WO2012024936A1 - 一种酒柜压缩机的控制方法 - Google Patents

一种酒柜压缩机的控制方法 Download PDF

Info

Publication number
WO2012024936A1
WO2012024936A1 PCT/CN2011/072801 CN2011072801W WO2012024936A1 WO 2012024936 A1 WO2012024936 A1 WO 2012024936A1 CN 2011072801 W CN2011072801 W CN 2011072801W WO 2012024936 A1 WO2012024936 A1 WO 2012024936A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
temperature
parameter
processing unit
cabinet
Prior art date
Application number
PCT/CN2011/072801
Other languages
English (en)
French (fr)
Inventor
陈星�
张立军
Original Assignee
海信容声(广东)冰箱有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信容声(广东)冰箱有限公司 filed Critical 海信容声(广东)冰箱有限公司
Publication of WO2012024936A1 publication Critical patent/WO2012024936A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2207/00External parameters
    • F04B2207/03External temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/10Sensors measuring the temperature of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature

Definitions

  • the present invention relates to the technical field of wine cabinets in electrical equipment, and more particularly to a method of controlling a wine cabinet compressor.
  • the wine cabinet is used for the storage of red wine (such as red wine, white wine, champagne, etc.), so that the taste of the wine is more suitable for the consumer, and the temperature in the wine cabinet is lowered to the required temperature by means of cooling.
  • red wine such as red wine, white wine, champagne, etc.
  • a temperature sensor is used, the temperature inside the box is felt in the box, and the compressor is controlled to start and stop.
  • a temperature sensor is attached to the back of the evaporator to sense the temperature of the evaporator, and this is used as a basis for determining whether the evaporator is defrosted or not during the defrosting process.
  • the single-chip computer control system has been maturely applied in the wine cabinet.
  • the single-chip microcomputer control system controls the operation of the compressor by sampling the temperature in the wine cabinet. That is, when the temperature in the cabinet is higher than the set temperature, the compressor is turned on and the temperature drops. When the temperature inside the cabinet is lower than the set temperature, the compressor stops and the temperature rises.
  • the set temperature of the wine cabinet is set by the user.
  • the general setting range is 5-20.
  • the control system is used to control the opening and closing of the compressor, so that the temperature inside the cabinet fluctuates around the set temperature to achieve the purpose of controlling the temperature.
  • the humidity in the wine cabinet will drop due to the temperature condensation, and the humidity in the wine cabinet will rise when the compressor is stopped.
  • the actual humidity in the wine cabinet fluctuates as the compressor starts and stops.
  • the EUP Directive post-upgrade to ErP Directive
  • the EUP Directive sets specific requirements for the humidity in the cabinet of the wine cabinet product and is implemented in July 2010, ie in the stable test state, it is required to be in the box.
  • the relative humidity is controlled in the range of 50% to 80% RH. In this way, the original temperature control system will cause the humidity to be lower than 50% RH when fluctuating, which cannot meet the requirements of the directive, and the relative humidity is 50%.
  • ⁇ 80% RH range is most conducive to the storage and taste of the wine.
  • the technical problem to be solved by the invention is to reduce the humidity fluctuation in the wine cabinet by changing the control method, that is, correspondingly raising the minimum humidity to meet the EU Requirements of the EUP Directive.
  • the technical solution of the present invention is:
  • a method for controlling a wine cabinet compressor comprises a single chip processing unit, a display and setting circuit connected with the single chip processing unit, a temperature sensor inside the cabinet, and an evaporator temperature sensor; the single chip processing unit is also connected to the compressor through a driving circuit, and the feature is Yu: Includes the following control procedures:
  • Compressor start-up process When the temperature sensor temperature in the cabinet Tra ⁇ the startup temperature parameter Tk, and the compressor down time > t1 When the single chip processing unit controls the compressor to start running through the driving circuit;
  • Compressor shutdown process When the temperature sensor temperature in the cabinet Tra ⁇ shutdown temperature parameter Tt, and the compressor startup time > t2 When the single chip processing unit controls the compressor to stop through the driving circuit;
  • Compressor start-stop process when the shutdown temperature parameter Tt ⁇ cabinet temperature sensor temperature Tra ⁇ Tk, and compressor running time > t3 When the MCU processing unit controls the compressor to be powered off by the drive circuit; when the shutdown temperature parameter Tt ⁇ the temperature sensor temperature in the cabinet Tra ⁇ Tk the startup temperature parameter, and the compressor down time > t4 When the single chip processing unit controls the compressor to be energized by the driving circuit;
  • the value range is 0 ⁇ 2 °C;
  • ⁇ T2 is the temperature difference between open and stop, and the value range is 0.5 ⁇ 2 °C.
  • the above control method of the wine cabinet compressor is characterized in that: the t3 When the time parameter is changed, the value is increased or decreased within a certain range according to the operating state during the running process, that is, when the Tra ⁇ Tt condition is satisfied, the shutdown process is entered, and the t3 parameter is reduced when the Tra is satisfied.
  • the t3 parameter When the Tk condition is entered, the t3 parameter is increased; the t3 parameter is increased; the t3 parameter is changed from 2 to 15 minutes.
  • the above control method of the wine cabinet compressor is characterized in that: in the compressor starting process, when the compressor down time is > t1, The processing unit of the single chip microcomputer is controlled by the driving circuit The compressor is turned on until it enters the defrosting process; the defrosting process is to enter the defrosting when the continuous running time of the compressor is > t5, and the compressor stops when defrosting until the temperature of the evaporator temperature sensor is Trv> defrosting temperature When the parameter Td, the defrosting is exited, wherein T5 is a fixed time parameter value.
  • the above control method of the wine cabinet compressor is characterized in that the defrosting temperature parameter Td ranges from 3 to 7 °C.
  • the above control method of the wine cabinet compressor is characterized in that the set temperature value Ts is set by a user, and the setting range is 5 to 20 °C.
  • the invention changes the control of the opening and stopping of the compressor, and increases the control change of the opening and closing time based on the temperature control in the wine cabinet, so that the temperature in the wine cabinet is within the control range, and the opening and stopping period is shortened. Correspondingly reduce the humidity fluctuation inside the box. Under the premise of not increasing the cost, the purpose of reducing the humidity fluctuation in the wine cabinet is only achieved by the control method, so that the humidity inside the wine cabinet is more in line with the storage requirements of the wine and meets the EU. Requirements of the EUP Directive.
  • FIG. 1 is a block diagram showing the composition of the control system of the present invention.
  • FIG. 2 is a schematic diagram showing the connection of the temperature sensor and the evaporator temperature sensor circuit of the present invention
  • Figure 3 is a control flow chart of the present invention.
  • Figure 1 shows the composition of the wine cabinet control system, including the processing unit of the single-chip microcomputer, and the display and setting circuit connected to the processing unit 1 of the single-chip microcomputer.
  • the temperature sensor 3 in the cabinet and the temperature sensor 4 of the evaporator; the processing unit 1 of the single chip is also connected to the compressor 6 through the driving circuit 5.
  • FIG. 2 is a schematic diagram of the circuit connection of the temperature sensor Ra and the evaporator temperature sensor Rv in the cabinet.
  • P1 and P2 in the figure
  • the temperature sensor in the cabinet is the thermistor Ra
  • the voltage is divided by the Ra and R3 resistors, and the resistance value of the Ra changes the voltage of the P1 input port.
  • P1 input voltage [Ra / (Ra + R3)] * 5V
  • a / D of P1 inside the microcontroller processing unit 1 The converter converts the voltage analog signal into a corresponding digital signal, and converts it into a corresponding temperature value in the box through a look-up table program in the software for program judgment.
  • the evaporator temperature sensor is thermistor Rv, Rv and R4.
  • the converter converts the voltage analog signal into a corresponding digital signal, which is converted into a corresponding evaporator temperature value by a look-up table program in the software for program determination.
  • FIG. 3 is a flow chart of the method for controlling the opening and closing of the compressor of the present invention, and the related parameters in the figure are as follows:
  • TRa the temperature value of the temperature sensor inside the cabinet
  • TRv temperature value of the evaporator temperature sensor
  • Ts is the set temperature value, which is set by the user, and the setting range is 5-20 °C;
  • Td defrosting temperature parameter, the value range is generally 3 ⁇ 7 °C;
  • T1, t2, t4, and t5 are fixed time parameter values
  • T3 is the time parameter of the change, and its value is increased or decreased within a certain range according to the operating state during the running.
  • Compressor start-up process when the temperature sensor in the cabinet 3 temperature Tra ⁇ start temperature parameter Tk, and compressor 6 down time > t1
  • the single chip processing unit 1 controls the compressor 6 to be turned on by the driving circuit 5;
  • Compressor shutdown process When the temperature sensor in the cabinet ( 3 ) temperature Tra ⁇ shutdown temperature parameter Tt, and the compressor 6 When the power-on running time > t2, the single-chip processing unit 1 controls the compressor 6 to stop through the driving circuit 5;
  • Compressor start-stop process when the shutdown temperature parameter Tt ⁇ cabinet temperature sensor 3 temperature Tra ⁇ Tk, and compressor running time> At t3, the MCU processing unit 1 controls the compressor to be powered off by the drive circuit 5; when the shutdown temperature parameter Tt ⁇ the temperature sensor inside the cabinet 3 temperature Tra ⁇ Tk When the temperature parameter is turned on, and the compressor stop time is > t4, the single chip processing unit 1 controls the compressor to be energized by the drive circuit 5;
  • the value range is 0 ⁇ 2 °C;
  • ⁇ T2 is the temperature difference between open and stop, and the value range is 0.5 ⁇ 2 °C.
  • t3 is a time parameter of change, its value increases or decreases within a certain range according to the operating state during operation, that is, when Tra ⁇ is satisfied
  • the shutdown process is entered, and the t3 parameter is reduced.
  • the Tra ⁇ Tk condition is met, the startup process is entered, and the t3 parameter is increased and the t3 parameter is increased; t3
  • the parameters vary from 2 to 15 minutes.
  • the above process is the control flow when the evaporator temperature sensor Rv is not set, if the evaporator temperature sensor is set Rv
  • the control process increases the defrosting process: Compressor
  • the MCU processing unit 1 is controlled by the drive circuit 5
  • the compressor 6 is turned on until it enters the defrosting process; the defrosting process is to enter the defrosting when the continuous running time of the compressor is > t5, and the single-chip processing unit 1 is controlled by the driving circuit 5 during defrosting
  • the compressor 6 is stopped until the temperature Trv> of the evaporator temperature sensor 4 is defrosting temperature parameter Td, and the defrost is exited, wherein t5 is a fixed time parameter value, and the defrost temperature parameter Td ranges from 3 to 7 °C.
  • the state of most of the compressors is not changed.
  • the invention introduces a time parameter to control the opening and stopping of the compressor at this time, reduces the compressor start-stop period, reduces the temperature and humidity fluctuation, and at the same time, the operation of the wine cabinet due to factors such as the ambient temperature, the bottling amount and the user habits.
  • the state has an influence, and the boot time parameter t3 is further set as a parameter of adaptive change, that is, the value of the t3 parameter changes synchronously according to the temperature change trend in the cabinet, so that the operation of the wine cabinet is more stable, and can adapt to different environments and usage habit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

一种酒柜压缩机的控制方法
技术领域
本发明涉及电器设备中酒柜的技术领域,尤其是 涉及 一种酒柜压缩机的控制 方法。
背景技术
酒柜用于红酒(如红葡萄酒、白葡萄酒、香槟等)的储藏,为使酒的口感更适合消费者要求,通过制冷的方式使酒柜内的温度降低到所需要的温度。
现有的酒柜控制系统大多采用单片机控制系统,基本采用一个或两个温度传感器,采用一个温度传感器时,安装在箱内感受箱内温度,并以此控制压缩机的开停,也有酒柜在此基础上在蒸发器的背面紧贴一个温度传感器,感受蒸发器的温度,并在化霜过程中以此作为蒸发器是否化霜干净的判断依据。
单片机控制系统的酒柜中已经成熟应用,单片机控制系统通过采样酒柜柜内的温度控制压缩机的运行,即:当柜内温度高于设定温度一定值时,压缩机开机,温度下降,当柜内温度低于设定温度一定值时,压缩机停机,温度回升。
酒柜的设定温度由用户设定,一般设定范围在 5 ~ 20 ℃内,通过控制系统实现对压缩机的开停机控制,使柜内温度在设定温度附近波动,实现控制温度的目的。
当酒柜制冷时,由于温度降低水汽凝结,酒柜内湿度会下降,而压缩机停机时,酒柜内湿度回升。酒柜内的实际湿度是随着压缩机的开停而波动。
一直以来,酒柜均对酒柜内只有温度方面的要求,并没有对酒柜内湿度有过特定要求。相关研究发现瓶装葡萄酒也会通过橡木瓶塞与周边环境关联,储存环境的湿度对葡萄酒的品质有明显影响。欧盟前期发布了 EUP 指令(后升级为 ErP 指令),对于酒柜产品的柜内湿度提出了特定要求并于 2010 年 7 月起实施,即在稳定测试状态下,要求在箱内 12 ℃时,相对湿度控制在 50% ~ 80%RH 的范围内。这样,原有的温度控制系统导致波动时湿度会低于 50%RH ,满足不了该指令的要求,而相对湿度在 50% ~ 80%RH 范围内的是最有利于葡萄酒的储存和口感。
而在现有的控制方法下,当处于稳定测试状态时,压缩机的开停机周期都较长,虽然温度能保持在控制范围内满足标准要求,但每个开停周期内的柜内湿度波动太大,超出了标准的要求。
为满足出口欧洲产品符合 EUP 指令的湿度要求,大多数厂家采用增加酒柜内风扇电机或采用金属内胆的方式提升酒柜内的湿度,满足标准要求。
发明内容
本发明要解决的技术问题是通过对控制方法的改变,实现减小酒柜内湿度波动,也就是相应提高最低湿度以满足欧盟 EUP 指令的要求。
为解决上述技术问题,本发明的的技术方案是:
一种酒柜压缩机的控制方法 , 压缩机的控制系统包括单片机处理单元、与单片机处理单元连接的显示及设定电路、柜内温度传感器、蒸发器温度传感器;所述单片机处理单元还通过驱动电路与压缩机连接,其特征在 于:包括以下控制过程:
压缩机开机流程:当柜内温度传感器温度 Tra ≥开机温度参数 Tk ,且压缩机停机时间> t1 时,单片机处理单元通过驱动电路控制压缩机开机运行;
压缩机停机流程:当柜内温度传感器温度 Tra ≤停机温度参数 Tt 时,且压缩机开机运行时间> t2 时,单片机处理单元通过驱动电路控制压缩机停机;
压缩机开停流程:当停机温度参数 Tt <柜内温度传感器温度 Tra < Tk ,且压缩机运行时间> t3 时,单片机处理单元通过驱动电路控制压缩机断电停机;当停机温度参数 Tt <柜内温度传感器温度 Tra < Tk 开机温度参数,且压缩机停机时间> t4 时,单片机处理单元通过驱动电路控制压缩机通电运行;
其中,开机温度参数 Tk 与设定温度值 Ts 相对应, Tk=Ts+ Δ T1 ;停机温度参数 Tt 设定温度值 Ts 相对应, Tt=Tk- Δ T2 , t1 、 t2 和 t4 均为固定的时间参数值; t3 为固定的时间参数值或变化的时间参数;Δ T1 为固定参数,取值范围 0~2 ℃;Δ T2 为开停机温差,取值范围 0.5~2 ℃。
上述 酒柜压缩机的控制方法,其特征在于:所述 t3 为变化的时间参数时,其值在运行过程中根据运行状态在一定范围内加大或减小,即当满足 Tra ≤ Tt 条件时进入停机流程,同时将 t3 参数减小,当满足 Tra ≥ Tk 条件时进入开机流程,同时将 t3 参数加大;同时将 t3 参数加大; t3 参数的变化范围为 2~15 分钟。
上述 酒柜压缩机的控制方法 ,其特征在于:所述 压缩机 开机流程中,当压缩机停机时间>t1时, 单片机处理单元通过驱动电路控制 压缩机开机运行,直到进入化霜流程;所述化霜流程为当压缩机连续运行时间>t5时,进入化霜,化霜时压缩机停机,直到蒸发器温度传感器的温度Trv>化霜温度参数Td时,退出化霜,其中 t5 为固定的时间参数值 。
上述 酒柜压缩机的控制 方法,其特征在于:所述化霜温度参数Td取值范围为3~7℃。
上述 酒柜压缩机的控制 方法,其特征在于:所述设定温度值Ts由用户设定,设定范围在5~20℃。
本发明相对于现有技术的有益效果是:
本发明针对压缩机开停的控制进行了改变,在基于酒柜内温度控制的基础上增加了开停机时间的控制变化,使酒柜内温度在控制范围内的前提下,缩短开停机周期,相应减小箱内湿度波动。在不增加成本的前提下,仅通过控制方法实现减小酒柜箱内湿度波动的目的,使得酒柜的箱内湿度更符合葡萄酒的储存需要,并满足欧盟 EUP 指令的要求。
附图说明
下面结合附图和具体实施方式对本实用新型作进一步详细的说明。
图1 是本发明的控制系统组成框图;
图2是本发明箱内温度传感器及蒸发器温度传感器电路连接原理图;
图3是本发明的控制流程图。
具体实施方式
图 1 为酒柜控制系统的组成,包括单片机处理单元 1 、与单片机处理单元 1 连接的显示及设定电路 2 、柜内温度传感器 3 、蒸发器温度传感器 4 ;单片机处理单元 1 还通过驱动电路 5 与压缩机 6 连接。
图 2 为柜内温度传感器 Ra 及蒸发器温度传感器 Rv 的电路连接原理图。图中 P1 和 P2 为单片机处理单元 1 的 A/D 输入口,柜内温度传感器为热敏电阻 Ra ,经 Ra 与 R3 电阻分压, Ra 的阻值变化导致 P1 输入口的电压变化, P1 的输入电压 =[Ra/(Ra+R3)]*5V ,在单片机处理单元 1 内部的 P1 的 A/D 转换器将电压模拟信号转变为对应数字信号,通过软件中的查表程序转换为对应的箱内温度值用于程序判断。同理,蒸发器温度传感器为热敏电阻 Rv , Rv 与 R4 电阻分压,其阻值变化导致 P2 输入口的电压变化, P2 的输入电压 =[Rv/(Rv+R4)]*5V ,在单片机处理单元 1 内部的 P2 的 A/D 转换器将电压模拟信号转变为对应数字信号,通过软件中的查表程序转换为对应的蒸发器温度值用于程序判断。
图 3 为本发明的压缩机开停机控制方法流程图,图中的相关参数说明:
TRa: 柜内温度传感器的温度值;
TRv: 蒸发器温度传感器的温度值;
Tk: 开机温度参数,与设定温度值 Ts 相对应, Tk=Ts+ Δ T1 ;
Tt: 停机温度参数,与设定温度值 Ts 相对应, Tt=Tk- Δ T2 ;
Ts 为设定温度值,由用户设定,设定范围在5~20℃;
Td :化霜温度参数,取值范围一般为 3 ~ 7 ℃ ;
t1 、 t2 、 t4 、 t5 均为固定的时间参数值;
t3 为变化的时间参数,其值在运行过程中根据运行状态在一定范围内加大或减小。
包括以下控制过程:
压缩机开机流程:当柜内温度传感器 3 温度 Tra ≥开机温度参数 Tk ,且压缩机 6 停机时间> t1 时,单片机处理单元 1 通过驱动电路 5 控制压缩机 6 开机运行;
压缩机停机流程:当柜内温度传感器( 3 )温度 Tra ≤停机温度参数 Tt 时,且压缩机 6 开机运行时间> t2 时,单片机处理单元 1 通过驱动电路 5 控制压缩机 6 停机;
压缩机开停流程:当停机温度参数 Tt <柜内温度传感器 3 温度 Tra < Tk ,且压缩机运行时间> t3 时,单片机处理单元 1 通过驱动电路 5 控制压缩机断电停机;当停机温度参数 Tt <柜内温度传感器 3 温度 Tra < Tk 开机温度参数,且压缩机停机时间> t4 时,单片机处理单元 1 通过驱动电路 5 控制压缩机通电运行;
其中,开机温度参数 Tk 与设定温度值 Ts 相对应, Tk=Ts+ Δ T1 ;停机温度参数 Tt 设定温度值 Ts 相对应, Tt=Tk- Δ T2 , t1 、 t2 和 t4 均为固定的时间参数值; t3 为固定的时间参数值或变化的时间参数;Δ T1 为固定参数,取值范围 0~2 ℃;Δ T2 为开停机温差,取值范围 0.5~2 ℃。
当 t3 为变化的时间参数时,其值在运行过程中根据运行状态在一定范围内加大或减小,即当满足 Tra ≤ Tt 条件时进入停机流程,同时将 t3 参数减小,当满足 Tra ≥ Tk 条件时进入开机流程,同时将 t3 参数加大同时将 t3 参数加大; t3 参数的变化范围为 2~15 分钟。
上 述过程是在没有设置蒸发器温度传感器 Rv 时的控制流程,假如设置蒸发器温度传感器 Rv 时,则控制过程中增加 化霜流程: 压缩机 开机流程中,当压缩机停机时间>t1时, 单片机处理单元 1 通过驱动电路 5 控制 压缩机6开机运行,直到进入化霜流程;所述化霜流程为当压缩机连续运行时间>t5时,进入化霜,化霜时 单片机处理单元 1 通过驱动电路 5 控制 压缩机6停机,直到蒸发器温度传感器4的温度Trv>化霜温度参数Td时,退出化霜,其中 t5 为固定的时间参数值 ,化霜温度参数Td取值范围为3~7℃。
现有技术下的酒柜和冰箱控制中,当柜内温度传感器温度Tt<Tra<Tk时,大多压缩机的状态不做改变。本发明则在此时引入时间参数控制压缩机的开停,减小压缩机开停周期,降低温度及湿度波动,同时由于环境温度、装瓶量、用户使用习惯等因素都会对酒柜的运行状态产生影响,进一步将开机时间参数t3设定为自适应变化的参数,即t3参数的值根据柜内的温度变化趋势同步变化,使酒柜的运行更趋于稳定,能适应不同的环境和使用习惯。

Claims (5)

  1. 一种酒柜压缩机的控制方法 , 压缩机的控制系统包括单片机处理单元( 1 )、与单片机处理单元( 1 )连接的显示及设定电路( 2 )、柜内温度传感器( 3 )、蒸发器温度传感器( 4 );所述单片机处理单元 (1) 还通过驱动电路( 5 )与压缩机 (6) 连接,其特征在 于:包括以下控制过程:
    压缩机开机流程:当柜内温度传感器( 3 )温度 Tra ≥开机温度参数 Tk ,且压缩机( 6 )停机时间> t1 时,单片机处理单元 (1) 通过驱动电路( 5 )控制压缩机( 6 )开机运行;
    压缩机停机流程:当柜内温度传感器( 3 )温度 Tra ≤停机温度参数 Tt 时,且压缩机( 6 )开机运行时间> t2 时,单片机处理单元 (1) 通过驱动电路( 5 )控制压缩机( 6 )停机;
    压缩机开停流程:当停机温度参数 Tt <柜内温度传感器( 3 )温度 Tra < Tk ,且压缩机运行时间> t3 时,单片机处理单元 (1) 通过驱动电路( 5 )控制压缩机( 6 )断电停机;当停机温度参数 Tt <柜内温度传感器( 3 )温度 Tra < Tk 开机温度参数,且压缩机停机时间> t4 时,单片机处理单元 (1) 通过驱动电路( 5 )控制压缩机( 6 )通电运行;
    其中,开机温度参数 Tk 与设定温度值 Ts 相对应, Tk=Ts+ Δ T1 ;Δ T1 为固定参数,取值范围 0~2 ℃;停机温度参数 Tt 设定温度值 Ts 相对应, Tt=Tk- Δ T2 ,Δ T2 为开停机温差,取值范围 0.5~2 ℃; t1 、 t2 和 t4 均为固定的时间参数值; t3 为固定的时间参数值或变化的时间参数。
  2. 根据权利要求 1 所述的 酒柜压缩机的控制方法,其特征在于:所述 t3 为变化的时间参数时,其值在运行过程中根据运行状态在一定范围内加大或减小,即当满足 Tra ≤ Tt 条件时进入停机流程,同时将 t3 参数减小,当满足 Tra ≥ Tk 条件时进入开机流程,同时将 t3 参数加大; t3 参数的变化范围为 2~15 分钟。
  3. 根据权利要求1所述的 酒柜压缩机的控制方法 ,其特征在于:所述 压缩机 开机流程中,当压缩机停机时间>t1时, 单片机处理单元( 1 )通过驱动电路( 5 )控制 压缩机(6)开机运行,直到进入化霜流程;所述化霜流程为当压缩机连续运行时间>t5时,进入化霜,化霜时压缩机停机,直到蒸发器温度传感器(4)的温度Trv>化霜温度参数Td时,退出化霜,其中 t5 为固定的时间参数值 。
  4. 根据权利要求3所述的 酒柜压缩机的控制 方法,其特征在于:所述 化霜温度参数Td取值范围为3~7℃。
  5. 根据权利要求1至4任一项所述的酒柜压缩机的控制 方法,其特征在于:所 述设定温度值Ts由用户设定,设定范围在5~20℃。
PCT/CN2011/072801 2010-08-24 2011-04-14 一种酒柜压缩机的控制方法 WO2012024936A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102629594A CN101915232B (zh) 2010-08-24 2010-08-24 一种酒柜压缩机的控制方法
CN201010262959.4 2010-08-24

Publications (1)

Publication Number Publication Date
WO2012024936A1 true WO2012024936A1 (zh) 2012-03-01

Family

ID=43322824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072801 WO2012024936A1 (zh) 2010-08-24 2011-04-14 一种酒柜压缩机的控制方法

Country Status (2)

Country Link
CN (1) CN101915232B (zh)
WO (1) WO2012024936A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915232B (zh) * 2010-08-24 2012-06-27 海信容声(广东)冰箱有限公司 一种酒柜压缩机的控制方法
CN103363777B (zh) * 2013-06-04 2015-09-02 海信容声(广东)冰箱有限公司 一种冰箱控制方法
CN103575056A (zh) * 2013-11-04 2014-02-12 合肥美的电冰箱有限公司 冰箱的控制方法及温度检测方法
DE102015211961A1 (de) * 2015-06-26 2016-12-29 BSH Hausgeräte GmbH Kältegerät und Betriebsverfahren dafür
US10782056B2 (en) * 2016-12-01 2020-09-22 Secop Gmbh Method for operating a variable-speed refrigerant compressor
CN109386937A (zh) * 2017-08-07 2019-02-26 大连新明华电子科技有限公司 恒温恒湿高性能红酒柜控制方法
CN107560296A (zh) * 2017-10-19 2018-01-09 广东星星制冷设备有限公司 一种可云端控制的红酒柜
CN110345705B (zh) * 2018-04-03 2021-05-07 合肥华凌股份有限公司 用于制冷系统的温控阀的优化控制方法、装置及制冷系统
CN108759297A (zh) * 2018-08-23 2018-11-06 南京创维家用电器有限公司 一种防止冰箱冷藏室和蒸发器结冰的控制方法
CN109539688A (zh) * 2018-11-28 2019-03-29 合肥美的电冰箱有限公司 一种冰箱的低湿度间室及湿度控制方法、装置和冰箱
CN110296560B (zh) * 2019-06-12 2021-09-03 合肥美的电冰箱有限公司 一种冰箱压缩机开停机温度点控制方法、装置及冰箱
CN112484390B (zh) * 2020-11-26 2022-03-25 珠海格力电器股份有限公司 冰箱温度控制方法、装置及冰箱

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593572A (ja) * 1991-10-01 1993-04-16 Matsushita Refrig Co Ltd 冷蔵庫
US5343712A (en) * 1993-07-15 1994-09-06 Precision Storage, Inc. Temperature controller and method for facilitating the storage of wine and like perishables
JPH06294568A (ja) * 1993-04-08 1994-10-21 Matsushita Refrig Co Ltd 冷凍冷蔵庫の制御装置
KR20010061667A (ko) * 1999-12-28 2001-07-07 구자홍 냉장고 운전제어방법
CN1443981A (zh) * 2002-03-08 2003-09-24 乐金电子(天津)电器有限公司 空调器压缩机预热的控制方法
CN1548893A (zh) * 2003-05-08 2004-11-24 河南新飞电器有限公司 冰箱温度的控制方法
KR100705767B1 (ko) * 2005-12-20 2007-04-09 주식회사 대우일렉트로닉스 김치 냉장고의 냉각 제어 방법
CN101509692A (zh) * 2009-03-16 2009-08-19 宁波海诚电器有限公司 空调机蒸发器防冻的控制方法
CN101793454A (zh) * 2010-03-10 2010-08-04 合肥美菱股份有限公司 一种电冰箱智能化霜的控制方法
CN101915232A (zh) * 2010-08-24 2010-12-15 海信容声(广东)冰箱有限公司 一种酒柜压缩机的控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593572A (ja) * 1991-10-01 1993-04-16 Matsushita Refrig Co Ltd 冷蔵庫
JPH06294568A (ja) * 1993-04-08 1994-10-21 Matsushita Refrig Co Ltd 冷凍冷蔵庫の制御装置
US5343712A (en) * 1993-07-15 1994-09-06 Precision Storage, Inc. Temperature controller and method for facilitating the storage of wine and like perishables
KR20010061667A (ko) * 1999-12-28 2001-07-07 구자홍 냉장고 운전제어방법
CN1443981A (zh) * 2002-03-08 2003-09-24 乐金电子(天津)电器有限公司 空调器压缩机预热的控制方法
CN1548893A (zh) * 2003-05-08 2004-11-24 河南新飞电器有限公司 冰箱温度的控制方法
KR100705767B1 (ko) * 2005-12-20 2007-04-09 주식회사 대우일렉트로닉스 김치 냉장고의 냉각 제어 방법
CN101509692A (zh) * 2009-03-16 2009-08-19 宁波海诚电器有限公司 空调机蒸发器防冻的控制方法
CN101793454A (zh) * 2010-03-10 2010-08-04 合肥美菱股份有限公司 一种电冰箱智能化霜的控制方法
CN101915232A (zh) * 2010-08-24 2010-12-15 海信容声(广东)冰箱有限公司 一种酒柜压缩机的控制方法

Also Published As

Publication number Publication date
CN101915232A (zh) 2010-12-15
CN101915232B (zh) 2012-06-27

Similar Documents

Publication Publication Date Title
WO2012024936A1 (zh) 一种酒柜压缩机的控制方法
WO2012034299A1 (zh) 一种冰箱除霜控制系统及其控制方法
CN201229508Y (zh) 冷暖床垫变频温控电路
CN2793652Y (zh) 一种智能冰箱
CN106123431B (zh) 冷柜节能控制方法和冷柜
CN106016964B (zh) 一种多风门风冷冰箱的控制系统、控制方法及冰箱
CN102692113B (zh) 半导体制冷箱湿度调节方法及装置
CN102411405B (zh) 高性能新型电视电脑一体机
CN209461860U (zh) 一种带有智能感应功能的节电设备
CN103644705B (zh) 冰箱的变频控制系统、冰箱和冰箱的变频控制方法
CN112648794B (zh) 一种医用冷藏箱的快速精确控温方法及医用冷藏箱
CN207459761U (zh) 充电机、ups电源装置、逆变器及其低温启动电路
CN109386937A (zh) 恒温恒湿高性能红酒柜控制方法
JPH11206014A (ja) 店舗用設備機器管理システム
CN209468424U (zh) 一种微生物菌种生产车间温度控制装置
CN107395529A (zh) 一种新型网络交换机
EP1667556B1 (en) Cooling system
CN111063296A (zh) 一种led显示屏电源开关控制系统
CN110285628A (zh) 一种冰箱及其制冷控制方法
CN210330358U (zh) 一种智能调温烤箱
CN208798944U (zh) 风幕柜节能运行系统
CN107951392A (zh) 一种快速调节水温的饮水机
CN209072828U (zh) 一种用于列间制冷末端的双回路气流切换装置
CN109706049A (zh) 一种催陈酒柜及其控制系统
CN218032355U (zh) 一种防水型便携式液晶显示屏

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819311

Country of ref document: EP

Kind code of ref document: A1