WO2012013004A1 - 盐析萃取发酵液中丙酮和丁醇的方法 - Google Patents

盐析萃取发酵液中丙酮和丁醇的方法 Download PDF

Info

Publication number
WO2012013004A1
WO2012013004A1 PCT/CN2010/080286 CN2010080286W WO2012013004A1 WO 2012013004 A1 WO2012013004 A1 WO 2012013004A1 CN 2010080286 W CN2010080286 W CN 2010080286W WO 2012013004 A1 WO2012013004 A1 WO 2012013004A1
Authority
WO
WIPO (PCT)
Prior art keywords
butanol
acetone
salt
fermentation broth
extracting
Prior art date
Application number
PCT/CN2010/080286
Other languages
English (en)
French (fr)
Inventor
孙亚琴
李志刚
修志龙
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US13/812,133 priority Critical patent/US8779209B2/en
Publication of WO2012013004A1 publication Critical patent/WO2012013004A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/86Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/86Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/80Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment

Definitions

  • the invention belongs to the technical field of bioengineering and relates to a separation technology of a microbial fermentation liquid, in particular to a method for extracting acetone and butanol in a fermentation liquid by salting out .
  • Acetone and butanol are excellent organic solvents and important chemical raw materials.
  • Butanol It can be used as a solvent for paints and surface coatings, as well as for the production of various plastics and rubber products. It can also produce chemical products such as butyl acetate, butyl acrylate, butyraldehyde, butyric acid, butylamine and butyl lactate.
  • Acetone is mainly used as a solvent for the production of cellulose acetate film, plastics and coatings.
  • the main use other than solvent is to produce methyl methacrylate (MMA), bisphenol A, aldol condensate and other chemical products.
  • Acetone butanol fermentation is a traditional bulk fermentation that was once the second largest fermentation process in the world after alcohol fermentation.
  • the use of corn flour for industrial production of acetone butanol fermentation began to form a stable fermentation process. Due to the development of the petrochemical industry, acetone butanol fermentation has gradually declined.
  • the use of renewable resources to produce chemical raw materials and energy materials has been highly valued.
  • Acetone butanol fermentation re-emerges competitive advantage, however
  • the total concentration of the solvent obtained by the acetone butanol fermentation process is low, and the total concentration of the total solvent (acetone, butanol and ethanol) after fermentation is 15-20 g/L.
  • the total concentration of the total solvent (acetone, butanol and ethanol) after fermentation is 15-20 g/L.
  • acetone butanol fermentation production is restricted. Since the fermentation process produced acetone butanol, researchers have been trying to find an effective separation method that saves both time and cost.
  • the traditional purification method of acetone butanol is to first distill the fermentation liquid through the crude separation tower to remove the solid matter and part of the water in the fermentation liquid to obtain 4% ethanol, 10% acetone, 26% n-butanol and 60% water. The material is then separated by distillation to obtain ethanol, acetone and n-butanol, which consumes a lot of energy. For every 1 t of solvent produced in the industry, about 18 tons of steam is needed (Chen Yisheng, Chemical Industry Press, 1991), in which the separation stage consumes about 10 tons of steam, accounting for about 60%.
  • the main techniques for extracting and separating acetone butanol from microbial fermentation broth include adsorption, stripping, liquid-liquid extraction, pervaporation, and exclusion extraction (salting out).
  • the adsorption method mainly focuses on the use of diatomaceous earth, activated carbon, and polyvinylpyrrolidone as adsorbents.
  • Meagher et al. US, 5755967 [P], 1998) used diatomaceous earth to adsorb acetone butanol fermentation broth and found that diatomaceous earth has a high adsorption capacity for butanol and acetone. Unfortunately, there is a lack of desorption.
  • the adsorption method Compared with other methods, the adsorption method has higher cost, complicated operation, poor selectivity and is susceptible to contamination by fermentation broth, and has high energy consumption ( Biotechnology Advances , 2000, 18(7): 581-599).
  • the coupling separation between stripping and acetone butanol fermentation can improve the fermentation yield and the utilization rate of the substrate.
  • this process is affected by many factors such as carrier gas recovery rate, bubble size and defoaming agent, and the operation is relatively difficult.
  • the composite salt extractant can increase the partition coefficient and selectivity coefficient of butanol and acetone in two phases, and can achieve the purpose of separating and enriching butanol and acetone to some extent (Journal of South China University of Technology, 2003, 31:58-62) .
  • 1, 3-propanediol and 2,3-butanediol effectively separate the target product and the fermentation broth, and the separation effect is obvious (Proced in Engineering, 2008, 8 ( 5 ): 888-900 Process Biochemistry, 2009, 44, 112-117 ; Biotechnol. Lett, 2009, 31(3): 371-376 ; Separation and Purification Technology, 2009, 66:472-478 ).
  • the salting-out effect has obvious effects on the extraction of hydrophilic organic solvents, and also has a significant improvement effect on traditional organic extraction. Salting out and extraction combine to form a novel salting-out extraction technique, and the new aqueous two-phase extraction is A form of salting out extraction.
  • salting-out extraction technology has the characteristics of high partition coefficient, high yield and low solvent dosage.
  • salting-out extraction technology has a small amount of salt. The corrosion is weak, the inorganic salts and organic salts used can be recovered, and multi-stage salting-out extraction is carried out.
  • the invention provides a method for separating acetone and butanol from a fermentation liquid by a salting out extraction technology, and overcomes the current separation of acetone/butanol from the fermentation liquid.
  • the separation process is complicated, the separation ability is small, the overall yield is low, and the energy consumption is high.
  • the acetone butanol fermentation broth can be pretreated by flocculation, filtration, microfiltration or centrifugation to remove the cells to obtain a clear liquid, or a pre-treated fermentation stock solution, or a concentrated stock solution or serum, wherein The concentration range of acetone butanol is 4-500g/L.
  • Adding one or two or more salts to the above fermentation broth or clear solution the added salt is a solid or concentrated salt solution, and the salt saturation in the fermentation broth reaches 10% to 100% after adding the salt.
  • one or two or more kinds of extracting agents are added, and the volume ratio of the salt-containing fermentation liquid to the extracting agent is 1:0.1 to 1:5.
  • the inorganic salt may be sodium carbonate, potassium carbonate, sodium chloride, lithium chloride, ammonium sulfate, sodium sulfate, dipotassium hydrogen phosphate, disodium hydrogen phosphate, potassium phosphate, sodium phosphate, potassium dihydrogen phosphate or sodium dihydrogen phosphate. ;
  • the organic salt may be sodium acetate, potassium acetate, sodium citrate, potassium citrate, sodium oxalate or potassium oxalate.
  • the extracting agent may be methanol, ethanol, acetone, n-propanol, isopropanol, n-butanol, isobutanol, ethylene glycol, diethyl ether, methyl acetate or ethyl acetate.
  • the upper phase is a solvent phase or an extraction phase rich in acetone and butanol
  • the lower phase is a salt-rich phase or a raffinate phase.
  • the fermentation broth containing the cells is subjected to salting-out extraction to form a solid phase layer between the two phases, and is composed of cells, proteins, nucleic acids, polysaccharides, and the like.
  • the solvent is recovered from the solvent phase or the extract phase by distillation or rectification, and crude acetone and butanol and a solid salt are obtained; the concentrated salt solution obtained by distilling the salt-rich phase or the raffinate phase by distillation can be recycled or recycled.
  • the organic solvent causes the salt to crystallize.
  • the CO 2 waste gas discharged from the fermentation and separation process can be passed to the salt-rich phase after extraction, and the CO 2 reacts with the basic salt to form a lower solubility acid salt, and precipitates by precipitation, or It is filtered, centrifuged, or added to an organic solvent to dissolve crystals.
  • the acid salt to be formed may be sodium hydrogencarbonate, potassium hydrogencarbonate, ammonium hydrogencarbonate, potassium dihydrogen phosphate, sodium dihydrogen phosphate or the like.
  • the produced acid salt can be used as a by-product, or a high-concentration CO 2 can be recovered by heat decomposition, and an alkali inorganic salt can be recovered to realize energy-saving and emission reduction of the production of acetone butanol by the fermentation method.
  • the operation of salting out extraction can be intermittent or continuous, and a multi-stage extraction method can be adopted for a system with a small distribution coefficient.
  • the effects and benefits of the present invention overcome many of the drawbacks of the current process for extracting and separating acetone butanol from the microbial fermentation broth, simplifying the process, short separation time, cost reduction, and economic feasibility.
  • the specific performances are as follows: (1) The salting out extraction system consisting of single or composite extractant and inorganic salt/organic salt has better extraction effect on acetone and butanol, and solves the problem of low extraction efficiency of traditional extractant; extractant can The use of acetone, butanol, ethanol or a mixture thereof is advantageous for reducing the production cost; 2 the salting out extraction system can directly treat the fermentation broth, eliminating the step of separating the bacteria, and can extract a large amount of nucleic acid, protein, polysaccharide in the fermentation broth It eliminates the problem that the ultrafiltration waste power consumption is large, and the membrane needs to be cleaned, and the acetone butanol remaining in the bacterial concentrate is not recovered; 3 CO 2 recovery and emission reduction: absorption by the salt-rich phase The
  • the fermentation simulant was obtained by dissolving analytical grade butanol, acetone and ethanol in water, and the final concentrations were 21.08 g / L and 10.17 g, respectively. /L and 3.82g /L.
  • the fermentation broth was obtained by batch fermentation with Clostridium acetobutylicum L7 and glucose fermentation.
  • concentrations of butanol, acetone and ethanol were 13.51g / L, 6.47 g / L and 2.15 g / L, respectively.
  • the acetone is mixed and allowed to stand, and the system is divided into three phases.
  • the upper phase volume is 3.5 mL, and the content of butanol, acetone and ethanol is higher; the mesophase is mainly bacteria and protein, and the volume is 0.7 mL.
  • the lower phase has a higher salt concentration and a volume of 5 mL.
  • the removal rates of protein and bacteria were: 91.21% and 99.86% respectively; the partition coefficients of acetone and ethanol were: 67.58, 24.51 The ethanol recovery was 94.49%.
  • the presence of butanol was not detected in the lower phase, and almost all of it was present in the upper phase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

盐析 萃取发酵液中丙酮和丁醇的方法
技术领域
本发明属于生物工程技术领域,涉及到微生物发酵液的分离技术,特别涉及一种盐析 萃取发酵液中丙酮和丁醇的方法。
背景技术
丙酮和丁醇是 优良的有机溶剂和重要的化工原料。其中丁醇 可用作油漆和表面涂料的溶剂以及各种塑料、橡胶制品的生产,还可以生产醋酸丁酯、丙烯酸丁酯、丁醛、丁酸、丁胺和乳酸丁酯等化工产品,是继乙醇后的一种极具发展前景的新一代液体燃料。丙酮主要用作制造醋酸纤维素胶片薄膜、塑料和涂料的溶剂,溶剂之外的主要用途是生产甲基丙烯酸甲酯( MMA )、双酚 A 、醇醛缩合物等化工产品。 丙酮丁醇发酵是一项传统的大宗发酵,曾是仅次于酒精发酵的世界第二大发酵过程。我国从建国初期开始利用玉米粉进行丙酮丁醇发酵的工业化生产,形成了稳定的发酵工艺。由于石化工业的发展,丙酮丁醇发酵逐渐衰退。但是随着石化资源的耗竭和温室效应等环境问题的日益突出,利用可再生资源生产化工原料和能源物质受到高度重视。丙酮丁醇发酵重新显示出竞争优势,然而目前 丙酮丁醇发酵过程所得溶剂的总浓度较低,一般发酵后总溶剂(丙酮、丁醇和乙醇)的质量浓度在 15-20g/L 左右,致使溶剂的提取分离成本占总成本比例大,限制了丙酮和丁醇的 应用,丙酮丁醇发酵生产受到制约。自从发酵法生产丙酮丁醇成为可能以来,科研工作者一直努力探索一条既省事又可降低成本的有效的分离方法。
丙酮丁醇传统的提纯方法是使发酵液首先经过粗分离塔蒸馏提浓,去掉发酵液中的固形物和部分水 , 得到含乙醇 4% 、丙酮 10% 、正丁醇 26% 和水 60% 的物料,然后继续用蒸馏法分离得到乙醇、丙酮和正丁醇,能耗很大。工业上每生产 1t 溶剂,约需 18t 蒸汽( 陈騊声,化学工业出版社, 1991 ),其中 分离阶段约消耗 10 吨蒸汽,约占 60% 。 目前从微生物发酵液中提取分离丙酮丁醇的主要技术包括吸附、气提、液液萃取、渗透汽化、排斥萃取(盐析)等。吸附法 主要集中在使用硅藻土、活性炭、聚乙烯吡咯烷酮作为吸附剂。 Meagher 等( US , 5755967[P] , 1998 )利用硅藻土吸附丙酮丁醇发酵液,发现硅藻土对丁醇和丙酮具有较高的吸附能力,遗憾的是缺乏解吸的报道。相对于其他方法,吸附法成本较高、操作复杂、选择性差且易受发酵液污染,能耗较高( Biotechnology Advances , 2000 , 18(7) : 581-599 ) 。气提与丙酮丁醇发酵耦合分离能够提高发酵产率及底物的利用率,但该工艺受到载气回收速率、泡大小、消泡剂等众多因素的影响,操作相对困难。液液萃取目前研究较多的萃取剂有油醇 (Current Opinion in Biotechnology , 2007 , 18 : 220-227) 、苯甲酸苄酯、邻苯二甲酸二丁酯( Journal of Fermentation and Bioengineering , 1995 , 2(80) : 185-189 )、生物柴油(生物加工过程, 2007 , 5(1) : 27-33 )等,上述过程存在 分配系数偏低,回收率不高,存在乳化现象等缺点 。罗建泉等采用渗透汽化膜分离技术(化学工程, 2010, 38 ( 2 ): 43-46 )对丙酮丁醇体系进行了分离研究,分离对象为模拟发酵液。结果表明,渗透汽化法能实现对丁醇的高效分离浓缩,对丙酮的分离效果不明显。该工艺受到膜材料本身性质的影响比较大,分离性能和通量很大程度上取决于膜本身特性,膜寿命较短,在一定程度上限制了其应用范围 ( Appl. Microbiol. Biotechnol. , 1998 , 49 : 639-648 ) 。胡柏玲等人采用排斥萃取分离方法研究了各种盐类对丙酮丁醇模拟发酵液的分离效果。结果表明复合盐萃取剂可以增大丁醇和丙酮在两相的分配系数和选择系数,在一定程度上可以达到分离提浓丁醇和丙酮的目的(华南理工大学学报, 2003, 31:58-62 )。
近几年一些研究者在进行溶剂析出结晶研究时发现,在适当温度条件下 , 如果体系中无机盐、有机溶剂和水的浓度适当 , 这类体系中的盐可能不会析晶 , 而是出现液液分相现象。如果所用有机溶剂是亲水的低分子物质,如甲醇、乙醇、丙酮等,就可以形成一种新型的双水相萃取体系。与传统的高分子聚合物双水相体系相比 , 这种新型的双水相体系分相更清晰 , 成本更低 , 萃取相不含黏度大、难处理的聚合物。尽管这方面研究在国内外刚刚起步 , 但已表现出良好的分离性能 , 如 Louwrier 用磷酸氢二钾 / 乙醇体系萃取牛血清蛋白、 α- 酪蛋白、核糖核酸酶等生物质大分子( Biotechnology Techniques, 1998, 12 (5): 363 -365 ) , 李全民 、高云涛等人用丙酮 / 氯化钠体系萃取金属络合物或金属离子(应用化学 ,2001 ,18 (3) :241 - 243 ;分析测试学报 , 2002, 21 (3) :75 - 77 )均得到相当满意的结果。本研究团队采用新型的双水相体系分离提取发酵液中的 1 , 3- 丙二醇和 2 , 3- 丁二醇,有效地实现了目标产物和发酵液的分离,分离效果明显(过程工程学报, 2008 , 8 ( 5 ): 888-900 ; Process Biochemistry, 2009, 44, 112-117 ; Biotechnol. Lett, 2009, 31(3): 371-376 ; Separation and Purification Technology, 2009, 66:472-478 )。实际上,盐析效应既对亲水性有机溶剂的萃取有明显效果,对传统的有机萃取也有显著的改善效果,盐析与萃取结合形成新型的盐析萃取技术,而新型双水相萃取是盐析萃取的一种形式。到目前为止,盐析萃取体系对丙酮 - 丁醇 - 水体系的分离尚未见文献报道。与传统的有机溶剂萃取相比,盐析萃取技术具有分配系数高、收率高、溶剂用量少等特点;与传统的盐析或排斥萃取相比,盐析萃取技术盐用量小,对设备的腐蚀性弱,所用无机盐和有机盐可回收,进行多级盐析萃取。与传统的 PEG/ 无机盐双水相体系相比,它具有分配系数高、分相快、溶剂和产物易回收、廉价等特点;与其他分离方法相比,它具有操作简单、能耗低、效率高等优势,而且可以直接从发酵液中提取丙酮和丁醇,节省了固液分离步骤。
发明内容
本发明提供了一种盐析萃取技术从发酵液中分离丙酮和丁醇的方法,克服了目前从发酵液中分离丙酮 / 丁醇存在的 分离工艺复杂、分离能力小、总体收率低和能耗高等 问题 。
本发明采用的技术方案:
丙酮丁醇发酵液可以用絮凝、过滤、微滤或离心的方法进行预处理,除去菌体得到清液,也可以是未经预处理的发酵原液,或者是经过浓缩的原液或清液,其中丙酮丁醇的浓度范围为 4-500g/L 。向上述发酵液或清液中添加一种或两种以上盐,所加盐为固体或浓盐溶液,加盐后发酵液中盐的饱和度达到 10% ~ 100% ;然后加入一种或两种以上萃取剂,含盐发酵液和萃取剂的体积比为 1:0.1 ~ 1:5 。
无机盐可以是碳酸钠、碳酸钾、氯化钠、氯化锂、硫酸铵、硫酸钠、磷酸氢二钾、磷酸氢二钠、磷酸钾、磷酸钠、磷酸二氢钾或磷酸二氢钠等;
有机盐可以是醋酸钠、醋酸钾、柠檬酸钠、柠檬酸钾、草酸钠或草酸钾等。
萃取剂可以是甲醇、乙醇、丙酮、正丙醇、异丙醇、正丁醇、异丁醇、乙二醇、乙醚、乙酸甲酯或乙酸乙酯等。
静置至分相,上相即为富含丙酮和丁醇的溶剂相或萃取相,下相为富盐相或萃余相。 含有菌体的发酵液经盐析萃取后在两相之间形成固相层,由细胞、蛋白、核酸、多糖等组成。 用蒸馏或精馏法从溶剂相或萃取相中回收溶剂,并得到丙酮和丁醇粗品和固体盐;富盐相或萃余相经蒸馏浓缩得到的浓盐液可以循环使用,也可以加入回收的有机溶剂使盐结晶析出。对于碱性盐来说,可以 将发酵和分离过程排出的CO2废气通入萃取后的富盐相, CO2与碱性盐反应生成溶解度较低的酸式盐,以沉淀的方式析出,或经过滤、离心回收,或加入有机溶剂溶析结晶。所生成的酸式盐可以为碳酸氢钠、碳酸氢钾、碳酸氢铵、磷酸二氢钾、磷酸二氢钠等。所生成的酸式盐可作为副产物加以利用,也可以通过加热分解的方式回收高浓度的CO2,并回收碱性无机盐,实现 发酵法生产丙酮丁醇的节能减排。
盐析萃取的操作方式可以是间歇的或连续的,对于分配系数较小的体系可采用多级萃取方式。
本发明的效果和益处克服了目前从微生物发酵液中提取分离丙酮丁醇工艺存在的诸多弊端,使工艺得以简化,分离时间短,成本降低,经济可行。具体表现在: ①由 单一或复合萃取剂和无机盐 / 有机盐组成的盐析萃取体系对丙酮和丁醇有较好的萃取效果,解决了传统萃取剂萃取效率较低的难题;萃取剂可以选用丙酮、丁醇、乙醇或它们的混合物,有利于降低生产成本; ②该盐析萃取体系 可以直接处理发酵液,免除了菌体分离步骤,并且可以将发酵液中大量的核酸、蛋白、多糖除掉,解决了超滤除杂动力消耗较大、且需要对膜进行清洗、菌体浓缩液中残留较多的丙酮丁醇无法回收等问题; ③ CO2 回收减排: 利用富盐相吸收生产过程中产生的二氧化碳既可以有效地回收无机盐,又可以回收大部分的二氧化碳,解决了 盐析萃取体系中盐回收困难和生产过程中CO 2大量排放的问题。
具体实施方式
以下结合技术方案详细叙述本发明的具体实施例。
发酵模拟液是将分析级的丁醇、丙酮和乙醇溶入水中获得,其最终浓度分别为 21.08g /L 、 10.17g /L 和 3.82g /L 。
发酵液是采用丙酮丁醇梭菌 Clostridium acetobutylicum L7 批式流加葡萄糖发酵得到的,其中丁醇、丙酮和乙醇的浓度分别为 13.51g /L 、 6.47 g /L 和 2.15 g /L 。
实施例 1
磷酸氢二钾 / 丙酮盐析萃取发酵模拟液中的丁醇和乙醇
取 5g 发酵模拟液,加入 2.5g 磷酸氢二钾,待盐溶解后再加入 2.5g 的丙酮,混合、静置,体系分为两相。上相体积为 4.2mL ,其中丁醇、丙酮和乙醇含量较高;下相中盐浓度较高,体积为 4.3mL 。丁醇、丙酮、乙醇的分配系数分别为: 391.84 、 58.90 、 16.07 ;丁醇和乙醇回收率分别为 99.74% 和 94.01% 。
实施例 2
磷酸氢二钾 / 乙醇盐析萃取发酵模拟液中的丙酮和丁醇
取 5g 发酵模拟液,加入 2.5g 磷酸氢二钾,待盐溶解后再加入 2.5g 的 95% 乙醇,混合、静置,体系分为两相。上相体积为 4.9mL ,其中丁醇、丙酮和乙醇含量较高;下相中盐浓度较高,体积为 4mL 。丁醇、丙酮、乙醇的分配系数分别为: 25.03 、 71.29 、 14.76 ;丁醇和丙酮回收率分别为 96.84% 和 98.87% 。
实施例 3
碳酸钠 / 丙酮盐析萃取发酵模拟液中的丁醇和乙醇
取 6g 发酵模拟液,加入 1.5g 碳酸钠,待盐溶解后再加入 2.5g 的丙酮,混合、静置,体系分为两相。上相体积为 4.9mL ,其中丁醇、丙酮和乙醇含量较高;下相中盐浓度较高,体积为 4.5mL 。丁醇、丙酮、乙醇的分配系数分别为: 55.70 、 30.34 、 8.56 ;丁醇和乙醇回收率分别为 98.38% 和 90.31% 。
实施例 4
碳酸钠 / 乙醇盐析萃取发酵模拟液中的丙酮和丁醇
取 6g 发酵模拟液,加入 1.5g 碳酸钠,待盐溶解后再加入 2.5g 的 95% 乙醇,混合、静置,体系分为两相。上相体积为 5.1mL ,其中丁醇、丙酮和乙醇含量较高;下相中盐浓度较高,体积为 3.9mL 。丁醇、丙酮、乙醇的分配系数分别为: 35.06 、 65.96 、 13.82 ;丁醇和丙酮回收率分别为 97.87% 和 98.85% 。
实施例 5
磷酸氢二钾 / 丙酮盐析萃取发酵液中的丁醇和乙醇
取 5g 发酵液,加入 3g 磷酸氢二钾,待盐溶解后再加入 2g 的丙酮,混合、静置,体系分为三相。上相体积为 3.5mL ,其中丁醇、丙酮和乙醇含量较高;中间相主要为菌体和蛋白,体积为 0.7mL ;下相中盐浓度较高,体积为 5mL 。蛋白和菌体的去除率分别为: 91.21% 、 99.86% ;丙酮、乙醇的分配系数分别为: 67.58 、 24.51 ;乙醇回收率为 94.49% 。下相未检测到丁醇的存在,几乎全部存在于上相。
实施例 6
碳酸钠 / 丙酮盐析萃取发酵液中的丁醇和乙醇
取 6g 发酵模拟液,加入 1.8g 碳酸钠,待盐溶解后再加入 2g 的丙酮,混合、静置,体系分为两相。上相体积为 3.8mL ,其中丁醇、丙酮和乙醇含量较高;中间相主要为菌体和蛋白,体积为 0.7mL ;下相中盐浓度较高,体积为 5.1mL 。蛋白和菌体的去除率为: 87.13% 、 99.92% ;丁醇、丙酮、乙醇的分配系数分别为: 32.17 、 35.79 、 2.59 ;丁醇和乙醇回收率分别为 95.99% 和 91.21% 。

Claims (1)

1. 一种盐析萃取发酵液中丙酮和丁醇的方法 ,其特征是向丙酮丁醇发酵液中 添加盐和萃取剂;加盐后发酵液中盐的饱和度达到 10% ~ 100% , 萃取剂为醇类或酮类;含盐发酵液与萃取剂的体积比为 1:0.1 ~ 1:5 。
2. 根据权利要求 1 所述的盐析萃取发酵液中丙酮和丁醇的方法,其特征是其中的发酵液是未经预处理含有菌体的发酵液、未经预处理含有菌体的浓缩液、去除菌体的清液或去除菌体的浓缩液,发酵液中丙酮和丁醇的浓度为 4-500 g/L 。
3. 根据权利要求 1 或 2 所述的盐析萃取发酵液中丙酮和丁醇的方法,其特征是所述的盐是一种或两种以上盐。
4. 根据权利要求 1 或 2 所述的盐析萃取发酵液中丙酮和丁醇的方法,其特征是所述的萃取剂是一种或两种以上萃取剂。
5. 根据权利要求 3 所述的盐析萃取发酵液中丙酮和丁醇的方法,其特征是 所述的盐是碳酸钠、碳酸钾、氯化钠、氯化锂、硫酸铵、硫酸钠、磷酸氢二钾、磷酸氢二钠、磷酸钾、磷酸钠、磷酸二氢钾、磷酸二氢钠、醋酸钠、醋酸钾、柠檬酸钠、柠檬酸钾、草酸钠或草酸钾。
6. 根据权利要求 4 所述的盐析萃取发酵液中丙酮和丁醇的方法,其特征是所述的 萃取剂为甲醇、乙醇、丙酮、正丙醇、异丙醇、正丁醇、异丁醇、乙二醇、乙醚、乙酸甲酯或乙酸乙酯。
7. 根据权利要求 1 所述的盐析萃取发酵液中丙酮和丁醇的方法,其特征是盐析萃取的操作方式是间歇的或连续的;对于分配系数较小的体系采用多级萃取方式。
8. 根据权利要求 3 所述的盐析萃取发酵液中丙酮和丁醇的方法,其特征是所述盐为固体或浓盐溶液。
PCT/CN2010/080286 2010-07-27 2010-12-27 盐析萃取发酵液中丙酮和丁醇的方法 WO2012013004A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/812,133 US8779209B2 (en) 2010-07-27 2010-12-27 Method for salting-out extraction of acetone and butanol from a fermentation broth

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010238187.0 2010-07-27
CN2010102381870A CN101898945B (zh) 2010-07-27 2010-07-27 盐析萃取发酵液中丙酮和丁醇的方法

Publications (1)

Publication Number Publication Date
WO2012013004A1 true WO2012013004A1 (zh) 2012-02-02

Family

ID=43224920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080286 WO2012013004A1 (zh) 2010-07-27 2010-12-27 盐析萃取发酵液中丙酮和丁醇的方法

Country Status (3)

Country Link
US (1) US8779209B2 (zh)
CN (1) CN101898945B (zh)
WO (1) WO2012013004A1 (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175156A1 (en) 2016-04-07 2017-10-12 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides useful as protein modulators
WO2017175147A1 (en) 2016-04-07 2017-10-12 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides useful as protein modulators
WO2018154520A1 (en) 2017-02-27 2018-08-30 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors
WO2018225035A1 (en) 2017-06-09 2018-12-13 Glaxosmithkline Intellectual Property Development Limited Combination therapy with icos agonist and ox40 agonist to treat cancer
WO2018225034A1 (en) 2017-06-09 2018-12-13 Glaxosmithkline Intellectual Property Development Limited Combination therapy with icos agonist and ox40 agonist to treat cancer
WO2018225033A1 (en) 2017-06-09 2018-12-13 Glaxosmithkline Intellectual Property Development Limited Combination therapy
WO2019053613A2 (en) 2017-09-14 2019-03-21 Glaxosmithkline Intellectual Property Development Limited POLY THERAPY FOR THE TREATMENT OF CANCER
WO2019069270A1 (en) 2017-10-05 2019-04-11 Glaxosmithkline Intellectual Property Development Limited GENERATOR STIMULATOR MODULATORS (STING) INTERFERON
WO2019069269A1 (en) 2017-10-05 2019-04-11 Glaxosmithkline Intellectual Property Development Limited INTERFERON GENE STIMULATOR MODULATORS USEFUL IN THE TREATMENT OF HIV
WO2019229613A1 (en) 2018-05-31 2019-12-05 Glaxosmithkline Intellectual Property Development Limited Combined therapy with icos binding proteins and argininemethyltransferase inhibitors
WO2019229614A1 (en) 2018-05-31 2019-12-05 Glaxosmithkline Intellectual Property Development Limited Combination of a type ii protein arginine methyltransferase inhibitor and an icos binding protein to treat cancer
WO2020031087A1 (en) 2018-08-06 2020-02-13 Glaxosmithkline Intellectual Property Development Limited Combination therapy
WO2020086476A1 (en) 2018-10-22 2020-04-30 Glaxosmithkline Intellectual Property Development Limited Dosing
WO2020232378A1 (en) 2019-05-16 2020-11-19 Silicon Swat, Inc. Benzo[b][1,8]naphthyridine acetic acid derivatives and methods of use
WO2020232375A1 (en) 2019-05-16 2020-11-19 Silicon Swat, Inc. Oxoacridinyl acetic acid derivatives and methods of use
WO2021018941A1 (en) 2019-07-31 2021-02-04 Glaxosmithkline Intellectual Property Development Limited Methods of treating cancer
WO2021043961A1 (en) 2019-09-06 2021-03-11 Glaxosmithkline Intellectual Property Development Limited Dosing regimen for the treatment of cancer with an anti icos agonistic antibody and chemotherapy
WO2021046293A1 (en) 2019-09-06 2021-03-11 Glaxosmithkline Intellectual Property Development Limited Dosing regimen for the treatment of cancer with an anti icos agonistic antibody and tremelimumab
WO2021209357A1 (en) 2020-04-14 2021-10-21 Glaxosmithkline Intellectual Property Development Limited Combination treatment for cancer involving anti-icos and anti-pd1 antibodies, optionally further involving anti-tim3 antibodies
WO2021209358A1 (en) 2020-04-14 2021-10-21 Glaxosmithkline Intellectual Property Development Limited Combination treatment for cancer based upon an icos antibody and a pd-l1 antibody tgf-beta-receptor fusion protein
WO2021209356A1 (en) 2020-04-14 2021-10-21 Glaxosmithkline Intellectual Property Development Limited Combination treatment for cancer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101898945B (zh) * 2010-07-27 2013-05-08 大连理工大学 盐析萃取发酵液中丙酮和丁醇的方法
CN103524315B (zh) * 2013-09-18 2014-12-31 山东省食品发酵工业研究设计院 一种加盐萃取蒸馏分离发酵液中3-羟基丁酮的方法
CN104086391B (zh) * 2014-06-16 2016-01-06 华南理工大学 乙醇、丙酮和正丁醇的盐析复合精馏分离回收的方法及装置
CN105016971B (zh) * 2014-11-06 2018-03-02 太仓意发石化矿材检测有限公司 一种萃取分离发酵酒精中异丙醇的方法
MX2022015218A (es) * 2020-06-01 2023-01-05 Magna Imperio Systems Corp Solucion de precipitacion salina de cristalizador de liquidos.
CN113533609B (zh) * 2021-07-06 2022-06-21 河北大学 一种简单分析塑料制品中常见双酚类物质迁移量的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1268559A1 (ru) * 1985-04-09 1986-11-07 Воронежский технологический институт Способ выделени ацетона,этанола и бутанола из бражного дистилл та
CN101012152A (zh) * 2007-01-24 2007-08-08 大连理工大学 一种从发酵液中分离2,3-丁二醇的双水相萃取方法
CN101898945A (zh) * 2010-07-27 2010-12-01 大连理工大学 盐析萃取发酵液中丙酮和丁醇的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5755967A (en) 1996-05-22 1998-05-26 Meagher; Michael M. Silicalite membrane and method for the selective recovery and concentration of acetone and butanol from model ABE solutions and fermentation broth

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1268559A1 (ru) * 1985-04-09 1986-11-07 Воронежский технологический институт Способ выделени ацетона,этанола и бутанола из бражного дистилл та
CN101012152A (zh) * 2007-01-24 2007-08-08 大连理工大学 一种从发酵液中分离2,3-丁二醇的双水相萃取方法
CN101898945A (zh) * 2010-07-27 2010-12-01 大连理工大学 盐析萃取发酵液中丙酮和丁醇的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HU BAILING ET AL.: "Separation of Butanol-Acetone-Water System Using Repulsive Extraction", JOURNAL OF SOUTH CHINA UNIVERSITY OF TECHNOLOGY, vol. 31, no. 13, December 2003 (2003-12-01) *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175156A1 (en) 2016-04-07 2017-10-12 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides useful as protein modulators
WO2017175147A1 (en) 2016-04-07 2017-10-12 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides useful as protein modulators
EP4032885A1 (en) 2016-04-07 2022-07-27 GlaxoSmithKline Intellectual Property Development Limited Heterocyclic amides useful as protein modulators
WO2018154520A1 (en) 2017-02-27 2018-08-30 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors
WO2018225035A1 (en) 2017-06-09 2018-12-13 Glaxosmithkline Intellectual Property Development Limited Combination therapy with icos agonist and ox40 agonist to treat cancer
WO2018225034A1 (en) 2017-06-09 2018-12-13 Glaxosmithkline Intellectual Property Development Limited Combination therapy with icos agonist and ox40 agonist to treat cancer
WO2018225033A1 (en) 2017-06-09 2018-12-13 Glaxosmithkline Intellectual Property Development Limited Combination therapy
WO2019053613A2 (en) 2017-09-14 2019-03-21 Glaxosmithkline Intellectual Property Development Limited POLY THERAPY FOR THE TREATMENT OF CANCER
WO2019069269A1 (en) 2017-10-05 2019-04-11 Glaxosmithkline Intellectual Property Development Limited INTERFERON GENE STIMULATOR MODULATORS USEFUL IN THE TREATMENT OF HIV
WO2019069270A1 (en) 2017-10-05 2019-04-11 Glaxosmithkline Intellectual Property Development Limited GENERATOR STIMULATOR MODULATORS (STING) INTERFERON
WO2019229613A1 (en) 2018-05-31 2019-12-05 Glaxosmithkline Intellectual Property Development Limited Combined therapy with icos binding proteins and argininemethyltransferase inhibitors
WO2019229614A1 (en) 2018-05-31 2019-12-05 Glaxosmithkline Intellectual Property Development Limited Combination of a type ii protein arginine methyltransferase inhibitor and an icos binding protein to treat cancer
WO2020031087A1 (en) 2018-08-06 2020-02-13 Glaxosmithkline Intellectual Property Development Limited Combination therapy
WO2020086476A1 (en) 2018-10-22 2020-04-30 Glaxosmithkline Intellectual Property Development Limited Dosing
WO2020086479A1 (en) 2018-10-22 2020-04-30 Glaxosmithkline Intellectual Property Development Limited Dosing
WO2020232378A1 (en) 2019-05-16 2020-11-19 Silicon Swat, Inc. Benzo[b][1,8]naphthyridine acetic acid derivatives and methods of use
WO2020232375A1 (en) 2019-05-16 2020-11-19 Silicon Swat, Inc. Oxoacridinyl acetic acid derivatives and methods of use
WO2021018941A1 (en) 2019-07-31 2021-02-04 Glaxosmithkline Intellectual Property Development Limited Methods of treating cancer
WO2021043961A1 (en) 2019-09-06 2021-03-11 Glaxosmithkline Intellectual Property Development Limited Dosing regimen for the treatment of cancer with an anti icos agonistic antibody and chemotherapy
WO2021046293A1 (en) 2019-09-06 2021-03-11 Glaxosmithkline Intellectual Property Development Limited Dosing regimen for the treatment of cancer with an anti icos agonistic antibody and tremelimumab
WO2021046289A1 (en) 2019-09-06 2021-03-11 Glaxosmithkline Intellectual Property Development Limited Dosing regimen for the treatment of cancer with an anti icos agonistic antibody and ipilimumab
WO2021209357A1 (en) 2020-04-14 2021-10-21 Glaxosmithkline Intellectual Property Development Limited Combination treatment for cancer involving anti-icos and anti-pd1 antibodies, optionally further involving anti-tim3 antibodies
WO2021209358A1 (en) 2020-04-14 2021-10-21 Glaxosmithkline Intellectual Property Development Limited Combination treatment for cancer based upon an icos antibody and a pd-l1 antibody tgf-beta-receptor fusion protein
WO2021209356A1 (en) 2020-04-14 2021-10-21 Glaxosmithkline Intellectual Property Development Limited Combination treatment for cancer

Also Published As

Publication number Publication date
US20130190536A1 (en) 2013-07-25
CN101898945B (zh) 2013-05-08
US8779209B2 (en) 2014-07-15
CN101898945A (zh) 2010-12-01

Similar Documents

Publication Publication Date Title
WO2012013004A1 (zh) 盐析萃取发酵液中丙酮和丁醇的方法
Li et al. Extraction of 1, 3-propanediol from glycerol-based fermentation broths with methanol/phosphate aqueous two-phase system
CN101979368B (zh) 一种盐析萃取发酵液中有机酸的方法
CN101748161B (zh) 一种厌氧发酵纯化丁二酸的工艺
Li et al. A novel and environment-friendly bioprocess of 1, 3-propanediol fermentation integrated with aqueous two-phase extraction by ethanol/sodium carbonate system
CN1799996A (zh) 一种湿法磷酸的净化方法
JP2012531209A (ja) 希釈水溶液からの高級アルコールの回収
CN101665446A (zh) 辣椒素和辣椒红色素的提取方法
US20210122695A1 (en) Method for linkage recovery of organic acid in aqueous organic acid solution
US9562242B2 (en) Method for reusing water in fermented butanedioic acid separation process
CN101012151B (zh) 一种从发酵液中分离1,3-丙二醇的双水相萃取方法
CN102911854B (zh) 一种分离纯化丁醇和丙酮的装置及方法
CN108017514B (zh) 两步盐析萃取分离发酵液中1,3-丙二醇、乙酸和丁酸的方法
CN101735012A (zh) 一种分离提取2,3-丁二醇的方法
CN104556495B (zh) 1,3‑丙二醇发酵液脱盐树脂再生废液的处理方法
CN105152447B (zh) 一种治理丙烯酸废水及回收乙酸钠的方法
CA1241025A (en) Recovery of alcohols
CN101012152B (zh) 一种从发酵液中分离2,3-丁二醇的双水相萃取方法
CN104556496A (zh) 一种发酵液脱盐树脂再生废液的处理方法
CN102952008A (zh) 一种从厌氧发酵液中提取丁二酸的方法
CN105566096A (zh) 一种从微生物发酵液中分离纯化丁二酸的工艺
CN105503578A (zh) 一种用萃取剂从发酵液中提取丁二酸的方法
CN105712842A (zh) 一种发酵液中1,3-丙二醇的分离提取方法
CN102358716B (zh) 一种从发酵液中提取琥珀酸的方法
CN210237359U (zh) 一种从糠醛废水中分离硫酸、醋酸和糠醛的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13812133

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10855231

Country of ref document: EP

Kind code of ref document: A1