WO2012009954A1 - 直流电驱动移动制冷设备 - Google Patents
直流电驱动移动制冷设备 Download PDFInfo
- Publication number
- WO2012009954A1 WO2012009954A1 PCT/CN2011/001160 CN2011001160W WO2012009954A1 WO 2012009954 A1 WO2012009954 A1 WO 2012009954A1 CN 2011001160 W CN2011001160 W CN 2011001160W WO 2012009954 A1 WO2012009954 A1 WO 2012009954A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- generator
- power
- dual
- battery
- power supply
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/0025—Heating, cooling or ventilating [HVAC] devices the devices being independent of the vehicle
- B60H1/00264—Transportable devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00421—Driving arrangements for parts of a vehicle air-conditioning
- B60H1/00428—Driving arrangements for parts of a vehicle air-conditioning electric
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/025—Motor control arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/021—Inverters therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B27/00—Machines, plants or systems, using particular sources of energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/88—Optimized components or subsystems, e.g. lighting, actively controlled glasses
Definitions
- the present invention relates to a mobile refrigeration device for transporting, turnover, and storing frozen food.
- the core components of the above two types of mobile refrigeration equipment are: Refrigeration compressors, which are driven by the transmission mechanism to directly or indirectly transmit the power of the engine to the compressor.
- the disadvantages are: For non-independent mobile refrigeration equipment, the compressor speed will change according to the engine speed during the running of the vehicle, and the compressor needs to withstand 700r/min and 8000r/min.
- the refrigeration capacity of the refrigeration equipment fluctuates so much that the higher precision refrigeration temperature cannot be guaranteed (the minimum cooling temperature difference of the refrigeration equipment is about ⁇ 2 °C), and the mobile refrigeration equipment needs to provide uninterrupted power for temperature maintenance.
- the source that is, the engine needs to operate for a long time, because:
- the core component of the traditional mobile refrigeration equipment is a refrigeration compressor that uses a conventional mechanical drive and requires the engine to provide a power source. Once the engine is stopped, the system cannot achieve refrigeration.
- the utility model provides a DC-driven mobile refrigeration equipment, which provides power through a dual-power generator of a vehicle, and an auxiliary battery as a backup power source.
- the place provides power to the refrigeration unit through the on-board switching power supply, so that the vehicle can be cooled regardless of the stop and travel state.
- the refrigeration equipment When the refrigeration equipment is removed from the vehicle, it can still achieve independent cooling through the mains, and the cooling capacity is stable and the refrigeration precision is high. .
- the direct current driving mobile refrigeration device comprises an insulated storage body with a built-in refrigeration system, wherein the refrigeration system comprises a condenser, a throttle device and an evaporator connected in sequence; and a second direct current is connected between the evaporator and the condenser.
- the heat preservation library further includes a power supply system
- the power supply system includes a first DC output a dual-supply DC generator having a voltage and the second DC voltage, a battery charged by a second DC voltage, wherein the dual-supply DC generator is powered by a vehicle engine, and the first DC voltage output terminal supplies power to the vehicle-mounted electrical equipment
- the battery and the dual power DC generator constitute two power sources for supplying power to the DC inverter compressor, and the power controller is connected between the battery, the dual power DC generator and the DC inverter compressor, and the power controller At least including the realization that when the engine of the vehicle is running to a low speed, the DC inverter compressor is DC power supply generator is automatically switched to battery power when the vehicle engine is running to the normal rotation speed, DC inverter compressor is automatically switched to battery powered by a double power DC generator power supply switching module. 2011/001
- the first DC voltage is 24V.
- the DC voltage is 60V.
- the power controller further includes:
- the generator charging current limiting module can prevent the battery from being overloaded and damaged by the vehicle engine and the dual power DC generator when the load current is too large;
- the generator excitation voltage regulating module is configured to control the voltage of the second DC voltage output end of the dual power DC generator in a range of 56V ⁇ 62V under different engine speeds;
- Under-voltage speed-up module which installs a vacuum speed-increasing device on the vehicle to increase the engine speed of the vehicle, preventing the vehicle from losing power due to the long-term low speed of the vehicle (less than the set speed of the dual-supply DC generator).
- the DC generator can operate at normal speed to charge the battery.
- the power controller further includes a utility charging module that can automatically cut off the power supply of the dual-supply DC generator and switch to the mains power supply when the utility power is connected, and the utility charging module includes converting the AC mains into a second DC voltage is applied to the switching power supply for charging the battery, a 60V DC voltage output end of the switching power supply is connected in parallel with a DC relay and a battery, and the normally closed contact of the DC relay is connected to the power supply of the excitation coil of the dual power DC engine On the line.
- a utility charging module that can automatically cut off the power supply of the dual-supply DC generator and switch to the mains power supply when the utility power is connected, and the utility charging module includes converting the AC mains into a second DC voltage is applied to the switching power supply for charging the battery, a 60V DC voltage output end of the switching power supply is connected in parallel with a DC relay and a battery, and the normally closed contact of the DC relay is connected to the power supply of the excitation coil of the dual power DC engine On the line.
- the DC relay when the vehicle generator is in the power generation state, when the AC mains is connected, the DC relay is energized, and the DC relay is connected to the normally closed contact on the power supply line of the excitation coil of the dual power DC generator, and the DC power is generated.
- the machine stops generating electricity, and the mains is converted into a 60V DC voltage by the switching power supply to charge the battery, and the battery is then supplied to the DC inverter of the refrigeration system.
- the throttling device is an expansion valve.
- the expansion valve may be an electronic expansion valve or a conventional balanced expansion valve.
- the refrigeration system of the mobile refrigeration device uses a DC inverter compressor
- the power supply system includes a dual-supply DC generator that can output a first DC voltage and a second DC voltage.
- the first DC voltage is used to supply power to the vehicle-mounted electrical equipment, and the second DC voltage is a DC inverter compressor.
- the second DC voltage is 60V.
- the dual-supply DC generator has been declared utility model: Application No. 200920200932. 5, the dual-supply DC generator is improved on the basis of the original excitation generator of the vehicle, and is also powered by the vehicle engine, therefore, the engine of the vehicle
- the running speed will affect the power supply of the dual-supply DC generator.
- the dual-supply DC generator may be insufficiently supplied. In order to provide a relatively stable voltage of the DC compressor, it is necessary to operate at low engine speed.
- Switching power supply of the dual-supply DC generator to battery power supply therefore, connecting a power controller between the battery, the dual-supply DC generator, and the DC inverter compressor, the power controller at least including a power switching module,
- the module can realize that when the vehicle engine runs to low speed, the DC inverter compressor is automatically switched to the battery power supply by the dual power DC generator.
- the DC inverter compression When the vehicle engine runs to the normal speed (beyond the set speed), the DC inverter compression The machine is automatically switched from battery power to DC generator power supply.
- the power switching module can calculate the driving speed of the vehicle engine by detecting the voltage change of the dual power DC generator at different speeds, and realize automatic switching of the power supply of the vehicle engine under the conditions of low speed and normal speed.
- the power controller can also implement a charge current limiting of the dual power DC generator, a dual power DC generator voltage control, and a function of speeding up the undervoltage of the vehicle engine.
- the battery can also be charged by the mains.
- the DC relay When the vehicle generator is in the power generation state, when the AC mains is connected, the DC relay is energized, and the DC relay is connected to the normally closed contact on the power supply line of the excitation coil of the dual-supply DC generator. The point will be disconnected, the vehicle dual-supply DC generator stops generating electricity, and the mains is converted into a second DC voltage by the Shaoguan power supply to charge the battery, and the battery is then supplied to the DC inverter of the refrigeration system.
- the compressor of the refrigeration system of the invention adopts a DC inverter compressor and is powered by DC power, which is mainly powered by a dual-power generator of the vehicle, and the auxiliary battery is used as a backup power source, and has a commercial power supply.
- the dual-supply generator is powered by the vehicle engine.
- the dual-supply generator is not powered or the power supply is insufficient, then it is charged.
- the battery is powered, so that the vehicle can be cooled regardless of the stop or travel state.
- the compressor of the refrigeration system of the present invention is not limited to a conventional mechanically driven vehicle engine as a power source, but a battery is provided as a backup power source, the refrigeration is no longer limited by the start and stop of the vehicle, and the power source in the power controller is passed.
- the switching module realizes automatic switching to battery power supply when the vehicle engine is under low-speed power shortage such as a short stop of the vehicle, and when the vehicle traveling speed reaches the normal speed (beyond the set speed), the dual-supply DC generator is reused, so that It not only ensures the uninterrupted power supply to the DC inverter compressor, but also makes the refrigeration stability no longer limited by the start and stop of the vehicle or the low speed operation of the engine.
- the power loss caused by the operation of the refrigeration equipment will be reduced to a minimum. It saves fuel consumption of the vehicle.
- the design principle is also relatively simple, eliminating the need to add sensing devices to the vehicle.
- the beneficial effects of the invention are as follows: (1)
- the power controller can automatically switch the power supply according to the existing environment, ensure uninterrupted power supply to the DC inverter compressor, and the cooling capacity is stable, and the cooling stability is no longer controlled by the vehicle or the engine. Low speed operation limit; high precision of refrigeration; (2) Automatic induction of mains and operation and charging under commercial power; (3) Refrigeration equipment can still be independently cooled by commercial power when it is removed from the vehicle; (4) Refrigeration system It is integrated with the power supply system in the heat preservation library, and the integrated design enables modular stacking and transportation.
- FIG. 1 is a view showing the appearance of an embodiment of the present invention.
- FIG. 2 is a schematic diagram of a refrigeration system according to an embodiment of the present invention.
- FIG. 3 is a schematic diagram of a power supply system according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram of a dual power DC generator of an embodiment of the invention.
- FIG. 5 is a schematic diagram of a power supply controller in accordance with an embodiment of the present invention.
- Figure 6 is a schematic diagram of the generator charging current limiting module of the power controller.
- 7 is a general schematic diagram of a power switching module of a power controller and a generator excitation voltage regulating module.
- Figure 8 is a schematic diagram of a vacuum speed increasing device.
- a DC-driven mobile refrigeration device includes an insulated storage body 16 having a built-in refrigeration system, and the refrigeration system includes a DC inverter compressor 1, a condenser 2, a throttling device 8, and an evaporator which are sequentially connected in series. 9;
- the DC inverter compressor 1 is a DC 60V power supply DC inverter compressor; in the embodiment, the throttle device 8 is preferably an electronic expansion expansion. Of course, an ordinary balanced expansion valve can also be used.
- the power storage system further includes a power supply system, and the power supply system includes a dual power DC generator 31 that can output a first DC voltage and a second DC voltage, and a battery 33 that is charged by a second DC voltage.
- the power source DC generator 31 is powered by the vehicle engine, and the first DC voltage output terminal supplies power to the vehicle-mounted power device; the battery 33 and the dual-power DC generator 31 constitute two power sources for supplying power to the DC inverter compressor 1.
- a power source controller 5 is connected between the battery 33, the dual power source DC generator 31, and the DC inverter compressor 1.
- the vehicle-mounted electric equipment here refers to electric equipment such as a car air conditioner, a refrigerator, an audio, a decorative lamp, and the like.
- the first DC voltage is 24V and the second DC voltage is 60V.
- the power controller 5 includes a DC inverter compressor 1 that is automatically switched by the dual-supply DC generator 31 to supply power to the battery 33 when the vehicle engine is running to a low speed.
- the DC The inverter compressor 1 is automatically switched by the battery 33 to a power switching module 51 that is powered by the dual-supply DC generator 31.
- the power switching mode 341 block calculates the traveling speed of the vehicle engine by detecting the voltage change of the dual power source DC generator 31 at different speeds, and realizes automatic switching of the power supply of the vehicle engine under the conditions of low speed and normal speed. .
- the power controller 5 includes, in addition to the power switching module 51 described above, the following:
- the generator charging current limiting module 52 can prevent the battery 33 from being overloaded and damaged by the vehicle engine and the dual power DC generator 31 when the load current is too large;
- the generator excitation voltage regulation module 53 is configured to control the voltage of the second DC voltage output end of the dual power source DC generator 31 in the range of 56V ⁇ 62V under different rotation speeds of the vehicle engine;
- the under-pressure speed-up module 54 is configured to prevent the long-term low speed of the vehicle (less than the set-up speed of the dual-supply DC generator) from causing the battery 33 to lose power by installing a vacuum speed-increasing device 56 for increasing the engine speed of the vehicle.
- the dual power DC generator 31 can operate at normal speed to charge the battery 33.
- the power controller 5 further includes a power charging module 55 that can automatically cut off the power supply of the dual power source DC generator 31 and switch to the mains power supply when the utility power is connected, and the utility charging module 55 includes the AC power supply.
- a switching power supply VC that is converted into a 60V DC voltage to charge the battery, a 60V DC voltage output end of the switching power supply VC is connected in parallel with a DC relay KM and a battery 33, and the normally closed contact K1 of the DC relay KM is connected in a double Power supply DC engine excitation coil F on the power supply line.
- the DC relay KM is energized, and the normally closed contact K1 of the DC relay KM connected to the power supply line of the dual power DC generator excitation coil F is disconnected.
- the dual-supply DC generator 31 stops generating electricity, and the commercial power is converted into a 60V DC voltage by the switching power supply VC to charge the battery 33, and the battery 33 supplies power to the DC inverter compressor 1 of the refrigeration system.
- Dual-supply DC generator 31 (applicable utility model: ZL200920200932. 5), which is used to provide 24V power for ordinary power equipment on transport vehicles, and 60V for DC-driven mobile refrigeration equipment.
- the power supply avoids the cost and maintenance issues that require the installation of two generators.
- the generator is improved on the basis of the original excitation generator of the vehicle, and the A-phase A1 winding, the A2 winding, the B-phase B1 winding, the B2 winding, the C-phase C1 are wound in parallel by using the common generator stator core base.
- Winding and C2 windings; Al, A2 windings Bl, B2 windings Cl, C2 windings of the terminals after the end of the two windings of the first three-phase terminal (abc X yz) through the three sets of bridge rectifier output is +60v power supply.
- the tap pullout (uvw) is rectified with three single diodes and the output is a +30v supply.
- the device can be used as a non-independent mobile cooling device.
- the power controller 5 includes a power switching module 51, a generator charging current limiting module 52, a generator excitation voltage regulating module 53, an undervoltage speed increasing module 54 and a mains charging module 55, and a generator charging current limiting module. 52.
- the generator excitation voltage regulating module 53 respectively solves the problem that the charging current may be too large during the operation and the voltage of the dual power supply DC generator 31 is too high.
- the function of the undervoltage speed increasing module 54 is to encounter a traffic jam. When the cargo stays for a long period of time, and there is no power as the power source, in order to avoid the battery being exhausted and causing damage to the battery, and ensuring the normal operation of the refrigeration equipment, the undervoltage speed increasing module 54 is added.
- the mains charging module 55 specifically, is provided with a power supply VC.
- the power supply VC is connected to the 220V/380V AC mains, the AC mains is converted to DC60V DC, and the switching power supply VC outputs 60V DC.
- the battery 33 is charged, and at the same time, the DC relay KM is energized, so that the normally closed contact K1 is disconnected, the power supply line of the generator excitation coil F is cut off, the power loss caused by the operation of the dual power DC generator 31 is avoided, and the power loss is also prevented.
- the switching power supply VC is damaged, the vehicle power generation equipment is burnt. Therefore, under the condition of AC mains access, the dual-supply DC generator 31 is automatically cut off, and the AC mains is converted into 60V DC by the switching power supply to charge the battery 33, and the DC-driven mobile refrigeration equipment is supplied with power.
- the high-power diode D1 is set on the power supply line of the switching power supply VC to prevent the relay KM from continuing to operate due to the freewheeling when the mains is disconnected.
- the DC-driven mobile refrigeration unit is powered by the battery 33 in the absence of other power supply equipment.
- the dual-supply DC generator 31 When the vehicle is running, the dual-supply DC generator 31 outputs DC24V and DC60V dual power supplies under normal power generation, providing 24V power for the vehicle's electrical equipment and charging the battery 33.
- the DC power output from the dual-supply DC generator 31 is The alternating current is obtained by rectifying a bridge composed of four diodes D3-D6.
- the dual power DC generator 31 Since the power of the dual-supply DC generator 31 is limited, when the DC-driven mobile refrigeration device is used After the battery 33 is used for a long time and then charged by the dual power DC generator 31, the dual power DC generator 31 needs to supply power to the refrigeration device, and the battery 33 needs to be charged.
- the charging current is often the rated power of the dual power DC generator. More than 2 times, the dual-supply DC generator is prone to overload and damage, and has a greater impact on the body dynamics.
- a generator charging current limiting module 52 is added in the power controller 5, and the schematic diagram of the module is shown in FIG. 6.
- the pulse width modulator A', the driver Aa, the oscillation circuit Cl+R6, and the field effect are shown.
- the tube VT1 and the voltage regulator WD are formed, and the pulse width modulator A has a high voltage requirement, so a voltage stabilization circuit is needed to ensure a relatively stable supply voltage.
- the battery 33 is used as a power source, and the negative electrode of the electric device returns to the negative pole of the battery 33 through the high-power diode D1.
- the battery 33 functions as a power device.
- the dual power DC generator 31 charges the battery 33 while providing power to the DC drive mobile refrigeration unit. At this time, the negative pole of the dual power DC generator 31 serves as the reference negative of the circuit.
- the current signal is down-converted through the resistor R5 and the current signal is transmitted to the pulse width modulator A', and the pulse width modulator outputs a high-frequency signal through the oscillating circuit R6+C1.
- the signal obtains a large driving current through the controller Aa, thereby controlling the T1 of the FET to be turned on and off, and when the current exceeds the set current, it is turned off, and when it is lower than the set current, it is closed, thereby realizing the charging current limiting control.
- the voltage of the dual-supply DC generator 31 increases as the engine speed of the vehicle increases.
- the double The power supply DC generator is less than 1/3 of the rated power, which cannot meet the power supply requirements of the mobile refrigeration equipment and the battery. Therefore, when the generator is low in power such as low speed, it is necessary to disconnect the excitation coil of the generator in time to prevent power generation. The machine is overloaded and damaged.
- the power controller is related to the excitation voltage regulating module 53 and the power switching module 51. Referring to Figure 7, the description is as follows:
- the circuit is composed of main components such as control chip El, resistors Rl, R2, R3, freewheeling diode D9, and field effect transistor T2.
- the power switch K2 is turned on to turn on the whole vehicle power supply circuit, and is controlled by the resistor R2 to be the control chip E1. Provide power.
- the control chip El controls the on-off of the generator excitation coil F through the voltage signal provided by R1 and R3 to obtain a relatively stable supply voltage and reduce vehicle loss.
- the dual power DC generator 31 When the vehicle is in low speed running or stopped state, the dual power DC generator 31 rotates below 2200 rpm, and the dual power DC generator 31 outputs voltages lower than 20V and 42V respectively, the dual power DC generator 31 cannot meet the power equipment. If necessary, when the control chip E1 obtains the low voltage signal lower than the set value through R3, the output signal is output to the G pole of the FET T2. The generator excitation coil F is disconnected, the dual power DC generator 31 stops generating power, and the refrigeration system is operated by the battery 33.
- the dual-supply DC generator 31 When the traveling speed of the vehicle increases, the dual-supply DC generator 31 reaches a certain speed, and the voltage signal of the R3 terminal on the control chip E1 is higher than the set value, and the current signal is output to the G pole of the FET T2, and the generator excitation coil When the negative electrode of F is turned on, the dual power source DC generator 31 restarts power generation.
- the dual-supply DC generator 31 adopts a two-wire parallel winding method, and the voltage rise and fall are basically synchronized, so the reference voltage of the generator excitation voltage regulating module 53 and the power switching module 51 is dual-power DC power generation from the viewpoint of versatility and cost.
- the 24V voltage of the machine 31 is detected.
- a vacuum speed increasing device 56 for increasing the engine speed of the vehicle needs to be added, which is used together with the speed increasing device of the vehicle itself to automatically increase the engine speed after the battery power is lower than a certain set value.
- the speed and voltage required for the dual power DC generator 31 are obtained to provide power to the battery and refrigeration system.
- the device usually includes a vacuum solenoid valve KM2, which is described with reference to FIG. 8.
- the module is composed of an undervoltage speed-up chip E2, a resistor R7, a voltage stabilizing circuit WD2, a field effect transistor T3, a vacuum electromagnetic wide 2 and the like.
- the 60V DC voltage is obtained by the voltage regulator circuit WD2 to obtain 5V voltage, which supplies power to the undervoltage speed-up chip E2.
- the operating voltage of the refrigeration system is detected in real time through the R7 resistor.
- the undervoltage boosting chip E2 will current.
- the signal is transmitted to the FET T3, the negative electrode of the vacuum solenoid valve ⁇ 2 on the vehicle is turned on, the engine speed of the vehicle is increased, and the dual-supply DC generator 31 is normally generated.
- the undervoltage and speed-up chip ⁇ 2 After receiving the undervoltage signal, the undervoltage and speed-up chip ⁇ 2 will immediately turn on the D and S poles of the FET 3. The voltage will return to the normal value and cannot be disconnected. Disconnect, waiting for the next undervoltage signal. At the same time, the dual-supply DC generators DC60V and DC24V are common negative poles.
- the power controller 5 can automatically recognize the 220/380V AC power supply, cut off the vehicle power generation equipment, automatically switch the battery power supply in the low speed or stop state of the vehicle, and automatically generate power from the dual power source when the vehicle is in high speed and other power.
- the machine 31 supplies power to the refrigeration system and simultaneously charges the battery 33. When the voltage of the battery 33 is lower than the protection value, and the dual power source DC generator 31 does not reach the set speed, the speed of the dual power source DC generator 31 can be automatically increased to realize the intelligence. Control, while ensuring the normal operation of the refrigeration system, can reduce the fuel consumption of the transport vehicle.
- DC electric drive mobile refrigeration equipment as a mobile refrigeration equipment that can achieve independent and non-independent free switching, can be placed at a position other than transportation vehicles and other vehicles, and the original excitation generator of the vehicle is simply transported during vehicle transportation.
- the power supply of the dual-supply DC generator can be realized by making changes.
- the vehicle When the vehicle is at low speed or short-term parking, it can be operated independently.
- the vehicle when the vehicle is unloaded or there is a commercial power, it can work through ordinary utility power.
- Charging the purpose of the mains work and charging can be achieved by the following scheme.
- the DC inverter compressor 1, the condenser 2, the throttling device 8, and the evaporator 9 are only four essential components, and in the actual refrigeration system, except for the above four components. In addition, some auxiliary equipment is often provided. As shown in FIG. 2, a liquid storage tank 4, a drying filter 15, and a solenoid valve 6 for controlling the start of defrosting are connected between the condenser 2 and the throttle device 8, and the evaporator 9 a defroster line is connected in parallel between the input end and the output end of the compressor 1, and a unidirectional line is provided on the defrost line Valve 15 and defrost solenoid valve 14.
- a gas-liquid separator 11 is also connected between the evaporator 9 and the DC inverter compressor 1.
- a liquid discharge cooling solenoid valve 7 is disposed on the bypass line between the drying filter 15 and the expansion device 8, and the function is to pass the condensed liquid refrigerant through the capillary tube 12 for the section.
- the flow, ejected into the cylinder of the compressor, is used to control the compressor temperature without overheating by sacrificing a certain amount of cooling.
- the condenser 2 and the evaporator 9 are respectively equipped with a condensation fan 3 and an evaporation fan 10.
- An easy-to-plug pressure relief valve 13 is also provided in the refrigeration system to discharge the refrigerant in the system beyond the pipeline limit into the air to protect personnel and equipment.
- the above-mentioned refrigerant auxiliary equipment is already a mature technology and will not be described in detail herein.
- the above-mentioned embodiments are merely examples of implementations of the technical idea of the present invention, and the scope of protection of the present invention is not limited to the above-described embodiments, and the scope of protection of the present invention can be extended to equivalent technical means that can be conceived by those skilled in the art according to the technical idea of the present invention. .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Control Of Eletrric Generators (AREA)
Description
直流电驱动移动制冷设备 技术领域
本发明涉及一种用于运输、 周转、 储藏冷冻食品的移动制冷设备。
背景技术
随着人们生活条件的提高, 对食品的品质和口感要求也变得越来越高, 由于果蔬、 肉类产品等农副产品在储运过程温度湿度的变化直接关系了产品 品质的好坏。 因此鲜活类食品在收获或者加工后就会送到恒温库内在特定的 环境下进行保存。
近几年, 国家对食品安全的监控已经逐渐加大, 对冷藏冷链的管理也在 逐步完善。 食品冷链储运的建立不单单可以保证果蔬等鲜活食品的口感和营 养, 更能大大减少食物在运输过程中因为腐败变质而造成的浪费和损失。 目 前国内外食品移动制冷设备分独立式制冷设备和非独立式制冷设备两种, 独 立式制冷设备通过专门的动力设备驱动压縮机同时可以提供冷冻设备所需的 电源, 非独立式制冷设备通过车辆本身动力驱动压縮机工作, 冷库的正常制 冷需要汽车主发动机的长期运行。 当移动制冷设备内的温度达到设定之后, 压縮机上的传动机构脱离, 设备停止运转。 以上两种移动制冷设备其核心部 件: 制冷压縮机, 驱动方式都是通过传动机构直接或间接地将发动机的动力 传输给压缩机。 其缺点是: 对于非独立式移动制冷设备而言, 车辆在行驶过 程中, 压缩机转速会跟随发动机转速的变化而变化, 压缩机需承受 700r/min 一 8000r/min的转速波动。 使得制冷设备的制冷量波动较大, 以至于无法保证 较高精度的制冷温度 (制冷设备的最小制冷温差在 ± 2°C左右), 而且, 移动 制冷设备需要为温度的保持提供不间断的动力来源, 也就是发动机需要长期 运转, 这是因为: 传统的移动制冷设备的核心部件制冷压缩机, 采用传统机 械驱动, 需要发动机提供动力源, 一旦发动机停止, 系统就无法实现制冷。
1
确认
和非独立式移动制冷设备相比, 传统独立式制冷设备运行更稳定, 其制冷压 縮机不依赖于汽车发动机运转, 而是有一套单独的动力和供电系统, 汽车的 发动机停止时, 依靠车上自带的动力机组也能制冷, 虽然制冷性能较前者稳 定, 但这需要耗费的较大资源和成本。 同时自带的动力设备所需的维护成本 也较高。
发明内容
为了解决现有的移动式制冷设备存在的上述问题, 本实用新型提出了一 种直流电驱动移动制冷设备, 该设备通过车载的双电源发电机提供电源, 辅 助的电瓶作为备用电源, 在有市电的地方, 通过车载的开关电源为制冷机组 提供电源, 实现车辆无论停止、 行进状态都可制冷, 当该制冷设备从车辆上 移出仍然可以通过市电实现独立制冷, 且制冷量稳定、 制冷精度高。
本发明采用以下的技术方案:
直流电驱动移动制冷设备, 包括内置有制冷系统的保温库体, 所述的制 冷系统包括依次连接的冷凝器、 节流装置、 蒸发器; 所述蒸发器与冷凝器之 间连接有采用第二直流电压供电的直流变频压缩机, 所述直流变频压缩机、 冷凝器、 节流装置、 蒸发器构成制冷循环系统; 所述保温库体内还设置有供 电系统, 所述供电系统包括可输出第一直流电压与所述第二直流电压的双电 源直流发电机、 采用第二直流电压充电的电瓶, 所述双电源直流发电机由车 辆发动机提供动力, 其第一直流电压输出端为车载用电设备供电; 所述电瓶、 双电源直流发电机构成对直流变频压缩机供电的两种电源, 所述电瓶、 双电 源直流发电机与直流变频压縮机之间连接有电源控制器, 所述电源控制器至 少包括能实现当车辆发动机运行至低转速情况下, 直流变频压缩机由双电源 直流发电机供电自动切换为电瓶供电, 当车辆发动机运行至正常转速情况下, 直流变频压缩机由电瓶供电自动切换为双电源直流发电机供电的电源切换模 块。
2011/001160 进一步, 所述电源切换模块通过检测双电源直流发电机在不同转速下电 压变化进而计算出所述车辆发动机的行驶速度, 实现车辆发动机在低转速和 正常转速两种情况下供电电源的自动切换。
优选的, 所述的第一直流电压为 24V。
所述的第直流电压为 60V。
进一步, 所述电源控制器还包括:
发电机充电限流模块, 可避免电瓶在负载电流过大时对所述车辆发动机 及双电源直流发电机造成过载而损坏;
发电机励磁调压模块, 用于在车辆发动机不同转速情况下将双电源直流 发电机的第二直流电压输出端的电压控制在 56V~62V范围内;
欠压提速模块, 该模块通过在车辆上加装用以提高车辆发动机转速的真 空提速装置, 防止车辆长期低速 (小于双电源直流发电机设定转速) 运转导 致电瓶亏电, 以此, 双电源直流发电机可在正常转速工作从而给电瓶充电。
进一步, 所述的电源控制器还包括在市电接入时能自动切断双电源直流 发电机供电并转入市电供电的市电充电模块, 所述市电充电模块包括将交流 市电转化为第二直流电压给所述电瓶充电的开关电源, 所述开关电源的 60V 直流电压输出端并联连接有直流继电器和电瓶, 所述直流继电器的常闭触点 连接在双电源直流发动机励磁线圈的供电线路上。 因此在车辆发电机处于发 电状态下, 当交流市电接入, 使直流继电器通电, 直流继电器连接在双电源 直流发电机励磁线圈的供电线路上的常闭触点会断开, 双电源直流发电机停 止发电, 而市电则通过开关电源转化成 60V直流电压为电瓶充电, 电瓶再为 制冷系统的直流变频压缩机供电。
优选的, 所述的节流装置为膨胀阀。 该膨胀阀可以是电子式膨胀阀, 也 可以是普通的平衡式膨胀阀。
本发明的技术构思在于: 移动制冷设备的制冷系统采用直流变频压缩机,
通过对应设计的供电系统供电, 该供电系统包括可以输出第一直流电压与第 二直流电压的双电源直流发电机, 第一直流电压为车载用电设备供电, 第二 直流电压为直流变频压缩机供电, 同时也为电瓶充电; 优选第一直流电压为
24V , 第二直流电压为 60V。 该双电源直流发电机已申报实用新型: 申请号 200920200932. 5, 该双电源直流发电机是在车辆原励磁式发电机的基础上改 进而成, 也是由车辆发动机提供动力, 因此, 车辆发动机的运行速度会影响 双电源直流发电机的供电, 当车辆发动机的运行速度低, 双电源直流发电机 可能供电不足, 为了提供直流压縮机较为稳定的电压, 有必要在车辆发动机 低转速运行情况下, 将双电源直流发电机供电切换为电瓶供电; 因此, 在所 述电瓶、 双电源直流发电机与直流变频压縮机之间连接电源控制器, 所述电 源控制器至少包括电源切换模块, 该模块能实现当车辆发动机运行至低转速 情况下, 直流变频压縮机由双电源直流发电机供电自动切换为电瓶供电, 当 车辆发动机运行至正常转速 (超过设定转速) 情况下, 直流变频压缩机由电 瓶供电自动切换为双电源直流发电机供电。 该电源切换模块可以通过检测双 电源直流发电机在不同转速下电压变化进而计算出所述车辆发动机的行驶速 度, 实现车辆发动机在低转速和正常转速两种情况下供电电源的自动切换。
此外, 所述电源控制器还可实现对双电源直流发电机充电限流、 双电源 直流发电机电压控制, 以及对车辆发动机欠压提速的功能。
另外, 电瓶还可通过市电充电, 在车辆发电机处于发电状态下, 当交流 市电接入, 使直流继电器通电, 直流继电器连接在双电源直流发电机励磁线 圈的供电线路上的常闭触点会断开, 车辆双电源直流发电机停止发电, 而市 电则通过幵关电源转化成第二直流电压为电瓶充电, 电瓶再为制冷系统的直 流变频压缩机供电。
本发明制冷系统的压缩机采用直流变频压缩机, 通过直流电供电, 该直 流电主要由车载的双电源发电机供电, 辅助的电瓶作为备用电源, 在有市电
的地方, 通过车载的开关电源为制冷系统供电; 该双电源发电机由车辆发动 机提供动力, 在车辆发动机停转或低转速时, 双电源发电机不供电或供电不 足, 则转而通过已充电的电瓶供电, 这样, 实现车辆无论停止、 行进状态都 可制冷。 由于本发明制冷系统的压缩机并不局限于传统的机械驱动的车辆发 动机作为动力源, 而是设有电瓶作为备用电源, 因此制冷不再受车辆启停的 限制, 通过电源控制器内的电源切换模块, 实现当车辆短暂停车等车辆发动 机低速动力不足情况下, 自动切换为电瓶供电, 当车辆行驶速度达到正常转 速 (超过设定转速) 时, 又重新使用双电源直流发电机供电, 这样, 既保证 了对直流变频压縮机的不间断供电, 使得制冷稳定不再受车辆启停或发动机 低速运转的限制, 车辆因为制冷设备的运转而产生的动力损耗也会降低最低, 很大程度上节省了车辆的油耗。 其设计原理也较为简单, 无需在车辆上增加 传感设备。
本发明的有益效果在于: (1 ) 电源控制器可根据现有的环境自动切换供 电电源, 保证给直流变频压縮机不间断供电, 制冷量稳定, 制冷稳定性不再 受车辆启停或发动机低速运转的限制; 制冷精度高; (2) 可自动感应市电, 并在市电下工作与充电; (3 ) 制冷设备从车辆上移出仍然可以通过市电实现 独立制冷; (4) 制冷系统和供电系统一体设置在保温库体内, 一体式设计可 实现模块化堆放和运输。
附图说明
图 1是本发明实施例的外观结构图。
图 2是本发明实施例的制冷系统原理图。
图 3是本发明实施例的供电系统原理图。
图 4是发明实施例的双电源直流发电机的原理图。
图 5是本发明实施例的电源控制器的原理图。
图 6是电源控制器的发电机充电限流模块的原理图。
图 7是电源控制器的电源切换模块以及发电机励磁调压模块的总原理图。 图 8是真空提速装置的原理图。
具体实施方式
参照图 1-8 : 直流电驱动移动制冷设备, 包括内置有制冷系统的保温库体 16, 所述的制冷系统包括依次循环连接的直流变频压缩机 1、 冷凝器 2、 节流 装置 8、 蒸发器 9; 所述的直流变频压缩机 1为 DC60V供电的直流变频压缩 机; 本实施例中, 所述的节流装置 8优选为电子式膨胀阔, 当然, 也可以采 用普通的平衡式膨胀阀。 所述保温库体 16内还设置有供电系统, 所述供电系 统包括可输出第一直流电压与第二直流电压的双电源直流发电机 31、 采用第 二直流电压充电的电瓶 33,所述双电源直流发电机 31由车辆发动机提供动力, 其第一直流电压输出端为车载用电设备供电; 所述电瓶 33、 双电源直流发电 机 31构成对直流变频压縮机 1供电的两种电源, 所述电瓶 33、双电源直流发 电机 31与直流变频压缩机 1之间连接有电源控制器 5。 这里的车载用电设备 是指譬如车用空调、 冰箱、 音响、 装饰灯等等的用电设备。 本实施例中, 所 述的第一直流电压为 24V, 第二直流电压为 60V。
所述电源控制器 5 包括能实现当车辆发动机运行至低转速情况下, 直流 变频压缩机 1 由双电源直流发电机 31供电自动切换为电瓶 33供电, 当车辆 发动机运行至正常转速情况下, 直流变频压縮机 1由电瓶 33供电自动切换为 双电源直流发电机 31供电的电源切换模块 51。所述电源切换模 341块通过检 测双电源直流发电机 31在不同转速下电压变化进而计算出所述车辆发动机的 行驶速度, 实现车辆发动机在低转速和正常转速两种情况下供电电源的自动 切换。
所述电源控制器 5除包括上述电源切换模块 51夕卜, 还包括:
发电机充电限流模块 52,可避免电瓶 33在负载电流过大时对所述车辆发 动机及双电源直流发电机 31造成过载而损坏;
发电机励磁调压模块 53, 用于在车辆发动机不同转速情况下将双电源直 流发电机 31的第二直流电压输出端的电压控制在 56V〜62V范围内;
欠压提速模块 54, 该模块通过在车辆上加装用以提高车辆发动机转速的 真空提速装置 56, 防止车辆长期低速 (小于双电源直流发电机设定转速) 运 转导致电瓶 33亏电, 以此, 双电源直流发电机 31可在正常转速工作从而给 电瓶 33充电。
所述的电源控制器 5 还包括在市电接入时能自动切断双电源直流发电机 31供电并转入市电供电的巿电充电模块 55, 所述市电充电模块 55包括将交 流市电转化为 60V直流电压给所述电瓶充电的开关电源 VC, 所述开关电源 VC的 60V直流电压输出端并联连接有直流继电器 KM和电瓶 33, 所述直流 继电器 KM的常闭触点 K1连接在双电源直流发动机励磁线圈 F的供电线路 上。 因此在车辆发电机 31处于发电状态下, 当交流市电接入, 使直流继电器 KM通电, 直流继电器 KM连接在双电源直流发电机励磁线圈 F的供电线路 上的常闭触点 K1会断开, 双电源直流发电机 31停止发电, 而市电则通过开 关电源 VC转化成 60V直流电压为电瓶 33充电, 电瓶 33再为制冷系统的直 流变频压缩机 1供电。
本实施例具体阐述如下:
参照图 4:双电源直流发电机 31 (已申报实用新型: ZL200920200932. 5), 其作用是为运输车辆上普通的用电设备提供 24V 电源的同时, 还为直流电驱 动移动制冷设备提供一种 60V 电源, 避免了需要安装两只发电机所面临的成 本和维护的问题。 该发电机是在车辆原励磁式发电机的基础上改进而成, 在 采用普通发电机定子铁芯基础通过并联绕制 A相 A1绕组、 A2绕组、 B相 B1 绕组、 B2绕组、 C相 C1绕组和 C2绕组; 用 Al、 A2绕组 Bl、 B2绕组 Cl、 C2 绕组各端子首尾相接后的两绕组首尾三相端子 (a b c X y z) 经过三组桥式 整流输出为 +60v电源。 用 Al、 A2绕组 Bl、 B2绕组 Cl、 C2绕组端子首尾相接
处抽头引出 (u v w) 用三个单个二极管整流后输出为 +30v电源。 当双电源直 流发电机处于正常发电时, 该设备可作为非独立的移动制冷设备使用。
参照图 5-8: 电源控制器 5包括电源切换模块 51, 发电机充电限流模块 52、 发电机励磁调压模块 53、 欠压提速模块 54以及市电充电模块 55, 发电 机充电限流模块 52、发电机励磁调压模块 53分别解决在运行过程中可能遇到 的充电电流过大、 双电源直流发电机 31 电压过高的问题, 欠压提速模块 54 的作用是, 在遇到堵车、 装运货物等停留时间较长的情况, 而又无巿电作为 电源时, 为避免电瓶电量用尽而使电瓶亏电造成损坏, 同时保证制冷设备的 正常运行, 增加欠压提速模块 54。
市电充电模块 55, 具体来说, 设有幵关电源 VC, 当幵关电源 VC 与 220V/380V的交流市电接驳, 交流市电被转换为 DC60V的直流电, 开关电源 VC输出的 60V直流电一方面对电瓶 33充电, 同时使直流继电器 KM通电, 这样常闭触点 K1断开, 切断发电机励磁线圈 F的供电线路, 避免双电源直流 发电机 31工作所产生的动力损耗, 同时也防止开关电源 VC损坏的情况下烧 毁车辆发电设备。 于是, 实现了交流市电接入情况下, 自动切断双电源直流 发电机 31供电, 而交流市电通过开关电源转化成 60V直流为电瓶 33充电, 同时为直流电驱动移动式制冷设备供电。
在开关电源 VC的供电线路上设置大功率二极管 Dl, 避免市电断开的情 况下, 继电器 KM 由于续流继续工作。 当市电断开, 在无其他供电设备的情 况下, 直流电驱动移动制冷设备由电瓶 33供电。
当车辆行驶过程中,双电源直流发电机 31正常发电的情况下输出 DC24V 和 DC60V双路电源, 为车辆的用电设备提供 24V电源同时为电瓶 33充电, 双电源直流发电机 31输出的直流电由交流电通过 4个二极管 D3-D6组成的桥 堆进行整流而得到。
由于双电源直流发电机 31的功率有限, 当直流电驱动移动制冷设备使用
电瓶 33较长时间后, 再使用双电源直流发电机 31进行充电时, 双电源直流 发电机 31 需要对制冷设备供电, 又需要对电瓶 33充电, 充电电流往往是双 电源直流发电机额定功率的 2倍以上, 双电源直流发电机容易出现超负荷运 转而损坏, 对车身动力影响也较大。 参照图 5所示, 在电源控制器 5 内加装 了发电机充电限流模块 52, 该模块原理图见图 6, 由脉宽调制器 A'、 驱动器 Aa、 振荡电路 Cl+R6、 场效应管 VT1、 稳压管 WD构成, 脉宽调制器 A, 对 电压的要求较高, 因此需要稳压电路来保证其较为稳定的供电电压。 当双电 源直流发电机 31不工作, 电瓶 33作为电源使用, 用电设备的负极通过大功 率二极管 D1回到电瓶 33的负极, 当双电源直流发电机 31工作, 电瓶 33则 作为用电设备, 双电源直流发电机 31给电瓶 33充电, 同时为直流电驱动移 动制冷设备提供电源, 此时双电源直流发电机 31的负极作为该电路的基准负 极。 电瓶 33负极的充电电流回路超过设定电流时, 电流信号通过电阻 R5进 行降流并将电流信号传输给脉宽调制器 A', 脉宽调制器通过震荡电路 R6+C1 输出一个高频信号, 信号通过控制器 Aa获得一个较大的驱动电流, 从而控制 场效应管的 T1进行通断,当电流超过设定电流则断开,低于设定电流则闭合, 从而实现充电电流限流控制的功能。
双电源直流发电机 31的电压是随着车辆发动机转速的增加而升高, 当电 压过高则会影响到用电设备的性能, 而车辆在怠速运行或遇到短暂停止行进 的情况时, 双电源直流发电机电量不足额定电量的 1/3, 无法满足移动制冷设 备和电瓶的供电需求, 因此在低速行进等发电机电量不足的情况时, 需及时 将发电机的励磁线圈断开, 防止发电机过负荷而损坏。 该电源控制器就涉及 励磁调压模块 53及电源切换模块 51。 参照图 7进行说明如下:
该电路有控制芯片 El、 电阻 Rl、 R2、 R3、 续流二极管 D9、 场效应管 T2等主要部件组成。
电源开关 K2打开接通全车供电电路,经过电阻 R2降压后为控制芯片 E1
提供电源。 控制芯片 El, 通过 Rl、 R3提供的电压信号对发电机励磁线圈 F 负极进行通断控制, 以获得较为稳定的供电电压, 同时减少车辆损耗。
当发电机转速过高的发电机的电压超过 62V时, 控制芯片 E1通过 R1获 得电压信号高于设定值时,输出信号给场效应管 T2的 G极,将发电机励磁线 圈 F的负极断开, 起到限电压的作用。 此时发电机励磁线圈 F剩余通过续流 回路回到发电机励磁线圈 F释放, 同时起到一个稳压的作用。
当车辆处于低速行进或者停止状态时, 双电源直流发电机 31 转速低于 2200转, 双电源直流发电机 31输出的电压分别低于 20V和 42V时, 双电源 直流发电机 31无法满足用电设备需要,控制芯片 E1通过 R3获得低电压信号 低于设定值时, 输出信号给场效应管 T2的 G极。 将发电机励磁线圈 F断开, 双电源直流发电机 31停止发电, 制冷系统通过电瓶 33进行运转工作。 而当 汽车行进速度提升, 双电源直流发电机 31达到一定的转速, 控制芯片 E1上 获得 R3端的电压信号高于设定值, 则输出电流信号给场效应管 T2的 G极, 发电机励磁线圈 F的负极接通, 双电源直流发电机 31重新开始发电。
双电源直流发电机 31采用双线并联绕法, 电压上升与下降基本为同步状 态, 因此从通用性和成本考虑, 发电机励磁调压模块 53 及电源切换模块 51 的基准电压以双电源直流发电机 31的 24V电压进行检测。
在直流电驱动移动制冷设备的运行过程中会遇到堵车、 装运货物等停留 时间较长的不可预计情况存在, 而又无市电作为电源时, 为避免电瓶电量用 尽而使电瓶亏电造成损坏, 同时为保证制冷系统的正常运行, 需增加提高车 辆发动机转速的真空提速装置 56, 配合车辆本身的提速装置使用, 用以在电 瓶电量低于某个设定值以后, 自动提高发动机转速, 以获得双电源直流发电 机 31所需的转速及电压, 为电瓶和制冷系统提供电源。 该装置通常包括真空 电磁阀 KM2, 参照图 8进行说明: 该模块由欠压提速芯片 E2、 电阻 R7、 稳 压电路 WD2、 场效应管 T3、 真空电磁阔 ΚΜ2等元件组成。
60V的直流电压通过稳压电路 WD2获得 5V的电压,为欠压提速芯片 E2 提供电源, 制冷系统的运转电压通过 R7电阻进行实时检测, 当电源电压低于 40 V, 欠压提速芯片 E2将电流信号传递给场效应管 T3, 接通车辆上的真空电 磁阀 ΚΜ2的负极, 车辆发动机转速增加, 双电源直流发电机 31正常发电。
保证用电设备的稳定运转, 欠压提速芯片 Ε2接收到欠压信号后场效应管 Τ3的 D极和 S极随即接通, 电压回复到正常值也无法断开, 待到电源关闭后 才会断开, 等待下一个欠压信号。 同时, 双电源直流发电机 DC60V和 DC24V 为公用负极。
该电源控制器 5可在 220/380V交流电源接入情况下自动识别, 切断车辆 发电设备, 在车辆低速或者停止状态自动切换电瓶供电, 在车辆处于高速等 动力充足情况下自动由双电源直流发电机 31 为制冷系统供电同时为电瓶 33 充电, 当电瓶 33 电压低于保护值, 而双电源直流发电机 31又没有达到设定 转速时, 又可以自动提高双电源直流发电机 31转速, 实现智能控制, 在保证 制冷系统正常运转情况下, 又可降低运输车辆的油耗。
直流电驱移动制冷设备, 作为一种可以实现独立与非独立自由切换的移 动冷冻设备可以随意摆放在运输车辆和其他车辆以外的位置, 在车辆运输过 程中通过简单地对汽车的原励磁发电机进行改动就可以实现双电源直流发电 机的供电, 当车辆处于低速行进或者短暂停车都可以实现独立运行; 另外, 当卸下车辆后或者有市电的地方, 还可以通过普通市电进行工作和充电, 通 过以下方案可实现市电工作与充电的目的。
需要说明的是, 本发明的制冷系统中, 直流变频压缩机 1、 冷凝器 2、 节 流装置 8、 蒸发器 9只是作为四个必须的部件, 在实际的制冷系统中, 除上述 四大部件外, 还常常设置一些辅助设备, 如图 2中, 在冷凝器 2与节流装置 8 之间还连接有储液罐 4、 干燥过滤器 15、 控制除霜开始的电磁阀 6, 蒸发器 9 的输入端与压缩机 1 的输出端之间并联有除霜管路, 除霜管路上设置有单向
阀 15和除霜电磁阀 14。蒸发器 9与直流变频压缩机 1之间还连接有气液分离 器 11。 为防止直流变频压缩机 1过热, 在干燥过滤器 15和节流装置 8之间的 旁通管路上设置了喷液冷却电磁阀 7,其作用是将冷凝后的液体制冷剂通过毛 细管 12进行节流, 喷射到压缩机的汽缸内蒸发, 通过牺牲一定冷量的办法用 来控制压缩机温度不会过热。所述冷凝器 2、蒸发器 9分别配套有冷凝风机 3、 蒸发风机 10。 制冷系统中还设置有易容塞式泄压阀 13, 可将系统中压力超过 管路极限的制冷剂排放到空气中, 保护人员和设备安全。 上述制冷剂的辅助 设备已是现有的成熟技术, 这里不再详述。 上述实施例仅仅是对本发明技术构思实现形式的列举, 本发明的保护范 围不仅限于上述实施例, 本发明的保护范围可延伸至本领域技术人员根据本 发明的技术构思所能想到的等同技术手段。
Claims
1、 直流电驱动移动制冷设备, 包括内置有制冷系统的保温库体 (16), 所述的制冷系统包括依次连接的冷凝器 (2)、 节流装置 (8)、 蒸发器 (9); 其特征在于: 所述蒸发器 (9) 与冷凝器 (2) 之间连接有采用第二直流电压 供电的直流变频压縮机 (1), 所述直流变频压縮机 (1)、 冷凝器 (2)、 节流 装置 (8)、 蒸发器 (9) 构成制冷循环系统; 所述保温库体 (16) 内还设置有 供电系统, 所述供电系统包括可输出第一直流电压与所述第二直流电压的双 电源直流发电机 (31)、 采用第二直流电压充电的电瓶 (33), 所述双电源直 流发电机 (31) 由车辆发动机提供动力, 其第一直流电压输出端为车载用电 设备供电; 所述电瓶 (33)、 双电源直流发电机 (31) 构成对直流变频压縮机
(1) 供电的两种电源, 所述电瓶 (33)、 双电源直流发电机 (31) 与直流变 频压缩机 (1) 之间连接有电源控制器 (5), 所述电源控制器 (5) 至少包括 能实现当车辆发动机运行至低转速情况下, 直流变频压縮机 (1) 由双电源直 流发电机 (31) 供电自动切换为电瓶 (33) 供电, 当车辆发动机运行至正常 转速情况下, 直流变频压缩机 (1) 由电瓶 (33) 供电自动切换为双电源直流 发电机 (31) 供电的电源切换模块 (51)。
2、 如权利要求 1所述的直流电驱动移动制冷设备, 其特征在于: 所述电 源切换模块 (51) 通过检测双电源直流发电机 (31) 在不同转速下电压变化 进而计算出所述车辆发动机的行驶速度, 实现车辆发动机在低转速和正常转 速两种情况下供电电源的自动切换。
3、 如权利要求 1所述的直流电驱动移动制冷设备, 其特征在于: 所述的 第一直流电压为 24V。
4、 如权利要求 1所述的直流电驱动移动制冷设备, 其特征在于: 所述的 第二直流电压为 60V。
5、 如权利要求 1所述的直流电驱动移动制冷设备, 其特征在于: 所述的 节流装置 (8) 为膨胀阀。
6、如权利要求 1-5任一项所述的直流电驱动移动制冷设备, 其特征在于: 所述电源控制器 (5) 还包括:
发电机充电限流模块 (52), 可避免电瓶 (33) 在负载电流过大时对所述 车辆发动机及双电源直流发电机 (31) 造成过载而损坏;
发电机励磁调压模块 (53), 用于在车辆发动机不同转速情况下将双电源 直流发电机 (31) 的第二直流电压输出端的电压控制在 56V~62V范围内; 欠压提速模块 (54), 该模块通过在车辆上加装用以提高车辆发动机转速 的真空提速装置, 防止车辆长期低速运转导致电瓶 (33) 亏电, 以此, 双电 源直流发电机 (31) 可在正常转速工作从而给电瓶 (33) 充电。
7、 如权利要求 6所述的直流电驱动移动制冷设备, 其特征在于: 所述的 电源控制器 (5) 还包括在市电接入时能自动切断双电源直流发电机 (31) 供 电并转入市电供电的市电充电模块 (55), 所述市电充电模块 (55) 包括将交 流市电转化为第二直流电压给所述电瓶(33)充电的开关电源(VC), 所述开 关电源 (VC) 的 60V直流电压输出端并联连接有直流继电器 (KM) 和电瓶
(33), 所述直流继电器 (KM) 的常闭触点 (K1) 连接在双电源直流发动机 励磁线圈 (F) 的供电线路上。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/811,495 US20130118196A1 (en) | 2010-07-19 | 2011-07-14 | Mobile refrigeration equipment with dc drive |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010230856XA CN101898500B (zh) | 2010-07-19 | 2010-07-19 | 直流电驱动移动制冷设备 |
CN201010230856.X | 2010-07-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012009954A1 true WO2012009954A1 (zh) | 2012-01-26 |
Family
ID=43224552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/001160 WO2012009954A1 (zh) | 2010-07-19 | 2011-07-14 | 直流电驱动移动制冷设备 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20130118196A1 (zh) |
CN (1) | CN101898500B (zh) |
WO (1) | WO2012009954A1 (zh) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101898500B (zh) * | 2010-07-19 | 2011-12-07 | 浙江博阳压缩机有限公司 | 直流电驱动移动制冷设备 |
KR101294192B1 (ko) * | 2011-12-09 | 2013-08-08 | 기아자동차주식회사 | 차량의 에어컨 증발기 수분 제거 방법 |
CN102514464B (zh) * | 2011-12-21 | 2014-06-18 | 珠海银隆电器有限公司 | 车用电动空调系统 |
EP2917583B1 (en) * | 2012-10-01 | 2019-05-01 | Thermo King Corporation | Methods and systems to detect an operation condition of a compressor |
EP3452767B1 (en) | 2016-05-03 | 2022-06-29 | Carrier Corporation | Intelligent voltage control for electric heat and defrost in transport refrigeration system |
US20190077216A1 (en) * | 2016-05-13 | 2019-03-14 | Tiger Tool International Incorporated | Heating and cooling systems and methods for truck cabs |
WO2018136738A2 (en) * | 2017-01-20 | 2018-07-26 | Carrier Corporation | Transport refrigeration unit (tru) direct current (dc) architecture |
KR102658800B1 (ko) * | 2017-02-02 | 2024-04-19 | 엘지전자 주식회사 | 차량용 냉장고, 및 차량 |
WO2018226389A1 (en) | 2017-06-07 | 2018-12-13 | Carrier Corporation | Hybrid power conversion system for a refrigerated transport vehicle and method |
US11639109B2 (en) | 2017-10-06 | 2023-05-02 | Carrier Corporation | Transportation refrigeration system with energy storage device |
US11407283B2 (en) | 2018-04-30 | 2022-08-09 | Tiger Tool International Incorporated | Cab heating systems and methods for vehicles |
CN109099624A (zh) * | 2018-08-21 | 2018-12-28 | 上海索伊电器有限公司 | 一种车载冷冻箱 |
CN110906596A (zh) * | 2018-09-14 | 2020-03-24 | 开利公司 | 运输制冷装置、及其动力管理系统及动力管理方法 |
US11059352B2 (en) * | 2018-10-31 | 2021-07-13 | Thermo King Corporation | Methods and systems for augmenting a vehicle powered transport climate control system |
US11993130B2 (en) | 2018-11-05 | 2024-05-28 | Tiger Tool International Incorporated | Cooling systems and methods for vehicle cabs |
WO2022006235A1 (en) | 2020-07-02 | 2022-01-06 | Tiger Tool International Incorporated | Compressor system for a vehicle |
CN113183714B (zh) * | 2021-04-19 | 2023-03-21 | 青岛海尔空调器有限总公司 | 车载空调及其控制方法 |
CN114157143B (zh) * | 2021-12-07 | 2023-06-27 | 四川虹美智能科技有限公司 | 基于升压拓扑结构的冰箱恒功率化霜电路 |
CN114194001B (zh) * | 2021-12-18 | 2024-06-28 | 深圳市鑫嘉恒科技有限公司 | 一种便携式移动空调的控制方法、系统及移动空调 |
CN115823759A (zh) * | 2022-11-25 | 2023-03-21 | 珠海格力电器股份有限公司 | 压缩制冷系统及控制方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1047381A (zh) * | 1989-05-19 | 1990-11-28 | 三电有限公司 | 用于具有能选择交流市电或由发动机带动的发电机来驱动致冷剂压缩机的机动车辆上的致冷系统 |
EP0441525A2 (en) * | 1990-02-09 | 1991-08-14 | Sanden Corporation | Safety mechanism for vehicle container refrigerator |
CN101282857A (zh) * | 2005-10-21 | 2008-10-08 | 大金工业株式会社 | 拖车用冷冻装置 |
EP2128545A1 (en) * | 2007-01-26 | 2009-12-02 | Daikin Industries, Ltd. | Refrigeration device for refrigeration vehicle |
CN101681177A (zh) * | 2007-06-07 | 2010-03-24 | 开利公司 | 运输制冷单元辅助功率 |
CN101898500A (zh) * | 2010-07-19 | 2010-12-01 | 浙江博阳压缩机有限公司 | 直流电驱动移动制冷设备 |
CN201761327U (zh) * | 2010-07-19 | 2011-03-16 | 浙江博阳压缩机有限公司 | 直流电驱动移动制冷设备 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4527112A (en) * | 1983-12-14 | 1985-07-02 | Herman Charles A | Engine speed control circuit for emergency vehicle |
US5265435A (en) * | 1992-12-31 | 1993-11-30 | Phyllis M. Morefield | Vehicle refrigeration system |
JP4426737B2 (ja) * | 2000-06-28 | 2010-03-03 | 東芝キヤリア株式会社 | 車両用冷凍装置 |
CN100580329C (zh) * | 2004-08-24 | 2010-01-13 | 中国计量学院 | 一种配用房间居室和低温冷库的双用途空调器 |
DE102006003424A1 (de) * | 2006-01-24 | 2007-08-02 | Webasto Ag | Kraftfahrzeug mit Solarmodul |
WO2007131355A1 (en) * | 2006-05-12 | 2007-11-22 | Allen-Vanguard Technologies Inc. | Temperature controlled container |
CN101144663A (zh) * | 2006-09-13 | 2008-03-19 | 苏大庆 | 风力冰箱、风力冷库、风力空调及风力制冷系统 |
US7550873B2 (en) * | 2007-01-28 | 2009-06-23 | Ming Jiang | Uninterruptible power supply for home/office networking and communication system |
US8272432B2 (en) * | 2007-11-28 | 2012-09-25 | GM Global Technology Operations LLC | HVAC thermal storage for hybrid vehicle |
-
2010
- 2010-07-19 CN CN201010230856XA patent/CN101898500B/zh active Active
-
2011
- 2011-07-14 US US13/811,495 patent/US20130118196A1/en not_active Abandoned
- 2011-07-14 WO PCT/CN2011/001160 patent/WO2012009954A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1047381A (zh) * | 1989-05-19 | 1990-11-28 | 三电有限公司 | 用于具有能选择交流市电或由发动机带动的发电机来驱动致冷剂压缩机的机动车辆上的致冷系统 |
EP0441525A2 (en) * | 1990-02-09 | 1991-08-14 | Sanden Corporation | Safety mechanism for vehicle container refrigerator |
CN101282857A (zh) * | 2005-10-21 | 2008-10-08 | 大金工业株式会社 | 拖车用冷冻装置 |
EP2128545A1 (en) * | 2007-01-26 | 2009-12-02 | Daikin Industries, Ltd. | Refrigeration device for refrigeration vehicle |
CN101681177A (zh) * | 2007-06-07 | 2010-03-24 | 开利公司 | 运输制冷单元辅助功率 |
CN101898500A (zh) * | 2010-07-19 | 2010-12-01 | 浙江博阳压缩机有限公司 | 直流电驱动移动制冷设备 |
CN201761327U (zh) * | 2010-07-19 | 2011-03-16 | 浙江博阳压缩机有限公司 | 直流电驱动移动制冷设备 |
Also Published As
Publication number | Publication date |
---|---|
CN101898500A (zh) | 2010-12-01 |
CN101898500B (zh) | 2011-12-07 |
US20130118196A1 (en) | 2013-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012009954A1 (zh) | 直流电驱动移动制冷设备 | |
JP5609470B2 (ja) | コンテナ用冷凍システム | |
CN110143109B (zh) | 具有可再生能源的运输制冷装置及操作方法 | |
EP2528759B1 (en) | Solar power assisted transport refrigeration systems, transport refigeration units and methods for same | |
RU2480685C2 (ru) | Устройство и способ управления скоростью привода генератора холодильной установки | |
US10018399B2 (en) | Transport refrigeration system having electric fans | |
US20180222278A1 (en) | Refrigeration device and container refrigeration system | |
JP2019525113A (ja) | ビークルのコンテナ用の冷却システムのバッテリモードにおいてコンプレッサ、エバポレータファン、およびコンデンサファンの速度を制御するシステムおよび方法 | |
KR102162926B1 (ko) | 냉장/냉동 탑차용 냉각 시스템 | |
CN102745040A (zh) | 一种直流电驱动的冷冻冷藏汽车 | |
CN108282129B (zh) | 压缩机驱动控制电路、方法及包含所述电路的变频空调器 | |
CN109795284A (zh) | 一种并联双模式独立冷风装置及其控制方法 | |
KR101945399B1 (ko) | 냉동차용 냉동 시스템 | |
CN202656828U (zh) | 一种直流电驱动的冷冻冷藏汽车 | |
TWI637868B (zh) | 物流車貨艙的預冷系統與方法 | |
CN201761327U (zh) | 直流电驱动移动制冷设备 | |
KR101186467B1 (ko) | 냉동, 냉장 및 온장 식품 운반용 차량의 전력 제어장치 및 방법 | |
CN201764770U (zh) | 带风幕的直流电驱动移动制冷设备 | |
CN207711756U (zh) | 一种新型行车/驻车两用的制冷空调系统 | |
CN103522964B (zh) | 汽车辅助制冷装置、汽车制冷系统及汽车 | |
CN204243844U (zh) | 一种电动空调电源系统 | |
CN114905934B (zh) | 冷藏机组混合动力控制系统 | |
CN217863997U (zh) | 备电控制装置 | |
CN114987150B (zh) | 冷藏车制冷机组路用和备电自动切换系统 | |
CN202501598U (zh) | 车载节能环保电驱动空调机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11809143 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13811495 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11809143 Country of ref document: EP Kind code of ref document: A1 |