WO2012011166A1 - Light irradiation device - Google Patents

Light irradiation device Download PDF

Info

Publication number
WO2012011166A1
WO2012011166A1 PCT/JP2010/062192 JP2010062192W WO2012011166A1 WO 2012011166 A1 WO2012011166 A1 WO 2012011166A1 JP 2010062192 W JP2010062192 W JP 2010062192W WO 2012011166 A1 WO2012011166 A1 WO 2012011166A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet
light
light irradiation
stage
linear
Prior art date
Application number
PCT/JP2010/062192
Other languages
French (fr)
Japanese (ja)
Inventor
遠藤 茂
憲彦 羽田野
徹二 門脇
Original Assignee
株式会社 アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アルバック filed Critical 株式会社 アルバック
Priority to PCT/JP2010/062192 priority Critical patent/WO2012011166A1/en
Priority to KR1020107029579A priority patent/KR101196324B1/en
Priority to CN2010800022369A priority patent/CN102388336A/en
Publication of WO2012011166A1 publication Critical patent/WO2012011166A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7042Alignment for lithographic apparatus using patterning methods other than those involving the exposure to radiation, e.g. by stamping or imprinting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0277Electrolithographic processes

Definitions

  • the present invention relates to a light irradiation apparatus.
  • an element substrate on which thin film transistors are arranged and formed in a matrix and a counter substrate on which a light shielding film, a color filter, and the like are formed are arranged to face each other at an extremely narrow interval.
  • the liquid crystal is sealed in a region between the two substrates and surrounded by a sealing material containing a photocurable resin.
  • the liquid crystal display panel is manufactured by irradiating the sealing material with ultraviolet rays, curing the sealing material, and bonding the two substrates together.
  • a light irradiation device as a device for UV-curing the sealing material and bonding the two substrates together.
  • this type of light irradiation device for example, an arc discharge type metal highland lamp or the like is used as a light source, and the whole surface of a substrate to be bonded is irradiated with ultraviolet rays (for example, Patent Document 1).
  • an ultraviolet light emitting diode that can reduce power consumption by irradiating only a linear sealing material with a linear ultraviolet beam light and can easily and quickly respond to changes in the standard of a substrate to be bonded.
  • the light irradiation device used has attracted attention.
  • a plurality of ultraviolet light emitting diodes are arranged at a predetermined pitch in one direction.
  • An optical system such as a hemispherical lens or a cylindrical lens is disposed on the light emitting side of each ultraviolet light emitting diode.
  • each ultraviolet light emitting diode becomes a beam light (linear beam light) having a linear cross section through these optical systems such as a hemispherical lens and a cylindrical lens, and a linear sealing material. Is irradiated.
  • the linear beam light has the same line width as the horizontal width of the linear sealing material in order to efficiently supply the ultraviolet irradiation energy at the maximum.
  • the linear beam light having the same line width as the lateral width of the sealing material is aligned without being displaced from the linear sealing material. Accordingly, since the irradiation energy of the linear beam light is uniformly supplied to the entire surface of the sealing material, the integrated illuminance necessary for curing the sealing material becomes the same at each position of the sealing material. Therefore, since each position of the sealing material can be irradiated in the same time, the irradiation time can be shortened and the production efficiency can be improved.
  • the line width of the linear beam light is longer than the width of the sealing material
  • ultraviolet beam light that is not irradiated onto the sealing material is generated.
  • the ultraviolet beam light deviated from the sealing material penetrates the liquid crystal display panel and reaches the stage.
  • the ultraviolet beam light that has reached the stage is reflected by the stage and is incident on the liquid crystal display panel again.
  • the ultraviolet beam light reflected and incident on the liquid crystal display panel is incident on the region surrounded by the sealing material. Since the liquid crystal is sealed in the region surrounded by the sealing material, the liquid crystal may be deteriorated by the incident ultraviolet beam light.
  • the thin film transistor (TFT) formed on the substrate in the region surrounded by the sealing material may be adversely affected.
  • the present invention has been made to solve the above-mentioned problems, and its purpose is to prevent reflection of linear beam light reaching the stage without being irradiated to the linear photocurable resin, and
  • An object of the present invention is to provide a light irradiation apparatus that does not change the elements other than the photocurable resin disposed on the top.
  • the light irradiation apparatus includes a stage on which a substrate on which a linear photocurable resin is formed and a plurality of optical elements arranged along one direction, and a light beam emitted from the plurality of optical elements is received.
  • the linear beam light extending in the one direction is generated by superimposing and irradiating the linear photocurable resin formed on the substrate while facing the linear beam light along the one direction.
  • the perspective view of the ultraviolet irradiation device of this embodiment The front view of an ultraviolet irradiation device.
  • (A) (b) The schematic diagram for demonstrating the linear beam light radiate
  • an ultraviolet irradiation device 1 is provided in a production line (not shown) for producing an active matrix type liquid crystal display panel P in which liquid crystal is sealed between two types of substrates W1 and W2.
  • the ultraviolet irradiation device 1 is an ultraviolet ray provided on the gantry 2 on a sealing material S made of an ultraviolet curable resin interposed between the lower substrate W1 and the upper substrate W2 of the liquid crystal display panel P. It is used for the step of irradiating linear ultraviolet rays from the irradiation unit 3 and curing the sealing material S.
  • the ultraviolet irradiation device 1 has a machine casing 5 installed on the floor surface.
  • the machine frame 5 has four support columns 5a arranged in four directions, and the four support columns 5a are erected with respect to the floor surface.
  • the machine casing 5 has four lower frames 5b that respectively connect lower positions of two adjacent columns 5a.
  • the machine frame 5 includes two intermediate frames that respectively connect the intermediate position of the pair of left and right support columns 5a on the front side (on the opposite Y direction side) and the intermediate position of the pair of left and right support columns 5a on the rear side (Y direction side). 5c.
  • the machine frame 5 has a left upper frame 5d that connects the upper end positions of the pair of front and rear columns 5a on the left side (counter X direction side), and the upper end position of the pair of front and rear columns 5a on the right side (X direction side). It has a right upper frame 5e to be connected.
  • the left-right direction of the ultraviolet irradiation device 1 is referred to as “X direction”
  • the front-rear direction is referred to as “Y direction”
  • the up-down direction is referred to as “Z direction”. That is, in FIG. 1, the front-rear direction refers to the longitudinal direction of the upper frames 5d, 5e, and the left-right direction refers to the longitudinal direction of the gantry 2 spanned between the upper frames 5d, 5e.
  • An octagonal stage ST on which the liquid crystal display panel P is placed is provided in the machine frame 5.
  • the lower surface STa of the stage ST is supported by a support arm 7 provided on a rectangular frame body 6 which is arranged below the stage ST and is moved up and down by four ball screws provided on the lower frame 5b. The support is fixed.
  • a through hole 8 is formed at the center position of the stage ST.
  • an alignment table TB provided in a substrate moving device 9 (see FIG. 2) fixed to the rectangular frame 6 is arranged.
  • the alignment table TB can be moved by the substrate moving device 9 in the left-right direction (X direction) and the front-rear direction (Y direction) perpendicular to the X direction with respect to the stage ST.
  • the alignment table TB is rotated about the central axis L of the table TB by the substrate moving device 9. Further, the upper surface of the table TB is positioned on the same plane as the upper surface of the stage ST.
  • the alignment table TB of the substrate moving device 9 places the panel P on the stage ST after aligning the liquid crystal display panel P transported from a transport device (not shown). Further, the substrate moving device 9 rotates the liquid crystal display panel P placed on the stage ST by 90 degrees and places it again on the stage ST.
  • a plurality of guide holes 10 are formed in the stage ST at predetermined intervals.
  • lift pins (not shown) of a substrate transfer device (not shown) provided on the lower side of the square frame body 6 appear and disappear. That is, with the lift pins protruding from the guide holes 10, the liquid crystal display panel P transported from a transport device (not shown) is delivered to the tip of the lift pins.
  • the liquid crystal display panel P is delivered to the alignment table TB and aligned by the alignment table TB.
  • the liquid crystal display panel P is placed on the stage ST in an aligned state by immersing the alignment table TB into the through hole 8.
  • a pair of detection windows 11 extending in the left-right direction (X direction) are formed through the respective sides of the stage ST in the front and rear sides of the through hole 8.
  • an illuminance detection device 12 is provided at a position below the stage ST and facing the detection window 11.
  • Each illuminance detection device 12 has a guide rail 13 supported and fixed to the square frame 6.
  • the guide rail 13 is disposed in the left-right direction (X direction) along the detection window 11.
  • a carriage 14 is disposed on the upper surface of the guide rail 13 facing the detection window 11 so as to be able to reciprocate in the left-right direction (X direction).
  • the carriage 14 is connected to a carriage motor (not shown) via a timing belt (not shown).
  • the carriage 14 is driven via a timing belt when the carriage motor is driven, and is reciprocated along the guide rail 13, that is, in the X direction.
  • An illuminance sensor 15 is fixed on the upper surface of the carriage 14, and the illuminance sensor 15 receives the emitted ultraviolet light through the detection window 11 and detects the illuminance of the ultraviolet light. Specifically, by reciprocating the carriage 14 in the X direction, the linear beam light LB (see FIG. 6) incident through the detection window 11 formed along the X direction at each position in the X direction. Illuminance can be detected.
  • the stage ST is formed of an aluminum plate in this embodiment.
  • An ultraviolet absorbing film 18 as a light absorbing member is formed on the entire upper surface of the stage ST.
  • the ultraviolet absorbing film 18 is black alumite, and is formed by performing black alumite treatment on the upper surface of the aluminum stage ST. Accordingly, the entire upper surface of the stage ST is blackened by the ultraviolet absorbing film 18 made of black alumite. As a result, when the stage ST is irradiated with ultraviolet rays, the ultraviolet rays are absorbed by the ultraviolet absorbing film 18 made of black alumite without being reflected.
  • the alignment table TB is also formed of an aluminum plate in this embodiment.
  • the upper surface of the alignment table TB is similarly subjected to black alumite treatment to form an ultraviolet absorbing film 19 made of black alumite.
  • the ultraviolet absorbing film 19 absorbs the ultraviolet rays without reflecting them.
  • the gantry 2 includes a pair of front and rear gantry bodies 2 a that are spanned between a left upper frame 5 d and a right upper frame 5 e.
  • the lower surfaces of the left and right ends of the two gantry main bodies 2a are arranged on a pair of guide rails 21 provided on the upper surface of the left upper frame 5d and the upper surface of the right upper frame 5e.
  • the two guide rails 21 are parallel to each other and extend along the Y direction. Therefore, the pair of gantry main bodies 2a extending in the X direction can be moved along the Y direction.
  • the left and right ends of the pair of gantry main bodies 2a are screwed with ball screws (not shown) rotatably supported by the frames 5d and 5e, respectively.
  • ball screws (not shown)
  • the pair of gantry main bodies 2a reciprocate along the pair of guide rails 21, that is, along the Y direction (front-rear direction).
  • the lower surface of the gantry main body 2a is arranged in parallel along the X direction so as to face the surface of the stage ST.
  • the ultraviolet irradiation unit 3 is provided along the gantry main body 2a, that is, along the X direction via an attachment member 23.
  • the ultraviolet irradiation unit 3 provided on each attachment member 23 can reciprocate along the Y direction together with the gantry body 2a.
  • Each ultraviolet irradiation unit 3 irradiates the liquid crystal display panel P mounted and fixed on the stage ST with a linear beam LB made of ultraviolet rays extending in a straight line in the X-axis direction.
  • Each attachment member 23 is attached to the gantry body 2a so as to be capable of reciprocating along the X direction (left and right direction) by a ball screw (not shown). Then, by rotating the ball screw with a motor (not shown), the ultraviolet irradiation unit 3 attached to each mounting member 23 is reciprocated along the X direction (left and right direction) with respect to the gantry body 2a. It has become.
  • the center position Puo in the width direction of the ultraviolet irradiation unit 3 is moved to and reciprocated along the Y direction by moving each ultraviolet irradiation unit 3 in the Y direction. It can be stopped at a predetermined upper position (a position facing the linear sealing material S extending in the X direction formed between the substrates W1 and W2).
  • the ultraviolet irradiation unit 3 will be described with reference to FIGS. Since each ultraviolet irradiation unit 3 has the same configuration, only one ultraviolet irradiation unit will be described.
  • the ultraviolet irradiation unit 3 has a connecting plate 31, and the connecting plate 31 is connected and fixed to the lower surface of the housing 30 extending in the X direction of the attachment member 23.
  • a plurality (40 in this embodiment) of irradiation modules 32 each having a plurality (eight in this embodiment) of ultraviolet light emitting diodes LED arranged in a row on the lower surface of the connecting plate 31 are arranged along the X direction. Arrayed in a row.
  • Each irradiation module 32 has a circuit board 33, and as shown in FIG. 5, eight ultraviolet light emitting diodes LED as optical elements are mounted on the circuit board 33 in a line along the X direction.
  • the ultraviolet light emitting diode LED mounted on the circuit board 33 is positioned on the lower side of the circuit board 33, and eight ultraviolet rays are provided.
  • the light emitting diodes LED are arranged along the X direction.
  • the ultraviolet light emitting diodes LED mounted on the circuit boards 33 of all the adjacent irradiation modules 32 are positioned so as to be arranged in a straight line along the X direction at equal intervals.
  • 320 ultraviolet light emitting diodes LED are arranged in a straight line along the X direction at equal intervals.
  • a hemispherical lens 35 is disposed below each ultraviolet light emitting diode LED mounted on the circuit board 33 in a straight line, and each hemispherical lens 35 receives ultraviolet UV emitted from the corresponding ultraviolet light emitting diode LED.
  • Each hemispherical lens 35 emits downward while suppressing the diffusion of the incident UV light UV.
  • a rod-shaped cylindrical lens 36 that covers the entire hemispherical lens 35 is disposed along the X direction below the eight hemispherical lenses 35 that are respectively arranged corresponding to the ultraviolet light emitting diodes LED.
  • the cylindrical lens 36 receives the ultraviolet UV emitted from each hemispherical lens 35.
  • the cylindrical lens 36 converges the ultraviolet rays UV incident from the respective hemispherical lenses 35 in the Y direction and collects them in an elliptical shape.
  • the ultraviolet UV emitted from each ultraviolet light-emitting diode LED is suppressed from being diffused by the hemispherical lens 35 disposed immediately below. Then, the ultraviolet UV emitted from each hemispherical lens 35 is converged only in the Y direction by the cylindrical lens 36 and condensed into an elliptical shape. As a result, the irradiation region T on the upper substrate W2 of the ultraviolet light UV emitted from each ultraviolet light-emitting diode LED has an oblong shape having a long axis in the X direction.
  • the light irradiation surface SF extended linearly along a X direction is formed because the long-axis direction edge part (superposition
  • the linear beam light LB irradiated to the upper substrate W2 with the line width D passes through the upper substrate W2 and is irradiated to the sealing material S as shown in FIG. All is not irradiated to the sealing material S, and a part is removed from the sealing material S.
  • the linear beam light LB deviated from the sealing material S passes through the lower substrate W1 and is irradiated on the stage ST.
  • the linear beam light LB deviated from the sealing material S irradiated on the stage ST is absorbed by the ultraviolet absorbing film 18 formed on the upper surface of the stage ST.
  • the linear beam light LB deviated from the sealing material S irradiated on the stage ST is not reflected toward the liquid crystal display panel P.
  • the elements disposed on the substrate in the region other than the sealing material S for example, the liquid crystal sealed in the region surrounded by the sealing material S, or the lower substrate W1 (or the upper substrate in the region surrounded by the sealing material).
  • TFT thin film transistor
  • the ultraviolet absorbing film 19 is similarly formed on the table TB, the linear beam light LB that is off the sealing material S and incident on the table TB is similarly reflected on the ultraviolet absorbing film 19. Absorbed.
  • each hemispherical lens 35 and cylindrical lens 36 are held by a holding member 40 attached to the lower surface of the circuit board 33 along the X direction.
  • the holding member 40 is also fixed to the circuit board 33 with the bolts 34.
  • An accommodation groove 41 is recessed along the X direction at the center of the lower surface of the holding member 40, and the cylindrical lens 36 is accommodated in the accommodation groove 41. Further, through holes 42 are formed at equal intervals on the inner bottom surface of the receiving groove 41 provided in the holding member 40 and corresponding to the respective hemispherical lenses 35. The diameter of the through hole 42 is slightly shorter than the diameter of the hemispherical lens 35, and a part of the hemispherical lens 35 disposed below each ultraviolet light emitting diode LED is fitted into the through hole 42.
  • a pair of dropout prevention plates 43 are arranged on the lower surface of the holding member 40 on both sides in the Y direction.
  • the pair of drop-off prevention plates 43 are fixed to the holding member 40 with the bolt 34.
  • the pair of dropout prevention plates 43 are disposed at positions facing each other with a predetermined interval.
  • An elastic locking claw 43a extends at the tip of the drop-off prevention plate 43, and the cylindrical lens 36 accommodated in the accommodation groove 41 is elastically locked from below by the elastic locking claw 43a. Is prevented from falling out of the receiving groove 41.
  • An ultraviolet absorbing film 18 is formed on the upper surface of the stage ST. Even when the linear beam LB deviating from the sealing material S is irradiated on the stage ST, the linear beam LB is absorbed by the ultraviolet absorbing film 18 and is not reflected toward the liquid crystal display panel P. . Therefore, the linear beam light LB is applied to the liquid crystal sealed in the region surrounded by the sealing material S or the thin film transistor (TFT) formed on the lower substrate W1 (or the upper substrate W2) surrounded by the sealing material. There is no risk of irradiation. As a result, the liquid crystal is not altered and the transistor characteristics of the thin film transistor (TFT) are not changed.
  • the ultraviolet absorbing film 18 was formed by performing black alumite treatment on the aluminum stage ST. Therefore, the ultraviolet absorbing film 18 that absorbs ultraviolet rays can be formed on the entire surface of the stage ST very easily.
  • the ultraviolet absorbing film 18 is formed of black alumite.
  • the present invention is not limited to this.
  • the ultraviolet absorbing film 18 may be formed by applying a black paint or the like that absorbs ultraviolet rays. .
  • the hemispherical lens 35 is disposed corresponding to each ultraviolet light emitting diode LED, and the rod-shaped cylindrical lens 36 is disposed below the hemispherical lens 35 so that the ultraviolet UV emitted from the hemispherical lens 35 is emitted.
  • the cylindrical lens 36 generates linear beam light LB having a line width D that converges only in the Y direction and extends linearly.
  • the linear beam light LB may be generated using a structure as shown in FIG.
  • a first mask MS1 is disposed between each ultraviolet light emitting diode LED and each hemispherical lens 35 (that is, on the lower surface of each ultraviolet light emitting diode LED).
  • the first mask MS1 shields the ultraviolet ray UV emitted from the ultraviolet light emitting diode LED to the hemispherical lens 35 and diffusing in the Y direction, and makes the line width D of the linear beam light LB coincide with the line width of the sealing material S.
  • the second mask MS2 may be disposed between each hemispherical lens 35 and the cylindrical lens 36 (that is, on the upper surface of the cylindrical lens 36).
  • the second mask MS2 shields the ultraviolet rays UV emitted from the hemispherical lens 35 to the cylindrical lens 36 and diffusing in the Y direction, so that the line width D of the linear beam light LB matches the line width of the sealing material S.
  • the ultraviolet irradiation unit 3 shown in FIG. 8 is provided with the first mask MS1 and the second mask MS2, but it goes without saying that it may be applied to the ultraviolet irradiation unit 3 provided with only one of them. is there.
  • the ultraviolet irradiation device 1 is embodied as the light irradiation device, but the present invention is applied to a light irradiation device using a light emitting diode that emits visible light instead of the ultraviolet light emitting diode LED that emits ultraviolet light. You may apply.
  • the ultraviolet irradiation apparatus 1 that cures the sealing material S made of an ultraviolet curable resin is used to bond the lower substrate W1 and the upper substrate W2, but the present invention treats other substrates. You may apply to the light irradiation apparatus for doing. That is, the present invention is not limited to application to a light irradiation device used in a liquid crystal display panel manufacturing apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

A light irradiation device comprises: a stage (ST) mounting a substrate on which a linear photo-curable resin (S) is formed; and a light irradiation unit (3) including a plurality of optical elements (LED) arranged along one direction. The light irradiation unit (3) generates a linear light beam (LB) extending in the one direction by overlapping the light beams emitted from the optical elements (LED) and irradiates the linear photo-curable resin (S) formed on the substrate with the linear light beam (LB) while allowing the linear light beam (LB) to face the linear photo-curable resin (S) along the one direction. The light irradiation device further comprises a light-absorbing member (18) formed on the surface of the stage (ST).

Description

光照射装置Light irradiation device
 本発明は、光照射装置に関する。 The present invention relates to a light irradiation apparatus.
 液晶ディスプレイパネルは、薄膜トランジスタがマトリクス状に配置形成された素子基板と、遮光膜及びカラーフィルタ等が形成された対向基板とが極めて狭い間隔にて対向配置される。そして、両基板が重ね合わせられる際に、これら両基板間であって光硬化性樹脂を含むシール材に囲まれた領域に液晶が封入される。続いて、紫外線をシール材に照射して、同シール材が硬化されて両基板が貼合わされることによって液晶ディスプレイパネルが製造される。 In the liquid crystal display panel, an element substrate on which thin film transistors are arranged and formed in a matrix and a counter substrate on which a light shielding film, a color filter, and the like are formed are arranged to face each other at an extremely narrow interval. When the two substrates are overlaid, the liquid crystal is sealed in a region between the two substrates and surrounded by a sealing material containing a photocurable resin. Subsequently, the liquid crystal display panel is manufactured by irradiating the sealing material with ultraviolet rays, curing the sealing material, and bonding the two substrates together.
 このとき、シール材を紫外線硬化させ両基板同士を接着する装置として光照射装置がある。この種の光照射装置としては、例えば光源としてアーク放電式メタルハイランドランプ等を用い、貼合わせる基板の全面に紫外線を照射するものであった(例えば、特許文献1)。 At this time, there is a light irradiation device as a device for UV-curing the sealing material and bonding the two substrates together. As this type of light irradiation device, for example, an arc discharge type metal highland lamp or the like is used as a light source, and the whole surface of a substrate to be bonded is irradiated with ultraviolet rays (for example, Patent Document 1).
 また、近年、直線状のシール材のみに直線状の紫外線ビーム光を照射して、消費電力の低減を図るとともに、貼り合わせる基板の規格の変更等にも容易かつ速やかに対応できる紫外線発光ダイオードを用いた光照射装置が注目されている。この紫外線発光ダイオードを用いた光照射装置では、複数の紫外線発光ダイオードが一方向に予め定めたピッチで配列されている。そして、各紫外線発光ダイオードの光出射側には、半球レンズ、シリンドリカルレンズ等の光学系が配置されている。これによって、各紫外線発光ダイオードから出射された光は、これら半球レンズ、シリンドリカルレンズ等の光学系を介して横断面が直線状となるビーム光(直線状ビーム光)となって直線状のシール材に照射させるものである。 In recent years, an ultraviolet light emitting diode that can reduce power consumption by irradiating only a linear sealing material with a linear ultraviolet beam light and can easily and quickly respond to changes in the standard of a substrate to be bonded. The light irradiation device used has attracted attention. In this light irradiation device using ultraviolet light emitting diodes, a plurality of ultraviolet light emitting diodes are arranged at a predetermined pitch in one direction. An optical system such as a hemispherical lens or a cylindrical lens is disposed on the light emitting side of each ultraviolet light emitting diode. As a result, the light emitted from each ultraviolet light emitting diode becomes a beam light (linear beam light) having a linear cross section through these optical systems such as a hemispherical lens and a cylindrical lens, and a linear sealing material. Is irradiated.
特開2006-66585号公報JP 2006-66585 A
 ところで、紫外線照射エネルギーを最大でしかも効率よく供給するために、直線状ビーム光は、その線幅が直線状のシール材の横幅と同じであることが望ましい。その場合、シール材の横幅と同じ線幅の直線状ビーム光は、直線状のシール材に位置ズレすることなく位置合わせされる。これによって、もれなく直線状ビーム光の照射エネルギーがシール材の全表面に一様に供給されることから、シール材を硬化させるのに必要な積算照度が、シール材の各位置において同じになる。従って、シール材の各位置を同じ時間で照射できるので、照射時間を短縮でき生産効率の向上を図ることができる。 By the way, it is desirable that the linear beam light has the same line width as the horizontal width of the linear sealing material in order to efficiently supply the ultraviolet irradiation energy at the maximum. In that case, the linear beam light having the same line width as the lateral width of the sealing material is aligned without being displaced from the linear sealing material. Accordingly, since the irradiation energy of the linear beam light is uniformly supplied to the entire surface of the sealing material, the integrated illuminance necessary for curing the sealing material becomes the same at each position of the sealing material. Therefore, since each position of the sealing material can be irradiated in the same time, the irradiation time can be shortened and the production efficiency can be improved.
 しかしながら、シール材の横幅に合わせて、直線状ビーム光の線幅を半球レンズ、シリンドリカルレンズ等の光学系にて調整することは難しかった。その結果、直線状ビーム光の線幅がシール材の横幅より短い場合や、反対に、シール材の横幅が直線状ビーム光の横幅より短い場合が生じる。 However, it was difficult to adjust the line width of the linear beam light with an optical system such as a hemispherical lens or a cylindrical lens in accordance with the lateral width of the sealing material. As a result, there are cases where the line width of the linear beam light is shorter than the width of the sealing material, and conversely, the width of the sealing material is shorter than the width of the linear beam light.
 特に、直線状ビーム光の線幅がシール材の横幅より長い場合は、シール材に照射されない紫外線ビーム光が生じる。このシール材から外れた紫外線ビーム光は、液晶ディスプレイパネルを貫通しステージに到達する。ステージに到達した紫外線ビーム光は、ステージにて反射され、再び液晶ディスプレイパネルに入射される。この時、反射して液晶ディスプレイパネルに入射する紫外線ビーム光は、シール材に囲まれた領域に入射される。シール材に囲まれた領域には、液晶が封入されているので、その液晶は、入射した紫外線ビーム光にて変質する虞があった。また、シール材に囲まれた領域の基板上に形成された薄膜トランジスタ(TFT)に悪影響を与える虞がある。 In particular, when the line width of the linear beam light is longer than the width of the sealing material, ultraviolet beam light that is not irradiated onto the sealing material is generated. The ultraviolet beam light deviated from the sealing material penetrates the liquid crystal display panel and reaches the stage. The ultraviolet beam light that has reached the stage is reflected by the stage and is incident on the liquid crystal display panel again. At this time, the ultraviolet beam light reflected and incident on the liquid crystal display panel is incident on the region surrounded by the sealing material. Since the liquid crystal is sealed in the region surrounded by the sealing material, the liquid crystal may be deteriorated by the incident ultraviolet beam light. In addition, the thin film transistor (TFT) formed on the substrate in the region surrounded by the sealing material may be adversely affected.
 本発明は、上記課題を解決するためになされたものであって、その目的は、直線状の光硬化性樹脂に照射されずにステージまで到達した直線状ビーム光の反射を防止して、基板上に配置された光硬化性樹脂以外の要素を変質させない光照射装置を提供することにある。 The present invention has been made to solve the above-mentioned problems, and its purpose is to prevent reflection of linear beam light reaching the stage without being irradiated to the linear photocurable resin, and An object of the present invention is to provide a light irradiation apparatus that does not change the elements other than the photocurable resin disposed on the top.
 本発明の一態様は、光照射装置である。光照射装置は、直線状の光硬化性樹脂を形成した基板を載置するステージと、一方向に沿って配列された複数の光学素子を含み、該複数の光学素子から出射される光ビームを重ね合わせることにより前記一方向に延びる直線状ビーム光を生成し、前記基板に形成された前記直線状の光硬化性樹脂に前記一方向に沿って前記直線状ビーム光を対峙させながら照射を行う光照射ユニットと、前記ステージの表面に形成された光吸収部材と、を備える。 One embodiment of the present invention is a light irradiation device. The light irradiation apparatus includes a stage on which a substrate on which a linear photocurable resin is formed and a plurality of optical elements arranged along one direction, and a light beam emitted from the plurality of optical elements is received. The linear beam light extending in the one direction is generated by superimposing and irradiating the linear photocurable resin formed on the substrate while facing the linear beam light along the one direction. A light irradiation unit; and a light absorbing member formed on the surface of the stage.
本実施形態の紫外線照射装置の斜視図。The perspective view of the ultraviolet irradiation device of this embodiment. 同じく紫外線照射装置の正面図。The front view of an ultraviolet irradiation device. 紫外線照射装置のステージを説明するための全体斜視図。The whole perspective view for demonstrating the stage of an ultraviolet irradiation device. 紫外線照射装置の紫外線照射ユニットを説明するための要部断面図。The principal part sectional view for explaining the ultraviolet irradiation unit of an ultraviolet irradiation device. 照射モジュールの配置状態を示す図。The figure which shows the arrangement | positioning state of an irradiation module. (a)(b)紫外線照射装置から出射される直線状ビーム光を説明するための模式図。(A) (b) The schematic diagram for demonstrating the linear beam light radiate | emitted from an ultraviolet irradiation device. 紫外線吸収膜による直線状ビーム光の吸収を説明するための説明図。Explanatory drawing for demonstrating absorption of the linear beam light by an ultraviolet-ray absorption film. 別例を示す説明図。Explanatory drawing which shows another example.
 以下、本発明の光照射装置を基板貼合わせのための紫外線照射装置に具体化した一実施形態を図面に従って説明する。
 図1において、紫外線照射装置1は、2種類の基板W1,W2の間に液晶を封入したアクティブマトリクス型の液晶ディスプレイパネルPを製造する図示しない製造ラインに備えられている。紫外線照射装置1は、液晶ディスプレイパネルPの製造工程のうち、液晶ディスプレイパネルPの下基板W1と上基板W2との間に介在された紫外線硬化樹脂よりなるシール材Sにガントリ2に設けた紫外線照射ユニット3から直線状の紫外線を照射し、該シール材Sを硬化させる工程に用いられる。
Hereinafter, an embodiment in which the light irradiation apparatus of the present invention is embodied as an ultraviolet irradiation apparatus for bonding substrates will be described with reference to the drawings.
In FIG. 1, an ultraviolet irradiation device 1 is provided in a production line (not shown) for producing an active matrix type liquid crystal display panel P in which liquid crystal is sealed between two types of substrates W1 and W2. In the manufacturing process of the liquid crystal display panel P, the ultraviolet irradiation device 1 is an ultraviolet ray provided on the gantry 2 on a sealing material S made of an ultraviolet curable resin interposed between the lower substrate W1 and the upper substrate W2 of the liquid crystal display panel P. It is used for the step of irradiating linear ultraviolet rays from the irradiation unit 3 and curing the sealing material S.
 図1に示すように、紫外線照射装置1は、床面に設置された機枠5を有している。機枠5は、四方に配置された4本の支柱5aを有し、その4本の支柱5aは床面に対して立設されている。例えば、機枠5は、隣り合う2つの支柱5aの下側位置をそれぞれ連結する4つの下部フレーム5bを有している。また、機枠5は、前側(反Y方向側)の左右一対の支柱5aの中間位置、及び後側(Y方向側)の左右一対の支柱5aの中間位置をそれぞれ連結する2本の中間フレーム5cを有している。さらに、機枠5は、左側(反X方向側)の前後一対の支柱5aの上端位置を連結する左側上部フレーム5dを有するとともに、右側(X方向側)の前後一対の支柱5aの上端位置を連結する右側上部フレーム5eを有している。ここでは、紫外線照射装置1の左右方向を「X方向」といい、前後方向を「Y方向」といい、上下方向を「Z方向」という。すなわち、図1において、前後方向とは、上部フレーム5d,5eの長手方向をいい、左右方向とは、上部フレーム5d,5e間に架け渡されるガントリ2の長手方向をいう。 As shown in FIG. 1, the ultraviolet irradiation device 1 has a machine casing 5 installed on the floor surface. The machine frame 5 has four support columns 5a arranged in four directions, and the four support columns 5a are erected with respect to the floor surface. For example, the machine casing 5 has four lower frames 5b that respectively connect lower positions of two adjacent columns 5a. In addition, the machine frame 5 includes two intermediate frames that respectively connect the intermediate position of the pair of left and right support columns 5a on the front side (on the opposite Y direction side) and the intermediate position of the pair of left and right support columns 5a on the rear side (Y direction side). 5c. Further, the machine frame 5 has a left upper frame 5d that connects the upper end positions of the pair of front and rear columns 5a on the left side (counter X direction side), and the upper end position of the pair of front and rear columns 5a on the right side (X direction side). It has a right upper frame 5e to be connected. Here, the left-right direction of the ultraviolet irradiation device 1 is referred to as “X direction”, the front-rear direction is referred to as “Y direction”, and the up-down direction is referred to as “Z direction”. That is, in FIG. 1, the front-rear direction refers to the longitudinal direction of the upper frames 5d, 5e, and the left-right direction refers to the longitudinal direction of the gantry 2 spanned between the upper frames 5d, 5e.
 機枠5内には、液晶ディスプレイパネルPを載置する八角形のステージSTが設けられている。ステージSTの下面STaは、図2及び図3に示すように、ステージSTの下側に配置され下部フレーム5bに設けた4本のボールネジにより上下する四角枠体6に設けた支承アーム7にて支持固定されている。 An octagonal stage ST on which the liquid crystal display panel P is placed is provided in the machine frame 5. As shown in FIGS. 2 and 3, the lower surface STa of the stage ST is supported by a support arm 7 provided on a rectangular frame body 6 which is arranged below the stage ST and is moved up and down by four ball screws provided on the lower frame 5b. The support is fixed.
 ステージSTの中央位置には、図3に示すように、貫通穴8が形成されている。そして、その貫通穴8には、四角枠体6に固設した基板移動装置9(図2参照)に設けられたアライメントテーブルTBが配置される。アライメントテーブルTBは、基板移動装置9によって、ステージSTに対して、左右方向(X方向)、及び、X方向と直交する前後方向(Y方向)に移動可能になっている。また、アライメントテーブルTBは、基板移動装置9によって、該テーブルTBの中心軸線Lを中心として回転するようになっている。また、該テーブルTBの上面は、ステージSTの上面と同一面に位置するようになっている。 As shown in FIG. 3, a through hole 8 is formed at the center position of the stage ST. In the through hole 8, an alignment table TB provided in a substrate moving device 9 (see FIG. 2) fixed to the rectangular frame 6 is arranged. The alignment table TB can be moved by the substrate moving device 9 in the left-right direction (X direction) and the front-rear direction (Y direction) perpendicular to the X direction with respect to the stage ST. The alignment table TB is rotated about the central axis L of the table TB by the substrate moving device 9. Further, the upper surface of the table TB is positioned on the same plane as the upper surface of the stage ST.
 基板移動装置9のアライメントテーブルTBは、図示しない搬送装置から搬送された液晶ディスプレイパネルPをアライメントした後にパネルPをステージSTに載置する。また、基板移動装置9は、ステージSTに載置された液晶ディスプレイパネルPを90度回転させて、再びステージSTに載置する。 The alignment table TB of the substrate moving device 9 places the panel P on the stage ST after aligning the liquid crystal display panel P transported from a transport device (not shown). Further, the substrate moving device 9 rotates the liquid crystal display panel P placed on the stage ST by 90 degrees and places it again on the stage ST.
 また、ステージSTには、複数のガイド穴10が所定の間隔をおいて形成されている。各ガイド穴10を通じて、四角枠体6の下側に設けた基板受け渡し装置(図示しない)のリフトピン(図示しない)が出没するようになっている。つまり、各リフトピンを各ガイド穴10から突出させた状態で、リフトピンの先端部に、図示しない搬送装置から搬送された液晶ディスプレイパネルPが受け渡される。この状態から各リフトピンを各ガイド穴10に没入させることにより、液晶ディスプレイパネルPがアライメントテーブルTBに受け渡され、アライメントテーブルTBにてアライメントされる。そして、アライメントが終了すると、アライメントテーブルTBを貫通穴8に没入させることによって、液晶ディスプレイパネルPはアライメントされた状態のままステージSTに載置される。 In addition, a plurality of guide holes 10 are formed in the stage ST at predetermined intervals. Through each guide hole 10, lift pins (not shown) of a substrate transfer device (not shown) provided on the lower side of the square frame body 6 appear and disappear. That is, with the lift pins protruding from the guide holes 10, the liquid crystal display panel P transported from a transport device (not shown) is delivered to the tip of the lift pins. By immersing each lift pin in each guide hole 10 from this state, the liquid crystal display panel P is delivered to the alignment table TB and aligned by the alignment table TB. When the alignment is finished, the liquid crystal display panel P is placed on the stage ST in an aligned state by immersing the alignment table TB into the through hole 8.
 また、ステージSTであって貫通穴8の前後両側には、左右方向(X方向)に沿って延びる一対の検出窓11がそれぞれ貫通形成されている。ステージSTの下側であって前記検出窓11と対向する位置には、図2に示すように、照度検出装置12がそれぞれ設けられている。 Also, a pair of detection windows 11 extending in the left-right direction (X direction) are formed through the respective sides of the stage ST in the front and rear sides of the through hole 8. As shown in FIG. 2, an illuminance detection device 12 is provided at a position below the stage ST and facing the detection window 11.
 各照度検出装置12は、四角枠体6に支持固定されたガイドレール13を有している。ガイドレール13は、検出窓11に沿って左右方向(X方向)に配置されている。検出窓11に対面するガイドレール13の上面には、キャリッジ14が左右方向(X方向)に往復動可能に配設されている。 Each illuminance detection device 12 has a guide rail 13 supported and fixed to the square frame 6. The guide rail 13 is disposed in the left-right direction (X direction) along the detection window 11. A carriage 14 is disposed on the upper surface of the guide rail 13 facing the detection window 11 so as to be able to reciprocate in the left-right direction (X direction).
 キャリッジ14は、タイミングベルト(図示しない)を介してキャリッジモータ(図示しない)に接続されている。キャリッジ14は、キャリッジモータが駆動されることにより、タイミングベルトを介して駆動され、ガイドレール13に沿って、すなわち、X方向に往復移動される。 The carriage 14 is connected to a carriage motor (not shown) via a timing belt (not shown). The carriage 14 is driven via a timing belt when the carriage motor is driven, and is reciprocated along the guide rail 13, that is, in the X direction.
 キャリッジ14の上面には、照度センサ15が固設され、その照度センサ15は検出窓11を介して、出射されてくる紫外線を受光してその紫外線の照度を検出するようになっている。詳述すると、キャリッジ14をX方向に往復移動させることによって、X方向に沿って形成された検出窓11を介して入射される直線状ビーム光LB(図6参照)のX方向の各位置における照度を検出することができるようになっている。 An illuminance sensor 15 is fixed on the upper surface of the carriage 14, and the illuminance sensor 15 receives the emitted ultraviolet light through the detection window 11 and detects the illuminance of the ultraviolet light. Specifically, by reciprocating the carriage 14 in the X direction, the linear beam light LB (see FIG. 6) incident through the detection window 11 formed along the X direction at each position in the X direction. Illuminance can be detected.
 ステージSTは、本実施形態では、アルミニウム板で成形されている。そして、ステージSTの上面全体には、光吸収部材としての紫外線吸収膜18が形成されている。紫外線吸収膜18は、黒アルマイトであって、アルミニウム製のステージSTの上面を黒アルマイト処理することによって形成される。従って、ステージSTの上面全体は、黒アルマイトからなる紫外線吸収膜18によって黒色になっている。その結果、ステージSTに紫外線が照射されたとき、該紫外線は、反射されることなく、黒アルマイトからなる紫外線吸収膜18に吸収されるようになっている。 The stage ST is formed of an aluminum plate in this embodiment. An ultraviolet absorbing film 18 as a light absorbing member is formed on the entire upper surface of the stage ST. The ultraviolet absorbing film 18 is black alumite, and is formed by performing black alumite treatment on the upper surface of the aluminum stage ST. Accordingly, the entire upper surface of the stage ST is blackened by the ultraviolet absorbing film 18 made of black alumite. As a result, when the stage ST is irradiated with ultraviolet rays, the ultraviolet rays are absorbed by the ultraviolet absorbing film 18 made of black alumite without being reflected.
 同様に、アライメントテーブルTBも、本実施形態では、アルミニウム板で成形されている。そして、アライメントテーブルTBの上面も、同様に、黒アルマイト処理されて黒アルマイトよりなる紫外線吸収膜19が形成されている。そして、アライメントテーブルTBに紫外線が照射されたとき、紫外線吸収膜19は該紫外線を反射させることなく吸収するようになっている。 Similarly, the alignment table TB is also formed of an aluminum plate in this embodiment. The upper surface of the alignment table TB is similarly subjected to black alumite treatment to form an ultraviolet absorbing film 19 made of black alumite. When the alignment table TB is irradiated with ultraviolet rays, the ultraviolet absorbing film 19 absorbs the ultraviolet rays without reflecting them.
 図1に示すように、ガントリ2は、左側上部フレーム5dと右側上部フレーム5eとの間に架けわたされた前後一対のガントリ本体2aを含む。2つのガントリ本体2aの左右両端部下面は、左側上部フレーム5dの上面と右側上部フレーム5eの上面に設けた一対のガイドレール21に配置されている。2つのガイドレール21は、互いに平行であってY方向に沿って延びている。従って、X方向に延びる一対のガントリ本体2aは、Y方向に沿ってそれぞれ移動可能となっている。 As shown in FIG. 1, the gantry 2 includes a pair of front and rear gantry bodies 2 a that are spanned between a left upper frame 5 d and a right upper frame 5 e. The lower surfaces of the left and right ends of the two gantry main bodies 2a are arranged on a pair of guide rails 21 provided on the upper surface of the left upper frame 5d and the upper surface of the right upper frame 5e. The two guide rails 21 are parallel to each other and extend along the Y direction. Therefore, the pair of gantry main bodies 2a extending in the X direction can be moved along the Y direction.
 一対のガントリ本体2aの左右両端部は、それぞれフレーム5d,5eに回転可能に支持されたボールネジ(図示せず)と螺合している。そして、ボールネジを図示しないモータで回転制御することによって、一対のガントリ本体2aは、一対のガイドレール21に沿って、すなわち、Y方向(前後方向)に沿って往復移動するようになっている。 The left and right ends of the pair of gantry main bodies 2a are screwed with ball screws (not shown) rotatably supported by the frames 5d and 5e, respectively. By rotating the ball screw with a motor (not shown), the pair of gantry main bodies 2a reciprocate along the pair of guide rails 21, that is, along the Y direction (front-rear direction).
 図2に示すように、ガントリ本体2aの下面は、ステージSTの面に対向するように、X方向に沿って平行に配置されている。各ガントリ本体2aの下面には、取り付け部材23を介して、紫外線照射ユニット3がガントリ本体2aに沿って、すなわち、X方向に沿って設けられている。各取り付け部材23に設けられた紫外線照射ユニット3は、ガントリ本体2aとともにY方向に沿って往復移動可能である。各紫外線照射ユニット3は、ステージSTに載置固定された液晶ディスプレイパネルPに対して、X軸方向に一直線にのびる紫外線よりなる直線状ビーム光LBを照射するようになっている。 As shown in FIG. 2, the lower surface of the gantry main body 2a is arranged in parallel along the X direction so as to face the surface of the stage ST. On the lower surface of each gantry main body 2a, the ultraviolet irradiation unit 3 is provided along the gantry main body 2a, that is, along the X direction via an attachment member 23. The ultraviolet irradiation unit 3 provided on each attachment member 23 can reciprocate along the Y direction together with the gantry body 2a. Each ultraviolet irradiation unit 3 irradiates the liquid crystal display panel P mounted and fixed on the stage ST with a linear beam LB made of ultraviolet rays extending in a straight line in the X-axis direction.
 各取り付け部材23は、ガントリ本体2aに対して、ボールネジ(図示しない)によってX方向(左右方向)に沿って往復動可能に取着されている。そして、ボールネジを図示しないモータで回転制御することによって、各取り付け部材23に取着された紫外線照射ユニット3は、ガントリ本体2aに対して、X方向(左右方向)に沿って往復移動するようになっている。 Each attachment member 23 is attached to the gantry body 2a so as to be capable of reciprocating along the X direction (left and right direction) by a ball screw (not shown). Then, by rotating the ball screw with a motor (not shown), the ultraviolet irradiation unit 3 attached to each mounting member 23 is reciprocated along the X direction (left and right direction) with respect to the gantry body 2a. It has become.
 従って、各紫外線照射ユニット3をY方向に沿って往復移動させることによって、紫外線照射ユニット3の幅方向の中心位置Puo(図4参照)を、ステージSTに載置固定された液晶ディスプレイパネルPの上方における所定の位置(基板W1,W2間に形成したX方向にのびる直線状のシール材Sと対峙する位置)に停止させることができるようになっている。 Therefore, the center position Puo (refer to FIG. 4) in the width direction of the ultraviolet irradiation unit 3 is moved to and reciprocated along the Y direction by moving each ultraviolet irradiation unit 3 in the Y direction. It can be stopped at a predetermined upper position (a position facing the linear sealing material S extending in the X direction formed between the substrates W1 and W2).
 次に、紫外線照射ユニット3について図4~図7に従って説明する。尚、各紫外線照射ユニット3は同じ構成であるため、1つの紫外線照射ユニットについて説明する。
 図4及び図5に示すように、紫外線照射ユニット3は連結板31を有し、その連結板31は、取り付け部材23のX方向に延びた筺体30の下面に連結固定されている。連結板31の下面には、複数個(本実施形態では8個)の紫外線発光ダイオードLEDがそれぞれ列設されてなる複数個(本実施形態では40個)の照射モジュール32が、X方向に沿って一列に配列固定されている。
Next, the ultraviolet irradiation unit 3 will be described with reference to FIGS. Since each ultraviolet irradiation unit 3 has the same configuration, only one ultraviolet irradiation unit will be described.
As shown in FIGS. 4 and 5, the ultraviolet irradiation unit 3 has a connecting plate 31, and the connecting plate 31 is connected and fixed to the lower surface of the housing 30 extending in the X direction of the attachment member 23. A plurality (40 in this embodiment) of irradiation modules 32 each having a plurality (eight in this embodiment) of ultraviolet light emitting diodes LED arranged in a row on the lower surface of the connecting plate 31 are arranged along the X direction. Arrayed in a row.
 各照射モジュール32は、回路基板33を有し、図5に示すように、その回路基板33上に光学素子としての8個の紫外線発光ダイオードLEDがX方向に沿って一列に実装されている。そして、各回路基板33が連結板31の下面にボルト34にて固着されると、回路基板33上に実装された紫外線発光ダイオードLEDが同基板33の下側に位置すると共に、8個の紫外線発光ダイオードLEDがX方向に沿って配列される。しかも、隣接する全ての照射モジュール32の回路基板33に実装された紫外線発光ダイオードLEDが、等間隔にX方向に沿って一直線状に配列されるように位置決めされる。 Each irradiation module 32 has a circuit board 33, and as shown in FIG. 5, eight ultraviolet light emitting diodes LED as optical elements are mounted on the circuit board 33 in a line along the X direction. When each circuit board 33 is fixed to the lower surface of the connecting plate 31 with a bolt 34, the ultraviolet light emitting diode LED mounted on the circuit board 33 is positioned on the lower side of the circuit board 33, and eight ultraviolet rays are provided. The light emitting diodes LED are arranged along the X direction. Moreover, the ultraviolet light emitting diodes LED mounted on the circuit boards 33 of all the adjacent irradiation modules 32 are positioned so as to be arranged in a straight line along the X direction at equal intervals.
 従って、本実施形態では、320個の紫外線発光ダイオードLEDが、等間隔にX方向に沿って一直線状に配置されることになる。
 回路基板33に一直線上に実装された各紫外線発光ダイオードLEDの下側には、半球レンズ35がそれぞれ配置され、各半球レンズ35はそれぞれ対応する紫外線発光ダイオードLEDが出射する紫外線UVを入射する。そして、各半球レンズ35は、その入射した紫外線UVの拡散を抑制して下方にそれぞれ出射する。
Therefore, in this embodiment, 320 ultraviolet light emitting diodes LED are arranged in a straight line along the X direction at equal intervals.
A hemispherical lens 35 is disposed below each ultraviolet light emitting diode LED mounted on the circuit board 33 in a straight line, and each hemispherical lens 35 receives ultraviolet UV emitted from the corresponding ultraviolet light emitting diode LED. Each hemispherical lens 35 emits downward while suppressing the diffusion of the incident UV light UV.
 紫外線発光ダイオードLEDに各々対応して配置された8個の半球レンズ35の下側には、各半球レンズ35全体を覆う棒状のシリンドリカルレンズ36がX方向に沿って配置されている。シリンドリカルレンズ36は、各半球レンズ35から出射された紫外線UVを入射する。シリンドリカルレンズ36は、各半球レンズ35から入射した紫外線UVをY方向に対して収束させて楕円形状に集光する。 A rod-shaped cylindrical lens 36 that covers the entire hemispherical lens 35 is disposed along the X direction below the eight hemispherical lenses 35 that are respectively arranged corresponding to the ultraviolet light emitting diodes LED. The cylindrical lens 36 receives the ultraviolet UV emitted from each hemispherical lens 35. The cylindrical lens 36 converges the ultraviolet rays UV incident from the respective hemispherical lenses 35 in the Y direction and collects them in an elliptical shape.
 詳述すると、図6(a),(b)に示すように、各紫外線発光ダイオードLEDから出射された紫外線UVは、直下に配置された半球レンズ35にて拡散が抑制される。そして、各半球レンズ35から出射された紫外線UVが、シリンドリカルレンズ36にてY方向にのみ収束されて楕円形状に集光される。これによって、各紫外線発光ダイオードLEDから出射された紫外線UVの上基板W2上での照射領域Tは、X方向に長軸を有する長楕円形状になる。そして、各照射領域Tの長軸方向端部(重合領域)同士が重なり合わさることで、X方向に沿って直線状に延びる光照射面SFが形成される。つまり、各紫外線発光ダイオードLEDから出射された紫外線UVは、X方向(左右方向)に直線状に延びる線幅Dの紫外線(すなわち、直線状ビーム光LB)となって、上基板W2上に照射されることになる。 More specifically, as shown in FIGS. 6A and 6B, the ultraviolet UV emitted from each ultraviolet light-emitting diode LED is suppressed from being diffused by the hemispherical lens 35 disposed immediately below. Then, the ultraviolet UV emitted from each hemispherical lens 35 is converged only in the Y direction by the cylindrical lens 36 and condensed into an elliptical shape. As a result, the irradiation region T on the upper substrate W2 of the ultraviolet light UV emitted from each ultraviolet light-emitting diode LED has an oblong shape having a long axis in the X direction. And the light irradiation surface SF extended linearly along a X direction is formed because the long-axis direction edge part (superposition | polymerization area | region) of each irradiation area | region T overlaps. That is, the ultraviolet rays UV emitted from the respective ultraviolet light emitting diodes LED become ultraviolet rays having a line width D extending linearly in the X direction (left and right direction) (that is, linear beam light LB) and are irradiated onto the upper substrate W2. Will be.
 線幅Dで上基板W2に照射される直線状ビーム光LBは、図7に示すように、上基板W2を透過してシール材Sに照射される際、上基板W2内で屈折するため、全てがシール材Sに照射されず、一部がシール材Sから外れる。シール材Sから外れた直線状ビーム光LBは、下基板W1を透過してステージSTに照射される。ステージSTに照射されるシール材Sから外れた直線状ビーム光LBは、ステージSTの上面に形成した紫外線吸収膜18にて吸収される。 Since the linear beam light LB irradiated to the upper substrate W2 with the line width D passes through the upper substrate W2 and is irradiated to the sealing material S as shown in FIG. All is not irradiated to the sealing material S, and a part is removed from the sealing material S. The linear beam light LB deviated from the sealing material S passes through the lower substrate W1 and is irradiated on the stage ST. The linear beam light LB deviated from the sealing material S irradiated on the stage ST is absorbed by the ultraviolet absorbing film 18 formed on the upper surface of the stage ST.
 つまり、ステージSTに照射されたシール材Sから外れた直線状ビーム光LBは、液晶ディスプレイパネルPに向かって反射しない。その結果、シール材S以外の領域において基板上に配置されている要素、例えば、シール材Sに囲まれた領域に封入された液晶や、シール材に囲まれた領域の下基板W1(又は上基板W2)に形成された薄膜トランジスタ(TFT)に、直線状ビーム光LBが照射される虞がない。 That is, the linear beam light LB deviated from the sealing material S irradiated on the stage ST is not reflected toward the liquid crystal display panel P. As a result, the elements disposed on the substrate in the region other than the sealing material S, for example, the liquid crystal sealed in the region surrounded by the sealing material S, or the lower substrate W1 (or the upper substrate in the region surrounded by the sealing material). There is no possibility that the thin film transistor (TFT) formed on the substrate W2) is irradiated with the linear beam light LB.
 尚、テーブルTB上にも同様に紫外線吸収膜19を形成しているため、シール材Sから外れてテーブルTBに入射される直線状ビーム光LBも同様に反射されることなく紫外線吸収膜19に吸収される。 Since the ultraviolet absorbing film 19 is similarly formed on the table TB, the linear beam light LB that is off the sealing material S and incident on the table TB is similarly reflected on the ultraviolet absorbing film 19. Absorbed.
 図4に示すように、各半球レンズ35及びシリンドリカルレンズ36は、回路基板33の下面にX方向に沿って取着された保持部材40にて保持されている。保持部材40は、回路基板33が連結板31の下面にボルト34にて固着される際に、あわせて同ボルト34にて回路基板33に対して固着されるようになっている。 As shown in FIG. 4, each hemispherical lens 35 and cylindrical lens 36 are held by a holding member 40 attached to the lower surface of the circuit board 33 along the X direction. When the circuit board 33 is fixed to the lower surface of the connecting plate 31 with the bolts 34, the holding member 40 is also fixed to the circuit board 33 with the bolts 34.
 保持部材40の下面中央位置には、X方向に沿って収容溝41が凹設され、該収容溝41にシリンドリカルレンズ36が収容されるようになっている。
 また、保持部材40に凹設した収容溝41の内底面であって、各半球レンズ35と対応する位置には、貫通穴42が等間隔に貫通形成されている。貫通穴42の直径は、半球レンズ35の直径より若干短くなっていて、各紫外線発光ダイオードLEDの下側に配置された半球レンズ35の一部が貫通穴42に嵌入される。そして、保持部材40が回路基板33に固着されたとき、半球レンズ35は、保持部材40と回路基板33に実装された紫外線発光ダイオードLEDとの間で挟持固定されるようになっている。
An accommodation groove 41 is recessed along the X direction at the center of the lower surface of the holding member 40, and the cylindrical lens 36 is accommodated in the accommodation groove 41.
Further, through holes 42 are formed at equal intervals on the inner bottom surface of the receiving groove 41 provided in the holding member 40 and corresponding to the respective hemispherical lenses 35. The diameter of the through hole 42 is slightly shorter than the diameter of the hemispherical lens 35, and a part of the hemispherical lens 35 disposed below each ultraviolet light emitting diode LED is fitted into the through hole 42. When the holding member 40 is fixed to the circuit board 33, the hemispherical lens 35 is sandwiched and fixed between the holding member 40 and the ultraviolet light emitting diode LED mounted on the circuit board 33.
 保持部材40の下面には、Y方向両側に一対の脱落防止板43が配置されている。一対の脱落防止板43は、保持部材40が回路基板33の下面にボルト34にて固着される際に、あわせて同ボルト34にて保持部材40に対して固着されるようになっている。 A pair of dropout prevention plates 43 are arranged on the lower surface of the holding member 40 on both sides in the Y direction. When the holding member 40 is fixed to the lower surface of the circuit board 33 with the bolt 34, the pair of drop-off prevention plates 43 are fixed to the holding member 40 with the bolt 34.
 一対の脱落防止板43は、所定の間隔をおいて相対向する位置に配置されている。脱落防止板43の先端には弾性係止爪43aが延出され、該弾性係止爪43aにて、収容溝41に収容されたシリンドリカルレンズ36を下側から弾圧係止して、シリンドリカルレンズ36が収容溝41から脱落しないようにしている。 The pair of dropout prevention plates 43 are disposed at positions facing each other with a predetermined interval. An elastic locking claw 43a extends at the tip of the drop-off prevention plate 43, and the cylindrical lens 36 accommodated in the accommodation groove 41 is elastically locked from below by the elastic locking claw 43a. Is prevented from falling out of the receiving groove 41.
 次に、上記実施形態の紫外線照射装置1の利点を以下に記載する。
 (1)ステージSTの上面に紫外線吸収膜18を形成した。そして、シール材Sから外れた直線状ビーム光LBがステージSTに照射されても、直線状ビーム光LBは紫外線吸収膜18にて吸収されて、液晶ディスプレイパネルPに向かって反射されないようにした。従って、シール材Sに囲まれた領域に封入された液晶や、シール材に囲まれた領域の下基板W1(又は上基板W2)に形成された薄膜トランジスタ(TFT)に、直線状ビーム光LBが照射される虞がない。その結果、液晶が変質したり、薄膜トランジスタ(TFT)のトランジスタ特性が変動したりすることはない。
Next, advantages of the ultraviolet irradiation device 1 of the above embodiment will be described below.
(1) An ultraviolet absorbing film 18 is formed on the upper surface of the stage ST. Even when the linear beam LB deviating from the sealing material S is irradiated on the stage ST, the linear beam LB is absorbed by the ultraviolet absorbing film 18 and is not reflected toward the liquid crystal display panel P. . Therefore, the linear beam light LB is applied to the liquid crystal sealed in the region surrounded by the sealing material S or the thin film transistor (TFT) formed on the lower substrate W1 (or the upper substrate W2) surrounded by the sealing material. There is no risk of irradiation. As a result, the liquid crystal is not altered and the transistor characteristics of the thin film transistor (TFT) are not changed.
 (2)アルミニウム製のステージSTに黒アルマイト処理することで、紫外線吸収膜18を形成した。従って、非常に簡単に、ステージST全面に、紫外線を吸収する紫外線吸収膜18を作成することができる。 (2) The ultraviolet absorbing film 18 was formed by performing black alumite treatment on the aluminum stage ST. Therefore, the ultraviolet absorbing film 18 that absorbs ultraviolet rays can be formed on the entire surface of the stage ST very easily.
 尚、上記実施形態は以下のように変更してもよい。
 ・上記実施形態では、黒アルマイトで紫外線吸収膜18を形成したが、これに限定されるものではなく、紫外線を吸収する、例えば、黒色の塗料等を塗布して形成して実施してもよい。
In addition, you may change the said embodiment as follows.
In the above embodiment, the ultraviolet absorbing film 18 is formed of black alumite. However, the present invention is not limited to this. For example, the ultraviolet absorbing film 18 may be formed by applying a black paint or the like that absorbs ultraviolet rays. .
 ・上記実施形態では、各紫外線発光ダイオードLEDに対応して半球レンズ35を配置し、その半球レンズ35の下側に棒状のシリンドリカルレンズ36を配置して、半球レンズ35から出射された紫外線UVを、シリンドリカルレンズ36にて、Y方向にのみ収束させて直線状に延びる線幅Dの直線状ビーム光LBを生成した。 In the above embodiment, the hemispherical lens 35 is disposed corresponding to each ultraviolet light emitting diode LED, and the rod-shaped cylindrical lens 36 is disposed below the hemispherical lens 35 so that the ultraviolet UV emitted from the hemispherical lens 35 is emitted. The cylindrical lens 36 generates linear beam light LB having a line width D that converges only in the Y direction and extends linearly.
 これを、図8に示すような構造を用いて直線状ビーム光LBを生成してもよい。図8では、各紫外線発光ダイオードLEDと各半球レンズ35との間に(つまり、各紫外線発光ダイオードLEDの下面に)第1マスクMS1が配置されている。第1マスクMS1は、紫外線発光ダイオードLEDから半球レンズ35に出射されてY方向に拡散する紫外線UVを遮蔽して、直線状ビーム光LBの線幅Dをシール材Sの線幅と一致させる。この構造では、直線状ビーム光LBがシール材Sから外れて照射されることをより効果的に防止することができる紫外線照射ユニット3を実現できる。 Alternatively, the linear beam light LB may be generated using a structure as shown in FIG. In FIG. 8, a first mask MS1 is disposed between each ultraviolet light emitting diode LED and each hemispherical lens 35 (that is, on the lower surface of each ultraviolet light emitting diode LED). The first mask MS1 shields the ultraviolet ray UV emitted from the ultraviolet light emitting diode LED to the hemispherical lens 35 and diffusing in the Y direction, and makes the line width D of the linear beam light LB coincide with the line width of the sealing material S. With this structure, it is possible to realize the ultraviolet irradiation unit 3 that can more effectively prevent the linear beam light LB from being irradiated off the sealing material S.
 また、図8に示すように、各半球レンズ35とシリンドリカルレンズ36との間に(つまり、シリンドリカルレンズ36の上面に)第2マスクMS2を配置してもよい。第2マスクMS2は、半球レンズ35からシリンドリカルレンズ36に出射されてY方向に拡散する紫外線UVを遮蔽して、直線状ビーム光LBの線幅Dをシール材Sの線幅と一致させる。この構造では、直線状ビーム光LBがシール材Sから外れて照射されることをより一段と効果的に防止することができる紫外線照射ユニット3を実現できる。 Further, as shown in FIG. 8, the second mask MS2 may be disposed between each hemispherical lens 35 and the cylindrical lens 36 (that is, on the upper surface of the cylindrical lens 36). The second mask MS2 shields the ultraviolet rays UV emitted from the hemispherical lens 35 to the cylindrical lens 36 and diffusing in the Y direction, so that the line width D of the linear beam light LB matches the line width of the sealing material S. With this structure, it is possible to realize the ultraviolet irradiation unit 3 that can more effectively prevent the linear beam light LB from irradiating off the sealing material S.
 なお、図8に示す紫外線照射ユニット3は、第1マスクMS1及び第2マスクMS2を併設したものであるが、いずれか一方のみを設けた紫外線照射ユニット3に応用してもよいことは勿論である。 The ultraviolet irradiation unit 3 shown in FIG. 8 is provided with the first mask MS1 and the second mask MS2, but it goes without saying that it may be applied to the ultraviolet irradiation unit 3 provided with only one of them. is there.
 ・上記実施形態では、光照射装置として紫外線照射装置1に具体化したが、本発明は、紫外線を照射する紫外線発光ダイオードLEDに替えて、可視光を出射する発光ダイオードを用いた光照射装置に応用してもよい。 In the above embodiment, the ultraviolet irradiation device 1 is embodied as the light irradiation device, but the present invention is applied to a light irradiation device using a light emitting diode that emits visible light instead of the ultraviolet light emitting diode LED that emits ultraviolet light. You may apply.
 ・上記実施形態では、下基板W1と上基板W2とを貼り合わせるために紫外線硬化樹脂よりなるシール材Sを硬化する紫外線照射装置1に具体化したが、本発明は、それ以外の基板を処理するための光照射装置に応用してもよい。即ち、本発明は、液晶ディスプレイパネルの製造装置に用いられる光照射装置への適用に限定されない。 In the above-described embodiment, the ultraviolet irradiation apparatus 1 that cures the sealing material S made of an ultraviolet curable resin is used to bond the lower substrate W1 and the upper substrate W2, but the present invention treats other substrates. You may apply to the light irradiation apparatus for doing. That is, the present invention is not limited to application to a light irradiation device used in a liquid crystal display panel manufacturing apparatus.

Claims (6)

  1.  光照射装置であって、
     直線状の光硬化性樹脂を形成した基板を載置するステージと、
     一方向に沿って配列された複数の光学素子を含み、該複数の光学素子から出射される光ビームを重ね合わせることにより前記一方向に延びる直線状ビーム光を生成し、前記基板に形成された前記直線状の光硬化性樹脂に前記一方向に沿って前記直線状ビーム光を対峙させながら照射を行う光照射ユニットと、
     前記ステージの表面に形成された光吸収部材と、
    を備える光照射装置。
    A light irradiation device,
    A stage on which a substrate on which a linear photocurable resin is formed is placed;
    A plurality of optical elements arranged along one direction, and a linear beam extending in the one direction is generated by superimposing light beams emitted from the plurality of optical elements, and formed on the substrate A light irradiation unit for irradiating the linear photocurable resin while facing the linear beam light along the one direction;
    A light absorbing member formed on the surface of the stage;
    A light irradiation apparatus comprising:
  2.  請求項1に記載の光照射装置において、
     前記複数の光学素子は、複数の紫外線発光ダイオードであり、
     前記光硬化性樹脂は、液晶ディスプレイパネルを形成する前記基板に形成された紫外線硬化性樹脂であり、
     前記光照射ユニットは、前記複数の紫外線発光ダイオードから出射される紫外線ビームを重ね合わせることにより前記直線状ビーム光を生成して、該直線状ビーム光を前記基板上の前記紫外線硬化性樹脂に照射するように構成されており、
     前記光吸収部材は、前記紫外線を吸収する紫外線吸収膜であることを特徴とする光照射装置。
    In the light irradiation apparatus of Claim 1,
    The plurality of optical elements are a plurality of ultraviolet light emitting diodes,
    The photocurable resin is an ultraviolet curable resin formed on the substrate forming a liquid crystal display panel,
    The light irradiation unit generates the linear beam light by superimposing the ultraviolet beams emitted from the plurality of ultraviolet light emitting diodes, and irradiates the ultraviolet curable resin on the substrate with the linear beam light. Is configured to
    The light irradiation device, wherein the light absorbing member is an ultraviolet absorbing film that absorbs the ultraviolet rays.
  3.  請求項2に記載の光照射装置において、
     前記紫外線吸収膜は、黒色の紫外線吸収膜であることを特徴とする光照射装置。
    In the light irradiation apparatus of Claim 2,
    The light irradiation apparatus, wherein the ultraviolet absorbing film is a black ultraviolet absorbing film.
  4.  請求項3に記載の光照射装置において、
     前記ステージは、アルミニウム製であり、
     前記黒色の紫外線吸収膜は、前記アルミニウム製のステージの表面を黒アルマイト処理することによって形成された黒アルマイトであることを特徴とする光照射装置。
    In the light irradiation apparatus of Claim 3,
    The stage is made of aluminum,
    The light irradiation apparatus, wherein the black ultraviolet absorbing film is black alumite formed by performing black alumite treatment on a surface of the aluminum stage.
  5.  請求項1に記載の光照射装置は更に、
     前記ステージに載置される前記基板の位置合わせを行うアライメントテーブルと、
     前記アライメントテーブルの表面に形成された紫外線吸収膜と、
    を備えることを特徴とする光照射装置。
    The light irradiation apparatus according to claim 1 further includes:
    An alignment table for aligning the substrate placed on the stage;
    An ultraviolet absorbing film formed on the surface of the alignment table;
    A light irradiation apparatus comprising:
  6.  請求項2~5のいずれか1つに記載の光照射装置において、
     前記光照射ユニットは、
     前記複数の紫外線発光ダイオードの一つから出射された紫外線ビームを各々受ける複数の半球レンズと、
     前記複数の半球レンズから出射された紫外線ビームを受ける棒状のシリンドリカルレンズと、を含み、
     前記光照射装置が更に、
     前記複数の紫外線発光ダイオードの一つと前記複数の半球レンズの一つとの間、又は、前記複数の半球レンズと前記シリンドリカルレンズとの間に配置され、前記直線状ビーム光がその線幅方向に拡散することを抑制するマスクを備えることを特徴とする光照射装置。
    In the light irradiation device according to any one of claims 2 to 5,
    The light irradiation unit is:
    A plurality of hemispherical lenses each receiving an ultraviolet beam emitted from one of the plurality of ultraviolet light emitting diodes;
    A rod-shaped cylindrical lens that receives an ultraviolet beam emitted from the plurality of hemispherical lenses,
    The light irradiation device further includes
    It is arranged between one of the plurality of ultraviolet light emitting diodes and one of the plurality of hemispherical lenses, or between the plurality of hemispherical lenses and the cylindrical lens, and the linear beam light diffuses in the line width direction. A light irradiation apparatus comprising a mask that suppresses this.
PCT/JP2010/062192 2010-07-20 2010-07-20 Light irradiation device WO2012011166A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/062192 WO2012011166A1 (en) 2010-07-20 2010-07-20 Light irradiation device
KR1020107029579A KR101196324B1 (en) 2010-07-20 2010-07-20 Light irradiation apparatus
CN2010800022369A CN102388336A (en) 2010-07-20 2010-07-20 Light irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/062192 WO2012011166A1 (en) 2010-07-20 2010-07-20 Light irradiation device

Publications (1)

Publication Number Publication Date
WO2012011166A1 true WO2012011166A1 (en) 2012-01-26

Family

ID=45496607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062192 WO2012011166A1 (en) 2010-07-20 2010-07-20 Light irradiation device

Country Status (3)

Country Link
KR (1) KR101196324B1 (en)
CN (1) CN102388336A (en)
WO (1) WO2012011166A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015198139A (en) * 2014-03-31 2015-11-09 Hoya Candeo Optronics株式会社 light irradiation unit
TWI631296B (en) * 2014-03-27 2018-08-01 豪雅冠得光電股份有限公司 Light irradiation unit and light irradiation device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5538467B2 (en) * 2012-03-30 2014-07-02 Hoya Candeo Optronics株式会社 Lens unit, light irradiation unit and light irradiation device
WO2014204020A1 (en) * 2013-06-17 2014-12-24 한국프린티드일렉트로닉스연구조합 Curing apparatus for 3d printer, using ultraviolet light emitting diode
CN106125512B (en) * 2016-06-23 2018-01-19 京东方科技集团股份有限公司 One kind exposure base station and preparation method thereof, exposure machine
KR102090933B1 (en) * 2019-08-13 2020-03-19 엘지디스플레이 주식회사 Ultra Violet Irradiation Apparatus Including Light Emitting Diode Light Source
WO2024011199A1 (en) * 2022-07-08 2024-01-11 Samtec, Inc. Method and appartus for additively fabricating electrical components

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005099783A (en) * 2003-08-28 2005-04-14 Shibaura Mechatronics Corp Ultraviolet light radiation apparatus and radiation method
JP2007010819A (en) * 2005-06-29 2007-01-18 Ushio Inc Display panel sticking apparatus
JP2009169386A (en) * 2007-12-18 2009-07-30 Ulvac Japan Ltd Optical irradiation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3161296B2 (en) * 1995-09-05 2001-04-25 松下電器産業株式会社 Manufacturing method of liquid crystal display element
JP2005017341A (en) * 2003-06-23 2005-01-20 Dainippon Screen Mfg Co Ltd Light irradiation device
JP4229380B2 (en) * 2003-09-30 2009-02-25 コバレントマテリアル株式会社 Vacuum chuck for substrate holding
JP2008107702A (en) * 2006-10-27 2008-05-08 Nakan Corp Apparatus for forming photo-alignment layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005099783A (en) * 2003-08-28 2005-04-14 Shibaura Mechatronics Corp Ultraviolet light radiation apparatus and radiation method
JP2007010819A (en) * 2005-06-29 2007-01-18 Ushio Inc Display panel sticking apparatus
JP2009169386A (en) * 2007-12-18 2009-07-30 Ulvac Japan Ltd Optical irradiation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI631296B (en) * 2014-03-27 2018-08-01 豪雅冠得光電股份有限公司 Light irradiation unit and light irradiation device
JP2015198139A (en) * 2014-03-31 2015-11-09 Hoya Candeo Optronics株式会社 light irradiation unit
KR101909995B1 (en) 2014-03-31 2018-10-19 호야 칸데오 옵트로닉스 가부시키가이샤 Light illuminating unit

Also Published As

Publication number Publication date
KR101196324B1 (en) 2012-11-01
KR20120024348A (en) 2012-03-14
CN102388336A (en) 2012-03-21

Similar Documents

Publication Publication Date Title
WO2012011166A1 (en) Light irradiation device
JP5230875B2 (en) Light irradiation method and light irradiation apparatus for light irradiation apparatus
KR101982845B1 (en) Light irradiation device
TWI543228B (en) Light irradiation device
JP2005099783A (en) Ultraviolet light radiation apparatus and radiation method
US9266312B2 (en) Bonding apparatus and bonding method
KR101350924B1 (en) Sealant curing apparatus
JP5693541B2 (en) Light irradiation device
JP2010266616A (en) Light irradiation device
KR101336923B1 (en) Jig integrated type uv led curing apparatus
KR101367665B1 (en) Sealant curing apparatus and arrangement method of LED for sealant curing apparatus
US20190204751A1 (en) Exposure system and method for manufacturing display panel using the same
TWI769733B (en) Light distribution control element
JP2004077594A (en) Method and device for bonding display panel
JP2010250071A (en) Panel bonding method
TW201205166A (en) Light irradiation apparatus
JP4635552B2 (en) Display panel bonding equipment
KR100667988B1 (en) Aappratus for sealing liquid crystal panel and method for sealing the same
EP2151711A1 (en) Liquid crystal sealing apparatus
KR20160126129A (en) Uv led module and uv curing apparatus
US20050236099A1 (en) Method for attaching a planar textile structure to a retainer, and apparatus for carrying out said method
JP2007057861A (en) Optical system for condensing light in square pattern and uv ray irradiation apparatus for liquid crystal panel
KR101470445B1 (en) Panel bonding apparatus for making display panel
KR101201406B1 (en) Substrate assembling apparatus bonding subtrate using the same
KR101849299B1 (en) Uv curing apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002236.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20107029579

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP