Ltd. | Production method of seawall concrete block and the concrete block made with this method |
CN106113273A (zh) * | 2016-07-17 | 2016-11-16 | 临汾市华基新型建材有限公司 | 零排放、零污染的混凝土制造工艺 |
CN112441793A (zh) * | 2020-11-20 | 2021-03-05 | 中铁二十局集团有限公司 | 一种经济环保型混凝土及其制备方法 |
CN112441799A (zh) * | 2020-11-20 | 2021-03-05 | 中铁二十局集团有限公司 | 预制件用沙漠砂混凝土以及预制件 |
CN113213874A (zh) * | 2021-05-26 | 2021-08-06 | 陈前 | 一种节能抗裂混凝土 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03183647A (ja) * | 1989-10-06 | 1991-08-09 | W R Grace & Co | 強化混合セメント組成物および強化ポルトランドセメント組成物 |
JPH10152364A (ja) * | 1996-11-21 | 1998-06-09 | Nkk Corp | 製鋼スラグを利用した水和硬化体 |
JPH1179822A (ja) * | 1997-09-04 | 1999-03-23 | Denki Kagaku Kogyo Kk | 水硬性組成物及びそれを使用したモルタル又はコンク リート |
JP2004203733A (ja) * | 2002-12-11 | 2004-07-22 | Ohbayashi Corp | モルタル・コンクリートの製造方法、及びモルタル・コンクリートの製造に用いられるセメント |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0375081B1 (en) * | 1988-12-23 | 1992-11-11 | Eerste Nederlandse Cement Industrie (Enci) N.V. | Cement, method of preparing such cement and method of making products using such cement |
US5720796A (en) * | 1995-08-08 | 1998-02-24 | W. R. Grace & Co.-Conn. | Process of using roll press grinding aid for granulated blast furnace slag |
CA2177298C (en) * | 1996-05-24 | 2009-04-07 | Henghu Sun | Systematic method for making shotcrete and the like cementitious compositions and such compositions |
FR2901268B1 (fr) * | 2006-05-17 | 2008-07-18 | Lafarge Sa | Beton a faible teneur en ciment |
-
2011
- 2011-07-15 AU AU2011294528A patent/AU2011294528B2/en not_active Ceased
- 2011-07-15 SG SG2013012802A patent/SG188253A1/en unknown
- 2011-07-15 US US13/819,277 patent/US20130213274A1/en not_active Abandoned
- 2011-07-15 WO PCT/JP2011/066198 patent/WO2012026240A1/ja active Application Filing
- 2011-07-15 CA CA2809225A patent/CA2809225C/en not_active Expired - Fee Related
- 2011-07-15 MY MYPI2013000629A patent/MY178492A/en unknown
- 2011-07-15 NZ NZ60873511A patent/NZ608735A/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03183647A (ja) * | 1989-10-06 | 1991-08-09 | W R Grace & Co | 強化混合セメント組成物および強化ポルトランドセメント組成物 |
JPH10152364A (ja) * | 1996-11-21 | 1998-06-09 | Nkk Corp | 製鋼スラグを利用した水和硬化体 |
JPH1179822A (ja) * | 1997-09-04 | 1999-03-23 | Denki Kagaku Kogyo Kk | 水硬性組成物及びそれを使用したモルタル又はコンク リート |
JP2004203733A (ja) * | 2002-12-11 | 2004-07-22 | Ohbayashi Corp | モルタル・コンクリートの製造方法、及びモルタル・コンクリートの製造に用いられるセメント |
Non-Patent Citations (2)
Title |
---|
TAKAYUKI KOJIMA: "Concrete Konwa Zairyo Handbook", 23 April 2004, KABUSHIKI KAISHA NTS, pages: 392 - 393 * |
YOSHIO KASAI ET AL.: "Shin Cement Concrete-yo Konwa Zairyo", 15 January 2007, GIJUTSU SHOIN, pages: 56 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015045194A1 (ja) * | 2013-09-25 | 2015-04-02 | 太平洋セメント株式会社 | セメント組成物およびコンクリート |
JP2016141614A (ja) * | 2015-02-05 | 2016-08-08 | 株式会社大林組 | 混合セメント、及び、混合セメントの組成物 |
JP2021155292A (ja) * | 2020-03-27 | 2021-10-07 | 住友大阪セメント株式会社 | 被覆材、被覆材の製造方法、コンクリート成形体、管状成形体、管状成形体の製造方法、及び、スラリー |
Also Published As
Publication number | Publication date |
---|---|
US20130213274A1 (en) | 2013-08-22 |
AU2011294528B2 (en) | 2015-05-21 |
CA2809225C (en) | 2018-08-07 |
SG188253A1 (en) | 2013-04-30 |
AU2011294528A1 (en) | 2013-04-11 |
MY178492A (en) | 2020-10-14 |
CA2809225A1 (en) | 2012-03-01 |
NZ608735A (en) | 2014-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012026240A1 (ja) | セメント組成物と、混合材の製造方法及びセメント組成物の製造方法 | |
US8133317B2 (en) | Cement additive and cement composition | |
JP5931317B2 (ja) | 水硬性組成物および該水硬性組成物を用いたコンクリート | |
JP5807322B2 (ja) | セメント組成物 | |
JP6338855B2 (ja) | 初期及び長期高強度発現性及び高ひび割れ抵抗性を有するコンクリート組成物及び当該組成物を用いたコンクリート体 | |
JP5673677B2 (ja) | コンクリート | |
JP2011136863A (ja) | 超高強度グラウト組成物 | |
JP5534932B2 (ja) | プレミックスモルタル組成物及びプレミックス無収縮モルタル組成物 | |
JP7294204B2 (ja) | セメント組成物及びセメント組成物の製造方法 | |
JP7369849B2 (ja) | セメント組成物 | |
JP2018172236A (ja) | 速硬コンクリート及びその製造方法 | |
JP2003277111A (ja) | 硬化促進剤及びセメント組成物 | |
JP2012086992A (ja) | 混合材の製造方法及びセメント組成物の製造方法 | |
JP6052352B2 (ja) | 混合材の製造方法及びセメント組成物の製造方法 | |
JP7132692B2 (ja) | モルタル又はコンクリートの表面の黒色化防止方法 | |
JP2023128944A (ja) | 高性能ae減水剤の添加率決定方法 | |
JP6102993B2 (ja) | セメント組成物 | |
JP2012140274A (ja) | ポリマーセメント組成物用強度増進剤及び高強度ポリマーセメント組成物 | |
JP2018076190A (ja) | セメント組成物及びその製造方法 | |
JP2012140295A (ja) | 初期膨張性セメント組成物 | |
JP2007176744A (ja) | 速硬混和材 | |
JP2005060154A (ja) | 急硬性材料及び急硬性セメント組成物 | |
JP4028966B2 (ja) | セメント系組成物の製造方法 | |
JP7334659B2 (ja) | セメント組成物及びセメント組成物の製造方法 | |
JP6011926B2 (ja) | 高強度コンクリート用の混和材および高強度コンクリート用のセメント組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11819708 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2809225 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2011294528 Country of ref document: AU Date of ref document: 20110715 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13819277 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11819708 Country of ref document: EP Kind code of ref document: A1 |