JP2004327293A - High frequency heating arrangement - Google Patents

High frequency heating arrangement Download PDF

Info

Publication number
JP2004327293A
JP2004327293A JP2003121876A JP2003121876A JP2004327293A JP 2004327293 A JP2004327293 A JP 2004327293A JP 2003121876 A JP2003121876 A JP 2003121876A JP 2003121876 A JP2003121876 A JP 2003121876A JP 2004327293 A JP2004327293 A JP 2004327293A
Authority
JP
Japan
Prior art keywords
cavity
heating
heated
microwave
frequency heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003121876A
Other languages
Japanese (ja)
Inventor
Kazuho Sakamoto
和穂 坂本
Makoto Mihara
誠 三原
Takeshi Takizaki
健 瀧▲崎▼
Tomotaka Nobue
等隆 信江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003121876A priority Critical patent/JP2004327293A/en
Priority to US10/553,511 priority patent/US20060289526A1/en
Priority to CN 200480011088 priority patent/CN1778146A/en
Priority to PCT/JP2004/005889 priority patent/WO2004098241A1/en
Priority to EP04729215A priority patent/EP1619933A1/en
Publication of JP2004327293A publication Critical patent/JP2004327293A/en
Priority to US11/951,513 priority patent/US20080087662A1/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high frequency heating arrangement capable of materializing uniform and excellent heating even for a thick object to be heated. <P>SOLUTION: This high frequency heating arrangement 1 to heat an object to be heated by irradiating a microwave with the frequency of 5.8 GHz to the object to be heated is equipped with a plurality of wave guides 11a, 11b having feeder ports 7, 9 to radiate the microwave to the inside of a cavity 3 in the cavity 3 to define a heating chamber 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、周波数が5.8GHzのマイクロ波を被加熱物に照射することで被加熱物の加熱を行う高周波加熱装置に関する。
【0002】
【従来の技術】
被加熱物を収容する加熱室内にマイクロ波を出力する高周波発生手段(マグネトロン)を備えた高周波加熱装置は、加熱室内の被加熱物に対して、短時間で効率のよい加熱ができるため、食材等の加熱調理機器である電子レンジとして急速に普及した。
【0003】
ところで、加熱室内に発振されるマイクロ波は、加熱室内に電磁波攪拌手段が無い場合、加熱室を画成しているキャビティの内壁面での反射によって定在波が形成され、この定在波の波長の約1/2の間隔で加熱スポットが発生する。
従来の家庭用の電子レンジの場合、周波数が2.45GHzのマイクロ波を発振するマグネトロンが搭載されており、この場合、発生する定在波の波長は約12cmとなり、その1/2の約6センチの間隔で加熱スポットが発生することになり、一般家庭等で加熱する食材の大きさに比べると、加熱スポットの間隔が大きく、加熱ムラの原因となる。
【0004】
そこで、従来の電子レンジでは、加熱ムラの原因となる定在波の影響を低減させるために、加熱室内の食材を回転させるターンテーブルや、加熱室内の電磁波を攪拌するステラファン等の電磁波攪拌手段を装備していた。
しかし、これらの装備は、加熱室を画成するキャビティの壁部を貫通する可動部品を不可欠とし、可動部品によるキャビティ貫通部での電磁波漏洩を防止するための、キャビティ上への可動部品の取付構造の複雑化を招き、構成部品の増加による製作コストのコストアップや装置の大型化を招いた。
【0005】
そこで、最近では、使用するマイクロ波の周波数を変更することで、定在波の波長の1/2となる加熱スポット間隔を縮めて、ターンテーブルやステラファン等の電磁波攪拌手段を装備せずとも、被加熱物上での加熱ムラの発生を防止することが研究され、5.8GHzのマイクロ波を使用することが提案された(例えば、特許文献1参照)。
【0006】
【特許文献1】
特開平3−203191号公報
【0007】
5.8GHzのマイクロ波を使用した電子レンジでは、キャビティの内壁面でのマイクロ波の反射によって定在波が形成された場合、その定在波の波長は約5cmとなり、加熱室内での加熱スポットはその1/2波長分の約2.5cmとなり、2.45GHzのマイクロ波を使用するものと比較すると、被加熱体表面での加熱スポットの分布密度が増大し、加熱スポットの間隔が一般食材の大きさに比べて大きすぎることがなくなるため、従前の電磁波攪拌手段を装備せずとも、加熱ムラの発生を抑止することができ、また電磁波攪拌手段の削除によって構造の簡略化やこの簡略化に伴う装置の小型化、或いは、製作コストや運転コストの低減を図ることが可能になる。
【0008】
【発明が解決しようとする課題】
ところが、5.8GHzのマイクロ波は、2.45GHzのマイクロ波と比較すると、被加熱物の内部への焼き深度が浅くなるため、図8に示すように、被加熱物の表面での加熱分布特性は2.45GHzのマイクロ波より優れるものの、被加熱物の内部への加熱特性は2.45GHzのマイクロ波よりも低下する。
その結果、上記特許文献1に開示した従来の電子レンジのように、加熱室内へのマイクロ波の発振を単一の給電口から行う構成では、加熱対象となる被加熱物の厚みが厚い場合、マイクロ波が当たり易い側の表面層は十分に加熱できるが、被加熱物の他側の表面層や内部については、加熱ムラや加熱不足が発生する虞があった。
【0009】
本発明は、被加熱物のより広範囲な表面に対してマイクロ波を照射することができ、厚肉の被加熱物に対しても加熱ムラの無い良好な加熱を実現でき、且つ、電磁波攪拌手段を省略できて構造の簡略化やこれに伴う装置の小型化、或いは、製作コストや運転コストの低減を図ることができる高周波加熱装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するための本発明に係る高周波加熱装置は、加熱室内の被加熱物に5.8GHzのマイクロ波を照射して、前記被加熱物の加熱を行う高周波加熱装置であって、
前記マイクロ波を出射する給電口を備えた導波管を、前記加熱室を画成するキャビティに複数本装備したことを特徴とする。
【0011】
このように構成された高周波加熱装置においては、複数本の導波管による複数の給電口が、マイクロ波による加熱スポットの分布を広げて、被加熱物の表面のより広範囲の部分にマイクロ波を当てることができる。
その結果、焼き深度の浅い5.8GHzのマイクロ波でも、例えば対向する双方向から被加熱物を加熱することで、実質的な焼き深度を2倍に強化することができる。
【0012】
なお、5.8GHzのマイクロ波の焼き深度が浅いという短所を補うために、被加熱物上のマイクロ波が当たる面を増やすという観点からすると、マイクロ波を出射する給電口は、キャビティの複数の壁面に分散して装備することが好ましく、具体的には、請求項2に記載したように、前記給電口を配置する前記キャビティの壁面を、前記加熱室の上下面、又は上面及び側面、又は側面及び下面とした構成とすると良い。
【0013】
また、加熱室内の被加熱物に対して、上面からのマイクロ波の照射を広範囲に均一分散させる点では、請求項3に記載したように、前記キャビティの上壁に配置された少なくとも2本の導波管によって、前記加熱室の上面に前記給電口を2個口設けた構成とすると良い。
【0014】
また、請求項4に記載の高周波加熱装置は、請求項3に記載の高周波加熱装置において、更に、前記キャビティの上壁の少なくとも2本の導波管は、導波管の横断面の長辺が上下方向に向いた縦型配置になされたことを特徴とする。
【0015】
5.8GHzのマイクロ波を誘導する導波管の横断面積は、2.45GHzのマイクロ波を誘導する導波管の横断面積の約1/4程度に縮小される。そのため、5.8GHz用の導波管の長辺寸法は、2.45GHz用の導波管の短辺寸法と略同程度になる。
従って、キャビティの上面側に確保する導波管の設置スペースは、2.45GHz用の導波管をその長辺を水平に向けてキャビティの上面に設置している従前の高周波加熱装置と同等に設定したとしても、5.8GHz用の導波管は長辺を垂直に向けた縦型配置に装備することができる。そして、このように縦型配置で導波管を装備した構成とすることで、キャビティ上面の導波管の占有面積を縮小することができる。
その結果、キャビティ上面に空きスペースが増えて、請求項5に記載のように、前記キャビティの上面の内、前記縦型配置の導波管の装備領域を除く領域に面ヒータを配置した構成とすれば、面ヒータの装備領域が拡大できて、面ヒータを作動させるオーブン加熱処理時の温度分布をより広域に均一化でき、加熱ムラの無いオーブン加熱を実現することが可能になる。
【0016】
【発明の実施の形態】
以下、添付図面に基づいて本発明の好適な実施の形態に係る高周波加熱装置を詳細に説明する。
図1は、本発明に係る高周波加熱装置の第1の実施の形態による断面図である。
【0017】
この第1の実施の形態の高周波加熱装置1は、家庭用の電子レンジとして使用可能なもので、加熱室2を画成するキャビティ3と、5.8GHzのマイクロ波をアンテナ5aから出力する高周波発生手段であるマグネトロン5と、アンテナ5aから出力されたマイクロ波を導いて加熱室2に出射する給電口7,9をそれぞれに備えた複数本の導波管11a,11bと、キャビティ3の外周囲を囲ってキャビティ3の周りにマグネトロン5や導波管11a,11bの設置スペースを確保する外殻筐体13と、被加熱物を加熱室2に出し入れするために加熱室2の前面を開閉する前面開閉扉15とを備えた構成である。
【0018】
図1は、装置を右側面側から見た状態での断面図で、図の左端面が装置の前面、図の下端面が装置の底面である。
この第1の実施の形態では、マグネトロン5は、キャビティ3の後壁3b外面に装備されており、第1の導波管11aは、このマグネトロン5から上方に延伸して加熱室2の上面となるキャビティ3の上壁3aに沿って装備され、その給電口7が上壁3aの略中央に開口する。また第2の導波管11bは、マグネトロン5から下方に延びて装備され、その給電口9が加熱室2の後面となるキャビティ3の後壁3bの下端寄り位置に開口する。
【0019】
このように構成された高周波加熱装置1においては、各導波管11a,11bのそれぞれの給電口7,9からマイクロ波が出射されるため、マイクロ波による加熱スポットの分布を広げることができ、被加熱物の表面のより広範囲の部分にマイクロ波が当たるようになる。
その結果、焼き深度の浅い5.8GHzのマイクロ波でも、直交する加熱室の2方向からそれぞれ被加熱物を加熱することで、実質的な焼き深度を増強することができ、加熱室2内にターンテーブルやステラファン等の電磁波攪拌手段を装備せずとも、被加熱物の表層及び内深部の全域に対して、加熱ムラの発生を抑止することができる。
従って、厚肉の被加熱物に対しても、加熱ムラの無い良好な加熱を実現でき、且つ、電磁波攪拌手段の削除によって構造の簡略化やこれに伴う装置の小型化、或いは、製作コストや運転コストの低減を図ることができる。
【0020】
なお、5.8GHzのマイクロ波の焼き深度の浅いという短所を補うために、被加熱物上のマイクロ波が当たる面を増やすという観点からすると、マイクロ波を出射する給電口の配置は、キャビティ3の複数の内壁面に分散して装備すればよく、上記実施の形態に限らない。また、導波管の装備数も、上記実施の形態の2本に限らない。3本以上の任意数に増設可能である。
給電口の装備位置は、具体的には、加熱室2の上下面、又は上面及び側面(後面も含む)、又は側面(後面も含む)及び下面とすることが可能である。
【0021】
図2は本発明に係る高周波加熱装置の第2の実施の形態の断面図である。
この第2の実施の形態の高周波加熱装置21は、2つの給電口7,9が、加熱室2の上下面、即ち、キャビティ3の上壁3a及び底壁3cに対向して開口するように、導波管11a,11bが配置された構成で、第1の導波管11aは第1の実施の形態と同じであるが、第2の導波管11bは、マグネトロン5から下方に延伸して加熱室2の下面となるキャビティ3の底壁3cに沿って装備されて、給電口9が底壁3cの略中央に開口する。
なお、給電口7,9の装備位置の変更と、それに伴う導波管11a,11bの形状変更以外は、第1の実施の形態と共通の構成であるので、共通の構成には、同番号を付して説明を省略する。
【0022】
このようにキャビティ3の対向する壁面に給電口7,9を対向配置した構成では、焼き深度の浅い5.8GHzのマイクロ波でも、対向する双方向からそれぞれ被加熱物を加熱することで、実質的な焼き深度を増強することができ、加熱室2内にターンテーブルやステラファン等の電磁波攪拌手段を装備せずとも、被加熱物の表層及び内深部の全域に対して、加熱ムラの発生を抑止することができ、第1の実施の形態と同様に、厚肉の被加熱物に対しても、加熱ムラの無い良好な加熱を実現でき、且つ、電磁波攪拌手段の削除によって構造の簡略化やこれに伴う装置の小型化、或いは、製作コストや運転コストの低減を図ることができる。
【0023】
図3は本発明に係る高周波加熱装置の第3の実施の形態の後面側からの斜視図である。
この第3の実施の形態の高周波加熱装置31は、キャビティ3の上壁3aに配置された2本の導波管11a,11bによって、加熱室2の上面に給電口7a,7bを2個口設けた構成としている。2本の導波管11a,11bは、マグネトロン5から上方に延伸した1本の共通管11が2分岐して形成される。
このような構成では、加熱室2内に収容した被加熱物に対して、上面からのマイクロ波の当たりを広範囲に均一分散させることができ、被加熱物上面への加熱分布を大幅に向上させることが期待できる。
なお、この図3のように加熱室2の上面に2個口の給電口7a,7bを装備する構成に、加熱室2の側面(後面も含む)又は底面に給電口を設ける構成を組み合わせることで、更に、被加熱物への均一加熱性を向上させることができる。
【0024】
なお、図4(a)は2.45GHzのマイクロ波を誘導する導波管の横断面図、(b)は5.8GHzのマイクロ波を誘導する導波管の横断面図である。それぞれの横断面図は同一縮尺で描いてある。
図示のように、5.8GHzのマイクロ波を誘導する導波管の横断面積は、2.45GHzのマイクロ波を誘導する導波管の横断面積の約1/4程度に縮小される。そのため、5.8GHz用の導波管の長辺寸法b2は、2.45GHz用の導波管の短辺寸法a1と略同程度になる。
【0025】
図5は、本発明に係る高周波加熱装置の第4の実施の形態の後面側からの斜視図である。
この第4実施の形態の高周波加熱装置41は、図4に示した導波管の寸法差を考慮して、図3に示した高周波加熱装置31を更に改良したもので、キャビティ3の上壁3aに配置された2本の導波管11a,11bは、導波管の横断面の長辺b2が上下方向に向いた縦型配置で装備し、更に、キャビティ3の上壁3aの内、縦型配置した導波管の装備領域を除く領域に面ヒータ43を配置している。
【0026】
使用するマイクロ波の周波数が5.8GHzの場合には、このように、キャビティ3の上壁3aに配置される導波管11a,11bを縦型配置にしても、図6に示すように、キャビティ3の上面側に確保する導波管の設置スペースLは、2.45GHz用の導波管をその長辺を水平に向けてキャビティ3の上面に設置していた従来の高周波加熱装置と同等に設定することができる。そして、導波管を縦型配置とすることで、キャビティ3の上壁3aにおける導波管の幅方向の占有を縮減して、占有面積を縮小することができる。
【0027】
その結果、キャビティ3上壁3aの空き面積が増えて、図5に示したように、キャビティ3の上壁3aの内、導波管11a,11bの装備領域を除く大きな空き領域の全域に面ヒータ43を配置した構成とすることができる。
即ち、より大面積に面ヒータ43を装備することが可能になり、面ヒータ43を作動させるオーブン加熱処理時の温度分布をより広域に均一化して、加熱ムラの無いオーブン加熱を実現することが可能になる。
【0028】
なお、上記のように導波管を縦型配置する位置は、キャビティ3の上壁3aに限らない。
図7(a)(b)は、本発明に係る高周波加熱装置の第5の実施の形態の断面図である。なお、(a)(b)は加熱室内における異なる加熱分布の例を電気力線によって示している。
この第5実施の形態の高周波加熱装置51は、先に図2に示したような、加熱室2の上下面に対向させて2本の導波管11a,11bを配置する構成において、これらの導波管11a,11bを、それぞれ縦型配置に設定したものである。
【0029】
このような構成では、上下に対向した各給電口7,9から放射されるマイクロ波は、位相が180゜ずれた定在波を形成するため、被加熱物に対する加熱分布の更なる均一化を期待することができる。
さらに述べれば、上下の各給電口7,9から放射されるマイクロ波は、位相を180゜ずらしたことにより、双方のマイクロ波は電界Eの方向を一方向にそろえることができる。これにより、(a)(b)に示すように、双方の電界を加算した電界強度により、被加熱物の加熱を促進できる。また、(b)に示すように、食品の内部により多いマイクロ波エネルギーを伝えることができる。
なお、(a)(b)は、被加熱物に応じて任意に選択することが困難であるが、被加熱物の加熱進行に伴う時間的変化として、(a)(b)の何れかを生じることが期待できるので、加熱の均一化の促進が図れる。
【0030】
なお、キャビティ3に複数本の導波管を装備する場合、その装備数は上記実施の形態に示した2本に限るものでなく、任意数に改良可能である。
【0031】
図8は、本発明に係る高周波加熱装置の第6の実施の形態のキャビティ上面の平面図である。
この高周波加熱装置61は、キャビティ3の上壁3aに3本に分岐した導波管11a,11b,11cによって、3個口の給電口7a,7b,7cを装備するようにし、且つ、3個口の給電口7a,7b,7cは、中央の給電口7bの位置を、他の給電口7a,7cとはずらしている。また、中央の導波管11bは分岐基部12において、他の導波管11a,11cと較べて横断面積が縮小した形態に絞り加工されている。なお、3本の導波管はいずれも縦型配置されている。
【0032】
このようにすることで、加熱室2の上面からのマイクロ波の放射を更に加熱室2の広域に高密度で均一拡散させることが可能になり、被加熱物に対する加熱ムラの防止を更に徹底することができる。なお、中央の導波管11bが絞り加工される理由は、他の導波管11a,11cと較べて、マグネトロン5から直線的に延伸してマイクロ波の誘導効率が高いため、これを制限して他の導波管11a,11cとのバランスを図ることによる。
【発明の効果】
本発明の高周波加熱装置によれば、キャビティによって画成された加熱室のより広範囲に、マイクロ波による加熱スポットの分布を広げることができ、被加熱物の表面のより広範囲の部分にマイクロ波が当たるようになる。
その結果、焼き深度の浅い5.8GHzのマイクロ波でも、例えば対向する双方向から被加熱物を加熱することで、実質的な焼き深度を2倍に強化することができ、加熱室内に電磁波攪拌手段を装備せずとも、被加熱物の表層及び内深部の全域に対して、加熱ムラの発生を抑止することができる。
従って、厚肉の被加熱物に対しても、加熱ムラの無い良好な加熱を実現でき、且つ電磁波攪拌手段の削除によって構造の簡略化やこれに伴う装置の小型化、或いは、製作コストや運転コストの低減を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る高周波加熱装置の第1の実施の形態の断面図である。
【図2】本発明に係る高周波加熱装置の第2の実施の形態の断面図である。
【図3】本発明に係る高周波加熱装置の第3の実施の形態の斜視図である。
【図4】(a)は2.45GHzのマイクロ波を誘導する導波管の横断面図、(b)は5.8GHzのマイクロ波を誘導する導波管の横断面図である。
【図5】本発明に係る高周波加熱装置の第4の実施の形態の斜視図である。
【図6】図5のA−A断面図である。
【図7】本発明に係る高周波加熱装置の第5の実施の形態の断面図で、(a)(b)は加熱室内のそれぞれ異なる加熱分布の電気力線を示した図である。
【図8】本発明に係る高周波加熱装置の第6の実施の形態の平面図である。
【図9】2.45GHz及び5.8GHzのマイクロ波の加熱分布特性の比較図である。
【符号の説明】
1 高周波加熱装置
2 加熱室
3 キャビティ
3a 上壁
3b 後壁(側壁)
3c 底壁
5 マグネトロン
7,9 給電口
7a,7b,7c 給電口
11 導波管
11a,11b,11c 導波管
13 外殻筐体
15 前面開閉扉
21,31,41 高周波加熱装置
43 面ヒータ
51,61 高周波加熱装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-frequency heating device that heats an object to be heated by irradiating the object with a microwave having a frequency of 5.8 GHz.
[0002]
[Prior art]
A high-frequency heating device provided with a high-frequency generating means (magnetron) for outputting microwaves into a heating chamber for accommodating an object to be heated can efficiently heat the object to be heated in the heating chamber in a short time. It has rapidly spread as a microwave oven, which is a cooking device for cooking.
[0003]
By the way, when the microwave oscillated in the heating chamber has no electromagnetic wave stirring means in the heating chamber, a standing wave is formed by reflection on the inner wall surface of the cavity that defines the heating chamber, and the standing wave Heating spots are generated at intervals of about half the wavelength.
In the case of a conventional household microwave oven, a magnetron that oscillates a microwave having a frequency of 2.45 GHz is mounted. In this case, the wavelength of the standing wave generated is about 12 cm, which is about 1/2 of about 6 cm. Heating spots are generated at intervals of centimeters, and the interval between the heating spots is large as compared with the size of a food to be heated in a general household or the like, which causes uneven heating.
[0004]
Therefore, in the conventional microwave oven, in order to reduce the effect of standing waves that cause heating unevenness, electromagnetic wave stirring means such as a turntable for rotating food in the heating chamber and a stellar fan for stirring electromagnetic waves in the heating chamber. Was equipped.
However, these equipments require moving parts that penetrate the wall of the cavity that defines the heating chamber, and mount the moving parts on the cavity to prevent electromagnetic waves from leaking through the cavity through the moving parts. The structure is complicated, the production cost is increased due to an increase in the number of components, and the size of the apparatus is increased.
[0005]
Therefore, recently, by changing the frequency of the microwave used, the interval between the heating spots, which is の of the wavelength of the standing wave, has been shortened, and the electromagnetic wave stirring means such as a turntable or a stellar fan can be omitted. In order to prevent the occurrence of uneven heating on an object to be heated, it has been studied to use a 5.8 GHz microwave (for example, see Patent Document 1).
[0006]
[Patent Document 1]
JP-A-3-203191
In a microwave oven using a microwave of 5.8 GHz, when a standing wave is formed by the reflection of the microwave on the inner wall surface of the cavity, the wavelength of the standing wave is about 5 cm, and the heating spot in the heating chamber is heated. Is about 2.5 cm for half the wavelength, and the distribution density of the heated spots on the surface of the object to be heated is increased, and the interval between the heated spots is smaller than that of a microwave using 2.45 GHz. Can be prevented from being too large compared to the size of the device, so that the occurrence of uneven heating can be suppressed without the use of the conventional electromagnetic wave stirring means, and the simplification of the structure and the simplification by eliminating the electromagnetic wave stirring means Accordingly, it is possible to reduce the size of the apparatus or to reduce the manufacturing cost and the operating cost.
[0008]
[Problems to be solved by the invention]
However, compared to the microwave of 2.45 GHz, the microwave of 5.8 GHz has a smaller depth of burning inside the object to be heated, so that the heating distribution on the surface of the object to be heated as shown in FIG. Although the characteristics are better than the microwave of 2.45 GHz, the characteristics of heating the inside of the object to be heated are lower than the microwave of 2.45 GHz.
As a result, in a configuration in which the microwave is oscillated into the heating chamber from a single power supply port as in the conventional microwave oven disclosed in Patent Document 1, when the thickness of the object to be heated is large, Although the surface layer on the side where microwaves are easy to hit can be sufficiently heated, the surface layer or the inside on the other side of the object to be heated may have uneven heating or insufficient heating.
[0009]
The present invention is capable of irradiating microwaves to a wider surface of the object to be heated, realizing good heating without uneven heating even for a thick object to be heated, and providing an electromagnetic wave stirring means. It is an object of the present invention to provide a high-frequency heating device capable of simplifying the structure, reducing the size of the device, or reducing the manufacturing cost and operation cost due to the elimination of the structure.
[0010]
[Means for Solving the Problems]
A high-frequency heating apparatus according to the present invention for achieving the above object is a high-frequency heating apparatus that irradiates an object to be heated in a heating chamber with 5.8 GHz microwaves to heat the object to be heated,
A plurality of waveguides each having a power supply port for emitting the microwave are provided in a cavity defining the heating chamber.
[0011]
In the high-frequency heating apparatus configured as described above, the plurality of power supply ports formed by the plurality of waveguides spread the distribution of the heating spot by the microwave, and spread the microwave to a wider area of the surface of the object to be heated. You can hit it.
As a result, even with a 5.8 GHz microwave having a shallow grilling depth, the substantial grilling depth can be doubled by, for example, heating the object to be heated from opposite directions.
[0012]
In order to compensate for the disadvantage of the shallow depth of the microwave of 5.8 GHz, from the viewpoint of increasing the surface of the object to be irradiated with the microwave, the power supply port for emitting the microwave has a plurality of cavity openings. It is preferable to disperse and equip the wall surface, specifically, as described in claim 2, the wall surface of the cavity in which the power supply port is disposed, the upper and lower surfaces of the heating chamber, or the upper surface and the side surface, or It is good to make it the side and the lower surface.
[0013]
In addition, in order to uniformly disperse the microwave irradiation from the upper surface to the object to be heated in the heating chamber over a wide range, at least two microwaves arranged on the upper wall of the cavity are provided. It is preferable that two power supply ports are provided on the upper surface of the heating chamber by a waveguide.
[0014]
The high-frequency heating device according to a fourth aspect is the high-frequency heating device according to the third aspect, wherein at least two waveguides on the upper wall of the cavity are long sides of a cross section of the waveguide. Are arranged vertically in a vertical direction.
[0015]
The cross-sectional area of the waveguide that guides 5.8 GHz microwaves is reduced to about 1/4 of the cross-sectional area of waveguides that guide microwaves of 2.45 GHz. Therefore, the long side dimension of the 5.8 GHz waveguide is substantially the same as the short side dimension of the 2.45 GHz waveguide.
Therefore, the installation space of the waveguide secured on the upper surface side of the cavity is equivalent to that of the conventional high-frequency heating device in which the waveguide for 2.45 GHz is installed on the upper surface of the cavity with its long side directed horizontally. Even if it is set, the 5.8 GHz waveguide can be mounted in a vertical arrangement with the long sides oriented vertically. In addition, by arranging the waveguides in the vertical arrangement in this manner, the area occupied by the waveguides on the upper surface of the cavity can be reduced.
As a result, an empty space is increased on the upper surface of the cavity, and as described in claim 5, a surface heater is arranged in a region of the upper surface of the cavity other than a mounting region of the vertically arranged waveguide. By doing so, the area for mounting the surface heater can be expanded, the temperature distribution during oven heating processing for operating the surface heater can be made uniform over a wider area, and oven heating without heating unevenness can be realized.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a high-frequency heating device according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a sectional view of a high-frequency heating device according to a first embodiment of the present invention.
[0017]
The high-frequency heating apparatus 1 according to the first embodiment can be used as a microwave oven for home use, and includes a cavity 3 defining a heating chamber 2 and a high-frequency wave for outputting 5.8 GHz microwaves from an antenna 5a. A magnetron 5 serving as a generating means, a plurality of waveguides 11 a and 11 b respectively provided with feed ports 7 and 9 for guiding microwaves output from an antenna 5 a and emitting the microwaves to the heating chamber 2, An outer casing 13 surrounding the cavity to secure a space for installing the magnetron 5 and the waveguides 11a and 11b around the cavity 3, and a front face of the heating chamber 2 for opening and closing the object to be heated into and out of the heating chamber 2. And a front opening / closing door 15.
[0018]
FIG. 1 is a cross-sectional view of the apparatus viewed from the right side. The left end of the figure is the front of the apparatus, and the lower end of the figure is the bottom of the apparatus.
In the first embodiment, the magnetron 5 is provided on the outer surface of the rear wall 3b of the cavity 3, and the first waveguide 11a extends upward from the magnetron 5 and is connected to the upper surface of the heating chamber 2. The power supply port 7 is provided along the upper wall 3a of the cavity 3, and the power supply port 7 opens substantially at the center of the upper wall 3a. The second waveguide 11b is provided to extend downward from the magnetron 5, and its power supply port 9 is opened at a position near the lower end of the rear wall 3b of the cavity 3, which is the rear surface of the heating chamber 2.
[0019]
In the high-frequency heating apparatus 1 configured as described above, since microwaves are emitted from the power supply ports 7 and 9 of the respective waveguides 11a and 11b, the distribution of heating spots by the microwaves can be expanded. The microwaves hit the wider area of the surface of the object to be heated.
As a result, even with a 5.8 GHz microwave having a shallow grilling depth, the grilling depth can be substantially increased by heating the objects to be heated from two directions of the orthogonal heating chamber. Even without providing an electromagnetic wave stirring means such as a turntable or a stellar fan, it is possible to suppress the occurrence of heating unevenness over the entire surface layer and deep inside of the object to be heated.
Therefore, good heating without uneven heating can be realized even for a thick object to be heated, and elimination of the electromagnetic wave stirring means simplifies the structure, reduces the size of the apparatus, or reduces the manufacturing cost. Operation costs can be reduced.
[0020]
In order to compensate for the disadvantage of the shallow depth of the microwave of 5.8 GHz, from the viewpoint of increasing the surface of the object to be irradiated with the microwave, the arrangement of the power supply port for emitting the microwave is determined by the cavity 3. What is necessary is just to disperse | distribute and equip with these several inner wall surfaces, and it is not restricted to said embodiment. Further, the number of waveguides is not limited to two in the above embodiment. Any number of three or more can be added.
Specifically, the installation position of the power supply port can be the upper and lower surfaces of the heating chamber 2, the upper surface and the side surface (including the rear surface), or the side surface (including the rear surface) and the lower surface.
[0021]
FIG. 2 is a sectional view of a high-frequency heating device according to a second embodiment of the present invention.
In the high-frequency heating device 21 of the second embodiment, the two power supply ports 7 and 9 are opened so as to face the upper and lower surfaces of the heating chamber 2, that is, the upper wall 3 a and the bottom wall 3 c of the cavity 3. , The first waveguide 11a is the same as that of the first embodiment, but the second waveguide 11b extends downward from the magnetron 5. The power supply port 9 is provided along the bottom wall 3c of the cavity 3 serving as the lower surface of the heating chamber 2, and the power supply port 9 opens substantially at the center of the bottom wall 3c.
Note that the common configuration is the same as that of the first embodiment except for the change in the installation position of the power supply ports 7 and 9 and the accompanying change in the shape of the waveguides 11a and 11b. And the description is omitted.
[0022]
In the configuration in which the power supply ports 7 and 9 are arranged on the opposed wall surfaces of the cavity 3 as described above, even if the 5.8 GHz microwave having a shallow grilling depth is used, the object to be heated is substantially heated from the opposed two directions. Unevenness in the entire surface layer and deep inside of the object to be heated, without the need to equip the heating chamber 2 with electromagnetic wave stirring means such as a turntable or a stellar fan. As in the first embodiment, good heating without uneven heating can be realized even for a thick object to be heated, and the structure can be simplified by removing the electromagnetic wave stirring means. Therefore, it is possible to reduce the size of the apparatus and the production cost and the operation cost.
[0023]
FIG. 3 is a perspective view of a high-frequency heating device according to a third embodiment of the present invention as viewed from the rear side.
In the high-frequency heating device 31 according to the third embodiment, two power supply ports 7a and 7b are provided on the upper surface of the heating chamber 2 by two waveguides 11a and 11b arranged on the upper wall 3a of the cavity 3. Configuration. The two waveguides 11a and 11b are formed by bifurcating one common tube 11 extending upward from the magnetron 5.
In such a configuration, the microwave hit from the upper surface can be uniformly dispersed over a wide range with respect to the object to be heated housed in the heating chamber 2, and the heating distribution on the upper surface of the object to be heated is greatly improved. Can be expected.
Note that the configuration in which two power supply ports 7a and 7b are provided on the upper surface of the heating chamber 2 as shown in FIG. 3 is combined with a configuration in which a power supply port is provided on the side surface (including the rear surface) or the bottom surface of the heating chamber 2. Further, the uniform heating property of the object to be heated can be improved.
[0024]
4A is a cross-sectional view of a waveguide for guiding a microwave of 2.45 GHz, and FIG. 4B is a cross-sectional view of a waveguide for guiding a microwave of 5.8 GHz. Each cross-sectional view is drawn to the same scale.
As shown, the cross-sectional area of the waveguide that guides 5.8 GHz microwaves is reduced to about 1/4 of the cross-sectional area of the waveguide that guides 2.45 GHz microwaves. Therefore, the long side dimension b2 of the 5.8 GHz waveguide is substantially the same as the short side dimension a1 of the 2.45 GHz waveguide.
[0025]
FIG. 5 is a perspective view of a high-frequency heating device according to a fourth embodiment of the present invention as viewed from the rear side.
The high-frequency heating device 41 of the fourth embodiment is a further improvement of the high-frequency heating device 31 shown in FIG. 3 in consideration of the dimensional difference of the waveguide shown in FIG. The two waveguides 11a and 11b arranged in 3a are installed in a vertical arrangement in which the long side b2 of the waveguide cross section is oriented in the vertical direction. The surface heater 43 is arranged in an area other than the equipment area of the vertically arranged waveguide.
[0026]
When the frequency of the microwave used is 5.8 GHz, even if the waveguides 11a and 11b arranged on the upper wall 3a of the cavity 3 are arranged vertically as shown in FIG. The installation space L of the waveguide secured on the upper surface side of the cavity 3 is equivalent to that of a conventional high-frequency heating device in which a waveguide for 2.45 GHz is installed on the upper surface of the cavity 3 with its long side oriented horizontally. Can be set to By arranging the waveguides in a vertical arrangement, the width of the upper wall 3a of the cavity 3 in the width direction of the waveguide can be reduced, and the occupied area can be reduced.
[0027]
As a result, the vacant area of the upper wall 3a of the cavity 3 increases, and as shown in FIG. 5, the entire upper vacant area of the upper wall 3a of the cavity 3 excluding the equipment areas of the waveguides 11a and 11b is exposed. A configuration in which the heater 43 is provided can be employed.
That is, the surface heater 43 can be provided in a larger area, and the temperature distribution during the oven heating process for operating the surface heater 43 can be made uniform over a wider area to realize oven heating without heating unevenness. Will be possible.
[0028]
The position where the waveguide is vertically arranged as described above is not limited to the upper wall 3a of the cavity 3.
FIGS. 7A and 7B are cross-sectional views of a high-frequency heating device according to a fifth embodiment of the present invention. (A) and (b) show examples of different heating distributions in the heating chamber by lines of electric force.
The high-frequency heating device 51 according to the fifth embodiment has a configuration in which two waveguides 11a and 11b are arranged opposite to the upper and lower surfaces of the heating chamber 2 as shown in FIG. The waveguides 11a and 11b are each set in a vertical arrangement.
[0029]
In such a configuration, the microwaves radiated from the vertically-fed power supply ports 7 and 9 form standing waves whose phases are shifted by 180 °, so that the heating distribution with respect to the object to be heated is further uniformed. You can expect.
More specifically, the phases of the microwaves radiated from the upper and lower feed ports 7 and 9 are shifted by 180 °, so that the directions of the electric field E of both microwaves can be aligned in one direction. Thereby, as shown in (a) and (b), the heating of the object to be heated can be promoted by the electric field strength obtained by adding both electric fields. Further, as shown in FIG. 2B, more microwave energy can be transmitted to the inside of the food.
Although it is difficult to arbitrarily select (a) and (b) according to the object to be heated, any one of (a) and (b) can be used as a temporal change accompanying the heating of the object to be heated. This can be expected to occur, so that uniform heating can be promoted.
[0030]
When a plurality of waveguides are installed in the cavity 3, the number of the installed waveguides is not limited to the two shown in the above embodiment, but can be improved to an arbitrary number.
[0031]
FIG. 8 is a plan view of the upper surface of the cavity of the sixth embodiment of the high-frequency heating device according to the present invention.
This high-frequency heating device 61 is equipped with three power supply ports 7a, 7b, 7c by three waveguides 11a, 11b, 11c branched into three on the upper wall 3a of the cavity 3, and has three ports. The power supply ports 7a, 7b, and 7c shift the position of the central power supply port 7b from the other power supply ports 7a and 7c. The central waveguide 11b is drawn at the branch base 12 into a form having a reduced cross-sectional area as compared with the other waveguides 11a and 11c. The three waveguides are all arranged vertically.
[0032]
By doing so, it becomes possible to further diffuse the microwave radiation from the upper surface of the heating chamber 2 at high density and uniformly over a wide area of the heating chamber 2, and to further thoroughly prevent uneven heating of the object to be heated. be able to. The reason why the center waveguide 11b is drawn is that, since the center waveguide 11b is linearly extended from the magnetron 5 and has a higher microwave induction efficiency than the other waveguides 11a and 11c, this is limited. To balance with other waveguides 11a and 11c.
【The invention's effect】
According to the high-frequency heating device of the present invention, the distribution of heating spots by microwaves can be expanded over a wider area of the heating chamber defined by the cavity, and the microwaves can be spread over a wider area of the surface of the object to be heated. You will be hit.
As a result, even with a 5.8 GHz microwave having a shallow grilling depth, for example, by heating the object to be heated from opposite directions, the grilling depth can be substantially doubled, and the electromagnetic wave stirring in the heating chamber can be achieved. Even if no means is provided, it is possible to suppress the occurrence of heating unevenness over the entire surface layer and inner deep portion of the object to be heated.
Therefore, good heating without uneven heating can be realized even for a thick object to be heated, and elimination of the electromagnetic wave stirring means simplifies the structure, makes the apparatus smaller, or reduces the manufacturing cost and operation. Cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a sectional view of a first embodiment of a high-frequency heating device according to the present invention.
FIG. 2 is a sectional view of a high-frequency heating device according to a second embodiment of the present invention.
FIG. 3 is a perspective view of a high-frequency heating device according to a third embodiment of the present invention.
4A is a cross-sectional view of a waveguide for guiding a microwave of 2.45 GHz, and FIG. 4B is a cross-sectional view of a waveguide for guiding a microwave of 5.8 GHz.
FIG. 5 is a perspective view of a high-frequency heating device according to a fourth embodiment of the present invention.
FIG. 6 is a sectional view taken along line AA of FIG. 5;
FIGS. 7A and 7B are cross-sectional views of a high-frequency heating device according to a fifth embodiment of the present invention, wherein FIGS. 7A and 7B are diagrams showing electric lines of force having different heating distributions in a heating chamber. FIGS.
FIG. 8 is a plan view of a high-frequency heating device according to a sixth embodiment of the present invention.
FIG. 9 is a comparison diagram of microwave heating distribution characteristics at 2.45 GHz and 5.8 GHz.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High frequency heating apparatus 2 Heating chamber 3 Cavity 3a Upper wall 3b Rear wall (side wall)
3c Bottom wall 5 Magnetron 7, 9 Power supply ports 7a, 7b, 7c Power supply port 11 Waveguides 11a, 11b, 11c Waveguide 13 Outer casing 15 Front opening / closing doors 21, 31, 41 High frequency heating device 43 Surface heater 51 , 61 High frequency heating device

Claims (5)

加熱室内の被加熱物に5.8GHzのマイクロ波を照射して、前記被加熱物の加熱を行う高周波加熱装置であって、
前記マイクロ波を出射する給電口を備えた導波管を、前記加熱室を画成するキャビティに複数本装備したことを特徴とする高周波加熱装置。
A high-frequency heating device that irradiates an object to be heated in a heating chamber with 5.8 GHz microwaves to heat the object to be heated,
A high-frequency heating apparatus, wherein a plurality of waveguides having a power supply port for emitting the microwave are provided in a cavity defining the heating chamber.
前記給電口を配置する前記キャビティの壁面を、前記加熱室の上下面、又は上面及び側面、又は側面及び下面としたことを特徴とする請求項1に記載の高周波加熱装置。The high-frequency heating apparatus according to claim 1, wherein a wall surface of the cavity in which the power supply port is disposed is an upper surface or a lower surface, or an upper surface and a side surface, or a side surface and a lower surface of the heating chamber. 前記キャビティの上壁に配置された少なくとも2本の導波管によって、前記加熱室の上面に前記給電口を2個口設けたことを特徴とする請求項1に記載の高周波加熱装置。2. The high-frequency heating apparatus according to claim 1, wherein at least two waveguides arranged on an upper wall of the cavity form two power supply ports on an upper surface of the heating chamber. 3. 前記キャビティの上壁の少なくとも2本の導波管は、導波管の横断面の長辺が上下方向に向いた縦型配置になされたことを特徴とする請求項3に記載の高周波加熱装置。4. The high-frequency heating apparatus according to claim 3, wherein the at least two waveguides on the upper wall of the cavity have a vertical arrangement in which a long side of a cross section of the waveguide is vertically oriented. . 前記キャビティの上壁の内、前記縦型配置の導波管の装備領域を除く領域に面ヒータを配置したことを特徴とする請求項4に記載の高周波加熱装置。The high-frequency heating apparatus according to claim 4, wherein a surface heater is arranged in a region of the upper wall of the cavity other than an installation region of the vertically arranged waveguide.
JP2003121876A 2003-04-25 2003-04-25 High frequency heating arrangement Pending JP2004327293A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003121876A JP2004327293A (en) 2003-04-25 2003-04-25 High frequency heating arrangement
US10/553,511 US20060289526A1 (en) 2003-04-25 2004-04-23 High-frequency heating device and method for controlling same
CN 200480011088 CN1778146A (en) 2003-04-25 2004-04-23 High-frequency heating device and method for controlling same
PCT/JP2004/005889 WO2004098241A1 (en) 2003-04-25 2004-04-23 High-frequency heating device and method for controlling same
EP04729215A EP1619933A1 (en) 2003-04-25 2004-04-23 High-frequency heating device and method for controlling same
US11/951,513 US20080087662A1 (en) 2003-04-25 2007-12-06 High frequency heating apparatus and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121876A JP2004327293A (en) 2003-04-25 2003-04-25 High frequency heating arrangement

Publications (1)

Publication Number Publication Date
JP2004327293A true JP2004327293A (en) 2004-11-18

Family

ID=33500300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121876A Pending JP2004327293A (en) 2003-04-25 2003-04-25 High frequency heating arrangement

Country Status (2)

Country Link
JP (1) JP2004327293A (en)
CN (1) CN1778146A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110315678A1 (en) * 2009-02-09 2011-12-29 Shinichiroh Furuya Microwave heating device
WO2013001787A1 (en) * 2011-06-27 2013-01-03 パナソニック株式会社 Microwave heating device
JPWO2013005420A1 (en) * 2011-07-04 2015-02-23 パナソニック株式会社 Microwave heating device
CN103718644B (en) * 2011-08-04 2016-02-10 松下电器产业株式会社 Microwave heating equipment
US10225893B2 (en) * 2013-03-15 2019-03-05 Tf Cardinal Llc Cooking apparatus
CN105188175B (en) * 2015-07-31 2018-08-10 山东科朗特微波设备有限公司 Universal microwave occurrence of equipment, microwave heating equipment and heating means
CN105114993B (en) * 2015-08-06 2017-07-28 广东美的厨房电器制造有限公司 Microwave heating equipment and method for heating and controlling
KR101781477B1 (en) * 2016-09-19 2017-10-23 유한회사 에스피앤파트너스 Microwave range and radiation module thereof
CN107479591B (en) * 2017-09-07 2020-02-14 广东美的厨房电器制造有限公司 Food heating control method and device, heating equipment and computer storage medium

Also Published As

Publication number Publication date
CN1778146A (en) 2006-05-24

Similar Documents

Publication Publication Date Title
EP1753266B1 (en) Microwave cooker
US20060289526A1 (en) High-frequency heating device and method for controlling same
JP5884093B2 (en) Microwave heating device
JPWO2013171990A1 (en) Microwave heating device
JPH10106741A (en) Waveguide system of electronic oven
JPWO2013018244A1 (en) Microwave heating device
JP2004327293A (en) High frequency heating arrangement
KR950013271B1 (en) Triangular antena array for microwave oven
JP2004265616A (en) Microwave heating device
CN101598356B (en) Shimming device for multiple output ports of microwave oven
KR100739158B1 (en) Uniformly heating apparatus for a microwave oven with a flat table
KR20220039457A (en) Cooking appliance
KR102329538B1 (en) Cooking appliance
JP3619044B2 (en) High frequency heating device
JP2004063310A (en) Microwave heating apparatus
KR200154601Y1 (en) Microwave radiation structure for microwave oven
KR100657482B1 (en) Microwave Range
KR100657481B1 (en) Microwave Range
JP3819618B2 (en) High frequency heating device
JP2012134029A (en) Microwave heating device
WO2019225413A1 (en) Microwave processing device
JP2005019279A (en) High frequency heating device
KR100215066B1 (en) High electric wave emitting apparatus for microwave oven
CN115978597A (en) Ultra-uniform heating microwave oven chamber based on slot array antenna
JP2015162321A (en) Radio frequency heating device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325