WO2012018053A1 - 熱電発電装置 - Google Patents

熱電発電装置 Download PDF

Info

Publication number
WO2012018053A1
WO2012018053A1 PCT/JP2011/067796 JP2011067796W WO2012018053A1 WO 2012018053 A1 WO2012018053 A1 WO 2012018053A1 JP 2011067796 W JP2011067796 W JP 2011067796W WO 2012018053 A1 WO2012018053 A1 WO 2012018053A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat medium
power generation
low
thermoelectric
Prior art date
Application number
PCT/JP2011/067796
Other languages
English (en)
French (fr)
Inventor
和宏 小野瀬
Original Assignee
北海道特殊飼料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北海道特殊飼料株式会社 filed Critical 北海道特殊飼料株式会社
Priority to US13/883,164 priority Critical patent/US20140014153A1/en
Priority to EP11814678.6A priority patent/EP2618477A4/en
Priority to JP2012520852A priority patent/JP5248710B2/ja
Publication of WO2012018053A1 publication Critical patent/WO2012018053A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction

Definitions

  • the present invention relates to a technique for converting thermal energy into electrical energy using a thermoelectric element. More specifically, the present invention uses a heat engine, a heat pump, or the like as a thermal energy source, and generates power using a temperature difference generated by the thermal energy source. It is related to the technology to do.
  • thermoelectric power generation layer composed of a thermoelectric conversion element is provided between an inner pipe and an outer pipe, and a high-temperature heat medium (hot water, steam, exhaust gas, etc.) is introduced into the inner pipe from a boiler or an internal combustion engine.
  • a thermoelectric power generation module that generates power by a temperature difference between the inner tube and the outer tube can be cited (Patent Document 1).
  • the temperature of the outer tube that is in contact with the outside air is lower than the temperature of the inner tube through which a high-temperature heat medium is flowing.
  • Power can be generated by thermoelectric conversion.
  • Japanese Patent Laid-Open No. 9-36439 Japanese Patent No. 2275410
  • thermoelectric conversion is performed only by the power generation layer disposed in the space of the single layer between the inner cylinder and the outer cylinder, the temperature difference generated by the thermal energy source is efficiently used. Thermoelectric power generation cannot be performed.
  • the technique described in Patent Document 1 has a fundamental problem that power generation efficiency is not good because thermoelectric conversion is performed by a relatively small temperature difference between a high-temperature heat medium and outside air.
  • the problem to be solved by the present invention is to provide a thermoelectric power generation apparatus and a thermoelectric power generation method capable of generating power by thermoelectric conversion by efficiently using a temperature difference generated by a thermal energy source.
  • thermoelectric generator (Aspect 1)
  • the thermoelectric generator of the present invention is A high-temperature flow path through which a high-temperature heat medium flows; A low-temperature flow path through which a low-temperature heat medium flows than the high-temperature heat medium; A power generation layer that generates power by temperature difference,
  • the high-temperature channel and the low-temperature channel are formed in a plurality of layers by alternately laminating each other concentrically, The power generation layer is provided between the high temperature channel and the low temperature channel adjacent to each other.
  • This apparatus is configured to cause a temperature difference between the high temperature channel and the low temperature channel by flowing a high temperature heat medium through the high temperature channel and a low temperature heat medium through the low temperature channel.
  • power generation by thermoelectric conversion is performed by a power generation layer provided between the low-temperature channel and the low-temperature channel.
  • the power generation layer in this apparatus constitutes three or more layers (multilayers) of power generation layers sandwiched between the high-temperature channel and the low-temperature channel alternately arranged. Therefore, according to this apparatus, thermoelectric power generation can be performed by using the temperature difference generated by the thermal energy source much more efficiently than before by performing power generation by thermoelectric conversion using a plurality of power generation layers. Can do.
  • the high-temperature heat medium is a heat medium in a pressurized state in the heat pump (a heat medium between the compressor and the expansion valve),
  • the low-temperature heat medium is preferably a heat medium in a depressurized state (heat medium from the expansion valve to the compressor) in the heat pump.
  • a heat pump is used as a heat energy source, and a temperature difference generated in one system of the heat pump, that is, a temperature difference between the pressurized heat medium and the depressurized heat medium. It is possible to perform thermoelectric power generation using the extremely efficiently.
  • thermoelectric generator The high-temperature channel and the low-temperature channel adjacent to each other are partitioned by inner and outer double channel walls having a gap between each other,
  • the power generation layer is An inner electrode formed on the outer surface of the inner channel wall;
  • thermoelectric power generator (Aspect 2)
  • a thermoelectric power generator according to another aspect of the present invention is provided.
  • thermoelectric power generation can be performed using a heat pump as a thermal energy source.
  • the use efficiency of the heat energy obtained from the heat pump can be increased by using a plurality of power generation layers.
  • the temperature difference generated in one system called a heat pump that is, thermoelectric power generation is efficiently performed using a relatively large temperature difference between the pressurized heat medium and the depressurized heat medium. It can be carried out.
  • thermoelectric generator The high-temperature channel and the low-temperature channel adjacent to each other are partitioned by inner and outer double channel walls having a gap between each other,
  • the power generation layer is An inner electrode formed on the outer surface of the inner channel wall;
  • Thermoelectric generator (Aspect 3) A high-temperature flow path through which a high-temperature heat medium (pressurized heat medium) in the second heat pump in a heat pump system in which the heat dissipation part of the first heat pump and the heat absorption part of the second heat pump are thermally connected to each other
  • a low-temperature flow path through which a low-temperature heat medium (heat medium in a decompressed state) flows than the high-temperature heat medium in the second heat pump A power generation layer that generates power by temperature difference, The high-temperature channel and the low-temperature channel are formed by laminating each other, The power generation layer is provided between the high temperature channel and the low temperature channel.
  • This apparatus uses the second heat pump as a thermal energy source, and utilizes the temperature difference generated by the second heat pump, that is, the temperature difference between the heat medium in a pressurized state and the heat medium in a reduced pressure state.
  • Thermoelectric power generation Since the heat absorption part of the second heat pump is in thermal contact with the heat dissipation part of the first heat pump, the high temperature heat medium and the low temperature heat medium are compared with the case where the second heat pump is operated alone. A large temperature difference can be generated between the two. Since this device uses a plurality of power generation layers, the heat energy obtained from the second heat pump can be used with high efficiency, and a large temperature difference generated in the second heat pump can be used for thermoelectric conversion. Efficient thermoelectric power generation can be realized.
  • thermoelectric power generation method (Aspect 1)
  • thermoelectric power generation is performed using the temperature difference generated by the thermal energy source much more efficiently than before by performing power generation by thermoelectric conversion by a plurality of layers (multilayer) of power generation layers. Can do.
  • the high-temperature heat medium is a heat medium in a pressurized state in the heat pump (a heat medium between the compressor and the expansion valve),
  • the low-temperature heat medium is preferably a heat medium in a depressurized state (heat medium from the expansion valve to the compressor) in the heat pump.
  • a heat pump is used as a heat energy source, and a temperature difference generated in one system of the heat pump, that is, a temperature difference between the pressurized heat medium and the depressurized heat medium. It is possible to perform thermoelectric power generation using the extremely efficiently.
  • thermoelectric power generation method includes: A high-temperature flow path through which a high-temperature heat medium in the heat pump (pressurized heat medium) flows, and a heat medium that is lower in temperature than the high-temperature heat medium in the heat pump (heat medium in a decompressed state) flows.
  • the low-temperature channel is formed by laminating each other, and power generation is performed by providing a power generation layer that generates thermoelectric power due to a temperature difference between the high-temperature channel and the low-temperature channel.
  • a heat pump is used as a heat energy source, and a temperature difference generated in one system called the heat pump, that is, a relatively low temperature between the pressurized heat medium and the depressurized heat medium.
  • Thermoelectric power generation can be performed efficiently using a large temperature difference.
  • Thermoelectric power generation method (Aspect 3)
  • a high-temperature flow path through which a high-temperature heat medium (pressurized heat medium) in the second heat pump in a heat pump system in which the heat dissipation part of the first heat pump and the heat absorption part of the second heat pump are thermally connected to each other
  • a low-temperature flow path through which a heat medium having a temperature lower than that of the high-temperature heat medium in the second heat pump (heat medium in a reduced pressure state) is stacked on each other. It is characterized in that power generation is performed by providing a power generation layer for thermoelectric power generation due to a temperature difference between the channel and the flow path.
  • the second heat pump is used as a thermal energy source, and a temperature difference generated by the second heat pump, that is, a temperature difference between a pressurized heat medium and a depressurized heat medium is used.
  • Thermoelectric power generation Since the heat absorption part of the second heat pump is in thermal contact with the heat dissipation part of the first heat pump, compared with a case where the second heat pump is operated alone, a high-temperature heat medium and a low-temperature heat medium A large temperature difference can be generated between the two. Therefore, according to this method, thermoelectric power generation can be performed efficiently by using the second heat pump as a thermal energy source and utilizing a large temperature difference generated in one system called the second heat pump.
  • thermoelectric power generation can be performed by efficiently using a temperature difference generated in one system serving as a thermal energy source.
  • thermoelectric generator 1 shown in FIG. 1 includes a first flow path body 10 through which a high-temperature heat medium 2H passes, a second flow path body 20 through which a low-temperature heat medium 2L passes, and a temperature difference.
  • the first to third power generation layers 30-1, 30-2, and 30-3 that generate power by the power generation.
  • the first flow path body 10 is a tubular body made of an electrically insulating material.
  • the first flow path body 10 flows from the inlet 10a into which the high-temperature heat medium 2H flows, the outlet 10b from which the high-temperature heat medium 2H flows out, the first and second high-temperature flow paths 11 and 12, and the inlet 10a.
  • Branching portion 13 for branching the high-temperature heat medium 2H into the first and second high-temperature flow paths 11 and 12, and the high-temperature heat medium 2H that has passed through the first and second high-temperature flow paths 11 and 12 are joined to the outlet.
  • a merging portion 14 leading to 10b leading to 10b.
  • the first high-temperature channel (inner high-temperature channel) 11 is a linear channel having a square cross section perpendicular to the flow direction of the heat medium 2H.
  • the second high-temperature channel (outside high-temperature channel) 12 is formed concentrically outside the first high-temperature channel 11.
  • the second high-temperature channel 12 is a channel having a square annular cross section whose diagonal direction coincides with that of the first high-temperature channel 11.
  • the second flow path body 20 is a tube formed of an electrically insulating material.
  • the first flow path body 20 flows from the inlet 20a into which the low-temperature heat medium 2L flows, the outlet 20b from which the low-temperature heat medium 2L flows out, the first and second low-temperature flow paths 21 and 22, and the inlet 20a.
  • the branch portion 23 that branches the low-temperature heat medium 2L into the first and second low-temperature flow paths 21 and 22 and the low-temperature heat medium 2L that has passed through the first and second low-temperature flow paths 21 and 22 are merged and exited. And a merging portion 24 leading to 20b.
  • the first low-temperature flow path (inner low-temperature flow path) 21 is an annular flow path having a square cross section perpendicular to the flow direction of the heat medium 2L.
  • the first low-temperature channel 21 is formed at an intermediate position between the first high-temperature channel 11 and the second high-temperature channel 12 so that the diagonal directions of both the channels 11 and 12 coincide.
  • the second low-temperature channel (outer low-temperature channel) 22 is formed concentrically outside the first low-temperature channel 21.
  • the second low-temperature channel 22 is a channel having a square annular cross section whose diagonal direction coincides with that of the first low-temperature channel 21.
  • the second low-temperature flow path 22 is formed outside the second high-temperature flow path 12 so that the diagonal direction of the flow path 12 coincides.
  • the first power generation layer 30-1 includes an inner electrode 51 formed on the outer surface of the channel wall 41 of the first high temperature channel 11 and an inner surface of the inner channel wall 42 that defines the first low temperature channel 21. And a plurality of thermoelectric conversion elements 55 that are electrically connected between the inner electrode 51 and the outer electrode 52 and generate power with a temperature difference generated at both ends.
  • the second power generation layer 30-2 includes an inner electrode 51 formed on the outer surface of the outer channel wall 43 that defines the first low temperature channel 21, and an inner electrode that defines the second high temperature channel 12.
  • An outer electrode 52 formed on the inner surface of the flow path wall 44, and a plurality of thermoelectric conversion elements 55 that are electrically connected between the inner electrode 51 and the outer electrode 52 and generate electric power with a temperature difference generated at both ends.
  • the third power generation layer 30-3 includes an inner electrode 51 formed on the outer surface of the outer channel wall 45 that defines the second high-temperature channel 12, and an inner electrode that defines the second low-temperature channel 22.
  • An outer electrode 52 formed on the inner surface of the flow path wall 46, and a plurality of thermoelectric conversion elements 55 that are electrically connected between the inner electrode 51 and the outer electrode 52 and generate electric power with a temperature difference generated at both ends.
  • the inner electrodes 51 and the outer electrodes 52 of the first to third power generation layers 30-1, 30-2, and 30-3 are electrically connected by wirings 56 and 57, respectively.
  • a pair of output terminals 56 a and 57 a extending from the wirings 56 and 57 are provided outside the second flow path body 20.
  • the electric power generated by the first to third power generation layers 30-1, 30-2, 30-3 is taken out collectively from the pair of output terminals 56a, 57a.
  • thermoelectric conversion element 55 in the first to third power generation layers 30-1, 30-2, 30-3 is arbitrary. Any form in which all thermoelectric conversion elements 55 are electrically connected in parallel with each other, all thermoelectric conversion elements 55 are electrically connected in series, or a series-parallel connection form in which series connection and parallel connection are combined. This form can also be adopted.
  • thermoelectric generator 1 of the first embodiment configured as described above flows a high-temperature heat medium 2H through the first flow path body 10 and a low-temperature heat medium 2L through the second flow path body 12, respectively.
  • a temperature difference between the high temperature channels 11 and 12 of the first channel body 10 and the low temperature channels 21 and 22 of the second channel body 12 are generated.
  • 22 is used to generate power by thermoelectric conversion by the power generation layers 30-1, 30-2, 30-3.
  • thermoelectric power is generated by the three power generation layers 30-1, 30-2, 30-3 sandwiched between the high-temperature flow paths 11, 12 and the low-temperature flow paths 21, 22 arranged alternately. Since power generation by conversion is performed, thermoelectric power generation can be performed by efficiently using the temperature difference between the high temperature heat medium 2H and the low temperature heat medium 2L.
  • thermoelectric generator 1 can use a heat pump as its thermal energy source. That is, as the high-temperature heat medium 2H, the heat medium in a pressurized state in the heat pump (the heat medium between the compressor and the expansion valve) is used as the low-temperature heat medium 2L, and the heat in the decompressed state in the heat pump is used. A medium (a heat medium from the expansion valve to the compressor) is used.
  • thermoelectric generator 1 the use of the three power generation layers 30-1, 30-2, 30-3 increases the use efficiency of thermal energy, and the temperature difference generated in one system called a heat pump. That is, by using a relatively large temperature difference between the heated heat medium (high-temperature heat medium 2H) and the depressurized heat medium (low-temperature heat medium 2L), the thermoelectric power can be generated extremely efficiently. It can generate electricity.
  • thermoelectric generator having a two-layer power generation layer and a thermoelectric generator having four or more power generation layers are also included in the technical scope of the present invention.
  • the first high-temperature channel 11 has a square cross section, and the other channels 12, 21, and 22 have square cross sections.
  • the channel has a square cross section. It is not limited. It may be rectangular or circular.
  • FIG. 2 shows an example in which the thermoelectric generator 50 of the present invention is integrated with the heat pump system 60.
  • the heat pump system 60 has two systems of heat pumps 61 and 62.
  • the heat pumps 61 and 62 of each system are schematically configured by connecting a compressor 71, a heat radiating unit 72, an expansion valve 73, and a heat absorbing unit 74 in a loop shape with a refrigerant pipe 75.
  • the heat radiating part 72 of one heat pump (first heat pump) 61 and the heat absorbing part 74 of the other heat pump (second heat pump) 62 are thermally connected to each other.
  • the refrigerant pipe 75 of the second heat pump 62 includes an inner pipe 76, an outer pipe 77 provided concentrically outside the inner pipe 76, and a medium provided concentrically between the inner pipe 76 and the outer pipe 77.
  • a portion 63 of a three-layer tube structure constituted by a tube 78 is included.
  • the inside of the inner pipe 76 forms a high-temperature flow path 81 through which the refrigerant (high-temperature heat medium) 2H compressed by the compressor 71 passes.
  • a space between the outer tube 77 and the middle tube 78 forms a low-temperature flow path 82 through which the refrigerant (low-temperature heat medium) 2L expanded by the expansion valve 73 passes.
  • a power generation layer 80 that generates power due to a temperature difference is provided between the inner tube 76 and the middle tube 78 of the portion 63 of the three-layer tube structure.
  • the power generation layer 80 includes an inner electrode 51 formed on the outer surface of the inner tube (flow channel wall) 76, an outer electrode 52 formed on the inner surface of the middle tube (flow channel wall) 78, and the inner electrode 51 and the outer electrode 52. And a plurality of thermoelectric conversion elements 55 that generate electricity with a temperature difference generated at both ends.
  • the inner electrodes 51 and the outer electrodes 52 are electrically connected to each other by wiring not shown.
  • An output terminal (not shown) is drawn from each wiring to the outside of the outer tube 77. *
  • the thermoelectric power generation apparatus 50 configured as described above uses the second heat pump 62 as a thermal energy source, and a temperature difference generated in one system called the second heat pump 62, that is, a heated heat medium (high temperature) Thermoelectric power generation is performed using the temperature difference between the heat medium 2H) and the heat medium in a reduced pressure state (low temperature heat medium 2L). Since the second heat pump 62 is in thermal contact with the heat dissipating part 72 of the first heat pump 62, the second heat pump 62 has a higher heat medium than the case where the second heat pump 62 is operated alone. A large temperature difference can be generated between 2H and the low-temperature heat medium 2L.
  • thermoelectric power generation device 50 has only one power generation layer 80, since a large temperature difference generated in the second heat pump 62 can be used for thermoelectric conversion, highly efficient thermoelectric power generation can be realized.
  • thermoelectric power generator 50 By connecting the heat pumps in multiple stages in three or more systems and incorporating the thermoelectric power generator 50 into the final stage heat pump, that is, the heat pump that finally receives heat from the heat radiating part of the previous stage heat pump, Higher efficiency thermoelectric power generation can be realized by utilizing the larger temperature difference generated.
  • FIG. 3 shows a configuration example of a thermoelectric power generation system that uses a heat pump system 90 including two heat pumps 91 and 92 as a heat energy source.
  • the heat pumps 91 and 92 have the same configuration as the second heat pump 82 shown in FIG. 2, and the thermoelectric generators 50 (50-1 and 50-2) are integrally provided in the heat pumps 91 and 92, respectively.
  • the heat radiating part 72 of the first heat pump 91 and the heat absorbing part 74 of the second heat pump 92 are thermally connected to each other.
  • thermoelectric power generation can be performed using the temperature difference generated by the first heat pump 91 at the same time as thermoelectric power generation is performed using the temperature difference generated by the second heat pump 92. Since the temperature difference generated in the first heat pump 91 is smaller than the temperature difference generated in the second heat pump 92, the power generation efficiency of the thermoelectric generator 50-1 provided in the first heat pump 91 is provided in the second heat pump 92. In the case where only the thermoelectric generator 50-2 provided in the second heat pump 92 is used by using both the thermoelectric generators 50-1 and 50-2, which is lower than the power generation efficiency of the thermoelectric generator 50-2. Compared with, it can realize much larger power generation capacity.
  • thermoelectric generator 50 is incorporated in each stage heat pump to form a power generation system, it is possible to achieve even greater power generation capacity.
  • thermoelectric generator 1 of the first embodiment is used instead of the thermoelectric generator 50 (50-1, 50-2).
  • thermoelectric generator 50 50-1, 50-2
  • the use efficiency of heat energy can be increased by using the three power generation layers 30-1, 30-2, and 30-3, so that the heat pump is thermally connected to a plurality of systems.
  • Thermoelectric power generation can be performed very efficiently by utilizing a large temperature difference generated in the heat pump system.
  • thermoelectric power generation apparatus and thermoelectric power generation method of the present invention can be used for energy saving of various electric devices having a high temperature part and a low temperature part (a part having a lower temperature than the high temperature part) therein.
  • a heat pump such as an air conditioner, a water heater, or a washing machine
  • the electric power obtained by the power generation in the device itself a device with extremely high energy efficiency can be realized.
  • thermoelectric generator of the present invention is modularized so that it can be installed in existing heat pump piping, it can be retrofitted to an electrical device using a heat pump to improve the energy efficiency of the electrical device. Can do.
  • thermoelectric power generation apparatus and thermoelectric power generation method of the present invention can also generate power using a system that uses high-temperature steam for power generation, such as a nuclear power plant, a thermal power plant, or a geothermal power plant.
  • a nuclear power plant is used as a thermal energy source
  • high temperature steam that has passed through a turbine is passed as a high temperature heat medium through a high temperature flow path
  • seawater is passed as a low temperature heat medium through a low temperature flow path
  • Thermoelectric power generation can be performed using the temperature difference.
  • thermoelectric power generation apparatus and the thermoelectric power generation method of the present invention can also generate power using the data center as a thermal energy source.
  • air heated by heat generated by servers and storage in the data center is passed through a high-temperature flow path as a high-temperature heat medium, and water (seawater, groundwater, river water, etc.) and outside air are used as a low-temperature heat medium.
  • thermoelectric power generation can be performed using the temperature difference between the two.
  • Energy consumption of the data center can be promoted by consuming electric power obtained by the thermoelectric power generation at the data center.

Landscapes

  • Fuel Cell (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

 熱エネルギ源で発生する温度差を効率良く利用して熱電変換により発電することができる熱電発電装置を提供する。 この装置1は、高温の熱媒体2Hが流れる高温流路11、12と、低温の熱媒体2Lが流れる低温流路21、22と、温度差により発電する発電層30-1、30-2、30-3とを有する。高温流路11、12と低温流路21、22は、互いに同心状に交互に積層させて複数層ずつ形成されている。発電層30-1、30-2、30-3は、互いに隣接する高温流路11、12と低温流路21、22との間に設けられている。この装置1は、交互に配置された高温流路11、12と低温流路21、22とに挟まれた複数層の発電層30-1、30-2、30-3によって熱電変換による発電を行なうので、高温の熱媒体2Hと低温の熱媒体2Lとの温度差を効率良く利用して熱電発電を行うことができる。

Description

熱電発電装置
 本発明は、熱電素子を用いて熱エネルギを電気エネルギに変換する技術に関し、より詳細には、熱機関やヒートポンプなどを熱エネルギ源とし、その熱エネルギ源で発生する温度差を利用して発電を行う技術に関する。
 熱機関から排出される熱を利用して発電を行う技術は公知である。
 その一例として、内管と外管との間に熱電変換素子からなる発電層を設け、その内管内にボイラーや内燃機関から高温の熱媒体(温水、蒸気、排ガス、等)を導入し、その内管と外管との温度差により発電を行う熱電発電モジュールを挙げることができる(特許文献1)。
 特許文献1記載の技術によれば、高温の熱媒体が流れている内管の温度に対して外気と接触している外管の温度が低温になるため、両者間の温度差を利用して熱電変換により発電することができる。
特開平9-36439号公報(特許第2275410号)
 しかし、特許文献1記載の技術では、内筒と外筒との間の唯一層の空間に配置された発電層のみによって熱電変換がなされるため、熱エネルギ源で発生する温度差を効率良く利用して熱電発電を行うことができない。また、特許文献1記載の技術では、高温の熱媒体と外気との比較的小さい温度差により熱電変換がなされるため発電効率が良くないという根本的な問題を有している。
 本発明が解決しようとする課題は、熱エネルギ源で発生する温度差を効率良く利用して熱電変換により発電することができる熱電発電装置及び熱電発電方法を提供することにある。
[熱電発電装置(態様1)]
 本発明の熱電発電装置は、
 高温の熱媒体が流れる高温流路と、
 前記高温の熱媒体よりも低温の熱媒体が流れる低温流路と、
 温度差により発電する発電層とを有し、
 前記高温流路と前記低温流路は、互いに同心状に交互に積層させて複数層ずつ形成され、
 前記発電層は、互いに隣接する前記高温流路と前記低温流路との間に設けられていることを特徴としている。
 この装置は、高温の熱媒体を高温流路に、低温の熱媒体を低温流路に、それぞれ流して、高温流路と低温流路との間に温度差を発生させることにより、高温流路と低温流路との間に設けられた発電層によって熱電変換による発電を行う。
 この装置における前記発電層は、交互に配置された前記高温流路と前記低温流路とに挟まれた3複数層(多層)の発電層を構成している。
 したがって、この装置によれば、複数層(多層)の発電層によって熱電変換による発電を行うことにより、熱エネルギ源で発生する温度差を従来よりも格段と効率良く利用して熱電発電を行うことができる。
 この熱電発電装置において、
 前記高温の熱媒体は、ヒートポンプにおける加圧された状態の熱媒体(圧縮機から膨張弁までの間の熱媒体)であり、
 前記低温の熱媒体は、前記ヒートポンプにおける減圧された状態の熱媒体(膨張弁から圧縮機までの熱媒体)であることが望ましい。
 この装置によれば、ヒートポンプを熱エネルギ源とし、そのヒートポンプという一つの系で発生する温度差すなわち、前記加圧された状態の熱媒体と前記減圧された状態の熱媒体との間の温度差を極めて効率良く利用して熱電発電を行うことができる。
 この熱電発電装置において、
 互いに隣接する前記高温流路と前記低温流路とが、互いの間に隙間を有する内外二重の流路壁で仕切られ、
 前記発電層は、
 内側の流路壁の外面に形成された内側電極と、
 外側の流路壁の内面に形成された外側電極と、
 前記内側電極と前記外側電極との間に電気的に接続され、両端に生ずる温度差で発電を行う複数個の熱電変換素子とを有していることが望ましい。
[熱電発電装置(態様2)]
 本発明の別の態様の熱電発電装置は、
 ヒートポンプ内の高温の熱媒体(加圧された状態の熱媒体)が流れる高温流路と、
 前記ヒートポンプ内の前記高温の熱媒体よりも低温の熱媒体(減圧された状態の熱媒体)が流れる低温流路と、
 温度差により発電する発電層とを有し、
 前記高温流路と前記低温流路は、互いに積層させて形成され、
 前記発電層は、前記高温流路と前記低温流路との間に設けられていることを特徴としている。
 この装置によれば、ヒートポンプを熱エネルギ源に使用して熱電発電を行うことができる。複数層の発電層の使用によりヒートポンプから得られる熱エネルギの利用効率を高めることができる。そして、ヒートポンプという一つの系で発生する温度差すなわち、前記加圧された状態の熱媒体と前記減圧された状態の熱媒体との間の比較的大きな温度差を利用して効率良く熱電発電を行うことができる。
 この熱電発電装置において、
 互いに隣接する前記高温流路と前記低温流路とが、互いの間に隙間を有する内外二重の流路壁で仕切られ、
 前記発電層は、
 内側の流路壁の外面に形成された内側電極と、
 外側の流路壁の内面に形成された外側電極と、
 前記内側電極と前記外側電極との間に電気的に接続され、両端に生ずる温度差で発電を行う複数個の熱電変換素子とを有していることが望ましい。
[熱電発電装置(態様3)]
 第1ヒートポンプの放熱部と第2ヒートポンプの吸熱部とを互いに熱的に接続してなるヒートポンプシステムにおける第2ヒートポンプ内の高温の熱媒体(加圧された状態の熱媒体)が流れる高温流路と、
 前記第2ヒートポンプ内の前記高温の熱媒体よりも低温の熱媒体(減圧された状態の熱媒体)が流れる低温流路と、
 温度差により発電する発電層とを有し、
 前記高温流路と前記低温流路は、互いに積層させて形成され、
 前記発電層は、前記高温流路と前記低温流路との間に設けられていることを特徴としている。
 この装置は、第2ヒートポンプを熱エネルギ源に使用し、第2ヒートポンプで発生する温度差すなわち、加圧された状態の熱媒体と減圧された状態の熱媒体との間の温度差を利用して熱電発電を行う。第2ヒートポンプは、その吸熱部が第1のヒートポンプの放熱部と熱的に接触しているため、第2のヒートポンプを単独で運転した場合と比較して、高温の熱媒体と低温の熱媒体との間に大きな温度差を発生させることができる。
 この装置は、複数層の発電層を使用するため、第2ヒートポンプから得られる熱エネルギを高効率で利用でき、且つ、第2のヒートポンプに発生する大きな温度差を熱電変換に利用できるため、高効率の熱電発電を実現できる。
[熱電発電方法(態様1)]
 本発明の熱電発電方法は、
 高温の熱媒体が流れる高温流路と、前記高温の熱媒体よりも低温の熱媒体が流れる低温流路とを互いに同心状に交互に積層させて複数層ずつ形成するとともに、互いに隣接する前記高温流路と前記低温流路との間に、温度差により熱電発電する発電層を設けて発電を行うことを特徴としている。
 この方法では、高温の熱媒体を高温流路に、低温の熱媒体を低温流路に、それぞれ流して、高温流路と低温流路との間に温度差を発生させることにより、高温流路と低温流路との間に設けられた発電層によって熱電変換による発電を行う。
 この方法で用いる前記発電層は、交互に配置された前記高温流路と前記低温流路とに挟まれた3複数層(多層)の発電層を構成している。
 したがって、この方法によれば、複数層(多層)の発電層によって熱電変換による発電を行うことにより、熱エネルギ源で発生する温度差を従来よりも格段と効率良く利用して熱電発電を行うことができる。
 この熱電発電方法において、
 前記高温の熱媒体は、ヒートポンプにおける加圧された状態の熱媒体(圧縮機から膨張弁までの間の熱媒体)であり、
 前記低温の熱媒体は、前記ヒートポンプにおける減圧された状態の熱媒体(膨張弁から圧縮機までの熱媒体)であることが望ましい。
 この方法によれば、ヒートポンプを熱エネルギ源とし、そのヒートポンプという一つの系で発生する温度差すなわち、前記加圧された状態の熱媒体と前記減圧された状態の熱媒体との間の温度差を極めて効率良く利用して熱電発電を行うことができる。
[熱電発電方法(態様2)]
 本発明の別の態様の熱電発電方法は、
 ヒートポンプ内の高温の熱媒体(加圧された状態の熱媒体)が流れる高温流路と、前記ヒートポンプ内の前記高温の熱媒体よりも低温の熱媒体(減圧された状態の熱媒体)が流れる低温流路とを互いに積層させて形成するとともに、前記高温流路と前記低温流路との間に温度差により熱電発電する発電層を設けて発電を行うことを特徴としている。
 この方法によれば、ヒートポンプを熱エネルギ源とし、そのヒートポンプという一つの系で発生する温度差すなわち、前記加圧された状態の熱媒体と前記減圧された状態の熱媒体との間の比較的大きな温度差を利用して効率良く熱電発電を行うことができる。
[熱電発電方法(態様3)]
 第1ヒートポンプの放熱部と第2ヒートポンプの吸熱部とを互いに熱的に接続してなるヒートポンプシステムにおける第2ヒートポンプ内の高温の熱媒体(加圧された状態の熱媒体)が流れる高温流路と、前記第2ヒートポンプ内の前記高温の熱媒体よりも低温の熱媒体(減圧された状態の熱媒体)が流れる低温流路とを互いに積層させて形成するとともに、前記高温流路と前記低温流路との間に温度差により熱電発電する発電層を設けて発電を行うことを特徴としている。
 この方法では、第2ヒートポンプを熱エネルギ源に使用し、第2ヒートポンプで発生する温度差すなわち、加圧された状態の熱媒体と減圧された状態の熱媒体との間の温度差を利用して熱電発電を行う。第2ヒートポンプは、その吸熱部が第1のヒートポンプの放熱部と熱的に接触しているため、第2ヒートポンプを単独で運転した場合と比較して、高温の熱媒体と低温の熱媒体との間に大きな温度差を発生させることができる。
 したがって、この方法によれば、第2ヒートポンプを熱エネルギ源とし、第2ヒートポンプという一つの系に発生する大きな温度差を利用して効率良く熱電発電を行うことができる。
 本発明によれば、熱エネルギ源となる一つの系で発生する温度差を効率良く利用して熱電発電を行うことができる。
(A):本発明の実施の形態を例示する断面図 (B):(A)のB-B断面図 本発明の別の実施の形態を例示する断面図 本発明の更に別の実施の形態を例示する断面図
 以下、本発明の実施の形態を図面に基づき説明する。
[第1実施形態]
 図1に示す熱電発電装置1は、その内部を高温の熱媒体2Hが通過する第1流路体10と、その内部を低温の熱媒体2Lが通過する第2流路体20と、温度差により発電する第1乃至第3発電層30-1、30-2、30-3とを有している。
 第1流路体10は、電気的絶縁材で形成された管体である。第1流路体10は、高温の熱媒体2Hが流入する入口10aと、高温の熱媒体2Hが流出する出口10bと、第1及び第2の高温流路11、12と、入口10aから流入した高温の熱媒体2Hを第1及び第2高温流路11、12に分岐させる分岐部13と、第1及び第2高温流路11、12を通過した高温の熱媒体2Hを合流させて出口10bに導く合流部14と、を有している。
 第1高温流路(内側高温流路)11は、熱媒体2Hの流れの方向に対する垂直断面が正方形の直線状の流路である。
 第2高温流路(外側高温流路)12は、第1高温流路11の外側に同心状に形成されている。第2高温流路12は、第1高温流路11と対角方向を一致させた正方形の環状断面を有する流路である。
 第2流路体20は、電気的絶縁材で形成された管体である。第1流路体20は、低温の熱媒体2Lが流入する入口20aと、低温の熱媒体2Lが流出する出口20bと、第1及び第2の低温流路21、22と、入口20aから流入した低温の熱媒体2Lを第1及び第2低温流路21、22に分岐させる分岐部23と、第1及び第2低温流路21、22を通過した低温の熱媒体2Lを合流させて出口20bに導く合流部24と、を有している。
 第1低温流路(内側低温流路)21は、熱媒体2Lの流れの方向に対する垂直断面が正方形の環状断面である環状流路である。第1低温流路21は、第1高温流路11と第2高温流路12との中間位置に、両流路11、12と対角方向を一致させて形成されている。
 第2低温流路(外側低温流路)22は、第1低温流路21の外側に同心状に形成されている。第2低温流路22は、第1低温流路21と対角方向を一致させた正方形の環状断面を有する流路である。第2低温流路22は、第2高温流路12の外側に、当該流路12と対角方向を一致させて形成されている。
 第1発電層30-1は、第1高温流路11の流路壁41の外面に形成された内側電極51と、第1低温流路21を区画している内側の流路壁42の内面に形成された外側電極52と、内側電極51と外側電極52との間に電気的に接続され、両端に生ずる温度差で発電を行う複数個の熱電変換素子55とを有している。
 第2発電層30-2は、第1低温流路21を区画している外側の流路壁43の外面に形成された内側電極51と、第2高温流路12を区画している内側の流路壁44の内面に形成された外側電極52と、内側電極51と外側電極52との間に電気的に接続され、両端に生ずる温度差で発電を行う複数個の熱電変換素子55とを有している。
 第3発電層30-3は、第2高温流路12を区画している外側の流路壁45の外面に形成された内側電極51と、第2低温流路22を区画している内側の流路壁46の内面に形成された外側電極52と、内側電極51と外側電極52との間に電気的に接続され、両端に生ずる温度差で発電を行う複数個の熱電変換素子55とを有している。
 第1乃至第3発電層30-1、30-2、30-3の内側電極51同士、外側電極52同士は、それぞれ配線56、57で電気的に接続されている。そして、各配線56、57から延びる一対の出力端子56a、57aが第2流路体20の外に設けられている。第1乃至第3発電層30-1、30-2、30-3で発電された電力は、一対の出力端子56a、57aから一括して取り出される。
 第1乃至第3発電層30-1、30-2、30-3における内側電極51及び外側電極52と熱電変換素子55との接続の仕方は任意である。全ての熱電変換素子55を電気的に互いに並列に接続した形態、全ての熱電変換素子55を電気的に直列に接続した形態、直列接続と並列接続とを組み合わせた直並列接続の形態など、いずれの形態も採用可能である。
 上記のように構成された第1実施形態の熱電発電装置1は、高温の熱媒体2Hを第1流路体10に、低温の熱媒体2Lを第2流路体12に、それぞれ流して、第1流路体10の高温流路11、12と第2流路体12の低温流路21、22との間に温度差を発生させることにより、高温流路11、12と低温流路21、22との間に設けられた発電層30-1、30-2、30-3によって熱電変換による発電を行う。
 この熱電発電装置1によれば、交互に配置された高温流路11、12と低温流路21、22とに挟まれた3層の発電層30-1、30-2、30-3によって熱電変換による発電が行なわれるので、高温の熱媒体2Hと低温の熱媒体2Lとの温度差を効率良く利用して熱電発電を行うことができる。
 この熱電発電装置1は、その熱エネルギ源としてヒートポンプを利用することができる。すなわち、高温の熱媒体2Hとして、ヒートポンプにおける加圧された状態の熱媒体(圧縮機から膨張弁までの間の熱媒体)を、低温の熱媒体2Lとして、当該ヒートポンプにおける減圧された状態の熱媒体(膨張弁から圧縮機までの熱媒体)を使用するのである。
 この熱電発電装置1によれば、3層の発電層30-1、30-2、30-3を使用することにより熱エネルギの利用効率を高め、且つ、ヒートポンプという一つの系で発生する温度差すなわち、加圧された状態の熱媒体(高温の熱媒体2H)と減圧された状態の熱媒体(低温の熱媒体2L)との間の比較的大きな温度差を利用して、極めて効率良く熱電発電を行うことができる。
 なお、上記の例では、3層構造の発電層を有する装置構成について説明したが、発電層の層数は任意である。2層構造の発電層を有する熱電発電装置も、4層以上の発電層を有する熱電発電装置も、本発明の技術的範囲に含まれる。
 また、上記の例では、第1高温流路11の断面が正方形であり、その他の流路12、21、22の断面が正方形の環状断面であるとしたが、流路の断面形状は正方形に限定されない。長方形でも円形でもよい。
[第2実施形態]
 図2は、本発明の熱電発電装置50をヒートポンプシステム60と一体化させた例を示している。ヒートポンプシステム60は、2系統のヒートポンプ61、62を有している。各系統のヒートポンプ61、62は、圧縮機71、放熱部72、膨張弁73、及び吸熱部74を、冷媒管75によりループ状に連結して概略構成されている。そして、一方のヒートポンプ(第1ヒートポンプ)61の放熱部72と他方のヒートポンプ(第2ヒートポンプ)62の吸熱部74とが互いに熱的に接続されている。
 第2ヒートポンプ62の冷媒管75は、内管76と、内管76の外側に同心状に設けられた外管77と、内管76と外管77との間に同心状に設けられた中管78とで構成される三層管構造の部分63を有している。内管76の内部は、圧縮機71で圧縮された冷媒(高温の熱媒体)2Hが通過する高温流路81を成している。外管77と中管78との間の空間は、膨張弁73で膨張した冷媒(低温の熱媒体)2Lが通過する低温流路82を成している。そして、三層管構造の部分63の内管76と中管78との間に、温度差により発電する発電層80が設けられている。
 発電層80は、内管(流路壁)76の外面に形成された内側電極51と、中管(流路壁)78の内面に形成された外側電極52と、内側電極51と外側電極52との間に電気的に接続され、両端に生ずる温度差で発電を行う複数個の熱電変換素子55とを有している。内側電極51同士、外側電極52同士は、それぞれ図示しない配線で電気的に接続されている。そして、各配線から図示しない出力端子が外管77の外部に引き出されている。 
 上記のように構成された熱電発電装置50は、第2ヒートポンプ62を熱エネルギ源に使用し、第2ヒートポンプ62という一つの系で発生する温度差すなわち、加圧された状態の熱媒体(高温の熱媒体2H)と減圧された状態の熱媒体(低温の熱媒体2L)との間の温度差を利用して熱電発電を行う。第2ヒートポンプ62は、その吸熱部74が第1のヒートポンプ62の放熱部72と熱的に接触しているため、第2のヒートポンプ62を単独で運転した場合と比較して、高温の熱媒体2Hと低温の熱媒体2Lとの間に大きな温度差を発生させることができる。
 したがって、この熱電発電装置50は、発電層80を唯一層しか有していないが、第2のヒートポンプ62に発生する大きな温度差を熱電変換に利用できるため、高効率の熱電発電を実現できる。
 なお、ヒートポンプを3系統以上熱的に多段接続し、最終段のヒートポンプすなわち、最終的にその前段のヒートポンプの放熱部から受熱するヒートポンプに熱電発電装置50を組み込むことにより、当該最終段のヒートポンプで発生する更に大きな温度差を利用して、より高効率の熱電発電を実現できる。
[第3実施形態]
 図3は、2系統のヒートポンプ91、92からなるヒートポンプシステム90を熱エネルギ源として使用する熱電発電システムの構成例を示している。各ヒートポンプ91、92は、図2に示した第2ヒートポンプ82と同一構成であり、各ヒートポンプ91、92にそれぞれ熱電発電装置50(50-1、50-2)が一体的に設けられている。そして、第1ヒートポンプ91の放熱部72と第2ヒートポンプ92の吸熱部74とが互いに熱的に接続されている。
 この熱電発電システムによれば、第2ヒートポンプ92で発生する温度差を利用して熱電発電を行うと同時に、第1ヒートポンプ91で発生する温度差を利用して熱電発電を行うことができる。第1ヒートポンプ91で発生する温度差は、第2ヒートポンプ92で発生する温度差よりも小さいため、第1ヒートポンプ91に設けられた熱電発電装置50-1の発電効率は第2ヒートポンプ92に設けられた熱電発電装置50-2の発電効率よりも低いが、両熱電発電装置50-1、50-2を使用することにより、第2ヒートポンプ92に設けられた熱電発電装置50-2のみ使用した場合と比較して、格段と大きな発電能力を実現することができる。
 ヒートポンプを3系統以上熱的に多段接続し、各段のヒートポンプに熱電発電装置50を組み込んで発電システムを構成すれば、更に大きな発電能力を実現することが可能である。
[第4実施形態] 
 第2及び第3実施形態において、熱電発電装置50(50-1、50-2)の代わりに、第1実施形態の熱電発電装置1を使用する。
 この構成によれば、3層の発電層30-1、30-2、30-3を使用することにより熱エネルギの利用効率を高めることができるので、ヒートポンプを複数系統熱的に接続してなるヒートポンプシステムで発生する大きな温度差を利用して、極めて効率良く熱電発電を行うことができる。
 本発明の熱電発電装置及び熱電発電方法によれば、その内部に高温部と低温部(高温部よりも低温の部分)を有する各種電気機器の省エネルギ化に利用可能である。たとえば、これを空調機、給湯器、洗濯機などヒートポンプを用いた電気機器に適用することにより、当該機器内のヒートポンプで生じる温度差を利用して効率良く発電することができる。そして、その発電により得られた電力を当該機器自体で利用することにより、極めてエネルギ効率の高い機器を実現できる。
 また、本発明の熱電発電装置を既存のヒートポンプの配管に装着できるようモジュール化しておけば、これをヒートポンプを用いた電気機器に後付けで装着することにより、当該電気機器のエネルギ効率を向上させることができる。
 本発明の熱電発電装置及び熱電発電方法は、原子力発電所、火力発電所、地熱発電所など、高温蒸気を発電に使用するシステムを熱エネルギ源として発電を行うことも可能である。たとえば、原子力発電所を熱エネルギ源として利用する場合、タービンを通過した高温蒸気を高温の熱媒体として高温流路に通し、海水を低温の熱媒体として低温流路に通すことにより、両者の大きな温度差を利用して熱電発電を行うことができる。また、燃料の崩壊熱により加熱された高温の蒸気などを高温の熱媒体として使用することも可能である。したがって、原子炉停止状態においても熱電発電が可能である。
 また、本発明の熱電発電装置及び熱電発電方法は、データセンタを熱エネルギ源として発電を行うことも可能である。すなわち、データセンタ内のサーバやストレージで発生した熱により加熱された空気を高温の熱媒体として高温流路に通し、水(海水、地下水、河川の水、等)や外気を低温の熱媒体として低温流路に通すことにより、両者の温度差を利用して熱電発電を行うことができる。この熱電発電により得られた電力をデータセンタで消費することにより、データセンタの省エネルギ化を促進できる。
 1 熱電発電装置
 2H 高温の熱媒体
 2L 低温の熱媒体
 10 第1流路体
 11 第1高温流路
 12 第2高温流路
 20 第2流路体
 21 第1低温流路
 22 第2低温流路
 30-1 第1発電層
 30-2 第2発電層
 30-3 第3発電層
 41 流路壁
 42 流路壁
 43 流路壁
 44 流路壁
 45 流路壁
 46 流路壁
 51 内側電極
 52 外側電極
 55 熱電変換素子
 56 配線
 57 配線
 60 ヒートポンプシステム
 61 第1ヒートポンプ
 62 第2ヒートポンプ
 80 発電層
 90 ヒートポンプシステム
 91 第1ヒートポンプ
 92 第2ヒートポンプ

Claims (6)

  1.  高温の熱媒体が流れる高温流路と、
     前記高温の熱媒体よりも低温の熱媒体が流れる低温流路と、
     温度差により発電する発電層とを有し、
     前記高温流路と前記低温流路は、互いに同心状に交互に積層させて複数層ずつ形成され、
     前記発電層は、互いに隣接する前記高温流路と前記低温流路との間に設けられている、熱電発電装置。
  2.  前記高温の熱媒体は、ヒートポンプ内の加圧された状態の熱媒体であり、
     前記低温の熱媒体は、前記ヒートポンプ内の減圧された状態の熱媒体である、請求項1の熱電発電装置。
  3.  ヒートポンプ内の高温の熱媒体が流れる高温流路と、
     前記ヒートポンプ内の前記高温の熱媒体よりも低温の熱媒体が流れる低温流路と、
     温度差により発電する発電層とを有し、
     前記高温流路と前記低温流路は、互いに積層させて形成され、
     前記発電層は、前記高温流路と前記低温流路との間に設けられている、熱電発電装置。
  4.  高温の熱媒体が流れる高温流路と、前記高温の熱媒体よりも低温の熱媒体が流れる低温流路とを互いに同心状に交互に積層させて複数層ずつ形成するとともに、互いに隣接する前記高温流路と前記低温流路との間に温度差により熱電発電する発電層を設けて発電を行う、熱電発電方法。
  5.  前記高温の熱媒体は、ヒートポンプ内の加圧された状態の熱媒体であり、
     前記低温の熱媒体は、前記ヒートポンプ内の減圧された状態の熱媒体である、請求項4の熱電発電方法。
  6.  ヒートポンプ内の高温の熱媒体が流れる高温流路と、前記ヒートポンプ内の前記高温の熱媒体よりも低温の熱媒体が流れる低温流路とを互いに積層させて形成するとともに、前記高温流路と前記低温流路との間に温度差により熱電発電する発電層を設けて発電を行う、熱電発電方法。
PCT/JP2011/067796 2010-08-04 2011-08-03 熱電発電装置 WO2012018053A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/883,164 US20140014153A1 (en) 2010-08-04 2011-08-03 Thermoelectric electricity generating device
EP11814678.6A EP2618477A4 (en) 2010-08-04 2011-08-03 THERMOELECTRIC DEVICE FOR GENERATING ELECTRICITY
JP2012520852A JP5248710B2 (ja) 2010-08-04 2011-08-03 熱電発電装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010186610 2010-08-04
JP2010-186610 2010-08-04
JP2010201371 2010-08-23
JP2010-201371 2010-08-23

Publications (1)

Publication Number Publication Date
WO2012018053A1 true WO2012018053A1 (ja) 2012-02-09

Family

ID=45559549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067796 WO2012018053A1 (ja) 2010-08-04 2011-08-03 熱電発電装置

Country Status (4)

Country Link
US (1) US20140014153A1 (ja)
EP (1) EP2618477A4 (ja)
JP (1) JP5248710B2 (ja)
WO (1) WO2012018053A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259461A (zh) * 2013-05-31 2013-08-21 深圳大学 一种太阳能光热温差发电装置和方法
JP2014241318A (ja) * 2013-06-11 2014-12-25 北海道特殊飼料株式会社 熱電発電装置
CN104542126A (zh) * 2014-12-31 2015-04-29 姚旭 一种自发电大棚
JP2015523489A (ja) * 2012-05-08 2015-08-13 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー 熱電発電器を有する熱交換器
WO2017099270A1 (ko) * 2015-12-09 2017-06-15 한국에너지기술연구원 미세유로반응기를 이용한 열발전기
JP2020089049A (ja) * 2018-11-23 2020-06-04 マレリ株式会社 熱電発電装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10224474B2 (en) * 2013-01-08 2019-03-05 Analog Devices, Inc. Wafer scale thermoelectric energy harvester having interleaved, opposing thermoelectric legs and manufacturing techniques therefor
CN105897056A (zh) * 2014-11-26 2016-08-24 吴兆流 温差发电器
US9510486B1 (en) 2016-07-13 2016-11-29 Matteo B. Gravina Data center cooling system having electrical power generation
US9907213B1 (en) 2016-12-12 2018-02-27 Matteo B. Gravina Data center cooling system having electrical power generation
US10020436B1 (en) * 2017-06-15 2018-07-10 Matteo B. Gravina Thermal energy accumulator for power generation and high performance computing center

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936439A (ja) 1995-07-24 1997-02-07 Agency Of Ind Science & Technol 熱電発電モジュール
JP2001257387A (ja) * 2000-03-08 2001-09-21 Toshimasa Nakayama 熱発電装置
JP2005253217A (ja) * 2004-03-04 2005-09-15 Denso Corp 熱電発電装置
JP2006296077A (ja) * 2005-04-08 2006-10-26 Kyoto Univ 熱電発電装置、熱交換機
JP2007088039A (ja) * 2005-09-20 2007-04-05 Osaka Gas Co Ltd 熱電発電モジュール及び発電機能付き熱交換器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3356539A (en) * 1962-11-05 1967-12-05 Zbigniew O J Stachurski Thermoelectric generator
US3196620A (en) * 1964-02-10 1965-07-27 Thore M Elfving Thermoelectric cooling system
JP3388841B2 (ja) * 1993-09-17 2003-03-24 株式会社ワイ・ワイ・エル 熱発電装置
JP2000208823A (ja) * 1999-01-18 2000-07-28 Nissan Motor Co Ltd 熱電発電器
US6313393B1 (en) * 1999-10-21 2001-11-06 Battelle Memorial Institute Heat transfer and electric-power-generating component containing a thermoelectric device
EP1245052A2 (en) * 2000-01-07 2002-10-02 University Of Southern California Microcombustor and combustion-based thermoelectric microgenerator
JP4345279B2 (ja) * 2002-09-13 2009-10-14 ソニー株式会社 熱電変換装置の製造方法
CN1311209C (zh) * 2003-04-17 2007-04-18 丰田自动车株式会社 能量回收系统
US7763792B2 (en) * 2005-02-14 2010-07-27 Marlow Industries, Inc. Multistage heat pumps and method of manufacture
US20150013738A1 (en) * 2013-07-09 2015-01-15 Pyro-E, Llc Thermoelectric energy conversion using periodic thermal cycles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936439A (ja) 1995-07-24 1997-02-07 Agency Of Ind Science & Technol 熱電発電モジュール
JP2775410B2 (ja) 1995-07-24 1998-07-16 工業技術院長 熱電発電モジュール
JP2001257387A (ja) * 2000-03-08 2001-09-21 Toshimasa Nakayama 熱発電装置
JP2005253217A (ja) * 2004-03-04 2005-09-15 Denso Corp 熱電発電装置
JP2006296077A (ja) * 2005-04-08 2006-10-26 Kyoto Univ 熱電発電装置、熱交換機
JP2007088039A (ja) * 2005-09-20 2007-04-05 Osaka Gas Co Ltd 熱電発電モジュール及び発電機能付き熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2618477A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523489A (ja) * 2012-05-08 2015-08-13 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー 熱電発電器を有する熱交換器
CN103259461A (zh) * 2013-05-31 2013-08-21 深圳大学 一种太阳能光热温差发电装置和方法
CN103259461B (zh) * 2013-05-31 2015-08-19 深圳大学 一种太阳能光热温差发电装置和方法
JP2014241318A (ja) * 2013-06-11 2014-12-25 北海道特殊飼料株式会社 熱電発電装置
CN104542126A (zh) * 2014-12-31 2015-04-29 姚旭 一种自发电大棚
WO2017099270A1 (ko) * 2015-12-09 2017-06-15 한국에너지기술연구원 미세유로반응기를 이용한 열발전기
JP2020089049A (ja) * 2018-11-23 2020-06-04 マレリ株式会社 熱電発電装置

Also Published As

Publication number Publication date
US20140014153A1 (en) 2014-01-16
JPWO2012018053A1 (ja) 2013-10-03
EP2618477A4 (en) 2014-08-13
EP2618477A1 (en) 2013-07-24
JP5248710B2 (ja) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5248710B2 (ja) 熱電発電装置
US20130213449A1 (en) Thermoelectric plate and frame exchanger
US20050236145A1 (en) Heat exchanger
US9677546B2 (en) Solar energy driven system for heating, cooling, and electrical power generation incorporating combined solar thermal and photovoltaic arrangements
JP6157908B2 (ja) 自動車用積層型熱電発電装置
JP4534060B2 (ja) 熱電発電装置、熱交換機
KR101694979B1 (ko) 복층 구조의 폐열 회수형 열전발전장치
KR101703955B1 (ko) 열전발전 장치 및 이를 구비한 하이브리드 보일러
KR102029098B1 (ko) 배기관에 설치되는 열전발전시스템
KR100977403B1 (ko) 수직 열매 대류식 고효율 적층 열전발전시스템
JP2006345609A (ja) 熱発電装置および当該装置を搭載したベーパライザー
JP2014129809A (ja) 自動車用積層型熱電発電装置
WO2019044948A1 (ja) 電力変換装置
JP2005282951A (ja) 一体型積層構造熱交換器
JP2010117126A (ja) 一体型積層構造熱交換器
JP6009534B2 (ja) 特に自動車において電流を発生させるための熱電アセンブリおよび装置
CN107109994B (zh) 用于排气废热回收的装置
JP6132285B2 (ja) 熱電発電装置
JP3810728B2 (ja) 積層型熱交換器
US9660168B2 (en) Heat exchanger for thermoelectric power generation with the thermoelectric modules in direct contact with the heat source
KR102556949B1 (ko) 산업폐열을 재활용하는 다층 열전발전기
KR101327731B1 (ko) 차량용 열전 발전기
RU2546904C2 (ru) Прямоточный теплообменный аппарат семенихина
KR20240032561A (ko) 열전발전 열교환장치
WO2019176495A1 (ja) 熱電発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814678

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520852

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011814678

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011814678

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13883164

Country of ref document: US