JP3796856B2 - High frequency heating device - Google Patents

High frequency heating device Download PDF

Info

Publication number
JP3796856B2
JP3796856B2 JP29142896A JP29142896A JP3796856B2 JP 3796856 B2 JP3796856 B2 JP 3796856B2 JP 29142896 A JP29142896 A JP 29142896A JP 29142896 A JP29142896 A JP 29142896A JP 3796856 B2 JP3796856 B2 JP 3796856B2
Authority
JP
Japan
Prior art keywords
heating
chamber
plate
heating chamber
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29142896A
Other languages
Japanese (ja)
Other versions
JPH10134958A (en
Inventor
昭彦 中島
公明 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP29142896A priority Critical patent/JP3796856B2/en
Publication of JPH10134958A publication Critical patent/JPH10134958A/en
Application granted granted Critical
Publication of JP3796856B2 publication Critical patent/JP3796856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波誘導加熱手段と、高周波誘電加熱手段とを複合した高周波加熱装置に関するものである。
【0002】
【従来の技術】
近年の食生活は、洋食化とともに多様化し、冷凍,冷蔵等の加工食品が急増している。これらの加工食品を短時間で再加熱する目的で電子レンジやオーブンレンジ等が再び注目を集めている。しかし、オーブンレンジの性能は向上しているものの、焼き機能の火力不足と、そのため調理時間が長すぎるという課題は、ほとんど改善されていないのが現状である。しかし、上記課題の解決を狙った高周波誘導加熱とマイクロ波による誘電加熱を複合化した高周波加熱装置には、従来より種々提案がなされてきた。
【0003】
その代表的な従来例として特開昭63−225495号公報を図6に示す。図6に示すように、この高周波加熱装置は、加熱室1内に食品aを配置した加熱皿40を載置する耐熱セラミック材等よりなる仕切板41と、前記仕切板41上に開閉自在に構成されたドーム状の加熱室ドア42と、高周波誘電加熱手段と高周波誘導加熱手段とで構成されている。高周波誘電加熱手段は前記加熱室1の下部に設けられた駆動モータ43に連結された回転アンテナ44を回転しながら、マグネトロン45で発生したマイクロ波を導波管46を介して前記加熱室1内へ伝播するように構成されている。また、高周波誘導加熱手段は、前記仕切板41と回転アンテナ44の間に、加熱コイル47とその下部に接合した前記磁束透過用のフェライトコア48とを電波遮蔽用のシールドカバー49内に包囲して前記仕切板41の下面に接合して配置構成されている。前記加熱コイル47は通電された電流によって高周波磁界を誘発し前記仕切板41上に設けられた加熱皿40に渦電流を発生して加熱する。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の構成では、まず第1に、高周波加熱装置の高さが高い。即ち、加熱室1を構成する加熱室ドア42の構成は、加熱室の中央に配置した食品にマイクロ波を効率的に照射し分布の均一化を図るために、少なくとも中央部の背丈を高くしたドーム型形状とすることで、マイクロ波のキャビティ空間を大きくする構成となっている。さらに、駆動モータ43、導波管46、回転アンテナ44および加熱コイル47、フェライトコア48部等の機能要素部品をそれぞれ積層状に構成しているため、装置全体の高さが高くなりキッチン台や食卓上に置くには使い勝手が悪く、また、大きくて配置に困るだけでなく、違和感がある等の問題が多かった。
【0005】
第2に高周波誘導加熱手段において、加熱コイル47と磁気遮蔽用フェライトコア48とをシールドカバー49で包囲する構成は、マイクロ波で加熱コイル47やフェライトコア48が加熱され損傷しないようにマイクロ波を遮蔽するためのものであるが、マイクロ波を遮蔽しようとしてシールドカバー49の遮蔽性能を上げると高周波磁界も遮蔽して誘導加熱の効率が低下し、双方とも火力不足になるという非常に困難な問題があった。
【0006】
【課題を解決するための手段】
本発明は、上記課題を解決するためのもので、加熱室を矩形断面の薄型にするとともに、主たる電波伝播空間である加熱室に対向する下部即ち機械室内に位置する電磁波遮蔽室内部にも電波伝播空間を設け、前記加熱室と、機械室の境界壁を形成する仕切板の上下にマイクロ波の電波伝播空間(以下キャビティと記す)を形成するとともに、仕切板上に載置した誘電材料よりなる加熱皿の底面に金属材料よりなる環状の加熱板を設けて加熱板の中心孔および外周に電波伝播路を構成して、前記上下キャビティ空間の間をマイクロ波が自由に伝播させる通路を形成したものである。また高周波誘導加熱手段と高周波誘電加熱手段との配列を積層状にせず横並びに併設したことにより機械室の高さを低く薄型扁平構成にしたものである。
【0007】
本発明によれば、加熱装置が薄型化できるので、キッチン台や食卓に置いてもコンパクトで違和感がなく、使い勝手も良くなった。さらに、加熱室は薄型扁平構成であるにも拘
らずマイクロ波は、上下のキャビティ間を加熱板の中心孔および外周に形成される電波伝播路を通じて伝播するので、全体として大きなキャビティ空間を形成することになり、加熱する食品の負荷の大きさ,形状,種類に拘らず効率的な加熱が可能となる。
【0008】
【発明の実施の形態】
本発明は、矩形断面の加熱室ドアで構成された加熱室と、前記加熱室下部に設けられた機械室と、前記加熱室と前記機械室の境界壁を形成する金属材料よりなる上板および耐熱誘電材料からなる仕切板と、前記仕切板上に載置した耐熱誘電材料からなる加熱皿と、前記加熱皿の底面の表面または裏面に装着した金属材料よりなる環状の加熱板と、前記機械室内に設けられその外周部は前記上板と電気的に接している電磁波遮蔽室と、前記仕切板の下面に絶縁配置されたコイル中空部を有する加熱コイルと、前記加熱コイルの外側面および底面と前記電磁波遮蔽室の内壁面との間に一定以上の隙間を有して形成された電波伝播路Aと、マイクロ波を発生するマグネトロンと、前記電磁波遮蔽室の外周壁と横並びに併設した導波管と、前記上板に設けられ前記加熱室に開口した給電口とを有する構成とした。
【0009】
そして、加熱装置全体が、扁平薄型で小型化にできたので置き場が小さくなり、低くなったので違和感なく、使い勝手も良くなった。特に機能的には、上下キャビティ,電波伝播路の構成,誘電材料よりなる加熱皿、および環状の加熱板等の組み合わせによってマイクロ波は、加熱室内を効率的に反射伝播でき、その結果加熱効率が向上し、急速加熱と均一加熱が可能となった。
【0010】
また、加熱コイルの外側面と、前記電磁波遮蔽室の内壁面との間に設けた電波伝播路Aの隙間寸法を少なくとも10mm以上、50mm以下に保持する構成とした。
【0011】
そして、加熱コイルの下部にフェライトコアを付設せずとも、例えば、電波伝播路の隙間寸法を25mm以上確保すれば約80%の高効率の高周波誘導加熱特性を確保できる。さらに当然のことながらフェライトコアを付設していないのでフェライトコアがマイクロ波を吸収して発熱損傷,特性劣化することもない。
【0012】
また、耐熱誘電材料よりなる加熱皿の表面または、裏面のどちらか一方に金属材料よりなる複数個で環状の加熱板を一定隙間即ち環状の電波伝播路Bを有して幾重にも同心的に装着し、前記加熱コイルの中心と、前記環状の加熱板の中心とが略一致するよう配置する構成とした。
【0013】
そして、加熱皿の上下に構成されたキャビティと、電波伝播路Aに加えて、前記加熱皿の底面表裏に設けられた環状の電波伝播路Bの組み合わせによって、マイクロ波は加熱皿を軸としてキャビティ,電波伝播路A、および環状の電波伝播路B間を効率的に反射伝播できるので、加熱皿上に配置された食品は、効率良く、かつ高火力で均一な高周波誘電加熱による高速加熱調理が可能となった。
【0014】
また、加熱室と機械室の境界壁を形成する金属材料よりなる上板に設けられ前記加熱室に開口した給電口を、一般の200ml用の牛乳瓶等の容器の外形寸法より少なくとも大きく開口して設け、前記給電口に連設するよう前記機械室内に装着された導波管の底面と前記加熱室ドアの天板との高さ領域が少なくとも前記牛乳瓶等の容器長が収納できる構成とした。
【0015】
そして、加熱室内だけでは、高さのために配置できない一般家庭で日常的に用いられている200ml型の牛乳瓶や酒徳利等の背丈の高い容器も、前記導波管内に配置することで収納可能となる。しかも、導波管部分は、マイクロ波の電界が最も高い領域にあるため
集中かつ、効果的に加熱できるので加熱室内に置くより高速加熱が可能である。
【0016】
また、前記加熱室ドアの天板内壁面に断熱部等を介して設けた反射板の内側に高温輻射型の電気ヒータを装着する構成とした。
【0017】
そして、反射板と仕切板との高さが、従来のように加熱室の高さが一般の200ml型の牛乳瓶等の高さ以下に低く構成されているので、加熱皿上に配置された食品と電気ヒータとの距離は縮小されて、電気ヒータより照射される高温の赤外線は、食品上部に強力かつ、効果的に照射されて上面焼き調理が効率良く短時間に、かつ均一に出来上がるものである。さらに、前記高周波誘導加熱手段と組み合わせることにより食品の上下面を効果的に焼く非常に高火力なオーブンレンジが提供できるものである。
【0018】
以下、本発明の実施例について図面を参照して説明する。
【0019】
(実施例1)
図1は本発明の実施例1の高周波加熱装置の縦面図である。
【0020】
図1において、食品aを収納する加熱室1は、各機能部品が配置された機械室2の上壁を形成する金属材料よりなる上板3および耐熱性誘電材料よりなる仕切板4、前記上板3および仕切板4を、上から囲む断面矩形で扁平帽子状の加熱室ドア5で構成されている。6は裸線で断面が平角状または扁平細管状の電気良導体金属の銅線材よりなる加熱コイルで、縦長部を垂直に配置し軟質マイカ等の絶縁体(図示なし)をはさんで一定ピッチで渦巻状に巻回して略ドーナツ状に構成されている。また、前記加熱コイル6は前記仕切板4の下面に接するように配置され、耐熱誘電材料よりなるコイルケース7で包囲された上、電磁波遮蔽室8の底面上に複数の支柱9を介して固定されている。前記電磁波遮蔽室8は、銅またはアルミ等の非磁性電気良導体金属を凹状に構成したものでその外周部は、前記機械室2の上板3と電気的に接している。前記加熱コイル6の中心部にはマイクロ波が伝播するコイル中空部10を設けている。また前記加熱コイル6は、前記電磁波遮蔽室8内に配置されており、加熱コイル6の底面および外側面と電磁波遮蔽室8の内壁面との空間、即ち電波伝播路Aが構成されている。したがって、前記加熱室1を上部キャビティとすると、電波伝播路Aは下部マイクロ波キャビティとして機能する。11はセラミック等の耐熱誘電材料よりなる加熱皿で底面の表面もしくは裏面部に磁性金属よりなる加熱板12(金属膜または薄板)を蒸着,焼成、または装着したものである。13はマグネトロン14のアンテナ15より放射されるマイクロ波を導波管16を介して前記加熱室1内に給電する給電口である。この給電口13は前記電磁波遮蔽室8の外周壁と導波管16が横並びに併設するように前記機械室2の上板3の一部に設けられている。17は前記給電口13を開閉する耐熱誘電材料よりなる取っ手付きの給電口蓋である。また前記導波管16の空間内に前記マグネトロン14のアンテナ15部分が突出しないようにアンテナ収納部18が前記導波管16の壁面に装着されている。19は前記加熱皿11を前記仕切板4の中央部定位置に置くための凹部で、前記電磁波遮蔽室8上部外周に設けた座部20に耐熱無機接着剤で装着されている。したがって、仕切板4は回転せず固定された状態である。21は前記加熱室ドア5の全周に設けた平面部で前記機械室2の上板3の外周に配置したチョーク部22とともに加熱室1内に充満するマイクロ波の漏洩を防止している。23は取手、24は前記加熱室ドア5の天板3上に複数個設けた通気孔である。26は加熱室ドア5の上下開閉用のヒンジである。なお、高周波電流を発生させるインバータ電源(図示なし)はマグネトロン14用と、加熱コイル6用とにそれぞれ専用として2個設けるか、または1個備えてマグネトロン14と加熱コイル6とを兼用して1個にしても良いが、複合調理器としては前者の方が、高火力化、料理のメニュウ展開、および高速調理に対しては合理的である。
【0021】
次に作用を説明する。まず、加熱室1内に配置された加熱皿11上に食材aを載置して、インバータ電源(図示なし)に電力を印加すると、マグネトロン14に高電圧が供給されてマグネトロン14は、アンテナ15よりマイクロ波を発生する。このマイクロ波
は、導波管16、給電口17を介して加熱室1内に供給され、矩形断面の加熱室1と、電波伝播路Aで構成されて機能するいわゆる上下キャビティの空間と、前記加熱コイル1部のコイル中空部10を介して電波減衰することなく食材aに対して効果的に伝播し照射される。したがって、加熱室1が扁平薄型構成にもかかわらず食品aは高効率にかつ均一に加熱昇温し、急速加熱されて加熱調理させる。
【0022】
一方、加熱コイル6にも前記インバータより高周波電流を供給すると、加熱コイル6は高周波磁界を発生させ加熱皿11の底面全体に、渦電流を誘起させて、加熱皿11面は急速かつ高温に昇温され、食材aの底面を加熱し焦げ目を付ける。また、マイクロ波と電磁誘導加熱を同時に作動させることも可能で、この場合は特に食品aの内部加熱と底面の焼き調理が同時に高効率,高火力で調理が促進されるので、短時間に美味しく調理できるものである。
【0023】
また、構造上については、装置全体が扁平小型で低い構成であるので、キッチン台や食卓上にも設置スペースをとらず、違和感もない。特に高さが低いので調理作業が容易で使い勝手が良く実用上非常に合理的になった。
【0024】
(実施例2)
図2は本発明の実施例2の加熱コイル6と電磁波遮蔽室8の内壁面との間隔すなわち電波伝播路Aの隙間と誘導加熱効率の関係を実験的に求めた結果を図示したものである。
【0025】
図2によれば、前記電磁波遮蔽室8の材質を非磁性の電気良導体材料、例えばアルミニウム等で構成するとともに、前記した電波伝播路Aの隙間を10mm以上に保持することにより、加熱コイル6下部に磁束透過率の高いフェライト等を付設させなくても加熱効率は、約70%を確保できた。この効率は一般のガスコンロの効率45%や、電気コンロまたはハロゲンランプを利用したハロゲンコンロの加熱効率50〜70%以上の効率である。しかし、従来の電磁調理器は、誘導加熱だけの短機能で使われており、その加熱効率は約60%以上である。したがって、電磁調理器と同等の加熱効率を得るためには、前記電波伝播路Aの寸法を15〜25mm以上を確保するのが良い。これらの寸法は、商品の狙い,薄型小型化,製造性,価格および品質等によっで決定されるべきものであり、その効果から判断して実用的範囲には10mm以上50mm以下にするのが設計上合理的と考える。なお、前記電磁波遮蔽室8の材質を鉄系にすれば、前記銅系材料に比べ約20%以上加熱効率は低下するので、電波伝播路Aの隙間は約倍近くの寸法が必要であり、機械室2の高さもこれに対応して高くする必要があり、その分、調理機器本体は大型化してしまい実用的ではない。
【0026】
(実施例3)
図3は加熱皿の底面の一部に装着した加熱板部の要部を示した一部要部断面図である。
【0027】
図3によれば、耐熱誘電材料よりなる加熱皿11底面の表面または、裏面のどちらか一方に金属材料よりなる複数個で環状の加熱板(金属薄膜または金属薄板)27を一定間隔を有して幾重にも同心的に装着(蒸着,焼成または接着等の加工)し、前記加熱コイル6の中心と、前記環状の加熱板27の中心とが略一致するよう配置され、かつ、前記環状の加熱板27とその外方に位置する加熱板27と間には環状の電波伝播路Bが複数個設けられている。なお加熱皿11の中心部分には前記加熱板27を装着しない未処理部28を設けている。
【0028】
したがって、仕切板4の上の加熱室1と、電波伝播路Aで機能する上下キャビティに加えて、前記加熱皿11の底面表裏に設けられた環状の電波伝播路Bの組み合わせによって、マイクロ波は加熱皿11を軸として上下キャビティ,電波伝播路A、および環状の電波伝播路B間を効率的に反射伝播できるので、加熱皿11上に配置された食品aは、解凍から加熱調理まで効率良く、かつ高火力で均一な高周波誘電加熱による高速加熱調理が可能となった。
【0029】
また、加熱皿11の表面にのみ熱容量の小さい薄い加熱板27を装着したので、加熱皿11底表面は、瞬時に温度上昇が期待できるとともに絶対温度も高くなり、加熱皿11上に置かれた食材aは、短時間に効率良く焦げ目を付けることができる。さらに、電波伝播路Bによってマイクロ波は、食材a内部を効果的に加熱し煮あげる作用も促進され、短時間に美味しく調理できるものである。
【0030】
(実施例4)
図4は、給電口13および導波管16近傍の要部断面図である。
【0031】
図4によれば、給電口13の開口寸法を少なくとも一般の200ml用の牛乳瓶bまたは酒徳利等の外形寸法より大きく、また、前記加熱室ドア5の天板5と前記給電口13に対向した導波管16の底面との高さが少なくとも前記牛乳瓶b等の全高寸法が収納できるとともに、前記導波管16の空間部分に前記マグネトロン14のアンテナ15部分が突出しないように、前記アンテナ収納部18を介して前記マグネトロン14を配置した構成になっている。
【0032】
上記構成により装置本体が、扁平構成になったにも拘らず牛乳瓶bや酒徳利およびコップ等の背の高い小物容器や小物食材が容易に配置できる。また、高周波の最も強い導波管16内およびその近傍で加熱するため高効率で急速加熱が可能である。さらに、導波管16内に直接注水し、注水した水を瞬時に沸騰させて、加熱室1内での蒸し調理を行うこともできるものである。なお、前記導波管16内に着脱自在に配置される誘電材のセラミック材または樹脂等よりなる上部が開口した容器(図示なし)を構成し配置しても良い。この容器の中に前記の牛乳瓶bや酒徳利等、または加熱液体や小物食品を配置したり、注入すれば前記導波管16内は汚れにくく、液漏れもなく、また使い勝手も良くなる。なお、導波管16内を調理本体の操作前面部に配置することにより、調理操作が容易にでき、使い勝手が良く、安全で実用的な加熱調理器を提供できるものである。
【0033】
(実施例5)
図5は加熱皿に対応した加熱室ドアの天板に一部に設置した輻射型電気ヒータを設けた部分の要部断面図である。
【0034】
図5によれば、加熱室ドア5の天板の内壁近傍に赤外線輻射熱等を放射する加熱ヒータ29、例えばミラクロンヒータ,石英管ヒータ,またはハロゲンランプ(ランプ表面に赤外線放射膜等を付着すれば効果的)等を反射板30、および断熱材31を介して配置し装着した。
【0035】
したがって、加熱皿11内に配置された食材aに対して前記加熱ヒータ29が近距離に配置されていること、前記加熱皿11が加熱されることにより、食品aは上下両面を効果的に分布良く焼け、焦げ目を短時間に付けるとともに、内部加熱も前記マイクロ波の誘電加熱によって素早く煮上げることができ満足いく調理ができる。さらに、自動制御を組み入れることにより、容易に自動化もでき洋食,和食ともに調理メニューの展開を大きく広げることができ多機能調理機器として実用的な調理器が可能になった。
【0036】
【発明の効果】
以上の説明から明らかのように本発明によれば、次のような効果が得られる。
【0037】
本発明は、矩形断面で薄い空間の加熱室と、加熱コイルを内蔵した電磁波遮蔽室部にも電波伝播路を設けて、仕切板上に載置される加熱皿の上下に上下キャビティを形成するとともに、電磁波遮蔽室と横並びに併設したマグネトロンを連結した給電口とにより、加熱装置が薄型となり、キッチン台や食卓に置きやすくコンパクトで違和感がなく、使い勝手が良くなった。次に加熱室が薄いにも拘らず、マイクロ波の伝播が効率良く照射される一方、電磁加熱も加わって、食品に対する内部加熱と下面の焼き作用が、効率良く、均一に加熱されるので、急速加熱,急速焼き調理が可能となり、短時間に美味しい調理が実現できる。
【0038】
また、加熱コイルの外側面と、電磁波遮蔽室の内壁面間に設けた電波伝播路Aの隙間を最小10mm以上、50mm以下にしたことにより、加熱コイルの下部にフェライトコアを設けずとも、高効率の高周波誘導加熱特性が得られ、また、マイクロ波の共存中でも加熱コイルは、熱損傷,特性劣化もなく、高効率の高周波誘電・誘導加熱が同時操作でき、調理メニューの拡大と美味しい調理が短時間にできる。
【0039】
また、耐熱誘電材料よりなる加熱皿の表または裏面のどちらか一方に金属材料よりなる複数環状の加熱板を幾重にも装着し、加熱コイルの中心と加熱板の中心とが略一致するよう配置することにより、マイクロ波は加熱皿上の食品に向かって効率的に反射伝播でき、かつ、加熱板の熱容量が小さいため、誘導加熱による加熱皿面の昇温が早く、高温、かつ均一となり高速加熱調理が可能となった。
【0040】
また、導波管に連結した給電口の開口面積を大きくしたことにより、導波管の底面と加熱室との空間に、一般の牛乳瓶等の高い小物容器が容易に収納できるとともに、導波管部分は、マイクロ波の電界が高いため集中かつ、効果的に加熱できるので、加熱室内に置くより高速加熱が可能である。
【0041】
また、前記加熱室ドアの天板内壁面の一部に高温輻射型の電気ヒータを設けることにより、加熱皿上に配置された食品と電気ヒータとの距離は縮小されて、高温の赤外線は、食品上部を強力かつ、効果的に加熱して上面の焼き調理が短時間で均一に焼ける。また、高周波誘導加熱手段と組み合わせることにより、上下面を効果的に焼けより実用的な高火力のオーブンレンジが提供できる。
【図面の簡単な説明】
【図1】 本発明の一実施例を示す高周波加熱装置の縦断面図
【図2】 同高周波加熱装置の電波伝播路Aの隙間と高周波誘導加熱効率の特性を示した特性図
【図3】 同高周波加熱装置の加熱皿と加熱板の部分を示した要部断面図
【図4】 同高周波加熱装置の給電口と導波管の部分を示した要部断面図
【図5】 同高周波加熱装置の加熱室ドアの天板部に輻射型電気ヒータを設けた要部断面図
【図6】 従来例の高周波加熱装置の縦断面図
【符号の説明】
1 加熱室
2 機械室
4 仕切板
5 加熱室ドア
6 加熱コイル
8 電磁波遮蔽室
A 電波伝播路
B 電波伝播路
11 加熱皿
12 加熱板
13 給電口
14 マグネトロン
16 導波管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency heating apparatus in which high-frequency induction heating means and high-frequency dielectric heating means are combined.
[0002]
[Prior art]
The eating habits in recent years have become diversified with westernization, and processed foods such as frozen and refrigerated are rapidly increasing. In order to reheat these processed foods in a short time, microwave ovens and microwave ovens are attracting attention again. However, although the performance of the microwave oven has been improved, the problem that the baking power is insufficient and the cooking time is too long has hardly been improved. However, various proposals have heretofore been made for a high-frequency heating apparatus that combines high-frequency induction heating and dielectric heating by microwaves aimed at solving the above problems.
[0003]
As a typical conventional example, Japanese Patent Laid-Open No. 63-225495 is shown in FIG. As shown in FIG. 6, the high-frequency heating device includes a partition plate 41 made of a heat-resistant ceramic material or the like on which a heating dish 40 in which a food a is placed is placed in the heating chamber 1, and can be opened and closed on the partition plate 41. The dome-shaped heating chamber door 42 is composed of high-frequency dielectric heating means and high-frequency induction heating means. The high-frequency dielectric heating means rotates the rotating antenna 44 connected to the drive motor 43 provided at the lower part of the heating chamber 1, while the microwave generated in the magnetron 45 is passed through the waveguide 46 through the heating chamber 1. Configured to propagate to. Further, the high frequency induction heating means surrounds a heating coil 47 and the magnetic flux transmitting ferrite core 48 joined to the lower part of the heating coil 47 between the partition plate 41 and the rotating antenna 44 in a shield cover 49 for shielding radio waves. And are arranged and configured to be joined to the lower surface of the partition plate 41. The heating coil 47 induces a high-frequency magnetic field by the energized current and generates an eddy current in the heating dish 40 provided on the partition plate 41 to heat it.
[0004]
[Problems to be solved by the invention]
However, in the conventional configuration, first, the height of the high-frequency heating device is high. That is, the configuration of the heating chamber door 42 constituting the heating chamber 1 has at least the height of the central portion increased in order to efficiently irradiate the food disposed in the center of the heating chamber with microwaves and to make the distribution uniform. By adopting a dome shape, the microwave cavity space is increased. Furthermore, since the functional element parts such as the drive motor 43, the waveguide 46, the rotating antenna 44, the heating coil 47, and the ferrite core 48 are each laminated, the height of the entire apparatus increases, and the kitchen table and It was not easy to use on the table, and it was not easy to place because of its large size.
[0005]
Second, in the high frequency induction heating means, the configuration in which the heating coil 47 and the magnetic shielding ferrite core 48 are surrounded by the shield cover 49 is such that the microwave is heated so that the heating coil 47 and the ferrite core 48 are not damaged by being heated. Although it is for shielding, if the shielding performance of the shield cover 49 is increased in order to shield the microwave, the high frequency magnetic field is also shielded, the efficiency of induction heating is lowered, and both are extremely difficult to be heated. was there.
[0006]
[Means for Solving the Problems]
The present invention is to solve the above-mentioned problems, and the heating chamber is made thin with a rectangular cross section, and the electromagnetic wave is also applied to the lower portion facing the heating chamber, which is the main radio wave propagation space, that is, the electromagnetic shielding chamber inside the machine chamber. Propagation space is provided, microwave propagation space (hereinafter referred to as a cavity) is formed above and below the partition plate forming the boundary wall between the heating chamber and the machine room, and a dielectric material placed on the partition plate is used. An annular heating plate made of a metal material is provided on the bottom surface of the heating plate, and a radio wave propagation path is formed in the center hole and outer periphery of the heating plate to form a passage through which microwaves can freely propagate between the upper and lower cavity spaces. It is a thing. Further, the arrangement of the high-frequency induction heating means and the high-frequency dielectric heating means is arranged side by side without being laminated, so that the height of the machine room is made low and a thin flat structure.
[0007]
According to the present invention, since the heating device can be made thin, it is compact and uncomfortable even when placed on a kitchen table or a table, and the usability is improved. Furthermore, although the heating chamber has a thin and flat configuration, the microwave propagates between the upper and lower cavities through the radio wave propagation path formed in the central hole and the outer periphery of the heating plate, so that a large cavity space is formed as a whole. Therefore, efficient heating is possible regardless of the size, shape, and type of the load of the food to be heated.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention includes a heating chamber composed of a heating chamber door having a rectangular cross section, a machine room provided at the lower part of the heating chamber, an upper plate made of a metal material forming a boundary wall between the heating chamber and the machine room, and A partition plate made of a heat-resistant dielectric material, a heating pan made of a heat-resistant dielectric material placed on the partition plate, an annular heating plate made of a metal material attached to the front surface or the back surface of the heating plate, and the machine An electromagnetic shielding chamber that is provided in the room and whose outer peripheral portion is in electrical contact with the upper plate, a heating coil having a coil hollow portion that is insulated from the lower surface of the partition plate, and an outer surface and a bottom surface of the heating coil Radio wave propagation path A formed with a gap of a certain level or more between the inner wall surface of the electromagnetic shielding chamber, a magnetron for generating microwaves, and a guide provided side by side with the outer peripheral wall of the electromagnetic shielding chamber. and wave tube, to the upper plate Vignetting and configured to have a feed opening which opens into the heating chamber.
[0009]
And since the whole heating device was flat and thin and could be downsized, the storage space became smaller and lower, so there was no sense of incongruity and ease of use was improved. In terms of functionality, microwaves can be reflected and propagated efficiently in the heating chamber by combining the upper and lower cavities, the structure of the radio wave propagation path, the heating pan made of dielectric material, and the annular heating plate. Improved, rapid heating and uniform heating became possible.
[0010]
Further, the gap dimension of the radio wave propagation path A provided between the outer surface of the heating coil and the inner wall surface of the electromagnetic wave shielding chamber is held at least 10 mm or more and 50 mm or less.
[0011]
Even if a ferrite core is not attached to the lower part of the heating coil, for example, a high-frequency induction heating characteristic with a high efficiency of about 80% can be secured if the gap dimension of the radio wave propagation path is secured to 25 mm or more. Furthermore, as a matter of course, since the ferrite core is not attached, the ferrite core absorbs the microwave, and the heat generation damage and the characteristic deterioration do not occur.
[0012]
In addition, a plurality of annular heating plates made of a metal material are provided on either the front surface or the back surface of a heating plate made of a heat-resistant dielectric material, and have a certain gap, that is, an annular radio wave propagation path B. The heating coil is arranged so that the center of the heating coil and the center of the annular heating plate substantially coincide with each other.
[0013]
Then, in addition to the cavities formed above and below the heating dish and the radio wave propagation path A, the microwaves are cavities around the heating dish by the combination of the annular radio wave propagation path B provided on the bottom and back of the heating dish. , Because it can efficiently reflect and propagate between the radio wave propagation path A and the annular radio wave propagation path B, the food placed on the heating pan can be efficiently cooked at high speed by high-frequency dielectric heating with high heating power and uniformity. It has become possible.
[0014]
Further, the power supply opening provided on the upper plate made of a metal material forming the boundary wall between the heating chamber and the machine chamber is opened at least larger than the external dimensions of a container such as a general 200 ml milk bottle. Te provided, can pre Symbol feed port container length storage height areas such as at least the milk bottle with the bottom surface of the waveguide which is attached to the machine room to continuously provided with a top plate of the heating chamber door structure It was.
[0015]
And, 200ml type milk bottles and tall containers such as sake bottles that are routinely used in general households that cannot be placed because of the height of the heating chamber alone are stored by placing them in the waveguide. It becomes possible. Moreover, since the waveguide portion is in the region where the microwave electric field is the highest, it can be heated concentratedly and effectively, so that it can be heated faster than it is placed in the heating chamber.
[0016]
In addition, a high-temperature radiation type electric heater is mounted on the inner surface of the inner wall of the top plate of the heating chamber door via a heat insulating portion or the like.
[0017]
And since the height of a reflector and a partition plate is comprised below the height of the general 200 ml type milk bottle etc. like the conventional height of a heating chamber, it was arrange | positioned on a heating pan. The distance between the food and the electric heater is reduced, and the high-temperature infrared rays emitted from the electric heater are radiated powerfully and effectively on the upper part of the food, and the top baking is efficiently completed in a short time and uniformly. It is. Furthermore, by combining with the high frequency induction heating means, it is possible to provide a very high-power microwave oven that effectively bake the upper and lower surfaces of food.
[0018]
Embodiments of the present invention will be described below with reference to the drawings.
[0019]
Example 1
1 is a longitudinal view of a high-frequency heating device according to a first embodiment of the present invention.
[0020]
In FIG. 1, a heating chamber 1 for storing food a includes an upper plate 3 made of a metal material and a partition plate 4 made of a heat-resistant dielectric material that form the upper wall of a machine room 2 in which each functional component is disposed. The plate 3 and the partition plate 4 are constituted by a heating chamber door 5 having a rectangular cross section surrounding the top and a flat hat shape. 6 is a heating coil made of a copper wire made of a good conductor metal with a bare wire and a rectangular or flat cross section. The heating coil is vertically arranged with a constant pitch across an insulator (not shown) such as soft mica. It is formed in a substantially donut shape by winding in a spiral shape. The heating coil 6 is disposed so as to be in contact with the lower surface of the partition plate 4 and is surrounded by a coil case 7 made of a heat-resistant dielectric material, and is fixed on the bottom surface of the electromagnetic wave shielding chamber 8 via a plurality of columns 9. Has been. The electromagnetic shielding chamber 8 is made of a non-magnetic good electrical conductor metal such as copper or aluminum in a concave shape, and its outer peripheral portion is in electrical contact with the upper plate 3 of the machine chamber 2. A coil hollow portion 10 through which microwaves propagate is provided at the center of the heating coil 6. The heating coil 6 is disposed in the electromagnetic shielding chamber 8, and a space between the bottom and outer surfaces of the heating coil 6 and the inner wall surface of the electromagnetic shielding chamber 8, that is, a radio wave propagation path A is configured. Therefore, when the heating chamber 1 is an upper cavity, the radio wave propagation path A functions as a lower microwave cavity. Reference numeral 11 denotes a heating pan made of a heat-resistant dielectric material such as ceramic, and a heating plate 12 (metal film or thin plate) made of a magnetic metal is vapor-deposited, fired or mounted on the front or back surface of the bottom surface. Reference numeral 13 denotes a power feeding port for feeding the microwave radiated from the antenna 15 of the magnetron 14 into the heating chamber 1 through the waveguide 16. The power supply port 13 is provided in a part of the upper plate 3 of the machine chamber 2 so that the outer peripheral wall of the electromagnetic wave shielding chamber 8 and the waveguide 16 are arranged side by side. Reference numeral 17 denotes a feed port lid with a handle made of a heat-resistant dielectric material that opens and closes the feed port 13. An antenna housing portion 18 is mounted on the wall surface of the waveguide 16 so that the antenna 15 portion of the magnetron 14 does not protrude into the space of the waveguide 16. Reference numeral 19 denotes a recess for placing the heating pan 11 at a fixed position in the center of the partition plate 4, which is attached to a seat portion 20 provided on the outer periphery of the electromagnetic shielding chamber 8 with a heat resistant inorganic adhesive. Therefore, the partition plate 4 is in a fixed state without rotating. Reference numeral 21 denotes a flat portion provided on the entire circumference of the heating chamber door 5 and prevents leakage of microwaves filling the heating chamber 1 together with the choke portion 22 disposed on the outer periphery of the upper plate 3 of the machine chamber 2. Reference numeral 23 denotes a handle, and 24 denotes a plurality of ventilation holes provided on the top plate 3 of the heating chamber door 5. Reference numeral 26 denotes a hinge for opening and closing the heating chamber door 5. Two inverter power sources (not shown) for generating a high-frequency current are provided exclusively for the magnetron 14 and the heating coil 6, respectively, or one is provided and the magnetron 14 and the heating coil 6 are both used. Although the number may be individual, the former is more reasonable as a combined cooking device for higher heating, cooking menu development, and high-speed cooking.
[0021]
Next, the operation will be described. First, when the food a is placed on the heating pan 11 disposed in the heating chamber 1 and power is applied to an inverter power supply (not shown), a high voltage is supplied to the magnetron 14, and the magnetron 14 is connected to the antenna 15. More microwaves are generated. The microwave is supplied into the heating chamber 1 through the waveguide 16 and the power supply port 17, the heating chamber 1 having a rectangular cross section, the space of the so-called upper and lower cavities functioning by being constituted by the radio wave propagation path A, It effectively propagates and irradiates the food material a through the coil hollow portion 10 of the heating coil 1 without being attenuated by radio waves. Therefore, although the heating chamber 1 has a flat and thin configuration, the food a is heated and heated with high efficiency and uniformity, and is rapidly heated and cooked.
[0022]
On the other hand, when a high frequency current is also supplied to the heating coil 6 from the inverter, the heating coil 6 generates a high frequency magnetic field, inducing an eddy current in the entire bottom surface of the heating dish 11, and the surface of the heating dish 11 rapidly rises to a high temperature. When heated, the bottom surface of food a is heated and burnt. It is also possible to operate microwaves and electromagnetic induction heating at the same time. In this case, the internal heating of the food a and the baked cooking of the bottom are promoted at the same time with high efficiency and high heating power. It can be cooked.
[0023]
In terms of structure, since the entire apparatus is flat and small and has a low configuration, there is no installation space on the kitchen table or table, and there is no sense of incongruity. In particular, because of its low height, cooking work is easy, convenient, and practical.
[0024]
(Example 2)
FIG. 2 shows the result of experimentally determining the relationship between the distance between the heating coil 6 and the inner wall surface of the electromagnetic wave shielding chamber 8 of the second embodiment of the present invention, that is, the gap of the radio wave propagation path A, and the induction heating efficiency. .
[0025]
According to FIG. 2, the material of the electromagnetic wave shielding chamber 8 is made of a non-magnetic good electric conductor material, such as aluminum, and the gap of the radio wave propagation path A is kept at 10 mm or more, so that the lower part of the heating coil 6 Even if no ferrite or the like having a high magnetic flux permeability was attached to the heating efficiency, it was possible to secure a heating efficiency of about 70%. This efficiency is 45% of the efficiency of a general gas stove, or 50 to 70% or more of the heating efficiency of a halogen stove using an electric stove or a halogen lamp. However, the conventional electromagnetic cooker is used with a short function only for induction heating, and its heating efficiency is about 60% or more. Therefore, in order to obtain the heating efficiency equivalent to that of the electromagnetic cooker, it is preferable to secure the dimension of the radio wave propagation path A to 15 to 25 mm or more. These dimensions should be determined by the purpose of the product, thin and small size, manufacturability, price, quality, etc. Judging from its effects, the practical range should be 10 mm or more and 50 mm or less. Considered reasonable in design. If the electromagnetic shielding chamber 8 is made of an iron-based material, the heating efficiency is reduced by about 20% or more compared to the copper-based material. Therefore, the gap of the radio wave propagation path A needs to be about twice as large. The height of the machine room 2 also needs to be increased correspondingly, and the cooking equipment main body is enlarged accordingly, which is not practical.
[0026]
Example 3
FIG. 3 is a partial cross-sectional view showing a main part of the heating plate part mounted on a part of the bottom surface of the heating dish.
[0027]
According to FIG. 3, a plurality of annular heating plates (metal thin films or metal thin plates) 27 made of a metal material are provided at regular intervals on either the front surface or the back surface of the heating pan 11 made of a heat-resistant dielectric material. Are mounted concentrically (processing such as vapor deposition, firing or bonding), arranged so that the center of the heating coil 6 and the center of the annular heating plate 27 substantially coincide, and the annular A plurality of annular radio wave propagation paths B are provided between the heating plate 27 and the heating plate 27 located outside thereof. An unprocessed portion 28 not provided with the heating plate 27 is provided at the central portion of the heating dish 11.
[0028]
Therefore, in addition to the heating chamber 1 on the partition plate 4 and the upper and lower cavities functioning in the radio wave propagation path A, the microwave is generated by the combination of the annular radio wave propagation path B provided on the bottom surface of the heating pan 11. Since the reflecting plate can be efficiently reflected and propagated between the upper and lower cavities, the radio wave propagation path A, and the annular radio wave propagation path B with the heating dish 11 as an axis, the food a placed on the heating dish 11 can be efficiently processed from thawing to cooking. In addition, high-speed cooking by uniform high-frequency dielectric heating with high heating power has become possible.
[0029]
In addition, since the thin heating plate 27 having a small heat capacity is attached only to the surface of the heating dish 11, the bottom surface of the heating dish 11 can be expected to increase in temperature instantaneously and the absolute temperature becomes high, and is placed on the heating dish 11. The food a can be burnt efficiently in a short time. Furthermore, the action of the microwave effectively heating and cooking the inside of the ingredient a is promoted by the radio wave propagation path B, and can be cooked deliciously in a short time.
[0030]
(Example 4)
FIG. 4 is a cross-sectional view of the main part in the vicinity of the power feeding port 13 and the waveguide 16.
[0031]
According to FIG. 4, the opening size of the power feeding port 13 is larger than at least a general 200 ml milk bottle b or sake bottle sake and the like, and is opposed to the top plate 5 of the heating chamber door 5 and the power feeding port 13. The height of the waveguide 16 with respect to the bottom surface can accommodate at least the entire height of the milk bottle b and the like, and the antenna 15 portion of the magnetron 14 does not protrude into the space portion of the waveguide 16. The magnetron 14 is arranged via the storage unit 18.
[0032]
Although the apparatus main body becomes a flat structure by the said structure, tall small containers and small foodstuffs, such as milk bottle b, sake bottle, and a cup, can be arrange | positioned easily. Further, since heating is performed in and near the waveguide 16 having the strongest high frequency, rapid heating can be performed with high efficiency. Further, the water can be directly poured into the waveguide 16 and the water thus poured can be boiled instantaneously to perform steam cooking in the heating chamber 1. Note that a container (not shown) having an open top made of a ceramic material or resin of a dielectric material that is detachably disposed in the waveguide 16 may be configured and disposed. If the milk bottle b, sake bottle or the like, or a heated liquid or small food is placed or injected into the container, the inside of the waveguide 16 is hardly soiled, no liquid leaks, and the usability is improved. In addition, by arranging the inside of the waveguide 16 on the operation front part of the cooking main body, the cooking operation can be easily performed, the usability is good, and a safe and practical cooking device can be provided.
[0033]
(Example 5)
FIG. 5 is a cross-sectional view of an essential part of a portion provided with a radiation type electric heater installed in part on the top plate of the heating chamber door corresponding to the heating dish.
[0034]
According to FIG. 5, a heater 29 that radiates infrared radiant heat or the like near the inner wall of the top plate of the heating chamber door 5, such as a miraclon heater, a quartz tube heater, or a halogen lamp (an infrared radiation film or the like is attached to the lamp surface). And the like are arranged and mounted via the reflector 30 and the heat insulating material 31.
[0035]
Therefore, the food heater a is effectively distributed on both the upper and lower surfaces when the heater 29 is disposed at a short distance with respect to the food a disposed in the heating dish 11 and the heating dish 11 is heated. Bake well and burnt in a short time, and the internal heating can be quickly boiled by the microwave dielectric heating, so that satisfactory cooking can be achieved. Furthermore, by incorporating automatic control, it is easy to automate, and the development of cooking menus for both Western and Japanese dishes can be greatly expanded, making it possible to create a practical cooking device as a multifunctional cooking device.
[0036]
【The invention's effect】
As is apparent from the above description, according to the present invention, the following effects can be obtained.
[0037]
The present invention provides a radio wave propagation path in a heating chamber having a rectangular cross section and a thin space, and an electromagnetic wave shielding chamber having a built-in heating coil, so that upper and lower cavities are formed above and below a heating plate placed on a partition plate. At the same time, the heating device has become thin due to the electromagnetic shielding room and the power supply port that connects the magnetron installed side by side, making it easy to place on a kitchen table or table, compact and uncomfortable, and easy to use. Next, although the heating chamber is thin, microwave propagation is efficiently radiated, while electromagnetic heating is also added, so that the internal heating and the baking action on the bottom of the food are efficiently and uniformly heated, Rapid heating and rapid baking are possible, and delicious cooking can be realized in a short time.
[0038]
In addition, since the gap between the radio wave propagation path A provided between the outer surface of the heating coil and the inner wall surface of the electromagnetic shielding chamber is set to a minimum of 10 mm or more and 50 mm or less, a high core can be provided without providing a ferrite core below the heating coil. Efficient high-frequency induction heating characteristics can be obtained, and even in the presence of microwaves, the heating coil can be operated simultaneously with high-efficiency high-frequency dielectric and induction heating without thermal damage and characteristic deterioration, expanding the cooking menu and delicious cooking It can be done in a short time.
[0039]
In addition, multiple annular heating plates made of metal material are mounted on either the front or back of the heating pan made of heat-resistant dielectric material, and the center of the heating coil and the center of the heating plate are approximately aligned. By doing so, microwaves can be efficiently reflected and propagated toward the food on the heating pan, and the heating plate has a small heat capacity. Heat cooking became possible.
[0040]
In addition, by increasing the opening area of the power supply port connected to the waveguide, a high-sized container such as a general milk bottle can be easily stored in the space between the bottom surface of the waveguide and the heating chamber, and the waveguide can be guided. The tube portion can be heated in a concentrated and effective manner due to a high microwave electric field, so that heating at a higher speed is possible than in the heating chamber.
[0041]
In addition, by providing a high-temperature radiation type electric heater on a part of the inner wall surface of the top plate of the heating chamber door, the distance between the food placed on the heating dish and the electric heater is reduced, and high-temperature infrared rays are The upper part of the food is heated powerfully and effectively, and the upper surface is baked and cooked uniformly in a short time. Further, by combining with high-frequency induction heating means, it is possible to provide a microwave oven with a high heating power that is more practical than burning the upper and lower surfaces effectively.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a high-frequency heating device showing an embodiment of the present invention. FIG. 2 is a characteristic diagram showing the characteristics of a gap in a radio wave propagation path A and high-frequency induction heating efficiency of the high-frequency heating device. Fig. 4 is a cross-sectional view of a main part showing a portion of a heating plate and a heating plate of the high-frequency heating device. Fig. 4 is a cross-sectional view of a main portion showing a feeding port and a waveguide portion of the high-frequency heating device. Cross-sectional view of the main part in which a radiation-type electric heater is provided on the top plate of the heating chamber door of the apparatus.
DESCRIPTION OF SYMBOLS 1 Heating chamber 2 Machine room 4 Partition plate 5 Heating chamber door 6 Heating coil 8 Electromagnetic wave shielding room A Radio wave propagation path B Radio wave propagation path 11 Heating pan 12 Heating plate 13 Feed port 14 Magnetron 16 Waveguide

Claims (5)

矩形断面の加熱室ドアで構成された加熱室と、前記加熱室下部に設けられた機械室と、前記加熱室と前記機械室の境界壁を形成する金属材料よりなる上板および耐熱誘電材料からなる仕切板と、前記仕切板上に載置した耐熱誘電材料からなる加熱皿と、前記加熱皿の底面の表面または裏面に装着した金属材料よりなる環状の加熱板と、前記機械室内に設けられその外周部は前記上板と電気的に接している電磁波遮蔽室と、前記仕切板の下面に絶縁配置されたコイル中空部を有する加熱コイルと、前記加熱コイルの外側面および底面と前記電磁波遮蔽室の内壁面との間に一定以上の隙間を有して形成された電波伝播路Aと、マイクロ波を発生するマグネトロンと、前記電磁波遮蔽室の外周壁と横並びに併設した導波管と、前記上板に設けられ前記加熱室に開口した給電口とを有した高周波加熱装置。A heating chamber composed of a heating chamber door having a rectangular cross section; a machine chamber provided at a lower portion of the heating chamber; an upper plate made of a metal material that forms a boundary wall between the heating chamber and the machine chamber; and a heat-resistant dielectric material A heating plate made of a heat-resistant dielectric material placed on the partition plate, an annular heating plate made of a metal material attached to the front or back surface of the heating plate, and provided in the machine room An outer periphery of the heating plate having an electromagnetic shielding chamber electrically in contact with the upper plate, a heating coil having a coil hollow portion insulated from the lower surface of the partition plate, an outer surface and a bottom surface of the heating coil, and the electromagnetic shielding. A radio wave propagation path A formed with a certain gap or more between the inner wall surface of the chamber, a magnetron for generating microwaves, a waveguide side by side with the outer peripheral wall of the electromagnetic shielding chamber, before provided in the upper plate High-frequency heating apparatus having an open ended feed port into the heating chamber. 電波伝播路Aの隙間寸法を少なくとも10mm以上、50mm以下とした請求項1記載の高周波加熱装置。The high-frequency heating device according to claim 1, wherein a gap size of the radio wave propagation path A is at least 10 mm and 50 mm or less. 加熱板は同心円状に配置された複数の加熱板からなり、前記加熱板と加熱板との隙間に1個または2個以上のリング状の電波伝播路Bを構成してなる請求項1または2記載の高周波加熱装置。The heating plate is composed of a plurality of heating plates arranged concentrically, and one or two or more ring-shaped radio wave propagation paths B are formed in a gap between the heating plate and the heating plate. The high-frequency heating device described. 加熱室と機械室の境界壁を形成する金属材料よりなる上板に設けられ前記加熱室に開口した給電口を、一般の200ml用の牛乳瓶等の容器の外形寸法より少なくとも大きく開口して設け、前記給電口に連設するよう前記機械室内に装着された導波管の底面と前記加熱室ドアの天板との高さ領域が少なくとも前記牛乳瓶等の容器長が収納できるようにしてなる請求項1または2または3記載の高周波加熱装置。 A power supply port provided on an upper plate made of a metal material that forms a boundary wall between the heating chamber and the machine chamber and opened to the heating chamber is provided so as to open at least larger than the external dimensions of a container such as a general 200 ml milk bottle. the container length height region like at least the milk bottle with the top plate of the bottom surface and the heating chamber door before Symbol waveguide mounted in the machine room so as to continuously provided to the feed port so as to be stored The high-frequency heating device according to claim 1, 2 or 3. 前記加熱室ドアの天井内壁面に高温輻射型の電気ヒータを設けてなる請求項1または2または3記載の高周波加熱装置。The high-frequency heating device according to claim 1, 2 or 3, wherein a high-temperature radiation type electric heater is provided on a ceiling inner wall surface of the heating chamber door.
JP29142896A 1996-11-01 1996-11-01 High frequency heating device Expired - Fee Related JP3796856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29142896A JP3796856B2 (en) 1996-11-01 1996-11-01 High frequency heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29142896A JP3796856B2 (en) 1996-11-01 1996-11-01 High frequency heating device

Publications (2)

Publication Number Publication Date
JPH10134958A JPH10134958A (en) 1998-05-22
JP3796856B2 true JP3796856B2 (en) 2006-07-12

Family

ID=17768756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29142896A Expired - Fee Related JP3796856B2 (en) 1996-11-01 1996-11-01 High frequency heating device

Country Status (1)

Country Link
JP (1) JP3796856B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216856A1 (en) * 2017-05-25 2018-11-29 엘지전자 주식회사 Electromagnetic induction heating cooker

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154575A (en) * 2014-08-07 2014-11-19 成都银顶科技有限公司 Non-radiative induction cooker adopting resistance-capacitance absorption component and full-shielding technology
CN104676701A (en) * 2014-12-10 2015-06-03 成都银顶科技有限公司 External electromagnetic radiation absorption technique of electromagnetic furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216856A1 (en) * 2017-05-25 2018-11-29 엘지전자 주식회사 Electromagnetic induction heating cooker
KR20180129197A (en) * 2017-05-25 2018-12-05 엘지전자 주식회사 Electromagnetic induction heating cooker
KR101985528B1 (en) * 2017-05-25 2019-06-03 엘지전자 주식회사 Electromagnetic induction heating cooker
US10788218B2 (en) 2017-05-25 2020-09-29 Lg Electronics Inc. Electromagnetic induction heating cooking appliance

Also Published As

Publication number Publication date
JPH10134958A (en) 1998-05-22

Similar Documents

Publication Publication Date Title
JP6004281B2 (en) Microwave heating device
JP5884093B2 (en) Microwave heating device
US4335290A (en) Microwave oven blower radiator
JP5627726B2 (en) Induction heating cooker
EP2472185B1 (en) Heating system
JP2009156545A (en) Heating cooker
JPH06117642A (en) Oven and food mounting table for oven
JP3796856B2 (en) High frequency heating device
US4358653A (en) Combination microwave oven
JPS63114093A (en) Triangular antenna arrangement for microwave oven
JPH08138864A (en) Heating cooker
JP5957680B2 (en) Microwave heating device
JPH06235527A (en) Heating cooking device
JP3588943B2 (en) High frequency heating device with browning plate
JP2019169357A (en) Heating cooker
JPH04319288A (en) Heating cooker
JP7313312B2 (en) heating cooker
JP3840778B2 (en) Cooking container for induction heating cooker
JP3424380B2 (en) Induction heating rice cooker
JPH09167677A (en) Induction heating heating-element and induction heating cooking appliance
KR100556379B1 (en) microwave oven
KR100662304B1 (en) microwave oven
JPS5913755Y2 (en) High frequency heating device
JPH06235525A (en) Heating device
JPH11251050A (en) Heating cooking device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees