WO2012018047A1 - 絞り装置、カメラおよび電子機器 - Google Patents

絞り装置、カメラおよび電子機器 Download PDF

Info

Publication number
WO2012018047A1
WO2012018047A1 PCT/JP2011/067773 JP2011067773W WO2012018047A1 WO 2012018047 A1 WO2012018047 A1 WO 2012018047A1 JP 2011067773 W JP2011067773 W JP 2011067773W WO 2012018047 A1 WO2012018047 A1 WO 2012018047A1
Authority
WO
WIPO (PCT)
Prior art keywords
aperture
diaphragm
filter
region
light
Prior art date
Application number
PCT/JP2011/067773
Other languages
English (en)
French (fr)
Inventor
崇 戸丸
直道 郡
大輔 原澤
Original Assignee
日本精密測器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精密測器株式会社 filed Critical 日本精密測器株式会社
Priority to KR1020137005276A priority Critical patent/KR20130115219A/ko
Priority to JP2011551150A priority patent/JP5033932B2/ja
Priority to CN201180038345.0A priority patent/CN103140799B/zh
Publication of WO2012018047A1 publication Critical patent/WO2012018047A1/ja
Priority to HK13109250.1A priority patent/HK1182183A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/08Shutters
    • G03B9/10Blade or disc rotating or pivoting about axis normal to its plane
    • G03B9/14Two separate members moving in opposite directions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present invention relates to a diaphragm device having a pair of diaphragm blades, a camera and an electronic apparatus including the diaphragm device.
  • an image sensor capable of color photography is incorporated in a day and night surveillance camera.
  • the shooting mode is switched between when the subject is bright and when the subject is dark.
  • the shooting mode is switched so that the color shooting mode is applied when shooting when the subject is bright, such as daytime, and the monochrome shooting mode is applied when shooting when the subject is dark, such as at night.
  • an infrared cut filter is disposed in front of the image sensor (on the light incident side). For this reason, when photographing in the color photographing mode, light incident from the outside reaches the image sensor through the infrared cut filter.
  • the infrared cut filter is retracted from the front stage of the image sensor. For this reason, when shooting in the monochrome imaging mode, light incident from the outside reaches the imaging device without passing through the infrared cut filter.
  • a variety of cameras including the above-described surveillance camera incorporate a diaphragm device for adjusting the amount of light incident on the camera from the outside (hereinafter referred to as “incident light amount”).
  • the diaphragm device adjusts (optimizes) the amount of incident light by changing the size of a diaphragm aperture present on the optical path of incident light.
  • FIG. 8 is an exploded perspective view showing an example of a conventional diaphragm device.
  • the diaphragm device 200 includes a diaphragm substrate 201, a pair of diaphragm blades 202 and 203, a filter substrate 204, a blade cover 205, a diaphragm drive unit 206, a filter drive unit 207, and a pair of ND (Neutral Density). ) Filters 208 and 209.
  • the diaphragm substrate 201 supports the pair of diaphragm blades 202 and 203 so as to be movable (slidable).
  • the diaphragm substrate 201 supports the diaphragm driving unit 206 and the filter driving unit 207.
  • the pair of diaphragm blades 202 and 203 form a diaphragm aperture so as to overlap each other.
  • This aperture opening is formed by a hole portion 210 formed in one aperture blade 202 and a bay portion 211 provided in the other aperture blade 203.
  • the filter substrate 204 has a filter function of cutting light in the infrared region (including the near infrared region) out of light incident from the outside.
  • the filter substrate 204 has a configuration in which an infrared cut filter layer 213 is formed on one surface of a glass substrate 212 as shown in FIGS.
  • the filter substrate 204 is attached to the frame member 214.
  • a filter unit 215 is configured by a combination of the filter substrate 204 and the frame member 214.
  • the blade cover 205 shields and protects the pair of diaphragm blades 202 and 203 attached to the diaphragm substrate 201 from the outside.
  • the diaphragm drive unit 206 relatively moves the pair of diaphragm blades 202 and 203 (hereinafter also simply referred to as “relative movement”).
  • the relative movement of the pair of diaphragm blades 202 and 203 is a movement in a direction in which they move closer to and away from each other.
  • the filter driving unit 207 moves the filter unit 215 including the filter substrate 204 and the frame member 214.
  • the movement of the filter unit 215 by the filter driving unit 207 is performed when the filter substrate 204 is advanced on the optical path of incident light and when the filter substrate 204 is retracted from the optical path of incident light.
  • ND filters 208 and 209 each attenuate light. As shown in FIG. 11, the ND filter 208 is attached to the edge of the hole 210 of one diaphragm blade 202 using an adhesive, and the ND filter 209 is bonded to the edge of the bay 211 of the other diaphragm blade 203. It is attached using an agent.
  • the diaphragm aperture 216 is formed in the overlapping portion of the hole 210 and the bay 211 as shown in FIG. Is formed.
  • the diaphragm driving unit 206 is driven on the diaphragm substrate 201, the pair of diaphragm blades 202 and 203 move in a direction in which they approach and separate from each other. Then, the size of the aperture 216 changes according to the moving direction and the moving amount of the pair of aperture blades 202 and 203.
  • the diaphragm aperture 216 increases accordingly.
  • 203 move away from each other (in the direction of the broken arrow in FIG. 12), the aperture 216 becomes smaller accordingly.
  • the diaphragm opening 216 is maximum (fully opened), and when the pair of diaphragm blades 202 and 203 are most separated, the diaphragm opening 216 is minimum (completely closed). State) or a state close thereto.
  • FIG. 13 shows a state where the aperture opening is opened (fully opened)
  • FIG. 14 shows a state where the aperture opening is a small aperture.
  • the filter unit 215 is disposed between the pair of diaphragm blades 202 and 203 (gap portion) so that the filter substrate 204 can be advanced and retracted (removable) with respect to the diaphragm opening 216 described above.
  • (Filter substrate 204, frame member 214) are disposed.
  • the filter driving unit 207 is driven on the diaphragm substrate 201, the filter substrate 204 moves together with the frame member 214. In this case, when the filter substrate 204 is moved to one side, the filter substrate 204 is advanced on the optical path of the light incident through the aperture 216. Further, when the filter substrate 204 is moved to the other side, the filter substrate 204 is retracted from the above optical path.
  • the filter substrate 204 and the ND filters 208 and 209 are incorporated for different purposes.
  • the filter substrate 204 is incorporated in order to prevent image color misregistration (a phenomenon in which an image becomes reddish) due to incidence of infrared light when shooting in a color shooting mode applied in the daytime or the like.
  • the ND filters 208 and 209 are incorporated in order to make it possible to finely control the amount of incident light even in a situation where the aperture 216 is made small so that the signal of the pixel of the image sensor does not saturate at the time of shooting such as daytime. It is.
  • Patent Document 1 As this type of diaphragm device, for example, the one described in Patent Document 1 is known. Moreover, although not using a pair of aperture blades, a lens in which an infrared cut filter and an ND filter are integrally formed is known as a lens for use in a surveillance camera (see Patent Document 2).
  • JP 2007-17594 A Japanese Patent Laid-Open No. 5-110938
  • the conventional diaphragm device 200 has a configuration in which the filter substrate 204 and the ND filters 208 and 209 are separately attached to each purpose of use. That is, it is necessary for the filter substrate 204 to advance on the optical path of the incident light at the time of photographing such as daytime and to be retracted from the optical path of the incident light at the time of photographing such as nighttime. Therefore, a configuration is adopted in which the filter substrate 204 is moved integrally with the frame member 214 by attaching the filter substrate 204 to the frame member 214.
  • the ND filters 208 and 209 need to function effectively when the aperture 216 is narrowed down.
  • a configuration is adopted in which the ND filters 208 and 209 are moved integrally with the diaphragm blades 202 and 203 by attaching the ND filters 208 and 209 to the pair of diaphragm blades 202 and 203, respectively.
  • the conventional diaphragm device 200 has the following problems. That is, when the diaphragm aperture 216 is gradually reduced from the fully opened state by the relative movement of the pair of diaphragm blades 202 and 203, the pair of ND filters 208 and 209 starts to overlap as shown in FIG. In such a case, light passing through the aperture 216 includes light that passes through a portion where the ND filter 208 or the ND filter 209 exists alone, light that passes through a portion where the two ND filters 208 and 209 overlap, and ND filter 208. , 209 and the light passing through the part other than 209. Therefore, a partial difference occurs in the amount of light passing through the aperture 216.
  • some conventional diaphragm devices having a pair of diaphragm blades have an ND filter attached to only one diaphragm blade.
  • the position of the ND filter is biased to one side with respect to the center of the diaphragm aperture. This inevitably causes problems such as shading.
  • a main object of the present invention is to simultaneously reduce the number of parts and improve characteristics such as shading in a diaphragm device that varies a diaphragm aperture using a pair of diaphragm blades and moves a filter substrate forward and backward with respect to the diaphragm aperture. It is to provide a technology that can.
  • the first aspect of the present invention is: A pair of diaphragm blades forming a diaphragm aperture in a state of overlapping each other; A filter substrate having a visible light passage region; An aperture drive unit that relatively moves the pair of aperture blades to adjust the size of the aperture opening; A filter driver that moves the filter substrate forward and backward with respect to the optical path of light incident through the aperture opening; With The filter substrate further has a light attenuation region for attenuating light that can pass through at least the visible light passage region among light passing through the aperture opening, The light attenuation region is formed in the visible light passage region with a region smaller than the visible light passage region, and is arranged concentrically with the aperture when the filter substrate is advanced on the optical path. It is a diaphragm
  • the second aspect of the present invention is: The light attenuating region is formed in a circular shape.
  • the third aspect of the present invention is: The aperture device according to the first aspect, wherein the light attenuation region is formed in a shape similar to the aperture shape of the aperture opening.
  • the fourth aspect of the present invention is:
  • the visible light passage region is composed of an infrared cut filter layer formed on at least one main surface of the filter substrate,
  • the light attenuation region includes an ND filter layer formed on one main surface, the other main surface, or both main surfaces of the filter substrate. It is a diaphragm
  • the diaphragm device according to the fourth aspect, wherein the infrared cut filter layer and the ND filter layer are formed in a laminated state on a common main surface of the filter substrate.
  • the sixth aspect of the present invention is: The aperture stop device according to any one of the first to fifth aspects; A photoelectric conversion element that converts light incident through the aperture opening into an electrical signal; It is a camera characterized by providing.
  • the seventh aspect of the present invention is The camera according to the sixth aspect; An image processing unit for processing an image signal output from the camera; It is an electronic device characterized by including.
  • the number of parts can be reduced and the characteristics such as shading can be improved at the same time. Can do.
  • FIG. 1 shows an example of the configuration of a camera to which the present invention is applied, in which (A) is an external view of the entire camera, and (B) is a schematic view of the inside of a lens barrel. It is a disassembled perspective view which shows the example of a whole structure of the aperture_diaphragm
  • FIG. 10 is a cross-sectional view of the filter substrate shown in FIG. 9. It is a disassembled perspective view which shows the state which attached the ND filter to the aperture blade with the conventional aperture stop apparatus. It is a figure which shows the state which piled up a pair of blade board
  • FIG. 1A is an external view of the entire camera
  • FIG. 1B The illustrated camera 100 is, for example, a surveillance camera installed on a ceiling (or a wall) of a building for crime prevention purposes.
  • the camera 100 includes a mounting base 101 and a camera body 102.
  • the mounting base 101 is structured to be fixed to a ceiling portion of a building by screwing, for example.
  • the camera body 102 includes a lens barrel 103 and an objective lens 104.
  • An optical system including the objective lens 104 is incorporated in the lens barrel portion 103.
  • the objective lens 104 is attached to the tip of the lens barrel 103.
  • the camera body 102 incorporates the diaphragm device 1 and the image sensor 105 as one functional part of the optical system.
  • the diaphragm device 1 will be described in detail later.
  • the image sensor 105 is an image sensor that can perform color photography, and is composed of, for example, a CCD (Charge-Coupled Device) image sensor, a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, or the like.
  • the imaging element 105 has an imaging surface formed by arranging a plurality of (many) pixels in a matrix, for example.
  • the imaging element 105 is incorporated as an example of a photoelectric conversion element that converts light incident on the imaging surface through the aperture opening of the aperture stop device 1 into an electrical signal.
  • the present invention is not limited to the camera 100 illustrated here, but can be applied to a camera having another configuration including the aperture device 1.
  • various changes can be made to the configuration of the optical system, such as the type, number, and arrangement of lenses and the arrangement of the diaphragm 1.
  • FIG. 2 is an exploded perspective view showing an example of the overall configuration of the diaphragm device according to the embodiment of the present invention.
  • the illustrated diaphragm device 1 is broadly divided into a diaphragm substrate 2, a pair (two) of diaphragm blades 3, 4, a filter substrate 5, a blade cover 6, a diaphragm drive unit 7, a filter drive unit 8, It is the composition provided with.
  • the diaphragm substrate 2 serves as a base for mounting each constituent member constituting the diaphragm device 1.
  • the pair of diaphragm blades 3 and 4 form a diaphragm aperture in a state where they overlap each other.
  • the aperture opening is disposed on the optical path of light incident on the camera and limits the amount of light passing therethrough. That is, when the size of the aperture opening is increased, the amount of light passing therethrough is relatively increased, and when the size of the aperture opening is decreased, the amount of light passing therethrough is relatively decreased.
  • the filter substrate 5 has an optical filter function with respect to incident light.
  • the blade cover 6 shields and protects the pair of diaphragm blades 3 and 4 from the outside.
  • the diaphragm driving unit 7 relatively moves the pair of diaphragm blades 3 and 4 in order to adjust the size of the diaphragm aperture.
  • the filter driving unit 8 moves the filter substrate 5 in order to switch the filter substrate 5 between a use state and a non-use state.
  • the use state of the filter substrate 5 means a state in which the filter substrate 5 is advanced on the optical path of incident light.
  • the non-use state of the filter substrate 5 means a state in which the filter substrate 5 is retracted (retracted) from the optical path of incident light.
  • the diaphragm substrate 2 is made of, for example, a resin and is formed in a substantially rectangular shape in plan view as a whole.
  • the aperture substrate 2 is formed with an opening 10 and a plurality of protrusions 11a, 11b, 11c, and 11d.
  • the opening 10 is formed in a perfect circle or a circular shape close thereto.
  • the plurality of projecting portions 11a, 11b, 11c, and 11d are for guiding the movement of the pair of diaphragm blades 3 and 4. End portions of the respective protrusions 11a, 11b, 11c, and 11d are bent in an L shape toward the outside of the diaphragm substrate 2, respectively.
  • the pair of aperture blades 3 and 4 is configured by using, for example, a plate-shaped material made of polyethylene terephthalate (PET) covered with a carbon film. Each of the diaphragm blades 3 and 4 is formed in a thin plate shape as a whole.
  • One aperture blade 3 is provided with one hole portion 15, three guide grooves 16 a, 16 b, 16 c, and one engagement hole 17.
  • the hole portion 15 has a planar shape in which a part of a perfect circle or a circular shape close thereto is enlarged into a substantially V shape.
  • the three guide grooves 16 a, 16 b and 16 c are formed in parallel with each other along the longitudinal direction of the diaphragm blade 3. Of the three guide grooves 16a, 16b and 16c, the two guide grooves 16b and 16c are formed on the same straight line. The remaining one guide groove 16a is formed on the opposite side of the hole 15 with respect to the two guide grooves 16b and 16c.
  • the engagement hole 17 is formed on an extension line of the two guide grooves 16b and 16c.
  • the engagement hole 17 is formed in a long hole shape in plan view along the short direction of the diaphragm blade 3.
  • the other diaphragm blade 4 is provided with one bay portion 18, three guide grooves 19 a, 19 b, 19 c, and one engagement hole 20.
  • the bay portion 18 has a planar shape obtained by enlarging a part of a semicircular shape (or an oval shape) into a substantially V shape.
  • the three guide grooves 19 a, 19 b, 19 c are formed in parallel with each other along the longitudinal direction of the diaphragm blade 4. Of the three guide grooves 19a, 19b, 19c, the two guide grooves 19a, 19b are formed on the same straight line.
  • the remaining one guide groove 19c is formed on the opposite side of the bay 18 with respect to the two guide grooves 19a and 19b.
  • the engagement hole 20 is formed on an extension line of the two guide grooves 19a and 19b.
  • the engagement hole 20 is formed in a long hole shape in plan view along the short direction of the diaphragm blade 4.
  • the filter substrate 5 is disposed in a state of being inserted between the pair of diaphragm blades 3 and 4 (gap portion).
  • the filter substrate 5 is configured using, for example, a circular glass substrate having optical transparency.
  • a filter layer is formed on at least one main surface of the filter substrate 5. The configuration of the filter substrate 5 having this filter layer will be described in detail later.
  • the filter substrate 5 is attached to the frame member 23.
  • the frame member 23 has a circular opening (not shown) corresponding to the outer shape of the filter substrate 5.
  • the filter substrate 5 and the frame member 23 constitute a single filter unit 24 by being assembled together.
  • the filter substrate 5 and the frame member 23 are integrally assembled by a fixing means such as adhesion.
  • the frame member 23 is made of, for example, resin.
  • An arm portion 25 is formed integrally with the frame member 23.
  • the arm portion 25 is bent into a substantially L shape, and a round hole 26 is formed in the bent portion.
  • a long hole 27 is formed on the distal end side of the arm portion 25.
  • the frame member 23 is integrally formed with two protruding portions 28 and 29.
  • Each of the protruding portions 28 and 29 mainly has two functions. One of the functions is to stabilize the movement of the pair of diaphragm blades 3 and 4 by the interaction with the protruding portion of the arm portion 25 described above. The other function is to secure a bonding allowance when the filter substrate 5 is fixed to the frame member 23 with an adhesive.
  • the blade cover 6 is formed in a plate shape using a metal such as aluminum.
  • the blade cover 6 is formed in a substantially rectangular shape in plan view like the diaphragm substrate 2 described above.
  • the blade cover 6 is provided with one opening 30 and two escape grooves 31a and 31b.
  • the opening 30 is formed in a perfect circle or a circular shape close thereto.
  • the opening 30 is disposed so as to overlap with the aperture opening formed by the pair of aperture blades 3 and 4.
  • the escape groove portions 31 a and 31 b are formed as a pair on one side and the other side of the blade cover 6 in the short direction.
  • Each escape groove part 31a, 31b is formed in a substantially arc shape in plan view in a state of penetrating the blade cover 6 in the thickness direction.
  • the arm portion 32 is formed integrally with the blade cover 6.
  • the arm portion 32 is formed so as to protrude to one side of the blade cover 6 in the short direction.
  • a long hole 33 is formed in the arm portion 32.
  • the blade cover 6 is formed with a pair of holes 36a and 36b and a pair of notches 37a and 37b.
  • the diaphragm drive unit 7 transmits a driving force of a motor serving as a driving source to a pair of diaphragm blades 3 and 4 via a driving force transmission mechanism (gear mechanism or the like) (not shown), thereby a pair of diaphragm blades 3 and 4. Is moved relatively.
  • a driving force transmission mechanism for example, a movable magnet type motor is used.
  • the aperture drive unit 7 has a pair of drive pins 34a and 34b.
  • the pair of drive pins 34a and 34b are arranged with a position shifted by about 180 ° on the same circumference.
  • the pair of drive pins 34a and 34b are moved by the same amount in the same direction on the same circumference by the drive of the drive source.
  • the diaphragm drive unit 7 and the pair of diaphragm blades 3 and 4 have one drive pin 34b in the engagement hole 17 of the diaphragm blade 3 and the other drive pin 34a in the engagement hole 20 of the diaphragm blade 4, respectively. By being engaged, they are connected to each other.
  • the filter driving unit 8 moves the filter unit 24 including the filter substrate 5 by transmitting the driving force of the motor serving as a driving source to the filter unit 24 via a driving force transmission mechanism (gear mechanism or the like) (not shown). Is. For example, a stepping motor is used as the drive source.
  • the filter unit 24 is supported rotatably about the support shaft 35 by inserting the round hole 26 of the arm portion 25 into the support shaft 35.
  • the support shaft 35 is formed integrally with the aperture substrate 2, for example.
  • the filter drive unit 8 and the filter unit 24 are connected to each other by, for example, providing a drive pin in the filter drive unit 8 and engaging the drive pin with the elongated hole 27 of the arm unit 25.
  • the diaphragm drive unit 7 and the filter drive unit 8 are mounted on the diaphragm substrate 2 before the pair of diaphragm blades 3 and 4, the filter unit 24, and the blade cover 6 are attached to the diaphragm substrate 2.
  • the diaphragm drive unit 7 and the filter drive unit 8 are mounted on the diaphragm substrate 2 before the pair of diaphragm blades 3 and 4, the filter unit 24, and the blade cover 6 are attached to the diaphragm substrate 2.
  • the diaphragm blade 3 is attached to the diaphragm substrate 2.
  • the protrusions 11a, 11c, and 11d of the diaphragm substrate 2 are fitted into the guide grooves 16a, 16b, and 16c of the diaphragm blade 3, respectively.
  • one drive pin 34 b of the aperture drive unit 7 is fitted into the engagement hole 17 of the aperture blade 3.
  • the filter unit 24 is attached to the diaphragm substrate 2.
  • the round hole 26 of the arm part 25 is fitted into the support shaft 35 of the diaphragm substrate 2, and the drive pin (not shown) of the filter drive part 8 is fitted into the long hole 27 of the arm part 25.
  • the diaphragm blades 4 are attached to the diaphragm substrate 2.
  • the protrusions 11a, 11b, and 11c of the diaphragm substrate 2 are fitted into the guide grooves 19a, 19b, and 19c of the diaphragm blade 4, respectively.
  • the other drive pin 34 a of the aperture drive unit 7 is fitted into the engagement hole 20 of the aperture blade 4.
  • the blade cover 6 is attached to the diaphragm substrate 2.
  • the support shaft 35 of the diaphragm substrate 2 is fitted into the long hole 33 of the arm portion 32 of the blade cover 6.
  • the blade cover 6 is fixed to the diaphragm substrate 2 by, for example, fitting.
  • the positional interference between the two is avoided as follows. First, positional interference between one drive pin 34b of the diaphragm drive unit 7 protruding through the engagement hole 17 of the diaphragm blade 3 and the blade cover 6 is avoided by the escape groove 31b. Similarly, positional interference between the other drive pin 34a of the diaphragm drive unit 7 protruding through the engagement hole 20 of the diaphragm blade 4 and the blade cover 6 is avoided by the escape groove 31a.
  • positional interference between the projections 11a and 11c of the diaphragm substrate 2 and the blade cover 6 is avoided by the pair of holes 36a and 36b, and the positions of the projections 11b and 11d of the diaphragm substrate 2 and the blade cover 6 are avoided. Interference is avoided by the pair of notches 37a and 37b.
  • the pair of diaphragm blades 3 and 4 are supported on the diaphragm substrate 2 by the four protrusions 11a, 11b, 11c, and 11d so as to be movable (slidable).
  • the filter unit 24 is supported so as to be movable in a direction of rotation about the support shaft 35.
  • the opening 10 of the diaphragm substrate 2 and the opening 30 of the blade cover 6 are arranged in a state of being opposed (overlapping) in the thickness direction of the diaphragm substrate 2, and further, the hole 15 of the diaphragm blade 3 is disposed in the opposed portion.
  • the bay portion 18 of the aperture blade 4 are arranged so as to overlap each other.
  • the diameter of the substantially circular shape that defines the hole portion 15 of the diaphragm blade 3 and the diameter of the semicircular portion that defines the bay portion 18 of the diaphragm blade 4 are substantially the same size.
  • a diaphragm opening is formed at a portion where the hole 15 of the diaphragm blade 3 and the bay portion 18 of the diaphragm blade 4 overlap. Therefore, the aperture opening formed by the pair of aperture blades 3 and 4 is enlarged or reduced in a region where the aperture 10 of the aperture substrate 2 and the aperture 30 of the blade cover 6 face each other.
  • the aperture opening may be completely closed depending on the position of the aperture blades 3 and 4.
  • filter substrate (Detailed explanation of filter substrate)
  • the configuration of the filter substrate 5 described above will be described in more detail.
  • FIG. 3 is an enlarged plan view of the filter unit.
  • FIG. 4 is a sectional view of the filter substrate.
  • the circular broken line shown in FIG. 3 has shown the opening formed in the frame member.
  • the filter substrate 5 is configured based on, for example, a glass substrate 40.
  • ultraviolet (UV) cut glass is used for the glass substrate 40.
  • An infrared cut filter layer 41 and an ND (Neutral Density) filter layer 42 are formed on one main surface of the filter substrate 5.
  • the infrared cut filter layer 41 is a filter layer that cuts light in the infrared region (including the near infrared region).
  • the infrared cut filter layer 41 is formed over the entire region of the main surface on one main surface of the glass substrate 40 so as to cover the entire surface of the main surface.
  • the infrared cut filter layer 41 is formed on the glass substrate 40 with a uniform thickness.
  • the region where the infrared cut filter layer 41 is formed becomes a region that blocks light in the infrared region.
  • the glass substrate 40 is formed of ultraviolet cut glass, the entire region is a region that blocks light in the ultraviolet region. Therefore, the area
  • the visible light passing region may not be a region strictly allowing only visible light to pass.
  • the light passing through the visible light passage region may include, in addition to visible light, part of light belonging to the ultraviolet region and part of light belonging to the infrared region.
  • the ND filter layer 42 is a filter layer that attenuates light incident on the ND filter layer 42.
  • the ND filter layer 42 is a filter layer having a lower wavelength dependency than a region where the infrared cut filter layer 41 is formed (hereinafter also referred to as “visible light passing region”). Therefore, the region in which the ND filter layer 42 is formed corresponds to a region that attenuates at least light that can pass through the visible light passing region out of the light passing through the aperture opening, that is, a light attenuating region. For example, if the visible light is the only light that can pass through the visible light passage region, the region that attenuates the visible light is the light attenuation region.
  • the visible light transmittance in the ND filter layer 42 is preferably about 6%, for example, although it depends on the characteristics of the image sensor incorporated in the camera.
  • the ND filter layer 42 has a characteristic of attenuating light in each of the ultraviolet region, visible light region, and infrared region with a substantially uniform transmittance. For this reason, the light that can be attenuated by the ND filter layer 42 is not limited to visible light.
  • the relative area ratio between the visible light passing region and the light attenuating region is defined as 100% of the visible light passing region functioning effectively when the aperture opening is fully opened. In this case, it is desirable to set the ratio of the area of the light attenuation region to 4 to 33%.
  • the reason why the area ratio of the light attenuating region is defined in this way is that the area ratio of the light attenuating region that is appropriate for the area of the visible light passing region when the aperture is fully open is This is because it varies depending on the aperture diameter. Specifically, the area ratio of the appropriate light attenuation region decreases as the aperture diameter when fully opened increases, and conversely, as the aperture diameter when fully opened decreases. The area ratio of the light attenuation region is increased.
  • the ND filter layer 42 is formed on one main surface side of the glass substrate 40 so as to be laminated on the infrared cut filter layer 41.
  • the ND filter layer 42 is formed on the infrared cut filter layer 41 with a uniform thickness.
  • the ND filter layer 42 is formed in a circular shape at the center of the region where the infrared cut filter layer 41 is formed when the filter substrate 5 is viewed in plan. That is, the filter substrate 5 has an eyeball type filter structure. Specifically, it has an eyeball structure in which the region where the infrared cut filter layer 41 is formed is a white portion, and the region where the ND filter layer 42 inside is formed is a black portion. Yes.
  • the ND filter layer 42 is formed at the center of the filter substrate 5 with a smaller area than the area where the infrared cut filter layer 41 is formed. Further, as described above, the region where the infrared cut filter layer 41 is formed corresponds to a visible light passing region. For this reason, the ND filter layer 42 is formed in the visible light passage region.
  • the outer dimension (diameter in the example) of the ND filter layer 42 is the opening dimension when the diaphragm opening 43 formed by the pair of diaphragm blades 3 and 4 is in a small diaphragm state.
  • the state of the small stop means a state in which the actual opening area of the stop opening 43 is 1/3 or less of the opening area when the stop opening 43 is fully opened.
  • a notch portion formed in a V shape in a part of the hole portion 15 of the aperture blade 3 and a notch portion formed in a V shape in a part of the bay portion 18 of the aperture blade 4 Thus, the aperture shape of the aperture opening 43 becomes a square (diamond).
  • the infrared cut filter layer 41 or the ND filter layer 42 on the glass substrate 40
  • a well-known film forming method such as a vacuum deposition method, a sputtering method, or a coating method may be employed.
  • the ND filter layer 42 may be formed in a state where the glass substrate 40 on which the infrared cut filter layer 41 has been formed is masked so as to open only the portion where the ND filter layer 42 is to be formed.
  • the center of the filter substrate 5 is located with respect to the center of the aperture opening formed by the pair of aperture blades 3 and 4. Aligned. For this reason, when the filter substrate 5 is in use, the region where the ND filter layer 42 is formed (light attenuation region) is arranged concentrically with the aperture opening. Therefore, when the aperture opening is in a small aperture state, the surface contact ratio of the ND filter layer 42 occupying the aperture area of the aperture opening becomes very high. In particular, when photographing in a bright environment (such as outdoors under a clear sky), the aperture opening is made small, so the ND filter layer 42 is disposed so as to cover the entire area of the aperture opening.
  • the size of the diaphragm opening 43 changes according to the moving direction and the moving amount thereof. Specifically, when the pair of diaphragm blades 3 and 4 move in the direction in which they approach each other (the direction indicated by the solid line in FIG. 5), the diaphragm aperture 43 increases accordingly, and the pair of diaphragm blades 3 and 4 are separated from each other. When moving in the direction of movement (indicated by the broken arrow in FIG. 5), the aperture opening 43 becomes smaller accordingly.
  • the diaphragm opening 43 is maximum (fully opened), and when the pair of diaphragm blades 3 and 4 is most separated, the diaphragm opening 43 is minimum (completely closed). State) or a state close thereto.
  • FIG. 6 is a view showing a state where the aperture opening is opened (fully opened).
  • the filter substrate 5 is retracted from the aperture opening 43.
  • FIG. 7 is a diagram showing a state where the aperture opening 43 is a small aperture.
  • the aperture opening 43 is formed in a substantially rhombus shape at the portion where the hole portion 15 and the bay portion 18 of the pair of aperture blades 3 and 4 overlap.
  • the ND filter layer 42 is disposed in a state in which all the aperture openings 43 are closed (covered).
  • the ND filter layer 42 is disposed in the aperture opening 43 only when the filter substrate 5 is advanced on the optical path of the incident light.
  • the filter unit 24 moves around the support shaft 35 in response to the driving force accompanying the driving of the filter driving unit 8.
  • the filter substrate 5 is retracted to a position deviating from the optical path of light incident through the aperture opening 43.
  • the image sensor not shown
  • the filter driving unit 8 is driven in a manner that reverses the operation direction from the above case. Then, the filter unit 24 receives the driving force of the filter driving unit 8 and moves so as to rotate about the support shaft 35. As a result, the filter substrate 5 advances to a position interposed on the optical path of the light incident through the aperture opening 43. For this reason, when photographing in the color photographing mode, light incident through the aperture opening 43 reaches the image sensor (not shown) through the filter substrate 5.
  • the color shooting mode is applied in a bright environment such as daytime. Further, in such a photographing environment, the light amount adjustment by the diaphragm device 1 is performed in a state of a small diaphragm with a small diaphragm aperture 43 so as not to saturate the pixel signal of the image sensor as described above. For this reason, all or most of the aperture opening 43 is closed by the two filter function layers including the infrared cut filter layer 41 and the ND filter layer 42. Therefore, the filter function by the infrared cut filter layer 41 and the ND filter layer 42 works together without adopting the conventional structure in which the ND filters are respectively attached to the pair of diaphragm blades. For this reason, the shooting environment is suitable for shooting in the daytime or the like where the shooting environment is bright.
  • the aperture opening 43 is opened larger than the small aperture state while the filter substrate 5 is advanced. Therefore, the aperture opening 43 is larger than the area where the ND filter layer 42 is formed.
  • the infrared cut filter layer 41 is formed on the entire surface of one side of the filter substrate 5, the infrared cut filter layer 41 always blocks the aperture opening 43 even if the aperture opening 43 is fully opened.
  • an infrared cut filter layer 41 and an ND filter layer 42 are formed on the filter substrate 5. For this reason, compared with the case where the conventional ND filter is attached to the diaphragm blade as an independent component, the number of components can be reduced.
  • the ND filter layer 42 is arranged concentrically with the diaphragm opening 43 when the filter substrate 5 is advanced onto the optical path of light incident through the diaphragm opening 43. .
  • the ND filter layer 42 not only functions effectively, but the entire aperture opening 43 is blocked by the ND filter layer 42. Therefore, even in the small aperture state, the entire image has uniform brightness. For this reason, characteristics such as shading are improved.
  • the aperture opening 43 is opened larger than the small aperture state, characteristics such as shading can be improved. That is, the operation state in which the aperture opening 43 is opened larger than the small aperture state is applied, for example, in a daytime dim environment. As a result, the amount of light incident on the camera is significantly less than in a bright daytime environment. Therefore, even if the aperture opening 43 is opened larger than the area where the ND filter layer 42 is formed, the difference between light and darkness due to the presence of the ND filter layer 42 is remarkably small as compared to a bright environment in the daytime. Become.
  • the light that passes through the diaphragm aperture is either the light that passes through the overlapping portion of the two ND filters, There are three types of light: light that passes through one of the ND filters and light that does not pass through the ND filter portion.
  • the light passing through the diaphragm opening 43 is transmitted through the ND filter layer 42 (the central part of the diaphragm opening 43) and the other parts ( It is limited to two light beams that pass through the peripheral edge portion of the aperture opening 43. For this reason, variation in distribution with different brightness is suppressed. Therefore, the effect of improving the characteristics such as shading becomes more remarkable.
  • the following effects can be obtained along with the reduction in the number of parts described above. That is, when manufacturing the diaphragm device 1, a process of attaching an ND filter to the diaphragm blade is not necessary.
  • the gap between the pair of diaphragm blades is relatively increased by adding the thickness of the adhesive to the thickness of the ND filter (for example, about 0.1 mm). Must be set.
  • the ND filter layer 42 is formed on the filter substrate 5
  • the thickness may be about several ⁇ m to tens of ⁇ m. For this reason, the diaphragm device 1 can be thinned.
  • the ND filter since the diaphragm blades repeatedly move due to the operation of the diaphragm device, if the ND filter is attached to the diaphragm blades by adhesion or the like, the ND filter may come off due to vibration or the like accompanying the movement of the diaphragm blades. There is. In contrast, in the case where the ND filter layer 42 is formed on the filter substrate 5, such a problem does not occur. Therefore, it is possible to realize an aperture device that is excellent in operation reliability over a long period of time.
  • a light attenuation region composed of the ND filter layer 42 is formed in a circular shape. For this reason, even if the aperture shape when the aperture aperture 43 becomes a small aperture is, for example, a polygon or an ellipse, if the light attenuation region is formed with a circle smaller than the diameter of the circle circumscribing the aperture, Regardless of the difference in opening shape, characteristics such as shading can be improved. For this reason, it will be excellent in versatility.
  • a configuration in which the light attenuation region is formed in a shape similar to the aperture shape of the aperture opening 43 may be adopted.
  • the shape of the aperture opening 43 formed by the hole 15 and the bay portion 18 becomes a square (diamond) due to the presence of the respective V-shaped cutout portions.
  • a light attenuation region is formed in the similar shape.
  • the aperture opening 43 is moved to the ND filter layer until the aperture size of the aperture opening 43 matches the outer dimension of the region where the ND filter layer 42 is formed.
  • the state closed at 42 is maintained.
  • the formation region of the ND filter layer 42 can be utilized to the maximum extent without waste.
  • the formation region of the ND filter layer 42 can be minimized. For this reason, it is possible to suppress a decrease in the amount of light when the aperture opening 43 is opened in the color photographing mode.
  • non-formation region a region where the ND filter layer 42 is not formed
  • the image is relatively dark in the formation region of the ND filter layer 42 located in the center, and the image is relatively bright in the region where the ND filter layer 42 is not formed.
  • the lens for photographing is generally bright at the center and darker toward the periphery. For this reason, it is possible to make the brightness of the image uniform by canceling them.
  • the infrared cut filter layer 41 and the ND filter layer 42 are formed in a laminated state on the common main surface of the glass substrate 40. For this reason, when manufacturing the filter substrate 5, the infrared cut filter layer 41 and the ND filter layer 42 can be sequentially formed (film formation) without inverting the glass substrate 40.
  • the ND filter layer 42 may be formed not on one main surface of the glass substrate 40 but on the main surface opposite to the main surface on which the infrared cut filter layer 41 is formed.
  • the infrared cut filter layer 41 and the ND filter layer 42 may be formed on both main surfaces of the glass substrate 40, respectively.
  • the planar shape of the light attenuation region formed of the ND filter layer 42 is not limited to the above-described circular shape, but may be, for example, a triangle, a quadrilateral, a pentagon, a hexagon (which will be omitted hereinafter) belonging to a polygon.
  • the order of lamination is opposite to that of the above embodiment, that is, the infrared cut with the ND filter layer 42 covered therewith. What formed the filter layer 41 may be used.
  • a filter substrate having a configuration in which the infrared cut filter layer 41 and the ND filter layer 42 are formed on separate glass substrates, and these glass substrates are integrated by bonding or the like may be employed.
  • the operation of the filter substrate 5 for switching the photographing mode is not a rotational operation around the support shaft 35 as in the above-described embodiment, but is performed by, for example, a linear sliding movement operation. There may be.
  • the main surface region of the rectangular substrate is divided into two regions in the longitudinal direction of the substrate, an infrared cut filter layer is formed only in one region, and the central portion thereof is formed. What is necessary is just to set it as the structure which formed the ND filter layer.
  • the configuration of the filter substrate 5 having the infrared cut function is not limited to the configuration in which the infrared cut filter layer 41 is formed on the glass substrate 40 as in the above-described embodiment.
  • the glass substrate 40 itself blocks infrared rays. That is, the glass substrate 40 made of infrared cut glass may be used.
  • the filter substrate 5 which has an ultraviolet cut function
  • the ultraviolet cut filter layer was formed in the main surface of the glass substrate. It may be a configuration.
  • a configuration in which the ND filter layer 42 is formed on a thin film base and the film base is attached to the glass substrate 40 may be employed.
  • the visible light passage region is a region through which visible light passes, more specifically, visible light in a state where light in a predetermined wavelength region is removed. More specifically, a region where visible light is allowed to pass in a state in which light unnecessary for photographing with a camera under visible light is removed.
  • the light unnecessary for camera photographing in this case refers to at least one of “light having a longer wavelength than visible light” and “light having a shorter wavelength than visible light”. More specifically, at least one of infrared light (including near-infrared light) and ultraviolet light (including near-ultraviolet light) corresponds to “light unnecessary for camera shooting”. .
  • the “visible light passage region” of the filter substrate 5 has not only the functions of both the infrared cut filter and the ultraviolet cut filter but also the function of only the infrared cut filter, or only the ultraviolet cut filter. It may have a function. However, in order to prevent color misregistration of the image, it is desirable that the region has both the infrared cut filter and the ultraviolet cut filter. Further, regarding the visible light passing region, it is not always necessary to make the entire region on the main surface of the glass substrate 40 a visible light passing region, and the visible light passing region is secured so as to be a region larger than the light attenuation region. Just do it.
  • the present invention is not limited to a diaphragm device and a camera using the same, but can be applied to an electronic device (for example, a security device) including the camera.
  • an electronic device for example, a security device
  • Such an electronic device includes a camera according to an embodiment of the present invention and an image processing unit that processes an image signal output from the camera.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Diaphragms For Cameras (AREA)
  • Blocking Light For Cameras (AREA)
  • Studio Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

部品点数の削減とシェーディング等の特性向上を同時に図ることができる絞り装置を提供する。本発明の絞り装置1は、互いに重なり合った状態で絞り開口を形成する一対の絞り羽根3,4と、赤外線カットフィルタ層が一方の主面全域に形成されたフィルタ基板5と、絞り開口の大きさを調整するために一対の絞り羽根3,4を相対的に移動させる絞り駆動部7と、絞り開口を通して入射する光の光路に対してフィルタ基板を進退移動させるフィルタ駆動部8とを備える。フィルタ基板5は、その中央部にNDフィルタ層42を有し、このNDフィルタ層42が絞り開口と同心状に配置される構成となっている。

Description

絞り装置、カメラおよび電子機器
 本発明は、一対の絞り羽根を有する絞り装置と、これを備えるカメラおよび電子機器に関する。
 一般に、昼夜兼用の監視カメラには、カラー撮影が可能な撮像素子が組み込まれている。この種の監視カメラでは、被写体が明るい場合と、被写体が暗い場合で、撮影モードを切り替えている。具体的には、被写体が明るい昼間等の撮影時にはカラー撮影モードを適用し、被写体が暗い夜間等の撮影時にはモノクロ撮影モードを適用するように、撮影モードを切り替えている。
 また、カラー撮影モードでは、撮像素子の前段(光が入射する側)に赤外線カットフィルタを配置している。このため、カラー撮影モードで撮影する場合は、外部から入射した光が赤外線カットフィルタを介して撮像素子に到達する。これに対して、モノクロ撮影モードでは撮像素子の前段から赤外線カットフィルタを退避させている。このため、モノクロ撮像モードで撮影する場合は、外部から入射した光が赤外線カットフィルタを介することなく撮像素子に到達する。
 上記の監視カメラを含む各種のカメラには、当該カメラに対して外部から入射する光の量(以下、「入射光量」と記す)を調整するための絞り装置が組み込まれている。絞り装置は、入射光の光路上に存在する絞り開口の大きさを変えることによって入射光量を調整(適正化)するものである。
 図8は従来の絞り装置の一例を示す分解斜視図である。絞り装置200は、大きくは、絞り基板201と、一対の絞り羽根202,203と、フィルタ基板204と、羽根カバー205と、絞り駆動部206と、フィルタ駆動部207と、一対のND(Neutral Density)フィルタ208,209と、を備えた構成となっている。
 絞り基板201は、一対の絞り羽根202,203を移動自在(スライド自在)に支持するものである。また、絞り基板201は、絞り駆動部206とフィルタ駆動部207とを支持するものである。
 一対の絞り羽根202,203は、互いに重なり合った状態で絞り開口を形成するものである。この絞り開口は、一方の絞り羽根202に形成された孔部210と、他方の絞り羽根203に設けられた湾部211によって形成されるものである。
 フィルタ基板204は、外部から入射する光のうち、赤外線領域(近赤外線領域を含む)の光をカットするフィルタ機能を有している。具体的には、フィルタ基板204は、図9および図10に示すように、ガラス基板212の片面に赤外線カットフィルタ層213を形成した構成となっている。また、フィルタ基板204は、フレーム部材214に取り付けられている。そして、フィルタ基板204とフレーム部材214との組み合わせによってフィルタユニット215が構成されている。
 羽根カバー205は、絞り基板201に取り付けられた一対の絞り羽根202,203を外部から遮蔽して保護するものである。
 絞り駆動部206は、一対の絞り羽根202,203を相対的に移動(以下、単に「相対移動」とも記す)させるものである。一対の絞り羽根202,203の相対移動は、これらが互いに接近離間する方向での移動となる。
 フィルタ駆動部207は、フィルタ基板204およびフレーム部材214からなるフィルタユニット215を移動させるものである。フィルタ駆動部207によるフィルタユニット215の移動は、入射光の光路上にフィルタ基板204を進出させる場合と、入射光の光路上からフィルタ基板204を退避させる場合に行われる。
 NDフィルタ208,209は、それぞれ光を減衰させるものである。NDフィルタ208は、図11に示すように、一方の絞り羽根202の孔部210の縁に接着剤を用いて取り付けられ、NDフィルタ209は、他方の絞り羽根203の湾部211の縁に接着剤を用いて取り付けられる。
 上記構成からなる絞り装置200においては、絞り基板201に一対の絞り羽根202,203を重ねて取り付けたときに、図12に示すように、孔部210と湾部211の重なり合う部分に絞り開口216が形成される。そして、絞り基板201上で絞り駆動部206を駆動すると、一対の絞り羽根202,203が互いに接近離間する方向に移動する。そうすると、一対の絞り羽根202,203の移動方向および移動量に応じて絞り開口216の大きさが変化する。
 具体的には、一対の絞り羽根202,203が互いに接近する方向(図12の実線の矢印方向)に移動すると、これにしたがって絞り開口216が大きくなり、これと反対に、一対の絞り羽根202,203が互いに離間する方向(図12の破線の矢印方向)に移動すると、これにしたがって絞り開口216が小さくなる。また、一対の絞り羽根202,203を最も接近させた状態では絞り開口216が最大(全開状態)となり、一対の絞り羽根202,203を最も離間させた状態では絞り開口216が最小(完全に閉じた状態またはそれに近い状態)となる。図13は絞り開口を開放(全開)した状態を示し、図14は絞り開口を小絞りとした状態を示している。
 また、絞り基板201に対しては、前述した絞り開口216に対してフィルタ基板204が進退可能(抜き差し可能)となるように、一対の絞り羽根202,203の間(隙間部分)にフィルタユニット215(フィルタ基板204、フレーム部材214)が配置される。そして、絞り基板201上でフィルタ駆動部207を駆動すると、フレーム部材214と一体になってフィルタ基板204が移動する。この場合、フィルタ基板204を一方側に移動させると、絞り開口216を通して入射する光の光路上にフィルタ基板204が進出した状態となる。また、フィルタ基板204を他方側に移動させると、上記の光路上からフィルタ基板204が退避した状態となる。
 このように動作する絞り装置200において、フィルタ基板204とNDフィルタ208,209は、それぞれ異なる使用目的で組み込まれている。すなわち、フィルタ基板204は、昼間等に適用されるカラー撮影モードで撮影する場合に、赤外光の入射に起因した画像の色ズレ(画像が赤みを帯びる現象)を防止するために組み込まれている。これに対して、NDフィルタ208,209は、昼間等の撮影時に撮像素子の画素の信号が飽和しないように絞り開口216を小さく絞った状況下でも、入射光量を細かく制御可能とするために組み込まれている。
 この種の絞り装置としては、たとえば、特許文献1に記載されたものが知られている。また、一対の絞り羽根を利用したものではないが、監視カメラ用途のレンズとして、赤外線カットフィルタとNDフィルタとを一体的に形成したものが知られている(特許文献2を参照)。
特開2007-17594号公報 特開平5-110938号公報
 上記従来の絞り装置200においては、フィルタ基板204とNDフィルタ208,209とを、それぞれの使用目的にあわせて別々に取り付けた構成となっている。
 すなわち、フィルタ基板204に関しては、昼間等の撮影時には入射光の光路上に進出させ、夜間等の撮影時には入射光の光路から退避させる必要がある。このため、フレーム部材214にフィルタ基板204を取り付けることにより、そのフレーム部材214と一体にフィルタ基板204を移動させる構成を採用している。
 一方、NDフィルタ208,209に関しては、絞り開口216を小さく絞ったときに、NDフィルタ208,209を有効に機能させる必要がある。このため、一対の絞り羽根202,203にそれぞれNDフィルタ208,209を取り付けることにより、各々の絞り羽根202,203と一体にNDフィルタ208,209を移動させる構成を採用している。
 しかしながら、従来の絞り装置200では、次のような不具合があった。
 すなわち、一対の絞り羽根202,203の相対移動によって絞り開口216を全開状態から徐々に小さくすると、その途中で上記図12に示すように一対のNDフィルタ208,209が重なり始める。そうした場合、絞り開口216を通過する光は、NDフィルタ208またはNDフィルタ209が単独で存在する部分を通過する光と、2つのNDフィルタ208,209が重なり合う部分を通過する光と、NDフィルタ208,209以外の部分を通過する光とに分かれる。したがって、絞り開口216を通過する光の量に部分的な差が生じる。
 その結果、図示しない撮像素子で撮像される画像の中(一つの画面中)に、被写体の明るさに依存しない、3種類の明るさの分布が生じる。したがって、シェーディング等の特性が悪化してしまう。また、絞り開口216の調整を安定的に行えなくなるため、ハンチング現象を招くおそれがある。特に、絞り開口216を小さく絞った状態では、ハンチング現象が起こりやすくなる。
 ちなみに、一対の絞り羽根を備えた従来の絞り装置の中には、一方の絞り羽根だけにNDフィルタを取り付けたタイプもある。ただし、そのようなタイプの絞り装置では、絞り開口の中心に対してNDフィルタの位置が一方に偏ることになる。このため、必然的にシェーディング等の不具合を起こしてしまう。
 本発明の主たる目的は、一対の絞り羽根を用いて絞り開口を可変するとともに、その絞り開口に対してフィルタ基板を進退移動させる絞り装置において、部品点数の削減とシェーディング等の特性向上を同時に図ることができる技術を提供することにある。
 本発明の第1の態様は、
 互いに重なり合った状態で絞り開口を形成する一対の絞り羽根と、
 可視光通過領域を有するフィルタ基板と、
 前記絞り開口の大きさを調整するために前記一対の絞り羽根を相対的に移動させる絞り駆動部と、
 前記絞り開口を通して入射する光の光路に対して前記フィルタ基板を進退移動させるフィルタ駆動部と、
 を備え、
 前記フィルタ基板は、前記絞り開口を通過する光のうち、少なくとも前記可視光通過領域を通過し得る光を減衰させる光減衰領域をさらに有し、
 前記光減衰領域は、前記可視光通過領域よりも小さい領域をもって当該可視光通過領域内に形成され、前記光路上に前記フィルタ基板を進出させたときに前記絞り開口と同心状に配置されるものである
 ことを特徴とする絞り装置である。
 本発明の第2の態様は、
 前記光減衰領域は、円形に形成されている
 ことを特徴とする上記第1の態様に記載の絞り装置である。
 本発明の第3の態様は、
 前記光減衰領域は、前記絞り開口の開口形状と相似形に形成されている
 ことを特徴とする上記第1の態様に記載の絞り装置である。
 本発明の第4の態様は、
 前記可視光通過領域は、前記フィルタ基板の少なくとも一方の主面に形成された赤外線カットフィルタ層からなり、
 前記光減衰領域は、前記フィルタ基板の一方の主面または他方の主面あるいは両方の主面に形成されたNDフィルタ層からなる
 ことを特徴とする上記第1、第2または第3の態様に記載の絞り装置である。
 本発明の第5の態様は、
 前記赤外線カットフィルタ層および前記NDフィルタ層は、前記フィルタ基板の共通の主面上に積層状態で形成されている
 ことを特徴とする上記第4の態様に記載の絞り装置である。
 本発明の第6の態様は、
 上記第1~第5の態様のいずれか一つに記載の絞り装置と、
 前記絞り開口を通して入射する光を電気信号に変換する光電変換素子と、
 を備えることを特徴とするカメラである。
 本発明の第7の態様は、
 上記第6の態様に記載のカメラと、
 前記カメラから出力される画像信号を処理する画像処理部と、
 を備えることを特徴とする電子機器である。
 本発明によれば、一対の絞り羽根を用いて絞り開口を可変するとともに、その絞り開口に対してフィルタ基板を進退移動させる絞り装置において、部品点数の削減とシェーディング等の特性向上を同時に図ることができる。
本発明が適用されるカメラの構成例を示すもので、(A)はカメラ全体の外観図、(B)は鏡筒内部の概略図である。 本発明の実施の形態に係る絞り装置の全体的な構成例を示す分解斜視図である。 実施の形態に係るフィルタユニットを拡大した平面図である。 図3に示すフィルタ基板の断面図である。 一対の絞り羽根を重ね合わせた状態を示す図である。 絞り開口を開放(全開)した状態を示す図である。 絞り開口43を小絞りとした状態を示す図である。 従来の絞り装置の一例を示す分解斜視図である。 従来のフィルタユニットを拡大した平面図である。 図9に示すフィルタ基板の断面図である。 従来の絞り装置で絞り羽根にNDフィルタを取り付けた状態を示す分解斜視図である。 一対の羽根基板を重ね合わせた状態を示す図である。 絞り開口を開放(全開)した状態を示す図である。 絞り開口を小絞りとした状態を示す図である。
 以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。
 本発明の実施の形態においては、次の順序で説明を行う。
 1.カメラの構成
 2.絞り装置の構成
 2-1.絞り装置の全体的な構成
 2-2.絞り装置の部分的な構成
 3.絞り装置の動作
 3-1.絞り開口の調整に係る動作
 3-2.撮影モードの切り替えに係る動作
 4.実施の形態に係る効果
 5.変形例
<1.カメラの構成>
 図1は本発明が適用されるカメラの構成例を示すもので、(A)はカメラ全体の外観図、(B)は鏡筒内部の概略図である。図示したカメラ100は、たとえば、防犯目的に建物の天井部分(又は壁など)に設置される監視カメラである。このカメラ100は、取り付け台座101と、カメラ本体102とを備えている。取り付け台座101は、たとえば、ねじ止めによって建物の天井部分に固定する構造になっている。
 カメラ本体102は、鏡筒部103と、対物レンズ104とを備えている。鏡筒部103の内部には、対物レンズ104を含む光学系が組み込まれている。対物レンズ104は、鏡筒部103の先端に取り付けられている。また、カメラ本体102には、光学系の一機能部として、絞り装置1と撮像素子105とが組み込まれている。絞り装置1については、後段で詳しく説明する。
 撮像素子105は、カラー撮影が可能な撮像素子であって、たとえば、CCD(Charge Coupled Device)撮像素子、CMOS(Complementary Metal Oxide Semiconductor)撮像素子などで構成される。撮像素子105は、たとえば、複数(多数)の画素を行列状に配置してなる撮像面を有する。撮像素子105は、絞り装置1の絞り開口を通して上記撮像面に入射する光を電気信号に変換する光電変換素子の一例として組み込まれている。
 なお、本発明は、ここで例示したカメラ100に限らず、絞り装置1を備える他の構成のカメラにも適用可能である。また、光学系の構成としても、レンズの種類・枚数・配置や、絞り装置1の配置等、種々の変更が可能である。
<2.絞り装置の構成>
[2-1.絞り装置の全体的な構成]
 図2は本発明の実施の形態に係る絞り装置の全体的な構成例を示す分解斜視図である。図示した絞り装置1は、大きくは、絞り基板2と、一対(2つ)の絞り羽根3,4と、フィルタ基板5と、羽根カバー6と、絞り駆動部7と、フィルタ駆動部8と、を備えた構成となっている。
 絞り基板2は、絞り装置1を構成する各々の構成部材を実装するためのベースとなるものである。一対の絞り羽根3,4は、互いに重なり合った状態で絞り開口を形成するものである。絞り開口は、カメラに入射する光の光路上に配置され、そこを通過する光の量を制限する。すなわち、絞り開口の大きさが大きくなると、そこを通過する光の量が相対的に増大し、絞り開口の大きさが小さくなると、そこを通過する光の量が相対的に減少する。フィルタ基板5は、入射光に対して光学的なフィルタ機能を有するものである。羽根カバー6は、一対の絞り羽根3,4を外部から遮蔽して保護するものである。
 絞り駆動部7は、絞り開口の大きさを調整するために一対の絞り羽根3,4を相対的に移動させるものである。フィルタ駆動部8は、フィルタ基板5を使用状態と非使用状態に切り替えるために、フィルタ基板5を移動させるものである。フィルタ基板5の使用状態とは、入射光の光路上にフィルタ基板5を進出させた状態をいう。フィルタ基板5の非使用状態とは、入射光の光路上からフィルタ基板5を退避(後退)させた状態をいう。
[2-2.絞り装置の部分的な構成]
(絞り基板)
 絞り基板2は、たとえば、樹脂を用いて構成されるもので、全体的に平面視略長方形に形成されている。絞り基板2には、開口部10と、複数の突起部11a,11b,11c,11dが形成されている。開口部10は、真円またはそれに近い円形状に形成されている。複数の突起部11a,11b,11c,11dは、一対の絞り羽根3、4の移動を案内するためのものである。各々の突起部11a,11b,11c,11dの端部は、それぞれ絞り基板2の外側に向けてL字形に曲げられている。
(絞り羽根)
 一対の絞り羽根3,4は、たとえば、ポリエチレンテレフタレート(PET)からなる板状素材の表面をカーボンの膜で被覆したものを用いて構成されている。各々の絞り羽根3,4は、全体的に薄板状に形成されている。一方の絞り羽根3には、1つの孔部15と、3つの案内溝16a,16b,16cと、1つの係合孔17とが設けられている。
 孔部15は、真円またはそれに近い円形状の一部を略V字形に拡大させた形態の平面形状を有している。3つの案内溝16a,16b,16cは、絞り羽根3の長手方向に沿って互いに平行に形成されている。3つの案内溝16a,16b,16cのうち、2つの案内溝16b,16cは同一直線上に形成されている。そして、これら2つの案内溝16b,16cに対して、孔部15を挟んだ反対側に、残り1つの案内溝16aが形成されている。係合孔17は、上記2つの案内溝16b,16cの延長線上に形成されている。また、係合孔17は、絞り羽根3の短手方向に沿って平面視長孔状に形成されている。
 これに対して、他方の絞り羽根4には、1つの湾部18と、3つの案内溝19a,19b,19cと、1つの係合孔20とが設けられている。湾部18は、半円形(または楕円形)の一部を略V字形に拡大させた平面形状を有している。3つの案内溝19a,19b,19cは、絞り羽根4の長手方向に沿って互いに平行に形成されている。3つの案内溝19a,19b,19cのうち、2つの案内溝19a,19bは同一直線上に形成されている。そして、これら2つの案内溝19a,19bに対して、湾部18を挟んだ反対側に、残り1つの案内溝19cが形成されている。係合孔20は、上記2つの案内溝19a,19bの延長線上に形成されている。また、係合孔20は、絞り羽根4の短手方向に沿って平面視長孔状に形成されている。
(フィルタ基板)
 フィルタ基板5は、一対の絞り羽根3,4の間(隙間部分)に挿入する状態で配置されるものである。フィルタ基板5は、たとえば、光透過性を有する円形のガラス基板を用いて構成されている。フィルタ基板5の表面および裏面をそれぞれフィルタ基板5の主面と定義すると、フィルタ基板5の少なくとも一方の主面にはフィルタ層が形成されている。このフィルタ層を備えるフィルタ基板5の構成については後段で詳しく説明する。
 フィルタ基板5は、フレーム部材23に取り付けられている。フレーム部材23は、フィルタ基板5の外形に対応した円形の開口(不図示)を有するものである。フィルタ基板5とフレーム部材23は、互いに一体的に組み付けられることにより、一つのフィルタユニット24を構成している。具体的には、フィルタ基板5とフレーム部材23は、たとえば、接着等の固定手段によって一体的に組み付けられている。
 フレーム部材23は、たとえば、樹脂を用いて構成されている。フレーム部材23にはアーム部25が一体に形成されている。アーム部25は、略L字形に曲げられており、その曲がり部分に丸孔26が形成されている。また、アーム部25の先端側には長孔27が形成されている。さらに、フレーム部材23には2つの出っ張り部28,29が一体に形成されている。各々の出っ張り部28,29は、主に二つの役目をもっている。一つは、前述したアーム部25による出っ張り部分との相互作用により、一対の絞り羽根3,4の移動を安定化させる役目を果たす。もう一つは、フレーム部材23に接着剤でフィルタ基板5を固定する場合に、接着代を確保する役目を果たす。
(羽根カバー)
 羽根カバー6は、たとえば、アルミニウムなどの金属を用いて板状に形成されている。羽根カバー6は、前述した絞り基板2と同様に平面視略長方形に形成されている。羽根カバー6には、1つの開口部30と、2つの逃げ溝部31a,31bとが設けられている。開口部30は、真円またはそれに近い円形状に形成されている。開口部30は、一対の絞り羽根3,4が形成する絞り開口に重なるように配置される。逃げ溝部31a,31bは、羽根カバー6の短手方向の一方と他方に対をなして形成されている。各々の逃げ溝部31a,31bは、羽根カバー6を厚み方向に貫通する状態で、平面視略弧状に形成されている。さらに、羽根カバー6にはアーム部32が一体に形成されている。アーム部32は羽根カバー6の短手方向の一方に突出する状態で形成されている。アーム部32には長孔33が形成されている。さらに、羽根カバー6には、一対の孔部36a,36bと一対の切り欠き部37a,37bとが形成されている。
(絞り駆動部)
 絞り駆動部7は、駆動源となるモータの駆動力を、図示しない駆動力伝達機構(歯車機構等)を介して一対の絞り羽根3,4に伝達することにより、一対の絞り羽根3,4を相対的に移動させるものである。駆動源としては、たとえば、可動磁石型モータが用いられる。絞り駆動部7は、一対の駆動ピン34a,34bを有している。一対の駆動ピン34a,34bは、同一円周上に約180°位置をずらして配置されている。一対の駆動ピン34a,34bは、上記駆動源の駆動によって同一円周上を同一方向に同量ずつ移動するようになっている。そして、絞り駆動部7と一対の絞り羽根3,4とは、一方の駆動ピン34bを絞り羽根3の係合孔17に、他方の駆動ピン34aを絞り羽根4の係合孔20に、それぞれ係合することにより、相互に連結されている。
(フィルタ駆動部)
 フィルタ駆動部8は、駆動源となるモータの駆動力を、図示しない駆動力伝達機構(歯車機構等)を介してフィルタユニット24に伝達することにより、フィルタ基板5を含むフィルタユニット24を移動させるものである。駆動源としては、たとえば、ステッピングモータが用いられる。フィルタユニット24は、アーム部25の丸孔26を支持軸35に挿入することにより、支持軸35を中心に回転自在に支持されるようになっている。支持軸35は、たとえば、絞り基板2に一体に形成されるものである。フィルタ駆動部8とフィルタユニット24とは、たとえば、フィルタ駆動部8に駆動ピンを設けて、この駆動ピンをアーム部25の長孔27に係合することにより、相互に連結される。
(組み立て)
 次に、前述した各々の構成部分を用いて絞り装置1を組み立てる場合の手順について概略説明する。なお、ここでは一例として、一対の絞り羽根3,4、フィルタユニット24および羽根カバー6をそれぞれ絞り基板2に取り付ける前に、絞り駆動部7とフィルタ駆動部8が絞り基板2に実装されているものとする。
 まず、絞り基板2に絞り羽根3を取り付ける。その際、絞り基板2の突起部11a,11c,11dを、それぞれ絞り羽根3の案内溝16a,16b,16cに嵌め入れる。また、絞り駆動部7の一方の駆動ピン34bを絞り羽根3の係合孔17に嵌め入れる。
 次に、絞り基板2にフィルタユニット24を取り付ける。その場合、アーム部25の丸孔26を絞り基板2の支持軸35に嵌め入れるとともに、アーム部25の長孔27にフィルタ駆動部8の図示していない駆動ピンを嵌め入れる。
 次に、絞り基板2に絞り羽根4を取り付ける。その際、絞り基板2の突起部11a,11b,11cを、それぞれ絞り羽根4の案内溝19a,19b,19cに嵌め入れる。また、絞り駆動部7の他方の駆動ピン34aを絞り羽根4の係合孔20に嵌め入れる。
 次に、絞り基板2に羽根カバー6を取り付ける。その際、絞り基板2の支持軸35を羽根カバー6のアーム部32の長孔33に嵌め入れる。絞り基板2に対する羽根カバー6の固定は、たとえば、嵌合等で行う。
 このように絞り基板2に羽根カバー6を取り付けるときに、両者の位置的な干渉は次のように回避される。まず、絞り羽根3の係合孔17を通して突出する絞り駆動部7の一方の駆動ピン34bと羽根カバー6との位置的な干渉は、逃げ溝部31bによって回避される。同様に、絞り羽根4の係合孔20を通して突出する絞り駆動部7の他方の駆動ピン34aと羽根カバー6との位置的な干渉は、逃げ溝部31aによって回避される。また、絞り基板2の突起部11a,11cと羽根カバー6との位置的な干渉は、一対の孔部36a,36bによって回避され、絞り基板2の突起部11b,11dと羽根カバー6との位置的な干渉は、一対の切り欠き部37a,37bによって回避される。
 このように絞り装置1を組み立てた場合は、一対の絞り羽根3,4が絞り基板2上で4つの突起部11a,11b,11c,11dにより移動(スライド)自在に支持される。また、フィルタユニット24は、支持軸35を中心として回転する方向に移動自在に支持される。また、絞り基板2の開口部10と羽根カバー6の開口部30とが、絞り基板2の厚み方向で対向する状態(重なり合う状態)に配置され、さらにその対向部分に絞り羽根3の孔部15と絞り羽根4の湾部18とが重なり合う状態に配置される。
 絞り羽根3の孔部15を規定する略円形状の直径と、絞り羽根4の湾部18を規定する半円部分の直径とは、ほぼ同一寸法になっている。そして、2枚の絞り羽根3,4を互いに重ね合わせた状態では、絞り羽根3の孔部15と絞り羽根4の湾部18とが重なり合う部分に絞り開口が形成されるようになっている。したがって、一対の絞り羽根3,4によって形成される絞り開口は、絞り基板2の開口部10と羽根カバー6の開口部30とが対向する領域内で、拡大または縮小することになる。ただし、絞り羽根3,4の位置によっては、絞り開口が完全に閉じられる場合もある。
(フィルタ基板の詳説)
 ここで、前述したフィルタ基板5の構成について、さらに詳しく説明する。
 図3はフィルタユニットを拡大した平面図である。また、図4はフィルタ基板の断面図である。なお、図3に示す円形の破線は、フレーム部材に形成された開口を示している。
 フィルタ基板5は、たとえば、ガラス基板40をベースに構成されている。ガラス基板40には、一例として、紫外線(UV)カットガラスが用いられている。フィルタ基板5の一方の主面には、赤外線カットフィルタ層41とND(Neutral Density)フィルタ層42が形成されている。赤外線カットフィルタ層41は、赤外領域(近赤外領域を含む)の光をカットするフィルタ層である。赤外線カットフィルタ層41は、ガラス基板40の一方の主面上に、当該主面の全面を覆うように、当該主面の全領域にわたって形成されている。また、赤外線カットフィルタ層41は、一様な厚みでガラス基板40上に形成されている。このようにガラス基板40に赤外線カットフィルタ層41を形成することにより、当該赤外線カットフィルタ層41が形成された領域は、赤外線領域の光を遮断する領域となる。また、ガラス基板40は、紫外線カットガラスで形成されているため、その全領域が紫外線領域の光を遮断する領域となる。したがって、ガラス基板40の赤外線カットフィルタ層41が形成された領域は、赤外線領域および紫外線領域の光を除去した状態で可視光を通過させる領域、すなわち可視光通過領域に該当するものとなる。ただし、可視光通過領域は、厳密に可視光のみを通過させる領域でなくてもよい。具体的には、可視光通過領域を通過する光の中には、可視光の他に、紫外線領域に属する一部の光や、赤外線領域に属する一部の光が含まれていてもよい。
 これに対して、NDフィルタ層42は、当該NDフィルタ層42に入射する光を減衰させるフィルタ層である。また、NDフィルタ層42は、赤外線カットフィルタ層41が形成されている領域(以下、「可視光通過領域」とも記す)に比較して、波長依存性の低いフィルタ層である。したがって、NDフィルタ層42が形成された領域は、絞り開口を通過する光のうち、少なくとも可視光通過領域を通過し得る光を減衰させる領域、すなわち光減衰領域に該当するものとなる。たとえば、可視光通過領域を通過し得る光が可視光のみであれば、この可視光を減衰させる領域が光減衰領域となる。その場合、NDフィルタ層42における可視光の透過率は、カメラに組み込む撮像素子の特性にもよるが、たとえば6%程度とするのが好ましい。ただし、NDフィルタ層42は、紫外線領域、可視光領域および赤外線領域の各領域の光をほぼ均一な透過率をもって減衰する特性を有する。このため、NDフィルタ層42で減衰可能な光は、可視光に限定されるものではない。
 フィルタ基板5の主面内において、可視光通過領域と光減衰領域の相対的な面積比としては、絞り開口を全開状態としたときに有効に機能する可視光通過領域の面積を100%とした場合に、これに対する光減衰領域の面積の比率が4~33%となるように設定することが望ましい。このように光減衰領域の面積比を広範に規定する理由は、絞り開口が全開状態のときの可視光通過領域の面積に対して、適切とされる光減衰領域の面積比が当該全開時の絞り開口径によって変わるためである。具体的には、全開時の絞り開口径が大きくなるにつれて、適切とされる光減衰領域の面積比が小さくなり、これと反対に、全開時の絞り開口径が小さくなるにつれて、適切とされる光減衰領域の面積比が大きくなる。
 NDフィルタ層42は、ガラス基板40の一方の主面側に、赤外線カットフィルタ層41の上に積層する状態で形成されている。また、NDフィルタ層42は、一様な厚みで赤外線カットフィルタ層41上に形成されている。NDフィルタ層42は、フィルタ基板5を平面的に見たときに、赤外線カットフィルタ層41が形成されている領域に対して、その中央部に円形に形成されている。つまり、フィルタ基板5は、目玉型のフィルタ構造になっている。具体的には、赤外線カットフィルタ層41が形成されている領域を白目の部分とし、それよりも内側のNDフィルタ層42が形成されている領域を黒目の部分とした目玉型の構造になっている。
 NDフィルタ層42は、図から明らかなように、赤外線カットフィルタ層41が形成されている領域よりも小さい領域をもってフィルタ基板5の中心部に形成されている。また、前述したように赤外線カットフィルタ層41が形成されている領域は可視光通過領域に該当する。このため、NDフィルタ層42は可視光通過領域内に形成されている。
 NDフィルタ層42の外形寸法(図例の場合は直径)は、図5に示すように、一対の絞り羽根3,4が形成する絞り開口43が小絞りの状態になったときの開口寸法に対応して設定されている。本明細書において、小絞りの状態とは、絞り開口43を全開させたときの開口面積に対して、実際の絞り開口43の開口面積が1/3以下の状態をいう。小絞りの状態においては、絞り羽根3の孔部15の一部にV字形に形成された切り欠き部分と、絞り羽根4の湾部18の一部にV字形に形成された切り欠き部分とによって、絞り開口43の開口形状が四角形(菱形)になる。
 ガラス基板40に赤外線カットフィルタ層41やNDフィルタ層42を形成する場合の具体的な製造手法に関しては、たとえば、真空蒸着法、スパッタ法、塗布法などの周知の成膜方法を採用すればよい。また、ガラス基板40に赤外線カットフィルタ層41を形成した後に、NDフィルタ層42を形成する場合は、NDフィルタ層42の形成領域を制限する必要がある。その場合は、赤外線カットフィルタ層41を形成済みのガラス基板40に対して、NDフィルタ層42を形成したい部分だけを開口するようにマスク処理した状態で、NDフィルタ層42を形成すればよい。
 また、前述したようにフィルタ基板5を入射光の光路上に進出させて使用状態とした場合は、一対の絞り羽根3,4が形成する絞り開口の中心に対して、フィルタ基板5の中心が位置合わせされる。このため、フィルタ基板5の使用状態においては、NDフィルタ層42が形成された領域(光減衰領域)が絞り開口と同心状に配置される。したがって、絞り開口を小絞りの状態にすると、絞り開口の開口面積に占めるNDフィルタ層42の面接比率が非常に高くなる。特に、明るい環境(晴天下の屋外など)で撮影する場合は、絞り開口が小さく絞られるため、絞り開口の全領域を塞ぐようにNDフィルタ層42が配置される。
<3.絞り装置の動作>
 続いて、本発明の実施の形態に係る絞り装置1の動作について説明する。
[3-1.絞り開口の調整に係る動作]
 まず、絞り装置1の基本的な動作原理について説明する。
 一対の絞り羽根3,4によって形成される絞り開口を調整する場合は、絞り駆動部7を駆動する。そうすると、絞り駆動部7の駆動力を受けて一対の絞り羽根3,4が相対的に接近離間する方向に移動する。
 上述のように一対の絞り羽根3,4を相対的に移動させた場合は、それらの移動方向および移動量に応じて絞り開口43の大きさが変化することになる。具体的には、一対の絞り羽根3,4が互いに接近する方向(図5の実線の矢印方向)に移動すると、これにしたがって絞り開口43が大きくなり、一対の絞り羽根3,4が互いに離間する方向(図5の破線の矢印方向)に移動すると、これにしたがって絞り開口43が小さくなる。また、一対の絞り羽根3,4を最も接近させた状態では絞り開口43が最大(全開状態)となり、一対の絞り羽根3,4を最も離間させた状態では絞り開口43が最小(完全に閉じた状態またはそれに近い状態)となる。
 図6は絞り開口を開放(全開)した状態を示す図である。モノクロ撮影モードで撮影する場合は、フィルタ基板5が絞り開口43から退避した状態となる。図7は絞り開口43を小絞りとした状態を示す図である。絞り開口43を小絞りとした場合は、上記図5にも示すように、一対の絞り羽根3,4の孔部15と湾部18の重なる部分に絞り開口43が略菱形に形成される。そして、この絞り開口43をすべて塞ぐ(覆う)状態でNDフィルタ層42が配置される。ただし、絞り開口43にNDフィルタ層42が配置されるのは、入射光の光路上にフィルタ基板5を進出させた場合だけである。
[3-2.撮影モードの切り替えに係る動作]
 撮影モードの切り替えの形態としては、カラー撮影モードからモノクロ撮影モードに切り替える場合と、モノクロ撮影モードからカラー撮影モードに切り替える場合とがある。ただし、いずれの場合も、撮影モードの切り替えに際して、フィルタ駆動部8を駆動することになる。以下、場合分けして説明する。
 まず、撮影モードをカラー撮影モードからモノクロ撮影モードに切り替える場合は、フィルタ駆動部8の駆動に伴う駆動力を受けて、フィルタユニット24が支持軸35を中心に回転するように移動する。これにより、絞り開口43を通して入射する光の光路から外れる位置へとフィルタ基板5が退避する。このため、モノクロ撮影モードで撮影する場合は、絞り開口43を通して入射する光が、フィルタ基板5を介することなく撮像素子(不図示)に到達することになる。したがって、赤外線カットフィルタ層41による光量の低下はもとより、NDフィルタ層42による光量の低下も発生しない。このため、少ない光量で必要な解像度が求められる夜間等の撮影に適したものとなる。
 これに対して、撮影モードをモノクロ撮影モードからカラー撮影モードに切り替える場合は、上記の場合とは動作方向を反転するかたちでフィルタ駆動部8を駆動する。そうすると、フィルタ駆動部8の駆動力を受けてフィルタユニット24が支持軸35を中心に回転するように移動する。これにより、絞り開口43を通して入射する光の光路上に介在する位置へとフィルタ基板5が進出する。このため、カラー撮影モードで撮影する場合は、絞り開口43を通して入射する光が、フィルタ基板5を介して撮像素子(不図示)に到達することになる。
 ここで、カラー撮影モードは、昼間等の明るい環境で適用される。また、そのような撮影環境では、前述したように撮像素子の画素の信号が飽和しないよう絞り開口43を小さく絞った小絞りの状態で、絞り装置1による光量調整が行われる。このため、絞り開口43の全部または大半の部分が、赤外線カットフィルタ層41およびNDフィルタ層42からなる2層のフィルタ機能層で塞がれた状態となる。したがって、従来のように一対の絞り羽根にそれぞれNDフィルタを取り付けた構造を採用しなくても、赤外線カットフィルタ層41およびNDフィルタ層42によるフィルタ機能が共に働くことになる。このため、撮影環境が明るい昼間等の撮影に適したものとなる。
 また、昼間等の時間帯であっても、たとえば、天候が悪い場合、あるいはカメラの設置場所などの関係で、薄暗い環境で撮影することも考えられる。そうした場合は、必要な光量を確保するために、フィルタ基板5を進出させたまま、絞り開口43を小絞りの状態よりも大きく開口させることになる。したがって、絞り開口43は、NDフィルタ層42の形成領域よりも大きく開口することになる。これに対して、赤外線カットフィルタ層41は、フィルタ基板5の片側全面に形成されているため、たとえ絞り開口43を全開状態まで開放しても、常に赤外線カットフィルタ層41が絞り開口43を塞ぐように配置される。このため、カラー撮影モードで撮影する場合に、光量確保等のために絞り開口43を大きくしても、赤外光の入射に起因した画像の色ズレが発生するおそれはない。
<4.実施の形態に係る効果>
 本発明の実施の形態に係る絞り装置とこれを備えるカメラにおいては、前述したように少ない光量で必要な解像度が求められる夜間等の撮影に適したものとなる他に、部品点数の削減とシェーディング等の特性向上を同時に図ることができる。以下に、その理由を述べる。
 まず、絞り装置1の構成として、フィルタ基板5に赤外線カットフィルタ層41とNDフィルタ層42を形成している。このため、従来のようのNDフィルタを独立した部品として絞り羽根に取り付ける場合に比較して、部品点数を削減することができる。
 また、絞り装置1の構成として、絞り開口43を通して入射する光の光路上にフィルタ基板5を進出させたときに、NDフィルタ層42が絞り開口43と同心状に配置される構成となっている。このため、絞り開口43を小絞りにして撮影する場合に、NDフィルタ層42が有効に機能するだけでなく、絞り開口43全体がNDフィルタ層42で塞がれた状態となる。したがって、小絞りの状態であっても、画像全体が均一の明るさになる。このため、シェーディング等の特性が向上する。
 さらに、絞り開口43を小絞りの状態よりも大きく開口させた場合でも、シェーディング等の特性向上が図られる。すなわち、絞り開口43を小絞りの状態よりも大きく開口させる動作状態は、たとえば昼間の薄暗い環境などで適用される。そのため、昼間の明るい環境と比較すると、カメラに入射する光の量がかなり少なくなる。したがって、かりにNDフィルタ層42の形成領域よりも大きく絞り開口43を開放させたとしても、昼間の明るい環境と比較すれば、NDフィルタ層42の存在に起因する明暗の差は格段に小さいものとなる。また、一対の絞り羽根3,4の相対移動によって絞り開口43の大きさが変わっても、NDフィルタ層42の位置は変わらないため、明るさの中心位置が偏ることがない。このため、従来の絞り装置のように一対の絞り羽根にそれぞれNDフィルタを取り付けた構成に比較して、シェーディング等の特性が向上する。
 さらに、従来の絞り装置の場合は、絞り開口を小絞りの状態から徐々に開放していくときに、絞り開口を通過する光が、2枚のNDフィルタの重なり部分を通過する光と、いずれか一方のNDフィルタを通過する光と、NDフィルタの部分を通過しない光の3つに分かれる。これに対して、本実施の形態の絞り装置の場合は、絞り開口43を通過する光が、NDフィルタ層42の部分(絞り開口43の中央部分)を通過する光と、それ以外の部分(絞り開口43の周縁部分)を通過する光の2つに限定される。このため、明暗の異なる分布のバラツキが抑えられる。したがって、シェーディング等の特性向上の効果がより顕著なものとなる。
 また、上述した部品点数の削減に付随して、次のような効果も得られる。すなわち、絞り装置1を製造する場合に、絞り羽根にNDフィルタを取り付ける工程が不要になる。また、絞り羽根にNDフィルタを接着剤で貼り付ける場合は、NDフィルタの厚み(たとえば、約0.1mm)に接着剤の厚みを加味して、一対の絞り羽根が相対的に移動する隙間を設定する必要がある。これに対して、NDフィルタ層42をフィルタ基板5に形成した場合は、その厚みが数μm~十数μm程度で済む。このため、絞り装置1の薄型化を図ることができる。さらに、絞り装置の動作上、絞り羽根は頻繁に移動を繰り返すため、NDフィルタを接着等で絞り羽根に貼り付けたものでは、絞り羽根の移動に伴う振動等に起因してNDフィルタが外れるおそれがある。これに対して、フィルタ基板5にNDフィルタ層42を形成したものでは、そのような不具合が発生することはない。したがって、長期にわたって動作の信頼性に優れた絞り装置を実現することができる。
 また、フィルタ基板5の構成として、NDフィルタ層42からなる光減衰領域を円形に形成している。このため、絞り開口43が小絞りになったときの開口形状が、たとえば、多角形や楕円形であっても、これに外接する円の直径以下の円形をもって光減衰領域を形成しておけば、当該開口形状の違いにかかわらず、シェーディング等の特性を向上させることができる。このため、汎用性に優れたものとなる。
 また、特に好ましい例として、絞り開口43の開口形状と相似した形状で光減衰領域を形成する構成を採用してもよい。たとえば、一対の絞り羽根3,4を重ね合わせたときに、孔部15と湾部18によって形成される絞り開口43の形状が、それぞれのV字形の切り欠き部分の存在により四角形(菱形)になる場合は、その相似形に光減衰領域を形成しておく。
 かかる構成を採用した場合は、絞り開口43を小絞りとしてカラー撮影する場合に、絞り開口43の開口寸法がNDフィルタ層42の形成領域の外形寸法に一致するまで、絞り開口43をNDフィルタ層42で塞いだ状態が維持される。このため、NDフィルタ層42の形成領域を無駄なく最大限に活用することができる。また、これに付随して、NDフィルタ層42の形成領域を最小限にとどめることができる。このため、カラー撮影モードで絞り開口43を開放した場合の光量の低下を極力抑えることができる。
 また、絞り開口43を小絞りの状態よりも大きく開放した場合には、NDフィルタ層42が形成されていない領域(以下、「非形成領域」と記す)が絞り開口43の外縁部分の全周にわたって均一に存在する。このため、絞り開口43の開口領域において、その中央部に位置するNDフィルタ層42の形成領域では相対的に画像が暗くなり、NDフィルタ層42の非形成領域では相対的に画像が明るくなる。これに対して、撮影用のレンズは、一般に中央部が明るく、周縁部にいくほど暗くなる。このため、それらの相殺によって画像の明るさを均一化することができる。
 また、フィルタ基板5の構成上、ガラス基板40の共通の主面に、赤外線カットフィルタ層41とNDフィルタ層42とを積層状態で形成している。このため、フィルタ基板5を製造する場合に、ガラス基板40を表裏反転させることなく、赤外線カットフィルタ層41とNDフィルタ層42とを順に形成(成膜)することができる。
<5.変形例>
 本発明の技術的範囲は上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。
 たとえば、NDフィルタ層42については、ガラス基板40の一方の主面ではなく、赤外線カットフィルタ層41が形成されている主面とは反対側の主面に形成してもよい。また、赤外線カットフィルタ層41およびNDフィルタ層42については、それぞれガラス基板40の両方の主面に形成してもよい。さらに、NDフィルタ層42からなる光減衰領域の平面的な形状としては、前述した円形等の形状に限らず、たとえば、多角形に属する三角形、四角形、五角形、六角形、(以下、省略)であってもよいし、それ以外の形状、たとえば、星形、花びら型、十字形、雲形、半月形であってもよい。
 また、ガラス基板40に赤外線カットフィルタ層41とNDフィルタ層42を積層する場合の積層順を、上記実施の形態とは逆の順序、すなわちNDフィルタ層42の上にこれを覆う状態で赤外線カットフィルタ層41を形成したものでもよい。
 また、赤外線カットフィルタ層41とNDフィルタ層42をそれぞれ別々のガラス基板に形成し、これらのガラス基板をたとえば接着等によって一体化した構成のフィルタ基板を採用してもよい。
 また、撮影モードの切り替えのために行うフィルタ基板5の動作を、上記実施の形態のように支持軸35を中心とした回転動作ではなく、たとえば、直線的なスライド式の移動動作によって行う構成であってもよい。かかる構成を採用する場合は、たとえば、長方形の基板の主面領域を、当該基板の長手方向で2つの領域に区分し、一方の領域だけに赤外線カットフィルタ層を形成し、かつその中央部にNDフィルタ層を形成した構成とすればよい。
 また、赤外線カット機能を有するフィルタ基板5の構成としては、上記実施の形態のようにガラス基板40に赤外線カットフィルタ層41を形成した構成だけに限らず、たとえば、ガラス基板40自体が赤外線を遮断する機能を有するもの、つまり赤外線カットガラスからなるガラス基板40を採用した構成であってよい。
 また、紫外線カット機能を有するフィルタ基板5の構成としては、上記実施の形態のようにガラス基板40を紫外線カットガラスで構成したものに限らず、紫外線カットフィルタ層をガラス基板の主面に形成した構成であってもよい。
 また、NDフィルタ層42を薄いフィルム基材に形成し、このフィルム基材をガラス基板40に貼り付けた構成を採用してもよい。
 また、本発明に係る絞り装置の構成上、「可視光通過領域」に関して、当該可視光通過領域は、可視光を通過させる領域、より詳しくは所定の波長域の光を取り除いた状態で可視光を通過させる領域、さらに詳しくは可視光下でのカメラの撮影に不要な光を取り除いた状態で可視光を通過させる領域である。この場合のカメラの撮影に不要な光とは、「可視光よりも波長が長い光」および「可視光よりも波長が短い光」のうち、少なくとも一方の光をいう。より具体的には、赤外光(近赤外光を含む)および紫外光(近紫外光を含む)のうち、少なくとも一方の光が「カメラの撮影に不要な光」に該当するものとなる。
 したがって、フィルタ基板5が有する「可視光通過領域」は、赤外線カットフィルタおよび紫外線カットフィルタの両方のフィルタ機能を有する場合の他に、赤外線カットフィルタのみの機能を有する場合、または紫外線カットフィルタのみの機能を有する場合もあり得る。ただし、画像の色ズレを防止するうえでは、赤外線カットフィルタおよび紫外線カットフィルタの両方のフィルタ機能を有する領域であることが望ましい。また、可視光通過領域については、必ずしもガラス基板40の主面上の全領域を可視光通過領域とする必要はなく、光減衰領域よりも大きい領域となるように可視光通過領域が確保されていればよい。
 また、本発明は、絞り装置やこれを用いたカメラに限らず、そのカメラを備える電子機器(たとえば、セキュリティ機器など)にも適用可能である。かかる電子機器は、本発明の実施の形態に係るカメラと、当該カメラから出力される画像信号を処理する画像処理部とを備える構成となる。
 1…絞り装置
 2…絞り基板
 3…絞り羽根
 4…絞り羽根
 5…フィルタ基板
 6…羽根カバー
 7…絞り駆動部
 8…フィルタ駆動部
 40…ガラス基板
 41…赤外線カットフィルタ層
 42…NDフィルタ層
 100…カメラ

Claims (7)

  1.  互いに重なり合った状態で絞り開口を形成する一対の絞り羽根と、
     可視光通過領域を有するフィルタ基板と、
     前記絞り開口の大きさを調整するために前記一対の絞り羽根を相対的に移動させる絞り駆動部と、
     前記絞り開口を通して入射する光の光路に対して前記フィルタ基板を進退移動させるフィルタ駆動部と、
     を備え、
     前記フィルタ基板は、前記絞り開口を通過する光のうち、少なくとも前記可視光通過領域を通過し得る光を減衰させる光減衰領域をさらに有し、
     前記光減衰領域は、前記可視光通過領域よりも小さい領域をもって当該可視光通過領域内に形成され、前記光路上に前記フィルタ基板を進出させたときに前記絞り開口と同心状に配置されるものである
     ことを特徴とする絞り装置。
  2.  前記光減衰領域は、円形に形成されている
     ことを特徴とする請求項1に記載の絞り装置。
  3.  前記光減衰領域は、前記絞り開口の開口形状と相似形に形成されている
     ことを特徴とする請求項1に記載の絞り装置。
  4.  前記可視光通過領域は、前記フィルタ基板の少なくとも一方の主面に形成された赤外線カットフィルタ層からなり、
     前記光減衰領域は、前記フィルタ基板の一方の主面または他方の主面あるいは両方の主面に形成されたNDフィルタ層からなる
     ことを特徴とする請求項1、2または3に記載の絞り装置。
  5.  前記赤外線カットフィルタ層および前記NDフィルタ層は、前記フィルタ基板の共通の主面上に積層状態で形成されている
     ことを特徴とする請求項4に記載の絞り装置。
  6.  請求項1~5のいずれか一つに記載の絞り装置と、
     前記絞り開口を通して入射する光を電気信号に変換する光電変換素子と、
     を備えることを特徴とするカメラ。
  7.  請求項6に記載のカメラと、
     前記カメラから出力される画像信号を処理する画像処理部と、
     を備えることを特徴とする電子機器。
PCT/JP2011/067773 2010-08-04 2011-08-03 絞り装置、カメラおよび電子機器 WO2012018047A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137005276A KR20130115219A (ko) 2010-08-04 2011-08-03 조리개 장치, 카메라 및 전자기기
JP2011551150A JP5033932B2 (ja) 2010-08-04 2011-08-03 絞り装置、カメラおよび電子機器
CN201180038345.0A CN103140799B (zh) 2010-08-04 2011-08-03 光圈装置、摄像机和电子设备
HK13109250.1A HK1182183A1 (zh) 2010-08-04 2013-08-08 光圈裝置、攝像機和電子設備

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-175092 2010-08-04
JP2010175092 2010-08-04

Publications (1)

Publication Number Publication Date
WO2012018047A1 true WO2012018047A1 (ja) 2012-02-09

Family

ID=45559543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067773 WO2012018047A1 (ja) 2010-08-04 2011-08-03 絞り装置、カメラおよび電子機器

Country Status (6)

Country Link
JP (1) JP5033932B2 (ja)
KR (1) KR20130115219A (ja)
CN (1) CN103140799B (ja)
HK (1) HK1182183A1 (ja)
TW (1) TWI528102B (ja)
WO (1) WO2012018047A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038183A (ja) * 2014-08-11 2016-03-22 日立アプライアンス株式会社 空気調和機および空調運転制御方法
EP3343287A1 (en) * 2016-12-28 2018-07-04 Axis AB A method for sequential control of ir-filter, and an assembly performing such method
US10386554B2 (en) 2016-12-28 2019-08-20 Axis Ab IR-filter arrangement
US10567713B2 (en) 2016-12-28 2020-02-18 Axis Ab Camera and method of producing color images

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI584053B (zh) * 2013-03-05 2017-05-21 Japan Prec Instr Inc Aperture devices and cameras
KR102208491B1 (ko) * 2014-08-04 2021-01-27 한화테크윈 주식회사 조리개 장치
JP5994952B2 (ja) * 2015-02-03 2016-09-21 大日本印刷株式会社 蒸着マスクの製造方法、蒸着マスク製造装置、レーザー用マスクおよび有機半導体素子の製造方法
JP6568829B2 (ja) * 2016-08-01 2019-08-28 日本電産コパル株式会社 羽根駆動装置
JP6751662B2 (ja) * 2016-12-20 2020-09-09 日本電産コパル株式会社 羽根駆動装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110938A (ja) * 1991-10-17 1993-04-30 Fuji Photo Optical Co Ltd テレビカメラ用レンズ装置
JPH05292392A (ja) * 1992-04-13 1993-11-05 Sony Corp ビデオカメラの光量調整装置
JPH0915681A (ja) * 1995-06-30 1997-01-17 Ricoh Co Ltd カメラの光量調整装置
WO2004107036A1 (ja) * 2003-05-29 2004-12-09 Nihon Seimitsu Sokki Co., Ltd. 絞り装置
JP2007017594A (ja) * 2005-07-06 2007-01-25 Nippon Seimitsu Sokki Kk 絞り装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4200270B2 (ja) * 2002-05-30 2008-12-24 パナソニック株式会社 光量調整装置、レンズ鏡筒、撮像装置
JP4671410B2 (ja) * 2005-05-24 2011-04-20 キヤノン電子株式会社 Irカット機能付きndフィルタを備えた光量絞り装置及びカメラ
JP2008035199A (ja) * 2006-07-28 2008-02-14 Canon Inc 光学フィルター手段を有する撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110938A (ja) * 1991-10-17 1993-04-30 Fuji Photo Optical Co Ltd テレビカメラ用レンズ装置
JPH05292392A (ja) * 1992-04-13 1993-11-05 Sony Corp ビデオカメラの光量調整装置
JPH0915681A (ja) * 1995-06-30 1997-01-17 Ricoh Co Ltd カメラの光量調整装置
WO2004107036A1 (ja) * 2003-05-29 2004-12-09 Nihon Seimitsu Sokki Co., Ltd. 絞り装置
JP2007017594A (ja) * 2005-07-06 2007-01-25 Nippon Seimitsu Sokki Kk 絞り装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038183A (ja) * 2014-08-11 2016-03-22 日立アプライアンス株式会社 空気調和機および空調運転制御方法
CN105987434A (zh) * 2014-08-11 2016-10-05 江森自控日立空调技术(香港)有限公司 空调机和空调运转控制方法
EP3343287A1 (en) * 2016-12-28 2018-07-04 Axis AB A method for sequential control of ir-filter, and an assembly performing such method
US10146101B2 (en) 2016-12-28 2018-12-04 Axis Ab Method for sequential control of IR-filter, and an assembly performing such method
US10386554B2 (en) 2016-12-28 2019-08-20 Axis Ab IR-filter arrangement
US10567713B2 (en) 2016-12-28 2020-02-18 Axis Ab Camera and method of producing color images

Also Published As

Publication number Publication date
HK1182183A1 (zh) 2013-11-22
CN103140799B (zh) 2015-09-30
KR20130115219A (ko) 2013-10-21
TWI528102B (zh) 2016-04-01
JP5033932B2 (ja) 2012-09-26
CN103140799A (zh) 2013-06-05
JPWO2012018047A1 (ja) 2013-10-03
TW201222141A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
JP5033932B2 (ja) 絞り装置、カメラおよび電子機器
US7715115B2 (en) Lens device
JP2012133362A (ja) 光遮蔽装置及びそれを備えた電子機器
JP2013152369A (ja) 絞り装置およびカメラ
JP2012159658A (ja) 光学フィルタモジュール、および光学フィルタシステム
JP4801442B2 (ja) 光量絞り用ndフィルタ
JP5328335B2 (ja) 撮像装置及びレンズ装置
JP2014071434A (ja) フィルタ切り替え装置、絞り装置およびカメラ
JP2010151950A (ja) 撮像装置及びレンズ装置
US20050083431A1 (en) Image taking apparatus
EP1701182A1 (en) Camera module comprising an infrared cut filter, said filter comprising ultraviolet cut means
WO2012004989A1 (ja) 減光装置および撮像装置
KR102590894B1 (ko) 고스트 저감장치와 이것을 구비한 촬상장치, 고스트 감소방법 및 촬상광학기구
JP5493057B2 (ja) レンズ装置及びこのレンズ装置が装着される撮像装置
JP2007225735A (ja) Ndフィルタ、該ndフィルタによる光量絞り装置及び撮像装置
JP5942472B2 (ja) 光量調整装置
US10158791B2 (en) Camera device with red halo reduction
WO2016038829A1 (ja) レンズ鏡筒及び撮像装置
IL259438A (en) Ghost effect reduction device, total imaging device, ghost reduction method, and optical imaging system
KR101278040B1 (ko) 자동 돌출식 반사경이 설치된 카메라 및 이를 이용한 영상정보장치
KR101626000B1 (ko) 개선된 필터 구조를 갖춘 디지털 카메라
JP2657650B2 (ja) レンズ合焦機構の合焦端部検出装置
JP2020085996A (ja) 撮像装置、及び撮像装置の制御方法
JP2011138080A (ja) レンズ鏡筒及び撮像装置
JP2020056875A (ja) 光学フィルタ、撮像装置、光学センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038345.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011551150

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137005276

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11814672

Country of ref document: EP

Kind code of ref document: A1