WO2012020159A1 - Dispositivo y procedimiento para el tratamiento de los subproductos de la obtención de aceite de oliva - Google Patents

Dispositivo y procedimiento para el tratamiento de los subproductos de la obtención de aceite de oliva Download PDF

Info

Publication number
WO2012020159A1
WO2012020159A1 PCT/ES2011/070583 ES2011070583W WO2012020159A1 WO 2012020159 A1 WO2012020159 A1 WO 2012020159A1 ES 2011070583 W ES2011070583 W ES 2011070583W WO 2012020159 A1 WO2012020159 A1 WO 2012020159A1
Authority
WO
WIPO (PCT)
Prior art keywords
products
treatment
olive oil
reactor
oil
Prior art date
Application number
PCT/ES2011/070583
Other languages
English (en)
French (fr)
Inventor
Juan FERNÁNDEZ-BOLAÑOS GUZMAN
Guillermo RODRÍGUEZ GUTIÉRREZ
Antonio LAMA MUÑOZ
Pedro SÁNCHEZ MORAL
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Oleicola El Tejar Nuestra Señora De Araceli, Sca
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Oleicola El Tejar Nuestra Señora De Araceli, Sca filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2012020159A1 publication Critical patent/WO2012020159A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/06Production of fats or fatty oils from raw materials by pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • B09B3/45Steam treatment, e.g. supercritical water gasification or oxidation
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/10Production of fats or fatty oils from raw materials by extracting
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B13/00Recovery of fats, fatty oils or fatty acids from waste materials

Definitions

  • the present invention can be included in the field of olive oil extraction.
  • the object of the invention is about a method and a device for the treatment of the by-products of obtaining olive oil (alperujo, orujo with or without alpech ⁇ n), which allows a better use of said by-products, reaching obtain a final solid with less moisture, concentrated in cellulose, proteins and fat, a liquid enriched in components of high added value and an improved oil phase.
  • the alperujo waste generated from the olive oil extraction system in two phases (approximately 100 tons of olive oil and 80 tons of olive oil are obtained per 100 tons of olives), has a variable composition, depending on the olive variety, the state of maturation and processing system. It is a complex mixture consisting of skin, pulp and bone, in addition to alpech ⁇ n (water of vegetation of the olive) and the possible water of addition during extraction in oil mill or in the review process. It is a semi-solid paste with a humidity of between 60 and 70%, and a fat content of between 1 -2%, both referring to the weight of fresh alperujo. It also has a complex composition that includes, apart from a mineral fraction, an organic fraction consisting of fats, proteins, water-soluble carbohydrates (mannitol, sucrose and fructose), as well as organic acids, remains of the cell wall of olive
  • the alperujo therefore, not only has a higher humidity than the three-phase pomace, but also has more soluble compounds than previously left in the alpechin.
  • the oil mills end up depleting the fat content of the alperujo even more, reaching the pomace in a percentage that in many cases does not justify its subsequent extraction for the production of pomace oil. To this must be added the fact that many oil mills have incorporated into their boning process, which increases the humidity.
  • the usual system of the pomace is the use of the alperujo for the extraction of the pomace oil, by means of the traditional solvent extraction system or, alternatively, to perform a first extraction of the pomace oil by centrifugation and then use the residual solid as biofuel in cogeneration plants.
  • the drying step of the alpeorujo, for its extraction with solvents or for its use as a residual solid for energy production presents serious problems.
  • An object of the present invention deals with a process for the treatment of the by-products of obtaining olive oil that enables better use of the alperujo, as a by-product of the process of obtaining olive oil in two phases, or of the pomace and / or alpech ⁇ n, as by-products of the three-phase process.
  • the process object of the present invention comprises, in a first stage, subjecting said by-products, to a heat treatment through heating.
  • Said heating may be a heating by direct contact with a harmless hot steam or gas and / or an indirect heating, with or without stirring.
  • the by-product reaches a temperature of between 100 Q C and 200 Q C for a period of time between 15 and 300 minutes, more preferably between 30 and 180 minutes.
  • the harmless gas or vapor is water vapor.
  • the by-product (the alperujo or the pomace with or without alpech ⁇ n) is introduced into a reactor, preferably with preheating.
  • the by-product obtained from an oil mill, may be partially or completely boned before accessing the reactor.
  • the by-product is directly contacted with steam at the desired pressure, usually at the working steam pressure of the industry to which it is directed, that is between 3-10 atmospheres.
  • the by-product can be heated indirectly through a heating jacket or electrical heater.
  • a product is obtained in which it is easier to separate the different phases: solid, aqueous and oily phase.
  • Said separation constitutes the next stage of the process according to the invention and is carried out by a simple settling, or alternatively by a centrifugation in two or three phases or also by filtration, either using band filters, press filters or other similar systems.
  • the use of the process of the invention allows to obtain different phases, liquid (oily and aqueous), solid, and volatile, with the following advantages over the procedures known in the state of the art:
  • a solid is obtained with a humidity between 20-50%, preferably between 20 and 40%, which implies a much smoother and shorter drying, avoiding the problems that result from the high moisture and favoring the subsequent extraction of the oil or its use as a biofuel.
  • a reduction of the solid is achieved 2-3 times by solubilization of the liquid phase, concentrating a more accessible cellulose, the protein and the oil, between 5 and 20%, increasing the extraction efficiency in the case of oil
  • the liquid phase is free of sludge or suspended solids, such as pulp or fine remains, which make it difficult to take advantage of said liquid phase. Furthermore, an important part of the phenolic compounds of great interest has been advantageously solubilized in the liquid phase, as well as a considerable amount of sugars in the form of monosaccharides and oligosaccharides.
  • solubilization of functional minor compounds is favored by increasing the quality of the oil (see table 1).
  • the solid phase is enriched in oil, while the liquid phase in bioactive compounds and of high added value, of the oligosaccharide type with probiotic activity, as well as antioxidant compounds.
  • the phases after treatment are more easily separable; after centrifugation, a solid with a lower moisture content is obtained than an untreated alperujo, obtaining at the same time an improvement in oil recovery.
  • this oil is concentrated in the solid up to three times more than in the starting material, with all the extraction advantages that this entails.
  • the present invention also relates to a device for the treatment of by-products for obtaining olive oil, which comprises a reactor with steam inlet, preferably through micro-perforated tubes.
  • a heating jacket is arranged along the reactor to heat the by-product introduced into said reactor, by means of the use of thermal fluids or electrical resistances.
  • Said by-product is introduced into the reactor by means of a pressure pump or worm screw along said reactor or inlet pipe and can be preheated by means of the heating jacket or electrical resistance to favor subsequent contact with the steam.
  • Inside the sample is heated by direct contact with water vapor and / or through indirect heating by the heating jacket or electrical resistors. Due to the steam supply, the sample travels the reactor at a pressure always lower than or equal to that of the steam inlet.
  • the sample is evacuated from the reactor through very various systems such as an endless screw that maintains the working pressure, or through overpressure valves that open when it exceeds a certain value.
  • extraction and condensation of volatiles through volatile condensation means. Thanks to said extraction, decompression is facilitated and moisture is reduced in the sample by increasing the concentration of the solubilized compounds in the liquid phase obtained after the separation means, at the same time as the recovery of valuable volatile compounds in the condensate is made possible.
  • Direct heating may comprise an increase in pressure by introduction of harmless gases by the second introduction means.
  • the system can operate continuously or discontinuously, with continuous operation being the most suitable for industrial development.
  • the pressures have been adapted to the pressures in which pomace oil refineries are usually worked, up to 9 Kg / cm 2 , facilitating contact between the alperujo and direct steam, as well as providing the system with a preheat that reduces the condensation of the steam increasing its efficiency.
  • the factors that really influence the total use of the alperujo have been taken into account, which has led to a new, simple, efficient and efficient thermal process. economic that substantially reduces operating costs. By reducing the operating times in the dryer, they would avoid the environmental and real-cost problems posed by the long drying times.
  • the integral use of the alperujo enables the recovery of compounds of high nutritional and functional interest.
  • the solid phase obtainable by the described process is characterized in that it has a fat content between 2 and 30% and a cellulose content between 10 and 35%, both referred to dry matter, as well as by its more biodegradable nature , that is, more susceptible to chemical or enzymatic hydrolysis for the use of free glucose or shorter cellulose fragments.
  • the crude pomace oil obtained in the separation stage is characterized in that it is more enriched in minor components, than the untreated.
  • Minority components include, among others, squalene, total tocopherols, aliphatic alcohols, total sterols, oleanolic acid, maslinic acid, and uvaol plus erythrodiol, their percentage increases are respectively in the ranges of respectively 1 -60%, 1 -60 %, 1 -95%, 1 -40%, 1 -15%, 1 -20%, 1 -35%, with the consequent contribution of important consumer health benefits.
  • the crude pomace oil obtained from the solid phase and / or the liquid phase resulting from the separation stage is characterized in that it is also enriched in said minor components, where its content in squalene, total tocopherols, aliphatic alcohols, sterols Total, oleanolic acid, maslinic acid, and uvaol plus erythrodiol content, is increased by a percentage range with respect to the untreated by 1 -60%, 1 -60%, 1 -95%, 1 -40%, 1 - 15%, 1 -20%, 1 -35% respectively.
  • the oil obtained according to the described procedure can be used in food, as well as for the extraction of said minor components of high added value by its application in cosmetics, pharmacy and food, among which some of those mentioned in the previous paragraph are worth mentioning.
  • Figure 1 Shows a schematic view of the device of the invention.
  • Figure 2. Shows a diagram of the process of the invention.
  • the process object of the present invention comprises, in a first stage, subjecting said by-products, to a thermal treatment through a heating inside a reactor (1).
  • Said heating may be a direct contact heating with water vapor and / or indirect heating, by heat exchange through a jacket (6) of the reactor (1), preferably with stirring in the case of indirect heating by means of stirring means (8).
  • the by-product reaches a temperature of between 130 Q C and 200 Q C for a period of time between 30 and 180 minutes.
  • the by-products Prior to heating, the by-products are preheated in preheating means (7) and subsequently said by-products are introduced into the reactor (1) by means of the first introduction means (2) and inside the reactor (1) the by-product is directly contacted with steam at the desired pressure, usually at the working steam pressure of the industry to which it is directed, that is between 3- 10 atmospheres
  • the steam is introduced into the reactor through a second introduction means (3).
  • the by-product is heated indirectly through the heating jacket (6) or electrical resistors (not shown).
  • the olive bones are recovered through bone recovery means (10), after which the by-products are extracted from the reactor (1) by means of extraction means (4).
  • condensation means (9) of volatiles for depressurization, use of this new fraction and decrease of humidity, after which, a product in which it is easier to separate the different phases: the solid and the liquid phase (oil and water).
  • Said separation constitutes the second stage of the process according to the invention and is carried out by means of separation means (5) by simple decantation, or alternatively by centrifugation in two or three phases or also by filtration, either using band filters, Press filters or other similar systems.
  • the device of the invention comprises a reactor with steam inlet, preferably through micro perforated tubes.
  • a heating jacket (6) is arranged along the reactor (1) to heat the by-product introduced into said reactor (1), by means of the use of thermal fluids or electrical resistances.
  • Said by-product is introduced into the reactor by means of a pressure pump or endless screw along said reactor or inlet pipe and can be preheated by means of the heating jacket (6) or electrical resistance to favor subsequent contact with the steam.
  • the sample is heated by direct contact with the water vapor and / or through indirect heating by the heating jacket (6) or electrical resistors. Due to the steam supply the sample travels the reactor at a pressure always lower than that of the steam inlet.
  • the sample is evacuated from the reactor through a wide variety of systems such as an endless screw that maintains the working pressure, or through overpressure valves that open when it exceeds a certain value.
  • the system can operate continuously or discontinuously, with continuous operation being the most suitable for industrial development.
  • the starting material used has been an exhausted alperujo in the oil mills, leaving a fat content of 1.5% and a humidity of 70%.
  • a semi-industrial scale experience has been carried out in a reactor (1) of 100 L. capacity.
  • a batch load of 30 kilograms of alperujo has been carried out and different temperatures have been tested from 130 Q C to 190 5 C in a pressure range of 3 to 1 1 atmospheres.
  • the results obtained in the case of 150 Q C and 170 ° C for different reaction times are described below.
  • the variables that have served to verify its proper functioning have been the solubilization of known bioactive compounds present, the reduction of solid and the solid-liquid separation.
  • the reaction was carried out by direct steam and indirect heating through a heating jacket (6) in which water vapor was introduced as thermal fluid. Different reaction times were tested, from 30 to 180 minutes, getting better results for higher temperatures. All results indicated a substantial improvement in the treated lupine, in terms of the controlled variables.
  • the reactor (1) was closed and indirectly started to heat. A few minutes later, water vapor began to be passed inside the reactor, to homogenize and heat the alperujo mass quickly from room temperature to 150 ° C in 20 minutes or to 170 ° C in 30 minutes, keeping these temperatures for the remaining reaction time.
  • the steam supply is not continuous, but once the temperature reaches the automatism it allows the steam to enter discontinuously only to maintain the temperature. In the case of continuous pomace supply systems, the steam supply is also continuous.
  • the heating is stopped and the already depressurized alperujo is transferred until a tank is decanted (5).
  • the concentration in the aqueous phase of products of high interest is verified, as well as the concentration in the solid of the oil phase, the reduction thereof and the solid-liquid separation, which in most conditions tested is produced by a simple settling, although the centrifugation phase is necessary if more drying is required.
  • the results obtained show that the solid is dried to a range of 20-50% humidity depending on the filtration or centrifugation system.
  • the solubilization of compounds such as phenols and sugars, among many other interesting ones, is increased and the fat content in the final solid is concentrated up to three times when said fatty content reaches solubilized by up to 65% in the most severe conditions of the treatment. All this indicates a substantial improvement that allows and significantly revalue this by-product, making it possible to make better use of it.
  • Tables 1 and 2 show two examples of enrichment in minor components of the oils obtained by extraction with hexane from the alperujos previously subjected to the heat treatment according to the invention, in a first case, (example 1) for fresh alperujo from directly from an oil mill and, in a second case, (example 2), for previously stored pomace, coming from a pomace and subjected to a second centrifugation or review.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fats And Perfumes (AREA)

Abstract

Para mejor aprovechamiento de los subproductos del proceso de obtención de aceite de oliva: alperujo (orujo, y alpechín) u orujo. Comprende precalentar los subproductos en unos medios de precalentamiento (7) y de introducirlos posteriormente en un reactor (1 ) para un calentamiento directo con vapor de agua y/o un calentamiento indirecto a través de una pared (6) calefactora del reactor (1 ), acompañado de una agitación mediante unos medios de agitación (8). Posteriormente se efectúa, a través de unos medios de condensación la extracción de la fase volátil. Seguidamente se lleva a cabo mediante los medios de separación (5), una separación en tres fases: acuosa, con mayor concentración de compuestos fenólicos y libre de fangos; sólida, con menor humedad y mayor concentración de proteína, celulosa y aceite; y oleosa, con mayor concentración de compuestos minoritarios funcionales.

Description

DISPOSITIVO Y PROCEDIMIENTO PARA EL TRATAMIENTO DE LOS SUBPRODUCTOS DE LA OBTENCIÓN DE ACEITE DE OLIVA
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención se puede incluir en el campo de la extracción de aceite de oliva. En concreto, el objeto de la invención trata de un procedimiento y de un dispositivo para el tratamiento de los subproductos de la obtención de aceite de oliva (alperujo, orujo con o sin alpechín), que permite un mejor aprovechamiento de dichos subproductos, llegándose a obtener un sólido final con menos humedad, concentrado en celulosa, proteínas y grasa, un líquido enriquecido en componentes de alto valor añadido y una fase oleosa mejorada.
ANTECEDENTES DE LA INVENCIÓN
El alperujo, residuo generado del sistema de extracción de aceite de oliva en dos fases (por cada 100 toneladas de aceitunas se obtienen aproximadamente 20 toneladas de aceite y 80 de alperujo), posee una composición variable, dependiendo de la variedad de aceituna, del estado de maduración y del sistema de procesado. Es una mezcla compleja constituida por piel, pulpa y hueso, además de alpechín (agua de vegetación de la aceituna) y la posible agua de adición durante la extracción en almazara o en el proceso de repaso. Se trata de una pasta semisólida con una humedad de entre el 60 y el 70%, y un contenido de grasa de entre 1 -2%, ambos referidos al peso del alperujo fresco. Además tiene una composición compleja que incluye, aparte de una fracción mineral, una fracción orgánica formada por grasas, proteínas, carbohidratos hidrosolubles (manitol, sacarosa y fructosa), así como ácidos orgánicos, restos de la pared celular de aceituna
(polisacáridos pécticos, polímeros de celulosa y hemicelulosas, ricos en xilano y xiloglucanos), gomas, taninos y polifenoles. Durante la molienda y el batido llevados a cabo en la extracción del aceite de oliva, muchos de estos compuestos, inicialmente presentes en la aceituna, se mezclan y se interrelacionan dificultando la liberación de ciertos compuestos de interés. Para plantear un buen aprovechamiento habría que llegar a separar las distintas fases y tratarlas por separado, algo impensable si se parte del subproducto tal cual.
El alperujo, por tanto, no solo presenta una mayor humedad que el orujo de tres fases, sino que tiene más cantidad de compuestos solubles que antes se iban en el alpechín. En la evolución del sistema, las almazaras llegan a agotar aún más el contenido graso del alperujo, llegando a las orujeras en un porcentaje que en muchos casos no justifica su posterior extracción para la producción del aceite de orujo. A ello hay que unir el hecho de que muchas almazaras han incorporado en su proceso deshuesadoras, con lo que se incrementa la humedad.
El sistema habitual de las orujeras es el uso del alperujo para la extracción del aceite de orujo, mediante el tradicional sistema de extracción con disolvente o, alternativamente, realizar una primera extracción del aceite de orujo por centrifugación y utilizar a continuación el sólido residual como biocombustible en las plantas de cogeneración. En ambos casos, el paso de secado del alpeorujo, para su extracción con disolventes o para su empleo como sólido residual para la producción de energía, presenta serios problemas.
- Debido a los compuestos orgánicos existentes en el agua de vegetación (azúcares, polialcoholes, ácidos orgánicos, etc.) y tener que secar un alperujo con una humedad tan alta, ello se traduce en problemas dentro de la línea de secado y de su posterior aprovechamiento. En los actuales secaderos rotatorios, de gran consumo energético, ocurren reacciones de caramelización o formación de compuestos de degradación indeseados que pueden llegar a posteriores productos como el aceite de orujo o dificultar su extracción. - La fase del secado provoca además un aumento de la duración de la campaña, lo que a su vez origina la necesidad de tratar un alperujo que ha estado almacenado un mayor periodo de tiempo. Durante el almacenamiento se favorecen las reacciones de fermentación, no deseadas, que dan lugar a compuestos de degradación que complican la extracción de sus componentes más interesantes, disminuyendo además el contenido en azucares y grasa.
En conjunto las desventajas de aplicar el actual sistema de secado sobre una masa de alperujo con una alta humedad, hacen necesaria la busca de alternativas que sean capaces de disminuir dicha humedad, y que al mismo tiempo favorezcan el aprovechamiento de los componentes funcionales presentes.
Un procedimiento de separación sólido-líquido (deshidratación) por centrifugación es una buena alternativa, tal como se describe en la patente española ES 2.156.716, aunque no resulta ni suficiente ni definitiva. Asimismo, una gestión integral del alperujo descrita en WO 2006/058938 utiliza el mismo procedimiento de centrifugación para reducir su humedad.
DESCRIPCIÓN DE LA INVENCIÓN Un objeto de la presente invención trata de un procedimiento para el tratamiento de los subproductos de la obtención del aceite de oliva que posibilita un mejor aprovechamiento del alperujo, como subproducto del proceso de obtención de aceite de oliva en dos fases, o del orujo y/o alpechín, como subproductos del proceso de tres fases.
El procedimiento objeto de la presente invención comprende, en una primera etapa, someter a dichos subproductos, a un tratamiento térmico a través de un calentamiento. Dicho calentamiento puede ser un calentamiento por contacto directo con un vapor o gas inocuos calientes y/o un calentamiento indirecto, con o sin agitación. De esta forma el subproducto alcanza una temperatura de entre 100Q C y 200Q C durante un período de tiempo comprendido entre 15 y 300 minutos, de manera más preferente entre 30 y 180 minutos. Preferentemente, el gas o vapor inocuos es vapor de agua.
Para efectuar dicho calentamiento, el subproducto (el alperujo o el orujo con o sin alpechín) se introduce en un reactor, preferentemente con precalentamiento previo. El subproducto, obtenido de una almazara, puede ser deshuesado en parte o totalmente antes de acceder al reactor. En el interior del reactor el subproducto se pone en contacto directamente con vapor a la presión que se desee, normalmente a la presión de vapor de trabajo de la industria a la que va dirigido, es decir entre 3-10 atmósferas. Al mismo tiempo, el subproducto se puede calentar de manera indirecta a través de una camisa de calefacción o resistencia eléctrica. A la salida del reactor se obtiene un producto en el cual resulta más fácil la separación de las distintas fases: fase sólida, acuosa y oleosa. Dicha separación constituye la siguiente etapa del procedimiento según la invención y se realiza mediante una simple decantación, o alternativamente mediante una centrifugación en dos o tres fases o también mediante filtración, ya sea empleando filtros banda, filtros tipo prensa u otros sistemas similares. El empleo del procedimiento de la invención permite obtener distintas fases, líquida (oleosa y acuosa), sólida, y volátil, con las siguientes ventajas respecto de los procedimientos conocidos en el estado de la técnica:
- En el caso de la fase sólida, se obtiene un sólido con una humedad entre 20- 50%, preferentemente entre el 20 y el 40%, lo cual implica un secado mucho más suave y corto, evitando los problemas que derivan de la alta humedad y favoreciendo la posterior extracción del aceite o su uso como biocombustible. Al mismo tiempo se consigue una reducción del sólido de 2-3 veces por solubilización de la fase líquida, concentrándose una celulosa más accesible, la proteína y el aceite, entre un 5 y un 20%, aumentando la eficacia de la extracción en el caso del aceite.
- La fase líquida está libre de fangos o sólidos en suspensión, tales como restos de pulpa o finos, que dificultan el aprovechamiento de dicha fase líquida. Además en la fase líquida se ha solubilizado ventajosamente una parte importante de los compuestos fenólicos de gran interés, así como una considerable cantidad de azúcares en forma de monosacáridos y oligosacáridos.
- En cuanto a la fase oleosa, se favorece la solubilización de compuestos minoritarios funcionales aumentando la calidad del aceite (véase la tabla 1 ).
Según se acaba de indicar, a través del procedimiento descrito, la fase sólida queda enriquecida en aceite, mientras que la fase líquida en compuestos bioactivos y de alto valor añadido, del tipo oligosacáridos con actividad probiótica, así como compuestos antioxidantes. A demás, las fases tras el tratamiento son más fácilmente separables; tras una centrifugación se llega a obtener un sólido con menor contenido en humedad que un alperujo no tratado, obteniendo al mismo tiempo una mejora en la recuperación del aceite. En el caso en el que no se extraiga dicho aceite en la centrifugación éste aceite se llega a concentrar en el sólido hasta tres veces más que en el material de partida, con todas las ventajas de extracción que ello supone.
La presente invención se refiere también a un dispositivo para el tratamiento de los subproductos de obtención de aceite de oliva, que comprende un reactor con entrada de vapor, preferentemente a través de tubos micro perforados. A lo largo del reactor se encuentra dispuesta una camisa calefactora para calentar el subproducto introducido en dicho reactor, por medio del uso de fluidos térmicos o bien de resistencias eléctricas. Dicho subproducto se introduce en el reactor mediante bomba a presión o tornillo sin fin a lo largo de dicho reactor o de la tubería de entrada y se puede precalentar mediante la camisa calefactora o resistencia eléctrica para favorecer el posterior contacto con el vapor. En el interior la muestra es calentada por el contacto directo con el vapor de agua y/o a través de un calentamiento indirecto por la camisa calefactora o resistencias eléctricas. Debido al aporte de vapor la muestra recorre el reactor a una presión siempre inferior o igual a la de entrada de vapor. La muestra se evacúa del reactor a través de muy variados sistemas como un tornillo sin fin que mantenga la presión de trabajo, o bien a través de válvulas de sobre presión que se abran cuando esta sobrepase un determinado valor. Después del calentamiento y previo a la extracción, puede haber de manera preferente una extracción y condensación de volátiles a través de unos medios de condensación de volátiles. Gracias a dicha extracción se facilita la descompresión y se reduce humedad en la muestra aumentando la concentración de los compuestos solubilizados en la fase líquida obtenida tras los medios de separación, al mismo tiempo que se posibilita la recuperación de valiosos compuestos volátiles en el condensado.
Después de la extracción por parte de los medios de extracción, y previo a la separación, puede haber de manera preferente una recuperación de los huesos de las aceitunas por medio de unos medios de recuperación de huesos, independientemente de que haya podido existir un deshuesamiento parcial del subproducto, obtenido en una almazara, antes de acceder al reactor. El calentamiento directo puede comprender un aumento de presión por introducción de gases inocuos por los segundos medios de introducción.
El sistema puede funcionar en forma continua o discontinua, siendo el funcionamiento continuo el más indicado para su desarrollo industrial.
Según el procedimiento de la invención, las presiones han sido adaptadas hasta las presiones en las que se suele trabajar en las refinerías de aceite de orujo, de hasta 9 Kg/cm2, facilitando el contacto entre el alperujo y el vapor directo, así como dotando al sistema de un precalentamiento que disminuya la condensación del vapor aumentando su eficacia. Se han tenido en cuenta los factores que realmente influyen en el aprovechamiento total del alperujo, lo que ha llevado a la obtención de un proceso térmico nuevo, sencillo, eficiente y económico que reduce sustancialmente los costes de operación. Al reducir los tiempos de operación en el secadero, evitarían los problemas medioambientales y de costos reales que suponen los largos tiempos de secado. Mediante el dispositivo y el procedimiento de la invención, el aprovechamiento integral del alperujo posibilita la recuperación de compuestos de elevado interés nutricional y funcional.
La fase sólida obtenible por el procedimiento descrito se caracteriza porque presenta un contenido graso comprendido entre el 2 y el 30 % y un contenido en celulosa comprendido entre el 10 y el 35%, ambos referidos a materia seca, así como por su naturaleza más biodegradable, es decir más susceptible a una hidrólisis química o enzimática para el uso de glucosa libre o de fragmentos de celulosa más cortos. El aceite de orujo crudo obtenido en la etapa de separación se caracteriza porque está más enriquecido en componentes minoritarios, que el no tratado. Como componentes minoritarios se entienden, entre otros, escualeno, tocoferoles totales, alcoholes alifáticos, esteróles totales, ácido oleanólico, ácido maslínico, y uvaol más eritrodiol, sus incrementos porcentuales se encuentran respectivamente en los rangos de respectivamente 1 -60%, 1 -60%, 1 -95%, 1 -40%, 1 -15%, 1 -20%, 1 -35%, con el consiguiente aporte de importantes beneficios para la salud del consumidor.
El aceite de orujo crudo obtenido a partir de la fase sólida y/o de la fase líquida que resultan de la etapa de separación se caracteriza porque está asimismo enriquecido en dichos componentes minoritarios, donde su contenido en escualeno, tocoferoles totales, alcoholes alifáticos, esteróles totales, ácido oleanólico, ácido maslínico, y contenido en uvaol más eritrodiol, está incrementado en un rango porcentual con respecto al no tratado en un 1 -60%, 1 -60%, 1 -95%, 1 -40%, 1 -15%, 1 -20%, 1 -35% respectivamente. El aceite obtenido según el procedimiento descrito se puede emplear en alimentación, así como para la extracción de dichos componentes minoritarios de alto valor añadido por su aplicación en cosmética, farmacia y alimentación entre los que cabe destacar algunos de los mencionados en el párrafo anterior.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1 .- Muestra una vista esquemática del dispositivo de la invención.
Figura 2.- Muestra un diagrama del procedimiento de la invención.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN El procedimiento objeto de la presente invención comprende, en una primera etapa, someter a dichos subproductos, a un tratamiento térmico a través de un calentamiento en el interior de un reactor (1 ). Dicho calentamiento puede ser un calentamiento por contacto directo con vapor de agua y/o un calentamiento indirecto, mediante intercambio de calor a través de una camisa (6) del reactor (1 ), preferentemente con agitación en el caso del calentamiento indirecto por medio de unos medios de agitación (8). De esta forma el subproducto alcanza una temperatura de entre 130Q C y 200Q C durante un período de tiempo comprendido entre 30 y 180 minutos. Previamente al calentamiento, los subproductos son precalentados en unos medios de precalentamiento (7) y posteriormente dichos subproductos se introducen en el reactor (1 ) por medio de los primeros medios de introducción (2) y en el interior del reactor (1 ) el subproducto se pone en contacto directamente con vapor a la presión que se desee, normalmente a la presión de vapor de trabajo de la industria a la que va dirigido, es decir entre 3-10 atmósferas. El vapor es introducido en el reactor a través de unos segundos medios de introducción (3). Al mismo tiempo, el subproducto se calienta de manera indirecta a través de la camisa (6) de calefacción o de resistencias eléctricas (no representadas).
Después del calentamiento, se procede a la recuperación de los huesos de aceituna a través de unos medios de recuperación (10) de huesos, tras lo cual los subproductos son extraídos del reactor (1 ) mediante unos medios de extracción (4).
A la salida del reactor (1 ), se produce una extracción y condensación de volátiles mediante unos medios de condensación (9) de volátiles, para la despresurizacion, aprovechamiento de esta nueva fracción y disminución de humedad, después de la cual, se obtiene un producto en el cual resulta más fácil la separación de las distintas fases: la fase sólida y la líquida (oleosa y acuosa). Dicha separación constituye la segunda etapa del procedimiento según la invención y se realiza por medio de unos medios de separación (5) mediante una simple decantación, o alternativamente mediante una centrifugación en dos o tres fases o también mediante filtración, ya sea empleando filtros banda, filtros tipo prensa u otros sistemas similares. El dispositivo de la invención comprende un reactor con entrada de vapor, preferentemente a través de tubos micro perforados. A lo largo del reactor (1 ) se encuentra dispuesta una camisa (6) calefactora para calentar el subproducto introducido en dicho reactor (1 ), por medio del uso de fluidos térmicos o bien de resistencias eléctricas. Dicho subproducto se introduce en el reactor mediante bomba a presión o tornillo sin fin a lo largo de dicho reactor o de la tubería de entrada y se puede precalentar mediante la camisa (6) calefactora o resistencia eléctrica para favorecer el posterior contacto con el vapor. En el interior del reactor (1 ) la muestra es calentada por el contacto directo con el vapor de agua y/o a través de un calentamiento indirecto por la camisa calefactora (6) o resistencias eléctricas. Debido al aporte de vapor la muestra recorre el reactor a una presión siempre inferior a la de entrada de vapor. La muestra se evacúa del reactor a través de muy variados sistemas como un tornillo sin fin que mantenga la presión de trabajo, o bien a través de válvulas de sobre presión que se abran cuando esta sobrepase un determinado valor. El sistema puede funcionar en forma continua o discontinua, siendo el funcionamiento continuo el más indicado para su desarrollo industrial.
El material de partida usado ha sido un alperujo agotado en las almazaras dejando un contenido graso de un 1 .5% y una humedad del 70%. Se ha realizado una experiencia a escala semiindustrial en un reactor (1 ) de 100 L. de capacidad. En dicho reactor (1 ) se ha realizado una carga en discontinuo de 30 kilogramos de alperujo y se han probado distintas temperaturas desde 130Q C hasta 190 5 C en un rango de presiones de 3 hasta 1 1 atmósferas. A continuación se describen los resultados obtenidos en el caso de 150Q C y de 170 °C para distintos tiempos de reacción. Las variables que han servido para verificar el buen funcionamiento del mismo han sido la solubilización de conocidos compuestos bioactivos presentes, la reducción de sólido y la separación sólido - líquido. Para ambas temperaturas la reacción se llevó a cabo mediante vapor de agua directo y calentamiento indirecto a través de una camisa (6) calefactora en la cual se introdujo vapor de agua como fluido térmico. Se probaron diferentes tiempos de reacción, desde 30 hasta 180 minutos, llegándose a obtener mejores resultados para las temperaturas más elevadas. Todos los resultados indicaron una mejora sustancial en el alperujo tratado, en cuanto a las variables controladas. Tras la carga del alperujo se cerró el reactor (1 ) y se empezó a calentar de forma indirecta. A los pocos minutos se comenzó a hacer pasar al interior del reactor vapor de agua, para homogeneizar y calentar la masa de alperujo rápidamente desde la temperatura ambiente hasta los 150 ° C en 20 minutos o hasta los 170 ° C en 30 minutos, manteniendo dichas temperaturas durante el restante tiempo de reacción.
En caso de sistemas de aporte de alperujo en discontinuo, el aporte de vapor no es continuo, sino que una vez que alcanza la temperatura el automatismo permite la entrada discontinua de vapor solo para mantener la temperatura. En el caso de sistemas de aporte de orujo en continuo, el aporte de vapor es también continuo.
Un vez transcurrido el tiempo de reacción en el discontinuo se para el calentamiento y se trasvasa el alperujo ya despresurizado hasta un tanque se decantación (5). Una vez enfriado el alperujo, se verifica la concentración en la fase acuosa de productos de alto interés, así como la concentración en el sólido de la fase oleosa, la reducción del mismo y la separación sólido-líquido, que en la mayoría de las condiciones ensayadas se produce mediante una simple decantación, aunque la fase de centrifugación es necesaria si se precisa de un mayor secado.
Los resultados obtenidos muestran que el sólido se llega a secar hasta un rango de un 20-50% de humedad dependiendo del sistema de filtración o de centrifugación. Se aumenta la solubilización de compuestos como los fenoles y azucares, entre otros muchos interesantes, y se llega a concentrar hasta tres veces el contenido graso en el sólido final al llegar dicho contenido graso a solubilizarse hasta en un 65% en las condiciones más severas del tratamiento. Todo ello indica una mejora sustancial que permite y revaloriza significativamente a este subproducto posibilitando su mejor aprovechamiento. En las tablas 1 y 2 se muestran dos ejemplos de enriquecimiento en componentes minoritarios de los aceites obtenidos mediante extracción con hexano a partir de los alperujos sometidos previamente al tratamiento térmico según la invención, en un primer caso, (ejemplo 1 ) para alperujo fresco procedente directamente de una almazara y, en un segundo caso, (ejemplo 2), para orujo previamente almacenado, procedente de una orujera y sometido a una segunda centrifugación o repaso.
En las tablas 3 y 4 se aprecia que, para ambos ejemplos referidos, con el tratamiento al vapor se produce una considerable reducción de sólido, o solubilización del alperujo, y en consecuencia un aumento de la concentración de la grasa. Mediante el procedimiento de la invención, por tanto, aumentan considerablemente componentes minoritarios de alto valor añadido en el aceite extractado, como por ejemplo el escualeno, los tocoferoles, esteróles y alcoholes alifáticos entre otros hasta un 57, 57, 33 y 92% respectivamente.
Tabla 1. Características de los aceites extractados a partir de un alperujo fresco sometido a 1602 C durante distintos tiempos de tratamiento al vapor, de 15 a 90 minutos. Comparación con un aceite extractado de un alperujo control, no tratado al vapor.
Figure imgf000015_0001
a Desviación estándar de dos replicados
()b Porcentajes de incremento con respecto al control (en negrita valores máximos) Tabla 2. Características de los aceites extractados a partir de un alperujo almacenado en una orujera y sometido a diferentes condiciones de temperatura, 150, 160 y 1702 C durante 60 minutos de tratamiento al vapor. Comparación con un aceite extractado de un alperujo control, no tratado al vapor.
Figure imgf000016_0001
a Desviación estándar de dos replicados
()b Porcentajes de incremento con respecto al control (en negrita valores máximos) Tabla 3. Porcentajes de contenido graso (referido a materia seca), enriquecimiento graso y de reducción de sólidos en alperujo fresco tras ser sometido a un tratamiento al vapor
Figure imgf000017_0001
Balance sobre 20kg de alperujo fresco
*Balance sobre 10 kg de alperujo fresco
Tabla 4. . Porcentajes de contenido graso (referido a materia seca), enriquecimiento graso y de reducción de sólidos en alperujo almacenado tras ser sometido a un tratamiento al vapor.
Figure imgf000018_0001
Balance sobre 20kg de alperujo almacenado tratado

Claims

R E I V I N D I C A C I O N E S
1 .-Dispositivo para el tratamiento de los subproductos de la obtención de aceite de oliva, caracterizado porque comprende:
- un reactor (1 ) en el cual los subproductos son introducidos;
- unos primeros medios de introducción (2) para introducir los subproductos en el reactor (1 );
- unos segundos medios de introducción (3) para introducir un gas o vapor inocuo en el reactor (1 ), para calentar por contacto los subproductos introducidos en dicho reactor (1 );
- unos medios de extracción (4) de los subproductos calentados;
- y unos medios de separación (5) de los subproductos extraídos.
2. - Dispositivo para el tratamiento de los subproductos de la obtención de aceite de oliva de acuerdo con la reivindicación 1 , caracterizado porque comprende unos medios de condensación de volátiles (9) para condensar los volátiles previamente a la extracción.
3. -Dispositivo para el tratamiento de los subproductos de la obtención de aceite de oliva de acuerdo con la reivindicación 1 , caracterizado porque comprende unos medios de recuperación de huesos (10) para recuperar los huesos previamente a la separación.
4. -Dispositivo para el tratamiento de los subproductos de la obtención de aceite de oliva de acuerdo con la reivindicación 1 , caracterizado porque el gas o vapor inocuo es vapor de agua.
5. -Dispositivo para el tratamiento de los subproductos de la obtención de aceite de oliva, de acuerdo con la reivindicación 1 , caracterizado porque comprende una camisa (6) de calefacción en la parte exterior del reactor (1 ), para calentar los subproductos del interior del reactor.
6. -Dispositivo para el tratamiento de los subproductos de la obtención de aceite de oliva, de acuerdo con la reivindicación 5, caracterizado porque la camisa (6) de calefacción incorpora un fluido térmico en su interior, para calentar el subproducto.
5
7. -Dispositivo para el tratamiento de los subproductos de la obtención de aceite de oliva, de acuerdo con la reivindicación 1 , caracterizado porque el reactor incorpora resistencias en su interior, para calentar el subproducto. 0
8.-Dispositivo para el tratamiento de los subproductos de la obtención de aceite de oliva, de acuerdo con la reivindicación 1 , caracterizado porque los medios de separación (5) se seleccionan entre al menos uno de:
- sistemas de decantación;
- sistemas de filtración;
5 - sistemas de sedimentación; y
- sistemas de centrifugación.
9. -Dispositivo para el tratamiento de los subproductos de la obtención de aceite de oliva, de acuerdo con la reivindicación 1 , caracterizado porque comprende 0 adicionalmente unos medios de agitación (8) para agitar el subproducto en el interior del reactor (1 ).
10. -Dispositivo para el tratamiento de los subproductos de la obtención de aceite de oliva, de acuerdo con la reivindicación 1 , caracterizado porque comprende 5 adicionalmente unos medios de precalentamiento (7) para precalentar los subproductos antes de introducir dichos residuos en el reactor (1 ).
1 1 .-Procedimiento para el tratamiento de los subproductos de la obtención de aceite de oliva, empleando el dispositivo descrito en las reivindicaciones 1 a 10, o caracterizado porque comprende las etapas de:
- calentamiento directo de dichos subproductos mediante contacto con un vapor o gas inocuos en el interior de un reactor (1 ); - extracción desde el reactor (1 ) del producto de la etapa anterior mediante los medios de extracción (4); y
- posterior separación en fases del producto extraído, por medio de unos medios de separación (5).
12. -Procedimiento para el tratamiento de los subproductos de la obtención de aceite de oliva, de acuerdo con la reivindicación 1 1 , caracterizado porque los subproductos alcanzan una temperatura comprendida entre 100 5 C y 200 5 C que se mantiene durante un período de tiempo comprendido entre 15 y 300 minutos;
13. -Procedimiento para el tratamiento de los subproductos de la obtención de aceite de oliva de acuerdo con la reivindicación 1 1 , caracterizado porque en la separación se obtienen dos fases: una sólida y otra líquida, y a partir de la sólida se obtiene posteriormente una fase oleosa.
14. -Procedimiento para el tratamiento de los subproductos de la obtención de aceite de oliva de acuerdo con la reivindicación 1 1 , caracterizado porque en la separación se obtienen tres fases: una sólida, una líquida y una fase oleosa.
15. -Procedimiento para el tratamiento de los subproductos de la obtención de aceite de oliva de acuerdo con la reivindicación 1 1 , caracterizado porque, previamente a la extracción, comprende adicionalmente la extracción y condensación de los volátiles mediante los medios de condensación (9).
16. -Procedimiento para el tratamiento de los subproductos de la obtención de aceite de oliva de acuerdo con la reivindicación 1 1 , caracterizado porque, previamente a la separación comprende adicionalmente la extracción y recuperación de los huesos mediante los medios de recuperación (10).
17. -Procedimiento para el tratamiento de los subproductos de la obtención de aceite de oliva de acuerdo con la reivindicación 1 1 , caracterizado porque el calentamiento directo comprende un aumento de presión por introducción de gases inocuos por los segundos medios de introducción.
18. -Procedimiento para el tratamiento de los subproductos de la obtención de 5 aceite de oliva, de acuerdo con la reivindicación 1 1 , caracterizado porque comprende adicionalmente una etapa adicional de precalentado del subproducto anterior al calentamiento directo, por medio de unos medios de precalentamiento (7). 0 19. -Procedimiento para el tratamiento de los subproductos de la obtención de aceite de oliva, de acuerdo con la reivindicación 1 1 , caracterizado porque comprende una etapa adicional de calentamiento indirecto del subproducto por medio de transmisión de calor hacia el interior del reactor (1 ) a través de una camisa (6) de calefacción ubicada en la parte exterior del reactor (1 ).
5
20. -Procedimiento para el tratamiento de los subproductos de la obtención de aceite de oliva, de acuerdo con la reivindicación 1 1 , caracterizado porque comprende una etapa adicional de calentamiento indirecto del subproducto mediante resistencias eléctricas o intercambiador de calor por fluidos térmicos o ubicadas en el reactor (1 ).
21 .-Procedimiento para el tratamiento de los subproductos de la obtención de aceite de oliva, de acuerdo con una cualquiera de las reivindicaciones 19 y 20, caracterizado porque el calentamiento indirecto se lleva a cabo simultáneamente 5 con la etapa de calentamiento directo.
22.- Procedimiento para el tratamiento de los subproductos de la obtención de aceite de oliva, de acuerdo con la reivindicación 1 1 , caracterizado porque comprende una etapa adicional de agitación del subproducto en el interior del 0 reactor.
23. -Procedimiento para el tratamiento de los subproductos de la obtención de aceite de oliva, de acuerdo con la reivindicación 1 1 , caracterizado porque el calentamiento directo se produce a una presión comprendida entre 3 y 1 1 atmósferas.
24. -Fase sólida obtenible por el procedimiento descrito en una cualquiera de las reivindicaciones 1 1 a 23, caracterizada porque su contenido graso está comprendido entre el 2 y el 30 %, su contenido en celulosa está comprendido entre el 10 y el 35%, ambos referidos a materia seca, donde dicha celulosa es más susceptible a una hidrólisis química o enzimática para el uso de glucosa libre o de fragmentos de celulosa más cortos que el no tratado.
25. -Uso de la fase sólida descrita en la reivindicación 24 como materia prima para combustible, bioetanol o como alimento animal.
26. -Aceite de orujo crudo obtenido en la etapa de separación mediante el procedimiento descrito en una cualquiera de las reivindicaciones 1 1 a 23 caracterizado porque está enriquecido en componentes minoritarios.
27.- Aceite de orujo crudo de acuerdo con la reivindicación 26, caracterizado porque los componentes minoritarios se seleccionan entre al menos uno de:
- escualeno,
- tocoferoles totales,
- alcoholes alifáticos,
- esteróles totales,
- ácido oleanólico,
- ácido maslínico, y
- uvaol más eritrodiol.
28. -Aceite de orujo crudo de acuerdo con una cualquiera de las reivindicaciones
26 y 27, caracterizado porque el escualeno, los tocoferoles, los alcoholes alifáticos, los esteróles, el ácido oleanólico, el ácido maslínico, y el uvaol más eritrodiol están están incrementados en un rango porcentual con respecto al no tratado de un 1 -60%, 1 -60%, 1 -95%, 1 -40%, 1 -15%, 1 -20%, 1 -35% respectivamente.
29.- Uso del aceite obtenido según el procedimiento descrito en una cualquiera de las reivindicaciones 1 1 a 23 en alimentación.
30.- Uso del aceite obtenido según el procedimiento descrito en una cualquiera de las reivindicaciones 1 1 a 23 para la extracción de componentes minoritarios.
PCT/ES2011/070583 2010-08-09 2011-08-05 Dispositivo y procedimiento para el tratamiento de los subproductos de la obtención de aceite de oliva WO2012020159A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201031236 2010-08-09
ES201031236A ES2374675B1 (es) 2010-08-09 2010-08-09 Dispositivo y procedimiento para el tratamiento de los subproductos de la obtención de aceite de oliva.

Publications (1)

Publication Number Publication Date
WO2012020159A1 true WO2012020159A1 (es) 2012-02-16

Family

ID=45560162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070583 WO2012020159A1 (es) 2010-08-09 2011-08-05 Dispositivo y procedimiento para el tratamiento de los subproductos de la obtención de aceite de oliva

Country Status (2)

Country Link
ES (1) ES2374675B1 (es)
WO (1) WO2012020159A1 (es)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2436626B1 (es) * 2013-10-16 2014-09-29 Orujo Frio, S.L. Proceso industrial para el tratamiento de subproductos procedentes de la obtención de aceite de oliva
MA37939B1 (fr) * 2015-03-19 2017-04-28 Abdellatif Lajdel Systeme de sechage et de separation optimise des residus de l'huile d'olive en mode continu
ES2685169B1 (es) 2017-03-31 2019-08-06 Procedimiento para obtener aceite de oliva y al menos un extracto concentrado en polifenoles y un ingrediente funcional

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2064247A2 (es) * 1992-12-14 1995-01-16 Bedmar Olmedilla Blas Instalacion conjunta, continua y automatica para la transformacion de los los residuos alpechin y orujo procedentes de la industria del aceite de oliva.
ES2079322A1 (es) * 1994-06-13 1996-01-01 Rodriguez Jose Luis Jimenez Procedimiento de obtencion de aceite a partir del orujo de aceituna.
ES2143939A1 (es) * 1998-02-26 2000-05-16 Consejo Superior Investigacion Procedimiento de obtencion de manitol a partir de pulpa extractada de aceitunas.
WO2004009206A1 (es) * 2002-07-17 2004-01-29 Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (C.I.E.M.A.T.) Procedimiento de extracción de compuestos fenólicos a partir de un material vegetal residual mediante un tratamiento hidrotérmico
WO2006058938A2 (es) * 2004-11-29 2006-06-08 Biolives, Coop.V. Procedimiento para la industrialización de subproductos de almazara y producto obtenido
EP2044848A1 (en) * 2007-10-01 2009-04-08 STC S.r.l. Science Technology & Consulting Process for the treatment and the recovery of humid pomace produced by two-phase oil mills

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2064247A2 (es) * 1992-12-14 1995-01-16 Bedmar Olmedilla Blas Instalacion conjunta, continua y automatica para la transformacion de los los residuos alpechin y orujo procedentes de la industria del aceite de oliva.
ES2079322A1 (es) * 1994-06-13 1996-01-01 Rodriguez Jose Luis Jimenez Procedimiento de obtencion de aceite a partir del orujo de aceituna.
ES2143939A1 (es) * 1998-02-26 2000-05-16 Consejo Superior Investigacion Procedimiento de obtencion de manitol a partir de pulpa extractada de aceitunas.
WO2004009206A1 (es) * 2002-07-17 2004-01-29 Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (C.I.E.M.A.T.) Procedimiento de extracción de compuestos fenólicos a partir de un material vegetal residual mediante un tratamiento hidrotérmico
WO2006058938A2 (es) * 2004-11-29 2006-06-08 Biolives, Coop.V. Procedimiento para la industrialización de subproductos de almazara y producto obtenido
EP2044848A1 (en) * 2007-10-01 2009-04-08 STC S.r.l. Science Technology & Consulting Process for the treatment and the recovery of humid pomace produced by two-phase oil mills

Also Published As

Publication number Publication date
ES2374675B1 (es) 2013-01-04
ES2374675A1 (es) 2012-02-21

Similar Documents

Publication Publication Date Title
CN102329690B (zh) 油茶籽油低温冷榨及二元连续式精炼加工方法
RU2198548C1 (ru) Способ получения экстракта из растения stevia rebaudiana bertoni
CN101439593B (zh) 山核桃油低温压榨、精炼生产工艺
EP3604490B1 (en) Method for obtaining olive oil and at least one extract concentrated in polyphenols and a functional ingredient
CN102321160B (zh) 一种芝麻蛋白粉的生产工艺
WO2006058938A2 (es) Procedimiento para la industrialización de subproductos de almazara y producto obtenido
CN107011988B (zh) 一种椰子油提取工艺及其椰子油
CN105062686A (zh) 一种提取薰衣草精油的方法
CN102533433A (zh) 一种超临界萃取沙棘油的方法
CN103739741A (zh) 一种从发酵山楂酒果渣中提取果胶的方法
WO2012020159A1 (es) Dispositivo y procedimiento para el tratamiento de los subproductos de la obtención de aceite de oliva
CN100579377C (zh) 从椰麸中提取椰子油的方法
CN103393202A (zh) 一种分离沙棘果籽、皮、汁的加工装置和方法
CN104940298A (zh) 一种肉苁蓉饮片的制作方法
CN103251651A (zh) 一种动物神经节苷脂与脑苷脂提取方法与其应用
CN106635412B (zh) 一种油的加工分离方法及其应用
CN104447891A (zh) 水苏糖的制备方法
CN106107772A (zh) 一种火龙果抗衰老发酵型玫瑰花渣复合果酱及其制备方法
CN105907454A (zh) 一种精致浓香菜籽油的提取方法
CN105475638A (zh) 一种棉籽蛋白生产工艺
RU2344166C2 (ru) Способ комплексной переработки растительного сырья
CN104140881A (zh) 一种提取八角籽油的方法
RU2132622C1 (ru) Способ переработки бурых водорослей
CN106107771A (zh) 一种果蔬润肠发酵型玫瑰花渣复合果酱及其制备方法
CN108424810A (zh) 一种花生油的生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816136

Country of ref document: EP

Kind code of ref document: A1