WO2012014978A1 - 免疫アジュバント - Google Patents

免疫アジュバント Download PDF

Info

Publication number
WO2012014978A1
WO2012014978A1 PCT/JP2011/067262 JP2011067262W WO2012014978A1 WO 2012014978 A1 WO2012014978 A1 WO 2012014978A1 JP 2011067262 W JP2011067262 W JP 2011067262W WO 2012014978 A1 WO2012014978 A1 WO 2012014978A1
Authority
WO
WIPO (PCT)
Prior art keywords
vaccine
test group
antibody titer
culture
aureo
Prior art date
Application number
PCT/JP2011/067262
Other languages
English (en)
French (fr)
Inventor
直幸 守屋
▲祐▼生子 守屋
忠昭 宮崎
安弘 二川
志保 青木
Original Assignee
国立大学法人北海道大学
株式会社アウレオ
株式会社アウレオサイエンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学, 株式会社アウレオ, 株式会社アウレオサイエンス filed Critical 国立大学法人北海道大学
Priority to JP2012526548A priority Critical patent/JP5242855B2/ja
Publication of WO2012014978A1 publication Critical patent/WO2012014978A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/06Fungi, e.g. yeasts
    • A61K36/07Basidiomycota, e.g. Cryptococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • A61K2039/543Mucosal route intranasal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55588Adjuvants of undefined constitution
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention relates to an immune adjuvant that is administered together with the immunogenic substance to enhance immunity by the immunogenic substance.
  • ⁇ -glucan is a polysaccharide composed of D-glucose as a constituent sugar.
  • ⁇ -1,3-glucan has ⁇ -pyranose type cyclic D-glucose bonded to carbon at the 1-position of glucose.
  • a polysaccharide which is condensed by a ⁇ -1,3 glucoside bond between a hydroxyl group which is bonded to a carbon at the 3-position of glucose, and a cyclic ⁇ -pyranose type D-glucose is polymerized It is.
  • Polysaccharides such as ⁇ -glucan are found in a wide variety of natural organisms as storage molecules for sugar, which is an energy source, and as structural molecules such as cell walls, but mushrooms such as Agaricus moth, Reishi, Mai ⁇ -glucan contained in maitake, shiitake, etc. is known to have various physiological activities for maintaining and enhancing health, immune enhancing action, antitumor activity, cancer cell proliferation Attempts to use it as functional materials and pharmaceuticals for the purpose of suppressing, antiallergic, anti-inflammatory, cholesterol-lowering, antithrombotic, dietary fiber, hypotensive, hypoglycemic, and liver Many have been made.
  • ⁇ -glucan having beneficial activity ⁇ -1,3-1,6- having a side chain of D-glucose from carbon at the 6-position of glucose in addition to a main chain consisting of ⁇ -1,3 glucoside bonds
  • glucans are well known and branching structures are thought to be necessary for activity, the mechanism of action is not always clear.
  • ⁇ -glucan is a high molecular polymer obtained from natural products
  • the structure such as the degree of branching, the length of the main chain, the length of the side chain, and the like can also be obtained by amination, phosphorylation, methylation,
  • the presence / absence and degree of modification of the D-glucose hydroxyl group by acetylation and the like are not uniform, and the principle regarding the effect of the structure and chemical modification on the activity is not shown. Therefore, empirically, there is a aspect in which ⁇ -glucan derived from mushrooms is preferably used, and there have been few attempts to use ⁇ -glucan derived from other species.
  • mushrooms are also derived from ⁇ -1,3-1,6-glucan produced by microorganisms (commonly known as black yeast) belonging to the genus Aureobasidium sp. It has been clarified that a function equivalent to or better than that of ⁇ -glucan can be obtained.
  • an aureobasidium culture solution containing ⁇ -1,3-1,6 glucan as a main component has a high oral antitumor activity and immunostimulatory activity, and is a drug for various diseases. It is described that it can be applied.
  • immunoadjuvants those that have the effect of enhancing the immunity effect by immunogenic substances are called immunoadjuvants, and those that have the action of such immunoadjuvants include inorganic aluminum hydroxide, calcium phosphate
  • immunoadjuvants include inorganic aluminum hydroxide, calcium phosphate
  • Freund's complete adjuvant in which dead bacteria of M. tuberculosis are suspended in a micelle of mineral oil or liquid paraffin is known.
  • immunoadjuvants may not be able to exert sufficient effects depending on the type of vaccine, etc., and may themselves cause side effects that worsen allergic symptoms, and it was expected to provide new immune adjuvants. .
  • an object of the present invention is to provide an immunoadjuvant that uses an active ingredient derived from a natural product and has an excellent effect.
  • the present invention is as follows.
  • An immunoadjuvant administered together with an immunogenic substance for strengthening immunity by the immunogenic substance comprising a culture composition obtained from a culture of microorganisms belonging to the genus Aureobasidium sp.
  • the immunoadjuvant according to the above [2], wherein the vaccine is an influenza virus vaccine.
  • the composition contains a culture composition obtained from a culture of microorganisms belonging to the genus Aureobasidium sp. As an active ingredient. Strengthen the immunostimulatory effect of the immunogenic substance.
  • FIG. 3 is a chart summarizing the average results of test groups 1 to 4 for IgA antibody titers in nasal washings. It is the graph which compared the result according to the solid of the test group 1 and the test group 2 about the IgA antibody titer in a nasal cavity washing
  • 6 is a chart collectively showing the average results of each test group of test groups 1 to 4 for serum IgG antibody titers.
  • the immunoadjuvant of the present invention contains a culture composition obtained from a culture of microorganisms belonging to the genus Aureobasidium sp. (Hereinafter referred to as “Aureobasidium-derived culture composition”) as an active ingredient.
  • the aureobasidium-derived culture composition includes a culture solution obtained by culturing a microorganism belonging to the genus Aureobasidium (sp.) (Hereinafter referred to as “Aureobasidium microorganism”), and separating the cells by centrifugation or the like.
  • the removed culture solution the concentrate of the culture solution, the diluted solution of the culture solution, or the solids obtained by removing water from the culture solution, but also desalting them to specific components such as ⁇ -glucan Those with a higher content of are also included.
  • the Aureobasidium microorganism used in the present invention may be any microorganism belonging to the genus Aureobasidium sp. And having the ability to produce ⁇ -glucan.
  • Aureobasidium spp. pullulans M-1, AIST (National Institute of Advanced Industrial Science and Technology) Patent Biological Deposit Center FERM BP-08615), Aureobasidium pullulans M-2, National Institute of Advanced Industrial Science and Technology Patent Biology Deposit center accession number FERM BP-10014) is preferably used.
  • ⁇ -glucan produced by these strains was analyzed from the main chain in which glucose was ⁇ -1,3 linked by NMR analysis (13C NMR: Varian UNITY INOVA500 type, 1HNMR: Varian UNITY INOVA600 type). It has been revealed that ⁇ -1,3-1,6-glucan has a structure in which glucose is branched by -1,6 bonds.
  • the culture of the aureobasidium microorganism can be performed according to a known method (see JP-A-57-149301, etc.). That is, a medium (pH 5.2 to 5.0) containing carbon source (sucrose) 0.5 to 5.0% by mass, N source 0.1 to 5.0% by mass, and other trace substances (for example, vitamins and minerals). 6.0) is inoculated with bacteria and aerated culture at a temperature of 20 to 30 ° C. for 2 to 14 days, preferably aerated and stirred. As ⁇ -glucan is produced, the viscosity of the culture solution increases and becomes a highly viscous gel. The culture solution thus obtained usually contains 0.6 to 10% by mass of solid content, and the solid content contains 5 to 80% by mass of ⁇ -glucan.
  • a culture containing ⁇ -glucan obtained by the above culture after heating or autoclaving.
  • the cells may be sterilized after being separated and removed by centrifugation or the like.
  • what was concentrated or dried as needed can also be used.
  • purified it can also be used.
  • the immunoadjuvant of the present invention is used so as to be administered together with the immunogenic substance in order to enhance the immunity effect by the immunogenic substance.
  • it can be used to enhance the effect when immunization by a vaccine is expressed.
  • a vaccine for example, influenza virus vaccine etc. are mentioned.
  • antiserum for the purpose of producing antiserum in animals such as mice, rats, rabbits, goats, cows, monkeys, etc., it can be used to enhance the effect when immunization with a predetermined antigen is expressed.
  • the immune adjuvant of the present invention is administered together to effect the immunity.
  • the administration route There is no particular limitation on the administration route, and it is possible to select a known preparation form as appropriate and adapt it to oral administration, intramuscular administration, intranasal administration and the like.
  • the immunoadjuvant of the present invention is preferably administered in combination in the form of a mixture with an immunogenic substance. According to this, a synergistic action with an immunogenic substance for enhancing the effect of immunity can be expected more.
  • the dose of the immunoadjuvant of the present invention and the use amount relative to the use amount of the immunogenic substance are different from the immunogenic substance, the health state, symptoms, age, administration method / number of administration / administration of the recipient or animal. It can be determined appropriately depending on the time.
  • a general dose for example, when taken orally, it is taken in an amount of 0.025 to 4000 mg / kg (body weight) in terms of solid content of the aureobasidium-derived culture composition.
  • intranasal administration it is ingested in an amount of 0.05 to 5 mg / kg (body weight) in terms of solid content of the aureobasidium-derived culture composition.
  • Aureobasidium pullulans M-2 As a culture solution for microorganisms belonging to the genus Aureobasidium sp., Aureobasidium pullulans M-2 (FERM BP-10014) is cultured, and the culture solution is kept at 121 ° C. for 15 minutes. A culture solution prepared by sterilization and having a ⁇ -glucan content of 0.65 g / 100 g was used. Hereinafter, this is referred to as “Aureo broth”.
  • H1N1 subtype influenza virus A / PR / 8 was used as an influenza virus to infect mice.
  • an inactivated HA vaccine (A / PR8 split vaccine, total protein amount 2.1 mg / day) prepared by treating virus particles with diethyl ether and extracting into the ether phase according to a conventional method as a vaccine against it. ml) was used.
  • mice C57BL / 6NJcl strain, male, 6 weeks old were prepared and acclimated for 1 week.
  • Table 1 (1) Aureo culture solution and vaccine were passed through.
  • Test group 1 for nasal administration (2) Test group 2 for nasal administration of vaccine alone, (3) Test group 3 for nasal administration of PBS, (4) Oral culture solution administered orally and nasal administration of vaccine
  • the test group 4 was divided into a total of 4 groups.
  • Nasal administration of the vaccine to mice was performed as follows. That is, the mouse was placed in a container filled with isoflurane, taken out after confirming slow respiration, and 5 ⁇ l was inoculated into the nasal cavity of the mouse with a micropipette. At that time, in test group 1, the aureo culture was mixed with the vaccine and inoculated. After that, it was confirmed that it was awakened from anesthesia and returned to the breeding gauge. In Test Group 4, oral administration of Aureo broth was started on the same day as the first vaccine nasal administration, and 200 ⁇ L was orally administered once a day during the test period by the sonde method.
  • Immunization with the vaccine was performed twice, a first time for mice after acclimation rearing and a second time at 4-day intervals. Influenza virus was infected 4 days after the final immunization. Mice were infected with influenza virus as follows. That is, a diluted virus solution was prepared by serial dilution with PBS so that the virus titer was 5 ⁇ 10 5 pfu / ml, and 2 ⁇ l (1000 pfu / animal) of the diluted nasal cavity of anesthetized mice was used in the same manner as described above. Inoculated inside.
  • nasal lavage fluid and serum were collected from the mice, and by ELISA, IgA antibody titer in nasal lavage fluid reactive to inactivated influenza virus, IgG antibody titer in serum, and IgM Each antibody titer was measured.
  • the inactivated influenza virus used for the antibody titer measurement by ELISA method was prepared as follows. That is, MDCK cells were cultured as a host to increase influenza virus, and the virus was concentrated from the culture solution by ultracentrifugation. This was suspended in PBS, suspended, and inactivated by adding 10 times the amount of Disruption buffer (0.1% Triton-X / PBS). The inactivated virus was diluted with PBS to a virus concentration of 5 ⁇ g / mL.
  • the antibody titer measurement by ELISA method was performed as follows. That is, the inactivated influenza virus adjusted to the above virus concentration was added to a 96-well plate by 50 ⁇ L / well, and allowed to stand overnight at 4 ° C. to solidify the virus. After discarding the virus solution from the well, it was blocked with 3% skim milk / PBS-T. Thereafter, serially diluted nasal lavage fluid or serum collected from the mice was added to each well, and a secondary antibody was further added to react.
  • Anti-Mouse IgA HRP was used for IgA antibody titers, Anti-Mouse IgG HRP for IgG antibody titers, and Anti-Mouse IgM HRP for IgM antibody titers.
  • the color was developed with a TMB reagent, the reaction was stopped with 2N H 2 SO 4 , and the absorbance at 450 nm was measured. And the value of the light absorbency obtained according to the dilution rate of the sample used for ELISA was plotted, and each antibody titer was compared.
  • FIG. 1, FIG. 5 and FIG. 9 are graphs collectively showing the average results of each test group for each of the IgA antibody titer, serum IgG antibody titer, and serum IgM antibody titer in the nasal lavage fluid. is there.
  • FIG. 2, FIG. 6, and FIG. 10 are diagrams comparing the results of each test group 1 and test group 2 for the IgA antibody titer, serum IgG antibody titer, and serum IgM antibody titer in the nasal lavage fluid. It is.
  • FIG. 11 are graphs comparing the results of test group 2 and test group 4 for each of the IgA antibody titer, serum IgG antibody titer, and serum IgM antibody titer in nasal lavage fluid. It is.
  • FIG. 4, FIG. 8, and FIG. 12 are diagrams comparing the results of each test group 2 and test group 3 for the IgA antibody titer, serum IgG antibody titer, and serum IgM antibody titer in the nasal washing solution, respectively. It is.
  • test group 1 in which the aureo culture solution was mixed with the vaccine and administered nasally rather than test group 2 inoculated with the vaccine alone.
  • test group 4 in which the aureo broth was orally administered together with nasal administration of the vaccine, the antibody titer was higher. Therefore, it was revealed that the aureo culture medium functions as an immune adjuvant that enhances nasal cavity immunity against influenza virus.
  • the aureo culture solution was administered to the vaccine more than the test group 2 inoculated with the vaccine alone.
  • the antibody titer was higher in Test Group 1 administered nasally after mixing in Test Group 4 and Test Group 4 administered orally with the aureo broth along with nasal administration of the vaccine. Therefore, it was revealed that the aureo culture medium functions as an immune adjuvant that enhances systemic immunity against influenza virus.
  • aureo culture solution is effective as an immune adjuvant when immunizing with an influenza virus vaccine.
  • Test Example 2 In Test Example 1 described above, it became clear that the Aureo broth was effective as an immune adjuvant. Therefore, synthetic double-stranded RNA Poly (I: C) (manufactured by Amersham Biosciences), which is a ligand of TLR3 (Toll-Like Receptor 3), which is known as an immunoadjuvant of a nasal mucosal vaccine against influenza virus, and yeast Using Zymosan (manufactured by Sigma-Aldrich) which is a cell wall fraction, the effectiveness as an immune adjuvant was further examined.
  • synthetic double-stranded RNA Poly (I: C) manufactured by Amersham Biosciences
  • TLR3 Toll-Like Receptor 3
  • yeast Using Zymosan manufactured by Sigma-Aldrich
  • Aureo culture solution, influenza virus, vaccine, and mouse were the same as in Test Example 1 above. Also, Aureobasidium lupullulans M-2 (FERM BP-10014) was cultured, and the culture was dried to prepare a powder having a ⁇ -glucan content of 0.39 g / 100 g. . Hereinafter, this is referred to as “Aureo powder”.
  • test group 5 for administration
  • Test group 6 for nasal administration of aureo powder and vaccine
  • Test group 7 for nasal administration of aureo culture solution
  • Poly (I: C) and vaccine (8) Zymosan (Zymosan), Poly (I: C) and vaccine group 8
  • Poly (I: C) and vaccine group 9 10
  • Nasal vaccine alone The test group 10 was divided into 8 groups: (11) test group 11 in which PBS was administered nasally, (12) test group 12 in which aureo culture solution was orally administered, and vaccine was administered nasally.
  • test substance prepared in 5 ⁇ l of PBS with a micropipette was inoculated into the nasal cavity of the mouse under anesthesia.
  • oral administration of the aureo broth was started one week before the first nasal administration of vaccine, and 200 ⁇ L was orally administered once a day during the test period by the sonde method.
  • Immunization with the vaccine was performed twice, a first time for mice after acclimation rearing and a second time at 3-week intervals. Influenza virus was infected 2 weeks after the final immunization. Mice were infected with influenza virus as follows. That is, a diluted virus solution was prepared by serial dilution with PBS so that the virus titer would be 1 ⁇ 10 5 pfu / ml, and 2 ⁇ l (200 pfu / animal) of the diluted nasal cavity of anesthetized mice was prepared in the same manner as described above. Inoculated inside.
  • mice Three days after virus infection, nasal lavage fluid and serum were collected from the mice, and in the same manner as in Test Example 1 above, the IgG antibody titer in the serum reactive to inactivated influenza virus and IgM by ELISA method. The antibody titer and the IgA antibody titer in the nasal wash were measured.
  • FIG. 15 shows the IgA antibody titer in the nasal wash when diluted 1 to 8 times.
  • the serum IgG antibody titer was obtained by using the aureo broth as a vaccine, rather than the test group 10 inoculated with the vaccine alone or the test group 12 in which the aureo broth was orally administered and nasally administered.
  • Test group 5 mixed and administered nasally
  • Test group 6 mixed nasally with aureo powder mixed with vaccine
  • Test group 9 mixed nasally with Poly (I: C) mixed with vaccine
  • the antibody titer increased.
  • the effect was limited. This was considered to be because the amount of influenza virus infection in this test example was less than 1/5 (200 pfu / animal) compared to test example 1.
  • test group 7 which used aureo culture solution and Poly (I: C) in combination
  • Zymosan and Poly I: The same effects as those of the test group 8 using C) were obtained.
  • the serum IgM antibody titer was not significantly different between the test groups. As described above, in this test example, it was considered that the amount of influenza virus infection was less than 1/5 (200 pfu / animal) compared to test example 1.
  • mice As experimental animals, BALB / c mice (6 weeks old, female) were prepared and acclimated for 1 week, and then (i) a control group that only performed normal antigen immunization, and (ii) antigen immunization. The group was divided into a total of 3 groups (8 mice each): a group to which 200 ⁇ L of aureo culture solution was administered, and a group to which (iii) 400 ⁇ L was administered. Aureo broth or lactic acid bacteria beverage was orally administered by the sonde method once a day continuously during the test period.
  • thyroglobulin (Tg) purified and purified from thyroid tissue by a conventional method was used, and an emulsion was prepared at a ratio of 1: 9 with Freund's complete adjuvant (Wako Pure Chemical Industries, Ltd.) and then administered intraperitoneally to mice (80 ⁇ g). /). Immunization was performed at 0, 2, 4, and 6 weeks after the start of the test.
  • antibody titer For measurement of antibody titer, blood was collected on the administration start date and at 3, 5, and 7 weeks after immunization, and the antibody titer of anti-Tg antibody (IgG) was measured by homemade ELISA using the above thyroglobulin (Tg).
  • IgG anti-Tg antibody
  • Tg thyroglobulin
  • mouse serum was serially diluted 1000 to 10,000 times using an enzyme-labeled IgG secondary antibody in accordance with a conventional method, and the absorbance within a range of its quantification was measured.
  • control group was 0.781 ⁇ 0.226
  • aureo culture solution 200 ⁇ L group was 1.341 ⁇ 0.304
  • aureo culture solution 400 ⁇ L group was 1
  • the absorbance was 314 ⁇ 0.322
  • the antibody titer was significantly (P ⁇ 0.05) increased by administration of 200 ⁇ L or 400 ⁇ L of the aureo broth compared to the control group.
  • the antibody titer is increased by administration of aureo medium even when thyroglobulin (Tg) is used as an immunogenic substance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Pulmonology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Oncology (AREA)
  • Botany (AREA)
  • Communicable Diseases (AREA)
  • Biotechnology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

 天然物由来の有効成分を利用する免疫アジュバントであって、優れた効果を有するものを提供する。 免疫アジュバントの有効成分として、アウレオバシジウム属(Aureobasidium sp.)に属する微生物の培養物から得られる培養組成物を含有せしめる。この免疫アジュバントによれば、抗原に対する抗体の産生能を向上させて、ワクチン等の免疫原性物質による免疫の効果を高めることができる。

Description

免疫アジュバント
 本発明は、免疫原性物質による免疫力強化のために該免疫原性物質とともに投与する免疫アジュバントに関するものである。
 β-グルカンは、D-グルコースを構成糖として構成される多糖類であるが、例えばβ-1,3グルカンは、β-ピラノース型の環状D-グルコース同士がグルコース1位の炭素に結合している水酸基部位とグルコース3位の炭素に結合している水酸基部位との間でβ-1,3グルコシド結合によって縮合し、環状β-ピラノース型のD-グルコースが重合するように構成される多糖類である。β-グルカンのような多糖類はエネルギー源である糖の貯蔵分子や細胞壁などの構造分子として自然界の生物中に多種多様に見出されるが、キノコ類であるアガリクス茸、霊芝(レイシ)、舞茸(マイタケ)、椎茸(シイタケ)等に含有するβ-グルカンには、健康を維持増進ための様々な生理活性を有していることが知られ、免疫増強作用、抗腫瘍活性、ガン細胞増殖抑制作用、抗アレルギー作用、抗炎症作用、コレステロール低下作用、抗血栓作用、食物繊維作用、血圧降下作用、血糖降下作用、肝機能亢進などを目的とする機能性素材や医薬品等として利用する試みが数多くなされている。また、難消化性であることから、便秘の予防・改善のための整腸剤、あるいは、その保湿性を利用する化粧品など、幅広い応用が期待できる多糖類の機能性素材として期待されている。
 有益な活性を有するβ-グルカンとして、β-1,3グルコシド結合からなる主鎖に加えて、グルコース6位の炭素からのD-グルコースの側鎖を有するβ-1,3-1,6-グルカンがよく知られており、枝分かれ構造が活性に必要であると考えられているが、その作用機序は必ずしも明らかでない。また、β-グルカンは天然物から得られる高分子ポリマーであることから、分岐の度合、主鎖の長さ、側鎖の長さ等の構造は、また、アミノ化、リン酸化、メチル化、アセチル化等によるD-グルコース水酸基の修飾の有無や度合も、均一ではなく、その構造や化学修飾が活性に与える影響に関する原理は示されていない。そこで、経験的にキノコ類由来のβ-グルカンが好んで用いられているに過ぎない面があり、他の生物種由来のβ-グルカンを利用する試みは少なかった。
 最近、自然界に広く存在する不完全菌であるアウレオバシジウム属(Aureobasidium sp.)に属する微生物(通称、黒酵母)が産生するβ-1,3-1,6-グルカンによっても、キノコ類由来のβ-グルカンと同等又は同等以上の機能が得られることが明らかとされている。
 例えば、下記特許文献1には、β-1,3-1,6グルカンを主成分とするアウレオバシジウム培養液が、経口的に高い抗腫瘍活性及び免疫賦活活性を有し、各種疾病に対する医薬品として応用できる旨が記載されている。
 一方、ワクチンや抗体生産の分野では、免疫原性物質による免疫の効果を高めるため効果を持つものを免疫アジュバントと称し、このような免疫アジュバントの作用を有するものとして、無機物の水酸化アルミニウム、リン酸カルシウム、リン酸アルミニウム、ミョウバンなどや、鉱油や流動パラフィンのミセルに結核菌の死菌を懸濁したフロイントの完全アジュバントなどが知られている。
特開2002-204687号公報
 しかしながら、免疫アジュバントには、ワクチン等の種類によっては十分な効果を発揮できない場合や、それ自体、アレルギー症状を悪化させる副作用を引き起こす場合もあり、新たな免疫アジュバントを提供することが期待されていた。
 したがって、本発明の目的は、天然物由来の有効成分を利用する免疫アジュバントであって、優れた効果を有するものを提供することにある。
 本発明者らは、上記目的を達成するため鋭意研究し、本発明を完成するに至った。すなわち、本発明は以下のとおりである。
[1] 免疫原性物質による免疫力強化のために該免疫原性物質とともに投与する免疫アジュバントであって、アウレオバシジウム属(Aureobasidium sp.)に属する微生物の培養物から得られる培養組成物を有効成分として含有することを特徴とする免疫アジュバント。
[2] 前記免疫原性物質は、ワクチンの形態である上記[1]記載の免疫アジュバント。
[3] 前記ワクチンは、インフルエンザウイルスワクチンである上記[2]記載の免疫アジュバント。
[4]  経口投与、筋肉内投与、又は鼻腔内投与に適応する、上記[1]~[3]のいずれか1つに記載の免疫アジュバント。
 本発明の免疫アジュバントによれば、アウレオバシジウム属(Aureobasidium sp.)に属する微生物の培養物から得られる培養組成物を有効成分として含有するので、抗原に対する抗体の産生能を増強させ、ワクチン等の免疫原性物質による免疫賦活作用を強化する。
鼻腔洗浄液中IgA抗体価について試験群1~4の各試験群の平均の結果をまとめて示す図表である。 鼻腔洗浄液中IgA抗体価について試験群1と試験群2の固体別の結果を比較した図表である。 鼻腔洗浄液中IgA抗体価について試験群2と試験群4の固体別の結果を比較した図表である。 鼻腔洗浄液中IgA抗体価について試験群2と試験群3の固体別の結果を比較した図表である。 血清中IgG抗体価について試験群1~4の各試験群の平均の結果をまとめて示す図表である。 血清中IgG抗体価について試験群1と試験群2の個体別の結果を比較した図表である。 血清中IgG抗体価について試験群2と試験群4の固体別の結果を比較した図表である。 血清中IgG抗体価について試験群2と試験群3の固体別の結果を比較した図表である。 血清中IgM抗体価について試験群1~4の各試験群の平均の結果をまとめて示す図表である。 血清中IgM抗体価について試験群1と試験群2の固体別の結果を比較した図表である。 血清中IgM抗体価について試験群2と試験群4の個体別の結果を比較した図表である。 血清中IgM抗体価について試験群2と試験群3の固体別の結果を比較した図表である。 血清中IgG抗体価について試験群5~12の各試験群の平均の結果を示す図表である。 血清中IgM抗体価について試験群5~12の各試験群の平均の結果を示す図表である。 1~8倍希釈での鼻腔洗浄液中IgA抗体価について試験群5~12の各試験群の平均の結果を示す図表である。
 本発明の免疫アジュバントは、アウレオバシジウム属(Aureobasidium sp.)に属する微生物の培養物から得られる培養組成物(以下、「アウレオバシジウム由来培養組成物」という。)を有効成分として含有する。このアウレオバシジウム由来培養組成物としては、アウレオバシジウム属(Aureobasidium sp.)に属する微生物(以下、「アウレオバシジウム微生物」という。)を培養した培養液そのもの、遠心分離等により菌体を分離除去した培養液、その培養液の濃縮液、その培養液の希釈液、あるいはその培養液から水分を除いた固形物等だけでなく、これらを脱塩等してβ-グルカン等の特定の成分の含有量を高めたものも含まれる。
 本発明において用いられる上記アウレオバシジウム微生物としては、アウレオバシジウム属(Aureobasidium sp.)に属し、β-グルカン生産能を有する微生物であればよいが、例えば、アウレオバシジウム プルランスM―1(Aureobasidium pullulans M-1、独立行政法人産業技術総合研究所特許生物寄託センター受託番号FERM BP-08615)や、アウレオバシジウム プルランスM―2(Aureobasidium pullulans M-2、独立行政法人産業技術総合研究所特許生物寄託センター受託番号FERM BP-10014)が好適に用いられる。なお、これらの菌株が産生するβ-グルカンは、NMR測定(13CNMR :Varian社UNITY INOVA500型、1HNMR : Varian社UNITY INOVA600型)による構造解析で、グルコースがβ-1,3結合した主鎖からβ-1,6結合でグルコースが分岐した構造を有するβ-1,3-1,6-グルカンであることが明らかとなっている。
 上記アウレオバシジウム微生物の培養は、公知の方法(特開昭57-149301号公報等参照)に準じて行うことができる。すなわち、炭素源(ショ糖)0.5~5.0質量%、N源0.1~5.0質量%、その他微量物質(例えば、ビタミン類、無機質)を加えた培地(pH5.2~6.0)に菌を接種し、温度20~30℃で2~14日間通気培養、好ましくは通気撹拌培養すればよい。β-グルカンが生成されるにしたがって培養液の粘度が上昇し、粘性の高いジェル状になる。このようにして得られる培養液には、通常、0.6~10質量%の固形分が含まれており、該固形分中にはβ-グルカンが5~80質量%含まれている。
 本発明においては、上記の培養によって得られるβ-グルカンを含む培養物を加熱又は加圧加熱殺菌して用いることが好ましい。また、遠心分離等により菌体を分離除去した後殺菌して用いてもよい。また、必要に応じて濃縮したもの、あるいは乾燥したものを用いることもできる。更に、β?グルカンに富む成分を抽出したものや、それを脱塩、精製したものを用いることもできる。なお、アウレオバシジウム属(Aureobasidium sp.)に属する微生物の培養物は、増粘安定剤等の食品添加物として使用されているものであり安全性が高い。
 本発明の免疫アジュバントは、免疫原性物質による免疫の効果を高めるために該免疫原性物質とともに投与されるように用いられる。すなわち、病原性細菌やウイルスの感染を予防し、又はその重篤化を予防、治療することを目的として、ワクチンによる免疫を発現させるときに、その効果を高めるために用いることができる。例えば、インフルエンザウイルスワクチンなどが挙げられる。あるいは、マウス、ラット、ウサギ、ヤギ、ウシ、サルなどの動物に抗血清を産生させることを目的として、所定抗原による免疫を発現させるときに、その効果を高めるために用いることができる。
 本発明の適用形態としては、ワクチンや所定抗原などの免疫原性物質をヒト又は動物に接種してこれによる免疫を発現させる際、本発明の免疫アジュバントを併用投与することにより、その免疫の効果を高めることができる。投与経路に特に制限はなく、公知の製剤形態を適宜選択して、経口投与、筋肉内投与、鼻腔内投与などに適応することが可能である。
 本発明の免疫アジュバントは、免疫原性物質との混合物の形態としたうえで併用投与することが好ましい。これによれば、免疫の効果を高めるための免疫原性物質との相乗作用がより期待できる。
 本発明の免疫アジュバントの投与量や、免疫原性物質の使用量に対する使用量は、免疫原性物質のちがい、被投与者又は動物の健康状態、症状、年齢や、投与方法・投与回数・投与時期などによって、適宜決定することができる。一般的な投与量を例示すれば、例えば、経口的に摂取する場合には、アウレオバシジウム由来培養組成物の固形分換算にして0.025~4000mg/kg(体重)の量で摂取する。また、鼻腔内投与の場合には、アウレオバシジウム由来培養組成物の固形分換算にして0.05~5mg/kg(体重)の量で摂取する。
 以下実施例を挙げて本発明を具体的に説明するが、これらの実施例は本発明の範囲を限定するものではない。
 [試験例1] 
 アウレオバシジウム属(Aureobasidium sp.)に属する微生物の培養液を用いて、その免疫アジュバントとしての有効性を調べた。具体的にはインフルエンザウイルスワクチンで免疫するときの免疫アジュバントとしての有効性を調べた。
 アウレオバシジウム属(Aureobasidium sp.)に属する微生物の培養液としては、アウレオバシジウム プルランスM-2(Aureobasidium pullulans M-2)(FERM BP-10014)を培養し、その培養液を121℃15分間殺菌して調製された培養液であって、β-グルカン含有量が0.65g/100gのものを用いた。以下、これを「アウレオ培養液」という。
 マウスに感染させるインフルエンザウイルスとしてはH1N1亜型インフルエンザウイルスA/PR/8を使用した。また、それに対するワクチンとしては、常法に従い、ウイルス粒子をジエチルエーテルで処理してそのエーテル相に抽出することにより調製した、不活化HAワクチン(A/PR8 split vaccine 、総たんぱく量 2.1mg/ml)を使用した。
 実験動物としては、マウス(C57BL/6NJcl系統、雄、6週齢)を準備し、1週間順化飼育を行った後、下記表1に記載のとおり、(1)アウレオ培養液とワクチンを経鼻投与する試験群1、(2)ワクチンのみを経鼻投与する試験群2、(3)PBSを経鼻投与する試験群3、(4)アウレオ培養液を経口投与しワクチンを経鼻投与する試験群4、の計4群に分けた。
Figure JPOXMLDOC01-appb-T000001
 マウスへのワクチンの経鼻投与(試験群3ではPBSの投与)は次のようにして行った。すなわち、イソフルランを充満させた容器にマウスを入れ、呼吸がゆっくりになるのを確認してから取り出し、マウスの鼻腔内にマイクロピペットで5μlを接種した。その際、試験群1ではアウレオ培養液をワクチンと混合して接種した。その後、麻酔から醒めたのを確認して飼育ゲージに戻した。また、試験群4では、1回目のワクチン経鼻投与と同じ日にアウレオ培養液の経口投与を開始し、ゾンデ法により1日1回200μLを試験期間中連続して経口投与した。
 ワクチンでの免疫は、順化飼育後のマウスに第1回目を行い、4日間隔で第2回目を行い、計2回行った。最終免疫から4日後にインフルエンザウイルスを感染させた。マウスへのインフルエンザウイルスの感染は次のようにして行った。すなわち、ウイルス力価が5×10pfu/mlになるようにPBSにて段階希釈して希釈ウイルス液を調製し、その2μl(1000pfu/匹)を上記と同様にして麻酔下のマウスの鼻腔内に接種した。
 ウイルスの感染後3日目にマウスから鼻腔洗浄液と血清を回収し、ELISA法にて、不活化インフルエンザウイルスに反応性を有する鼻腔洗浄液中のIgA抗体価と、血清中のIgG抗体価、及びIgM抗体価をそれぞれ測定した。
 なお、ELISA法による抗体価測定に用いた不活化インフルエンザウイルスの調製は次のようにして行った。すなわち、MDCK細胞を宿主として培養し、インフルエンザウイルスを増やし、その培養液から超遠心によってウイルスを濃縮した。これをPBSに懸濁して浮遊させ、Disruption buffer(0.1% Triton-X/PBS)を10倍量加えて不活化させた。不活化ウイルスはPBSで希釈し、ウイルス濃度5μg/mLとした。
 また、ELISA法による抗体価測定は次のようにして行った。すなわち、上記のウイルス濃度に調整した不活化インフルエンザウイルスを50μL/wellずつ96wellプレートに加え、4℃で一晩静置してウイルスの固層化を行った。ウェルからウイルス溶液を捨てた後、3%スキムミルク/PBS-Tでブロッキングした。その後、マウスから回収した鼻腔洗浄液又は血清を段階希釈したものを、それぞれウェルに加え、更に、二次抗体を加えて反応させた。なお、二次抗体としては、IgA抗体価についてAnti-Mouse IgA HRP、IgG抗体価についてAnti-Mouse IgG HRP、IgM抗体価についてAnti-Mouse IgM HRPをそれぞれ使用した。常法に従い、TMB試薬で発色させ2N H2SO4で反応を止めて、450nmの吸光度を測定した。そして、ELISAに供した試料の希釈倍率に応じて得られた吸光度の値をプロットし、それぞれの抗体価を比較した。
 その結果を、図1~図12に示す。なお、そのうち図1、図5、図9は、鼻腔洗浄液中IgA抗体価、血清中IgG抗体価、血清中IgM抗体価について、それぞれ各試験群の固体別の結果の平均をまとめて示す図表である。また、そのうち図2、図6、図10は、鼻腔洗浄液中IgA抗体価、血清中IgG抗体価、血清中IgM抗体価について、それぞれ試験群1と試験群2の固体別の結果を比較した図表である。また、そのうち図3、図7、図11は、鼻腔洗浄液中IgA抗体価、血清中IgG抗体価、血清中IgM抗体価について、それぞれ試験群2と試験群4の固体別の結果を比較した図表である。また、そのうち図4、図8、図12は、鼻腔洗浄液中IgA抗体価、血清中IgG抗体価、血清中IgM抗体価について、それぞれ試験群2と試験群3の固体別の結果を比較した図表である。
 その結果、図4に見られるように、鼻腔洗浄液中IgA抗体価について、ワクチンを接種した試験群2とPBSを接種した試験群3とにほとんど差が認められなかった。また、図8及び図12に見られるように、血清中IgG抗体価及びIgM抗体価についても、同様に、ワクチンを接種した試験群2において有意な抗体価の上昇が認められなかった。したがって、本試験例では、ワクチン接種の効果は比較的限定的であった。これは、本試験例では、ワクチン接種の期間が短かったためであると考えられた。
 これに対して、図2,3に見られるように、鼻腔洗浄液中IgA抗体価について、ワクチンのみを接種した試験群2よりも、アウレオ培養液をワクチンに混合して経鼻投与した試験群1や、ワクチンの経鼻投与とともにアウレオ培養液を経口投与した試験群4のほうが、抗体価が高くなった。したがって、アウレオ培養液が、インフルエンザウイルスに対する鼻腔局所の免疫を高める免疫アジュバントとして機能することが明らかとなった。
 同様に、図6,7に血清中IgG抗体価について、図10,11に血清中IgM抗体価について、それぞれに見られるように、ワクチンのみを接種した試験群2よりも、アウレオ培養液をワクチンに混合して経鼻投与した試験群1や、ワクチンの経鼻投与とともにアウレオ培養液を経口投与した試験群4のほうが、抗体価が高くなった。したがって、アウレオ培養液が、インフルエンザウイルスに対する全身性免疫を高める免疫アジュバントとして機能することが明らかとなった。
 以上から、アウレオ培養液が、インフルエンザウイルスワクチンで免疫するときの免疫アジュバントとして有効であることが明らかとなった。
 [試験例2]
 上記試験例1では、アウレオ培養液が免疫アジュバントとして有効であることが明らかとなった。そこで、インフルエンザウイルスに対する経鼻粘膜投与型ワクチンの免疫アジュバントとして知られる、TLR3(Toll-Like Receptor 3)のリガンドである合成二本鎖RNA Poly(I:C)(Amersham Biosciences社製)と、酵母細胞壁分画であるザイモサン(Zymosan)(Sigma-Aldrich社製)とを用いて、免疫アジュバントとしての有効性を更に検討した。
 アウレオ培養液、インフルエンザウイルス、ワクチン、及びマウスは、上記試験例1と同様とした。また、アウレオバシジウム プルランスM-2(Aureobasidium pullulans M-2)(FERM BP-10014)を培養し、その培養物を乾燥して、β-グルカン含有量が0.39g/100gの粉末を調製した。以下、これを「アウレオ粉末」という。
 実験動物として、マウス(C57BL/6NJcl系統、雄、6週齢)を準備し、2週間順化飼育を行った後、下記表2に記載のとおり、(5)アウレオ培養液とワクチンを経鼻投与する試験群5、(6)アウレオ粉末とワクチンを経鼻投与する試験群6、(7)アウレオ培養液とPoly(I:C)とワクチンを経鼻投与する試験群7、(8)ザイモサン(Zymosan)とPoly(I:C)とワクチンを経鼻投与する試験群8、(9)Poly(I:C)とワクチンを経鼻投与する試験群9、(10)ワクチンのみを経鼻投与する試験群10、(11)PBSを経鼻投与する試験群11、(12)アウレオ培養液を経口投与しワクチンを経鼻投与する試験群12、の計8群に分けた。
Figure JPOXMLDOC01-appb-T000002
 マウスへの経鼻投与は、上記試験例1と同様にして、麻酔下、マウスの鼻腔内にマイクロピペットで5μlのPBS中に調整した上記試験物質を接種した。また、試験群12では、1回目のワクチン経鼻投与の1週間前からアウレオ培養液の経口投与を開始し、ゾンデ法により1日1回200μLを試験期間中連続して経口投与した。
 ワクチンでの免疫は、順化飼育後のマウスに第1回目を行い、3週間間隔で第2回目を行い、計2回行った。最終免疫から2週間後にインフルエンザウイルスを感染させた。マウスへのインフルエンザウイルスの感染は次のようにして行った。すなわち、ウイルス力価が1×10pfu/mlになるようにPBSにて段階希釈して希釈ウイルス液を調製し、その2μl(200pfu/匹)を上記と同様にして麻酔下のマウスの鼻腔内に接種した。
 ウイルスの感染後3日目にマウスから鼻腔洗浄液と血清を回収し、上記試験例1と同様にして、ELISA法にて、不活化インフルエンザウイルスに反応性を有する血清中のIgG抗体価、及びIgM抗体価と、鼻腔洗浄液中のIgA抗体価をそれぞれ測定した。
 その結果を、図13~図15に示す。なお、図15には、1~8倍希釈のときの鼻腔洗浄液中のIgA抗体価を示す。
 図13に見られるように、血清中IgG抗体価について、ワクチンのみを接種した試験群10や、アウレオ培養液を経口投与しワクチンを経鼻投与した試験群12よりも、アウレオ培養液をワクチンに混合して経鼻投与した試験群5や、アウレオ粉末をワクチンに混合して経鼻投与した試験群6や、Poly(I:C)をワクチンに混合して経鼻投与した試験群9のほうが、抗体価が高くなった。しかしながらその効果は限定的であった。これは、本試験例では、インフルエンザウイルスの感染量が試験例1に比べて5分の1(200pfu/匹)と少なかったためであると考えられた。一方、アウレオ培養液とPoly(I:C)を併用した試験群7では、インフルエンザウイルスに対する経鼻粘膜投与型ワクチンの免疫アジュバントとしてその有効性が認められているザイモサン(Zymosan)とPoly(I:C)とを併用した試験群8と同程度の効果が得られた。
 同様に、図15に見られるように、鼻腔洗浄液中のIgA抗体価について、アウレオ培養液とPoly(I:C)を併用した試験群7では、インフルエンザウイルスに対する経鼻粘膜投与型ワクチンの免疫アジュバントとしてその有効性が認められているザイモサン(Zymosan)とPoly(I:C)とを併用した試験群8に匹敵する効果が得られた。したがって、アウレオ培養液が、インフルエンザウイルスに対する免疫を高める免疫アジュバントとして、高い有効性を有することが明らかとなった。
 一方、図14に見られるように、血清中IgM抗体価については、試験群間における差が顕著ではなかった。上述したように、本試験例では、インフルエンザウイルスの感染量が試験例1に比べて5分の1(200pfu/匹)と少なかったためであると考えられた。
 [試験例3] 
 免疫原性物質としてサイログロブリン(Tg)を使用しときの抗体価の向上に、アウレオ培養液が寄与するかを調べた。
 実験動物としては、BALB/cマウス(6週齢、雌)を準備し、1週間順化飼育を行った後、(i)通常の抗原免疫のみを行うコントロール群、(ii)抗原免疫に加えてアウレオ培養液を200μL投与する群、(iii)同400μL投与する群、の計3群(各8匹)に分けた。アウレオ培養液又は乳酸菌飲料を、ゾンデ法で同投与量を試験期間中1日1回連続して経口投与した。
 抗原免疫は、常法により甲状腺組織から精製純化したサイログロブリン(Tg)を用い、フロイント完全アジュバント(和光純薬工業株式会社)と1:9の割合でエマルジョンを作成後、マウスに腹腔内投与(80μg/匹)することにより行った。免疫は試験開始0、2、4、6週目にそれぞれ実施した。
 抗体価測定のため、投与開始日及び免疫後3、5、7週目に採血を行い、上記サイログロブリン(Tg)を用いた自家製ELISAによって抗Tg抗体(IgG)の抗体価を測定した。ELISA法による抗体価測定は、常法に従い、酵素標識したIgG二次抗体を用いて、マウス血清を1000倍~1万倍に段階希釈し、その定量性のある範囲での吸光度を測定した。
 その結果、免疫7週目において、(i)control群が0.781±0.226、(ii)アウレオ培養液200μL群が1.341±0.304、(iii)アウレオ培養液400μL群が1.314±0.322の吸光度を示し、contro1群に比べてアウレオ培養液の200μL又は400μLの投与で、それぞれ有意(P≦0.05)に抗体価の上昇が認めた。
 以上から、免疫原性物質としてサイログロブリン(Tg)を使用したときにも、アウレオ培養液の投与により、抗体価が上昇することが明らかとなった。
[規則26に基づく補充 26.08.2011] 
Figure WO-DOC-RO134

Claims (4)

  1.  免疫原性物質による免疫力強化を目的として該免疫原性物質とともに投与する免疫アジュバントであり、アウレオバシジウム属(Aureobasidium sp.)に属する微生物の培養物から得られる培養組成物を有効成分として含有することを特徴とする免疫アジュバント。
  2.  前記免疫原性物質は、ワクチンの形態である請求項1記載の免疫アジュバント。
  3.  前記ワクチンは、インフルエンザウイルスワクチンである請求項2記載の免疫アジュバント。
  4.  経口投与、筋肉内投与、又は鼻腔内投与に適応する、請求項1~3のいずれか1つに記載の免疫アジュバント。
PCT/JP2011/067262 2010-07-29 2011-07-28 免疫アジュバント WO2012014978A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012526548A JP5242855B2 (ja) 2010-07-29 2011-07-28 免疫アジュバント

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-171060 2010-07-29
JP2010171060 2010-07-29

Publications (1)

Publication Number Publication Date
WO2012014978A1 true WO2012014978A1 (ja) 2012-02-02

Family

ID=45530178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067262 WO2012014978A1 (ja) 2010-07-29 2011-07-28 免疫アジュバント

Country Status (2)

Country Link
JP (1) JP5242855B2 (ja)
WO (1) WO2012014978A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029967A1 (ja) 2013-08-26 2015-03-05 株式会社明治 乳酸菌を用いた抗体価上昇剤
US10857228B2 (en) 2015-06-10 2020-12-08 The University Of Tokyo Adjuvant for vaccines, vaccine, and immunity induction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204687A (ja) * 2000-11-09 2002-07-23 Onaka Yasushi β−1.3−1.6グルカン(アウレオバシジウム培養液)の医療、保健、福祉、食品および各種産業分野での応用
JP2009051863A (ja) * 1994-04-29 2009-03-12 Biotec Pharmacon Asa 免疫刺激組成物を製造するためのグルカンの使用及び薬剤としてのグルカンの使用
JP2009528267A (ja) * 2006-01-17 2009-08-06 スローン − ケッタリング インスティチュート フォー キャンサー リサーチ 治療を増強するグルカン
JP2009242367A (ja) * 2008-03-31 2009-10-22 Research Foundation For Microbial Diseases Of Osaka Univ 混合免疫賦活剤を含む新規ワクチン

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020009463A1 (en) * 2000-02-23 2002-01-24 Jan Raa Novel, non-antigenic, mucosal adjuvant formulation which enhances the effects of substances, including vaccine antigens, in contact with mucosal body surfaces

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009051863A (ja) * 1994-04-29 2009-03-12 Biotec Pharmacon Asa 免疫刺激組成物を製造するためのグルカンの使用及び薬剤としてのグルカンの使用
JP2002204687A (ja) * 2000-11-09 2002-07-23 Onaka Yasushi β−1.3−1.6グルカン(アウレオバシジウム培養液)の医療、保健、福祉、食品および各種産業分野での応用
JP2009528267A (ja) * 2006-01-17 2009-08-06 スローン − ケッタリング インスティチュート フォー キャンサー リサーチ 治療を増強するグルカン
JP2009242367A (ja) * 2008-03-31 2009-10-22 Research Foundation For Microbial Diseases Of Osaka Univ 混合免疫賦活剤を含む新規ワクチン

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LE, THANH HOA. ET AL.: "The adjuvant effect of Sophy P-glucan to the antibody response in poultry immunized by the avian influenza A H5N1 and H5N2 vaccines", JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, vol. 21, no. 4, 16 January 2011 (2011-01-16), pages 405 - 411, XP002712241 *
THANH HOA LE ET AL.: "Adjuvant effects of sophy P-glucan on H5N1 and H5N2 vaccination using a mouse model", TROPICAL MEDICINE AND HEALTH, vol. 38, no. 1, 6 February 2010 (2010-02-06), pages 23 - 27 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029967A1 (ja) 2013-08-26 2015-03-05 株式会社明治 乳酸菌を用いた抗体価上昇剤
US10195271B2 (en) 2013-08-26 2019-02-05 Meiji Co., Ltd. Antibody titer-increasing agent using lactic acid bacterium
US10857228B2 (en) 2015-06-10 2020-12-08 The University Of Tokyo Adjuvant for vaccines, vaccine, and immunity induction method

Also Published As

Publication number Publication date
JP5242855B2 (ja) 2013-07-24
JPWO2012014978A1 (ja) 2013-09-12

Similar Documents

Publication Publication Date Title
Wu et al. Effect of a polysaccharide from Poria cocos on humoral response in mice immunized by H1N1 influenza and HBsAg vaccines
KR101342641B1 (ko) 폴리감마글루탐산-키토산 나노입자를 함유하는 면역보강제 조성물
US7906492B2 (en) Therapy-enhancing glucan
US20050271613A1 (en) Beta-1, 3-1, 6-D-glucan and its use
WO2007013613A1 (ja) フコイダン又はフコイダン加水分解生成物と免疫賦活素材とを含む組成物
EP2437754B1 (en) Lipopolysaccharide of ochrobactrum intermedium and their use as immunostimulant of mammalians
JP2009528267A (ja) 治療を増強するグルカン
Ren et al. Multi-walled carbon nanotube polysaccharide modified Hericium erinaceus polysaccharide as an adjuvant to extend immune responses
WO2015050179A1 (ja) 粘膜ワクチン組成物
Xiu et al. Exopolysaccharides from Lactobacillus kiferi as adjuvant enhanced the immuno-protective against Staphylococcus aureus infection
JP5242855B2 (ja) 免疫アジュバント
JP4369258B2 (ja) 免疫賦活剤
Schuch et al. The use of xanthan gum as vaccine adjuvant: An evaluation of immunostimulatory potential in balb/c mice and cytotoxicity in vitro
JP2024019424A (ja) 経口酵母ベータグルカンを用いる低免疫原性抗原特異的ワクチンの免疫原性強化方法
AU642804B2 (en) Preventive agent against infectious disease of crustacea
WO2007013609A1 (ja) フコイダン由来オリゴ糖
Markushin et al. Effect of molecular weight and degree of acetylation on adjuvantive properties of chitosan derivatives
JP3522772B2 (ja) ワクチンの免疫効果増強剤
JP7088502B2 (ja) 抗体医薬の効果増強用組成物
Abd El-Aziz et al. Evaluation of cell-mediated immunity of E. coli nanovaccines in chickens
Urbanik-Sypniewska et al. Cytokine inducing activities of rhizobial and mesorhizobial lipopolysaccharides of different lethal toxicity
JP5560472B2 (ja) インフルエンザウイルス感染症の治療剤
JP2024508368A (ja) 新規なシアロシド及び治療におけるそれらの使用
Flannigan Characterization of adjuvant properties of microparticulate beta-glucan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526548

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812567

Country of ref document: EP

Kind code of ref document: A1