WO2012011233A1 - Microwave heating device - Google Patents

Microwave heating device Download PDF

Info

Publication number
WO2012011233A1
WO2012011233A1 PCT/JP2011/003831 JP2011003831W WO2012011233A1 WO 2012011233 A1 WO2012011233 A1 WO 2012011233A1 JP 2011003831 W JP2011003831 W JP 2011003831W WO 2012011233 A1 WO2012011233 A1 WO 2012011233A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
microwave
waveguide
chamber
antenna
Prior art date
Application number
PCT/JP2011/003831
Other languages
French (fr)
Japanese (ja)
Inventor
近藤 龍太
吉野 浩二
福田 祐
西村 誠
澁谷 昌樹
大介 細川
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45496670&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012011233(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180030245.3A priority Critical patent/CN102960060B/en
Priority to JP2012525302A priority patent/JP5884093B2/en
Priority to EP11809411.9A priority patent/EP2597930B1/en
Publication of WO2012011233A1 publication Critical patent/WO2012011233A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/642Cooling of the microwave components and related air circulation systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6473Aspects related to microwave heating combined with other heating techniques combined with convection heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6482Aspects related to microwave heating combined with other heating techniques combined with radiant heating, e.g. infrared heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/701Feed lines using microwave applicators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • H05B6/725Rotatable antennas

Definitions

  • the present invention relates to a microwave heating apparatus that radiates microwaves to an object to be heated and performs dielectric heating, and more particularly to a cooking device that cooks food that is an object to be heated by dielectric heating.
  • the basic configuration of a heating cooker using microwaves typified by a microwave oven is a heating chamber shielded so that microwaves do not leak outside, a magnetron that generates microwaves, and a magnetron And a waveguide for transmitting the microwave generated in the heating chamber to the heating chamber.
  • the components other than the heating chamber, the magnetron, and the waveguide various configurations are used according to the method according to the purpose. For example, there are a lateral feeding method, a lower feeding method, an upper feeding method, a vertical feeding method, and the like depending on which direction the microwave is incident on the heating chamber, and the configuration differs depending on these feeding methods. .
  • the food itself that is the object to be heated needs to be rotated in the heating chamber so that the distribution of microwaves is not biased.
  • a so-called turntable method is used in the lateral feeding method.
  • an upper power feeding method in which microwaves are incident from the ceiling surface and a vertical power feeding method in which microwaves are incident from both the bottom surface and the ceiling surface, etc.
  • the antenna that is the power feeding unit provided at the coupling portion between the waveguide and the heating chamber is rotated to radiate the microwave.
  • the so-called rotating antenna method for rotating the antenna in this way is used for the lower feeding method, the upper feeding method, and the vertical feeding method.
  • the power supply method to be selected in the microwave oven is determined in consideration of not only the microwave oven function but also other functions such as an oven function, a grill function, and a steam function.
  • an oven function e.g., a grill function
  • a steam function e.g., a steam function
  • the heating chamber becomes hot, and thus a dish on which food to be heated is placed.
  • a plate made of a conductor having high heat resistance is used.
  • the microwave is reflected by the conductive dish, so that the microwave in the heating chamber is different from the case where a dielectric dish such as glass or ceramic that transmits microwaves is used. Wave distribution is different.
  • a conductor net may be used instead of a conductor dish.
  • microwaves pass when the mesh is increased to some extent compared to the wavelength, and therefore the microwave distribution in the heating chamber changes depending on the net shape.
  • the food as the object to be heated is a dielectric, so that microwaves can penetrate into the food and heat the food. Is possible.
  • the microwave oven it is possible to set fire inside the food in a short time. Therefore, by cooperating the function of the microwave oven that heats the inside of the food and the function of the heater that bakes the surface of the food, it becomes possible to bake large foods or frozen foods in a short time.
  • the microwave from the antenna serving as the feeding unit heats the heater
  • the apparatus size of the heating cooker must be increased in order to dispose the microwave feeding structure and the power supply structure to the heater so as not to overlap each other.
  • the microwave power supply configuration and the heater power supply configuration coexist, there is a problem that it is difficult to achieve both improvement in heating efficiency and downsizing of the apparatus.
  • FIG. 10 is a front cross-sectional view showing a schematic configuration when a heater power supply configuration having a heater is further provided for a cooking device in which a general microwave power feeding configuration is provided on the upper side of the heating chamber.
  • a heating chamber 101 for dielectrically heating food that is an object to be heated is provided inside a casing 100 that constitutes the appearance of the heating cooker.
  • a heater 102 is provided at a vertical position inside the heating chamber 101.
  • a microwave power feeding configuration such as a magnetron 103, a waveguide 104, a rotating antenna 105, and a motor 106 is disposed.
  • the conventional cooking device configured as described above has a structure in which heat released from the heating chamber 101 is conducted through the waveguide 104 and is transmitted to the magnetron 103, and the magnetron is easily heated. As a result, in the conventional cooking, the temperature of the magnetron 103 is increased, and the microwave heating efficiency by the magnetron 103 is reduced. Further, in the conventional cooking device, since a part of the microwave radiated from the rotating antenna 105 to the inside of the heating chamber 101 heats the upper heater 102, there is a problem that the heating efficiency by the microwave is lowered. Was. Furthermore, since a microwave power feeding configuration is disposed in the space above the heating chamber 101, a considerably large space is required above the heating chamber 101, and the size of the housing 100 has to be large. There was also a problem.
  • the present invention provides a microwave heating apparatus with high heating efficiency by suppressing the temperature rise of the magnetron due to heat from the heating chamber, and at the same time, the microwave power feeding configuration disposed on the upper side of the heating chamber is made compact.
  • An object is to provide a small microwave heating apparatus.
  • the microwave heating apparatus is A heating chamber for storing an object to be heated, for radiating microwaves to the object to be heated and for high-frequency heating; A microwave generator for generating microwaves for high-frequency heating of the object to be heated in the heating chamber; A horizontal transmission path bent at right angles; and a vertical transmission path.
  • the microwave generator is horizontally connected to the vertical transmission path, and a microwave is transmitted from the microwave generator to the horizontal transmission path.
  • a wave tube A power feeding unit having an antenna unit coupled to the horizontal transmission path and radiating microwaves transmitted through the waveguide into the heating chamber;
  • An antenna that is provided on the ceiling surface of the heating chamber, reflects a microwave radiated in a horizontal direction from the antenna unit, and is opened at a lower end so that the microwave from the antenna unit is radiated into the heating chamber.
  • a room, and The waveguide is configured such that a horizontal transmission distance in the horizontal transmission path is longer than 1 ⁇ 2 of a microwave wavelength transmitted through the waveguide.
  • the microwave heating device of the first aspect of the present invention configured as described above, the horizontal transmission distance from the bending position in the waveguide to the feeding port has the microwave wavelength transmitted through the waveguide.
  • the microwave heating apparatus Since it is longer than 1 ⁇ 2, the coupling of transmission between the microwave generation unit and the power feeding unit is stable, and heating can be maintained with high efficiency even when the operation state such as a load change fluctuates.
  • heat transfer from the heating chamber to the magnetron is suppressed by the waveguide having a long horizontal transmission path.
  • a microwave generator for example, a magnetron is horizontally connected horizontally to the vertical transmission path of the waveguide. The size in the vertical direction can be made compact.
  • the microwave heating apparatus is provided with a radiant heating section that heats an object to be heated by radiant heat from above in the heating chamber according to the first aspect.
  • the radiation heating unit is disposed in a region other than directly below the antenna room. According to the microwave heating apparatus of the second aspect of the present invention configured as described above, the microwave radiated from the power feeding unit does not directly heat the radiant heating unit, and heating loss is prevented. Thus, the heating efficiency is improved.
  • a convection heating unit that circulates hot air inside the heating chamber is provided to heat the object to be heated. It has been.
  • the microwave heating device of the third aspect of the present invention configured as described above, heat transfer from the heating chamber to the magnetron is suppressed, and heat treatment with hot air in the heating chamber reduces heating loss. It can prevent and can carry out with high heating efficiency.
  • the antenna section of the power feeding section according to the first to third aspects rotates inside the antenna chamber, and with respect to the inside of the heating chamber.
  • the microwave is agitated and radiated.
  • the microwave heating device of the 4th mode concerning the present invention constituted as mentioned above, it becomes possible to radiate a microwave uniformly to the whole heating chamber.
  • the vertical transmission path extends downward with respect to the horizontal transmission path, and the heating A feeding port of the horizontal transmission path is coupled to an opening at an upper end portion of the antenna chamber formed to protrude upward from the ceiling surface of the chamber.
  • the antenna chamber protruding from the heating chamber is configured to be offset to the vertical dimension of the waveguide. For this reason, there is no wasted space in the microwave power feeding configuration, and compactness can be achieved.
  • the microwave heating device of the fifth aspect of the present invention since the waveguide is connected to the heating chamber via the antenna chamber, the contact portion between the waveguide and the heating chamber In addition, since the heat transmitted from the heating chamber to the microwave generation unit is reduced, the heating efficiency by the microwave generation unit is improved.
  • the vertical transmission path extends upward with respect to the horizontal transmission path, and the heating A feed port of the horizontal transmission path is coupled to an opening at an upper end portion of the antenna chamber formed so as to protrude upward from the ceiling surface of the chamber, and the microwave from the microwave generation unit horizontally connected to the vertical transmission path A wave is radiated from the power feeding unit into the heating chamber via the horizontal transmission path.
  • the microwave heating device according to the sixth aspect of the present invention configured as described above can construct a compact microwave power feeding configuration.
  • a heat insulating portion is provided in a space between the waveguide and the heating chamber outside the antenna chamber in the first to fourth aspects. ing.
  • the microwave heating device of the seventh aspect of the present invention configured as described above, the amount of heat transferred from the heating chamber during high-temperature heating to the microwave generation unit via the waveguide is greatly suppressed. Thus, the output efficiency of the microwave generation unit can be improved.
  • the antenna chamber according to the first to fourth aspects includes a shielding wall protruding downward from the ceiling surface of the heating chamber,
  • the said radiation heating part is arrange
  • the microwave from the power feeding unit does not directly heat the radiant heating unit, and loss in the radiant heating unit is reduced.
  • the object to be heated can be heated with high efficiency, and the size in the height direction of the entire apparatus is reduced, resulting in a compact configuration.
  • a through-hole having a diameter at which microwaves do not leak is formed on the opposing surfaces of the waveguide according to the first to fourth aspects, and cooling is performed.
  • the cooling air formed by the fan is configured to pass through the through hole.
  • a ventilation region having a plurality of through holes having a diameter at which microwaves do not leak is formed in the waveguide according to the first to fourth aspects.
  • the microwave heating device of the tenth aspect of the present invention configured as described above, the heat transfer resistance on the wall surface of the waveguide increases, and the cooling air flows through the through hole in the ventilation region.
  • the wave tube is cooled, and the heat transmitted from the heating chamber to the microwave generation unit via the waveguide is reduced. As a result, the microwave heating efficiency is improved by the microwave generator.
  • the vertical transmission path extends downward with respect to the horizontal transmission path, and the heating A feed port of the horizontal transmission path is coupled to an opening at an upper end portion of the antenna room formed so as to protrude upward from the ceiling surface of the room, and a microwave is placed in a space between the antenna room and the vertical transmission path.
  • a generation unit is arranged.
  • the waveguide is sandwiched between the vertical transmission path of the waveguide and the antenna chamber in the extending direction of the horizontal transmission path of the waveguide. Since the microwave generator is placed in the space generated below the horizontal transmission path, the upper space of the heating chamber can be used efficiently, eliminating wasted space and making the cooking device compact. Is planned.
  • the waveguide according to the first to fourth aspects is configured such that a vertical transmission distance in the vertical transmission path has a microwave wavelength transmitted through the waveguide. It is configured to be shorter than 1 ⁇ 4. According to the microwave heating apparatus of the twelfth aspect of the present invention configured as described above, the electric field does not reverse in the vertical transmission path, and complicated reflection occurs in the waveguide transmission path. Occurrence can be prevented and transmission efficiency is improved.
  • the present invention it is possible to provide a microwave heating apparatus in which the heating efficiency is improved and the microwave power supply configuration disposed on the upper side of the heating chamber is made compact to reduce the apparatus size.
  • Front sectional drawing which shows the internal structure of the principal part in the heating cooker of Embodiment 1 which concerns on this invention.
  • the perspective view which shows the waveguide and antenna chamber in the heating cooker of Embodiment 1 which concerns on this invention.
  • Front sectional drawing which shows the internal structure of the principal part in the heating cooker of Embodiment 2 which concerns on this invention.
  • the rear view which shows the electric power feeding part provided in the ceiling surface of the heating chamber in the heating cooker of Embodiment 2 which concerns on this invention, a heating part, etc.
  • Front sectional drawing which shows the microwave electric power feeding structure in the heating cooker of Embodiment 3 which concerns on this invention
  • Front sectional drawing which shows the microwave electric power feeding structure in the heating cooker of Embodiment 4 which concerns on this invention.
  • Front sectional drawing which shows the microwave electric power feeding structure in the heating cooker of Embodiment 5 which concerns on this invention.
  • Front sectional drawing which shows the microwave electric power feeding structure in the heating cooker of Embodiment 6 which concerns on this invention
  • Front sectional view showing a schematic configuration of a general microwave feeding configuration in a heating cooker
  • the microwave heating apparatus of the present invention a description will be given using a heating cooker.
  • the heating cooker is an example, and the microwave heating apparatus of the present invention is not limited to the heating cooker.
  • a heating device using dielectric heating which is high-frequency heating, a garbage processing machine, or a heating device such as a semiconductor manufacturing device. Therefore, the present invention is not limited to the specific configurations of the following embodiments, but includes configurations based on the same technical idea.
  • Embodiment 1 As Embodiment 1 which concerns on this invention, the heating cooker in a microwave heating apparatus is demonstrated.
  • a microwave oven including at least one heater as a heating unit will be described as an example of a heating cooker.
  • FIG. 1 is a front sectional view showing an internal configuration of a main part in a heating cooker as a microwave heating apparatus according to a first embodiment of the present invention.
  • a heating chamber 11 for dielectrically heating (high-frequency heating) a food 15 that is an object to be heated is provided inside a casing 10 that forms the appearance of the cooking device. That is, in the heating chamber 11, the food 15 that is the object to be heated is stored, and microwaves are radiated to the food 15 to be heated at high frequency.
  • Two heaters 12 and 13 which are radiant heating portions for increasing the temperature of the heating chamber are provided inside the heating chamber 11 formed of a steel plate whose surface is enameled.
  • One heater 12 is disposed on the ceiling surface side (upper side) of the heating chamber 11, and the other heater 13 is disposed on the bottom surface side (lower side) of the heating chamber 11.
  • a grill 14 formed by combining stainless steel rods vertically and horizontally and welding is provided inside the heating chamber 11.
  • the grill 14 is configured to be mounted at a plurality of desired positions in the heating chamber 11.
  • the food 15 that is an object to be heated placed on the grill 14 is sandwiched between the upper heater 12 and the lower heater 13 and radiantly heated from above and below.
  • the corners of the connecting portions between the wall surfaces constituting the heating chamber 11 are formed by curved surfaces. Further, the entire bottom surface of the heating chamber 11 is formed in a curved shape having a large radius of curvature.
  • the wall surface demonstrates in the example formed with the steel plate which performed the enamel coating, you may form with the steel plate which applied the coating which has another heat resistance.
  • the wall material may be stainless steel or PCM steel plate (Pre-coated metal).
  • the grill 14 is formed by combining stainless steel rods, but can also be formed by using a steel material or the like subjected to plating.
  • an antenna chamber 24 is provided near the center of the ceiling surface of the heating chamber 11, and a rotating antenna power feeding unit 22 as a radio wave agitating unit is disposed inside the antenna chamber 24.
  • the antenna chamber 24 is made of a material that reflects the microwave radiated from the power feeding unit 22, and has a shielding structure so that the microwave does not leak outside the antenna chamber 24.
  • the feeding portion 22 of the rotating antenna is provided so as to be led out from a feeding port 25 formed in the waveguide 21.
  • the waveguide 21 transmits the microwave from the magnetron 16 that is the microwave generation unit to the power supply unit 22.
  • the magnetron 16 generates microwaves for high-frequency heating of the food 15 that is the object to be heated in the heating chamber 11.
  • the microwave transmitted to the power feeding unit 22 is radiated into the heating chamber 11.
  • the magnetron 16 is disposed at the right end (see FIG. 1) of the waveguide 21 disposed on the upper side of the heating chamber 11, and the magnetron output unit 44 that is an oscillation antenna of the magnetron 16 with respect to the waveguide 21. Is inserted sideways.
  • one heating means has a dielectric heating part by microwaves
  • another heating means has a radiation heating part by radiation by the upper and lower heaters 12 and 13.
  • the heating cooker of Embodiment 1 is the structure which performs the desired heat cooking with respect to the foodstuff 15 which is the to-be-heated object in the heating chamber 11 by using a dielectric heating part and a radiation heating part together.
  • a description will be given of a configuration having a dielectric heating unit using microwaves as one heating unit and a radiation heating unit using upper and lower heaters 12 and 13 as another heating unit.
  • a convection heating unit that performs cooking by circulating hot air in the heating chamber may be provided.
  • a circulation fan and a circulation heater are provided on the back side of the heating chamber, and the air in the heating chamber is heated to a high temperature and circulated.
  • it may be configured to perform cooking by providing three heating means including a dielectric heating unit, a radiation heating unit, and a convection heating unit.
  • the upper and lower heaters 12 and 13 that are the radiant heating section in the first embodiment are configured by sealing a heating wire together with a filler in a metal pipe.
  • An upper heater thermocouple 17 that contacts the surface of the upper heater 12 is provided in the heating chamber 11.
  • the upper heater thermocouple 17 is covered with a metal tube so as not to be affected by the microwave radiated from the power supply unit 22, and functions as a temperature detection unit of the upper heater 12.
  • a lower heater thermocouple 18 that contacts the surface of the lower heater 13 is provided in the heating chamber 11, and has the same configuration as the upper heater thermocouple 17.
  • the lower heater thermocouple 18 functions as temperature detection means for the lower heater 13.
  • a thermistor 19 is fixed to the wall surface of the heating chamber 11 as temperature detecting means in the heating chamber.
  • the upper heater thermocouple 17, the lower heater thermocouple 18, and the thermistor 19 are electrically connected to a control unit 20 that is a control means.
  • the control unit 20 controls the energization amount to the upper heater 12 and the lower heater 13 based on detection signals from the upper heater thermocouple 17, the lower heater thermocouple 18, and the thermistor 19.
  • the heating control for the heating chamber 11 is controlled with high accuracy so that the heating amount becomes the set temperature.
  • the upper heater 12 of the radiant heating section that heats the food 15 that is the object to be heated by radiant heat from above is disposed in a region other than directly below the antenna chamber 24. That is, the upper heater 12 is not directly irradiated by the microwave radiated from the power feeding unit 22 that is the rotating antenna in the antenna chamber 24, and the food 15 that is the object to be heated is directly irradiated. .
  • the waveguide 21 provided on the upper side of the heating chamber 11 includes a horizontal portion 42 extending in the horizontal direction and a vertical portion 43 extending in the vertical direction. That is, the waveguide 21 is an L-shaped internal passage (transmission) bent at a right angle by a horizontal transmission path (42) formed by the horizontal section 42 and a vertical transmission path (43) formed by the vertical section 43. Road).
  • a magnetron 16 that is a microwave generation unit is connected to a vertical unit 43 of the waveguide 21 by inserting a magnetron output unit 44 that is an oscillation antenna in a horizontal direction. Accordingly, since the magnetron 16 is connected laterally (horizontal connection) with respect to the waveguide 21, the vertical height dimension is such that the magnetron 16 is connected vertically to the waveguide 21 (vertical connection: This is shorter than the case of FIG.
  • the feeding port 25 formed in the horizontal portion 42 (horizontal transmission path) of the waveguide 21 having the L-shaped internal passage (transmission path) is provided with the feeding section 22 that is a rotating antenna.
  • the power feeding unit 22 includes an antenna unit 22a and a shaft unit 22b.
  • a shaft portion 22 b of the power feeding unit 22 is connected to the motor 23.
  • the shaft portion 22b is rotated by driving the motor 23, and the antenna portion 22a rotates.
  • the power feeding unit 22 is coupled to the horizontal transmission path (42) of the waveguide 21, and the microwave transmitted through the waveguide 21 is radiated into the heating chamber 11 by the antenna unit 22 a of the power feeding unit 22.
  • a dome-shaped antenna chamber 24 that houses the rotating antenna portion 22a is provided.
  • the antenna chamber 24 has a shape in which a lower end portion extends in a circular shape, and has a truncated cone shape.
  • the antenna chamber 24 is formed in a truncated cone shape by projecting the ceiling surface of the heating chamber 11 outward by drawing.
  • a feeding port 25 formed on the lower surface of the horizontal portion 42 of the waveguide 21 is coupled to an opening formed at the upper end of the antenna chamber 24, and a coupling portion between the waveguide 21 and the feeding unit 22 is A predetermined diameter is secured as a power supply port.
  • the antenna chamber 24 is provided on the ceiling surface of the heating chamber 11 and is configured to reflect the microwave radiated from the antenna portion 22a in the horizontal direction.
  • the lower end portion of the antenna chamber 24 is opened so that the microwave from the antenna portion 22a is radiated into the heating chamber.
  • FIG. 2 is a perspective view showing the waveguide 21 and the antenna chamber 24 in the cooking device of the first embodiment.
  • the waveguide 21 has a horizontal portion 42 that forms a horizontal transmission path and a vertical portion 43 that forms a vertical transmission path, and an internal passage serving as a transmission path is L-shaped. It has a bent shape that is bent at a right angle. That is, the extending direction (horizontal direction) of the horizontal transmission path (42) and the extending direction (vertical direction) of the vertical transmission path (43) are orthogonal to each other.
  • the waveguide 21 has the horizontal transmission path (42) and the vertical transmission path (43) bent at right angles, and the magnetron 16 serving as the microwave generation unit is horizontally disposed on the vertical transmission path (43). They are connected to transmit the microwave from the magnetron 16 to the horizontal transmission path (42).
  • the distance H is set to about 135 mm.
  • the horizontal transmission distance H is a horizontal distance along the extending direction of the horizontal transmission path (left and right direction in FIG. 1) from the bending position C in the transmission path in the waveguide 21 to the center of the feeding port 25. It is.
  • the width a of the internal passage that is the transmission path of the waveguide 21 is about 80 mm, and the height b of the internal passage of the horizontal portion 42 of the waveguide 21 is about 16 mm.
  • the width a of the internal passage and the height b of the internal passage in the horizontal portion 42 indicate the length of the transmission path on the inner surface side of the waveguide 21.
  • the magnetron 16 is fixed horizontally and horizontally with respect to the vertical portion 43 of the waveguide 21. That is, the magnetron output part 44 that is an oscillation antenna of the magnetron 16 is inserted and mounted laterally into the opening 21 a formed in the side wall (right side wall) of the vertical part 43 of the waveguide 21.
  • the vertical transmission distance V in the first embodiment Is set to about 15 mm.
  • the antenna portion 22a of the power feeding portion 22 that stirs and radiates the microwave transmitted from the waveguide 21 is made of metal and has a substantially disk shape having a diameter of about ⁇ 62 with a thickness of 1 mm.
  • the shaft portion 22b that transmits the rotation of the motor 23 to the antenna portion 22a is connected to a position that is eccentric about 12 mm from the center of the disk in the antenna portion 22a.
  • the portion on the motor 23 side is made of fluororesin, and the portion on the antenna portion 22a side is made of metal.
  • the metal portion of the shaft portion 22 b is about 11 mm inside the waveguide 21, and protrudes about 15 mm toward the antenna chamber 24 through the feeding port 25 of the waveguide 21.
  • the gap between the metal portion in the shaft portion 22b and the power supply port 25 is secured at a distance of 5 mm or more.
  • a cover 27 is provided in an opening portion serving as a lower end of the antenna chamber 24 on the ceiling surface of the heating chamber 11.
  • the cover 27 is made of mica, and is provided so that dirt or the like scattered from food in the heating chamber 11 does not adhere to the antenna portion 22a of the power feeding portion 22 or the like.
  • the cover 27 is detachably attached to an insulator hook 26 provided on the ceiling surface of the heating chamber 11.
  • the cover 27 has been described with an example using mica, which is a low-loss dielectric material.
  • the cover 27 is not limited to mica, and the same effect can be obtained by using a material such as ceramic or glass.
  • the upper heater 12 provided in the upper part of the heating chamber 11 is disposed so as not to be directly heated by the microwaves from the power feeding unit 22 and directly below the opening portion serving as the lower end of the antenna chamber 24. Since the upper heater 12 is arranged so as to bypass the opening portion of the antenna chamber 24 as described above, a gap portion 28 is formed in the central portion of the upper heater 12. Therefore, the microwave M (see FIG. 1) radiated directly from the power supply unit 22 toward the food 15 is not hindered by the upper heater 12. Thus, in the heating cooker of Embodiment 1, the microwave radiated
  • the waveguide 21 has an L-shape bent at a right angle, and the magnetron 16 is connected to the waveguide 21 in a lateral direction. That is, the magnetron output part 44 of the magnetron 16 is attached so that the lead-out portion of the magnetron 16 is orthogonal to the vertical wall surface of the waveguide 21. For this reason, the dimension (height) of the vertical direction which is an up-down direction becomes small in the arrangement space of the waveguide 21 to which the magnetron 16 is connected.
  • the waveguide 21 to which the magnetron 16 in the first embodiment is connected is higher than the height in the arrangement space of the waveguide 104 to which the magnetron 103 in the configuration shown in FIG. 10 is connected in the vertical direction. The height in the arrangement space is small. Further, since the magnetron 16 is connected laterally with respect to the waveguide 21, there is room in the space above the magnetron 16, and other components can be arranged.
  • the heating cooker according to the first embodiment it is possible to compactly form a microwave feeding configuration including the magnetron 16, the waveguide 21, the antenna chamber 24, and the like.
  • the horizontal portion 42 of the waveguide 21 is coupled to the opening of the protruding end portion of the antenna chamber 24 protruding upward from the ceiling surface of the heating chamber 11.
  • the lower end portion of the vertical portion 43 is arranged on the ceiling surface of the heating chamber 11. Accordingly, in the first embodiment, the length of the vertical dimension 43 of the waveguide 21 (see FIG. 2) is set so as to cancel out the protruding dimension L (see FIG. 1) of the antenna chamber 24. Has been.
  • the projecting dimension K of the vertical portion 43 and the height dimension L of the antenna chamber 24 are set to substantially the same length.
  • the protruding dimension L of the antenna chamber 24 is the vertical dimension of the waveguide 21. It is offset by K.
  • the transverse magnetron 16 is disposed so as to be inside the height dimension of the waveguide 21, the antenna chamber 24 and the magnetron 16 are substantially disposed inside the height dimension of the waveguide 21. It becomes.
  • the microwave power feeding configuration eliminates a useless space and achieves compactness. Furthermore, in the heating cooker of the first embodiment, as shown in FIG. 1, since the vertical portion 43 of the waveguide 21 is provided close to the skirt (lower end portion) of the antenna chamber 24, the magnetron 16 is provided. In spite of the horizontally arranged configuration, the microwave feeding configuration is downsized without increasing the size in the left-right direction (the extending direction of the horizontal portion 42).
  • the antenna chamber 24 is formed on the ceiling surface of the heating chamber 11, and the waveguide 21 is connected to the upper end of the antenna chamber 24.
  • the waveguide 21 is coupled to the heating chamber 11 via the antenna chamber 24. Therefore, the contact portion between the waveguide 21 and the antenna chamber 24 can have a smaller area than when the waveguide is brought into direct contact with the ceiling surface of the heating chamber.
  • a space is formed between the waveguide 21 and the heating chamber 11, heat conduction from the ceiling surface of the heating chamber 11 during high-temperature heating to the waveguide 21 is prevented. Has been. Further, the amount of heat conducted from the heating chamber 11 to the magnetron 16 via the antenna chamber 24 and the waveguide 21 is also greatly reduced.
  • the heating cooker of the first embodiment by setting the horizontal transmission distance H (see FIG. 2) in the horizontal portion 42 of the waveguide 21 to be long, the heating chamber 11 and the antenna chamber 24 and the waveguide 21 are passed through. Thus, the amount of heat conducted to the magnetron 16 can be further suppressed. Since the magnetron 16 is generally more efficient at a lower temperature, the output efficiency of the magnetron 16 is improved.
  • the horizontal transmission distance H of the horizontal portion 42 of the waveguide 21 is set longer than a half wavelength ( ⁇ g / 2), the coupling state between the magnetron 16 and the power feeding portion 22 is set. Can be stabilized, and even when the operation state such as a load change fluctuates, a high efficiency can be maintained.
  • the heating cooker of the first embodiment by setting the vertical transmission distance V from the center of the magnetron output portion 44 in the waveguide 21 to the bending position C to be shorter than 1 ⁇ 4 wavelength ( ⁇ g / 4). , Transmission efficiency can be improved.
  • the waveguide 21 by setting the vertical transmission distance V to 1 ⁇ 4 wavelength or less of the oscillation frequency, the electric field does not reverse in the region from the magnetron output portion 44 to the bent portion including the bent position C. The occurrence of complicated reflections in the transmission path of the waveguide 21 can be prevented. As a result, in the heating cooker of Embodiment 1, it becomes a high oscillation efficiency and becomes an apparatus with high heating efficiency.
  • the heating cooker of Embodiment 1 it demonstrates with the structure which has the dielectric heating part by a microwave as one heating means, and combined with the radiation heating part by the radiation by the upper and lower heaters 12 and 13 as another heating means.
  • this invention is not limited to such a structure, You may provide the convection heating part which circulates a hot air in a heating chamber as another heating means, and performs cooking. Furthermore, it is good also as a structure which provided both the radiation heating part and the convection heating part with the dielectric heating part using a magnetron.
  • the amount of heat conducted from the heating chamber 11 to the magnetron 16 through the antenna chamber 24 and the waveguide 21 is greatly reduced in the configuration of the dielectric heating unit. Therefore, even if other heating means is used, the heating efficiency can be improved.
  • Embodiment 2 Hereinafter, the heating cooker of Embodiment 2 which concerns on this invention is demonstrated.
  • the heating cooker according to the second embodiment is greatly different from the heating cooker according to the first embodiment described above in the configuration for supplying microwaves to the heating chamber.
  • FIG. 3 is a front sectional view showing the internal configuration of the main part of the heating cooker according to the second embodiment.
  • FIG. 4 is a side cross-sectional view of the heating cooker shown in FIG. 3.
  • the waveguide 46 that transmits the microwave from the magnetron 16 has a horizontal portion as in the waveguide 21 of the first embodiment. 47 and a vertical portion 48, and is bent into an L shape. That is, the internal passage of the waveguide 46 is constituted by a horizontal transmission path and a vertical transmission path bent at a right angle.
  • a vertical portion 48 that forms a vertical transmission path is extended so as to protrude upward from a horizontal portion 47 that forms a horizontal transmission path.
  • the magnetron 16 is connected laterally (horizontal connection) so that the magnetron output portion 44 is inserted into the waveguide 46 in the horizontal direction.
  • the lead-out portion of the magnetron output portion 44 is provided so as to be orthogonal to the vertical side surface of the vertical portion 48 of the waveguide 46. Therefore, in the state where the magnetron 16 is connected to the waveguide 46, the vertical dimension, which is the vertical direction, is small as in the configuration of the first embodiment.
  • the horizontal transmission distance H of the horizontal portion 47 is about 135 mm, and is set longer than a half wavelength ( ⁇ g / 2). (H> ⁇ g / 2).
  • the vertical transmission distance V of the vertical portion 48 is about 15 mm, and is set shorter than a quarter wavelength ( ⁇ g / 4) (V ⁇ g / 4).
  • the in-tube wavelength ⁇ g in the waveguide 46 is about 190 mm, which is a half wavelength ( ⁇ g / 2) long.
  • the feed portion 22 having the antenna portion 22a and the shaft portion 22b is connected to the horizontal portion 47 of the waveguide 46 having the L-shaped internal passage (transmission path).
  • An antenna chamber 49 that houses the antenna portion 22a is formed in a substantially central portion of the ceiling surface of the heating chamber 11.
  • the antenna chamber 49 has a shape in which a lower end portion extends in a circular shape, and has a truncated cone shape.
  • the antenna chamber 49 is formed by drawing the ceiling surface of the heating chamber 11.
  • a cover that covers the lower end portion of the antenna chamber 49 is not provided, there is no dielectric loss that occurs slightly in the cover, and the heating efficiency is further improved.
  • the bottom part of the antenna chamber 49 protrudes into the heating chamber 11 and serves as a shielding wall protruding downward from the ceiling surface of the heating chamber.
  • the upper end portion of the antenna chamber 49 projects upward from the ceiling surface of the heating chamber 11.
  • the feeding port 25 formed in the horizontal portion 47 of the waveguide 46 is coupled to an opening formed in the upper end portion of the antenna chamber 49.
  • the waveguide 46 is coupled to the heating chamber 11 via the antenna chamber 49. Therefore, the contact portion between the waveguide 46 and the antenna chamber 49 can be reduced in area as compared with the case where the waveguide is brought into direct contact with the ceiling surface of the heating chamber.
  • a heat insulating portion 50 formed of a heat insulating material is provided so as to surround the antenna chamber 49.
  • the heat insulating portion 50 is disposed in a space between the waveguide 46 and the ceiling surface of the heating chamber 11, so that the waveguide 46 is not directly heated by the heat released from the ceiling surface of the heating chamber 11. It is configured. Therefore, the amount of heat conducted from the heating chamber 11 during high temperature heating to the magnetron 16 via the waveguide 46 is greatly suppressed.
  • the heating cooker according to the second embodiment has a configuration in which the heating efficiency of the magnetron 16 is significantly improved.
  • the horizontal transmission distance H of the horizontal portion 47 of the waveguide 46 is set to be longer than a half wavelength ( ⁇ g / 2), the coupling state between the magnetron 16 and the power feeding unit 22 is stabilized, and the operation state such as load change is achieved. Even if it fluctuates, it becomes the composition which can maintain high heating efficiency.
  • the heating cooker of the second embodiment by setting the vertical transmission distance V from the center of the magnetron output portion 44 in the waveguide 46 to the bending position C to be shorter than a quarter wavelength ( ⁇ g / 4).
  • the oscillation efficiency can be improved.
  • the waveguide 46 by setting the vertical transmission distance V to 1 ⁇ 4 wavelength or less of the oscillation frequency, the electric field does not reverse in the region from the magnetron output portion 44 to the bent portion including the bent position C. Generation of complicated reflections in the transmission path of the waveguide 46 can be prevented. As a result, in the cooking device of the second embodiment, the oscillation efficiency is greatly improved.
  • the waveguide 46 has an L-shaped bent shape, and the antenna chamber 49 protrudes upward from the ceiling surface of the heating chamber 11.
  • the heat insulation part 50 can be provided in the space between the horizontal part 47 of the waveguide 46 and the ceiling surface of the heating chamber 11. Therefore, by adopting a configuration in which the heating chamber 11 and the waveguide 46 are coupled via the antenna chamber 49, the heat insulating portion 50 that prevents heat conduction in the space between the heating chamber 11 and the waveguide 46 is provided. It can be provided.
  • the heat insulation part 50 it becomes possible to construct
  • the ceiling surface of the heating chamber 11 is provided by providing the waveguide 46 bent upward at the upper end portion of the antenna chamber 49 protruding from the ceiling surface of the heating chamber 11. It is possible to secure a space for providing the heat insulating portion 50 on the wall, and to lay the heat insulating portion 50 thick.
  • the heating cooker according to the second embodiment is provided with a ventilation fan 61 that exhausts the heating chamber and a lamp 62 that serves as illumination in the heating chamber.
  • the heat insulating unit 50 releases the heat upward from the heating chamber 11. Since the generated heat is blocked, the heating efficiency can be greatly improved. Furthermore, the cooking device of the second embodiment has a configuration that significantly suppresses the amount of heat conducted from the heating chamber 11 to the magnetron 16 in the case of cooking in which dielectric heating is coupled with radiation heating and convection heating by a heater. Therefore, the cooking device is compact and has high heating efficiency.
  • the heating cooker according to the second embodiment In the configuration of the heating cooker according to the second embodiment, as shown in FIGS. 3 and 4, the upper heater 12 is provided in the upper part of the heating chamber 11, and the bottom of the bottom wall of the heating chamber 11 is provided. A lower heater 13 is provided on the side. Moreover, in the heating cooker of Embodiment 2, the bottom wall of the heating chamber 11 is heated by the lower heater 13. Furthermore, the heating cooker according to the second embodiment has a back heater 30 and a circulation fan 31 for circulating hot air for oven cooking on the back side of the heating chamber 11.
  • the heating cooker of Embodiment 2 is the structure which can heat a foodstuff directly by radiant heat and convection heat besides the heating by dielectric heating. Therefore, the heating cooker according to the second embodiment is a cooker having a high function capable of supporting a plurality of cooking menus.
  • the upper heater support 51 is configured to hold the upper heater 12 with a degree of freedom so as to cope with the thermal expansion of the upper heater 12.
  • the material of the upper heater support 51 is made of a ceramic such as an insulator according to the required heat resistance temperature, and a material that has a smaller influence on the microwave than the metal fitting is used.
  • the lower end portion of the antenna chamber 49 protrudes from the ceiling surface inside the heating chamber 11, and the upper heater 12 is disposed around the lower end portion of the antenna chamber 49. That is, the upper heater 12 is provided so as to avoid a position directly below the opening at the lower end portion of the antenna chamber 49. As described above, the upper heater 12 is provided outside the shielding wall, which is the lower end portion of the antenna chamber 49 projecting from the heating chamber, so that it is not directly heated by the microwave from the power feeding unit 22. The loss of microwave heating is prevented.
  • FIG. 5 is a layout diagram showing the lower surface side of the ceiling surface of the heating chamber 11, and shows the power feeding unit 22, the antenna chamber 49, the upper heater support 51, the upper heater 12 and the like provided on the ceiling surface.
  • the upper side is the front side of the apparatus.
  • the upper heater 12 is disposed so as to avoid the opening at the lower end portion of the antenna chamber 49, and is held movably by the upper heater support 51 at a plurality of locations.
  • the lower heater 13 provided below the bottom wall of the heating chamber 11 is configured to heat the bottom wall of the heating chamber 11.
  • the bottom wall of the heating chamber 11 is heated by the lower heater 13 to generate convection heat inside the heating chamber 11.
  • the back heater 30 for circulating hot air and the circulation fan 31 for cooking the oven are provided on the back side of the heating chamber 11, and a convection heating unit is configured.
  • the convection heating unit is configured such that the air inside the heating chamber 11 is heated by the heat generated by the back heater 30 and the rotation of the circulation fan 31, and the hot air circulates inside the heating chamber 11.
  • the heating cooker according to the second embodiment is configured such that the convection heating unit configured as described above heats and cooks the food to be heated by circulating hot air inside the heating chamber 11.
  • an opening / closing door 32 is provided on the front side, and opening / closing of the object to be heated with respect to the heating chamber 11 by opening / closing the door 32. Is configured to do.
  • an operation unit 33 is provided on the upper portion of the door 32 for setting various conditions for cooking.
  • a gap 34 is formed between the door 32 and the operation unit 33.
  • a cooling passage is formed so that cooling air from a cooling fan 35 provided at a rear position in the upper space of the heating chamber 11 is discharged. Cooling air from the cooling fan 35 flows in contact with the upper surface of the heat insulating portion 50, passes through small through holes 36 a and 36 b formed in opposite wall surfaces of the waveguide 46, and exhausts forward from the gap 34.
  • the small through holes 36a and 36b are holes having a size that does not allow microwaves to leak, for example, a diameter of 2 to 5 mm. Therefore, the cooling air from the cooling fan 35 cools the heat insulating portion 50 and flows through the waveguide 46 to cool the waveguide 46.
  • the heating cooker according to the second embodiment by providing the cooling fan 35 and the cooling passage, the cooling fan 35 is driven and heated even when the heating chamber becomes hot due to, for example, oven cooking.
  • the ceiling surface of the chamber 11 can be cooled from the outside.
  • the heating cooker of Embodiment 2 can prevent the temperature rise of the various components which comprise the control part 20 grade
  • FIG. 1 the heating cooker according to the second embodiment has a configuration in which a temperature rise is unlikely to occur even when component mounting arranged above the ceiling surface of the heating chamber 11 is performed at a high density. For this reason, it becomes possible for the heating cooker of Embodiment 2 to be set as a compact structure as the whole apparatus.
  • the lower end portion of the antenna chamber 49 is configured to protrude into the heating chamber 11, and the upper heater 12 is disposed on the outer periphery of the lower end portion of the antenna chamber 49. Since the upper heater 12 is arranged in this way, the microwave radiated from the power feeding unit 22 is directly radiated to the food 15 and is not blocked by the upper heater 12. Thus, in the configuration of the second embodiment, since the upper heater 12 does not block the microwave from the power feeding unit 22, the microwave from the power feeding unit 22 heats the upper heater 12 and is lost. Thus, the heating efficiency is improved.
  • the protruding portion of the antenna chamber 49 into the heating chamber 11 functions as a microwave shielding wall.
  • This shielding wall is comprised with the material which shields the microwave radiated
  • Embodiment 3 Hereinafter, the heating cooker of Embodiment 3 which concerns on this invention is demonstrated.
  • the heating cooker according to the third embodiment is greatly different from the heating cookers according to the first and second embodiments described above in the configuration for supplying microwaves to the heating chamber.
  • the configuration of the first embodiment or the second embodiment is applied to other configurations.
  • FIG. 6 is a front sectional view showing a microwave power feeding configuration in the heating cooker according to the third embodiment.
  • the upper heater 12 is housed inside a recess 52 formed by protruding a part of the ceiling surface 37 of the heating chamber 11 outward (upward). It is arranged so that.
  • the antenna chamber 53 provided on the upper side of the heating chamber 11 has a square shape as a shape of the lower end portion, and the whole is configured in a rectangular parallelepiped shape.
  • An L-shaped waveguide 21 having a horizontal portion 42 and a vertical portion 43 is provided at the upper end portion of the antenna chamber 53.
  • the waveguide 21 in the third embodiment has an opening at the protruding end portion of the antenna chamber 53 protruding upward from the ceiling surface 37 of the heating chamber 11.
  • the feeding port 25 of the horizontal portion 42 of the waveguide 21 is coupled, and the lower end portion of the vertical portion 43 of the waveguide 21 is disposed on the ceiling surface 37 (recessed portion 52) of the heating chamber 11 with a slight gap. ing. Therefore, in the third embodiment, the length of the height dimension of the vertical portion 43 of the waveguide 21 is set so as to cancel out the protruding portion of the antenna chamber 53.
  • the magnetron 16 is connected to the vertical portion 43 of the waveguide 21 by inserting a magnetron output portion 44 as an oscillation antenna in the horizontal direction. Therefore, since the magnetron 16 is connected laterally (horizontal connection) to the waveguide 21, the height dimension in the vertical direction is when the magnetron is connected vertically to the waveguide (vertical connection). It is shorter than
  • ventilation regions 21 a having a large number of through holes 36 a and 36 b are formed on the opposing wall surfaces on both sides of the waveguide 21.
  • FIG. 6 only the ventilation region 21 a composed of a plurality of through holes 36 a on one wall surface is shown, but a plurality of through holes 36 b (see FIG. 6) are similarly formed on the other wall surface facing this one wall surface. 4) is formed.
  • the ventilation region 21 a is a wall surface region in which a large number of small through holes 36 a and 36 b having a diameter of about 2 to 5 mm are arranged so that microwaves do not leak outside the waveguide 21.
  • the heating cooker of the third embodiment is configured to further improve the microwave heating efficiency by the magnetron 16.
  • the cooling fan 35 can be used even when the inside of the heating chamber 11 becomes high temperature by oven cooking, for example. And the waveguide 21 is cooled, and the ceiling surface of the heating chamber 11 can be cooled from the outside.
  • the upper heater 12 is provided inside the recessed portion 52 of the ceiling surface 37, the upper heater 12 is the same as or lower than the lower end portion of the antenna chamber 53. Placed in position. As a result, there is no useless space in the vertical dimension of the heating space below the antenna chamber 53, and the entire apparatus can be made compact.
  • the upper heater 12 is disposed at the same position as or above the lower end portion of the antenna chamber 53, microwaves radiated from the feeding unit 22, which is a rotating antenna, toward the lower food are blocked by the upper heater 12. It is never done. Therefore, in the heating cooker of Embodiment 3, the microwave from the electric power feeding part 22 is prevented from directly heating and losing the upper heater 12, and food can be cooked with high efficiency.
  • the inner surface shape of the recessed part 52 which is a part of wall surface of the heating chamber 11 is good also as a structure which has an angle which reflects the radiant heat from the upper heater 12 toward a foodstuff.
  • the planar shape of the antenna chamber 53 is square has been described.
  • the planar shape of the antenna chamber 53 may be a shape that does not interfere with the rotation of the antenna portion 22a, and may be circular or square. The shape is not limited to an ellipse, a polygon, or a combination thereof.
  • Embodiment 4 Hereinafter, the heating cooker of Embodiment 4 which concerns on this invention is demonstrated.
  • the heating cooker of the fourth embodiment is greatly different from the heating cookers of the first to third embodiments described above in the configuration for supplying microwaves to the heating chamber.
  • the configuration of the first embodiment or the second embodiment is applied to other configurations.
  • FIG. 7 is a front sectional view showing a microwave power feeding configuration in the heating cooker according to the fourth embodiment.
  • the upper heater 12 is housed inside a recess 52 formed by projecting a part of the ceiling surface 37 of the heating chamber 11 outward (upward).
  • the antenna chamber 53 provided on the upper side of the heating chamber 11 has a square shape at the lower end portion, and the entire antenna chamber 53 has a rectangular parallelepiped shape.
  • the planar shape of the lower end portion of the antenna chamber 53 is described as an example of a square. However, in the present invention, the shape is not specified, and other shapes such as a circle, a polygon, and the like are used. Can be used.
  • a waveguide 46 having a horizontal portion 47 and a vertical portion 48 and having an L shape is provided at the upper end portion of the antenna chamber 53.
  • the waveguide 46 in the fourth embodiment is extended so that the vertical portion 48 protrudes upward from the horizontal portion 47 in the same manner as the waveguide 46 in the second embodiment.
  • the magnetron 16 is connected horizontally (horizontal connection) so that the magnetron output portion 44 is inserted in the horizontal direction with respect to the vertical portion 48 of the waveguide 46.
  • the upper end portion of the antenna chamber 53 is formed so as to protrude upward from the ceiling surface 37 of the heating chamber 11.
  • the feeding port 25 formed in the horizontal portion 47 of the waveguide 46 is coupled to an opening formed in the upper end portion of the antenna chamber 53. For this reason, the waveguide 46 is connected to the heating chamber 11 via the antenna chamber 53.
  • the waveguide 46 is fixed only to the antenna chamber 53 and is supported by the antenna chamber 53.
  • the waveguide 46 and the magnetron 16 are arranged with a space of a predetermined distance with respect to the ceiling surface 37 of the recess 52 in which the upper heater 12 is accommodated. Since it is arranged in this way, the device between the ceiling surface 37 and the waveguide 46 and the space between the ceiling surface 37 and the magnetron 16 are the same as in the second embodiment.
  • the cooling air from the rear cooling fan 35 circulates. For this reason, the magnetron 16 has a configuration in which heat from the upper heater 12 is not easily transmitted, and the temperature rise of the magnetron 16 is prevented. Since the magnetron 16 is generally more efficient at a lower temperature, the microwave heating efficiency by the magnetron 16 is improved.
  • a ventilation region 46a having a large number of small through holes 36a and 36b on opposite wall surfaces on both sides of the waveguide 46. Is formed.
  • FIG. 7 only the ventilation region 46a constituted by a plurality of through holes 36a on one wall surface is shown, but a plurality of through holes 36b (see FIG. 7) are similarly formed on the other wall surface facing this one wall surface. 4) is formed.
  • the ventilation region 46 a is a wall surface region in which a large number of small through holes 36 a and 36 b having a diameter of about 2 to 5 mm are arranged so that the microwave does not leak outside the waveguide 46.
  • the ventilation region 46a having the plurality of through holes 36a and 36b on the wall surface of the waveguide 46 the heat transfer resistance on the wall surface of the waveguide 46 is increased, and the through hole 36a in the ventilation region 46a is increased. , 36b to allow air movement.
  • air movement occurs in the waveguide 46, and thus a cooling action occurs, heat transmitted to the magnetron 16 through the waveguide 46 becomes smaller, and the magnetron 16 and the waveguide 46 are reliably cooled. ing.
  • the pressure in the waveguide 46 is blown by the cooling fan 35 (see FIG. 4) through the ventilation region 46a into the waveguide 46 communicating with the heating chamber 11. Is maintained higher than the pressure in the heating chamber 11.
  • Embodiment 5 Hereinafter, the heating cooker of Embodiment 5 which concerns on this invention is demonstrated.
  • the heating cooker of the fifth embodiment is greatly different from the heating cookers of the first to fourth embodiments described above in the configuration for supplying microwaves to the heating chamber.
  • the configuration of the first embodiment or the second embodiment is applied to other configurations.
  • FIG. 8 is a front sectional view showing a microwave power feeding configuration in the heating cooker according to the fifth embodiment.
  • the microwave power feeding configuration in the heating cooker of the fifth embodiment is a configuration in which the antenna chamber 54 is provided inside the heating chamber 11, and the microwave power feeding configuration is very compact.
  • the antenna chamber 54 is formed by fixing a cylindrical antenna chamber constituent member 54 a to the ceiling surface 37 of the heating chamber 11.
  • the antenna chamber constituent member 54a functions as a shielding wall for microwaves radiated from the antenna section 22a of the power feeding section 22 in a substantially horizontal direction, and the upper heater 12 and the upper heater support 51 (provided on the outer periphery of the antenna chamber 54). 5) is not directly heated by the microwave from the power feeding unit 22.
  • the planar shape of the antenna chamber 54 is not specified as a circle, and a square, a rectangle, other polygons, or the like can be used.
  • an opening is formed in a portion where the antenna chamber 54 is formed, and the feeding port 25 formed in the horizontal portion 47 of the waveguide 46 is coupled to the opening.
  • the waveguide 46 in the fifth embodiment has a horizontal portion 47 and a vertical portion 48 and is formed in an L shape, and the vertical portion 48 is the same as the waveguide 46 in the second embodiment. Is extended from the horizontal portion 47 so as to protrude upward.
  • the magnetron 16 is connected horizontally (horizontal connection) so that the magnetron output portion 44 is inserted in the horizontal direction with respect to the vertical portion 48 of the waveguide 46.
  • a large number of small through-holes 36a and 36b are formed on the opposing wall surfaces on both sides of the waveguide 46, as in the heating cookers of the third and fourth embodiments.
  • a ventilation region 46a having the above is formed. For this reason, when air movement occurs in the waveguide 46, a cooling action is generated, heat transmitted to the magnetron 16 through the waveguide 46 becomes smaller, and the magnetron 16 and the waveguide 46 are reliably cooled. ing.
  • the heating cooker according to the fifth embodiment has a configuration in which the antenna chamber 54 does not protrude upward from the heating chamber 11, and the horizontal portion 47 of the waveguide 46 is provided on the upper surface of the ceiling surface 37 of the heating chamber 11.
  • the vertical portion 48 of the waveguide 46 extends upward. It is also possible to provide a heat insulating portion that blocks heat between the horizontal portion 47 of the waveguide 46 and the ceiling surface 37 of the heating chamber 11 so that heat from the heating chamber 11 is difficult to conduct to the waveguide. .
  • the antenna chamber 54 and the upper heater 12 are arranged at substantially the same height, and the height dimension of the vertical portion 48 of the waveguide 46 is set.
  • a magnetron 16 and a motor 23 are arranged inside.
  • the cooking device according to the fifth embodiment configured as described above has a height dimension that is the smallest as compared with the cooking devices according to the other embodiments, and thus has a compact configuration.
  • the antenna chamber 54 is formed by the antenna chamber constituent member 54 a provided on the ceiling surface 37 of the heating chamber 11, and the antenna chamber constituent member 54 a is the antenna chamber 54 and the upper heater 12. It has a function as a shielding wall which shields the microwave radiated in the horizontal direction from the antenna portion 22a.
  • the microwave radiated from the power feeding unit 22 in the heating chamber 11 is hardly affected by the presence or absence of the members around the power feeding unit 22 in the heating chamber and the shape and arrangement of the members around the power feeding unit 22. Become. Since the microwave radiated from the power feeding unit 22 is provided with the antenna chamber 54, the upper heater 12 is not directly heated, the loss in the upper heater 12 is reduced, and the object to be heated is heated with high efficiency. be able to.
  • Embodiment 6 Hereinafter, the heating cooker of Embodiment 6 which concerns on this invention is demonstrated.
  • the heating cooker of the sixth embodiment is greatly different from the heating cookers of the first and second embodiments described above in the configuration for supplying microwaves to the heating chamber.
  • the configuration of the first embodiment or the second embodiment is applied to other configurations.
  • FIG. 9 is a front sectional view showing a microwave power feeding configuration in the heating cooker according to the sixth embodiment.
  • the magnetron 16 is disposed in the space between the waveguide 21 and the antenna chamber 53 as shown in FIG.
  • the upper heater 12 is formed with a recess 52 formed by projecting a part of the ceiling surface 37 of the heating chamber 11 outward. It is arrange
  • the antenna chamber 53 provided on the upper side of the heating chamber 11 has a square shape as a shape of the lower end portion, and the whole is configured in a rectangular parallelepiped shape.
  • An L-shaped waveguide 21 having a horizontal portion 42 and a vertical portion 43 is provided at the upper end portion of the antenna chamber 53.
  • the feeding port 25 formed on the lower surface of the horizontal portion 42 of the waveguide 21 is coupled to the opening of the protruding end portion of the antenna chamber 53.
  • a lower end portion of the vertical portion 43 of the waveguide 21 is disposed above the recessed portion 52 of the ceiling surface 37 of the heating chamber 11 via a space. Therefore, the waveguide 21 in the sixth embodiment is connected only to the antenna chamber 53 and is supported only by the antenna chamber 53.
  • the magnetron 16 has a magnetron output portion 44 inserted in a horizontal direction and connected to a side surface of the vertical portion 43 of the waveguide 21 that faces the antenna chamber 53 (horizontal connection). Therefore, the magnetron 16 is disposed in a space sandwiched between the antenna chamber 53 and the vertical portion 43 of the waveguide 21.
  • the ventilation region 21a having a large number of small through holes 36a and 36b on opposite wall surfaces on both sides of the waveguide 21. Is formed. Since such a ventilation region 21a is formed, air movement occurs in the waveguide 21, and a cooling action occurs. As a result, heat transferred from the heating chamber 11 to the magnetron 16 via the waveguide 21 is reduced.
  • the magnetron output portion 44 of the magnetron 16 inserted into the waveguide 21 is surrounded by the ventilation region 21a, the magnetron output portion 44 is cooled by the cooling air passing through the ventilation region 21a. Is configured to be cooled.
  • the heating cooker according to the sixth embodiment generally, the lower the temperature of the magnetron 16, the higher the efficiency, and thus the heating efficiency by the magnetron 16 becomes higher.
  • the cooking device of the sixth embodiment is configured such that the vertical portion 43 of the waveguide 21 extends vertically downward using the waveguide 21 bent at right angles to the L-shape.
  • the magnetron 16 is provided in the space between the waveguide 21 and the antenna chamber 53. For this reason, in the configuration of the heating cooker according to the sixth embodiment, the magnetron 16 is disposed inside the horizontal portion 42 in the extending direction of the horizontal portion 42 of the waveguide 21. Therefore, the heating cooker according to the sixth embodiment uses the upper space of the heating chamber 11 with high efficiency, has no wasted space, and the heating cooker is made compact.
  • the structure of Embodiment 6 can build the heating cooker which can aim at the improvement of both heating efficiency and compactness.
  • the wavelength of the microwave that transmits the horizontal transmission distance (H) of the horizontal transmission path of the waveguide to the waveguide is made longer than 1/2 ( ⁇ g / 2), the distance to the feed port in the horizontal transmission path of the waveguide is sufficiently long with respect to the wavelength of the transmission wave.
  • the coupling stability in the microwave power supply configuration is increased, and the heating operation can be performed while maintaining high efficiency regardless of fluctuations in the operation state such as a load change.
  • a bent waveguide bent into an L shape, a microwave generator horizontally connected to the vertical transmission path of the waveguide, and a power feeding unit are housed.
  • the microwave feed configuration can be made compact and the amount of heat transferred from the heating chamber to the microwave generator is reduced. It becomes possible to make it.
  • the microwave heating apparatus of the present invention can improve the heating efficiency by the microwave generation unit, and at the same time, improve the heating efficiency and compactness of the microwave power feeding configuration including the microwave generation unit. Can do.
  • the present invention is not limited to a heating cooker that dielectrically heats food by radiating microwaves, in particular, a cooking device used in combination with other heating such as an oven, a grill, and superheated steam, as well as a drying device, a ceramic heating device, It is useful in a microwave heating apparatus in various industrial applications such as a garbage disposal machine or a semiconductor manufacturing apparatus.
  • Housing 11 Heating chamber 12 Upper heater 13 Lower heater 15 Object to be heated (food) 16 Magnetron 17 Upper Heater Thermocouple 18 Lower Heater Thermocouple 19 Thermistor 21 Waveguide 22 Feeder 22a Antenna 22b Shaft 23 Motor 24 Antenna Chamber 25 Feeder 26 Hook 27 Cover 42 Horizontal Part (Horizontal Transmission Line) 43 Vertical section (vertical transmission line)

Abstract

In order to provide the disclosed compact microwave heating device that has a high heating efficiency and a more compact microwave electricity supply configuration disposed above a heating chamber, a waveguide tube that transmits microwaves from a microwave generation unit has a vertical transmission pathway and a horizontal transmission pathway that are bent perpendicularly, is configured in a manner such that the microwave generation unit is connected horizontally to the vertical transmission pathway and the microwaves from the microwave generation unit are transmitted to an electricity supply unit via the vertical transmission pathway and the horizontal transmission pathway, and is configured in a manner such that the horizontal transmission distance in the horizontal transmission pathway is longer than 1/2 the wavelength of the microwaves transmitted within the waveguide tube.

Description

マイクロ波加熱装置Microwave heating device
 本発明は、被加熱物に対してマイクロ波を放射して誘電加熱するマイクロ波加熱装置に関し、特に、被加熱物である食品を誘電加熱して調理する加熱調理器に関する。 The present invention relates to a microwave heating apparatus that radiates microwaves to an object to be heated and performs dielectric heating, and more particularly to a cooking device that cooks food that is an object to be heated by dielectric heating.
 マイクロ波加熱装置において、電子レンジに代表されるマイクロ波を用いた加熱調理器の基本構成は、マイクロ波が外部に漏れないようにシールドされた加熱室と、マイクロ波を発生するマグネトロンと、マグネトロンで発生したマイクロ波を加熱室まで伝送する導波管とを備えている。 In a microwave heating apparatus, the basic configuration of a heating cooker using microwaves typified by a microwave oven is a heating chamber shielded so that microwaves do not leak outside, a magnetron that generates microwaves, and a magnetron And a waveguide for transmitting the microwave generated in the heating chamber to the heating chamber.
 加熱調理器において、上記の加熱室、マグネトロンおよび導波管以外の構成物に関しては、その目的に応じた方式に応じて各種の構成が用いられる。例えば、加熱室に対してどの方向からマイクロ波を入射させるかによって、横給電方式、下給電方式、上給電方式、上下給電方式などがあり、これらの給電方式に応じてそれぞれ構成が異なっている。 In the cooking device, regarding the components other than the heating chamber, the magnetron, and the waveguide, various configurations are used according to the method according to the purpose. For example, there are a lateral feeding method, a lower feeding method, an upper feeding method, a vertical feeding method, and the like depending on which direction the microwave is incident on the heating chamber, and the configuration differs depending on these feeding methods. .
 加熱室の側面からマイクロ波を入射させる横給電方式の場合は、マイクロ波の分布が偏らないように被加熱物である食品自体を加熱室内において回転させる必要がある。このように横給電方式においては、いわゆるターンテーブル方式が用いられる。逆に、加熱室における底面からマイクロ波を入射させる下給電方式、天井面からマイクロ波を入射させる上給電方式、および底面と天井面の両方からマイクロ波を入射させる上下給電方式等の場合においては、被加熱物である食品を移動させずに、導波管と加熱室との結合部分に設けた給電部であるアンテナを回転させてマイクロ波を攪拌放射している。このようにアンテナを回転させる、いわゆる回転アンテナ方式は、下給電方式、上給電方式および上下給電方式に用いられている。 In the case of the lateral feeding method in which microwaves are incident from the side of the heating chamber, the food itself that is the object to be heated needs to be rotated in the heating chamber so that the distribution of microwaves is not biased. Thus, a so-called turntable method is used in the lateral feeding method. Conversely, in the case of a lower power feeding method in which microwaves are incident from the bottom surface in the heating chamber, an upper power feeding method in which microwaves are incident from the ceiling surface, and a vertical power feeding method in which microwaves are incident from both the bottom surface and the ceiling surface, etc. Without moving the food that is the object to be heated, the antenna that is the power feeding unit provided at the coupling portion between the waveguide and the heating chamber is rotated to radiate the microwave. The so-called rotating antenna method for rotating the antenna in this way is used for the lower feeding method, the upper feeding method, and the vertical feeding method.
 電子レンジにおいて、どのような給電方式を選択するかは、電子レンジの機能だけではなく、他の機能、例えば、オーブン機能、グリル機能、スチーム機能等との併用を考慮して決定される。このように電子レンジの機能と他の機能とを併用させる場合、マイクロ波の給電構成の他に、例えばヒータ、水タンク、スチーム発生機構等を設ける必要がある。このため、それぞれの構成物を装置内部において効率的に配置する必要がある(例えば、特許文献1参照)。 The power supply method to be selected in the microwave oven is determined in consideration of not only the microwave oven function but also other functions such as an oven function, a grill function, and a steam function. Thus, when using the function of a microwave oven and another function together, it is necessary to provide a heater, a water tank, a steam generation mechanism, etc. other than the microwave electric power feeding structure, for example. For this reason, it is necessary to arrange | position each structure efficiently inside an apparatus (for example, refer patent document 1).
 また、例えばオーブン、グリル、および100度を越える水蒸気である過熱水蒸気(Superheated-steam)等を加熱調理器に用いる場合、加熱室内が高温になるため、被加熱物である食品を載置する皿の材質としては耐熱性の高い導体製の皿が使用される場合がある。このように導体製の皿を使用した場合、マイクロ波が導体製の皿で反射されるため、マイクロ波が透過するガラスやセラミック等の誘電体製の皿を用いた場合とは加熱室内におけるマイクロ波の分布が異なってくる。 In addition, when using, for example, an oven, a grill, and superheated steam (superheated steam), which is water vapor exceeding 100 degrees, in a heating cooker, the heating chamber becomes hot, and thus a dish on which food to be heated is placed. In some cases, a plate made of a conductor having high heat resistance is used. When a conductive dish is used in this manner, the microwave is reflected by the conductive dish, so that the microwave in the heating chamber is different from the case where a dielectric dish such as glass or ceramic that transmits microwaves is used. Wave distribution is different.
 また、導体製の皿の代わりとして、導体製の網を使用する場合もある。導体製の網を使用する場合には、網目が波長と比べてある程度大きくなるとマイクロ波が通過するようになるため、網形状によっても加熱室内のマイクロ波の分布は変化する。 Also, a conductor net may be used instead of a conductor dish. When a conductor net is used, microwaves pass when the mesh is increased to some extent compared to the wavelength, and therefore the microwave distribution in the heating chamber changes depending on the net shape.
 さらに、最近においては、電子レンジの機能と他の機能とが互いに協動して調理する必要性が高まってきている。例えば、大きな食品を焼く場合、又は冷凍状態の食品を焼く場合等においては、ヒータによる加熱だけでは食品の表面を加熱するだけであるため、食品の内部まで火が通らないことがある。このようなヒータだけの調理器としては、加熱源としてヒータしか持たないオーブントースターがこれに該当する。このようなオーブントースターを用いてヒータだけで食品の内部まで加熱するためには、食品の表面を焦がさないように、火力(出力)を下げて低温度で長時間かけて熱伝導により徐々に加熱するしか方法がない。 Furthermore, recently, there is an increasing need for cooking in which the functions of the microwave oven and other functions cooperate with each other. For example, when baking a large food or baking a frozen food, only the surface of the food is heated only by heating with the heater, so that the inside of the food may not be ignited. As such a cooker having only a heater, an oven toaster having only a heater as a heating source corresponds to this. In order to heat the inside of the food only with a heater using such an oven toaster, the heating power (output) is lowered and gradually heated by heat conduction at a low temperature for a long time so as not to burn the food surface. There is only a way to do it.
 一方、誘電加熱する電子レンジを用いて被加熱物を加熱することにより、被加熱物である食品が誘電体であるため、マイクロ波が食品の内部まで浸透して、食品の内部を加熱することが可能となる。このように、電子レンジを用いることにより、短時間で食品の内部まで火を通すことが可能となる。したがって、食品の内部を加熱する電子レンジの機能と、食品の表面を焼くヒータの機能とを協動させることにより、大きな食品や冷凍状態の食品を短時間で美味しく焼き上げることが可能となる。 On the other hand, by heating the object to be heated using a microwave oven that performs dielectric heating, the food as the object to be heated is a dielectric, so that microwaves can penetrate into the food and heat the food. Is possible. As described above, by using the microwave oven, it is possible to set fire inside the food in a short time. Therefore, by cooperating the function of the microwave oven that heats the inside of the food and the function of the heater that bakes the surface of the food, it becomes possible to bake large foods or frozen foods in a short time.
特開昭58-181289号公報JP 58-181289 A
 しかしながら、従来の加熱調理器において、マイクロ波の給電構成と他の構成(例えば、ヒータ構成)とを共存させるためには、給電部であるアンテナからのマイクロ波が、ヒータを加熱してしまい、食品に対する加熱効率が低下するという問題がある。また、マイクロ波の給電構成とヒータへの電力供給構成がオーバーラップしないように、装置内部に配設するためには加熱調理器の装置サイズが大きくならざるをえないという問題がある。上記のように、従来の加熱調理器において、マイクロ波給電構成とヒータ電力供給構成とを共存させる場合、加熱効率の向上と装置の小型化の両立を図ることが難しいという課題があった。 However, in the conventional heating cooker, in order to coexist with the microwave feeding configuration and other configurations (for example, the heater configuration), the microwave from the antenna serving as the feeding unit heats the heater, There exists a problem that the heating efficiency with respect to food falls. Further, there is a problem that the apparatus size of the heating cooker must be increased in order to dispose the microwave feeding structure and the power supply structure to the heater so as not to overlap each other. As described above, in the conventional cooking device, when the microwave power supply configuration and the heater power supply configuration coexist, there is a problem that it is difficult to achieve both improvement in heating efficiency and downsizing of the apparatus.
 図10は、一般的なマイクロ波給電構成を加熱室の上側に設けた加熱調理器に対して、ヒータを有するヒータ電力供給構成をさらに設けた場合の概略構成を示す正面断面図である。図10に示す加熱調理器において、加熱調理器の外観を構成する筐体100の内部には被加熱物である食品を誘電加熱するための加熱室101が設けられている。加熱室101の内部における上下位置にヒータ102が設けられている。また、上側のヒータ102の上方であり、且つ加熱室101の上方には、マグネトロン103、導波管104、回転アンテナ105、モータ106などのマイクロ波の給電構成が配置されている。このように構成された従来の加熱調理器においては、加熱室101から放出される熱が導波管104を伝導してマグネトロン103に伝わり、マグネトロンが加熱され易い構造を有している。その結果、従来の加熱調理ではマグネトロン103が温度上昇してしまい、マグネトロン103によるマイクロ波の加熱効率が低下するという問題を有していた。また、従来の加熱調理器においては、回転アンテナ105から加熱室101の内部に放射されたマイクロ波の一部が上側のヒータ102を加熱するため、マイクロ波による加熱効率が低下するという問題も有していた。さらに、加熱室101の上側の空間にはマイクロ波給電構成が配設されているため、加熱室101の上側にはかなり大きな空間が必要となり、筐体100のサイズが大型とならざるを得ないという問題も有していた。 FIG. 10 is a front cross-sectional view showing a schematic configuration when a heater power supply configuration having a heater is further provided for a cooking device in which a general microwave power feeding configuration is provided on the upper side of the heating chamber. In the heating cooker shown in FIG. 10, a heating chamber 101 for dielectrically heating food that is an object to be heated is provided inside a casing 100 that constitutes the appearance of the heating cooker. A heater 102 is provided at a vertical position inside the heating chamber 101. Further, above the upper heater 102 and above the heating chamber 101, a microwave power feeding configuration such as a magnetron 103, a waveguide 104, a rotating antenna 105, and a motor 106 is disposed. The conventional cooking device configured as described above has a structure in which heat released from the heating chamber 101 is conducted through the waveguide 104 and is transmitted to the magnetron 103, and the magnetron is easily heated. As a result, in the conventional cooking, the temperature of the magnetron 103 is increased, and the microwave heating efficiency by the magnetron 103 is reduced. Further, in the conventional cooking device, since a part of the microwave radiated from the rotating antenna 105 to the inside of the heating chamber 101 heats the upper heater 102, there is a problem that the heating efficiency by the microwave is lowered. Was. Furthermore, since a microwave power feeding configuration is disposed in the space above the heating chamber 101, a considerably large space is required above the heating chamber 101, and the size of the housing 100 has to be large. There was also a problem.
 本発明は、加熱室からの熱によるマグネトロンの温度上昇を抑制して、加熱効率の高いマイクロ波加熱装置を提供するととともに、加熱室の上側に配設されるマイクロ波給電構成のコンパクト化を図り、小型のマイクロ波加熱装置の提供を目的とする。 The present invention provides a microwave heating apparatus with high heating efficiency by suppressing the temperature rise of the magnetron due to heat from the heating chamber, and at the same time, the microwave power feeding configuration disposed on the upper side of the heating chamber is made compact. An object is to provide a small microwave heating apparatus.
 本発明に係る第1の態様のマイクロ波加熱装置は、
 被加熱物を収納して、当該被加熱物にマイクロ波を放射して高周波加熱するための加熱室と、
 前記加熱室において前記被加熱物を高周波加熱するためのマイクロ波を生成するマイクロ波生成部と、
 直角に屈曲した水平伝送路と鉛直伝送路とを有し、前記鉛直伝送路に前記マイクロ波生成部が水平接続されて、前記マイクロ波生成部からのマイクロ波を前記水平伝送路に伝送する導波管と、
 前記水平伝送路に結合され、前記導波管を伝送したマイクロ波を前記加熱室の内部に放射するアンテナ部を有する給電部と、
 前記加熱室の天井面に設けられ、前記アンテナ部から水平方向に放射されるマイクロ波を反射し、前記アンテナ部からのマイクロ波が前記加熱室内に放射されるように下端部分が開放されたアンテナ室と、を備えており、
 前記導波管は、前記水平伝送路における水平伝送距離が当該導波管内を伝送するマイクロ波波長の1/2より長くなるよう構成されている。
 上記のように構成された本発明に係る第1の態様のマイクロ波加熱装置によれば、導波管における屈曲位置から給電口までの水平伝送距離が当該導波管内を伝送するマイクロ波波長の1/2より長いため、マイクロ波生成部と給電部との伝送の結合が安定し、負荷変化等の運転状態が変動しても高い効率で加熱を維持することができる。また、本発明に係る第1の態様のマイクロ波加熱装置においては、長い水平伝送路を有する導波管により加熱室からマグネトロンへ伝熱が抑制されている。さらに、本発明に係る第1の態様のマイクロ波加熱装置においては、導波管の鉛直伝送路に対してマイクロ波生成部、例えばマグネトロンを横向きに水平接続しているため、装置全体としての高さ方向のサイズをコンパクトにすることができる。
The microwave heating apparatus according to the first aspect of the present invention is
A heating chamber for storing an object to be heated, for radiating microwaves to the object to be heated and for high-frequency heating;
A microwave generator for generating microwaves for high-frequency heating of the object to be heated in the heating chamber;
A horizontal transmission path bent at right angles; and a vertical transmission path. The microwave generator is horizontally connected to the vertical transmission path, and a microwave is transmitted from the microwave generator to the horizontal transmission path. A wave tube,
A power feeding unit having an antenna unit coupled to the horizontal transmission path and radiating microwaves transmitted through the waveguide into the heating chamber;
An antenna that is provided on the ceiling surface of the heating chamber, reflects a microwave radiated in a horizontal direction from the antenna unit, and is opened at a lower end so that the microwave from the antenna unit is radiated into the heating chamber. A room, and
The waveguide is configured such that a horizontal transmission distance in the horizontal transmission path is longer than ½ of a microwave wavelength transmitted through the waveguide.
According to the microwave heating device of the first aspect of the present invention configured as described above, the horizontal transmission distance from the bending position in the waveguide to the feeding port has the microwave wavelength transmitted through the waveguide. Since it is longer than ½, the coupling of transmission between the microwave generation unit and the power feeding unit is stable, and heating can be maintained with high efficiency even when the operation state such as a load change fluctuates. In the microwave heating apparatus according to the first aspect of the present invention, heat transfer from the heating chamber to the magnetron is suppressed by the waveguide having a long horizontal transmission path. Furthermore, in the microwave heating apparatus according to the first aspect of the present invention, a microwave generator, for example, a magnetron is horizontally connected horizontally to the vertical transmission path of the waveguide. The size in the vertical direction can be made compact.
 本発明に係る第2の態様のマイクロ波加熱装置は、前記第1の態様における前記加熱室の内部において、被加熱物に対して上方からの輻射熱により加熱する輻射加熱部が設けられており、前記輻射加熱部が前記アンテナ室の直下以外の領域に配置されている。上記のように構成された本発明に係る第2の態様のマイクロ波加熱装置によれば、給電部から放射されたマイクロ波が輻射加熱部を直接加熱することがなく、加熱損失が防止されており、加熱効率の向上が図られている。 The microwave heating apparatus according to the second aspect of the present invention is provided with a radiant heating section that heats an object to be heated by radiant heat from above in the heating chamber according to the first aspect. The radiation heating unit is disposed in a region other than directly below the antenna room. According to the microwave heating apparatus of the second aspect of the present invention configured as described above, the microwave radiated from the power feeding unit does not directly heat the radiant heating unit, and heating loss is prevented. Thus, the heating efficiency is improved.
 本発明に係る第3の態様のマイクロ波加熱装置は、前記第1又は第2の態様において、前記被加熱物を加熱するために、前記加熱室の内部に熱風を循環させる対流加熱部が設けられている。上記のように構成された本発明に係る第3の態様のマイクロ波加熱装置によれば、加熱室からマグネトロンへの伝熱が抑制されるとともに、加熱室内における熱風による加熱処理が、加熱損失を防止して、加熱効率高く行うことができる。 In the microwave heating apparatus according to the third aspect of the present invention, in the first or second aspect, a convection heating unit that circulates hot air inside the heating chamber is provided to heat the object to be heated. It has been. According to the microwave heating device of the third aspect of the present invention configured as described above, heat transfer from the heating chamber to the magnetron is suppressed, and heat treatment with hot air in the heating chamber reduces heating loss. It can prevent and can carry out with high heating efficiency.
 本発明に係る第4の態様のマイクロ波加熱装置において、前記第1乃至第3の態様における前記給電部の前記アンテナ部は、前記アンテナ室の内部において回転し、前記加熱室の内部に対してマイクロ波を攪拌放射するよう構成されている。上記のように構成された本発明に係る第4の態様のマイクロ波加熱装置によれば、加熱室の全体に対してマイクロ波を均一に放射することが可能となる。 In the microwave heating apparatus according to the fourth aspect of the present invention, the antenna section of the power feeding section according to the first to third aspects rotates inside the antenna chamber, and with respect to the inside of the heating chamber. The microwave is agitated and radiated. According to the microwave heating device of the 4th mode concerning the present invention constituted as mentioned above, it becomes possible to radiate a microwave uniformly to the whole heating chamber.
 本発明に係る第5の態様のマイクロ波加熱装置において、前記第1乃至第4の態様における前記導波管は、前記鉛直伝送路が前記水平伝送路に対して下方へ延設され、前記加熱室の天井面から上方に突出して形成された前記アンテナ室の上方端部の開口に前記水平伝送路の給電口が結合されている。上記のように構成された本発明に係る第5の態様のマイクロ波加熱装置によれば、加熱室から突出しているアンテナ室が導波管の上下方向の高さ寸法に相殺される構成であるため、マイクロ波給電構成において無駄なスペースが無く、コンパクト化を図ることができる。また、本発明に係る第5の態様のマイクロ波加熱装置によれば、加熱室に対してアンテナ室を介して導波管を接続する構成であるため、導波管と加熱室との接触部分が無くなり、加えて加熱室からマイクロ波生成部へ伝わる熱が減少するため、マイクロ波生成部による加熱効率が向上する。 In the microwave heating apparatus according to the fifth aspect of the present invention, in the waveguide according to the first to fourth aspects, the vertical transmission path extends downward with respect to the horizontal transmission path, and the heating A feeding port of the horizontal transmission path is coupled to an opening at an upper end portion of the antenna chamber formed to protrude upward from the ceiling surface of the chamber. According to the microwave heating device of the fifth aspect of the present invention configured as described above, the antenna chamber protruding from the heating chamber is configured to be offset to the vertical dimension of the waveguide. For this reason, there is no wasted space in the microwave power feeding configuration, and compactness can be achieved. According to the microwave heating device of the fifth aspect of the present invention, since the waveguide is connected to the heating chamber via the antenna chamber, the contact portion between the waveguide and the heating chamber In addition, since the heat transmitted from the heating chamber to the microwave generation unit is reduced, the heating efficiency by the microwave generation unit is improved.
 本発明に係る第6の態様のマイクロ波加熱装置において、前記第1乃至第4の態様における前記導波管は、前記鉛直伝送路が前記水平伝送路に対して上方へ延設され、前記加熱室の天井面から上方に突出して形成された前記アンテナ室の上方端部の開口に前記水平伝送路の給電口が結合され、前記鉛直伝送路に水平接続された前記マイクロ波生成部からのマイクロ波が前記水平伝送路を介して前記給電部から前記加熱室内に放射されるように構成されている。上記のように構成された本発明に係る第6の態様のマイクロ波加熱装置は、コンパクトなマイクロ波給電構成を構築することができる。 In the microwave heating apparatus according to the sixth aspect of the present invention, in the waveguide according to the first to fourth aspects, the vertical transmission path extends upward with respect to the horizontal transmission path, and the heating A feed port of the horizontal transmission path is coupled to an opening at an upper end portion of the antenna chamber formed so as to protrude upward from the ceiling surface of the chamber, and the microwave from the microwave generation unit horizontally connected to the vertical transmission path A wave is radiated from the power feeding unit into the heating chamber via the horizontal transmission path. The microwave heating device according to the sixth aspect of the present invention configured as described above can construct a compact microwave power feeding configuration.
 本発明に係る第7の態様のマイクロ波加熱装置は、前記第1乃至第4の態様における前記アンテナ室の外側において、前記導波管と前記加熱室との間の空間に断熱部が設けられている。上記のように構成された本発明に係る第7の態様のマイクロ波加熱装置によれば、高温加熱中の加熱室から導波管を介してマイクロ波生成部に伝熱する熱量が大幅に抑制され、マイクロ波生成部の出力効率を向上させることができる。 In the microwave heating apparatus according to the seventh aspect of the present invention, a heat insulating portion is provided in a space between the waveguide and the heating chamber outside the antenna chamber in the first to fourth aspects. ing. According to the microwave heating device of the seventh aspect of the present invention configured as described above, the amount of heat transferred from the heating chamber during high-temperature heating to the microwave generation unit via the waveguide is greatly suppressed. Thus, the output efficiency of the microwave generation unit can be improved.
 本発明に係る第8の態様のマイクロ波加熱装置において、前記第1乃至第4の態様における前記アンテナ室は、前記加熱室の天井面から下方に突出する遮蔽壁を有し、前記遮蔽壁の外周部分に前記輻射加熱部が配置されている。上記のように構成された本発明に係る第8の態様のマイクロ波加熱装置によれば、給電部からのマイクロ波が輻射加熱部を直接加熱することがなく、輻射加熱部における損失が少なくなり、高い効率で被加熱物を加熱することができるとともに、装置全体としての高さ方向の寸法が小さくなり、コンパクトな構成となる。 In the microwave heating apparatus according to the eighth aspect of the present invention, the antenna chamber according to the first to fourth aspects includes a shielding wall protruding downward from the ceiling surface of the heating chamber, The said radiation heating part is arrange | positioned at the outer peripheral part. According to the microwave heating device of the eighth aspect of the present invention configured as described above, the microwave from the power feeding unit does not directly heat the radiant heating unit, and loss in the radiant heating unit is reduced. The object to be heated can be heated with high efficiency, and the size in the height direction of the entire apparatus is reduced, resulting in a compact configuration.
 本発明に係る第9の態様のマイクロ波加熱装置は、前記第1乃至第4の態様における前記導波管における対向する面には、マイクロ波が漏洩しない直径を有する貫通孔が形成され、冷却ファンにより形成された冷却風が前記貫通孔を通過するよう構成されている。上記のように構成された本発明に係る第9の態様のマイクロ波加熱装置によれば、導波管が冷却され、加熱室から導波管を介してマイクロ波生成部に伝わる熱が低減される。 In the microwave heating apparatus according to the ninth aspect of the present invention, a through-hole having a diameter at which microwaves do not leak is formed on the opposing surfaces of the waveguide according to the first to fourth aspects, and cooling is performed. The cooling air formed by the fan is configured to pass through the through hole. According to the microwave heating apparatus of the ninth aspect of the present invention configured as described above, the waveguide is cooled, and the heat transmitted from the heating chamber to the microwave generation unit via the waveguide is reduced. The
 本発明に係る第10の態様のマイクロ波加熱装置は、前記第1乃至第4の態様における前記導波管にマイクロ波が漏洩しない直径を有する複数の貫通孔を有する通気領域が形成されている。上記のように構成された本発明に係る第10の態様のマイクロ波加熱装置によれば、導波管の壁面における伝熱抵抗が大きくなるとともに、通気領域の貫通孔を冷却空気が流れて導波管が冷却され、加熱室から導波管を介してマイクロ波生成部に伝わる熱が低減される。この結果、マイクロ波生成部によるマイクロ波の加熱効率が向上する構成となる。 In the microwave heating apparatus according to the tenth aspect of the present invention, a ventilation region having a plurality of through holes having a diameter at which microwaves do not leak is formed in the waveguide according to the first to fourth aspects. . According to the microwave heating device of the tenth aspect of the present invention configured as described above, the heat transfer resistance on the wall surface of the waveguide increases, and the cooling air flows through the through hole in the ventilation region. The wave tube is cooled, and the heat transmitted from the heating chamber to the microwave generation unit via the waveguide is reduced. As a result, the microwave heating efficiency is improved by the microwave generator.
 本発明に係る第11の態様のマイクロ波加熱装置において、前記第1乃至第4の態様における前記導波管は、前記鉛直伝送路が前記水平伝送路に対して下方へ延設され、前記加熱室の天井面から上方に突出して形成された前記アンテナ室の上方端部の開口に前記水平伝送路の給電口が結合され、前記アンテナ室と前記鉛直伝送路との間の空間内にマイクロ波生成部が配置されている。上記のように構成された本発明に係る第11の態様のマイクロ波加熱装置によれば、導波管の水平伝送路の延設方向において、導波管の鉛直伝送路とアンテナ室とに挟まれた、水平伝送路の下方に生じる空間にマイクロ波生成部が配置されているため、加熱室の上側空間を効率高く利用することができ、無駄な空間を無くして、加熱調理器のコンパクト化が図られている。 In the microwave heating apparatus according to an eleventh aspect of the present invention, in the waveguide according to the first to fourth aspects, the vertical transmission path extends downward with respect to the horizontal transmission path, and the heating A feed port of the horizontal transmission path is coupled to an opening at an upper end portion of the antenna room formed so as to protrude upward from the ceiling surface of the room, and a microwave is placed in a space between the antenna room and the vertical transmission path. A generation unit is arranged. According to the microwave heating apparatus of the eleventh aspect of the present invention configured as described above, the waveguide is sandwiched between the vertical transmission path of the waveguide and the antenna chamber in the extending direction of the horizontal transmission path of the waveguide. Since the microwave generator is placed in the space generated below the horizontal transmission path, the upper space of the heating chamber can be used efficiently, eliminating wasted space and making the cooking device compact. Is planned.
 本発明に係る第12の態様のマイクロ波加熱装置において、前記第1乃至第4の態様における前記導波管は、前記鉛直伝送路における鉛直伝送距離が当該導波管内を伝送するマイクロ波波長の1/4より短くなるよう構成されている。上記のように構成された本発明に係る第12の態様のマイクロ波加熱装置によれば、鉛直伝送路において電界が逆方向になることがなく、導波管の伝送路内において複雑な反射の発生を防止することができ、伝送効率が向上する。 In the microwave heating apparatus according to a twelfth aspect of the present invention, the waveguide according to the first to fourth aspects is configured such that a vertical transmission distance in the vertical transmission path has a microwave wavelength transmitted through the waveguide. It is configured to be shorter than ¼. According to the microwave heating apparatus of the twelfth aspect of the present invention configured as described above, the electric field does not reverse in the vertical transmission path, and complicated reflection occurs in the waveguide transmission path. Occurrence can be prevented and transmission efficiency is improved.
 本発明によれば、加熱効率が向上するととともに、加熱室の上側に配設されるマイクロ波給電構成をコンパクト化して、装置サイズが小型化したマイクロ波加熱装置を提供することでできる。 According to the present invention, it is possible to provide a microwave heating apparatus in which the heating efficiency is improved and the microwave power supply configuration disposed on the upper side of the heating chamber is made compact to reduce the apparatus size.
本発明に係る実施の形態1の加熱調理器における主要部の内部構成を示す正面断面図Front sectional drawing which shows the internal structure of the principal part in the heating cooker of Embodiment 1 which concerns on this invention. 本発明に係る実施の形態1の加熱調理器における導波管およびアンテナ室を示す斜視図The perspective view which shows the waveguide and antenna chamber in the heating cooker of Embodiment 1 which concerns on this invention. 本発明に係る実施の形態2の加熱調理器における主要部の内部構成を示す正面断面図Front sectional drawing which shows the internal structure of the principal part in the heating cooker of Embodiment 2 which concerns on this invention. 本発明に係る実施の形態2の加熱調理器における主要部の側面断面図Side surface sectional drawing of the principal part in the heating cooker of Embodiment 2 which concerns on this invention. 本発明に係る実施の形態2の加熱調理器における加熱室の天井面に設けられた給電部、加熱部等を示す裏面図The rear view which shows the electric power feeding part provided in the ceiling surface of the heating chamber in the heating cooker of Embodiment 2 which concerns on this invention, a heating part, etc. 本発明に係る実施の形態3の加熱調理器におけるマイクロ波給電構成を示す正面断面図Front sectional drawing which shows the microwave electric power feeding structure in the heating cooker of Embodiment 3 which concerns on this invention 本発明に係る実施の形態4の加熱調理器におけるマイクロ波給電構成を示す正面断面図Front sectional drawing which shows the microwave electric power feeding structure in the heating cooker of Embodiment 4 which concerns on this invention. 本発明に係る実施の形態5の加熱調理器におけるマイクロ波給電構成を示す正面断面図Front sectional drawing which shows the microwave electric power feeding structure in the heating cooker of Embodiment 5 which concerns on this invention. 本発明に係る実施の形態6の加熱調理器におけるマイクロ波給電構成を示す正面断面図Front sectional drawing which shows the microwave electric power feeding structure in the heating cooker of Embodiment 6 which concerns on this invention 加熱調理器における一般的なマイクロ波給電構成の概略構成を示す正面断面図Front sectional view showing a schematic configuration of a general microwave feeding configuration in a heating cooker
 以下、本発明のマイクロ波加熱装置に係る好適な実施の形態について、添付の図面を参照しつつ説明する。なお、以下の実施の形態のマイクロ波加熱装置においては加熱調理器を用いて説明するが、加熱調理器は例示であり、本発明のマイクロ波加熱装置としては加熱調理器に限定されるものではなく、高周波加熱である誘電加熱を利用した加熱装置、生ゴミ処理機、あるいは半導体製造装置等の加熱装置を含むものである。したがって、本発明は、以下の実施の形態の具体的な構成に限定されるものではなく、同様の技術的思想に基づく構成を含むものである。 Hereinafter, preferred embodiments of the microwave heating apparatus of the present invention will be described with reference to the accompanying drawings. In the microwave heating apparatus of the following embodiment, a description will be given using a heating cooker. However, the heating cooker is an example, and the microwave heating apparatus of the present invention is not limited to the heating cooker. And a heating device using dielectric heating which is high-frequency heating, a garbage processing machine, or a heating device such as a semiconductor manufacturing device. Therefore, the present invention is not limited to the specific configurations of the following embodiments, but includes configurations based on the same technical idea.
 (実施の形態1)
 本発明に係る実施の形態1としては、マイクロ波加熱装置における加熱調理器について説明する。なお、以下の各実施の形態においては、加熱調理器として加熱部として少なくとも1つのヒータを備える電子レンジを例として説明する。
(Embodiment 1)
As Embodiment 1 which concerns on this invention, the heating cooker in a microwave heating apparatus is demonstrated. In the following embodiments, a microwave oven including at least one heater as a heating unit will be described as an example of a heating cooker.
 図1は、本発明に係る実施の形態1のマイクロ波加熱装置としての加熱調理器における主要部の内部構成を示す正面断面図である。図1に示す加熱調理器において、加熱調理器の外観を構成する筐体10の内部には被加熱物である食品15を誘電加熱(高周波加熱)するための加熱室11が設けられている。即ち、加熱室11においては、被加熱物である食品15が収納されて、当該食品15にマイクロ波を放射して高周波加熱している。表面がホーロー塗装された鋼鈑により形成された加熱室11の内部には、加熱室内を高温にするための輻射加熱部である2つのヒータ12,13が設けられている。一方のヒータ12は加熱室11の天井面側(上側)に配置されており、他方のヒータ13は加熱室11の底面側(下側)に配置されている。加熱室11の内部には、ステンレスの棒材を縦横に組み合わせて溶接して形成された焼き網14が脱着可能に設けられている。焼き網14は加熱室11における複数段の所望の位置に装着できる構成である。焼き網14の上に載せられた、被加熱物である食品15は、上ヒータ12と下ヒータ13とにより挟まれて上下方向から輻射加熱される。加熱室11を構成する壁面と壁面との間の接続部分の角は、曲面により構成されている。また、加熱室11の底面の全体は大きな曲率半径を有する曲面形状に形成されている。 FIG. 1 is a front sectional view showing an internal configuration of a main part in a heating cooker as a microwave heating apparatus according to a first embodiment of the present invention. In the heating cooker shown in FIG. 1, a heating chamber 11 for dielectrically heating (high-frequency heating) a food 15 that is an object to be heated is provided inside a casing 10 that forms the appearance of the cooking device. That is, in the heating chamber 11, the food 15 that is the object to be heated is stored, and microwaves are radiated to the food 15 to be heated at high frequency. Two heaters 12 and 13 which are radiant heating portions for increasing the temperature of the heating chamber are provided inside the heating chamber 11 formed of a steel plate whose surface is enameled. One heater 12 is disposed on the ceiling surface side (upper side) of the heating chamber 11, and the other heater 13 is disposed on the bottom surface side (lower side) of the heating chamber 11. Inside the heating chamber 11, a grill 14 formed by combining stainless steel rods vertically and horizontally and welding is provided. The grill 14 is configured to be mounted at a plurality of desired positions in the heating chamber 11. The food 15 that is an object to be heated placed on the grill 14 is sandwiched between the upper heater 12 and the lower heater 13 and radiantly heated from above and below. The corners of the connecting portions between the wall surfaces constituting the heating chamber 11 are formed by curved surfaces. Further, the entire bottom surface of the heating chamber 11 is formed in a curved shape having a large radius of curvature.
 なお、実施の形態1の加熱調理器においては、壁面がホーロー塗装を行った鋼鈑で形成した例で説明するが、他の耐熱性を有する塗装を行った鋼鈑で形成してもよい。また、壁面材質としてはステンレス、PCM鋼板(Pre-coated metal)でもよい。実施の形態1においては、焼き網14はステンレスの棒材を組み合わせて形成したが、めっき処理を施した鋼材等を用いて形成することもできる。 In addition, in the cooking-by-heating machine of Embodiment 1, although the wall surface demonstrates in the example formed with the steel plate which performed the enamel coating, you may form with the steel plate which applied the coating which has another heat resistance. The wall material may be stainless steel or PCM steel plate (Pre-coated metal). In the first embodiment, the grill 14 is formed by combining stainless steel rods, but can also be formed by using a steel material or the like subjected to plating.
 図1に示すように、加熱室11の天井面における中央付近にはアンテナ室24が設けられており、アンテナ室24の内部には電波撹拌手段としての回転アンテナの給電部22が配置されている。アンテナ室24は、給電部22から放射されたマイクロ波を反射する材料で構成されており、アンテナ室24の外側へマイクロ波が漏洩しないよう遮蔽構造を有している。回転アンテナの給電部22は導波管21に形成された給電口25から導出するよう設けられている。導波管21は、マイクロ波生成部であるマグネトロン16からのマイクロ波を給電部22に伝送する。マグネトロン16は、加熱室11において被加熱物である食品15を高周波加熱するためのマイクロ波を生成している。給電部22に伝送されたマイクロ波は、加熱室11内に放射される。マグネトロン16は、加熱室11の上側に配置された導波管21おける右側端部(図1参照)に配置されており、導波管21に対してマグネトロン16の発振アンテナであるマグネトロン出力部44が横向きに挿入されている。 As shown in FIG. 1, an antenna chamber 24 is provided near the center of the ceiling surface of the heating chamber 11, and a rotating antenna power feeding unit 22 as a radio wave agitating unit is disposed inside the antenna chamber 24. . The antenna chamber 24 is made of a material that reflects the microwave radiated from the power feeding unit 22, and has a shielding structure so that the microwave does not leak outside the antenna chamber 24. The feeding portion 22 of the rotating antenna is provided so as to be led out from a feeding port 25 formed in the waveguide 21. The waveguide 21 transmits the microwave from the magnetron 16 that is the microwave generation unit to the power supply unit 22. The magnetron 16 generates microwaves for high-frequency heating of the food 15 that is the object to be heated in the heating chamber 11. The microwave transmitted to the power feeding unit 22 is radiated into the heating chamber 11. The magnetron 16 is disposed at the right end (see FIG. 1) of the waveguide 21 disposed on the upper side of the heating chamber 11, and the magnetron output unit 44 that is an oscillation antenna of the magnetron 16 with respect to the waveguide 21. Is inserted sideways.
 上記のように構成された実施の形態1の加熱調理器においては、1つの加熱手段としてマイクロ波による誘電加熱部を有し、他の加熱手段として上下ヒータ12,13による輻射による輻射加熱部を有している。このように、実施の形態1の加熱調理器は、誘電加熱部と輻射加熱部とを併用することにより、加熱室11内の被加熱物である食品15に対する所望の加熱調理を行う構成である。なお、実施の形態1においては、一つの加熱手段としてマイクロ波による誘電加熱部を有し、他の加熱手段として上下ヒータ12,13による輻射加熱部を有する構成で説明するが、上記のような輻射加熱部の代わりに、加熱室内に熱風を循環させて加熱調理を行う対流加熱部を設けてもよい。この対流加熱部としては、加熱室の背面側に循環ファンと循環ヒータとを設けて、加熱室内の空気を高温度に加熱して循環させる構成である。勿論、誘電加熱部、輻射加熱部および対流加熱部の3つの加熱手段を設けて加熱調理を行うよう構成してもよい。 In the heating cooker of the first embodiment configured as described above, one heating means has a dielectric heating part by microwaves, and another heating means has a radiation heating part by radiation by the upper and lower heaters 12 and 13. Have. Thus, the heating cooker of Embodiment 1 is the structure which performs the desired heat cooking with respect to the foodstuff 15 which is the to-be-heated object in the heating chamber 11 by using a dielectric heating part and a radiation heating part together. . In the first embodiment, a description will be given of a configuration having a dielectric heating unit using microwaves as one heating unit and a radiation heating unit using upper and lower heaters 12 and 13 as another heating unit. Instead of the radiant heating unit, a convection heating unit that performs cooking by circulating hot air in the heating chamber may be provided. As this convection heating unit, a circulation fan and a circulation heater are provided on the back side of the heating chamber, and the air in the heating chamber is heated to a high temperature and circulated. Of course, it may be configured to perform cooking by providing three heating means including a dielectric heating unit, a radiation heating unit, and a convection heating unit.
 実施の形態1における輻射加熱部である上下ヒータ12,13は、充填材とともに電熱線を金属パイプ内に封止して構成されている。加熱室11内には上ヒータ12の表面に接触する上ヒータ熱電対17が設けられている。上ヒータ熱電対17は、給電部22から放射されるマイクロ波の影響を受けないように、金属管で覆われており、上ヒータ12の温度検出手段として機能する。また、加熱室11内には下ヒータ13の表面に接触する下ヒータ熱電対18が設けられており、上ヒータ熱電対17と同様の構成を有している。下ヒータ熱電対18は下ヒータ13の温度検出手段として機能する。加熱室11の壁面には加熱室内の温度検出手段としてサーミスタ19が固定されている。上ヒータ熱電対17と下ヒータ熱電対18とサーミスタ19は、制御手段である制御部20に電気的に接続されている。制御部20は、上ヒータ熱電対17と下ヒータ熱電対18とサーミスタ19からのそれぞれの検出信号に基づき、上ヒータ12と下ヒータ13への通電量を制御している。このように、実施の形態1の加熱調理器においては、加熱室11に対する加熱量が設定された温度となるように精度高く加減制御されている。
 加熱室11の内部において、被加熱物である食品15に対して上方からの輻射熱により加熱する輻射加熱部の上ヒータ12は、アンテナ室24の直下以外の領域に配置されている。即ち、アンテナ室24内の回転アンテナである給電部22から放射されたマイクロ波により、上ヒータ12が直接的に照射されることがなく、被加熱物である食品15が直接的に照射される。
The upper and lower heaters 12 and 13 that are the radiant heating section in the first embodiment are configured by sealing a heating wire together with a filler in a metal pipe. An upper heater thermocouple 17 that contacts the surface of the upper heater 12 is provided in the heating chamber 11. The upper heater thermocouple 17 is covered with a metal tube so as not to be affected by the microwave radiated from the power supply unit 22, and functions as a temperature detection unit of the upper heater 12. Further, a lower heater thermocouple 18 that contacts the surface of the lower heater 13 is provided in the heating chamber 11, and has the same configuration as the upper heater thermocouple 17. The lower heater thermocouple 18 functions as temperature detection means for the lower heater 13. A thermistor 19 is fixed to the wall surface of the heating chamber 11 as temperature detecting means in the heating chamber. The upper heater thermocouple 17, the lower heater thermocouple 18, and the thermistor 19 are electrically connected to a control unit 20 that is a control means. The control unit 20 controls the energization amount to the upper heater 12 and the lower heater 13 based on detection signals from the upper heater thermocouple 17, the lower heater thermocouple 18, and the thermistor 19. As described above, in the heating cooker according to the first embodiment, the heating control for the heating chamber 11 is controlled with high accuracy so that the heating amount becomes the set temperature.
Inside the heating chamber 11, the upper heater 12 of the radiant heating section that heats the food 15 that is the object to be heated by radiant heat from above is disposed in a region other than directly below the antenna chamber 24. That is, the upper heater 12 is not directly irradiated by the microwave radiated from the power feeding unit 22 that is the rotating antenna in the antenna chamber 24, and the food 15 that is the object to be heated is directly irradiated. .
 加熱室11の上側に設けられた導波管21は、水平方向に延設された水平部42と、鉛直方向に延設された鉛直部43とで構成されている。即ち、導波管21は、水平部42により形成される水平伝送路(42)と、鉛直部43により形成される鉛直伝送路(43)とにより直角に折れ曲がったL字形状の内部通路(伝送路)を有している。マイクロ波生成部であるマグネトロン16は、導波管21の鉛直部43に対して発振アンテナであるマグネトロン出力部44が水平方向に挿入されて接続されている。したがって、マグネトロン16が導波管21に対して横向きに接続(水平接続)されているため、鉛直方向の高さ寸法は、導波管21に対してマグネトロン16を縦方向に接続(鉛直接続:図10参照)した場合に比べて短くなっている。 The waveguide 21 provided on the upper side of the heating chamber 11 includes a horizontal portion 42 extending in the horizontal direction and a vertical portion 43 extending in the vertical direction. That is, the waveguide 21 is an L-shaped internal passage (transmission) bent at a right angle by a horizontal transmission path (42) formed by the horizontal section 42 and a vertical transmission path (43) formed by the vertical section 43. Road). A magnetron 16 that is a microwave generation unit is connected to a vertical unit 43 of the waveguide 21 by inserting a magnetron output unit 44 that is an oscillation antenna in a horizontal direction. Accordingly, since the magnetron 16 is connected laterally (horizontal connection) with respect to the waveguide 21, the vertical height dimension is such that the magnetron 16 is connected vertically to the waveguide 21 (vertical connection: This is shorter than the case of FIG.
 上記のようにL字形状の内部通路(伝送路)を有する導波管21の水平部42(水平伝送路)に形成された給電口25には、回転アンテナである給電部22が設けられている。給電部22は、アンテナ部22aと軸部22bで構成されている。給電部22の軸部22bはモータ23に接続されている。モータ23の駆動により軸部22bが回動されて、アンテナ部22aが回転する構成である。給電部22は、導波管21の水平伝送路(42)に結合されており、導波管21を伝送したマイクロ波が給電部22のアンテナ部22aにより加熱室11内に放射される。 As described above, the feeding port 25 formed in the horizontal portion 42 (horizontal transmission path) of the waveguide 21 having the L-shaped internal passage (transmission path) is provided with the feeding section 22 that is a rotating antenna. Yes. The power feeding unit 22 includes an antenna unit 22a and a shaft unit 22b. A shaft portion 22 b of the power feeding unit 22 is connected to the motor 23. The shaft portion 22b is rotated by driving the motor 23, and the antenna portion 22a rotates. The power feeding unit 22 is coupled to the horizontal transmission path (42) of the waveguide 21, and the microwave transmitted through the waveguide 21 is radiated into the heating chamber 11 by the antenna unit 22 a of the power feeding unit 22.
 加熱室11の天井面の略中央には、回転するアンテナ部22aを収納するドーム形状のアンテナ室24が設けられている。アンテナ室24は、下端部分が円形に広がった形状を有しており、円錐台形形状である。アンテナ室24は加熱室11の天井面を絞り加工により外側に突出させて円錐台形形状に形成されている。導波管21の水平部42の下面に形成された給電口25は、アンテナ室24の上端部に形成された開口に結合されており、導波管21と給電部22との結合部分は、給電口として所定の直径が確保されている。上記のように、アンテナ室24は、加熱室11の天井面に設けられ、アンテナ部22aから水平方向に放射されたマイクロ波を反射するよう構成されている。また、アンテナ室24は、アンテナ部22aからのマイクロ波が加熱室内に放射されるように、アンテナ室24の下端部分が開放されている。 In the approximate center of the ceiling surface of the heating chamber 11, a dome-shaped antenna chamber 24 that houses the rotating antenna portion 22a is provided. The antenna chamber 24 has a shape in which a lower end portion extends in a circular shape, and has a truncated cone shape. The antenna chamber 24 is formed in a truncated cone shape by projecting the ceiling surface of the heating chamber 11 outward by drawing. A feeding port 25 formed on the lower surface of the horizontal portion 42 of the waveguide 21 is coupled to an opening formed at the upper end of the antenna chamber 24, and a coupling portion between the waveguide 21 and the feeding unit 22 is A predetermined diameter is secured as a power supply port. As described above, the antenna chamber 24 is provided on the ceiling surface of the heating chamber 11 and is configured to reflect the microwave radiated from the antenna portion 22a in the horizontal direction. In addition, the lower end portion of the antenna chamber 24 is opened so that the microwave from the antenna portion 22a is radiated into the heating chamber.
 図2は、実施の形態1の加熱調理器における導波管21およびアンテナ室24を示す斜視図である。図2に示すように、導波管21は、水平伝送路を形成する水平部42と、鉛直伝送路を形成する鉛直部43とを有しており、伝送路である内部通路がL字形状に直角に折れ曲がった屈曲形状を有している。即ち、水平伝送路(42)の延設方向(水平方向)と、鉛直伝送路(43)の延設方向(鉛直方向)とは直交している。上記のように、導波管21は、直角に屈曲した水平伝送路(42)と鉛直伝送路(43)とを有し、鉛直伝送路(43)にマイクロ波生成部であるマグネトロン16が水平接続されており、マグネトロン16からのマイクロ波を水平伝送路(42)に伝送している。 FIG. 2 is a perspective view showing the waveguide 21 and the antenna chamber 24 in the cooking device of the first embodiment. As shown in FIG. 2, the waveguide 21 has a horizontal portion 42 that forms a horizontal transmission path and a vertical portion 43 that forms a vertical transmission path, and an internal passage serving as a transmission path is L-shaped. It has a bent shape that is bent at a right angle. That is, the extending direction (horizontal direction) of the horizontal transmission path (42) and the extending direction (vertical direction) of the vertical transmission path (43) are orthogonal to each other. As described above, the waveguide 21 has the horizontal transmission path (42) and the vertical transmission path (43) bent at right angles, and the magnetron 16 serving as the microwave generation unit is horizontally disposed on the vertical transmission path (43). They are connected to transmit the microwave from the magnetron 16 to the horizontal transmission path (42).
 実施の形態1においては、水平部42と鉛直部43との接続部位における屈曲位置C(図2参照)から、給電口25の中心までの水平伝送距離をH(図2参照)とすると、実施の形態1においては、距離Hが約135mmに設定されている。なお、水平伝送距離Hとは、導波管21内の伝送路における屈曲位置Cから給電口25の中心までの水平伝送路の延設方向(図1における左右方向)に沿った水平距離のことである。 In the first embodiment, when the horizontal transmission distance from the bent position C (see FIG. 2) at the connection portion between the horizontal portion 42 and the vertical portion 43 to the center of the power supply port 25 is H (see FIG. 2), In the first embodiment, the distance H is set to about 135 mm. The horizontal transmission distance H is a horizontal distance along the extending direction of the horizontal transmission path (left and right direction in FIG. 1) from the bending position C in the transmission path in the waveguide 21 to the center of the feeding port 25. It is.
 導波管21の伝送路である内部通路の幅aは約80mmであり、導波管21の水平部42の内部通路の高さbは約16mmである。なお、内部通路の幅aおよび水平部42における内部通路の高さbとは、導波管21の内面側となる伝送路の長さを示している。 The width a of the internal passage that is the transmission path of the waveguide 21 is about 80 mm, and the height b of the internal passage of the horizontal portion 42 of the waveguide 21 is about 16 mm. The width a of the internal passage and the height b of the internal passage in the horizontal portion 42 indicate the length of the transmission path on the inner surface side of the waveguide 21.
 前述のように、導波管21の鉛直部43に対してはマグネトロン16が横向きで水平接続で固定されている。即ち、マグネトロン16の発振アンテナであるマグネトロン出力部44が、導波管21の鉛直部43の側面壁(右側面壁)に形成された開口部21aに横向きに挿入されて装着されている。導波管21において、屈曲位置Cからマグネトロン16のマグネトロン出力部44の中心までの鉛直伝送距離(鉛直方向の長さ)をV(図2参照)とすると、実施の形態1における鉛直伝送距離Vは、約15mmに設定されている。 As described above, the magnetron 16 is fixed horizontally and horizontally with respect to the vertical portion 43 of the waveguide 21. That is, the magnetron output part 44 that is an oscillation antenna of the magnetron 16 is inserted and mounted laterally into the opening 21 a formed in the side wall (right side wall) of the vertical part 43 of the waveguide 21. In the waveguide 21, assuming that the vertical transmission distance (length in the vertical direction) from the bending position C to the center of the magnetron output portion 44 of the magnetron 16 is V (see FIG. 2), the vertical transmission distance V in the first embodiment. Is set to about 15 mm.
 実施の形態1の加熱調理器において、マグネトロン16は発振周波数が約2450MHzのものが使用されている。このため、導波管21内の管内波長をλgとすると、λgは約190mmになり、半波長(λg/2)の長さは約95mmとなる(λg/2=95mm)。したがって、実施の形態1の加熱調理器における導波管21の構成は、水平部42における実質的な伝送路の長さである水平伝送距離H(約135mm)が半波長(λg/2)よりも長く(H>λg/2)なっている。また、鉛直部43における実質的な伝送路の長さである鉛直伝送距離V(約15mm)は1/4波長(λg/4)よりも短く(V<λg/4)なっている。 In the cooking device of the first embodiment, a magnetron 16 having an oscillation frequency of about 2450 MHz is used. Therefore, if the guide wavelength in the waveguide 21 is λg, λg is about 190 mm, and the length of the half wavelength (λg / 2) is about 95 mm (λg / 2 = 95 mm). Therefore, in the configuration of the waveguide 21 in the heating cooker according to the first embodiment, the horizontal transmission distance H (about 135 mm), which is the substantial transmission path length in the horizontal portion 42, is less than a half wavelength (λg / 2). Is longer (H> λg / 2). Further, the vertical transmission distance V (about 15 mm), which is the substantial transmission path length in the vertical portion 43, is shorter than the quarter wavelength (λg / 4) (V <λg / 4).
 導波管21から伝送されたマイクロ波を攪拌放射する給電部22のアンテナ部22aは、金属製で構成され、厚さ1mmの約φ62の直径を有する略円板形状を有している。モータ23の回転をアンテナ部22aに伝動する軸部22bは、アンテナ部22aにおける円板中心から約12mm偏心した位置に接続されている。軸部22bにおいて、モータ23側の部分はフッ素樹脂で構成されており、アンテナ部22a側の部分は金属で構成されている。軸部22bにおける金属部分は、導波管21の内部に約11mm入っており、導波管21の給電口25を通ってアンテナ室24側に約15mm突出している。また、軸部22bにおける金属部分と給電口25との隙間は、5mm以上の距離が確保されている。 The antenna portion 22a of the power feeding portion 22 that stirs and radiates the microwave transmitted from the waveguide 21 is made of metal and has a substantially disk shape having a diameter of about φ62 with a thickness of 1 mm. The shaft portion 22b that transmits the rotation of the motor 23 to the antenna portion 22a is connected to a position that is eccentric about 12 mm from the center of the disk in the antenna portion 22a. In the shaft portion 22b, the portion on the motor 23 side is made of fluororesin, and the portion on the antenna portion 22a side is made of metal. The metal portion of the shaft portion 22 b is about 11 mm inside the waveguide 21, and protrudes about 15 mm toward the antenna chamber 24 through the feeding port 25 of the waveguide 21. In addition, the gap between the metal portion in the shaft portion 22b and the power supply port 25 is secured at a distance of 5 mm or more.
 図1に示すように、加熱室11の天井面において、アンテナ室24の下端となる開口部分にカバー27が設けられている。カバー27は、マイカ製であり、給電部22のアンテナ部22a等に対して加熱室内11の食品から飛び散った汚れ等が付着しないように設けられている。カバー27は、加熱室11の天井面に設けられた絶縁体のフック26に脱着可能に装着されている。なお、カバー27は低損失誘電材料であるマイカを用いた例で説明したが、マイカに限定されるものではなく、セラミックやガラス等の材料を用いても同様の効果を奏する。 As shown in FIG. 1, a cover 27 is provided in an opening portion serving as a lower end of the antenna chamber 24 on the ceiling surface of the heating chamber 11. The cover 27 is made of mica, and is provided so that dirt or the like scattered from food in the heating chamber 11 does not adhere to the antenna portion 22a of the power feeding portion 22 or the like. The cover 27 is detachably attached to an insulator hook 26 provided on the ceiling surface of the heating chamber 11. The cover 27 has been described with an example using mica, which is a low-loss dielectric material. However, the cover 27 is not limited to mica, and the same effect can be obtained by using a material such as ceramic or glass.
 加熱室11内の上部に設けられた上ヒータ12は、給電部22からのマイクロ波により直接的に加熱されないように、アンテナ室24の下端となる開口部分の直下は避けて配置されている。このように上ヒータ12がアンテナ室24の開口部分を迂回するよう配置されているため、上ヒータ12の中央部分には空隙部28が形成されている。したがって、給電部22から食品15の方向に向かって直接に放射されたマイクロ波M(図1参照)は、上ヒータ12により妨げられることがない。このように、実施の形態1の加熱調理器においては、給電部22から放射されたマイクロ波が上ヒータ12を直接加熱することがなく、損失が防止されており、加熱効率の向上が図られている。 The upper heater 12 provided in the upper part of the heating chamber 11 is disposed so as not to be directly heated by the microwaves from the power feeding unit 22 and directly below the opening portion serving as the lower end of the antenna chamber 24. Since the upper heater 12 is arranged so as to bypass the opening portion of the antenna chamber 24 as described above, a gap portion 28 is formed in the central portion of the upper heater 12. Therefore, the microwave M (see FIG. 1) radiated directly from the power supply unit 22 toward the food 15 is not hindered by the upper heater 12. Thus, in the heating cooker of Embodiment 1, the microwave radiated | emitted from the electric power feeding part 22 does not heat the upper heater 12 directly, loss is prevented, and the improvement of a heating efficiency is aimed at. ing.
 実施の形態1の加熱調理器においては、導波管21が直角に折れ曲がったL字形状を有しており、マグネトロン16が導波管21に対して横向きに接続されている。即ち、導波管21の鉛直壁面に対してマグネトロン16のマグネトロン出力部44の導出部分が直交するよう取り付けられている。このため、マグネトロン16が接続された導波管21の配置空間は、上下方向である鉛直方向の寸法(高さ)が小さくなる。例えば、前述の図10に示した構成におけるマグネトロン103が鉛直方向に接続された導波管104の配置空間における高さに比べて、実施の形態1におけるマグネトロン16が接続された導波管21の配置空間における高さは小さくなっている。また、マグネトロン16が導波管21に対して横向きに接続されているため、マグネトロン16より上方の空間に余裕があり、他の構成物を配置することが可能となる。 In the heating cooker according to the first embodiment, the waveguide 21 has an L-shape bent at a right angle, and the magnetron 16 is connected to the waveguide 21 in a lateral direction. That is, the magnetron output part 44 of the magnetron 16 is attached so that the lead-out portion of the magnetron 16 is orthogonal to the vertical wall surface of the waveguide 21. For this reason, the dimension (height) of the vertical direction which is an up-down direction becomes small in the arrangement space of the waveguide 21 to which the magnetron 16 is connected. For example, the waveguide 21 to which the magnetron 16 in the first embodiment is connected is higher than the height in the arrangement space of the waveguide 104 to which the magnetron 103 in the configuration shown in FIG. 10 is connected in the vertical direction. The height in the arrangement space is small. Further, since the magnetron 16 is connected laterally with respect to the waveguide 21, there is room in the space above the magnetron 16, and other components can be arranged.
 したがって、実施の形態1の加熱調理器においては、マグネトロン16、導波管21、およびアンテナ室24等で構成されるマイクロ波給電構成をコンパクトに形成することが可能となる。実施の形態1の加熱調理器においては、加熱室11の天井面から上方に突設されたアンテナ室24の突出端部の開口に導波管21の水平部42が結合され、導波管21の鉛直部43の下端部分が加熱室11の天井面上に配置されている。したがって、実施の形態1においては、アンテナ室24の突出寸法L(図1参照)を相殺するように、導波管21の鉛直部43の高さ寸法K(図2参照)の長さが設定されている。即ち、鉛直部43の突出寸法Kとアンテナ室24の高さ寸法Lが略同じ長さに設定されている。上記のように、L字形状の導波管21の高さ寸法の内側にアンテナ室24が配設されているため、アンテナ室24の突出寸法Lが導波管21の上下方向の高さ寸法Kに相殺されている。また、導波管21の高さ寸法の内側となるように横向きのマグネトロン16が配置されているため、導波管21の高さ寸法の内側にアンテナ室24およびマグネトロン16が略配置される構成となる。 Therefore, in the heating cooker according to the first embodiment, it is possible to compactly form a microwave feeding configuration including the magnetron 16, the waveguide 21, the antenna chamber 24, and the like. In the heating cooker of the first embodiment, the horizontal portion 42 of the waveguide 21 is coupled to the opening of the protruding end portion of the antenna chamber 24 protruding upward from the ceiling surface of the heating chamber 11. The lower end portion of the vertical portion 43 is arranged on the ceiling surface of the heating chamber 11. Accordingly, in the first embodiment, the length of the vertical dimension 43 of the waveguide 21 (see FIG. 2) is set so as to cancel out the protruding dimension L (see FIG. 1) of the antenna chamber 24. Has been. That is, the projecting dimension K of the vertical portion 43 and the height dimension L of the antenna chamber 24 are set to substantially the same length. As described above, since the antenna chamber 24 is disposed inside the height dimension of the L-shaped waveguide 21, the protruding dimension L of the antenna chamber 24 is the vertical dimension of the waveguide 21. It is offset by K. Further, since the transverse magnetron 16 is disposed so as to be inside the height dimension of the waveguide 21, the antenna chamber 24 and the magnetron 16 are substantially disposed inside the height dimension of the waveguide 21. It becomes.
 上記のように、実施の形態1の加熱調理器においては、マイクロ波給電構成が無駄なスペースを無くして、コンパクト化が達成されている。さらに、実施の形態1の加熱調理器においては、図1に示すように、アンテナ室24の裾野(下端部分)に導波管21の鉛直部43を近接して設けているため、マグネトロン16を横向き配置した構成にも関わらず、マイクロ波給電構成の左右方向(水平部42の延設方向)の寸法が大きくなることなくコンパクト化が図られている。 As described above, in the cooking device of the first embodiment, the microwave power feeding configuration eliminates a useless space and achieves compactness. Furthermore, in the heating cooker of the first embodiment, as shown in FIG. 1, since the vertical portion 43 of the waveguide 21 is provided close to the skirt (lower end portion) of the antenna chamber 24, the magnetron 16 is provided. In spite of the horizontally arranged configuration, the microwave feeding configuration is downsized without increasing the size in the left-right direction (the extending direction of the horizontal portion 42).
 実施の形態1の加熱調理器においては、加熱室11の天井面にアンテナ室24を形成し、そのアンテナ室24の上方端部に導波管21が接続されている。このため、導波管21はアンテナ室24を介して加熱室11と結合されている。したがって、導波管21とアンテナ室24との接触部分は、導波管を加熱室の天井面に直接接触させた場合に比して、小さな面積とすることが可能となる。また、導波管21と加熱室11との間には空間が形成されるため、高温加熱中の加熱室11の天井面から導波管21に対して直接的に熱伝導されることが防止されている。また、加熱室11からアンテナ室24、導波管21を介してマグネトロン16に伝導する熱量においても大幅に減少している。 In the heating cooker according to the first embodiment, the antenna chamber 24 is formed on the ceiling surface of the heating chamber 11, and the waveguide 21 is connected to the upper end of the antenna chamber 24. For this reason, the waveguide 21 is coupled to the heating chamber 11 via the antenna chamber 24. Therefore, the contact portion between the waveguide 21 and the antenna chamber 24 can have a smaller area than when the waveguide is brought into direct contact with the ceiling surface of the heating chamber. In addition, since a space is formed between the waveguide 21 and the heating chamber 11, heat conduction from the ceiling surface of the heating chamber 11 during high-temperature heating to the waveguide 21 is prevented. Has been. Further, the amount of heat conducted from the heating chamber 11 to the magnetron 16 via the antenna chamber 24 and the waveguide 21 is also greatly reduced.
 実施の形態1の加熱調理器においては、導波管21の水平部42における水平伝送距離H(図2参照)を長く設定することにより、加熱室11からアンテナ室24および導波管21を介してマグネトロン16に伝導する熱量をさらに抑制することができる。マグネトロン16は、一般的に低い温度の方が効率が高いため、マグネトロン16の出力効率が向上する構成となる。 In the heating cooker of the first embodiment, by setting the horizontal transmission distance H (see FIG. 2) in the horizontal portion 42 of the waveguide 21 to be long, the heating chamber 11 and the antenna chamber 24 and the waveguide 21 are passed through. Thus, the amount of heat conducted to the magnetron 16 can be further suppressed. Since the magnetron 16 is generally more efficient at a lower temperature, the output efficiency of the magnetron 16 is improved.
 また、実施の形態1の構成においては、導波管21の水平部42の水平伝送距離Hを半波長(λg/2)より長く設定しているため、マグネトロン16と給電部22との結合状態を安定させることができ、負荷変化等の運転状態が変動した場合であっても、高い効率を維持できる構成となる。 In the configuration of the first embodiment, since the horizontal transmission distance H of the horizontal portion 42 of the waveguide 21 is set longer than a half wavelength (λg / 2), the coupling state between the magnetron 16 and the power feeding portion 22 is set. Can be stabilized, and even when the operation state such as a load change fluctuates, a high efficiency can be maintained.
 さらに、実施の形態1の加熱調理器においては、導波管21におけるマグネトロン出力部44の中心から屈曲位置Cまでの鉛直伝送距離Vを1/4波長(λg/4)より短く設定することにより、伝送効率を向上させることができる。導波管21において、鉛直伝送距離Vを発振周波数の1/4波長以下とすることにより、マグネトロン出力部44から屈曲位置Cを含む屈曲部分までの領域において電界が逆方向になることがなく、導波管21の伝送路内において複雑な反射の発生を防止することができる。この結果、実施の形態1の加熱調理器においては、高い発振効率となり、加熱効率の高い装置となる。 Furthermore, in the heating cooker of the first embodiment, by setting the vertical transmission distance V from the center of the magnetron output portion 44 in the waveguide 21 to the bending position C to be shorter than ¼ wavelength (λg / 4). , Transmission efficiency can be improved. In the waveguide 21, by setting the vertical transmission distance V to ¼ wavelength or less of the oscillation frequency, the electric field does not reverse in the region from the magnetron output portion 44 to the bent portion including the bent position C. The occurrence of complicated reflections in the transmission path of the waveguide 21 can be prevented. As a result, in the heating cooker of Embodiment 1, it becomes a high oscillation efficiency and becomes an apparatus with high heating efficiency.
 なお、実施の形態1の加熱調理器においては、一つの加熱手段としてマイクロ波による誘電加熱部を有し、他の加熱手段として上下ヒータ12,13による輻射による輻射加熱部を併用した構成で説明したが、本発明はこのような構成に限定されず、他の加熱手段として加熱室内に熱風を循環させて加熱調理を行う対流加熱部を設けてもよい。さらに、マグネトロンを用いた誘電加熱部と共に、輻射加熱部と対流加熱部の両方を設けた構成としてもよい。このように構成された本発明のマイクロ波加熱装置は、誘電加熱部の構成において、加熱室11からアンテナ室24および導波管21を介してマグネトロン16に伝導する熱量が大幅に低減されているため、他の加熱手段を用いたとしても、加熱効率の向上を図ることができるものとなる。 In addition, in the heating cooker of Embodiment 1, it demonstrates with the structure which has the dielectric heating part by a microwave as one heating means, and combined with the radiation heating part by the radiation by the upper and lower heaters 12 and 13 as another heating means. However, this invention is not limited to such a structure, You may provide the convection heating part which circulates a hot air in a heating chamber as another heating means, and performs cooking. Furthermore, it is good also as a structure which provided both the radiation heating part and the convection heating part with the dielectric heating part using a magnetron. In the microwave heating device of the present invention configured as described above, the amount of heat conducted from the heating chamber 11 to the magnetron 16 through the antenna chamber 24 and the waveguide 21 is greatly reduced in the configuration of the dielectric heating unit. Therefore, even if other heating means is used, the heating efficiency can be improved.
 (実施の形態2)
 以下、本発明に係る実施の形態2の加熱調理器について説明する。実施の形態2の加熱調理器において、前述の実施の形態1の加熱調理器と大きく異なる点は、加熱室にマイクロ波を給電するための構成である。
(Embodiment 2)
Hereinafter, the heating cooker of Embodiment 2 which concerns on this invention is demonstrated. The heating cooker according to the second embodiment is greatly different from the heating cooker according to the first embodiment described above in the configuration for supplying microwaves to the heating chamber.
 以下の実施の形態2の加熱調理器の説明においては、実施の形態1の加熱調理器における構成要素と同じ機能、構成を有するものには同じ符号を付し、その詳細な説明は実施の形態1の説明を適用する。図3は実施の形態2の加熱調理器における主要部の内部構成を示す正面断面図である。図4は、図3に示した加熱調理器の側面断面図である。 In the following description of the heating cooker of the second embodiment, the same reference numerals are given to those having the same functions and configurations as the components in the heating cooker of the first embodiment, and the detailed description thereof will be given in the embodiment. The explanation of 1 applies. FIG. 3 is a front sectional view showing the internal configuration of the main part of the heating cooker according to the second embodiment. FIG. 4 is a side cross-sectional view of the heating cooker shown in FIG. 3.
 図3および図4に示すように、実施の形態2の加熱調理器において、マグネトロン16からのマイクロ波を伝送する導波管46は、実施の形態1における導波管21と同様に、水平部47と鉛直部48とを有してL字形状に屈曲して構成されている。即ち、導波管46の内部通路は、直角に折れ曲がった水平伝送路と鉛直伝送路とにより構成されている。実施の形態2における導波管46においては、鉛直伝送路を形成する鉛直部48が水平伝送路を形成する水平部47から上方に突出するよう延設されている。マグネトロン16はマグネトロン出力部44が導波管46に対して水平方向に挿入されるように横向きに接続(水平接続)されている。即ち、マグネトロン出力部44の導出部分が導波管46の鉛直部48の鉛直側面に対して直交するよう設けられている。したがって、マグネトロン16が導波管46に接続された状態において、上下方向である鉛直方向の高さ寸法は、実施の形態1の構成と同様に小さくなっている。実施の形態2の導波管46においては、実施の形態1における導波管21と同様に、水平部47の水平伝送距離Hは約135mmであり、半波長(λg/2)より長く設定されている(H>λg/2)。また、鉛直部48の鉛直伝送距離Vは約15mmであり、1/4波長(λg/4)より短く設定されている(V<λg/4)。なお、実施の形態2においても、マグネトロン16の発振周波数は約2450MHzのものが使用されているため、導波管46内の管内波長λgは約190mmであり、半波長(λg/2)の長さは95mmである(λg/2=95mm)。 As shown in FIGS. 3 and 4, in the heating cooker of the second embodiment, the waveguide 46 that transmits the microwave from the magnetron 16 has a horizontal portion as in the waveguide 21 of the first embodiment. 47 and a vertical portion 48, and is bent into an L shape. That is, the internal passage of the waveguide 46 is constituted by a horizontal transmission path and a vertical transmission path bent at a right angle. In the waveguide 46 according to the second embodiment, a vertical portion 48 that forms a vertical transmission path is extended so as to protrude upward from a horizontal portion 47 that forms a horizontal transmission path. The magnetron 16 is connected laterally (horizontal connection) so that the magnetron output portion 44 is inserted into the waveguide 46 in the horizontal direction. That is, the lead-out portion of the magnetron output portion 44 is provided so as to be orthogonal to the vertical side surface of the vertical portion 48 of the waveguide 46. Therefore, in the state where the magnetron 16 is connected to the waveguide 46, the vertical dimension, which is the vertical direction, is small as in the configuration of the first embodiment. In the waveguide 46 of the second embodiment, like the waveguide 21 in the first embodiment, the horizontal transmission distance H of the horizontal portion 47 is about 135 mm, and is set longer than a half wavelength (λg / 2). (H> λg / 2). The vertical transmission distance V of the vertical portion 48 is about 15 mm, and is set shorter than a quarter wavelength (λg / 4) (V <λg / 4). In the second embodiment as well, since the oscillation frequency of the magnetron 16 is about 2450 MHz, the in-tube wavelength λg in the waveguide 46 is about 190 mm, which is a half wavelength (λg / 2) long. The thickness is 95 mm (λg / 2 = 95 mm).
 上記のようにL字形状の内部通路(伝送路)を有する導波管46の水平部47には、アンテナ部22aと軸部22bとを有する給電部22が接続されている。加熱室11の天井面の略中央部分には、アンテナ部22aを収納するアンテナ室49が形成されている。アンテナ室49は、下端部分が円形に広がった形状であり、円錐台形形状を有している。アンテナ室49は加熱室11の天井面を絞り加工により形成されている。なお、実施の形態2においては、アンテナ室49の下端部分を覆うカバーが設けられていないため、カバーにおいて僅かに生じる誘電損失が無く、加熱効率がさらに向上する構成となる。 As described above, the feed portion 22 having the antenna portion 22a and the shaft portion 22b is connected to the horizontal portion 47 of the waveguide 46 having the L-shaped internal passage (transmission path). An antenna chamber 49 that houses the antenna portion 22a is formed in a substantially central portion of the ceiling surface of the heating chamber 11. The antenna chamber 49 has a shape in which a lower end portion extends in a circular shape, and has a truncated cone shape. The antenna chamber 49 is formed by drawing the ceiling surface of the heating chamber 11. In the second embodiment, since a cover that covers the lower end portion of the antenna chamber 49 is not provided, there is no dielectric loss that occurs slightly in the cover, and the heating efficiency is further improved.
 図3に示すように、アンテナ室49の下端部分の裾の部分は加熱室11の内部に突出しており、加熱室の天井面から下方に突出する遮蔽壁となっている。一方、アンテナ室49の上端部分は加熱室11の天井面より上方に突出している。導波管46の水平部47に形成されている給電口25は、アンテナ室49の上端部分に形成された開口に結合されている。このため、導波管46はアンテナ室49を介して加熱室11と結合されている。したがって、導波管46とアンテナ室49との接触部分は、導波管を加熱室の天井面に直接接触させた場合に比して、小さな面積とすることが可能となる。また、加熱室11の天井面における上側の面においては、アンテナ室49の回りを取り囲むように、断熱材で形成された断熱部50が設けられている。このように断熱部50が設けられているため、加熱室11の天井面から上方への放出熱が抑制されている。断熱部50は、導波管46と加熱室11の天井面との間の空間に配設されており、加熱室11の天井面からの放出熱により導波管46が直接的に加熱されないよう構成されている。したがって、高温加熱中の加熱室11から導波管46を介してマグネトロン16に伝導する熱量は大幅に抑制されている。この結果、実施の形態2の加熱調理器においては、マグネトロン16の加熱効率が大幅に向上する構成を有する。 As shown in FIG. 3, the bottom part of the antenna chamber 49 protrudes into the heating chamber 11 and serves as a shielding wall protruding downward from the ceiling surface of the heating chamber. On the other hand, the upper end portion of the antenna chamber 49 projects upward from the ceiling surface of the heating chamber 11. The feeding port 25 formed in the horizontal portion 47 of the waveguide 46 is coupled to an opening formed in the upper end portion of the antenna chamber 49. For this reason, the waveguide 46 is coupled to the heating chamber 11 via the antenna chamber 49. Therefore, the contact portion between the waveguide 46 and the antenna chamber 49 can be reduced in area as compared with the case where the waveguide is brought into direct contact with the ceiling surface of the heating chamber. In addition, on the upper surface of the ceiling surface of the heating chamber 11, a heat insulating portion 50 formed of a heat insulating material is provided so as to surround the antenna chamber 49. Thus, since the heat insulation part 50 is provided, the discharge | emission heat | fever upward from the ceiling surface of the heating chamber 11 is suppressed. The heat insulating portion 50 is disposed in a space between the waveguide 46 and the ceiling surface of the heating chamber 11, so that the waveguide 46 is not directly heated by the heat released from the ceiling surface of the heating chamber 11. It is configured. Therefore, the amount of heat conducted from the heating chamber 11 during high temperature heating to the magnetron 16 via the waveguide 46 is greatly suppressed. As a result, the heating cooker according to the second embodiment has a configuration in which the heating efficiency of the magnetron 16 is significantly improved.
 また、導波管46の水平部47の水平伝送距離Hを半波長(λg/2)より長く設定することにより、マグネトロン16と給電部22との結合状態が安定し、負荷変化等の運転状態が変動した場合であっても、高い加熱効率を維持できる構成となる。 Further, by setting the horizontal transmission distance H of the horizontal portion 47 of the waveguide 46 to be longer than a half wavelength (λg / 2), the coupling state between the magnetron 16 and the power feeding unit 22 is stabilized, and the operation state such as load change is achieved. Even if it fluctuates, it becomes the composition which can maintain high heating efficiency.
 さらに、実施の形態2の加熱調理器においては、導波管46におけるマグネトロン出力部44の中心から屈曲位置Cまでの鉛直伝送距離Vを1/4波長(λg/4)より短く設定することにより、発振効率を向上させることができる。導波管46において、鉛直伝送距離Vを発振周波数の1/4波長以下とすることにより、マグネトロン出力部44から屈曲位置Cを含む屈曲部分までの領域において電界が逆方向になることがなく、導波管46の伝送路内において複雑な反射の発生を防止することができる。この結果、実施の形態2の加熱調理器においては、発振効率が大幅に向上している。 Furthermore, in the heating cooker of the second embodiment, by setting the vertical transmission distance V from the center of the magnetron output portion 44 in the waveguide 46 to the bending position C to be shorter than a quarter wavelength (λg / 4). The oscillation efficiency can be improved. In the waveguide 46, by setting the vertical transmission distance V to ¼ wavelength or less of the oscillation frequency, the electric field does not reverse in the region from the magnetron output portion 44 to the bent portion including the bent position C. Generation of complicated reflections in the transmission path of the waveguide 46 can be prevented. As a result, in the cooking device of the second embodiment, the oscillation efficiency is greatly improved.
 上記のように、実施の形態2の加熱調理器においては、導波管46がL字形状の屈曲形状であり、アンテナ室49が加熱室11の天井面から上方に突設されている。このため、導波管46の水平部47と加熱室11の天井面との間の空間に断熱部50を設けることが可能となっている。したがって、加熱室11と導波管46とをアンテナ室49を介して結合する構成とすることにより、加熱室11と導波管46との間の空間内に熱伝導を防止する断熱部50を設けることが可能となる。このように断熱部50を設けることにより、加熱効率の高い加熱調理器をコンパクトな構成で構築することが可能となる。 As described above, in the heating cooker according to the second embodiment, the waveguide 46 has an L-shaped bent shape, and the antenna chamber 49 protrudes upward from the ceiling surface of the heating chamber 11. For this reason, the heat insulation part 50 can be provided in the space between the horizontal part 47 of the waveguide 46 and the ceiling surface of the heating chamber 11. Therefore, by adopting a configuration in which the heating chamber 11 and the waveguide 46 are coupled via the antenna chamber 49, the heat insulating portion 50 that prevents heat conduction in the space between the heating chamber 11 and the waveguide 46 is provided. It can be provided. Thus, by providing the heat insulation part 50, it becomes possible to construct | assemble a heating cooker with high heating efficiency with a compact structure.
 また、実施の形態2の加熱調理器においては、加熱室11の天井面に突設されたアンテナ室49の上端部分に上方に屈曲した導波管46を設けることにより、加熱室11の天井面に断熱部50を設けるためのスペースを確保することができ、断熱部50を厚く敷設することが可能となる。また、実施の形態2の加熱調理器には、加熱室内の排気を行う換気ファン61および加熱室内の照明となるランプ62が設けられている。 In the heating cooker of the second embodiment, the ceiling surface of the heating chamber 11 is provided by providing the waveguide 46 bent upward at the upper end portion of the antenna chamber 49 protruding from the ceiling surface of the heating chamber 11. It is possible to secure a space for providing the heat insulating portion 50 on the wall, and to lay the heat insulating portion 50 thick. The heating cooker according to the second embodiment is provided with a ventilation fan 61 that exhausts the heating chamber and a lamp 62 that serves as illumination in the heating chamber.
 上記のように構成された実施の形態2の加熱調理器においては、輻射加熱部としてヒータなどの高温の加熱手段を使った調理工程において、断熱部50の断熱作用により加熱室11から上方へ放出される熱が遮断されているため、加熱効率の大幅な向上を図ることができる。さらに、実施の形態2の加熱調理器は、ヒータによる輻射加熱および対流加熱と共に誘電加熱を連動させた調理の場合において、加熱室11からマグネトロン16へ伝導する熱量を大幅に抑制する構成を有しているため、コンパクトで加熱効率の高い調理器となる。 In the cooking device according to the second embodiment configured as described above, in the cooking process using a high-temperature heating means such as a heater as the radiant heating unit, the heat insulating unit 50 releases the heat upward from the heating chamber 11. Since the generated heat is blocked, the heating efficiency can be greatly improved. Furthermore, the cooking device of the second embodiment has a configuration that significantly suppresses the amount of heat conducted from the heating chamber 11 to the magnetron 16 in the case of cooking in which dielectric heating is coupled with radiation heating and convection heating by a heater. Therefore, the cooking device is compact and has high heating efficiency.
 なお、実施の形態2の加熱調理器の構成においては、図3および図4に示すように、加熱室11の内部における上部に上ヒータ12が設けられており、加熱室11の底面壁の下側に下ヒータ13が設けられている。また、実施の形態2の加熱調理器においては、この下ヒータ13により加熱室11の底面壁が加熱される構成である。さらに、実施の形態2の加熱調理器は、加熱室11の背面側にオーブン調理のための熱風循環用の背面ヒータ30および循環ファン31を有している。このように実施の形態2の加熱調理器は、誘電加熱による加熱以外にも輻射熱および対流熱により直接食品を加熱できる構成である。したがって、実施の形態2の加熱調理器は、複数の調理メニューに対応することが可能な高機能を有する調理器となる。 In the configuration of the heating cooker according to the second embodiment, as shown in FIGS. 3 and 4, the upper heater 12 is provided in the upper part of the heating chamber 11, and the bottom of the bottom wall of the heating chamber 11 is provided. A lower heater 13 is provided on the side. Moreover, in the heating cooker of Embodiment 2, the bottom wall of the heating chamber 11 is heated by the lower heater 13. Furthermore, the heating cooker according to the second embodiment has a back heater 30 and a circulation fan 31 for circulating hot air for oven cooking on the back side of the heating chamber 11. Thus, the heating cooker of Embodiment 2 is the structure which can heat a foodstuff directly by radiant heat and convection heat besides the heating by dielectric heating. Therefore, the heating cooker according to the second embodiment is a cooker having a high function capable of supporting a plurality of cooking menus.
 加熱室11の上部に設けられた上ヒータ12の一端(端子側)は、加熱室11の背面において固定されており、上ヒータ12の前面側が上ヒータ支持具51により保持されている。上ヒータ支持具51は上ヒータ12の熱膨張に対応できるように自由度を有して上ヒータ12を保持する構成である。なお、上ヒータ支持具51の材料としては耐熱要求温度に応じて碍子等のセラミックで構成され、金属金具に比べてマイクロ波への影響が小さくなる材質が用いられている。 One end (terminal side) of the upper heater 12 provided in the upper part of the heating chamber 11 is fixed on the back surface of the heating chamber 11, and the front surface side of the upper heater 12 is held by the upper heater support 51. The upper heater support 51 is configured to hold the upper heater 12 with a degree of freedom so as to cope with the thermal expansion of the upper heater 12. The material of the upper heater support 51 is made of a ceramic such as an insulator according to the required heat resistance temperature, and a material that has a smaller influence on the microwave than the metal fitting is used.
 図3および図4に示すように、アンテナ室49の下端部分は加熱室11の内部に天井面から突出しており、そのアンテナ室49の下端部分の回りには上ヒータ12が配置されている。即ち、上ヒータ12は、アンテナ室49の下端部分の開口部分の直下を避けて設けられている。このように、上ヒータ12は、加熱室内に突設されたアンテナ室49の下端部分である遮蔽壁の外側に設けられているため、給電部22からのマイクロ波により直接加熱されることがなく、マイクロ波加熱の損失が防止されている。 3 and 4, the lower end portion of the antenna chamber 49 protrudes from the ceiling surface inside the heating chamber 11, and the upper heater 12 is disposed around the lower end portion of the antenna chamber 49. That is, the upper heater 12 is provided so as to avoid a position directly below the opening at the lower end portion of the antenna chamber 49. As described above, the upper heater 12 is provided outside the shielding wall, which is the lower end portion of the antenna chamber 49 projecting from the heating chamber, so that it is not directly heated by the microwave from the power feeding unit 22. The loss of microwave heating is prevented.
 図5は、加熱室11の天井面の下面側を示す配置図であり、天井面に設けられている給電部22、アンテナ室49、上ヒータ支持具51、上ヒータ12等を示している。図5において、上方が装置の前面側である。図5に示すように、上ヒータ12は、アンテナ室49の下端部分の開口部分を避けるように配置されており、複数の箇所で上ヒータ支持具51により遊動可能に保持されている。 FIG. 5 is a layout diagram showing the lower surface side of the ceiling surface of the heating chamber 11, and shows the power feeding unit 22, the antenna chamber 49, the upper heater support 51, the upper heater 12 and the like provided on the ceiling surface. In FIG. 5, the upper side is the front side of the apparatus. As shown in FIG. 5, the upper heater 12 is disposed so as to avoid the opening at the lower end portion of the antenna chamber 49, and is held movably by the upper heater support 51 at a plurality of locations.
 実施の形態2の加熱調理器において、加熱室11の底面壁の下側に設けられた下ヒータ13は、加熱室11の底面壁を加熱する構成である。下ヒータ13により加熱室11の底面壁を加熱して、加熱室11の内部において対流熱を発生させている。 In the heating cooker according to the second embodiment, the lower heater 13 provided below the bottom wall of the heating chamber 11 is configured to heat the bottom wall of the heating chamber 11. The bottom wall of the heating chamber 11 is heated by the lower heater 13 to generate convection heat inside the heating chamber 11.
 また、実施の形態2の加熱調理器の構成においては、加熱室11の背面側にオーブン調理のための熱風循環用の背面ヒータ30および循環ファン31が設けられており、対流加熱部が構成されている。この対流加熱部は、背面ヒータ30の発熱と、循環ファン31の回転により、加熱室11の内部の空気が加熱されて、加熱室11の内部を熱風が循環するよう構成されている。実施の形態2の加熱調理器は、上記のように構成された対流加熱部により、加熱室11の内部を熱風が循環して被加熱物である食品を加熱調理するよう構成されている。 In the configuration of the heating cooker according to the second embodiment, the back heater 30 for circulating hot air and the circulation fan 31 for cooking the oven are provided on the back side of the heating chamber 11, and a convection heating unit is configured. ing. The convection heating unit is configured such that the air inside the heating chamber 11 is heated by the heat generated by the back heater 30 and the rotation of the circulation fan 31, and the hot air circulates inside the heating chamber 11. The heating cooker according to the second embodiment is configured such that the convection heating unit configured as described above heats and cooks the food to be heated by circulating hot air inside the heating chamber 11.
 さらに、実施の形態2の加熱調理器においては、図4に示すように、前面側には開閉用のドア32が設けられており、ドア32の開閉により被加熱物の加熱室11に対する出し入れを行うよう構成されている。ドア32の上部には加熱調理の各種条件の設定等を行うための操作部33が設けられている。 Furthermore, in the heating cooker according to the second embodiment, as shown in FIG. 4, an opening / closing door 32 is provided on the front side, and opening / closing of the object to be heated with respect to the heating chamber 11 by opening / closing the door 32. Is configured to do. On the upper portion of the door 32, an operation unit 33 is provided for setting various conditions for cooking.
 図4に示すように、実施の形態2の加熱調理器においては、ドア32と操作部33との間には隙間34が形成されている。隙間34は、加熱室11の上側空間における後方位置に設けられた冷却ファン35からの冷却風が排出されるよう冷却通路が形成されている。冷却ファン35からの冷却風は、断熱部50の上面に接触しつつ流れるとともに、導波管46における対向する両側の壁面に形成された小さい貫通孔36a,36bを通り、隙間34から前方へ排気されている。ここで、小さい貫通孔36a,36bとは、マイクロ波が漏洩しない大きさ、例えば直径が2~5mmの孔である。したがって、冷却ファン35からの冷却風は、断熱部50を冷却するとともに、導波管46を貫通して流れて導波管46の冷却も行っている。 As shown in FIG. 4, in the cooking device of the second embodiment, a gap 34 is formed between the door 32 and the operation unit 33. In the gap 34, a cooling passage is formed so that cooling air from a cooling fan 35 provided at a rear position in the upper space of the heating chamber 11 is discharged. Cooling air from the cooling fan 35 flows in contact with the upper surface of the heat insulating portion 50, passes through small through holes 36 a and 36 b formed in opposite wall surfaces of the waveguide 46, and exhausts forward from the gap 34. Has been. Here, the small through holes 36a and 36b are holes having a size that does not allow microwaves to leak, for example, a diameter of 2 to 5 mm. Therefore, the cooling air from the cooling fan 35 cools the heat insulating portion 50 and flows through the waveguide 46 to cool the waveguide 46.
 上記のように、実施の形態2の加熱調理器においては、冷却ファン35および冷却通路を設けることにより、例えばオーブン調理で加熱室内が高温になった場合でも、冷却ファン35を駆動して、加熱室11の天井面を外側から冷却することができる。このため、実施の形態2の加熱調理器は、加熱室11の天井面よりも上側に配置された制御部20等を構成する各種部品の温度上昇を防止することができる。また、実施の形態2の加熱調理器においては、加熱室11の天井面よりも上側に配設される部品実装を高密度に行っても温度上昇が生じにくい構成となる。このため、実施の形態2の加熱調理器は、装置全体としてコンパクトな構成とすることが可能となる。 As described above, in the heating cooker according to the second embodiment, by providing the cooling fan 35 and the cooling passage, the cooling fan 35 is driven and heated even when the heating chamber becomes hot due to, for example, oven cooking. The ceiling surface of the chamber 11 can be cooled from the outside. For this reason, the heating cooker of Embodiment 2 can prevent the temperature rise of the various components which comprise the control part 20 grade | etc., Arrange | positioned above the ceiling surface of the heating chamber 11. FIG. In addition, the heating cooker according to the second embodiment has a configuration in which a temperature rise is unlikely to occur even when component mounting arranged above the ceiling surface of the heating chamber 11 is performed at a high density. For this reason, it becomes possible for the heating cooker of Embodiment 2 to be set as a compact structure as the whole apparatus.
 実施の形態2の加熱調理器においては、アンテナ室49の下端部分が、加熱室11内に突出するよう構成されており、アンテナ室49の下端部分の外周に上ヒータ12が配置されている。このように上ヒータ12が配置されているため、給電部22から放射されたマイクロ波は、食品15に対して直接的に放射され、上ヒータ12により遮られることがない。このように、実施の形態2の構成においては、上ヒータ12が給電部22からのマイクロ波を塞ぐことがないため、給電部22からのマイクロ波が上ヒータ12を加熱して損失することが防止されており、加熱効率の向上が図られている。 In the heating cooker of the second embodiment, the lower end portion of the antenna chamber 49 is configured to protrude into the heating chamber 11, and the upper heater 12 is disposed on the outer periphery of the lower end portion of the antenna chamber 49. Since the upper heater 12 is arranged in this way, the microwave radiated from the power feeding unit 22 is directly radiated to the food 15 and is not blocked by the upper heater 12. Thus, in the configuration of the second embodiment, since the upper heater 12 does not block the microwave from the power feeding unit 22, the microwave from the power feeding unit 22 heats the upper heater 12 and is lost. Thus, the heating efficiency is improved.
 また、実施の形態2の加熱調理器においては、アンテナ室49における加熱室11内への突出部分がマイクロ波の遮蔽壁として機能している。この遮蔽壁は、アンテナ部22aから放射されたマイクロ波を遮蔽する材料で構成されている。このため、回転アンテナである給電部22から略水平方向に放射されたマイクロ波は遮蔽壁により確実に遮られ、アンテナ室49の周囲に設けられた上ヒータ12および上ヒータ支持具51が給電部22からのマイクロ波により直接的に加熱されることがない。即ち、遮蔽壁により、アンテナ部からのマイクロ波が反射されて、アンテナ室49の外周部分に配置された上ヒータ12の輻射加熱部を直接加熱しないよう構成されている。この結果、実施の形態2の加熱調理器は、マイクロ波の損失が大幅に抑制されており、高い加熱効率で被加熱物である食品を加熱調理できる構成である。 Further, in the cooking device of the second embodiment, the protruding portion of the antenna chamber 49 into the heating chamber 11 functions as a microwave shielding wall. This shielding wall is comprised with the material which shields the microwave radiated | emitted from the antenna part 22a. For this reason, the microwave radiated from the power feeding unit 22 that is a rotating antenna is substantially blocked by the shielding wall, and the upper heater 12 and the upper heater support 51 provided around the antenna chamber 49 are connected to the power feeding unit. No direct heating by microwaves from 22. In other words, the shielding wall reflects the microwave from the antenna portion so that the radiation heating portion of the upper heater 12 disposed in the outer peripheral portion of the antenna chamber 49 is not directly heated. As a result, the cooking device of the second embodiment has a configuration in which the loss of microwaves is greatly suppressed, and the food that is the object to be heated can be cooked with high heating efficiency.
 (実施の形態3)
 以下、本発明に係る実施の形態3の加熱調理器について説明する。実施の形態3の加熱調理器において、前述の実施の形態1および実施の形態2の加熱調理器と大きく異なる点は、加熱室にマイクロ波を給電するための構成である。実施の形態3の加熱調理器において、その他の構成に関しては、実施の形態1又は実施の形態2の構成が適用される。
(Embodiment 3)
Hereinafter, the heating cooker of Embodiment 3 which concerns on this invention is demonstrated. The heating cooker according to the third embodiment is greatly different from the heating cookers according to the first and second embodiments described above in the configuration for supplying microwaves to the heating chamber. In the cooking device of the third embodiment, the configuration of the first embodiment or the second embodiment is applied to other configurations.
 以下の実施の形態3の加熱調理器の説明においては、実施の形態1および実施の形態2の加熱調理器における構成要素と同じ機能、構成を有するものには同じ符号を付し、その詳細な説明は実施の形態1および実施の形態2の説明を適用する。図6は実施の形態3の加熱調理器におけるマイクロ波給電構成を示す正面断面図である。 In the description of the heating cooker according to the third embodiment below, components having the same functions and configurations as the components in the heating cooker according to the first embodiment and the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. The description of Embodiment 1 and Embodiment 2 is applied to the description. FIG. 6 is a front sectional view showing a microwave power feeding configuration in the heating cooker according to the third embodiment.
 図6に示すように、実施の形態3の加熱調理器においては、上ヒータ12が加熱室11の天井面37の一部を外側(上側)に突出させて形成した凹み部52の内側に収納されるように配設されている。加熱室11の上側に設けられているアンテナ室53は、下端部分の形状である平面形状が正方形であり、全体が直方体形状に構成されている。このアンテナ室53の上端部分には水平部42と鉛直部43とを有するL字形状の導波管21が設けられている。実施の形態3における導波管21は、前述の実施の形態1における導波管21と同様に、加熱室11の天井面37から上方に突設されたアンテナ室53の突出端部の開口に導波管21の水平部42の給電口25が結合され、導波管21の鉛直部43の下端部分が加熱室11の天井面37(凹み部52)上に僅かな隙間を介して配置されている。したがって、実施の形態3においては、アンテナ室53の突出部分を相殺するように、導波管21の鉛直部43の高さ寸法の長さが設定されている。 As shown in FIG. 6, in the heating cooker according to the third embodiment, the upper heater 12 is housed inside a recess 52 formed by protruding a part of the ceiling surface 37 of the heating chamber 11 outward (upward). It is arranged so that. The antenna chamber 53 provided on the upper side of the heating chamber 11 has a square shape as a shape of the lower end portion, and the whole is configured in a rectangular parallelepiped shape. An L-shaped waveguide 21 having a horizontal portion 42 and a vertical portion 43 is provided at the upper end portion of the antenna chamber 53. Similarly to the waveguide 21 in the first embodiment, the waveguide 21 in the third embodiment has an opening at the protruding end portion of the antenna chamber 53 protruding upward from the ceiling surface 37 of the heating chamber 11. The feeding port 25 of the horizontal portion 42 of the waveguide 21 is coupled, and the lower end portion of the vertical portion 43 of the waveguide 21 is disposed on the ceiling surface 37 (recessed portion 52) of the heating chamber 11 with a slight gap. ing. Therefore, in the third embodiment, the length of the height dimension of the vertical portion 43 of the waveguide 21 is set so as to cancel out the protruding portion of the antenna chamber 53.
 また、マグネトロン16は、導波管21の鉛直部43に対して発振アンテナであるマグネトロン出力部44が水平方向に挿入されて接続されている。したがって、マグネトロン16が導波管21に対して横向きに接続(水平接続)されているため、鉛直方向の高さ寸法は、導波管に対してマグネトロンを縦方向に接続(鉛直接続)した場合に比べて短くなっている。 Further, the magnetron 16 is connected to the vertical portion 43 of the waveguide 21 by inserting a magnetron output portion 44 as an oscillation antenna in the horizontal direction. Therefore, since the magnetron 16 is connected laterally (horizontal connection) to the waveguide 21, the height dimension in the vertical direction is when the magnetron is connected vertically to the waveguide (vertical connection). It is shorter than
 実施の形態3の加熱調理器においては、導波管21の両側の対向する壁面には多数の貫通孔36a,36bを有する通気領域21aが形成されている。図6においては、一方の壁面における複数の貫通孔36aで構成された通気領域21aのみを記載しているが、この一方の壁面に対向する他方の壁面にも同様に複数の貫通孔36b(図4参照)で構成された通気領域21aが形成されている。通気領域21aは、導波管21の外部へマイクロ波が漏洩しないように、直径約2~5mmの小さい貫通孔36a,36bが多数個配列された壁面の領域である。このように、導波管21の壁面に複数の貫通孔36a,36bを有する通気領域21aを設けることにより、導波管21の壁面における伝熱抵抗が大きくなるとともに、通気領域21aにおける貫通孔36a,36bを通って空気の移動が可能になる。この結果、導波管21において空気移動が生じることにより、冷却作用が発生し、加熱室11から導波管21を介してマグネトロン16に伝わる熱が低減される。マグネトロン16は、一般的に低い温度の方が効率が高いため、実施の形態3の加熱調理器は、マグネトロン16によるマイクロ波の加熱効率がさらに向上する構成となる。 In the heating cooker according to the third embodiment, ventilation regions 21 a having a large number of through holes 36 a and 36 b are formed on the opposing wall surfaces on both sides of the waveguide 21. In FIG. 6, only the ventilation region 21 a composed of a plurality of through holes 36 a on one wall surface is shown, but a plurality of through holes 36 b (see FIG. 6) are similarly formed on the other wall surface facing this one wall surface. 4) is formed. The ventilation region 21 a is a wall surface region in which a large number of small through holes 36 a and 36 b having a diameter of about 2 to 5 mm are arranged so that microwaves do not leak outside the waveguide 21. Thus, by providing the ventilation region 21a having the plurality of through holes 36a and 36b on the wall surface of the waveguide 21, the heat transfer resistance on the wall surface of the waveguide 21 is increased, and the through hole 36a in the ventilation region 21a is increased. , 36b to allow air movement. As a result, air movement occurs in the waveguide 21, thereby generating a cooling action and reducing heat transferred from the heating chamber 11 to the magnetron 16 through the waveguide 21. Since the magnetron 16 is generally more efficient at a lower temperature, the heating cooker of the third embodiment is configured to further improve the microwave heating efficiency by the magnetron 16.
 実施の形態3の加熱調理器においては、前述の実施の形態2において説明した冷却ファン35および冷却通路を設けることにより、例えばオーブン調理で加熱室11内が高温になった場合でも、冷却ファン35を駆動して、導波管21を冷却するとともに加熱室11の天井面を外側から冷却することができる構成となる。 In the heating cooker according to the third embodiment, by providing the cooling fan 35 and the cooling passage described in the above-described second embodiment, the cooling fan 35 can be used even when the inside of the heating chamber 11 becomes high temperature by oven cooking, for example. And the waveguide 21 is cooled, and the ceiling surface of the heating chamber 11 can be cooled from the outside.
 実施の形態3の加熱調理器においては、上ヒータ12が天井面37の凹み部52の内側に設けられているため、上ヒータ12はアンテナ室53の下端部分と同一、若しくはその下端部分より高い位置に配置されている。この結果、アンテナ室53より下側の加熱空間における上下方向の寸法に無駄なスペースが無く、装置全体としてコンパクト化を図ることができる。また、上ヒータ12は、アンテナ室53の下端部分と同一、若しくは上方に配置されているため、回転アンテナである給電部22から下方の食品に向けて放射されるマイクロ波が上ヒータ12により妨げられることがない。したがって、実施の形態3の加熱調理器においては、給電部22からのマイクロ波が上ヒータ12を直接加熱して損失することが防止されており、高い効率で食品を加熱調理できる。 In the heating cooker according to the third embodiment, since the upper heater 12 is provided inside the recessed portion 52 of the ceiling surface 37, the upper heater 12 is the same as or lower than the lower end portion of the antenna chamber 53. Placed in position. As a result, there is no useless space in the vertical dimension of the heating space below the antenna chamber 53, and the entire apparatus can be made compact. In addition, since the upper heater 12 is disposed at the same position as or above the lower end portion of the antenna chamber 53, microwaves radiated from the feeding unit 22, which is a rotating antenna, toward the lower food are blocked by the upper heater 12. It is never done. Therefore, in the heating cooker of Embodiment 3, the microwave from the electric power feeding part 22 is prevented from directly heating and losing the upper heater 12, and food can be cooked with high efficiency.
 なお、加熱室11の壁面の一部である凹み部52の内面形状は、図6に示すように、上ヒータ12からの輻射熱を食品に向かって反射するような角度を有する構成としてもよい。
 また、実施の形態3においては、アンテナ室53の平面形状が正方形である例について説明したが、アンテナ室53の平面形状としてはアンテナ部22aの回転に干渉しない形状であればよく、円形や正方形に限らず、楕円や多角形、またこれらの組み合わせた形状としてもよい。
In addition, as shown in FIG. 6, the inner surface shape of the recessed part 52 which is a part of wall surface of the heating chamber 11 is good also as a structure which has an angle which reflects the radiant heat from the upper heater 12 toward a foodstuff.
In the third embodiment, the example in which the planar shape of the antenna chamber 53 is square has been described. However, the planar shape of the antenna chamber 53 may be a shape that does not interfere with the rotation of the antenna portion 22a, and may be circular or square. The shape is not limited to an ellipse, a polygon, or a combination thereof.
 (実施の形態4)
 以下、本発明に係る実施の形態4の加熱調理器について説明する。実施の形態4の加熱調理器において、前述の実施の形態1~3の加熱調理器と大きく異なる点は、加熱室にマイクロ波を給電するための構成である。実施の形態4の加熱調理器において、その他の構成に関しては、実施の形態1又は実施の形態2の構成が適用される。
(Embodiment 4)
Hereinafter, the heating cooker of Embodiment 4 which concerns on this invention is demonstrated. The heating cooker of the fourth embodiment is greatly different from the heating cookers of the first to third embodiments described above in the configuration for supplying microwaves to the heating chamber. In the cooking device of the fourth embodiment, the configuration of the first embodiment or the second embodiment is applied to other configurations.
 以下の実施の形態4の加熱調理器の説明においては、実施の形態1および実施の形態2の加熱調理器における構成要素と同じ機能、構成を有するものには同じ符号を付し、その詳細な説明は実施の形態1および実施の形態2の説明を適用する。図7は実施の形態4の加熱調理器におけるマイクロ波給電構成を示す正面断面図である。 In the description of the heating cooker of the fourth embodiment below, the same reference numerals are given to the components having the same functions and configurations as the components in the heating cooker of the first embodiment and the second embodiment, and the detailed description thereof is omitted. The description of Embodiment 1 and Embodiment 2 is applied to the description. FIG. 7 is a front sectional view showing a microwave power feeding configuration in the heating cooker according to the fourth embodiment.
 図7に示すように、実施の形態4の加熱調理器においては、上ヒータ12が加熱室11の天井面37の一部を外側(上側)に突出させて形成した凹み部52の内側に収納されている。加熱室11の上側に設けられているアンテナ室53は、その下端部分の平面形状が正方形であり、アンテナ室53の全体が直方体形状を有している。なお、実施の形態4においては、アンテナ室53の下端部分の平面形状を正方形の例で説明するが、本発明においては形状を特定するものではなく、その他の形状、例えば円形、多角形等を用いることができる。 As shown in FIG. 7, in the heating cooker according to the fourth embodiment, the upper heater 12 is housed inside a recess 52 formed by projecting a part of the ceiling surface 37 of the heating chamber 11 outward (upward). Has been. The antenna chamber 53 provided on the upper side of the heating chamber 11 has a square shape at the lower end portion, and the entire antenna chamber 53 has a rectangular parallelepiped shape. In the fourth embodiment, the planar shape of the lower end portion of the antenna chamber 53 is described as an example of a square. However, in the present invention, the shape is not specified, and other shapes such as a circle, a polygon, and the like are used. Can be used.
 アンテナ室53の上端部分には水平部47と鉛直部48とを有してL字形状に形成された導波管46が設けられている。実施の形態4における導波管46は、前述の実施の形態2における導波管46と同様に、鉛直部48が水平部47から上方に突出するよう延設されている。また、マグネトロン16はマグネトロン出力部44が導波管46の鉛直部48に対して水平方向に挿入されるように横向きに接続(水平接続)されている。 At the upper end portion of the antenna chamber 53, a waveguide 46 having a horizontal portion 47 and a vertical portion 48 and having an L shape is provided. The waveguide 46 in the fourth embodiment is extended so that the vertical portion 48 protrudes upward from the horizontal portion 47 in the same manner as the waveguide 46 in the second embodiment. The magnetron 16 is connected horizontally (horizontal connection) so that the magnetron output portion 44 is inserted in the horizontal direction with respect to the vertical portion 48 of the waveguide 46.
 図7に示すように、アンテナ室53の上端部分は加熱室11の天井面37より上方に突出するよう形成されている。導波管46の水平部47に形成されている給電口25はアンテナ室53の上端部分に形成された開口に結合されている。このため、導波管46はアンテナ室53を介して加熱室11と接続されている。 As shown in FIG. 7, the upper end portion of the antenna chamber 53 is formed so as to protrude upward from the ceiling surface 37 of the heating chamber 11. The feeding port 25 formed in the horizontal portion 47 of the waveguide 46 is coupled to an opening formed in the upper end portion of the antenna chamber 53. For this reason, the waveguide 46 is connected to the heating chamber 11 via the antenna chamber 53.
 実施の形態4における導波管46はアンテナ室53のみに固定されており、アンテナ室53により支持される構成である。上ヒータ12が収納される凹み部52の天井面37に対して、導波管46およびマグネトロン16は所定の距離の空間を有して配置されている。このように配置されているため、天井面37と導波管46との間の空間、および天井面37とマグネトロン16との間の空間に対して、前述の実施の形態2と同様に、装置後方の冷却ファン35からの冷却風が流通する構成である。このため、マグネトロン16は上ヒータ12からの熱が伝わりにくい構成となり、マグネトロン16の温度上昇が防止されている。マグネトロン16は、一般的に低い温度の方が効率が高いため、マグネトロン16によるマイクロ波の加熱効率が向上する構成となる。 In the fourth embodiment, the waveguide 46 is fixed only to the antenna chamber 53 and is supported by the antenna chamber 53. The waveguide 46 and the magnetron 16 are arranged with a space of a predetermined distance with respect to the ceiling surface 37 of the recess 52 in which the upper heater 12 is accommodated. Since it is arranged in this way, the device between the ceiling surface 37 and the waveguide 46 and the space between the ceiling surface 37 and the magnetron 16 are the same as in the second embodiment. The cooling air from the rear cooling fan 35 circulates. For this reason, the magnetron 16 has a configuration in which heat from the upper heater 12 is not easily transmitted, and the temperature rise of the magnetron 16 is prevented. Since the magnetron 16 is generally more efficient at a lower temperature, the microwave heating efficiency by the magnetron 16 is improved.
 実施の形態4の加熱調理器においては、前述の実施の形態3の加熱調理器と同様に、導波管46の両側の対向する壁面には多数の小さい貫通孔36a,36bを有する通気領域46aが形成されている。図7においては、一方の壁面における複数の貫通孔36aで構成された通気領域46aのみを記載しているが、この一方の壁面に対向する他方の壁面にも同様に複数の貫通孔36b(図4参照)で構成された通気領域46aが形成されている。通気領域46aは、導波管46の外部へマイクロ波が漏洩しないように、直径約2~5mmの小さい貫通孔36a,36bが多数個配列された壁面の領域である。このように、導波管46の壁面に複数の貫通孔36a,36bを有する通気領域46aを設けることにより、導波管46の壁面における伝熱抵抗が大きくなるとともに、通気領域46aにおける貫通孔36a,36bを通って空気の移動が可能になる。この結果、導波管46において空気移動が生じることにより、冷却作用が発生し、導波管46を介してマグネトロン16に伝わる熱がより小さくなり、マグネトロン16や導波管46が確実に冷却されている。 In the heating cooker according to the fourth embodiment, similarly to the heating cooker according to the third embodiment described above, a ventilation region 46a having a large number of small through holes 36a and 36b on opposite wall surfaces on both sides of the waveguide 46. Is formed. In FIG. 7, only the ventilation region 46a constituted by a plurality of through holes 36a on one wall surface is shown, but a plurality of through holes 36b (see FIG. 7) are similarly formed on the other wall surface facing this one wall surface. 4) is formed. The ventilation region 46 a is a wall surface region in which a large number of small through holes 36 a and 36 b having a diameter of about 2 to 5 mm are arranged so that the microwave does not leak outside the waveguide 46. Thus, by providing the ventilation region 46a having the plurality of through holes 36a and 36b on the wall surface of the waveguide 46, the heat transfer resistance on the wall surface of the waveguide 46 is increased, and the through hole 36a in the ventilation region 46a is increased. , 36b to allow air movement. As a result, air movement occurs in the waveguide 46, and thus a cooling action occurs, heat transmitted to the magnetron 16 through the waveguide 46 becomes smaller, and the magnetron 16 and the waveguide 46 are reliably cooled. ing.
 また、実施の形態4の加熱調理器においては、加熱室11に連通する導波管46内に通気領域46aを通して冷却ファン35(図4参照)により送風することにより、導波管46内の圧力が加熱室11内の圧力より高く維持される。このように圧力差を設けることにより、加熱室11の天井面37よりも上方に配置された制御部20等を有する空間内へ加熱室11からの油煙等が侵入することを防止することができる。加えて、マイクロ波加熱時におけるマグネトロン16において生じた熱が加熱室11に送られるため、高い加熱効率を有する構成となる。 In the cooking device of the fourth embodiment, the pressure in the waveguide 46 is blown by the cooling fan 35 (see FIG. 4) through the ventilation region 46a into the waveguide 46 communicating with the heating chamber 11. Is maintained higher than the pressure in the heating chamber 11. By providing the pressure difference in this way, it is possible to prevent oil smoke or the like from the heating chamber 11 from entering the space having the control unit 20 or the like disposed above the ceiling surface 37 of the heating chamber 11. . In addition, since the heat generated in the magnetron 16 at the time of microwave heating is sent to the heating chamber 11, the structure has high heating efficiency.
 (実施の形態5)
 以下、本発明に係る実施の形態5の加熱調理器について説明する。実施の形態5の加熱調理器において、前述の実施の形態1~4の加熱調理器と大きく異なる点は、加熱室にマイクロ波を給電するための構成である。実施の形態5の加熱調理器において、その他の構成に関しては、実施の形態1又は実施の形態2の構成が適用される。
(Embodiment 5)
Hereinafter, the heating cooker of Embodiment 5 which concerns on this invention is demonstrated. The heating cooker of the fifth embodiment is greatly different from the heating cookers of the first to fourth embodiments described above in the configuration for supplying microwaves to the heating chamber. In the cooking device of the fifth embodiment, the configuration of the first embodiment or the second embodiment is applied to other configurations.
 以下の実施の形態5の加熱調理器の説明においては、実施の形態1および実施の形態2の加熱調理器における構成要素と同じ機能、構成を有するものには同じ符号を付し、その詳細な説明は実施の形態1および実施の形態2の説明を適用する。図8は実施の形態5の加熱調理器におけるマイクロ波給電構成を示す正面断面図である。 In the description of the heating cooker of the fifth embodiment below, the same reference numerals are given to components having the same functions and configurations as the components in the heating cooker of the first and second embodiments, and the detailed description thereof is omitted. The description of Embodiment 1 and Embodiment 2 is applied to the description. FIG. 8 is a front sectional view showing a microwave power feeding configuration in the heating cooker according to the fifth embodiment.
 実施の形態5の加熱調理器におけるマイクロ波給電構成は、アンテナ室54を加熱室11の内部に設けた構成であり、マイクロ波給電構成としては非常にコンパクトな構成となる。 The microwave power feeding configuration in the heating cooker of the fifth embodiment is a configuration in which the antenna chamber 54 is provided inside the heating chamber 11, and the microwave power feeding configuration is very compact.
 図8に示すように、実施の形態5においては、加熱室11の天井面37に円筒状のアンテナ室構成部材54aを固定してアンテナ室54が形成されている。アンテナ室構成部材54aは、給電部22のアンテナ部22aから略水平方向に放射されたマイクロ波の遮蔽壁として機能し、アンテナ室54の外周に設けられた上ヒータ12および上ヒータ支持具51(図5参照)が給電部22からのマイクロ波により直接的に加熱されることがない構成となっている。なお、アンテナ室54の平面形状として円形に特定されず、正方形、長方形、その他多角形等を用いることができる。 As shown in FIG. 8, in the fifth embodiment, the antenna chamber 54 is formed by fixing a cylindrical antenna chamber constituent member 54 a to the ceiling surface 37 of the heating chamber 11. The antenna chamber constituent member 54a functions as a shielding wall for microwaves radiated from the antenna section 22a of the power feeding section 22 in a substantially horizontal direction, and the upper heater 12 and the upper heater support 51 (provided on the outer periphery of the antenna chamber 54). 5) is not directly heated by the microwave from the power feeding unit 22. The planar shape of the antenna chamber 54 is not specified as a circle, and a square, a rectangle, other polygons, or the like can be used.
 加熱室11の天井面37において、アンテナ室54が形成されている部分に開口が形成され、その開口に導波管46の水平部47に形成された給電口25が結合されている。実施の形態5における導波管46は、水平部47と鉛直部48とを有してL字形状に形成されており、前述の実施の形態2における導波管46と同様に、鉛直部48が水平部47から上方に突出するよう延設されている。また、マグネトロン16はマグネトロン出力部44が導波管46の鉛直部48に対して水平方向に挿入されるように横向きに接続(水平接続)されている。 In the ceiling surface 37 of the heating chamber 11, an opening is formed in a portion where the antenna chamber 54 is formed, and the feeding port 25 formed in the horizontal portion 47 of the waveguide 46 is coupled to the opening. The waveguide 46 in the fifth embodiment has a horizontal portion 47 and a vertical portion 48 and is formed in an L shape, and the vertical portion 48 is the same as the waveguide 46 in the second embodiment. Is extended from the horizontal portion 47 so as to protrude upward. The magnetron 16 is connected horizontally (horizontal connection) so that the magnetron output portion 44 is inserted in the horizontal direction with respect to the vertical portion 48 of the waveguide 46.
 実施の形態5の加熱調理器においては、前述の実施の形態3および実施の形態4の加熱調理器と同様に、導波管46の両側の対向する壁面には多数の小さい貫通孔36a,36bを有する通気領域46aが形成されている。このため、導波管46において空気移動が生じることにより、冷却作用が発生し、導波管46を介してマグネトロン16に伝わる熱がより小さくなり、マグネトロン16や導波管46が確実に冷却されている。 In the heating cooker of the fifth embodiment, a large number of small through- holes 36a and 36b are formed on the opposing wall surfaces on both sides of the waveguide 46, as in the heating cookers of the third and fourth embodiments. A ventilation region 46a having the above is formed. For this reason, when air movement occurs in the waveguide 46, a cooling action is generated, heat transmitted to the magnetron 16 through the waveguide 46 becomes smaller, and the magnetron 16 and the waveguide 46 are reliably cooled. ing.
 実施の形態5の加熱調理器は、アンテナ室54が加熱室11より上方に突出しない構成であり、導波管46の水平部47を加熱室11の天井面37の上面に設けた構成であり、導波管46の鉛直部48を上向き延設している。なお、導波管46の水平部47と加熱室11の天井面37との間に熱を遮断する断熱部を設けて、加熱室11からの熱が導波管に伝導しにくい構成としてもよい。 The heating cooker according to the fifth embodiment has a configuration in which the antenna chamber 54 does not protrude upward from the heating chamber 11, and the horizontal portion 47 of the waveguide 46 is provided on the upper surface of the ceiling surface 37 of the heating chamber 11. The vertical portion 48 of the waveguide 46 extends upward. It is also possible to provide a heat insulating portion that blocks heat between the horizontal portion 47 of the waveguide 46 and the ceiling surface 37 of the heating chamber 11 so that heat from the heating chamber 11 is difficult to conduct to the waveguide. .
 実施の形態5の加熱調理器においては、図8に示すように、アンテナ室54と上ヒータ12がほぼ同一の高さに配置されており、導波管46の鉛直部48の高さ寸法の内側にマグネトロン16およびモータ23が配置されている。このように構成された実施の形態5の加熱調理器は、高さ方向の寸法が他の実施の形態の加熱調理器に比べて最も小さくなり、コンパクトな構成となる。 In the heating cooker according to the fifth embodiment, as shown in FIG. 8, the antenna chamber 54 and the upper heater 12 are arranged at substantially the same height, and the height dimension of the vertical portion 48 of the waveguide 46 is set. A magnetron 16 and a motor 23 are arranged inside. The cooking device according to the fifth embodiment configured as described above has a height dimension that is the smallest as compared with the cooking devices according to the other embodiments, and thus has a compact configuration.
 実施の形態5の加熱調理器においては、アンテナ室54の下端部分を覆うカバーが設けられていないため、カバーにおいて僅かに生じる誘電損失が無く、加熱効率がさらに向上した構成となる。また、実施の形態5の加熱調理器においては、アンテナ室54が加熱室11の天井面37に設けたアンテナ室構成部材54aにより形成され、このアンテナ室構成部材54aがアンテナ室54と上ヒータ12との間に配置されてアンテナ部22aから水平方向に放射されるマイクロ波を遮る遮蔽壁としての機能を有している。 In the heating cooker according to the fifth embodiment, since a cover that covers the lower end portion of the antenna chamber 54 is not provided, there is no dielectric loss that occurs slightly in the cover, and the heating efficiency is further improved. In the heating cooker according to the fifth embodiment, the antenna chamber 54 is formed by the antenna chamber constituent member 54 a provided on the ceiling surface 37 of the heating chamber 11, and the antenna chamber constituent member 54 a is the antenna chamber 54 and the upper heater 12. It has a function as a shielding wall which shields the microwave radiated in the horizontal direction from the antenna portion 22a.
 したがって、加熱室11内において給電部22から放射されるマイクロ波は、加熱室内における給電部22の周囲の部材の有無の影響、および給電部22の周囲の部材の形状や配置の影響を受け難くなる。給電部22から放射されたマイクロ波は、アンテナ室54が設けられているため、上ヒータ12を直接加熱することがなく、上ヒータ12における損失が少なくなり、高い効率で被加熱物を加熱することができる。 Therefore, the microwave radiated from the power feeding unit 22 in the heating chamber 11 is hardly affected by the presence or absence of the members around the power feeding unit 22 in the heating chamber and the shape and arrangement of the members around the power feeding unit 22. Become. Since the microwave radiated from the power feeding unit 22 is provided with the antenna chamber 54, the upper heater 12 is not directly heated, the loss in the upper heater 12 is reduced, and the object to be heated is heated with high efficiency. be able to.
 (実施の形態6)
 以下、本発明に係る実施の形態6の加熱調理器について説明する。実施の形態6の加熱調理器において、前述の実施の形態1および実施の形態2の加熱調理器と大きく異なる点は、加熱室にマイクロ波を給電するための構成である。実施の形態6の加熱調理器において、その他の構成に関しては、実施の形態1又は実施の形態2の構成が適用される。
(Embodiment 6)
Hereinafter, the heating cooker of Embodiment 6 which concerns on this invention is demonstrated. The heating cooker of the sixth embodiment is greatly different from the heating cookers of the first and second embodiments described above in the configuration for supplying microwaves to the heating chamber. In the cooking device of the sixth embodiment, the configuration of the first embodiment or the second embodiment is applied to other configurations.
 以下の実施の形態6の加熱調理器の説明においては、実施の形態1および実施の形態2の加熱調理器における構成要素と同じ機能、構成を有するものには同じ符号を付し、その詳細な説明は実施の形態1および実施の形態2の説明を適用する。図9は実施の形態6の加熱調理器におけるマイクロ波給電構成を示す正面断面図である。 In the following description of the heating cooker according to the sixth embodiment, the same reference numerals are given to components having the same functions and configurations as the components in the heating cooker according to the first and second embodiments, and the detailed description thereof is omitted. The description of Embodiment 1 and Embodiment 2 is applied to the description. FIG. 9 is a front sectional view showing a microwave power feeding configuration in the heating cooker according to the sixth embodiment.
 実施の形態6の加熱調理器におけるマイクロ波給電構成においては、図9に示すように、マグネトロン16が導波管21とアンテナ室53との間の空間内に配置されている。 In the microwave power feeding configuration of the heating cooker according to the sixth embodiment, the magnetron 16 is disposed in the space between the waveguide 21 and the antenna chamber 53 as shown in FIG.
 実施の形態6の加熱調理器においては、前述の実施の形態3(図6)と同様に、上ヒータ12が加熱室11の天井面37の一部を外側に突出させて形成した凹み部52の内側に収納されるように配設されている。加熱室11の上側に設けられているアンテナ室53は、下端部分の形状である平面形状が正方形であり、全体が直方体形状に構成されている。このアンテナ室53の上端部分には水平部42と鉛直部43とを有するL字形状の導波管21が設けられている。実施の形態6における導波管21は、アンテナ室53の突出端部の開口に導波管21の水平部42の下面に形成された給電口25が結合されている。導波管21の鉛直部43の下端部分は、加熱室11の天井面37の凹み部52の上方に空間を介して配置されている。したがって、実施の形態6における導波管21は、アンテナ室53のみに接続されて、アンテナ室53のみにより支持されている。 In the heating cooker according to the sixth embodiment, similarly to the above-described third embodiment (FIG. 6), the upper heater 12 is formed with a recess 52 formed by projecting a part of the ceiling surface 37 of the heating chamber 11 outward. It is arrange | positioned so that it may be accommodated inside. The antenna chamber 53 provided on the upper side of the heating chamber 11 has a square shape as a shape of the lower end portion, and the whole is configured in a rectangular parallelepiped shape. An L-shaped waveguide 21 having a horizontal portion 42 and a vertical portion 43 is provided at the upper end portion of the antenna chamber 53. In the waveguide 21 in the sixth embodiment, the feeding port 25 formed on the lower surface of the horizontal portion 42 of the waveguide 21 is coupled to the opening of the protruding end portion of the antenna chamber 53. A lower end portion of the vertical portion 43 of the waveguide 21 is disposed above the recessed portion 52 of the ceiling surface 37 of the heating chamber 11 via a space. Therefore, the waveguide 21 in the sixth embodiment is connected only to the antenna chamber 53 and is supported only by the antenna chamber 53.
 マグネトロン16は、導波管21の鉛直部43におけるアンテナ室53に対向する側面にマグネトロン出力部44が水平方向に挿入されて接続(水平接続)されている。したがって、マグネトロン16は、アンテナ室53と導波管21の鉛直部43により挟まれた空間内に配設されている。 The magnetron 16 has a magnetron output portion 44 inserted in a horizontal direction and connected to a side surface of the vertical portion 43 of the waveguide 21 that faces the antenna chamber 53 (horizontal connection). Therefore, the magnetron 16 is disposed in a space sandwiched between the antenna chamber 53 and the vertical portion 43 of the waveguide 21.
 実施の形態6の加熱調理器においては、前述の実施の形態3(図6)と同様に、導波管21の両側の対向する壁面には多数の小さい貫通孔36a,36bを有する通気領域21aが形成されている。このような通気領域21aが形成されているため、導波管21において空気移動が生じ、冷却作用が発生する。その結果、加熱室11から導波管21を介してマグネトロン16に伝わる熱が低減される。 In the heating cooker of the sixth embodiment, similarly to the third embodiment (FIG. 6) described above, the ventilation region 21a having a large number of small through holes 36a and 36b on opposite wall surfaces on both sides of the waveguide 21. Is formed. Since such a ventilation region 21a is formed, air movement occurs in the waveguide 21, and a cooling action occurs. As a result, heat transferred from the heating chamber 11 to the magnetron 16 via the waveguide 21 is reduced.
 また、図9に示すように、導波管21の内部に挿入されているマグネトロン16のマグネトロン出力部44が通気領域21aに囲まれているため、通気領域21aを通る冷却風によりマグネトロン出力部44が冷却される構成である。実施の形態6の加熱調理器においては、一般的に、マグネトロン16の温度が低い方が効率高くなるため、マグネトロン16による加熱効率が高くなる。 Further, as shown in FIG. 9, since the magnetron output portion 44 of the magnetron 16 inserted into the waveguide 21 is surrounded by the ventilation region 21a, the magnetron output portion 44 is cooled by the cooling air passing through the ventilation region 21a. Is configured to be cooled. In the heating cooker according to the sixth embodiment, generally, the lower the temperature of the magnetron 16, the higher the efficiency, and thus the heating efficiency by the magnetron 16 becomes higher.
 上記のように、実施の形態6の加熱調理器においては、L字形状に直角に屈曲した導波管21を用いて、導波管21の鉛直部43が鉛直下方に延設するように構成し、導波管21とアンテナ室53との間の空間にマグネトロン16が設けられている。このため、実施の形態6の加熱調理器の構成においては、導波管21の水平部42の延設方向において、水平部42の内側にマグネトロン16が配置されている。したがって、実施の形態6の加熱調理器は、加熱室11の上側空間を効率高く利用しており、無駄な空間が無く、加熱調理器のコンパクト化が図られている。 As described above, the cooking device of the sixth embodiment is configured such that the vertical portion 43 of the waveguide 21 extends vertically downward using the waveguide 21 bent at right angles to the L-shape. The magnetron 16 is provided in the space between the waveguide 21 and the antenna chamber 53. For this reason, in the configuration of the heating cooker according to the sixth embodiment, the magnetron 16 is disposed inside the horizontal portion 42 in the extending direction of the horizontal portion 42 of the waveguide 21. Therefore, the heating cooker according to the sixth embodiment uses the upper space of the heating chamber 11 with high efficiency, has no wasted space, and the heating cooker is made compact.
 実施の形態6の加熱調理器においては、導波管21の水平部42における水平伝送距離H(図2参照)を半波長(λg/2)より長く設定しても、装置全体としてコンパクトに構成することができる。したがって、実施の形態6の加熱調理器においては、マイクロ波給電構成における結合を安定させて高い加熱効率を維持することが可能である。このため、実施の形態6の構成は、加熱効率とコンパクト性の両方の向上を図ることができる加熱調理器を構築できる。 In the heating cooker according to the sixth embodiment, even if the horizontal transmission distance H (see FIG. 2) in the horizontal portion 42 of the waveguide 21 is set to be longer than a half wavelength (λg / 2), the entire apparatus is configured compactly. can do. Therefore, in the cooking device of the sixth embodiment, it is possible to stabilize the coupling in the microwave power feeding configuration and maintain high heating efficiency. For this reason, the structure of Embodiment 6 can build the heating cooker which can aim at the improvement of both heating efficiency and compactness.
 以上のように、各実施の形態において説明したように、本発明のマイクロ波加熱装置においては、導波管の水平伝送路の水平伝送距離(H)を導波管に伝送するマイクロ波の波長の1/2(λg/2)より長くすることにより、導波管の水平伝送路における給電口までの距離が伝送波の波長に対し十分に長い長さとなる。この結果、マイクロ波給電構成における結合の安定度が増大し、負荷変化等の運転状態の変動に関わらず高い効率を維持して、加熱動作を行うことができる。 As described above, as described in the embodiments, in the microwave heating apparatus of the present invention, the wavelength of the microwave that transmits the horizontal transmission distance (H) of the horizontal transmission path of the waveguide to the waveguide. By making it longer than 1/2 (λg / 2), the distance to the feed port in the horizontal transmission path of the waveguide is sufficiently long with respect to the wavelength of the transmission wave. As a result, the coupling stability in the microwave power supply configuration is increased, and the heating operation can be performed while maintaining high efficiency regardless of fluctuations in the operation state such as a load change.
 また、本発明のマイクロ波加熱装置においては、L字形状に折れ曲げた屈曲形状の導波管、導波管の鉛直伝送路に対して水平接続したマイクロ波生成部、および給電部を収納するアンテナ室を設けて、導波管の水平伝送路にアンテナ室を結合する構成とすることにより、マイクロ波給電構成をコンパクトにすることができるとともに、加熱室からマイクロ波生成部へ伝わる熱量を減少させることが可能となる。この結果、本発明のマイクロ波加熱装置は、マイクロ波生成部による加熱効率を向上させることができとともに、マイクロ波生成部を含むマイクロ波給電構成の加熱効率の向上およびコンパクト性の両立を図ることができる。 In the microwave heating apparatus of the present invention, a bent waveguide bent into an L shape, a microwave generator horizontally connected to the vertical transmission path of the waveguide, and a power feeding unit are housed. By providing an antenna room and connecting the antenna room to the horizontal transmission path of the waveguide, the microwave feed configuration can be made compact and the amount of heat transferred from the heating chamber to the microwave generator is reduced. It becomes possible to make it. As a result, the microwave heating apparatus of the present invention can improve the heating efficiency by the microwave generation unit, and at the same time, improve the heating efficiency and compactness of the microwave power feeding configuration including the microwave generation unit. Can do.
 本発明は、食品にマイクロ波を放射して誘電加熱する加熱調理器、特にオーブン、グリル、過熱スチームなどのその他の加熱と併用する加熱調理器の他に、乾燥装置、陶芸用加熱装置、生ゴミ処理機、或いは半導体製造装置などの各種工業用途におけるマイクロ波加熱装置において有用である。 The present invention is not limited to a heating cooker that dielectrically heats food by radiating microwaves, in particular, a cooking device used in combination with other heating such as an oven, a grill, and superheated steam, as well as a drying device, a ceramic heating device, It is useful in a microwave heating apparatus in various industrial applications such as a garbage disposal machine or a semiconductor manufacturing apparatus.
 10 筐体
 11 加熱室
 12 上ヒータ
 13 下ヒータ
 15 被加熱物(食品)
 16 マグネトロン
 17 上ヒータ熱電対
 18 下ヒータ熱電対
 19 サーミスタ
 21 導波管
 22 給電部
 22a アンテナ部
 22b 軸部
 23 モータ
 24 アンテナ室
 25 給電口
 26 フック
 27 カバー
 42 水平部(水平伝送路)
 43 鉛直部(鉛直伝送路)
10 Housing 11 Heating chamber 12 Upper heater 13 Lower heater 15 Object to be heated (food)
16 Magnetron 17 Upper Heater Thermocouple 18 Lower Heater Thermocouple 19 Thermistor 21 Waveguide 22 Feeder 22a Antenna 22b Shaft 23 Motor 24 Antenna Chamber 25 Feeder 26 Hook 27 Cover 42 Horizontal Part (Horizontal Transmission Line)
43 Vertical section (vertical transmission line)

Claims (12)

  1.  被加熱物を収納して、当該被加熱物にマイクロ波を放射して高周波加熱するための加熱室と、
     前記加熱室において前記被加熱物を高周波加熱するためのマイクロ波を生成するマイクロ波生成部と、
     直角に屈曲した水平伝送路と鉛直伝送路とを有し、前記鉛直伝送路に前記マイクロ波生成部が水平接続されて、前記マイクロ波生成部からのマイクロ波を前記水平伝送路に伝送する導波管と、
     前記水平伝送路に結合され、前記導波管を伝送したマイクロ波を前記加熱室の内部に放射するアンテナ部を有する給電部と、
     前記加熱室の天井面に設けられ、前記アンテナ部から水平方向に放射されるマイクロ波を反射し、前記アンテナ部からのマイクロ波が前記加熱室内に放射されるように下端部分が開放されたアンテナ室と、を備えており、
     前記導波管は、前記水平伝送路における水平伝送距離が当該導波管内を伝送するマイクロ波波長の1/2より長くなるよう構成されたマイクロ波加熱装置。
    A heating chamber for storing an object to be heated, for radiating microwaves to the object to be heated and for high-frequency heating;
    A microwave generator for generating microwaves for high-frequency heating of the object to be heated in the heating chamber;
    A horizontal transmission path bent at right angles; and a vertical transmission path. The microwave generator is horizontally connected to the vertical transmission path, and a microwave is transmitted from the microwave generator to the horizontal transmission path. A wave tube,
    A power feeding unit having an antenna unit coupled to the horizontal transmission path and radiating microwaves transmitted through the waveguide into the heating chamber;
    An antenna that is provided on the ceiling surface of the heating chamber, reflects a microwave radiated in a horizontal direction from the antenna unit, and is opened at a lower end so that the microwave from the antenna unit is radiated into the heating chamber. A room, and
    The said waveguide is a microwave heating apparatus comprised so that the horizontal transmission distance in the said horizontal transmission line may become longer than 1/2 of the microwave wavelength which transmits the inside of the said waveguide.
  2.  前記加熱室の内部において、前記被加熱物に対して上方からの輻射熱により加熱する輻射加熱部が設けられており、前記輻射加熱部が前記アンテナ室の直下以外の領域に配置された請求項1に記載のマイクロ波加熱装置。 The radiation heating part which heats the said to-be-heated material with the radiation heat from the upper direction is provided in the inside of the said heating chamber, The said radiation heating part is arrange | positioned in area | regions other than directly under the said antenna chamber. A microwave heating apparatus according to 1.
  3.  前記被加熱物を加熱するために、前記加熱室の内部に熱風を循環させる対流加熱部を設けた請求項1又は2に記載のマイクロ波加熱装置。 The microwave heating apparatus according to claim 1 or 2, further comprising a convection heating unit that circulates hot air inside the heating chamber in order to heat the object to be heated.
  4.  前記給電部の前記アンテナ部は、前記アンテナ室の内部において回転し、前記加熱室の内部に対してマイクロ波を攪拌放射するよう構成された請求項1乃至3のいずれか一項に記載のマイクロ波加熱装置。 The micro of any one of claims 1 to 3, wherein the antenna unit of the power feeding unit is configured to rotate inside the antenna chamber and stir and radiate microwaves to the inside of the heating chamber. Wave heating device.
  5.  前記導波管は、前記鉛直伝送路が前記水平伝送路に対して下方へ延設され、前記加熱室の天井面から上方に突出して形成された前記アンテナ室の上方端部の開口に前記水平伝送路の給電口が結合された請求項1乃至4のいずれか一項に記載のマイクロ波加熱装置。 In the waveguide, the vertical transmission path is extended downward with respect to the horizontal transmission path, and is projected to the opening at the upper end of the antenna chamber formed to protrude upward from the ceiling surface of the heating chamber. The microwave heating device according to any one of claims 1 to 4, wherein a power feeding port of the transmission path is coupled.
  6.  前記導波管は、前記鉛直伝送路が前記水平伝送路に対して上方へ延設され、前記加熱室の天井面から上方に突出して形成された前記アンテナ室の上方端部の開口に前記水平伝送路の給電口が結合され、前記鉛直伝送路に水平接続された前記マイクロ波生成部からのマイクロ波が前記水平伝送路を介して前記給電部から前記加熱室内に放射されるように構成された請求項1乃至4のいずれか一項に記載のマイクロ波加熱装置。 In the waveguide, the vertical transmission path extends upward with respect to the horizontal transmission path, and the horizontal waveguide is formed in an opening at an upper end portion of the antenna chamber formed to protrude upward from the ceiling surface of the heating chamber. A power feeding port of the transmission path is coupled, and microwaves from the microwave generation unit horizontally connected to the vertical transmission path are radiated from the power feeding unit into the heating chamber via the horizontal transmission path. The microwave heating device according to any one of claims 1 to 4.
  7.  前記アンテナ室の外側において、前記導波管と前記加熱室との間の空間に断熱部を設けた請求項1乃至4のいずれか一項に記載のマイクロ波加熱装置。 The microwave heating apparatus according to any one of claims 1 to 4, wherein a heat insulating portion is provided in a space between the waveguide and the heating chamber outside the antenna chamber.
  8.  前記アンテナ室は、前記加熱室の天井面から下方に突出する遮蔽壁を有し、前記遮蔽壁の外周部分に前記輻射加熱部が配置された請求項1乃至4のいずれか一項に記載のマイクロ波加熱装置。 The said antenna room has a shielding wall which protrudes below from the ceiling surface of the said heating chamber, The said radiation heating part is arrange | positioned in the outer peripheral part of the said shielding wall. Microwave heating device.
  9.  前記導波管における対向する面には、マイクロ波が漏洩しない直径を有する貫通孔が形成され、冷却ファンにより形成された冷却風が前記貫通孔を通過するよう構成された請求項1乃至4のいずれか一項に記載のマイクロ波加熱装置。 The through-hole which has the diameter which does not leak a microwave is formed in the surface which the said waveguide opposes, The cooling air formed with the cooling fan is comprised so that the said through-hole may pass. The microwave heating device according to any one of the above.
  10.  前記導波管にマイクロ波が漏洩しない直径を有する複数の貫通孔を有する通気領域が形成された請求項1乃至4のいずれか一項に記載のマイクロ波加熱装置。 The microwave heating apparatus according to any one of claims 1 to 4, wherein a ventilation region having a plurality of through holes having a diameter at which microwaves do not leak is formed in the waveguide.
  11.  前記導波管は、前記鉛直伝送路が前記水平伝送路に対して下方へ延設され、前記加熱室の天井面から上方に突出して形成された前記アンテナ室の上方端部の開口に前記水平伝送路の給電口が結合され、前記アンテナ室と前記鉛直伝送路との間の空間内にマイクロ波生成部を配置した請求項1乃至4のいずれか一項に記載のマイクロ波加熱装置。 In the waveguide, the vertical transmission path is extended downward with respect to the horizontal transmission path, and is projected to the opening at the upper end of the antenna chamber formed to protrude upward from the ceiling surface of the heating chamber. The microwave heating apparatus according to any one of claims 1 to 4, wherein a power feeding port of a transmission path is coupled, and a microwave generation unit is disposed in a space between the antenna chamber and the vertical transmission path.
  12.  前記導波管は、前記鉛直伝送路における鉛直伝送距離が当該導波管内を伝送するマイクロ波波長の1/4より短くなるよう構成された請求項1乃至4のいずれか一項に記載のマイクロ波加熱装置。 The micro according to any one of claims 1 to 4, wherein the waveguide is configured such that a vertical transmission distance in the vertical transmission path is shorter than ¼ of a microwave wavelength transmitted through the waveguide. Wave heating device.
PCT/JP2011/003831 2010-07-20 2011-07-05 Microwave heating device WO2012011233A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180030245.3A CN102960060B (en) 2010-07-20 2011-07-05 Microwave heating equipment
JP2012525302A JP5884093B2 (en) 2010-07-20 2011-07-05 Microwave heating device
EP11809411.9A EP2597930B1 (en) 2010-07-20 2011-07-05 Microwave heating device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010162509 2010-07-20
JP2010-162509 2010-07-20
JP2011-129369 2011-06-09
JP2011129369 2011-06-09

Publications (1)

Publication Number Publication Date
WO2012011233A1 true WO2012011233A1 (en) 2012-01-26

Family

ID=45496670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003831 WO2012011233A1 (en) 2010-07-20 2011-07-05 Microwave heating device

Country Status (4)

Country Link
EP (1) EP2597930B1 (en)
JP (1) JP5884093B2 (en)
CN (1) CN102960060B (en)
WO (1) WO2012011233A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014044627A2 (en) * 2012-09-20 2014-03-27 Helbling Technik Ag Cooking device for preparing dishes
CN112361815A (en) * 2020-10-28 2021-02-12 湖南隆泰环保能源科技有限公司 Multifunctional microwave experiment workstation
CN112691297A (en) * 2020-11-19 2021-04-23 成都恒波医疗器械有限公司 Saddle-shaped microwave irradiator

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016221447A1 (en) 2016-11-02 2018-05-03 BSH Hausgeräte GmbH Household cooking appliance
EP3798518B1 (en) * 2018-05-21 2022-04-13 Panasonic Intellectual Property Management Co., Ltd. Microwave processing device
CN111769021B (en) * 2020-04-16 2023-07-28 成都迈频汇能科技有限公司 Side-connected microwave circular waveguide excitation device
KR102329538B1 (en) * 2020-04-21 2021-11-23 엘지전자 주식회사 Cooking appliance
KR20210136717A (en) * 2020-05-08 2021-11-17 엘지전자 주식회사 Oven includes a plurality of antennas and method of control the same
KR20210136719A (en) * 2020-05-08 2021-11-17 엘지전자 주식회사 Oven
US11596033B2 (en) * 2020-06-09 2023-02-28 Whirlpool Corporation Condensation-managing hand-protecting cavity ventilation system
DE102020125734A1 (en) 2020-10-01 2022-04-07 Miele & Cie. Kg Cooking appliance, comprising a cooking space for heat treatment of an item to be cooked with microwaves, and waveguide for a cooking appliance

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181289A (en) 1982-04-16 1983-10-22 松下電器産業株式会社 High frequency heater
JPS6113498U (en) * 1984-06-28 1986-01-25 日本碍子株式会社 microwave heating device
JPH0926140A (en) * 1995-07-10 1997-01-28 Samsung Electronics Co Ltd Electronic range
JP2000164337A (en) * 1998-11-24 2000-06-16 Matsushita Electric Ind Co Ltd Microwave oven
JP2001076862A (en) * 1999-09-02 2001-03-23 Matsushita Electric Ind Co Ltd High frequency heating device
JP2003109744A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd High frequency heating device
JP2004265616A (en) * 2003-02-05 2004-09-24 Matsushita Electric Ind Co Ltd Microwave heating device
JP2005019278A (en) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd High frequency heating device
JP2005180721A (en) * 2003-12-16 2005-07-07 Matsushita Electric Ind Co Ltd Cooking device
WO2009128251A1 (en) * 2008-04-15 2009-10-22 パナソニック株式会社 Microwave heating device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50150942A (en) 1974-05-24 1975-12-04
CH591049A5 (en) 1975-12-17 1977-08-31 Elektromaschinen Ag
US4629849A (en) * 1984-06-28 1986-12-16 Ngk Insulators Ltd. Microwave heating device having a rotary reflector means in a heating chamber
US4556772A (en) 1985-05-07 1985-12-03 Amana Refrigeration, Inc. Microwave oven cavity air flow system
JPH088054A (en) * 1994-06-17 1996-01-12 Matsushita Electric Ind Co Ltd High-frequency heating device
US6403937B1 (en) 2000-07-08 2002-06-11 The Garland Group Combination convection/microwave oven controller
CN1306216C (en) 2004-01-16 2007-03-21 海尔集团公司 Microwave oven and control method thereof
JP2007032854A (en) 2005-07-22 2007-02-08 Matsushita Electric Ind Co Ltd Heating device
JP4832315B2 (en) 2007-01-04 2011-12-07 日立アプライアンス株式会社 High frequency heating device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181289A (en) 1982-04-16 1983-10-22 松下電器産業株式会社 High frequency heater
JPS6113498U (en) * 1984-06-28 1986-01-25 日本碍子株式会社 microwave heating device
JPH0926140A (en) * 1995-07-10 1997-01-28 Samsung Electronics Co Ltd Electronic range
JP2000164337A (en) * 1998-11-24 2000-06-16 Matsushita Electric Ind Co Ltd Microwave oven
JP2001076862A (en) * 1999-09-02 2001-03-23 Matsushita Electric Ind Co Ltd High frequency heating device
JP2003109744A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd High frequency heating device
JP2004265616A (en) * 2003-02-05 2004-09-24 Matsushita Electric Ind Co Ltd Microwave heating device
JP2005019278A (en) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd High frequency heating device
JP2005180721A (en) * 2003-12-16 2005-07-07 Matsushita Electric Ind Co Ltd Cooking device
WO2009128251A1 (en) * 2008-04-15 2009-10-22 パナソニック株式会社 Microwave heating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014044627A2 (en) * 2012-09-20 2014-03-27 Helbling Technik Ag Cooking device for preparing dishes
WO2014044627A3 (en) * 2012-09-20 2014-05-15 Helbling Technik Ag Cooking device for preparing dishes
CN112361815A (en) * 2020-10-28 2021-02-12 湖南隆泰环保能源科技有限公司 Multifunctional microwave experiment workstation
CN112361815B (en) * 2020-10-28 2023-09-15 湖南隆泰环保能源科技有限公司 Multifunctional microwave experiment workstation
CN112691297A (en) * 2020-11-19 2021-04-23 成都恒波医疗器械有限公司 Saddle-shaped microwave irradiator
CN112691297B (en) * 2020-11-19 2022-03-04 成都恒波医疗器械有限公司 Saddle-shaped microwave irradiator

Also Published As

Publication number Publication date
JPWO2012011233A1 (en) 2013-09-09
EP2597930A4 (en) 2015-11-04
EP2597930A1 (en) 2013-05-29
EP2597930B1 (en) 2017-07-05
JP5884093B2 (en) 2016-03-15
CN102960060B (en) 2015-12-16
CN102960060A (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5884093B2 (en) Microwave heating device
JP6004281B2 (en) Microwave heating device
JP5152971B2 (en) Cooker
WO2009084170A1 (en) Cooking device
JP5957680B2 (en) Microwave heating device
JP2004265616A (en) Microwave heating device
JP2013037795A (en) Microwave heating device
JP4778840B2 (en) Cooker
JP2004327293A (en) High frequency heating arrangement
WO2009084171A1 (en) Cooking device
KR200221572Y1 (en) Halogen heater uniform cooling structure of microwave oven
EP2738474B1 (en) Microwave heating device
JP3796856B2 (en) High frequency heating device
JP7313312B2 (en) heating cooker
JP5402406B2 (en) microwave
JP5923406B2 (en) Cooker
JP2012028014A (en) Microwave heating device
JP2012134029A (en) Microwave heating device
JP2012042195A (en) High frequency heating device
JP2017220387A (en) Heating cooker
KR100662304B1 (en) microwave oven
JP2010151441A (en) Heating device with steam generating function
JP2018091493A (en) Heating cooker
JP2017194176A (en) Heating cooker
JP2012117753A (en) Microwave heating apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030245.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809411

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012525302

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2011809411

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011809411

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE