WO2012015042A1 - 架線交通システムおよびその制御方法 - Google Patents

架線交通システムおよびその制御方法 Download PDF

Info

Publication number
WO2012015042A1
WO2012015042A1 PCT/JP2011/067499 JP2011067499W WO2012015042A1 WO 2012015042 A1 WO2012015042 A1 WO 2012015042A1 JP 2011067499 W JP2011067499 W JP 2011067499W WO 2012015042 A1 WO2012015042 A1 WO 2012015042A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
value
voltage
overhead
control device
Prior art date
Application number
PCT/JP2011/067499
Other languages
English (en)
French (fr)
Inventor
健司 ▲高▼尾
克明 森田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP2012526597A priority Critical patent/JP5331251B2/ja
Priority to US13/808,317 priority patent/US8583311B2/en
Priority to CN201180028792.8A priority patent/CN102958747B/zh
Priority to KR1020127034262A priority patent/KR101497200B1/ko
Publication of WO2012015042A1 publication Critical patent/WO2012015042A1/ja
Priority to HK13105922.7A priority patent/HK1178132A1/xx

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/02Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power with means for maintaining voltage within a predetermined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/06Arrangements for consuming regenerative power

Definitions

  • the present invention relates to an overhead line traffic system in which a vehicle travels based on electric power obtained from an overhead line connected to a substation and a control method thereof.
  • This application claims priority on July 30, 2010 based on Japanese Patent Application No. 2010-172145 for which it applied to Japan, and uses the content here.
  • the electric power sent from the substation is obtained from the overhead line, and the power consumption in the vehicle such as a train traveling based on the electric power is obtained by integrating the overhead line voltage applied to the vehicle and the current flowing into the vehicle from the overhead line.
  • the vehicle has an IGBT (Insulated Gate Bipolar Transistor), a reactor, a transformer, and other vehicle devices that can be tolerated as a performance even when a large current is allowed to flow inside an electrical product (such as an inverter or SIV) provided in the vehicle. I have.
  • Patent Document 1 is disclosed as a technique related to the present application.
  • an object of the present invention is to provide an overhead line traffic system and a control method thereof that can solve the above-described problems.
  • the present invention provides an overhead line traffic system in which a vehicle travels on the basis of electric power obtained from an overhead line connected to a substation, the storage battery storing electric power obtained from the overhead line, and the storage battery.
  • a storage battery control device that controls charging or discharging of the battery, and the storage battery control device detects an overhead wire sending current value indicating a sum of a current value output from the own device and a current value output from the substation, When the detected overhead wire transmission current value is less than a first threshold value, a charging rate adjustment mode for controlling charging or discharging of the storage battery so that the charging rate of the storage battery becomes a charging rate target value;
  • the overhead traffic system is characterized in that a constant voltage control mode for controlling charging or discharging of the storage battery so as to maintain the output voltage of the device at a constant voltage.
  • the storage battery control device may be preset when the detected overhead line transmission current value is equal to or greater than a second threshold value indicating a current value larger than the first threshold value.
  • a constant current control mode for controlling the discharge of the storage battery so as to discharge the device at a constant maximum current value is provided.
  • the present invention is the above-described overhead line traffic system, wherein the storage battery control device detects a charging rate of the storage battery, and a speed per unit time of transition of the detected charging rate toward the charging rate target value is predetermined.
  • the first threshold value is lowered when larger than the threshold value.
  • the present invention provides the above-described overhead traffic system, wherein the storage battery control device is configured such that the first charge rate of the detected charge rate toward the charge rate target value is smaller than a predetermined threshold when the first rate is smaller than a predetermined threshold value. It is characterized by raising the threshold value.
  • the second threshold value is a value obtained by adding a maximum current value output from the storage battery control device to a current value indicated by the first threshold value.
  • the storage battery control device may control the charging or discharging of the storage battery so as to maintain the output voltage of the storage device at a constant voltage in the constant voltage control mode.
  • the minimum transmission line voltage obtained by adding the drop voltage value from the output voltage of the own device at the position of the vehicle that becomes the allowable minimum overhead line voltage value to the allowable minimum overhead line voltage value according to The charging or discharging of the storage battery is controlled to maintain a constant voltage equal to or higher than the minimum value of the overhead wire transmission voltage.
  • the present invention is characterized in that the first threshold value is an overhead line current value when the output voltage of the storage battery control device is the lowest overhead line transmission voltage.
  • the first threshold value is an overhead line when the overhead line voltage value applied to the vehicle at the position of the vehicle is not the allowable minimum overhead line voltage value and is the minimum overhead line transmission voltage value. It is a current value.
  • a vehicle travels based on electric power obtained from an overhead line connected to a substation, a storage battery that accumulates electric power obtained from the overhead line, and a storage battery control device that controls charging or discharging of the storage battery
  • a method for controlling an overhead wire traffic system comprising: the storage battery control device detects an overhead wire sending current value indicating a sum of a current value output from the own device and a current value output from the substation; When the overhead wire sending current value is less than the first threshold, the charging rate adjustment mode for controlling charging or discharging of the storage battery so that the charging rate of the storage battery becomes the charging rate target value; A constant voltage control mode for controlling charging or discharging of the storage battery so as to maintain the output voltage of the device at a constant voltage.
  • the present invention it is possible to control the current flowing into the vehicle device to a small amount that is less than the allowable amount, and thus it is possible to use the vehicle device having a small current capacity. Moreover, the cost concerning vehicle manufacture can be reduced by using vehicle equipment with a small current capacity.
  • FIG. 1 is a block diagram showing the configuration of the overhead traffic system according to the first embodiment.
  • the overhead line traffic system supplies power to the overhead line by a DC feeding system.
  • the overhead line traffic system includes a transformer 1 provided in a substation, a rectifier 2 that converts an alternating current output from the transformer 1 into a direct current, a storage battery 3 that stores power, and a charge / discharge of the storage battery 3.
  • a storage battery control device 4 to be controlled is provided.
  • a vehicle such as a train is powered (runs) by obtaining power from the overhead line.
  • the overhead line traffic system includes an ammeter 5 that measures the current value output from the storage battery control device 4, a voltmeter 6 that measures the output voltage value of the storage battery control device 4, the rectifier 2 of the substation, and the storage battery control. And an ammeter 7 that measures an overhead wire sending current value I that is a sum of current values output from the device 4.
  • the storage battery control device 4 includes the ammeters 5 and 7, a voltmeter 6, a signal Connected by lines. Then, the storage battery control device 4 acquires each current value and voltage value from the ammeters 5 and 7 and the voltmeter 6.
  • the storage battery control device 4 includes a mode determination unit 41 and a current / voltage control unit 42.
  • the mode determination unit 41 of the storage battery control device 4 is a processing unit that determines a mode for controlling the storage battery 3 based on the value of the overhead wire sending current value I input from the ammeter 7. Further, the current / voltage control unit 42 controls charging / discharging of the storage battery 3 based on the mode determined by the mode determination unit 41.
  • the modes in which the current / voltage control unit 42 controls the storage battery 3 are SOC (State of Charge) adjustment mode, constant voltage control mode (CV mode), and constant current control mode (CC mode) in this embodiment. There are three modes. Trolley voltage fluctuates between the values of Vw _min ⁇ Vw _max in response to an increase and decrease of the load as shown in FIG. 1 (such as power consumption in the vehicle).
  • FIG. 2 is a first diagram showing an outline of control of the current-voltage control unit.
  • the current / voltage control unit 42 charges or discharges the storage battery 3 in the SOC adjustment mode.
  • the SOC adjustment mode is a mode for controlling charging or discharging of the storage battery 3 so that the charging rate of the storage battery 3 becomes the charging rate target value.
  • the charging rate target value is a value indicating one point such as 60% although the charging rate is in the range of 45% to 60% when the storage battery 3 is fully charged, for example, 100%. Also good.
  • the current / voltage control unit 42 discharges when the current charging rate of the storage battery 3 is higher than the charging rate target value, and when the current charging rate of the storage battery 3 is lower than the charging rate target value.
  • the charging control is performed.
  • the charging rate SOC can be obtained by integrating the current output from the storage battery.
  • the open-circuit voltage value of the storage battery 3 may be detected, and the storage battery control device 4 may obtain the charge rate SOC based on information recorded in a table indicating the relationship between the open-circuit voltage value and the power reception rate SOC. .
  • the current / voltage control unit 42 performs the storage battery 3 in the constant voltage control mode (CV mode). Control the charging or discharging.
  • the constant voltage control mode is a mode for controlling charging or discharging of the storage battery 3 so that the output voltage of the storage battery control device 4 is maintained at a constant voltage.
  • the output voltage of the storage battery control device 4 decreases. By controlling the voltage control mode, the output voltage of the storage battery control device 4 is kept constant even if the overhead wire sending current value I increases.
  • the current / voltage control unit 42 charges or discharges the storage battery 3 in the constant current control mode (CC mode).
  • the constant current control mode is a mode for controlling the discharge of the storage battery 3 so that the storage battery control device 4 is discharged at a constant maximum current value determined in advance based on the performance of the storage battery 3.
  • the power consumption of the vehicle that travels by obtaining power from the overhead line is obtained by integrating the overhead line voltage applied to the vehicle and the current flowing into the vehicle from the overhead line. And since the maximum value of the power consumption of the vehicle is fixed, if the overhead wire voltage applied to the vehicle is high, the current flowing into the vehicle is reduced accordingly. Therefore, the storage battery control device 4 of the overhead line system in the present embodiment performs control to maintain the output voltage of the storage battery control device 4 high. Thereby, the overhead line voltage at the position of the vehicle farther from the position of the storage battery control device 4 also becomes higher, and as a result, the current flowing into the vehicle becomes smaller. Therefore, vehicle equipment such as an IGBT or an inverter in an electrical product provided in the vehicle can be a vehicle equipment having a small current capacity.
  • the overhead line voltage is inversely proportional to the increase in the overhead line transmission current value I due to an increase in load. Decrease.
  • the current voltage control unit 42 of the storage battery control device 4 is in the constant voltage control mode. Control to keep the voltage high. Thereby, the overhead line voltage at the position of the vehicle is also kept high, and the amount of current flowing into the vehicle becomes small.
  • the current / voltage control unit 42 of the storage battery control device 4 shifts to the constant current control mode.
  • the overhead line voltage is kept high by the constant voltage control mode. Therefore, the output voltage of the storage battery control device 4 is kept high even after the transition to the constant current control mode due to this influence. It will be. Therefore, even when the overhead wire sending current value I exceeds the second threshold value and transitions to the constant current control mode, the overhead wire voltage at the position of the vehicle is kept high by performing the voltage control mode, and the amount of current flowing into the vehicle is reduced. A small amount.
  • FIG. 3 is a diagram showing a processing flow of the storage battery control device.
  • the mode determination unit 41 of the storage battery control device 4 inputs the overhead wire sending current value I from the ammeter 7 (step S101), and whether the value is less than the first threshold value, or more than the first threshold value and less than the second threshold value. Or whether it is greater than or equal to the second threshold (step S102). Then, the mode determination unit 41 determines to shift to the SOC adjustment mode if the value of the overhead wire transmission current value I is less than the first threshold value (step S103), and the value of the overhead wire transmission current value I is equal to or greater than the first threshold value and the first threshold value.
  • step S104 If it is less than two threshold values, it is determined that the mode is changed to the constant voltage control mode (step S104).
  • the mode determination unit 41 outputs information indicating the determination result mode to the current voltage control unit 42.
  • the current / voltage control unit 42 inputs information indicating the mode of the determination result, the control of the storage battery 3 in the input mode is started (step S106).
  • the storage battery control device 4 shifts to the SOC adjustment mode and performs control so that the charging rate of the storage battery 3 becomes the charging rate target value.
  • the overhead wire sending current value I is set to the first threshold value. It is necessary to ensure a certain level of situation. Therefore, the transition of the overhead wire sending current value I according to the passage of time is simulated according to the operation schedule of the vehicle, the position of the vehicle based on the position of the ammeter 7, etc.
  • the transition of the charging rate per unit time of the storage battery 3 is separately performed by changing the first threshold value.
  • the storage battery control apparatus 4 perform this simulation process.
  • the first threshold value is obtained in advance when the time for reaching the charging rate target value of the charging rate of the storage battery 3 per unit time is equal to or longer than a predetermined desired time, and is set in the storage battery control device 4.
  • the value indicated by the second threshold is a value obtained by adding, to the first threshold, a maximum current value that can be output from the storage battery 3 determined in advance based on the performance of the storage battery 3, and the value of the second threshold is also the storage battery control device. 4 is recorded in a memory or the like.
  • FIG. 4 is a block diagram showing the configuration of the overhead traffic system according to the second embodiment.
  • the functional configuration of the overhead traffic system in the second embodiment is the same as that of the overhead traffic system in the first embodiment, in which the mode determination unit 41 and the current / voltage control unit 42 detect the charging rate of the storage battery 3 and Based on the change of the charging rate according to the progress, a function of changing the first threshold value for determining to shift to the SOC adjustment mode is added.
  • the overhead wire transmission current value I less than the first threshold value determined as the SOC adjustment mode can be frequently detected from the ammeter 7, the frequency of performing the control of the SOC adjustment mode of the storage battery control device 4 is increased.
  • the time during which the charging rate of the storage battery 3 is controlled to become the charging rate target value becomes longer. Therefore, when the situation where the overhead wire sending current value I less than the first threshold can be frequently detected from the ammeter 7 is remarkably high, the time for which the charging rate target value is reached per unit time of the charging rate of the storage battery 3 is reached. , It will greatly exceed the predetermined desired time. Therefore, even if the first threshold value is lowered and the range of the overhead wire transmission current value I determined to be the SOC adjustment mode is narrowed, the time for reaching the charge rate target value per unit time of the charge rate of the storage battery 3 is It becomes more than the predetermined desired time. Then, by lowering the first threshold value, the output voltage value of the storage battery control device 4 in the constant current control mode is increased, whereby it is possible to control so that the current flowing into the vehicle is further reduced, thereby saving energy. It is effective from the viewpoint.
  • the mode determination unit 41 first inputs the charging rate indicated by the storage battery 3.
  • the mode determination unit 41 records each charging rate value input at a predetermined interval or the like in a memory or the like as time passes.
  • the mode determination part 41 calculates
  • the mode determination part 41 determines whether the extension line
  • the mode determination unit 41 determines whether the inclination of the approximate straight line is a certain level or more. If the slope of the approximate line is positive and greater than a predetermined value, it can be determined that the rate of change of the charging rate per unit time is large. Then, when the charging rate target value matches the extension of the approximate line and the slope of the approximate line is positive and larger than a predetermined threshold, the mode determination unit 41 lowers the first threshold and adjusts the SOC. Even if the range of the overhead wire transmission current value I determined as the mode is narrowed, it is determined that the time for reaching the charging rate target value per unit time of the charging rate of the storage battery 3 is equal to or longer than a predetermined desired time.
  • the mode determination unit 41 lowers the first threshold value by a predetermined value and records the value in a memory or the like. Thereafter, the mode determination unit 41 determines whether the SOC adjustment mode or the constant voltage control mode based on the first threshold value newly recorded in the memory.
  • how much the mode determination unit 41 lowers the first threshold value may be changed according to the slope of the approximate straight line. For example, it is assumed that the slope of the approximate line is positive and larger than a predetermined value. However, even if the slope of the approximate line is relatively large even within the range of the magnitude of the slope (beyond a higher threshold value). In the case), the lowering range of the first threshold value is increased, and when the inclination is relatively small (less than the higher threshold value), the decreasing amount of the first threshold value is decreased. In addition, when the slope of the recent straight line is positive but less than a certain value, it can be determined that the rate of change in the charging rate per unit time is small. In this case, the mode determination unit 41 may increase the first threshold value and record the value in a memory or the like.
  • FIG. 5 is a second diagram showing an outline of control of the current / voltage control unit.
  • the range of the overhead wire sending current value I determined as the SOC adjustment mode is narrowed by lowering the first threshold value.
  • V W_C1 the voltage value in the constant voltage control mode
  • V w_C2 the voltage value in the constant voltage control mode
  • the storage battery control device 4 performs control so that the overhead line voltage applied to the vehicle does not become less than a predetermined lowest line voltage.
  • the current flowing into the vehicle equipment such as IGBT increases as the overhead line voltage (corresponding to the pantograph voltage in the pantograph) applied to the vehicle decreases. Therefore, since the current capacity of the vehicle equipment is usually limited and the cost of the vehicle equipment with a small current capacity is lower, the overhead voltage applied to the vehicle is increased and the amount of current flowing into the vehicle equipment is reduced. It is desirable to control.
  • the value of the voltage drop from the output voltage value of the storage battery control device 4 at the vehicle position in the overhead line traffic system can be calculated. Therefore, when the voltage drop from the output voltage value of the storage battery control device 4 at the vehicle position is ⁇ V, in order to make the current value flowing into the vehicle equipment less than the maximum current value It, the output voltage of the storage battery control device 4 is It is necessary to set a voltage value equal to or higher than the minimum overhead wire sending voltage value Vw (Vt + ⁇ V) obtained by adding ⁇ V to the allowable minimum overhead wire voltage value Vt applied to the vehicle.
  • the current voltage control part 42 of the storage battery control apparatus 4 memorize
  • the charging or discharging of the storage battery 3 is controlled by switching to the constant voltage control mode so that the output voltage value of the storage battery control device 4 detected by the voltmeter 6 is maintained at a constant voltage equal to or higher than the overhead wire sending voltage minimum value Vw. You may make it.
  • the first threshold value is an overhead wire current value when the output voltage value of the storage battery control device 4 is the lowest overhead wire transmission voltage value.
  • FIG. 6 is a diagram showing an outline of the overhead line voltage calculation processing applied to the vehicle.
  • two vehicles vehicle 10 and vehicle 20
  • one of the vehicles 10 is powered (power from the overhead line). Is used as electric power of a motor or the like), and the other vehicle 20 is being regenerated.
  • the overhead wire resistances R 1 and R 2 are the distance between the two vehicles based on the vehicle position or the position of the voltmeter 6 that measures the output voltage of the storage battery control device 4 and the vehicle position. It can be obtained from the distance and the resistance value per unit length of the overhead wire.
  • the overhead line sends voltage minimum value of the battery control device 4 (minimum value of the output voltage) Vw, V 1 a trolley voltage (pantograph voltage) in the vehicle 10, and V 2 a trolley voltage (pantograph voltage) in the vehicle 20
  • Vw minimum value of the battery control device 4
  • V 1 a trolley voltage (pantograph voltage) in the vehicle 10
  • V 2 a trolley voltage (pantograph voltage) in the vehicle 20
  • the punter point current of the vehicle 10 is I 1
  • the punter point current of the vehicle 20 is I 2
  • the regenerative power in the vehicle 20 is W 2
  • the maximum current value It allowed in the vehicle 10 or the vehicle equipment of the vehicle 20 The overhead wire sending voltage minimum value Vw of the storage battery control device 4 as described below is obtained by the following equation.
  • the current-voltage control unit 42 of the battery control device 4 the vehicle allowable minimum overhead wire voltage value Vt 10 of 10, Vt 20 Then the allowable minimum overhead wire voltage value of the vehicle 20, Vt 10 ⁇ V 1, Vt 20 ⁇ V 2 Of the overhead wire sending voltage minimum values Vw 10 and Vw 20 when both are satisfied.
  • the current / voltage control unit 42 of the storage battery control device 4 stores the specified overhead wire sending voltage minimum value Vw in a memory or the like, and the output voltage value of the storage battery control device 4 measured from the voltmeter 6 is the minimum overhead wire sending voltage.
  • the mode When it becomes less than the value Vw, the mode is switched to the constant voltage control mode, and the output voltage value of the storage battery control device 4 detected by the voltmeter 6 is maintained at a constant voltage equal to or higher than the overhead wire sending voltage minimum value Vw. Charging or discharging may be controlled.
  • the first threshold is when the overhead line voltage value is not the allowable minimum overhead line voltage value at the vehicle position, and the overhead line when the output voltage value of the storage battery control device 4 is the lowest overhead line transmission voltage value. Current value.
  • the electric current which flows into vehicle equipment can be controlled to a small quantity less than an allowable amount, and, thereby, current capacity is small.
  • the vehicle equipment can be used.
  • the cost concerning vehicle manufacture can be reduced by using vehicle equipment with a small current capacity.
  • the above-described storage battery control device 4 has a computer system inside.
  • Each process described above is stored in a computer-readable recording medium in the form of a program, and the above processing is performed by the computer reading and executing the program.
  • the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 蓄電池制御装置が、蓄電池から出力される電流値と変電所から出力される電流値の合計を示す架線送出電流値を検出し、検出した架線送出電流値が第1閾値未満の場合には、蓄電池の充電率が充電率目標値となるよう当該蓄電池の充電または放電を制御する。また第1閾値以上の場合には、自装置の出力電圧を定電圧に維持するよう蓄電池の充電または放電を制御する。

Description

架線交通システムおよびその制御方法
 本発明は、変電所と接続する架線から得た電力に基づいて車両が走行する架線交通システムおよびその制御方法に関する。
 本願は、2010年7月30日に、日本に出願された特願2010-172145号に基づき優先権を主張し、その内容をここに援用する。
 変電所から送出された電力を架線から得て、当該電力に基づいて走行する電車等の車両における消費電力は、当該車両にかかる架線電圧と架線から車両に流入する電流との積算によって求められる。ここで、当該車両は、大電流を流入させても性能として許容できるIGBT(絶縁ゲートバイポーラトランジスタ)やリアクトル、トランスなどの車両機器を当該車両に備えられた電機品(インバータやSIVなど)内部に備えている。
 しかしながら、これらIGBTやリアクトル、トランスなどの車両機器は電流容量が大きく高価であるため、より電流容量の小さい車両機器を用いることができるようにすることが省エネルギー化の観点で望ましい。なお、本願に関連する技術として特許文献1が開示されている。
特開平11-91415号公報
 そこでこの発明は、上述の課題を解決することのできる架線交通システムおよびその制御方法を提供することを目的としている。
 上記目的を達成するために、本発明は、変電所と接続する架線から得た電力に基づいて車両が走行する架線交通システムであって、前記架線から得た電力を蓄積する蓄電池と、前記蓄電池の充電または放電を制御する蓄電池制御装置と、を備え、前記蓄電池制御装置は、自装置の出力する電流値と前記変電所から出力される電流値の合計を示す架線送出電流値を検出し、前記検出した架線送出電流値が第1閾値未満の場合には、前記蓄電池の充電率が充電率目標値となるよう当該蓄電池の充電または放電を制御する充電率調整モード、前記第1閾値以上の場合には、自装置の出力電圧を定電圧に維持するよう前記蓄電池の充電または放電を制御する定電圧制御モード、とすることを特徴とする架線交通システムである。
 また本発明は、上述の架線交通システムにおいて、前記蓄電池制御装置は、前記検出した架線送出電流値が前記第1閾値よりも大きい電流値を示す第2閾値以上の場合には、予め設定された一定の最大電流値で自装置が放電するよう前記蓄電池の放電を制御する定電流制御モードとすることを特徴とする。
 また本発明は、上述の架線交通システムにおいて、前記蓄電池制御装置は、前記蓄電池の充電率を検出し、前記検出した充電率の前記充電率目標値へ向かう推移の単位時間あたりの速度が所定の閾値より大きい場合に、前記第1閾値を下げることを特徴とする。
 また本発明は、上述の架線交通システムにおいて、前記蓄電池制御装置は、前記検出した充電率の前記充電率目標値へ向かう推移の単位時間当たりの速度が所定の閾値より小さい場合に、前記第1閾値を上げることを特徴とする。
 また本発明は、上述の架線交通システムにおいて、前記第2閾値は、前記第1閾値が示す電流値に前記蓄電池制御装置の出力する最大電流値を加算した値であることを特徴とする。
 また本発明は、上述の架線交通システムにおいて、前記蓄電池制御装置は、前記定電圧制御モードにおいて、自装置の出力電圧を定電圧に維持するよう前記蓄電池の充電または放電を制御するにあたり、前記車両にかかる許容最低架線電圧値に、当該許容最低架線電圧値となる前記車両の位置における自装置の出力電圧からの降下電圧値を加算した架線送出電圧最低値を算出し、自装置の出力電圧を、当該架線送出電圧最低値以上の定電圧に維持するよう、前記蓄電池の充電または放電を制御することを特徴とする。
 また本発明は、上述の架線交通システムにおいて、前記第1閾値は、前記蓄電池制御装置の出力電圧が、前記架線送出電圧最低値であるときの架線電流値であることを特徴とする。
 また本発明は、上述の架線交通システムにおいて、前記第1閾値は、前記車両の位置において当該車両にかかる架線電圧値が前記許容最低架線電圧値とならない、前記架線送出電圧最低値あるときの架線電流値であることを特徴とする。
 また本発明は、変電所と接続する架線から得た電力に基づいて車両が走行し、前記架線から得た電力を蓄積する蓄電池と、前記蓄電池の充電または放電を制御する蓄電池制御装置と、を備えた架線交通システムの制御方法であって、前記蓄電池制御装置は、自装置の出力する電流値と前記変電所から出力される電流値の合計を示す架線送出電流値を検出し、前記検出した架線送出電流値が第1閾値未満の場合には、前記蓄電池の充電率が充電率目標値となるよう当該蓄電池の充電または放電を制御する充電率調整モード、前記第1閾値以上の場合には、自装置の出力電圧を定電圧に維持するよう前記蓄電池の充電または放電を制御する定電圧制御モード、とすることを特徴とする。
 本発明によれば、車両機器へ流入する電流を許容量未満の少量に制御することができ、これにより、電流容量の小さな車両機器を使用することができるようになる。また、電流容量の小さな車両機器を使用することにより車両製造にかかるコストを軽減することができる。
第1の実施形態による架線交通システムの構成を示すブロック図である。 電流電圧制御部の制御概要を示す第1の図である。 蓄電池制御装置の処理フローを示す図である。 第2の実施形態による架線交通システムの構成を示すブロック図である。 電流電圧制御部の制御概要を示す第2の図である。 車両にかかる架線電圧の算出処理の概要を示す図である。
 以下、本発明の第1の実施形態による架線交通システムについて図面を参照して説明する。
 図1は第1の実施形態による架線交通システムの構成を示すブロック図である。
 この図で示すように、架線交通システムは、直流き電方式により架線へ電力が供給される。具体的には、架線交通システムは、変電所に備えられたトランス1、当該トランス1から出力された交流電流を直流電流へ変換する整流器2、電力を蓄積する蓄電池3、蓄電池3の充放電を制御する蓄電池制御装置4を備えている。なお、図1には示されていないが、電車などの車両が、架線からの電力を得て力行(走行)することとなる。
 また、架線交通システムには、蓄電池制御装置4から出力される電流値を計測する電流計5と、蓄電池制御装置4の出力電圧値を計測する電圧計6と、変電所の整流器2と蓄電池制御装置4から出力された電流値の合計である架線送出電流値Iを計測する電流計7と、が備えられており、蓄電池制御装置4は、それら電流計5,7および電圧計6と、信号線により接続されている。そして、蓄電池制御装置4は、それら電流計5,7と電圧計6とから各電流値や電圧値を取得する。
 また、蓄電池制御装置4は、モード判定部41と、電流電圧制御部42とを備えている。当該蓄電池制御装置4のモード判定部41は、電流計7から入力した架線送出電流値Iの値に基づいて、蓄電池3を制御するモードを判定する処理部である。また電流電圧制御部42は、モード判定部41において判定されたモードに基づいて蓄電池3の充放電の制御を行う。ここで、電流電圧制御部42が蓄電池3を制御するモードは、本実施形態においてはSOC(State of Charge)調整モード、定電圧制御モード(CVモード)、定電流制御モード(CCモード)、の3つのモードが存在する。架線電圧は図1に示すように負荷(車両における電力消費など)の増大および減少に応じてVw_min~Vw_maxの値の間を変動する。
 図2は電流電圧制御部の制御概要を示す第1の図である。
 この図が示すように、電流電圧制御部42は、電流計7で検出される架線送出電流値Iが、第1閾値未満である場合には、SOC調整モードによるモードで蓄電池3の充電または放電を制御する。当該SOC調整モードは、蓄電池3の充電率が充電率目標値となるよう当該蓄電池3の充電または放電を制御するモードである。なお充電率目標値は、例えば、蓄電池3が満充電である場合を100%とすると、45%~60%の範囲の充電率であるとするが、60%などの一点を示す値であってもよい。SOC調整モードにおいては、電流電圧制御部42は、充電率目標値よりも現在の蓄電池3の充電率が高い場合には放電し、充電率目標値よりも現在の蓄電池3の充電率が低い場合には充電する制御を行う。なお充電率SOCは、蓄電池から出力される電流の積分により求めることができる。または蓄電池3の開放電圧値を検出し、当該開放電圧値と受電率SOCとの関係を示すテーブルに記録されている情報に基づいて、蓄電池制御装置4が充電率SOCを求めるようにしてもよい。
 また電流電圧制御部42は、電流計7で検出される架線送出電流値Iが、第1閾値以上、第2閾値未満である場合には、定電圧制御モード(CVモード)によるモードで蓄電池3の充電または放電を制御する。当該定電圧制御モードは、蓄電池制御装置4の出力電圧を定電圧に維持するよう蓄電池3の充電または放電を制御するモードである。蓄電池3や蓄電池制御装置4が備えられていなかった従来の架線交通システムにおいては負荷が増大することによって架線送出電流値Iが増加すると、蓄電池制御装置4の出力電圧が低下していたが、定電圧制御モードの制御を行うことで、架線送出電流値Iが増加しても、蓄電池制御装置4の出力電圧が一定に保たれることとなる。
 また電流電圧制御部42は、電流計7で検出される架線送出電流値Iが、第2閾値以上である場合には、定電流制御モード(CCモード)によるモードで蓄電池3の充電または放電を制御する。当該定電流制御モードは、蓄電池3の性能に基づいて予め定められている一定の最大電流値で蓄電池制御装置4が放電するよう蓄電池3の放電を制御するモードである。
 ここで、架線から電力を得て走行する車両の消費電力は、当該車両にかかる架線電圧と架線から車両に流入する電流との積算によって求められる。そして、車両の消費電力の最大値は定まっているため、車両にかかる架線電圧が高ければ、その分、車両に流入する電流が少量となる。従って、本実施形態における架線システムの蓄電池制御装置4は、蓄電池制御装置4の出力電圧を高く維持する制御を行う。これにより、蓄電池制御装置4の位置よりも離れた車両の位置における架線電圧も高くなり、結果として車両に流入する電流が少量となる。従って、車両に備えられた電機品内のIGBTやインバータ等の車両機器を、電流容量の小さい車両機器とすることができる。
 図2の破線で示すように、本実施形態による蓄電池3や蓄電池制御装置4が架線システムに備えられていない場合には、負荷の増大による架線送出電流値Iの増加に伴い、架線電圧は反比例的に減少する。しかしながら、本実施形態においては、架線交通システムの負荷が増大して架線送出電流値Iが増加し、第1閾値を超えた場合、蓄電池制御装置4の電流電圧制御部42が、定電圧制御モードによって電圧を高く保つ制御を行う。これにより、車両の位置における架線電圧も高く保たれ、車両に流入する電流量が少量となる。また、さらに架線交通システムの負荷が増大して架線送出電流値Iが増加し、第2閾値を超えた場合、蓄電池制御装置4の電流電圧制御部42が、定電流制御モードに移行する。定電流制御モードに遷移する前には定電圧制御モードによって架線電圧が高く維持されているため、この影響から定電流制御モードに遷移した後も、蓄電池制御装置4の出力電圧が高く保たれることとなる。したがって、架線送出電流値Iが第2閾値を超え定電流制御モードに遷移した場合でも、電圧制御モードを行ったことにより、車両の位置における架線電圧も高く保たれ、車両に流入する電流量が少量となる。
 図3は蓄電池制御装置の処理フローを示す図である。
 次に、図3を用いて蓄電池制御装置4の処理フローについて順を追って説明する。
 まず、蓄電池制御装置4のモード判定部41は、電流計7から架線送出電流値Iを入力し(ステップS101)、その値が第1閾値未満か、または第1閾値以上かつ第2閾値未満か、または第2閾値以上かを判定する(ステップS102)。そして、モード判定部41は、架線送出電流値Iの値が第1閾値未満であればSOC調整モードに遷移すると判定し(ステップS103)、架線送出電流値Iの値が第1閾値以上かつ第2閾値未満であれば定電圧制御モードに遷移すると判定し(ステップS104)、架線送出電流値Iの値が第2閾値以上であれば定電流制御モードに遷移すると判定する(ステップS105)。モード判定部41は判定結果のモードを示す情報を電流電圧制御部42へ出力する。次に電流電圧制御部42が判定結果のモードを示す情報を入力すると、当該入力されたモードでの蓄電池3の制御を開始する(ステップS106)。
 なお、架線交通システムにおける負荷の減少により架線送出電流値Iが低くなると、蓄電池制御装置4はSOC調整モードに遷移し、蓄電池3の充電率が充電率目標値となるよう制御する。ここで、単位時間当たりに蓄電池3の充電率の充電率目標値に達している時間が、予め定めた所望の時間以上となるように制御するためには、架線送出電流値Iが第1閾値未満となる状況をある程度確保する必要がある。従って、車両の運行スケジュールや、電流計7の位置に基づく車両の位置などによって、時間の経過に応じた架線送出電流値Iの遷移のシミュレーションを行い、また、その架線送出電流値Iの遷移による蓄電池3の単位時間当たりの充電率の遷移を、第1閾値を変化させてシミュレーションを別途行う。なお、このシミュレーション処理を蓄電池制御装置4が行うようにしてもよい。これにより、単位時間当たりに蓄電池3の充電率の充電率目標値に達している時間が、予め定めた所望の時間以上となる場合の、第1閾値を予め求め、蓄電池制御装置4に設定して蓄電池制御装置4内のメモリ等に記録しておく。第2閾値が示す値は、蓄電池3の性能に基づいて予め定められている蓄電池3の出力できる最大電流値を、第1閾値に加算した値であり、当該第2閾値の値も蓄電池制御装置4内のメモリ等に記録しておく。
 図4は第2の実施形態による架線交通システムの構成を示すブロック図である。
 第2の実施形態における架線交通システムの機能構成は、第1の実施形態における架線交通システムに、さらに、モード判定部41および電流電圧制御部42が、蓄電池3の充電率を検出して、時間経過に応じたその充電率の遷移に基づいて、SOC調整モードへ遷移すると判定するための第1閾値を変更する機能を加えたものである。
 ここでSOC調整モードと判定される第1閾値未満の架線送出電流値Iが、電流計7から頻繁に検出できる場合、蓄電池制御装置4の、SOC調整モードの制御を行う頻度も高くなり、これによって蓄電池3の充電率が充電率目標値となるよう制御される時間が長くなる。従って、第1閾値未満の架線送出電流値Iが、電流計7から頻繁に検出できる状況が著しく多い場合には、蓄電池3の充電率の単位時間当たりに充電率目標値に達している時間が、予め定めた所望の時間を大きく超えることとなる。従って、第1閾値を下げて、SOC調整モードと判定される架線送出電流値Iの範囲を狭めても、蓄電池3の充電率の単位時間当たりに充電率目標値に達している時間が、予め定めた所望の時間以上となる。
そして、第1閾値を下げることで、定電流制御モードにおける蓄電池制御装置4の出力電圧値が増加し、これにより、車両に流入する電流がさらに少量となるよう制御することができ、省エネルギー化の観点で効果的である。
 このような処理を行うにあたり、第2の実施形態による蓄電池制御装置4において、モード判定部41は、まず、蓄電池3の示す充電率を入力する。モード判定部41は、時間の経過に応じて所定の間隔等で入力した各充電率の値をメモリ等に記録する。そして、モード判定部41は、最近の複数の時刻において取得した各充電率を用いて、例えば、時間と充電率との関係を示す座標系において、最小二乗法による充電率の近似直線を求める。
そしてモード判定部41は、その近似直線の時間経過方向の延長線上が充電率目標値となるかを判定する。当該判定は、具体的には、例えば、求めた近似直線と、充電率目標値を示す直線とが、近似直線の算出に利用した時刻以降において交差するかを演算し、交差する場合には、近似直線の延長線上が充電率目標値と一致すると判定するという処理を行う。
 また、モード判定部41は、近似直線の傾きが、一定以上かを判定する。近似直線の傾きが正で所定の値より大きい場合には、充電率の推移の単位時間当たりの速度が大きいと判定できる。そして、モード判定部41は、近似直線の延長線上に充電率目標値が一致し、かつ、近似直線の傾きが正で所定の閾値よりも大きい場合には、第1閾値を下げて、SOC調整モードと判定される架線送出電流値Iの範囲を狭めても、蓄電池3の充電率の単位時間当たりに充電率目標値に達している時間が、予め定めた所望の時間以上となると判定する。従って、モード判定部41は、例えば、第1閾値を所定の値下げて、その値をメモリ等に記録する。そして、以降、モード判定部41は、新たにメモリに記録された第1閾値に基づいて、SOC調整モードか、定電圧制御モードかを判定する。
 なお、モード判定部41が第1閾値をどの程度の値下げるかは、近似直線の傾きに応じて変更するようにしてもよい。例えば、近似直線の傾きが正で所定の値より大きい場合が前提となるが、その傾きの大きさの範囲内においても、近似直線の傾きが比較的大きい場合(さらなる値の高い閾値以上である場合)には、第1閾値の下げ幅を大きくとり、傾きが比較的小さい場合(さらなる値の高い閾値未満である場合)には、第1閾値の下げ幅を小さくとる。
 また、近時直線の傾きが正であるが一定値未満である場合には、充電率の推移の単位時間当たりの速度が小さいと判定できる。そして、モード判定部41は、この場合、第1閾値を上げて、その値をメモリ等に記録するようにしてもよい。
 図5は電流電圧制御部の制御概要を示す第2の図である。
 図5で示すように第1閾値の値を下げることにより、SOC調整モードと判定される架線送出電流値Iの範囲を狭まる。これにより、定電圧制御モードにおける電圧値がVw_C2からVw_C1へと上がる。これにより、車両に流入する電流がさらに少量となるよう制御することができ、省エネルギー化の観点で効果的である。
 次に、蓄電池制御装置4において、車両にかかる架線電圧が予め定められた最低下線電圧未満にならないよう制御する場合の例について説明する。
 上述したように、消費電力が一定であれば、車両にかかる架線電圧(パンタグラフにおけるパンタ点電圧に相当)が低くなればなるほど、IGBTなどの車両機器に流入する電流は多くなる。従って、通常、車両機器の電流容量には制限があるため、また電流容量が少ない車両機器がよりコストが低いため、車両にかかる架線電圧を高くし、車両機器に流入する電流の量を少量に制御することが望ましい。
 一方で、車両機器が流入を許容する最大電流値Itは予め定められており、また、車両における最大消費電力Ptは、事前の測定などによって求まる。従って、車両機器が許容する予め定められた最大電流値It以上の電流が流れないようにするための、車両にかかる許容最低架線電圧値Vtを算出できる(Vt=Pt÷It)。
 また、架線交通システム内の車両位置における、蓄電池制御装置4の出力電圧値からの電圧降下の値も算出することができる。従って、車両位置における蓄電池制御装置4の出力電圧値からの電圧降下をΔVとすると、車両機器に流入する電流値が最大電流値It未満とするためには、蓄電池制御装置4の出力電圧は、車両にかかる許容最低架線電圧値VtにΔVを加算した架線送出電圧最低値Vw(Vt+ΔV)以上の電圧値とする必要がある。そして、蓄電池制御装置4の電流電圧制御部42は、架線送出電圧最低値Vwをメモリ等に記憶しておき、電圧計6から計測される電圧値が、架線送出電圧最低値Vw未満となった場合には、定電圧制御モードに切り替えて、電圧計6で検出する蓄電池制御装置4の出力電圧値が架線送出電圧最低値Vw以上の定電圧に維持するよう蓄電池3の充電または放電を制御してするようにしてもよい。この場合、第1閾値は、蓄電池制御装置4の出力電圧値が、架線送出電圧最低値であるときの架線電流値である。
 なお、蓄電池制御装置4の出力電圧の計測地点である位置Bでの当該出力電圧からの、車両位置Aにおける電圧降下ΔVは、蓄電池制御装置4の位置Aと位置Bとの距離L(A-B)と、単位距離あたりの抵抗R(Ω/m)と、車両に最大負荷がかかる位置でのピーク電流Ipとを用いて、ΔV=Ip×L×Rで算出できる。
 図6は車両にかかる架線電圧の算出処理の概要を示す図である。
 図6のセクション(a)で示す例では、変電所によりき電された架線下を、2つの車両(車両10,車両20)が走行し、そのうちの一方の車両10が力行(架線からの電力をモータ等の電力として使用し走行)し、他方の車両20が回生中である場合を示している。このような場合、図6のセクション(b)で示す回路網として考えることが出来る。ここで、架線抵抗RやRは、車両位置に基づく2つの車両間の距離、または蓄電池制御装置4の出力電圧を計測する電圧計6の架線に接続されている位置と車両位置との距離と、架線の単位長さ辺りの抵抗値によって、求めることが出来る。そして、蓄電池制御装置4の架線送出電圧最低値(出力電圧の最低値)をVw、車両10における架線電圧(パンタ点電圧)をV、車両20における架線電圧(パンタ点電圧)をVとし、また、車両10のパンタ点電流をI、車両20のパンタ点電流をI、車両20における回生電力をWとすると、車両10または車両20の車両機器において許容される最大電流値It以下にできるような、蓄電池制御装置4の架線送出電圧最低値Vwを下記の式により求める。つまり、車両10の車両機器において最大電流値It以下にできるような蓄電池制御装置4の架線送出電圧最低値をVw10、車両20の車両機器において最大電流値It以下にできるような蓄電池制御装置4の架線送出電圧最低値をVw20とすると、
 Vw10=V+R(I+I
 Vw20=V+R+R(I+I
 と表すことができる。なお、V=-(W÷I)である。そして、蓄電池制御装置4の電流電圧制御部42は、車両10の許容最低架線電圧値をVt10、車両20の許容最低架線電圧値をVt20すると、Vt10<V、Vt20<Vを共に満たす場合の架線送出電圧最低値Vw10およびVw20のうち、高い値を特定する。蓄電池制御装置4の電流電圧制御部42は、特定した架線送出電圧最低値Vwをメモリ等に記憶しておき、電圧計6から計測される蓄電池制御装置4の出力電圧値が、架線送出電圧最低値Vw未満となった場合には、定電圧制御モードに切り替えて、電圧計6で検出する蓄電池制御装置4の出力電圧値が架線送出電圧最低値Vw以上の定電圧に維持するよう蓄電池3の充電または放電を制御してするようにしてもよい。この場合、第1閾値は、車両の位置において架線電圧値が許容最低架線電圧値とならない状態であるときであり、かつ、蓄電池制御装置4の出力電圧値が架線送出電圧最低値あるときの架線電流値である。
 以上、本発明の実施形態について説明したが、上述の蓄電池制御装置4の制御によれば、車両機器へ流入する電流を許容量未満の少量に制御することができ、これにより、電流容量の小さな車両機器を使用することができるようになる。また、電流容量の小さな車両機器を使用することにより車両製造にかかるコストを軽減することができる。
 なお、上述の蓄電池制御装置4は内部に、コンピュータシステムを有している。そして、上述した各の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。
 また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。
さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
 1  トランス
 2  整流器
 3  蓄電池
 4  蓄電池制御装置
 5,7  電流計
 6  電圧計
41  モード判定部
42  電流電圧制御部

Claims (9)

  1.  変電所と接続する架線から得た電力に基づいて車両が走行する架線交通システムであって、
     前記架線から得た電力を蓄積する蓄電池と、
     前記蓄電池の充電または放電を制御する蓄電池制御装置と、を備え、
     前記蓄電池制御装置は、
     自装置の出力する電流値と前記変電所から出力される電流値の合計を示す架線送出電流値を検出し、
     前記検出した架線送出電流値が第1閾値未満の場合には、前記蓄電池の充電率が充電率目標値となるよう当該蓄電池の充電または放電を制御する充電率調整モード、
     前記第1閾値以上の場合には、自装置の出力電圧を定電圧に維持するよう前記蓄電池の充電または放電を制御する定電圧制御モード、
     とする架線交通システム。
  2.  前記蓄電池制御装置は、
     前記検出した架線送出電流値が前記第1閾値よりも大きい電流値を示す第2閾値以上の場合には、予め設定された一定の最大電流値で自装置が放電するよう前記蓄電池の放電を制御する定電流制御モード
     とする請求項1に記載の架線交通システム。
  3.  前記蓄電池制御装置は、
     前記蓄電池の充電率を検出し、
     前記検出した充電率の前記充電率目標値へ向かう推移の単位時間あたりの速度が所定の閾値以上の場合に、前記第1閾値を下げる
     請求項1または請求項2に記載の架線交通システム。
  4.  前記蓄電池制御装置は、
     前記検出した充電率の前記充電率目標値へ向かう推移の単位時間当たりの速度が前記所定の閾値未満の場合に、前記第1閾値を上げる
     ことを特徴とする請求項3に記載の架線交通システム。
  5.  前記第2閾値は、前記第1閾値が示す電流値に前記蓄電池制御装置の出力する最大電流値を加算した値である
     請求項1から請求項4の何れか一項に記載の架線交通システム。
  6.  前記蓄電池制御装置は、
     前記定電圧制御モードにおいて、自装置の出力電圧を定電圧に維持するよう前記蓄電池の充電または放電を制御するにあたり、
     前記車両にかかる許容最低架線電圧値に、当該許容最低架線電圧値となる前記車両の位置における自装置の出力電圧からの降下電圧値を加算した架線送出電圧最低値を算出し、自装置の出力電圧を、当該架線送出電圧最低値以上の定電圧に維持するよう、前記蓄電池の充電または放電を制御する
     請求項1から請求項5の何れか一項に記載の架線交通システム。
  7.  前記第1閾値は、前記蓄電池制御装置の出力電圧が、前記架線送出電圧最低値であるときの架線電流値である
     請求項6に記載の架線交通システム。
  8.  前記第1閾値は、前記車両の位置において当該車両にかかる架線電圧値が前記許容最低架線電圧値とならない、前記架線送出電圧最低値あるときの架線電流値である
     請求項6または請求項7に記載の架線交通システム。
  9.  変電所と接続する架線から得た電力に基づいて車両が走行し、
     前記架線から得た電力を蓄積する蓄電池と、
     前記蓄電池の充電または放電を制御する蓄電池制御装置と、を備えた架線交通システムの制御方法であって、
     前記蓄電池制御装置は、
     自装置の出力する電流値と前記変電所から出力される電流値の合計を示す架線送出電流値を検出し、
     前記検出した架線送出電流値が第1閾値未満の場合には、前記蓄電池の充電率が充電率目標値となるよう当該蓄電池の充電または放電を制御する充電率調整モード、
     前記第1閾値以上の場合には、自装置の出力電圧を定電圧に維持するよう前記蓄電池の充電または放電を制御する定電圧制御モード、
     とする制御方法。
PCT/JP2011/067499 2010-07-30 2011-07-29 架線交通システムおよびその制御方法 WO2012015042A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012526597A JP5331251B2 (ja) 2010-07-30 2011-07-29 架線交通システムおよびその制御方法
US13/808,317 US8583311B2 (en) 2010-07-30 2011-07-29 Overhead wire transportation system and control method thereof
CN201180028792.8A CN102958747B (zh) 2010-07-30 2011-07-29 架线交通系统及其控制方法
KR1020127034262A KR101497200B1 (ko) 2010-07-30 2011-07-29 가선 교통 시스템 및 그 제어 방법
HK13105922.7A HK1178132A1 (en) 2010-07-30 2013-05-20 Overhead wire transportation system and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-172145 2010-07-30
JP2010172145 2010-07-30

Publications (1)

Publication Number Publication Date
WO2012015042A1 true WO2012015042A1 (ja) 2012-02-02

Family

ID=45530241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067499 WO2012015042A1 (ja) 2010-07-30 2011-07-29 架線交通システムおよびその制御方法

Country Status (6)

Country Link
US (1) US8583311B2 (ja)
JP (1) JP5331251B2 (ja)
KR (1) KR101497200B1 (ja)
CN (1) CN102958747B (ja)
HK (1) HK1178132A1 (ja)
WO (1) WO2012015042A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111679A1 (ja) * 2011-02-14 2012-08-23 株式会社 東芝 蓄電装置とその設置・運用方法
JP2014061868A (ja) * 2013-03-08 2014-04-10 Meidensha Corp 直流き電変電所の制御装置および制御方法
US9035495B2 (en) 2011-02-18 2015-05-19 Mitsubishi Heavy Industries, Ltd. Analysis device of catenary-based transportation system, analysis method and program therefor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700011274A1 (it) * 2017-02-02 2018-08-02 Nidec Asi S P A Sistema e metodo per l’alimentazione di un percorso ferroviario.
CN109390917B (zh) * 2018-12-19 2021-06-25 北京天诚同创电气有限公司 Dcdc电源的控制方法、装置及dcdc电源保护电路
JP7191873B2 (ja) * 2020-01-17 2022-12-19 株式会社東芝 充放電制御装置、充放電システム、充放電制御方法及び充放電制御プログラム
CN111953071A (zh) * 2020-07-21 2020-11-17 广东电网有限责任公司 一种变电站接线形式智能分类统计的方法
CN112678028B (zh) * 2021-01-19 2022-09-13 中车青岛四方车辆研究所有限公司 自动减载方法、自动减载系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287572A (ja) * 2000-04-05 2001-10-16 Meidensha Corp 電鉄用直流電源設備
JP2005206111A (ja) * 2004-01-26 2005-08-04 Toshiba Corp 直流電圧給電装置
JP2009067205A (ja) * 2007-09-12 2009-04-02 Toshiba Corp 蓄電要素を用いた変電所及び電気鉄道き電システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0552737A1 (en) * 1992-01-22 1993-07-28 Hughes Aircraft Company Weatherized curb-side charger
JPH1191415A (ja) 1997-07-22 1999-04-06 Nissin Electric Co Ltd 電鉄用直流変電システム
US7902854B2 (en) * 2003-07-25 2011-03-08 Power Measurement, Ltd. Body capacitance electric field powered device for high voltage lines
US7162337B2 (en) * 2004-04-26 2007-01-09 General Electric Company Automatic neutral section control system
JP2006034041A (ja) 2004-07-20 2006-02-02 Toyo Electric Mfg Co Ltd き電系統電力貯蔵システムの制御装置
JP4546988B2 (ja) * 2007-04-27 2010-09-22 株式会社日立製作所 電力変換器の制御装置
JP4875633B2 (ja) 2008-01-17 2012-02-15 三菱重工業株式会社 車両及びその充電制御方法
WO2009133608A1 (ja) 2008-04-30 2009-11-05 三菱電機株式会社 電気鉄道システム
US8729728B2 (en) * 2008-06-20 2014-05-20 Siemens S.A.S. Power adjustment system adapted for powering an electric line for supplying power to vehicles
WO2010043967A1 (en) * 2008-10-17 2010-04-22 Frank Wegner Donnelly Rail conveyance system for mining
JP5226479B2 (ja) 2008-11-26 2013-07-03 株式会社日立製作所 鉄道車両
US8935112B2 (en) * 2009-02-17 2015-01-13 Chargepoint, Inc. System and method for managing electric vehicles
DE102009034886A1 (de) * 2009-07-27 2011-02-03 Rwe Ag Ladekabelstecker zur Verbindung eines Elektrofahrzeuges mit einer Ladestation
CN201472178U (zh) * 2009-08-20 2010-05-19 藤冈一路 间歇性供电式车辆系统
JP5452371B2 (ja) * 2010-06-01 2014-03-26 株式会社日立製作所 鉄道車両の駆動装置
US20130009399A1 (en) * 2011-07-08 2013-01-10 Brown Kevin L Waste heat recovery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287572A (ja) * 2000-04-05 2001-10-16 Meidensha Corp 電鉄用直流電源設備
JP2005206111A (ja) * 2004-01-26 2005-08-04 Toshiba Corp 直流電圧給電装置
JP2009067205A (ja) * 2007-09-12 2009-04-02 Toshiba Corp 蓄電要素を用いた変電所及び電気鉄道き電システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111679A1 (ja) * 2011-02-14 2012-08-23 株式会社 東芝 蓄電装置とその設置・運用方法
US9312717B2 (en) 2011-02-14 2016-04-12 Kabushiki Kaisha Toshiba Electric energy storage device and installation-operation method thereof
US9035495B2 (en) 2011-02-18 2015-05-19 Mitsubishi Heavy Industries, Ltd. Analysis device of catenary-based transportation system, analysis method and program therefor
JP2014061868A (ja) * 2013-03-08 2014-04-10 Meidensha Corp 直流き電変電所の制御装置および制御方法

Also Published As

Publication number Publication date
JPWO2012015042A1 (ja) 2013-09-12
CN102958747A (zh) 2013-03-06
KR101497200B1 (ko) 2015-02-27
JP5331251B2 (ja) 2013-10-30
US8583311B2 (en) 2013-11-12
HK1178132A1 (en) 2013-09-06
CN102958747B (zh) 2015-06-17
KR20130036745A (ko) 2013-04-12
US20130110338A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP5331251B2 (ja) 架線交通システムおよびその制御方法
EP3210820B1 (en) Power storage device
US20140266068A1 (en) Pulse battery charger methods and systems for improved charging of lithium ion batteries
WO2014097705A1 (ja) 充放電制御装置、充放電制御方法、プログラム及び車両交通システム
CN212267269U (zh) 使三相电流对称的控制设备、列车及接触网系统
JP6305526B2 (ja) 二次電池の充電量を維持する装置及びその方法
US20150180242A1 (en) Charge and discharge control device, charge control method, discharge control method, and program
JP2014236525A (ja) 電池の充放電装置、充放電方法及びプログラム
JP6674790B2 (ja) 電力供給システム及び輸送機器
WO2012132459A1 (ja) 車載用充電装置
JP5901318B2 (ja) 充放電制御装置、充電制御方法、放電制御方法、及びプログラム
JP2006034041A (ja) き電系統電力貯蔵システムの制御装置
JP5724665B2 (ja) 直流電気鉄道の電力貯蔵装置
JP5427803B2 (ja) 架線交通システムの解析装置並びに解析方法及びそのプログラム
JP2012016148A (ja) シミュレーション装置及びシミュレーション方法並びにそのプログラム、架線交通システム
JP5952174B2 (ja) 移動体の電力管理システム
JP6504789B2 (ja) 電力変換装置
KR102155833B1 (ko) 가선전압 제어장치 및 방법
JP2005205970A (ja) 電圧補償方法
Hiramatsu et al. A control method for on board battery power to compensate the fluctuation of line voltage in case of long distance power feeding in DC electric railway
JP2018016108A (ja) 蓄電装置
JP2023168882A (ja) 電力貯蔵装置、電力貯蔵制御方法
JP2015058713A (ja) 直流き電システム
KR20170068710A (ko) 차량의 전기충전 제어방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028792.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812631

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526597

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127034262

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13808317

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812631

Country of ref document: EP

Kind code of ref document: A1