WO2012026002A1 - データ処理装置およびデータ処理システム - Google Patents

データ処理装置およびデータ処理システム Download PDF

Info

Publication number
WO2012026002A1
WO2012026002A1 PCT/JP2010/064363 JP2010064363W WO2012026002A1 WO 2012026002 A1 WO2012026002 A1 WO 2012026002A1 JP 2010064363 W JP2010064363 W JP 2010064363W WO 2012026002 A1 WO2012026002 A1 WO 2012026002A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
reset
porb
circuit
reset circuit
Prior art date
Application number
PCT/JP2010/064363
Other languages
English (en)
French (fr)
Inventor
高橋 将
石倉 裕道
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to US13/816,477 priority Critical patent/US9239612B2/en
Priority to JP2012530468A priority patent/JP5475889B2/ja
Priority to PCT/JP2010/064363 priority patent/WO2012026002A1/ja
Publication of WO2012026002A1 publication Critical patent/WO2012026002A1/ja
Priority to US14/982,954 priority patent/US20160132100A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3296Power saving characterised by the action undertaken by lowering the supply or operating voltage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/24Resetting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/22Modifications for ensuring a predetermined initial state when the supply voltage has been applied
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/22Modifications for ensuring a predetermined initial state when the supply voltage has been applied
    • H03K17/223Modifications for ensuring a predetermined initial state when the supply voltage has been applied in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/22Modifications for ensuring a predetermined initial state when the supply voltage has been applied
    • H03K17/24Storing the actual state when the supply voltage fails
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present invention relates to a data processing device, and more particularly, to a data processing device having a central processing unit and a data processing system using the data processing device.
  • the device has been passively controlled, but recently, one of the devices that is required to perform active control by a data processing device including a central processing unit (CPU) is a power source. There is a meter.
  • CPU central processing unit
  • the conventional power meter has a function to measure and record the amount of electric power generated by the electric power company and supplied to each home via the distribution network, and the electric power usage recorded via a predetermined communication line is stored in the electric power company.
  • the function to transmit was required for the data processing device.
  • power meters used in next-generation distribution networks distribute not only the process of measuring the amount of power distributed by power companies, but also the power from power generation facilities such as solar cells and power storage facilities installed in each home.
  • the data processing device is required to perform a return control for returning to the network and a process for canceling the distribution power amount and the return power amount.
  • the data processing apparatus is put into a low power consumption state in the standby state.
  • a low power consumption state not only the supply of power to the functional units including the central processing unit (CPU) in the data processing device and the stop of the oscillator that generates the operation clock but also the power supply circuit in the data processing device itself. Therefore, it is necessary to suppress the power consumption.
  • a power-on reset operation is detected in the data processing device by detecting a voltage change from the voltage level immediately after the start of supply to the operating voltage level with respect to the power supply voltage supplied from the outside.
  • the POR circuit compares the external power supply voltage with a reference voltage, detects that the external power supply voltage has risen to a predetermined voltage level, and outputs a reset signal to the data processing device. ) Have other circuits initialize.
  • an LVD (Low Voltage Detect) circuit that detects when the external power supply voltage drops to a predetermined voltage level and issues an interrupt signal or reset signal indicating a voltage drop to the central processing unit (CPU) is provided. And causing the central processing unit (CPU) to perform an operation or an initialization operation in response to a voltage drop.
  • LVD Low Voltage Detect
  • POR circuits and LVD circuits include a reference voltage generation circuit using a BGR (Band Gap Reference) circuit that allows a constant amount of steady current to flow. This steady current contributes to the current consumption during the low power consumption state of the data processing apparatus.
  • BGR Band Gap Reference
  • An object of the present invention is to provide a data processing device and a data processing system capable of reducing current consumption in a standby state.
  • the present invention is a data processing device, comprising: a first power-on reset circuit; a second power-on reset circuit that consumes more power and has a higher reset voltage accuracy than the first power-on reset circuit; A storage unit for storing information for setting whether to hold the second power-on reset circuit in an active state or in an inactive state, and according to outputs of the first and second power-on reset circuits A central processing unit that is initialized and sets information in the storage unit.
  • the present invention is a data processing system including a printed wiring board and a data processing device mounted on the printed wiring board.
  • the data processing apparatus includes a first power-on reset circuit, a second power-on reset circuit that consumes more power than the first power-on reset circuit, and has a high reset voltage accuracy, and a second power-on reset circuit.
  • a storage unit that stores information for setting whether to hold the active state or the inactive state, and is initialized according to the outputs of the first and second power-on reset circuits, And a central processing unit for setting information.
  • a first reset signal generation circuit with relatively low power consumption and low detection voltage accuracy and a second reset signal generation circuit with relatively high power consumption and high detection voltage accuracy are provided.
  • An example will be described in which the user can select which of the first reset generation circuit and the second reset generation circuit to use.
  • FIG. 1 is a diagram illustrating an example of a data processing system having a data processing device.
  • a data processing system 1 includes a printed wiring board 18, a data processing device 2 mounted on the printed wiring board 18, a sensor 4, a communication unit 6, a timer 8, and a battery 12. including.
  • the data processor 2 is supplied with the voltage of the battery 12 as the power supply voltage Vcc.
  • FIG. 2 is a schematic configuration diagram of a data processing apparatus having a central processing unit (CPU).
  • FIG. 2 shows functional units unique to the present invention in addition to a general microcomputer configuration.
  • a data processing device 2 includes a central processing unit CPU, a memory 22, a bus 21 for transferring data and addresses, a data transfer unit (direct memory access controller) DMAC, and an analog / digital conversion unit.
  • An ADC, an interrupt controller INTC, a serial communication unit SCIO, a system control unit SYSC, a clock circuit 26, a power supply circuit 24, and a storage unit 28 are included.
  • the central processing unit CPU sequentially executes the programs stored in the memory 22 and controls the operation of the entire data processing unit 2.
  • the serial communication unit SCIO stores data input from the outside in the memory 22.
  • the analog / digital conversion unit ADC converts an analog signal input from the outside into a digital value and stores it in the memory 22.
  • the data transfer unit DMAC controls data transfer via the bus 21 when storing the digital data of the serial communication unit SCIO and the analog / digital conversion unit ADC in the memory 22.
  • the interrupt controller INTC receives an interrupt signal issued by an external or internal functional unit and issues an interrupt to the central processing unit CPU.
  • the central processing unit CPU performs processing according to the interrupt contents.
  • the clock circuit 26 generates an operation clock CLK of the data processing device 2 and supplies an operation clock having a frequency corresponding to each function unit in the data processing device 2 to each function unit.
  • the sensor 4 generates an analog signal to be input to the analog / digital conversion unit ADC.
  • the communication unit 6 performs data communication control with the outside of the system, inputs data to the serial communication unit SCIO, or receives data from the serial communication unit SCIO.
  • the timer 8 issues an interrupt signal to the data processing device 2 as the time set by the data processing device 2 elapses.
  • the data processing device 2 is supplied with an operating power supply voltage Vcc by an externally connected battery.
  • the degree of battery deterioration (decrease in electromotive force if it is a primary battery, decrease in current supply capacity due to decrease in power storage capacity due to repeated charge and discharge if it is a secondary battery) is a data processing device. 2 affects the operation stability.
  • the power supply circuit 24 steps down or boosts the external supply power supply voltage Vcc, generates an internal operating voltage Vdd, and supplies it to a central processing unit (CPU) and the like.
  • the voltage detection unit 10 generates power-on reset circuits PORa and PORb that generate a power-on reset operation in response to a voltage change in the external power supply voltage Vcc, and a voltage decrease in the external power supply voltage Vcc.
  • a voltage drop detection circuit LVD for generating an interrupt signal or a reset signal.
  • the power-on reset circuit PORa is a voltage detection circuit with low power consumption and low detection accuracy
  • the power-on reset circuit PORb is a voltage detection circuit with high power consumption and high detection accuracy compared to the power-on reset circuit PORa. .
  • the power-on reset circuit PORa detects that the external supply power supply voltage Vcc has risen to a certain voltage (PORa detection voltage Vrst (PORa)) between 2.0 V and 2.5 V, for example, and cancels the reset signal NPORA.
  • the reset signal NPORA is output upon detecting that the voltage has dropped to the same voltage.
  • the power-on reset circuit PORb detects that the external supply power supply voltage Vcc has increased to, for example, 2.6 V ⁇ 0.1 V (PORb detection voltage Vrst (PORb)), and cancels the reset signal NPORB or sets it to the same voltage.
  • the reset signal NPORB is output upon detecting that the voltage has dropped.
  • FIG. 3 is a block diagram showing the configuration of the voltage detector and the power supply circuit.
  • voltage detection unit 10 includes a current source CS, a band gap reference circuit BGR, a reference voltage generation circuit VREFBUF, power-on reset circuits PORa and PORb, and a voltage drop detection circuit LVD.
  • the current source CS is a constant current source for generating the bias voltage Vbias, and is always on while the data processing device 2 is powered on.
  • the bandgap reference circuit BGR is a reference voltage generation circuit having a small voltage dependency and temperature dependency.
  • the reference voltage generation circuit VREFBUF is a reference voltage generation circuit that performs a trimming process based on the reference voltage VrefI from the bandgap reference circuit BGR and generates a desired reference voltage VrefO.
  • the data processing device 2 is a circuit that cuts off the supply of operating power to some or all of the internal circuits (stops supply) to reduce standby current when transitioning to the standby mode (low power consumption state)
  • a scheme can be adopted. For example, in a predetermined low power consumption mode such as the software standby mode, the power of the built-in ROM that does not require power supply is shut off, and in a predetermined low power consumption mode such as the deep standby mode, in addition to the internal ROM Thus, the operation power supply of all or a part of the internal logic such as the CPU can be cut off. Further, when it is not necessary to hold the RAM data, the operation power supply of the RAM can be cut off.
  • the power supply circuit 24 includes a plurality of step-down circuits VDC.
  • the step-down circuit VDC is a circuit that generates a chip internal power supply voltage using the reference voltage from the reference voltage generation circuit VREFBUF.
  • the step-down circuit VDC stops operating in the low power consumption state (deep standby mode).
  • the power-on reset circuits PORa and PORb are used during the normal operation period, and the power-on reset circuit PORb can be selected to be stopped during the low power consumption period. This selection is performed by setting a register in the storage unit 28.
  • the current source CS, the band gap reference circuit BGR, and the reference voltage generation circuit VREFBUF shown in FIG. 3 need to be operated.
  • the current source CS needs to operate.
  • the band gap reference circuit BGR and the reference voltage generation circuit VREFBUF are further stopped, current consumption in the band gap reference circuit BGR and the reference voltage generation circuit VREFBUF can be further reduced.
  • FIG. 4 is a circuit diagram showing an example of the power-on reset circuit PORa.
  • FIG. 5 is a circuit diagram showing an example of the power-on reset circuit PORb and the voltage drop detection circuit LVD.
  • power-on reset circuit PORa includes a P channel MOS transistor 42 connected between a node to which power supply voltage Vcc is applied and node N1 and having a gate connected to a ground node, node N1 and ground node And a depletion type N channel MOS transistor 44 and a capacitor 46 connected between node N1 and the ground node.
  • the power-on reset circuit PORa further includes inverters 48 and 50 connected in series and having an input connected to the node N1 and outputting a reset signal NPORA.
  • the reset signal NPORA indicates a reset at a low level and indicates a reset release at a high level.
  • a current source CS, a band gap reference circuit BGR, and a reference voltage generation circuit VREFBUF are shared by the power-on reset circuit PORb and the voltage drop detection circuit LVD.
  • the voltage Vbias generated by the current source CS is supplied to the band gap reference circuit BGR, the reference voltage generation circuit VREFBUF, and the voltage comparators 58 and 62.
  • the voltage comparator 58 receives the output of the voltage dividing circuit 54 at the plus input node, receives the output of the bandgap reference circuit BGR at the minus input node, and compares them. As shown in FIG. 3, the voltage comparator 58 may receive the output of the reference voltage generation circuit VREFBUF instead of the output of the band gap reference circuit BGR.
  • the voltage comparator 58 outputs a reset signal NPRB.
  • the reset signal NPORB indicates a reset at a low level and a reset release at a high level.
  • the selector 56 selects one of a plurality of divided voltage outputs from the voltage dividing circuit 54.
  • the selector 60 selects one of the plurality of outputs of the reference voltage generation circuit VREFBUF.
  • the output of the selector 56 and the output of the selector 60 are input to the voltage comparator 62.
  • the voltage comparator 62 receives the output of the selector 56 at the plus input node, receives the output of the selector 60 at the minus input node, and compares them.
  • the voltage comparator 62 outputs a reset signal NLVD.
  • the reset signal NLVD indicates reset at a low level and indicates reset release at a high level.
  • FIG. 6 is a diagram for explaining the output characteristics of the power-on reset circuit PORa. 4 and 6, since the threshold voltage of depletion type N-channel MOS transistor 44 is a negative value, it can be made conductive even when the power supply voltage is 0V. Therefore, when the power supply voltage Vcc is 0V, the node N1 is kept at 0V. For this reason, initialization of the node N1 can be easily realized without using a passive element such as a resistor.
  • the node N1 is kept at 0V while the gate-source voltage Vgs of the P-channel MOS transistor 42 is equal to or lower than the threshold voltage of the P-channel MOS transistor 42.
  • This output becomes high level indicating reset release when the power supply voltage Vcc is between 2.0V and 2.5V.
  • a steady current flows from the node to which the power supply voltage Vcc is applied toward the ground node, but this value is small, for example, about 0.1 ⁇ A. This steady current is determined mainly depending on the driving force of the transistor 44.
  • the steady current can be kept small.
  • the use of the transistor 44 is advantageous in terms of cost because the proportion of the area occupied on the chip is smaller than the use of the resistance element.
  • the power-on reset circuit PORa varies when the reset release voltage VHa is in the range of 2.0V to 2.5V. This is because the balance between the threshold voltage of the inverter 48 and the driving force of the transistors 42 and 44 varies due to variations in process parameters.
  • FIG. 7 is a diagram for explaining the output characteristics of the power-on reset circuit PORb.
  • the output of power-on reset circuit PORb is fixed at a low level.
  • Steady currents of 1 ⁇ A, 1 ⁇ A, and 0.2 ⁇ A flow through the voltage dividing circuit 54, the band gap reference circuit BGR, and the current source CS in FIG. Therefore, the power-on reset circuit PORb has a higher reset release voltage accuracy than the power-on reset circuit PORa, but also has a large steady current.
  • the power-on reset circuit PORa can determine the reset output from a state in which the power supply voltage is lower than that of the power-on reset circuit PORb, and requires less steady current. Therefore, the advantages of the power-on reset circuit PORa (reset can be applied even when the power supply voltage is low and the steady current is small) and the advantages of the power-on reset circuit PORb (high accuracy of the reset release voltage) are adopted. It is desirable to adopt such a configuration.
  • FIG. 8 is a block diagram showing main blocks of the data processing apparatus. The operation of shifting the data processing apparatus to the standby mode will be described with reference to this block diagram.
  • the central processing unit CPU stops the power-on reset circuit PORb along with the transition to the standby mode (low power consumption state) prior to execution of the transition command to the standby mode (low power consumption state). Then, the register in the storage unit 28 is set so that only the power-on reset circuit PORa operates.
  • the system control unit SYSC refers to the corresponding register in the storage unit 28, deactivates the control signal SON, and decreases the voltage.
  • the detection circuit LVD and the power-on reset circuit PORb are stopped. As a result, in the standby mode (low power consumption state), only the power-on reset circuit PORa continuously operates in the voltage detection unit 10.
  • system control unit SYSC refers to the setting of the corresponding register in the storage unit 28 and supplies power to the central processing unit CPU, data transfer unit DMAC, memory, analog / digital conversion unit ADC, and serial communication unit SCIO.
  • the power supply circuit 24 and the clock circuit 26 are instructed to stop supply and stop clock supply, respectively.
  • the central processing unit CPU sets the registers before the transition to the standby state, if the user changes the program, the power consumption state in the standby state can be changed as appropriate.
  • FIG. 8 illustrates an example in which the system control unit SYSC is configured to be able to operate at a lower voltage than the central processing unit CPU, and executes control of return from the standby mode (low power consumption state).
  • a control unit operable at such a low voltage may be provided.
  • FIG. 9 is an operation waveform diagram for explaining the low power consumption period and the operation period.
  • the external supply power supply voltage Vcc from the battery is higher than the detection voltage Vrst (PORa) of the power-on reset circuit PORa.
  • the power-on reset circuit PORa continues to monitor the voltage level of the external supply voltage.
  • the power-on reset circuit PORb When the data processing device 2 returns from the standby mode (low power consumption state) in response to a signal from the sensor 4 or the like of FIG. 1 connected to the outside of the data processing device 2 at time t1, the power-on reset circuit PORb Also resume operation. That is, even if an instruction to stop the power-on reset circuit PORb is written in the corresponding register of the storage unit 28 before the transition to the standby mode (low power consumption state), the register is cleared in response to the output of the reset signal NPORA. Accordingly, in response to this, the system control unit SYSC activates the signal SON, so that the power-on reset circuit PORb starts its operation.
  • the data processing device 2 If the external power supply voltage Vcc is higher than the detection voltage Vrst (PORb) at this time, the data processing device 2 returns from the standby mode (low power consumption state) and performs processing corresponding to the signal input from the outside. Can be performed (operation period T1).
  • the power-on reset circuit PORa outputs the reset signal NPORA.
  • the data processing device 2 performs hardware (not by software reset of the CPU but by the system controller SYSC)
  • the registers and other latch circuits in the circuit are initialized and wait for the reset signal to be released.
  • the power-on reset circuit PORb responds to the output of the reset signal NPORA. Since it is cleared, the operation starts.
  • the power-on reset circuit PORb is activated according to the reset output of the power-on reset circuit PORa. Processing is possible.
  • the power-on reset circuit PORa When the external power supply voltage Vcc supplied by the battery returns to a state higher than the detection voltage Vrst (PORa) immediately after the reset signal is output as at time t3, the power-on reset circuit PORa outputs a reset release signal. Is possible. When the external power supply voltage Vcc returns to a state higher than the detection voltage Vrst (PORb), the power-on reset circuit PORb can also output a reset release signal. Accordingly, the data processing device 2 is released from reset and can be restarted.
  • an unexpected value may be set in a latch circuit or the like in the circuit of the data processing device 2.
  • FIG. 10 is a flowchart for explaining processing relating to a power-on reset operation executed by the data processing apparatus.
  • step S1 when the normal power is turned on in step S1, the data processing apparatus shifts to the operation period of step S2 after executing the power-on reset operation.
  • the power-on reset operation at this time is executed in a state where both the power-on reset circuit PORa and the power-on reset circuit PORb are activated.
  • step S2 the data processing device 2 executes the data processing operation in the normal mode in which the power-on reset is canceled.
  • This process is a process of a control program to be performed as a system at the time, and is, for example, a recording process of power usage executed every 24 hours in the example of the power meter.
  • the central processing unit CPU and other peripheral circuits are activated and operate as necessary.
  • step S2 When the operation of step S2 is completed, the data processing device 2 shifts from the normal mode to the standby mode in the low power consumption state. Before the transition to the standby mode, in step S3, the central processing unit CPU sets registers in the storage unit 28 so that only the power-on reset circuit PORa is used and the power-on reset circuit PORb is not used. . In addition, settings for stopping the voltage drop detection circuit LVD, the power supply circuit 24, and the clock circuit 26 are also written to the corresponding registers in the storage unit 28 as necessary.
  • step S4 the central processing unit CPU executes a command to shift to the standby mode in the low power consumption state.
  • step S5 referring to the register settings in the storage unit 28, the system control unit SYSC stops the power-on reset circuit PORb and the voltage drop detection circuit LVD, and also stops the power supply circuit 24 and the clock circuit 26. By stopping the power-on reset circuit PORb and the voltage drop detection circuit LVD, the power consumption in the standby mode is further reduced as compared with the prior art.
  • step S6 the system control unit SYSC enters an input waiting state for a return factor from the standby mode (low power consumption state). As a return factor from the standby mode (low power consumption state), a return request from the communication unit 6 in FIG.
  • step S6 when there is a return factor input, the process proceeds to step S10, and when there is no return factor input, the process proceeds to step S7.
  • step S7 it is determined whether or not the external power supply voltage Vcc is lower than the detection voltage Vrst (PORa) of the power-on reset circuit PORa. Specifically, system control unit SYSC makes a determination based on whether or not output NPORA of power-on reset circuit PORa is at the L level. In step S7, if the external power supply voltage Vcc is not lower than the detection voltage Vrst (PORa), the process returns to step S6 and the detection of the presence of the return factor is continued again.
  • step S7 if a drop in the external power supply voltage Vcc is observed, reset is executed in step S8, the register setting in the storage unit 28 is cleared, and the process proceeds to step S9.
  • step S9 as in step S7, it is determined whether or not the external supply power supply voltage Vcc is lower than the detection voltage Vrst (PORa) of the power-on reset circuit PORa.
  • step S9 when the external power supply voltage Vcc is not lower than the detection voltage Vrst (PORa) (when the voltage is increased), the process proceeds to step S10. On the other hand, if the external power supply voltage Vcc is still lower than the detection voltage Vrst (PORa) in step S9, the process returns to step S8 again and the reset is continued.
  • step S 10 the system control unit SYSC activates the control signal SON of FIG. 5 to turn on the switch 52 and supply the power supply voltage to the circuit 70.
  • the power-on reset circuit PORb and the voltage drop detection circuit LVD start operating.
  • the power supply circuit and the clock circuit are activated and supply of the power supply voltage and the clock signal is started.
  • step S11 it is determined whether or not the external supply power supply voltage Vcc is lower than the detection voltage Vrst (PORb) of the power-on reset circuit PORb.
  • system control unit SYSC makes a determination based on whether or not output NPORB of power-on reset circuit PORb is at the L level.
  • step S11 If the external power supply voltage Vcc is lower than the detection voltage Vrst (PORb) of the power-on reset circuit PORb in step S11, the reset is executed in step S12, the register setting in the storage unit 28 is cleared, and the process goes to step S13. Processing proceeds. In step S13, as in step S11, it is determined whether or not the external supply power supply voltage Vcc is lower than the detection voltage Vrst (PORb) of the power-on reset circuit PORb.
  • step S13 when the external power supply voltage Vcc is lower than the detection voltage Vrst (PORb) of the power-on reset circuit PORb, step S12 is executed again to enter a reset release waiting state. If the externally supplied power supply voltage Vcc continues to be lower than the detection voltage Vrst (PORb) of the power-on reset circuit PORb, the reset is not released as shown in the period T3 in FIG.
  • step S13 when the external power supply voltage Vcc becomes higher than the detection voltage Vrst (PORb) of the power-on reset circuit PORb, the reset is released and the process returns to step S10.
  • step S10 the power-on reset circuit PORb and the voltage drop detection circuit LVD start operating, the power supply circuit and the clock circuit are activated, and supply of the power supply voltage and clock signal is started. If not lower than the detection voltage Vrst (PORb) of the power-on reset circuit PORb, the process proceeds to step S2, and the process of the operation period of the data processing device is executed.
  • step S9 may be performed as part of the power-on (step S1) processing.
  • the process waits until the external supply voltage Vcc rises (continues to execute step S9).
  • the data processing device 2 includes a first power-on reset circuit PORa shown in FIG. 4 and a power consumption higher than that of the first power-on reset circuit and a high reset voltage accuracy.
  • a second power-on reset circuit PORb shown in FIG. 5 a storage unit 28 for storing information for setting whether to hold the second power-on reset circuit PORb in an active state or in an inactive state,
  • the CPU includes a central processing unit CPU that is initialized according to the outputs of the first and second power-on reset circuits PORa and PORb and sets information in the storage unit.
  • the data processing device 2 has a normal mode and a standby mode.
  • the central processing unit CPU uses the first power-on reset circuit PORb while the second power-on reset circuit PORb is deactivated, and the power supply voltage has decreased to a voltage satisfying the reset condition.
  • Information is set in the storage unit 28 to perform detection.
  • the central processing unit CPU sets the information in the storage unit 28 to deactivate the second power-on reset circuit PORb before shifting from the normal mode to the standby mode, and then shifts to the standby mode. To do.
  • the data processing device 2 further includes a system control unit SYSC that receives the outputs of the first and second power-on reset circuits PORa and PORb.
  • the system control unit SYSC indicates the reset release after the output of the first power-on reset circuit PORa indicates reset (YES in step S9) and the second power-on during the standby mode. If the reset circuit PORb has been deactivated, the second power-on reset circuit PORb is activated (step S10), and the output of the second power-on reset circuit PORb indicates reset release (step S13). (NO in step S11 and NO in step S11), the reset of the central processing unit CPU is released.
  • the data processing device 2 has a normal mode and a standby mode.
  • the central processing unit CPU can select whether to use the second power-on reset circuit PORb during the standby mode by setting information in the storage unit 28 before shifting from the normal mode to the standby mode. . That is, in the embodiment, the example in which the second power-on reset circuit PORb is not used in the standby mode has been described. However, if the program executed by the central processing unit CPU is changed, the second power-on reset circuit PORb is also set in the standby mode. You can also change the behavior to use.
  • the first power-on reset circuit PORa includes an inverter 48 that is connected to the input of an internal node N1 that is charged with the potential of the power supply node rising and the potential of which rises.
  • the second power-on reset circuit PORb includes a comparison circuit 58 that compares the output of the band gap reference circuit BGR with the output of the voltage dividing circuit 54 that divides the voltage of the power supply node.
  • 1 data processing system 2 data processing device, 4 sensor, 6 communication unit, 8 timer, 10 voltage detection unit, 12 battery, 18 printed wiring board, 21 bus, 22 memory, 24 power supply circuit, 26 clock circuit, 28 storage unit , 42, 44 transistor, 46 capacitor, 48, 50 inverter, 52 switch, 54 voltage divider circuit, 56, 60 selector, 58, 62 voltage comparator, 70 circuit, ADC analog / digital converter, BGR bandgap reference circuit, CPU central processing unit, CS current source, DMAC data transfer unit, INTC interrupt controller, LVD voltage drop detection circuit, PORa, PORb power-on reset circuit, SCIO serial communication unit, SYSC system control unit, DC step-down circuit, VREFBUF reference voltage generating circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)
  • Electronic Switches (AREA)
  • Microcomputers (AREA)

Abstract

 データ処理装置は、第1のパワーオンリセット回路(PORa)と、第1のパワーオンリセット回路よりも消費電力が多くかつリセット電圧精度の高い第2のパワーオンリセット回路(PORb)と、第2のパワーオンリセット回路(PORb)を活性状態に保持するか非活性状態にしておくかを設定するための情報を記憶する記憶部(28)と、第1および第2のパワーオンリセット回路(PORa,PORb)の出力に応じて初期化されるとともに、記憶部(28)に情報を設定する中央処理装置(CPU)とを備える。

Description

データ処理装置およびデータ処理システム
 本発明は、データ処理装置に関し、特に、中央処理装置を有するデータ処理装置、および当該データ処理装置を用いたデータ処理システムに関する。
 従来、受動的な制御を行なっていた装置であるが、最近になって、中央処理装置(CPU)を含むデータ処理装置により能動的な制御を行なうことが求められている装置の1つに電力メータがある。
 従来の電力メータでは、電力会社が発電し配電網を介して各家庭に供給された電力の使用量を測定し記録する機能、また所定の通信回線を介して記録した電力使用量を電力会社に送信する機能がデータ処理装置に求められていた。
 一方、次世代配電網に使用される電力メータでは、電力会社から配電された電力量を測定する処理のみならず、各家庭に備えられた太陽電池等の発電設備または蓄電設備からの電力を配電網に還流させる還流制御を行なう処理、および配電電力量と還流電力量の相殺の処理等がデータ処理装置に求められる。
 電力メータのようなシステムにおいても、電力メータ自身が消費する電力を極力抑制することが求められている。また、このような処理を行なうデータ処理装置では、処理を行なっている期間に対して待機状態にある期間が比較的長くなる。そのため、処理を行なっている期間の消費電力を抑制するだけでなく、待機状態にある期間の消費電力をも抑制することが必要となる。
 待機状態にあるデータ処理装置の消費電力を最も少なくするために、待機状態においてデータ処理装置を低消費電力状態にすることが行なわれている。かかる低消費電力状態では、データ処理装置内の中央処理装置(CPU)を含む機能部への電源供給の停止や動作クロックを生成する発振器の停止のみならず、データ処理装置内の電源回路自体での消費電力をも抑制することが必要となる。
特開2008-040559号公報 特開2008-040543号公報
 またこのようなデータ処理装置では、外部から供給される電源電圧に対して、供給開始直後の電圧レベルから動作電圧レベルに至るまでの電圧変化を検知して、データ処理装置内部でパワーオンリセット動作を行なうためのパワーオンリセット(POR:Power ON Reset)回路を有するものがある。このPOR回路は外部供給電源電圧を基準電圧と比較して、外部供給電源電圧が所定の電圧レベルにまで上昇したことを検知してリセット信号をデータ処理装置内部へ出力し、中央処理装置(CPU)他の回路の初期化動作を行なわせる。
 また逆に外部供給電源電圧が所定の電圧レベルまで低下した場合にそれを検知して、中央処理装置(CPU)へ電圧低下を示す割込み信号またはリセット信号を発行するLVD(Low Voltage Detect)回路を有し、中央処理装置(CPU)に電圧低下に応じた動作や初期化動作を行なわせる。
 これらPOR回路やLVD回路は、一定量の定常電流を流すBGR(Band Gap Reference)回路を用いた基準電圧発生回路を含む。この定常電流はデータ処理装置の低消費電力状態中の消費電流の一因となっている。
 この発明の目的は、待機状態における消費電流を低減することができるデータ処理装置およびデータ処理システムを提供することである。
 この発明は、要約すると、データ処理装置であって、第1のパワーオンリセット回路と、第1のパワーオンリセット回路よりも消費電力が多くかつリセット電圧精度の高い第2のパワーオンリセット回路と、第2のパワーオンリセット回路を活性状態に保持するか非活性状態にしておくかを設定するための情報を記憶する記憶部と、第1および第2のパワーオンリセット回路の出力に応じて初期化されるとともに、記憶部に情報を設定する中央処理装置とを備える。
 この発明は、他の局面では、データ処理システムであって、プリント配線基板と、プリント配線基板に搭載されたデータ処理装置とを備える。データ処理装置は、第1のパワーオンリセット回路と、第1のパワーオンリセット回路よりも消費電力が多くかつリセット電圧精度の高い第2のパワーオンリセット回路と、第2のパワーオンリセット回路を活性状態に保持するか非活性状態にしておくかを設定するための情報を記憶する記憶部と、第1および第2のパワーオンリセット回路の出力に応じて初期化されるとともに、記憶部に情報を設定する中央処理装置とを含む。
 本発明によれば、待機状態におけるデータ処理装置およびデータ処理システムの消費電流を低減させることができる。
データ処理装置を有するデータ処理システムの一例を示した図である。 中央処理装置(CPU)を有するデータ処理装置の概略構成図である。 電圧検出部と電源回路の構成を示したブロック図である。 パワーオンリセット回路PORaの一例を示した回路図である。 パワーオンリセット回路PORbおよび電圧低下検出回路LVDの一例を示した回路図である。 パワーオンリセット回路PORaの出力特性を説明するための図である。 パワーオンリセット回路PORbの出力特性を説明するための図である。 データ処理装置の主要ブロックを示したブロック図である。 低消費電力期間と動作期間を説明するための動作波形図である。 データ処理装置で実行されるパワーオンリセット動作に関する処理を説明するためのフローチャートである。
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 本実施の形態では、相対的に消費電力量が小さく検出電圧精度が低い第1のリセット信号生成回路と、相対的に消費電力量が大きく検出電圧精度が高い第2のリセット信号生成回路とを有し、第1のリセット生成回路と第2のリセット生成回路のいずれを使用するかをユーザが選択可能とする例を説明する。
 図1は、データ処理装置を有するデータ処理システムの一例を示した図である。
 図1を参照して、データ処理システム1は、プリント配線基板18と、プリント配線基板18上に搭載されたデータ処理装置2と、センサ4と、通信部6と、タイマ8と、バッテリ12とを含む。データ処理装置2にはバッテリ12の電圧が電源電圧Vccとして供給される。
 図2は、中央処理装置(CPU)を有するデータ処理装置の概略構成図である。図2には一般的なマイクロコンピュータの構成に加えて、本願発明に特有の機能部を記載している。
 図2を参照して、データ処理装置2は、中央処理装置CPUと、メモリ22と、データやアドレスを転送するバス21と、データ転送部(ダイレクトメモリアクセスコントローラ)DMACと、アナログ・デジタル変換部ADCと、割込コントローラINTCと、シリアル通信部SCIOと、システム制御部SYSCと、クロック回路26と、電源回路24と、記憶部28とを含む。
 中央処理装置CPUは、メモリ22に格納されているプログラムを順次実行し、データ処理装置2全体の動作制御を行なう。シリアル通信部SCIOは、外部から入力されたデータをメモリ22に格納する。アナログ・デジタル変換部ADCは、外部から入力されたアナログ信号をデジタル値に変換し、メモリ22に格納する。データ転送部DMACは、シリアル通信部SCIOやアナログ・デジタル変換部ADCのデジタルデータをメモリ22に格納する際に、バス21を経由したデータ転送を制御する。
 割込コントローラINTCは、外部または内部の機能部が発行する割込信号を受けて、中央処理装置CPUに対する割込を発行させる。中央処理装置CPUは割込内容に応じた処理を行なう。クロック回路26は、データ処理装置2の動作クロックCLKを発生させ、データ処理装置2内部の各機能部に応じた周波数の動作クロックを各機能部に供給する。
 図1、図2を参照して、センサ4は、アナログ・デジタル変換部ADCに入力されるアナログ信号を生成する。通信部6は、システム外部とのデータ通信制御を行い、データをシリアル通信部SCIOに入力しまたはシリアル通信部SCIOからデータを受領する。またタイマ8は、データ処理装置2の設定する時間の経過に応じてデータ処理装置2に対して割込み信号を発行する。そしてデータ処理装置2には、外部に接続されたバッテリにより動作電源電圧Vccが供給される。
 このような構成のシステムにおいて、バッテリの劣化(一次電池であれば起電力の低下、二次電池であれば充放電の繰返しによる蓄電能力の低下による電流供給能力の低下)の程度がデータ処理装置2の動作安定に影響を及ぼす。
 電源回路24は、外部供給電源電圧Vccを降圧または昇圧し、内部動作電圧Vdd等を生成して中央処理装置(CPU)等へ供給する。電圧検出部10は、外部供給電源電圧Vccの電圧変化に応じてパワーオンリセット動作の契機となるリセット信号を生成するパワーオンリセット回路PORaおよびPORbと、外部供給電源電圧Vccの電圧低下に応じて割込み信号またはリセット信号を生成する電圧低下検出回路LVDとを有する。
 パワーオンリセット回路PORaは、消費電力量が小さく検出精度が低い電圧検出回路であり、パワーオンリセット回路PORbはパワーオンリセット回路PORaと比較すると消費電力量が大きく検出精度が高い電圧検出回路である。
 パワーオンリセット回路PORaは、外部供給電源電圧Vccがたとえば2.0V~2.5Vの間のある電圧(PORa検出電圧Vrst(PORa))に上昇してきたことを検知してリセット信号NPORAを解除し、または同電圧にまで低下してきたことを検知してリセット信号NPORAを出力する。
 パワーオンリセット回路PORbは、外部供給電源電圧Vccがたとえば2.6V±0.1V(PORb検出電圧Vrst(PORb))に上昇してきたことを検知してリセット信号NPORBを解除し、または同電圧にまで低下してきたことを検知してリセット信号NPORBを出力する。
 図3は、電圧検出部と電源回路の構成を示したブロック図である。
 図3を参照して、電圧検出部10は、カレントソースCSと、バンドギャップリファレンス回路BGRと、基準電圧発生回路VREFBUFと、パワーオンリセット回路PORa,PORbと、電圧低下検出回路LVDとを含む。
 カレントソースCSは、バイアス電圧Vbias生成用の定電流源であり、データ処理装置2に電源が投入されている間は、常時ON状態とされている。バンドギャップリファレンス回路BGRは、電圧依存性および温度依存性の小さい基準電圧発生回路である。基準電圧発生回路VREFBUFは、バンドギャップリファレンス回路BGRからの基準電圧VrefIを元にトリミング処理を行ない所望の基準電圧VrefOを生成する基準電圧発生回路である。
 データ処理装置2では、待機モード(低消費電力状態)に遷移するときに内部回路の一部、または、全部への動作電源の供給を遮断(供給の停止)し、待機電流の低減を図る回路方式を採用することができる。例えば、ソフトウェアスタンバイモードのような所定の低消費電力モードにおいて、電源供給を必要としない内蔵ROMの電源を遮断し、また、ディープスタンバイモードのような所定の低消費電力モードにおいて、内蔵ROMに加えてCPU等の内部ロジックの全部又は一部の動作電源を遮断し、さらにはRAMのデータを保持する必要がない場合には当該RAMの動作電源も遮断したりすることができる。
 電源回路24は、複数の降圧回路VDCを含む。降圧回路VDCは、基準電圧発生回路VREFBUFからの基準電圧でチップ内部電源電圧を発生する回路である。降圧回路VDCは、低消費電力状態(ディープスタンバイモード)時は動作を停止する。
 通常の動作期間中はパワーオンリセット回路PORa及びPORbを使用し、低消費電力期間においてはパワーオンリセット回路PORbの停止を選択可能とする。この選択は、記憶部28中のレジスタの設定によって行なわれる。
 パワーオンリセット回路PORbおよび電圧低下検出回路LVDを使用する場合には、図3のカレントソースCSとバンドギャップリファレンス回路BGRと基準電圧発生回路VREFBUFとが動作している必要がある。一方で、パワーオンリセット回路PORbおよび電圧低下検出回路LVDを使用せず、パワーオンリセット回路PORaのみ使用する場合には、カレントソースCSのみ動作していればよい。待機モードの低消費電力期間にパワーオンリセット回路PORbおよび電圧低下検出回路LVDを停止することで、パワーオンリセット回路PORbおよび電圧低下検出回路LVDでの消費電流が削減できる。そしてバンドギャップリファレンス回路BGRと基準電圧発生回路VREFBUFをさらに停止させれば、バンドギャップリファレンス回路BGRと基準電圧発生回路VREFBUFでの消費電流をさらに削減することが出来る。
 図4は、パワーオンリセット回路PORaの一例を示した回路図である。
 図5は、パワーオンリセット回路PORbおよび電圧低下検出回路LVDの一例を示した回路図である。
 図4を参照して、パワーオンリセット回路PORaは、電源電圧Vccが与えられるノードとノードN1との間に接続されゲートに接地ノードが接続されるPチャネルMOSトランジスタ42と、ノードN1と接地ノードとの間に接続されるおよびディプレッション型のNチャネルMOSトランジスタ44と、ノードN1と接地ノードとの間に接続されるキャパシタ46とを含む。
 パワーオンリセット回路PORaは、さらに、ノードN1に入力が接続され、リセット信号NPORAを出力する直列に接続されたインバータ48,50を含む。リセット信号NPORAは、ロウレベルでリセットを示し、ハイレベルでリセット解除を示す。
 図5を参照して、カレントソースCSと、バンドギャップリファレンス回路BGRと、基準電圧発生回路VREFBUFとがパワーオンリセット回路PORbと電圧低下検出回路LVDに共用される。カレントソースCSが発生する電圧Vbiasが、バンドギャップリファレンス回路BGRと、基準電圧発生回路VREFBUFと、電圧比較器58,62とに供給される。
 電圧比較器58は、プラス入力ノードに分圧回路54の出力を受け、マイナス入力ノードにバンドギャップリファレンス回路BGRの出力を受け、これらを比較する。なお、図3で示したように、バンドギャップリファレンス回路BGRの出力に代えて基準電圧発生回路VREFBUFの出力を電圧比較器58が受けるように構成しても良い。
 電圧比較器58は、リセット信号NPORBを出力する。リセット信号NPORBは、ロウレベルでリセットを示し、ハイレベルでリセット解除を示す。
 セレクタ56は分圧回路54の複数の分圧電圧出力のいずれかを選択する。セレクタ60は、基準電圧発生回路VREFBUFの複数の出力のいずれかを選択する。セレクタ56の出力と、セレクタ60の出力とが電圧比較器62に入力される。電圧比較器62は、プラス入力ノードにセレクタ56の出力を受け、マイナス入力ノードにセレクタ60の出力を受け、これらを比較する。電圧比較器62は、リセット信号NLVDを出力する。リセット信号NLVDは、ロウレベルでリセットを示し、ハイレベルでリセット解除を示す。
 図6は、パワーオンリセット回路PORaの出力特性を説明するための図である。
 図4、図6を参照して、ディプレッション型のNチャネルMOSトランジスタ44の閾値電圧はマイナスの値のため、電源電圧が0Vであっても導通状態にすることができる。このため、電源電圧Vccが0Vの時は、ノードN1は0Vに保たれている。このため、抵抗などのパッシブ素子を用いることなくノードN1の初期化を容易に実現できる。
 電源投入後、PチャネルMOSトランジスタ42のゲート-ソース間電圧VgsがPチャネルMOSトランジスタ42の閾値電圧以下の間は、ノードN1は0Vに保たれる。
 外部から供給される電源電圧Vccが0Vからインバータ48,50の動作可能な電圧VLaに上昇すると、パワーオンリセット回路PORaの出力はロウレベルに確定する。
 その後、電源電圧Vccが上昇し、トランジスタ42の駆動力がトランジスタ44の駆動力よりも大きくなるとノードN1の電位は上昇を開始する。そして、ノードN1の電位がインバータ48の閾値電圧を超えると出力がロウレベルからハイレベルに反転しリセットが解除される。
 この出力がリセット解除を示すハイレベルになるのは、電源電圧Vccが2.0V~2.5Vの間である。図4のトランジスタ42,44の電流経路には、電源電圧Vccが与えられるノードから接地ノードに向けて定常電流が流れるが、この値は小さく例えば0.1μA程度である。この定常電流は、主にトランジスタ44の駆動力に依存して定まる。
 ディプレッション型のNチャネルMOSトランジスタ44の寸法を調整すれば定常電流を小さく抑えることができる。また、トランジスタ44を使用するほうが、抵抗素子を使用するよりもチップ上に占める面積の割合が小さく、コスト的にも有利である。
 しかし、パワーオンリセット回路PORaは、リセット解除電圧VHaが2.0V~2.5Vの範囲でばらつきが生じる。これは、プロセスパラメータの変動により、インバータ48の閾値電圧、トランジスタ42,44の駆動力のバランスが変動するからである。
 図7は、パワーオンリセット回路PORbの出力特性を説明するための図である。
 図7を参照して、外部から供給される電源電圧Vccが0Vから電圧VLbに上昇すると、パワーオンリセット回路PORbの出力はロウレベルに確定する。そしてこの出力がリセット解除を示すハイレベルに遷移するのは、電源電圧Vccが2.6V±0.1Vの間である。すなわち、Vcc=2.5V~2.7Vの間でリセットが解除される。図5の分圧回路54、バンドギャップリファレンス回路BGR、カレントソースCSには、それぞれ1μA,1μA,0.2μAの定常電流が流れる。したがって、パワーオンリセット回路PORbは、パワーオンリセット回路PORaと比較すると、リセット解除の電圧精度は高いが、定常電流も多い。
 パワーオンリセット回路PORaは、パワーオンリセット回路PORbよりも電源電圧が低い状態からリセット出力を確定させることができ、定常電流も少なくて済む。したがって、パワーオンリセット回路PORaの利点(電源電圧が低くてもリセットをかけることができることと定常電流が小さいこと)を採用し、パワーオンリセット回路PORbの利点(リセット解除電圧の精度が高いこと)を採用するように構成することが望ましい。
 図8は、データ処理装置の主要ブロックを示したブロック図である。このブロック図を用いてデータ処理装置の待機モードへの移行動作を説明する。
 図8を参照して、中央処理装置CPUは、待機モード(低消費電力状態)への遷移命令実行に先行して、待機モード(低消費電力状態)への遷移と共にパワーオンリセット回路PORbが停止し、パワーオンリセット回路PORaのみが動作するように記憶部28中のレジスタに設定をする。中央処理装置CPUが待機モード(低消費電力状態)への遷移命令を実行することにより、システム制御部SYSCは記憶部28中の対応するレジスタを参照し、制御信号SONを非活性化して電圧低下検出回路LVDとパワーオンリセット回路PORbを停止させる。その結果、待機モード(低消費電力状態)では、電圧検出部10のなかではパワーオンリセット回路PORaのみが継続して動作する。
 またシステム制御部SYSCは、同様に記憶部28中の対応するレジスタの設定を参照して、中央処理装置CPU、データ転送部DMAC、メモリ、アナログ・デジタル変換部ADC、シリアル通信部SCIOへの電源供給の停止、クロック供給の停止を電源回路24とクロック回路26へそれぞれ指示する。
 なお、待機状態への遷移前に中央処理装置CPUがレジスタの設定を行なうので、ユーザがプログラムを変えれば待機状態での電力消費の状況を適宜変更することもできる。
 図8では、システム制御部SYSCが中央処理装置CPUよりも低電圧動作可能に構成され、待機モード(低消費電力状態)からの復帰の制御を実行する例を説明したが、電源回路24の中にこのような低電圧で動作可能な制御部を設けてもよい。
 図9は、低消費電力期間と動作期間を説明するための動作波形図である。
 図8、図9を参照して、時刻t1以前の待機モード(低消費電力状態)において、バッテリからの外部供給電源電圧Vccが、パワーオンリセット回路PORaの検出電圧Vrst(PORa)よりも高い間は、パワーオンリセット回路PORaは外部供給電圧の電圧レベルの監視を継続する。
 時刻t1において、データ処理装置2の外部に接続される図1のセンサ4等からの信号に応じてデータ処理装置2が待機モード(低消費電力状態)から復帰をする場合、パワーオンリセット回路PORbも動作を再開する。すなわち、待機モード(低消費電力状態)への遷移前に記憶部28の対応レジスタにパワーオンリセット回路PORbの停止指示が書き込まれていた場合でも、リセット信号NPORAの出力に応答してレジスタがクリアされるので、これに応答してシステム制御部SYSCが信号SONを活性化させるので、パワーオンリセット回路PORbは動作を開始する。
 この時点において外部供給電源電圧Vccが検出電圧Vrst(PORb)よりも高い場合は、データ処理装置2は待機モード(低消費電力状態)から復帰をして外部から入力された信号に対応した処理を行なうことができる(動作期間T1)。
 ただし、時刻t5のように、パワーオンリセット回路PORbが動作を再開した時点で外部供給電源電圧Vccが検出電圧Vrst(PORb)よりも低下していた場合、パワーオンリセット回路PORbはリセット信号を出力する(動作期間T3)。システム制御部SYSCは、このときはリセットを解除しない。したがってリセット解除電圧の精度は維持される。
 また時刻t3のように、待機モード中(低消費電力状態中)に外部供給電源電圧Vccが検出電圧Vrst(PORa)よりも低下した場合、パワーオンリセット回路PORaはリセット信号NPORAを出力する。パワーオンリセット回路PORaまたはパワーオンリセット回路PORbからのリセット信号NPORA,NPORBの出力に応答して、データ処理装置2は、ハードウエア的に(CPUのソフトウェアリセットではなくシステム制御部SYSCによって)メモリやレジスタ、その他回路中のラッチ回路の初期化を行ない、リセット信号が解除されるのを待つ。このときパワーオンリセット回路PORbは、待機モード(低消費電力状態)への遷移前に記憶部28の対応レジスタに停止指示が書き込まれていた場合でも、リセット信号NPORAの出力に応答してレジスタがクリアされるので、動作を開始する。
 なお、システム制御部SYSCは、中央処理装置CPUよりも動作電源電圧の下限が低くなるように構成されているので、パワーオンリセット回路PORaのリセット出力に応じてパワーオンリセット回路PORbを活性化させる処理が可能である。
 時刻t3のように、リセット信号の出力後すぐに、バッテリが供給する外部供給電源電圧Vccが検出電圧Vrst(PORa)よりも高い状態に戻った場合はパワーオンリセット回路PORaはリセット解除信号を出力することが可能である。また外部供給電源電圧Vccが検出電圧Vrst(PORb)よりも高い状態に戻った場合はパワーオンリセット回路PORbもリセット解除信号を出力できる。したがって、データ処理装置2はリセット解除され、再起動が可能である。
 時刻t3のような一時的な電圧低下が生じた場合、データ処理装置2の回路中のラッチ回路等に不測の値が設定されることが生じる。外部供給電源電圧Vccの低下を検知してリセット動作を行なうことで、データ処理装置2の動作の不安定化を防止することができる。
 一方で、時刻t5のように、外部からの信号入力またはリセット信号の出力によりデータ処理装置2が待機モード(低消費電力状態)から復帰をした時点において、外部供給電源電圧Vccが検出電圧Vrst(PORb)よりも低いか、またはさらに検出電圧Vrst(PORa)よりも低い場合は、パワーオンリセット回路PORbおよびパワーオンリセット回路PORaの一方または両方ともがリセット解除信号を出力できない。システム制御部SYSCは、リセット解除を行なわないため、データ処理装置2はリセット解除されることなくそのまま停止状態となる(動作期間T3)。
 図10は、データ処理装置で実行されるパワーオンリセット動作に関する処理を説明するためのフローチャートである。
 図10を参照して、ステップS1において通常の電源投入が行なわれると、データ処理装置はパワーオンリセット動作実行後ステップS2の動作期間に移行する。このときのパワーオンリセット動作は、パワーオンリセット回路PORaおよびパワーオンリセット回路PORbがともに活性化された状態で実行される。
 ステップS2においては、パワーオンリセットが解除された通常モードでデータ処理装置2はデータ処理動作を実行する。この処理は、当該時間にシステムとして行なうべき制御プログラムの処理であり、たとえば電力メータの例では24時間ごとに実行される電力使用量の記録処理である。ステップS2の動作期間では、中央処理装置CPUやその他周辺回路が必要に応じて起動され動作を行なう。
 ステップS2の動作が完了するとデータ処理装置2は通常モードから低消費電力状態の待機モードに移行する。待機モードへの移行の前にステップS3において、パワーオンリセット回路PORaのみ使用して、パワーオンリセット回路PORbは不使用とするように、中央処理装置CPUが記憶部28中のレジスタの設定を行なう。また、電圧低下検出回路LVD、電源回路24、クロック回路26を停止する設定も必要に応じて記憶部28中の対応するレジスタに書き込まれる。
 その後、ステップS4において低消費電力状態の待機モードに遷移する命令を中央処理装置CPUが実行する。ステップS5では、記憶部28中のレジスタの設定を参照し、システム制御部SYSCがパワーオンリセット回路PORb、電圧低下検出回路LVDを停止させ、また電源回路24やクロック回路26も停止させる。パワーオンリセット回路PORb、電圧低下検出回路LVDを停止させることにより、従来よりも待機モードにおける消費電力は一層低減される。
 ステップS6では、システム制御部SYSCは、待機モード(低消費電力状態)からの復帰要因の入力待ち状態となる。待機モード(低消費電力状態)からの復帰要因としては、図1の通信部6からの復帰要求、タイマ8による割込等が考えられる。ステップS6において、復帰要因の入力が有った場合にはステップS10に処理が進み、復帰要因の入力が無かった場合にはステップS7に処理が進む。
 ステップS7では、パワーオンリセット回路PORaの検出電圧Vrst(PORa)より外部供給電源電圧Vccが低いか否かが判断される。具体的には、システム制御部SYSCがパワーオンリセット回路PORaの出力NPORAがLレベルであるか否かに基づいて判断を行なう。ステップS7において、外部供給電源電圧Vccが検出電圧Vrst(PORa)より低下していない場合にはステップS6に処理が戻り再び復帰要因の入力の有無の検出が継続される。
 ステップS7において、外部供給電源電圧Vccの低下が見られた場合には、ステップS8においてリセットが実行され、記憶部28のレジスタの設定はクリアされステップS9に処理が進む。ステップS9では、ステップS7と同様に、パワーオンリセット回路PORaの検出電圧Vrst(PORa)より外部供給電源電圧Vccが低いか否かが判断される。
 ステップS9において、外部供給電源電圧Vccが検出電圧Vrst(PORa)より低下していない場合(電圧が上昇した場合)にはステップS10に処理が進む。一方、ステップS9において、まだ外部供給電源電圧Vccが検出電圧Vrst(PORa)より低下している場合には、再びステップS8に処理がもどりリセットが継続される。
 ステップS10では、システム制御部SYSCが図5の制御信号SONを活性化してスイッチ52を導通させ、回路70に電源電圧の供給を行なう。これに伴い、パワーオンリセット回路PORbおよび電圧低下検出回路LVDが動作を開始する。また、電源回路やクロック回路も活性化され電源電圧やクロック信号の供給を開始する。
 続いてステップS11においては、外部供給電源電圧Vccがパワーオンリセット回路PORbの検出電圧Vrst(PORb)よりも低いか否かが判断される。具体的には、システム制御部SYSCがパワーオンリセット回路PORbの出力NPORBがLレベルであるか否かに基づいて判断を行なう。
 ステップS11において、外部供給電源電圧Vccがパワーオンリセット回路PORbの検出電圧Vrst(PORb)よりも低い場合には、ステップS12にリセットが実行され、記憶部28のレジスタの設定はクリアされステップS13に処理が進む。ステップS13では、ステップS11と同様に、パワーオンリセット回路PORbの検出電圧Vrst(PORb)より外部供給電源電圧Vccが低いか否かが判断される。
 ステップS13において、パワーオンリセット回路PORbの検出電圧Vrst(PORb)より外部供給電源電圧Vccが低い場合には、再びステップS12が実行されリセットの解除待ち状態となる。外部供給電源電圧Vccがパワーオンリセット回路PORbの検出電圧Vrst(PORb)よりも低い状態が続いていれば、図9の期間T3で示したようにリセット解除がされない状態となる。
 ステップS13において、外部供給電源電圧Vccがパワーオンリセット回路PORbの検出電圧Vrst(PORb)よりも高くなった場合には、リセットが解除されステップS10に処理が戻る。
 ステップS10でパワーオンリセット回路PORbおよび電圧低下検出回路LVDが動作を開始し、電源回路やクロック回路も活性化され電源電圧やクロック信号の供給を開始した後に、ステップS11において外部供給電源電圧Vccがパワーオンリセット回路PORbの検出電圧Vrst(PORb)より低下していなかった場合には、ステップS2に処理が進みデータ処理装置の動作期間の処理が実行される。
 なおステップS9からステップS13の処理は、電源投入(ステップS1)処理の一部として行って良い。その場合、ステップS9では外部供給電圧Vccがパワーオンリセット回路PORaの検出電圧Vrst(PORa)よりも低い場合は、外部供給電圧Vccが上昇するまで待機する(ステップS9を実行し続ける)事となる。
 以上の構成とすることにより、データ処理装置が待機モード(低消費電力状態)にある期間に必要とする電流量を低減することができる。それによりデータ処理装置に外部供給電圧を供給するバッテリの電流供給能力の低下を抑制することができ、結果としてシステム全体の稼働時間の長時間化を実現することができる。
またバッテリではなく電流供給能力の低下が生じない商用電源からの電源供給であったとしてもシステム全体としての低消費電力化は実現することができる。
 最後に、再び図を参照して本実施の形態のデータ処理装置を総括する。図2、図8に示すように、データ処理装置2は、図4に示す第1のパワーオンリセット回路PORaと、第1のパワーオンリセット回路よりも消費電力が多くかつリセット電圧精度の高い図5に示す第2のパワーオンリセット回路PORbと、第2のパワーオンリセット回路PORbを活性状態に保持するか非活性状態にしておくかを設定するための情報を記憶する記憶部28と、第1および第2のパワーオンリセット回路PORa,PORbの出力に応じて初期化されるとともに、記憶部28に情報を設定する中央処理装置CPUとを備える。
 好ましくは、データ処理装置2は、通常モードと待機モードとを有する。中央処理装置CPUは、待機モードにおいては第2のパワーオンリセット回路PORbを非活性化した状態で第1のパワーオンリセット回路PORbを使用して電源電圧がリセット条件を満たす電圧に低下したことの検出を行なうように記憶部28に情報を設定する。
 より好ましくは、中央処理装置CPUは、通常モードから待機モードに移行する前に記憶部28の情報を第2のパワーオンリセット回路PORbを非活性状態にするように設定してから待機モードに移行する。
 さらに好ましくは、図8に示すように、データ処理装置2は、第1および第2のパワーオンリセット回路PORa,PORbの出力を受けるシステム制御部SYSCをさらに備える。図10で説明したように、システム制御部SYSCは、待機モード中に第1のパワーオンリセット回路PORaの出力がリセットを示した後にリセット解除を示し(ステップS9でYES)かつ第2のパワーオンリセット回路PORbが非活性化されていた場合には、第2のパワーオンリセット回路PORbを活性化し(ステップS10)、第2のパワーオンリセット回路PORbの出力がリセット解除を示したとき(ステップS13でNOかつステップS11でNO)に中央処理装置CPUのリセットを解除する。
 好ましくは、データ処理装置2は、通常モードと待機モードとを有する。中央処理装置CPUは、通常モードから待機モードに移行する前に記憶部28の情報を設定することにより、第2のパワーオンリセット回路PORbを待機モード中に使用するか否かを選択可能である。すなわち、実施例では待機モード中は第2のパワーオンリセット回路PORbを使用しない例を説明したが、中央処理装置CPUが実行するプログラムを変更すれば待機モード中でも第2のパワーオンリセット回路PORbを使用するようにも動作を変更できる。
 好ましくは、図4に示すように、第1のパワーオンリセット回路PORaは、電源ノードの電位の上昇に伴って充電され電位が上昇する内部ノードN1が入力に接続されたインバータ48を含む。図5に示すように、第2のパワーオンリセット回路PORbは、バンドギャップリファレンス回路BGRの出力と電源ノードの電圧を分圧する分圧回路54の出力とを比較する比較回路58を含む。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 データ処理システム、2 データ処理装置、4 センサ、6 通信部、8 タイマ、10 電圧検出部、12 バッテリ、18 プリント配線基板、21 バス、22 メモリ、24 電源回路、26 クロック回路、28 記憶部、42,44 トランジスタ、46 キャパシタ、48,50 インバータ、52 スイッチ、54 分圧回路、56,60 セレクタ、58,62 電圧比較器、70 回路、ADC アナログ・デジタル変換部、BGR バンドギャップリファレンス回路、CPU 中央処理装置、CS カレントソース、DMAC データ転送部、INTC 割込コントローラ、LVD 電圧低下検出回路、PORa,PORb パワーオンリセット回路、SCIO シリアル通信部、SYSC システム制御部、VDC 降圧回路、VREFBUF 基準電圧発生回路。

Claims (7)

  1.  第1のパワーオンリセット回路(PORa)と、
     前記第1のパワーオンリセット回路よりも消費電力が多くかつリセット電圧精度の高い第2のパワーオンリセット回路(PORb)と、
     前記第2のパワーオンリセット回路(PORb)を活性状態に保持するか非活性状態にしておくかを設定するための情報を記憶する記憶部(28)と、
     前記第1および第2のパワーオンリセット回路(PORa,PORb)の出力に応じて初期化されるとともに、前記記憶部(28)に前記情報を設定する中央処理装置(CPU)とを備える、データ処理装置。
  2.  前記データ処理装置は、通常モードと待機モードとを有し、
     前記中央処理装置(CPU)は、前記待機モードにおいては前記第2のパワーオンリセット回路(PORb)を非活性化した状態で前記第1のパワーオンリセット回路(PORb)を使用して電源電圧がリセット条件を満たす電圧に低下したことの検出を行なうように前記記憶部(28)に前記情報を設定する、請求の範囲第1項に記載のデータ処理装置。
  3.  前記中央処理装置(CPU)は、前記通常モードから前記待機モードに移行する前に前記記憶部(28)の前記情報を前記第2のパワーオンリセット回路(PORb)を非活性状態にするように設定してから前記待機モードに移行する、請求の範囲第2項に記載のデータ処理装置。
  4.  前記第1および第2のパワーオンリセット回路(PORa,PORb)の出力を受ける制御部(SYSC)をさらに備え、
     前記制御部(SYSC)は、前記待機モード中に前記第1のパワーオンリセット回路(PORa)の出力がリセットを示した後にリセット解除を示しかつ前記第2のパワーオンリセット回路(PORb)が非活性化されていた場合には、前記第2のパワーオンリセット回路(PORb)を活性化し、前記第2のパワーオンリセット回路(PORb)の出力がリセット解除を示したときに前記中央処理装置(CPU)のリセットを解除する、請求の範囲第3項に記載のデータ処理装置。
  5.  前記データ処理装置は、通常モードと待機モードとを有し、
     前記中央処理装置(CPU)は、前記通常モードから前記待機モードに移行する前に前記記憶部(28)の前記情報を設定することにより、前記第2のパワーオンリセット回路(PORb)を前記待機モード中に使用するか否かを選択可能である、請求の範囲第1項に記載のデータ処理装置。
  6.  前記第1のパワーオンリセット回路(PORa)は、電源ノードの電位の上昇に伴って充電され電位が上昇する内部ノード(N1)が入力に接続されたインバータ(48)を含み、
     前記第2のパワーオンリセット回路(PORb)は、バンドギャップリファレンス回路(BGR)の出力と電源ノードの電圧を分圧する分圧回路(54)の出力とを比較する比較回路(58)を含む、請求の範囲第1項に記載のデータ処理装置。
  7.  データ処理システムであって、
     プリント配線基板(18)と、
     前記プリント配線基板に搭載されたデータ処理装置(2)とを備え、
     前記データ処理装置(2)は、
     第1のパワーオンリセット回路(PORa)と、
     前記第1のパワーオンリセット回路よりも消費電力が多くかつリセット電圧精度の高い第2のパワーオンリセット回路(PORb)と、
     前記第2のパワーオンリセット回路(PORb)を活性状態に保持するか非活性状態にしておくかを設定するための情報を記憶する記憶部(28)と、
     前記第1および第2のパワーオンリセット回路(PORa,PORb)の出力に応じて初期化されるとともに、前記記憶部(28)に前記情報を設定する中央処理装置(CPU)とを含む、データ処理システム。
PCT/JP2010/064363 2010-08-25 2010-08-25 データ処理装置およびデータ処理システム WO2012026002A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/816,477 US9239612B2 (en) 2010-08-25 2010-08-25 First power-on reset circuit with higher power consumption than a second power-on reset circuit
JP2012530468A JP5475889B2 (ja) 2010-08-25 2010-08-25 データ処理装置およびデータ処理システム
PCT/JP2010/064363 WO2012026002A1 (ja) 2010-08-25 2010-08-25 データ処理装置およびデータ処理システム
US14/982,954 US20160132100A1 (en) 2010-08-25 2015-12-29 Data processing device and data processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/064363 WO2012026002A1 (ja) 2010-08-25 2010-08-25 データ処理装置およびデータ処理システム

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/816,477 A-371-Of-International US9239612B2 (en) 2010-08-25 2010-08-25 First power-on reset circuit with higher power consumption than a second power-on reset circuit
US14/982,954 Continuation US20160132100A1 (en) 2010-08-25 2015-12-29 Data processing device and data processing system

Publications (1)

Publication Number Publication Date
WO2012026002A1 true WO2012026002A1 (ja) 2012-03-01

Family

ID=45723030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064363 WO2012026002A1 (ja) 2010-08-25 2010-08-25 データ処理装置およびデータ処理システム

Country Status (3)

Country Link
US (2) US9239612B2 (ja)
JP (1) JP5475889B2 (ja)
WO (1) WO2012026002A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5959841B2 (ja) * 2011-12-12 2016-08-02 キヤノン株式会社 画像処理装置及びその制御方法、並びにプログラム
JP6102692B2 (ja) * 2013-11-22 2017-03-29 株式会社デンソー 電子制御装置
CN104490478A (zh) * 2015-01-09 2015-04-08 王小楠 医用射线定位薄膜及定位便捷的病变处拍照方法
CN105988548B (zh) * 2015-02-05 2020-04-17 恩智浦美国有限公司 用于集成电路的初始操作模式
CN111159962B (zh) * 2019-12-23 2023-11-03 北京华大信安科技有限公司 一种内嵌nvm芯片的低功耗设计方法及系统
KR20210111107A (ko) * 2020-03-02 2021-09-10 에스케이하이닉스 주식회사 데이터 전송 회로 및 그 동작 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302810A (ja) * 2008-06-12 2009-12-24 Denso Corp パワーオンリセット回路
JP2010147979A (ja) * 2008-12-22 2010-07-01 Elpida Memory Inc 半導体装置およびパワーオンリセット回路の調整方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3036290B2 (ja) * 1993-04-08 2000-04-24 日本電気株式会社 パワー・オン・リセット回路
JP2000231791A (ja) * 1998-12-10 2000-08-22 Fujitsu Ltd 半導体記憶装置及びデータバスのリセット方法
JP4462743B2 (ja) * 2000-03-29 2010-05-12 株式会社ルネサステクノロジ パワーオンリセット回路
US6629265B1 (en) * 2000-04-18 2003-09-30 Cypress Semiconductor Corp. Reset scheme for microcontrollers
JP2004048429A (ja) * 2002-07-12 2004-02-12 Matsushita Electric Ind Co Ltd パワーオンリセット回路
JP2005039635A (ja) * 2003-07-16 2005-02-10 Matsushita Electric Ind Co Ltd パワーオンリセット回路
JP4172378B2 (ja) * 2003-11-14 2008-10-29 沖電気工業株式会社 パワーオンリセット回路
TWI241767B (en) * 2004-11-25 2005-10-11 Sunplus Technology Co Ltd Power-low reset circuit
JP4896472B2 (ja) * 2005-09-12 2012-03-14 株式会社リコー パワーオンリセット回路
US7265595B1 (en) * 2006-03-03 2007-09-04 Cypress Semiconductor Corporation Stochastic reset circuit
JP2008040543A (ja) 2006-08-01 2008-02-21 Renesas Technology Corp 半導体集積回路
JP4531020B2 (ja) 2006-08-01 2010-08-25 ルネサスエレクトロニクス株式会社 半導体集積回路
US20080158220A1 (en) * 2007-01-03 2008-07-03 Himax Technologies Limited Power-on-reset circuit and method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302810A (ja) * 2008-06-12 2009-12-24 Denso Corp パワーオンリセット回路
JP2010147979A (ja) * 2008-12-22 2010-07-01 Elpida Memory Inc 半導体装置およびパワーオンリセット回路の調整方法

Also Published As

Publication number Publication date
US20160132100A1 (en) 2016-05-12
JP5475889B2 (ja) 2014-04-16
US20130145193A1 (en) 2013-06-06
JPWO2012026002A1 (ja) 2013-10-28
US9239612B2 (en) 2016-01-19

Similar Documents

Publication Publication Date Title
JP5475889B2 (ja) データ処理装置およびデータ処理システム
US9680471B2 (en) Apparatus for a reduced current wake-up circuit for a battery management system
US9471140B2 (en) Valid context status retention in processor power mode management
JP2004070805A (ja) 内部電源電圧が制御される半導体集積回路
US10656189B2 (en) Microcontroller including power supply monitoring
JP6648614B2 (ja) 蓄電装置
TWI628538B (zh) 用於功率信號介面的設備、能量管理電路系統及方法
US20160054788A1 (en) Parameter-Based Sensor Selection
JP2011166368A (ja) 半導体装置
JP5936415B2 (ja) 半導体集積回路、情報処理装置および制御方法
JP2013225297A (ja) 制御装置、制御方法、プログラムおよび半導体装置
US20110084552A1 (en) Power Management Methodology
JP2011077814A (ja) 半導体装置及び半導体装置の電源制御方法
KR20150085642A (ko) 전원 공급 장치, 이를 포함하는 전자 장치 및 전원 공급 방법
TW202206973A (zh) 漏電流退化控制及量測
WO2023130936A1 (zh) 用于片上系统的实时时钟模块的装置和方法
WO2012101822A9 (ja) コントローラ、および半導体システム
US20180225053A1 (en) Semiconductor device and semiconductor system
US20240072806A1 (en) Memory module with fine-grained voltage adjustment capabilities
JP2011090423A (ja) コンピュータおよび電源装置
US9779788B1 (en) Sub-threshold enabled flash memory system
US20150022235A1 (en) Semiconductor device
US20130159746A1 (en) Data processing device and data processing system
JP2014239377A (ja) 半導体装置
JP2004038658A (ja) 電子機器及び電子機器のバックアップ電源制御方法及び装置及び制御プログラム及び記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856408

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13816477

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012530468

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856408

Country of ref document: EP

Kind code of ref document: A1