WO2012009844A1 - 硅酸盐发光材料及其制备方法 - Google Patents

硅酸盐发光材料及其制备方法 Download PDF

Info

Publication number
WO2012009844A1
WO2012009844A1 PCT/CN2010/075246 CN2010075246W WO2012009844A1 WO 2012009844 A1 WO2012009844 A1 WO 2012009844A1 CN 2010075246 W CN2010075246 W CN 2010075246W WO 2012009844 A1 WO2012009844 A1 WO 2012009844A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminescent material
source compound
silicate luminescent
preparing
sio
Prior art date
Application number
PCT/CN2010/075246
Other languages
English (en)
French (fr)
Inventor
周明杰
时朝璞
马文波
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to US13/703,337 priority Critical patent/US20130075659A1/en
Priority to EP10854874.4A priority patent/EP2597133B1/en
Priority to CN201080067223XA priority patent/CN102933687A/zh
Priority to PCT/CN2010/075246 priority patent/WO2012009844A1/zh
Priority to JP2013516956A priority patent/JP5655141B2/ja
Publication of WO2012009844A1 publication Critical patent/WO2012009844A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/77742Silicates

Definitions

  • the invention belongs to the technical field of luminescent materials, and in particular relates to a silicate luminescent material and a preparation method thereof.
  • FEAs field emission cathode array
  • CTR cathode ray tube
  • This new type of field emission device works similarly to a conventional cathode ray tube (CRT). It is used for imaging or illumination by electron beam bombardment of red, green, and blue phosphors. The device is in brightness and viewing angle. , response time, operating temperature range, energy consumption and other aspects have potential advantages.
  • the fluorescent materials used in field emission devices are mainly sulfide series, oxide series and sulfur oxide series phosphors used in conventional cathode ray tubes and projection television tubes.
  • the luminescence brightness is higher and has certain conductivity, but it is easily decomposed under the bombardment of large beam electron beams, releasing the elemental sulfur "poisoning" cathode tip and generating other
  • the precipitate covers the surface of the phosphor, which reduces the luminous efficiency of the phosphor and shortens the service life of the field emission device.
  • the oxide phosphor has good stability, but the luminous efficiency is not high enough, and the material is generally an insulator, and both properties have to be improved and improved.
  • the present invention provides a silicate luminescent material co-doped with Ce 3+ , Tb 3+ and Ag ions, which has high stability and luminous efficiency.
  • a silicate luminescent material having the molecular formula: Ln 2-xy SiO 5 :Ce x, Tb y, Ag z , wherein Ln is one of Y, Gd, La, Lu, and the value of x
  • the range is 0 ⁇ x ⁇ 0.05, the range of y is 0.01 ⁇ y ⁇ 0.25, and the range of z is 0 ⁇ z ⁇ 0.005.
  • the source compound of Ln, the source compound of Ce, the source compound of Tb, the source compound of Ag, and the silicon gas are weighed.
  • a gel wherein Ln is one of Y, Gd, La, and Lu; x has a value range of 0 ⁇ x ⁇ 0.05, y has a value range of 0.01 ⁇ y ⁇ 0.25, and z has a value range of 0. ⁇ z ⁇ 0.005;
  • the weighed source compound of Ln, the source compound of Ce, and the source compound of Tb are mixed with a silicon aerogel containing Ag, and then calcined in a reducing atmosphere to obtain a formula of Ln 2-xy SiO 5 :Ce x . , the silicate luminescent material of Tb y, Ag z .
  • the silicate luminescent material is doped with Ce 3+ and Tb 3+ , and can emit warm white light under electron beam excitation, and in the silicate luminescent material
  • the elemental substance of Ag effectively improves the stability and luminous efficiency of the silicate luminescent material; in the preparation method of the silicate luminescent material, by preparing a silicon aerogel containing Ag first, mixing with other components and calcining, The luminescent material can be obtained, so that the preparation process is simple, the cost is low, and the production and application prospect is broad.
  • FIG. 1 is a comparison diagram of a cathode ray luminescence spectrum of a silicate luminescent material prepared in Example 4 of the present invention under a cathode ray excitation at an acceleration voltage of 5 kV, and a luminescence spectrum of Y 1.89 SiO 5 :Ce 0.01 and Tb 0.1 phosphors, wherein Curve 10 is an illuminance spectrum of the Y 1.89 SiO 5 :Ce 0.01, Tb 0.1, Ag 0.0007 luminescent material prepared in Example 4 of the present invention; and curve 11 is a luminescence spectrum of Y 1.89 SiO 5 :Ce 0.01, Tb 0.1 phosphor.
  • Example 2 is a cathode ray luminescence spectrum of a silicate luminescent material prepared in Example 7 of the present invention under an excitation voltage of 5 kV;
  • FIG. 3 is a flow chart of a process for preparing a silicate luminescent material of the present invention.
  • the silicate luminescent material of the embodiment of the invention has the molecular formula: Ln 2-xy SiO 5 :Ce x, Tb y, Ag z , wherein Ln is one of Y, Gd, La, Lu, x
  • Ln is one of Y, Gd, La, Lu
  • x The value range is 0 ⁇ x ⁇ 0.05, the range of y is 0.01 ⁇ y ⁇ 0.25, and the range of z is 0 ⁇ z ⁇ 0.005.
  • the range of x above is preferably 0.001 ⁇ x ⁇ 0.04, the range of y is preferably 0.03 ⁇ y ⁇ 0.2, and the range of z is preferably 0.00003 ⁇ z ⁇ 0.003.
  • the above silicate luminescent material is doped with Ce 3+ and Tb 3+ , and can emit warm white light under electron beam excitation.
  • the Ag element in the silicate luminescent material effectively enhances the silicate luminescent material. Stability and luminous efficiency.
  • the value of x is preferably 0.001 ⁇ x ⁇ 0.04
  • the value range of y is preferably 0.03 ⁇ y ⁇ 0.2
  • the value range of z is preferably 0.00003 ⁇ z ⁇ 0.003, which can further improve the stability and luminous efficiency of the silicate luminescent material.
  • Ln is an important constituent element of the silicate luminescent material, and functions as a molecular structure constituting the luminescent material. Since Y, Gd, La, and Lu have similar properties, they can be substituted with each other without changing the molecular structure of the luminescent material.
  • the preparation process comprises the following steps:
  • the weighed source compound of Ln, the source compound of Ce, and the source compound of Tb are mixed with a silicon aerogel containing Ag, and then calcined in a reducing atmosphere to obtain a formula of Ln 2-xy SiO 5 :
  • the silicate luminescent material of Ce x, Tb y, Ag z is obtained.
  • the source compound of Ln is preferably at least one of an oxide, a nitrate, a carbonate, and an oxalate of Ln; Ce The source compound is preferably at least one of oxides, nitrates, carbonates, and oxalates of Ce; the source compound of Tb is preferably at least one of oxides, nitrates, carbonates, and oxalates of Tb.
  • the source compound of the Ag is preferably a nitrate or/and a nano-Ag colloid of Ag; the aerogel used in the silica aerogel is directly commercially available, such as from Nanotech Co., Ltd.
  • the stirring process is carried out at 50 to 75 ° C under ultrasonic conditions, and the stirring time is 0.5 to 3 h.
  • Ultrasound is used to make the silicon aerogel and the source compound of Ag.
  • the mixture is thoroughly mixed in an alcohol solution, and the time of sonication is preferably, but not limited to, 10 minutes; the drying process is carried out at 60 to 150 ° C; and the calcination process is carried out at 600 to 1000 ° C.
  • the selected silicon aerogel preferably has a pore diameter of 20 to 100 nm and a porosity of 92 to 98%; and the calcination is preferably performed at 600 to 1300 ° C for 0.5 to 3 hours; the alcohol solution is preferably but not only The concentration of the source compound of Ag in the alcohol solution is preferably 1.5 ⁇ 10 -5 to 1.25 ⁇ 10 -3 mol/L, which is limited to the ethanol solution.
  • the calcination temperature of the calcination under a reducing atmosphere is preferably 1300 to 1600 ° C, and the time is preferably 1 to 8 h; and the reducing atmosphere is preferably a reducing atmosphere of N 2 and H 2 .
  • a reducing atmosphere of CO a reducing atmosphere of H 2 , wherein a volume ratio of N 2 to H 2 in the reducing atmosphere of N 2 and H 2 is preferably, but not limited to, 95:5, in the reducing atmosphere Calcination is to reduce +4 valence Ce, Tb ions and Ag ions generated during combustion to +3 valence Ce, Tb ions and Ag element, thereby producing Ln 2-xy SiO 5 :Ce x, Tb y, Ag z
  • the compound effectively ensures the luminescent properties of Ln 2-xy SiO 5 :Ce x, Tb y, Ag z .
  • the reducing atmosphere means a mixed gas in which the reducing gas is less than 10% by volume.
  • the luminescent material is obtained by preparing a silicon aerogel containing Ag by using a high-temperature solid phase method, and then mixing and calcining with other components, thereby making the preparation process simple and low in cost. , has a broad prospect of production and application.
  • compositions of the silicate luminescent materials and methods for their preparation, as well as their properties, etc. are exemplified below by way of various examples.
  • Y 2 (CO 3 ) 3 1.4201 g, Ce 2 (CO 3 ) 3 0.0009 g, Tb 2 (CO 3 ) 3 0.0099 g and 0.2404 g of silica aerogel containing Ag were uniformly mixed, and then 95% N 2 Under the 5% H 2 reducing atmosphere, the mixture was sintered at 1300 ° C for 8 h, and the obtained product was cooled to room temperature to obtain Y 1.989 SiO 5 :Ce 0.001, Tb 0.01, Ag 0.00003 luminescent material, and the white light was emitted under electron beam excitation.
  • Y 1.89 SiO 5 :Ce 0.01, Tb 0.1, Ag 0.0007 luminescent material which was irradiated with warm white light under electron beam excitation.
  • 1 is a comparison chart of cathode ray luminescence spectra of Y 1.89 SiO 5 :Ce 0.01, Tb 0.1 phosphor powder and the silicate luminescent material prepared in the present embodiment, wherein 10 in the figure refers to the silicate luminescent material prepared in the present embodiment.
  • 11 means Y 1.89 SiO 5 : Ce 0.01, Tb 0.1 phosphor phosphor. As shown in FIG.
  • the luminescent material of the present embodiment has a strong broadband emission spectrum in 360-500 nm, and has a narrow band peak at 544 nm, and the illuminating intensity at 544 nm is higher than Y 1.89 SiO 5 :Ce. 0.01, the luminescence intensity of Tb 0.1 , the luminescence intensity of the luminescent material prepared in this example exceeds that of Y 1.89 SiO 5 :Ce 0.01 of undoped Ag, 38% of Tb 0.1 phosphor, and the luminescent material of the embodiment has stability. Good, high luminous efficiency.
  • the H 2 reduction atmosphere was incubated at 1400 ° C for 6 h, and the obtained product was cooled to room temperature to obtain Lu 1.73 SiO 5 :Ce 0.02, Tb 0.25, Ag 0.003 luminescent material, and the white light was emitted under electron beam excitation.
  • the obtained product was cooled to room temperature to obtain Y 1.89 SiO 5 :Ce 0.01, Tb 0.1, Ag 0.0004 luminescent material, which emits warm white light under electron beam excitation.
  • the cathode ray luminescence spectrum of the Y 1.89 SiO 5 :Ce 0.01, Tb 0.1, Ag 0.0004 silicate luminescent material excited by 5 kV accelerating voltage is shown in FIG. 2 , and it can be seen from FIG. 2 that the luminescent material of the present embodiment is 360.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Description

硅酸盐发光材料及其制备方法 技术领域
本发明属于发光材料技术领域,具体涉及一种硅酸盐发光材料及其制备方法。
背景技术
20世纪60 年代,Ken Shoulder 提出了基于场发射阴极阵列(FEAs)电子束微型装置的设想,于是利用FEAs设计和制造平板显示与光源器件的研究引起了人们的极大兴趣。这种新型的场发射器件的工作原理与和传统的阴极射线管(CRT)类似,是通过电子束轰击红、绿、蓝三色荧光粉发光实现成像或照明用途,该种器件在亮度、视角、响应时间、工作温度范围、能耗等方面均具有潜在的优势。
制备优良性能场发射器件的关键因素之一是高性能荧光粉体的制备。目前场发射器件所采用的荧光材料主要是一些用于传统阴极射线管和投影电视显像管的硫化物系列、氧化物系列和硫氧化物系列荧光粉。对于硫化物和硫氧化物系列荧光粉来说,发光亮度较高,且具有一定的导电性,但在大束流电子束的轰击下容易发生分解,放出单质硫“毒化”阴极针尖,并生成其他沉淀物覆盖在荧光粉表面,降低了荧光粉的发光效率,缩短了场发射器件的使用寿命。氧化物荧光粉稳定性能好,但发光效率不够高,并且材料一般为绝缘体,两者性能都有待改进和提高。
技术问题
有鉴于此,本发明提供一种共掺杂有Ce3+、Tb3+和Ag离子的硅酸盐发光材料,该硅酸盐发光材料的稳定性和发光效率高。
以及,提供一种制备工艺简单、成本低的硅酸盐发光材料制备方法。
技术解决方案
本发明解决上述技术问题所采用的技术方案是:
一种硅酸盐发光材料,其分子通式为:Ln2-x-ySiO5:Cex,Tby,Agz,其中,Ln为Y、Gd、La、Lu中的一种,x的取值范围为0<x≤0.05,y的取值范围为0.01≤y≤0.25,z的取值范围为0<z≤0.005。
以及,一种硅酸盐发光材料制备方法,其包括如下步骤:
按照通式Ln2-x-ySiO5:Cex,Tby,Agz中相应元素的化学计量比,称取Ln的源化合物、Ce 的源化合物、Tb的源化合物、Ag的源化合物和硅气凝胶;其中,Ln为Y、Gd、La、Lu中的一种;x的取值范围为0<x≤0.05,y的取值范围为0.01≤y≤0.25,z的取值范围为0<z≤0.005;
将硅气凝胶溶解在Ag的源化合物的醇溶液中,然后依次搅拌、干燥、煅烧,得到含Ag的硅气凝胶;
将称取的所述Ln的源化合物、Ce 的源化合物、Tb的源化合物与含有Ag的硅气凝胶混合后,在还原气氛下煅烧,得到通式为Ln2-x-ySiO5:Cex,Tby,Agz的所述硅酸盐发光材料。
有益效果
在上述硅酸盐发光材料及其制备方法中,该硅酸盐发光材料中掺杂了Ce3+和Tb3+,在电子束激发下能发射暖白光,另外,该硅酸盐发光材料中的Ag单质有效提高了该硅酸盐发光材料的稳定性和发光效率;在该硅酸盐发光材料制备方法中,通过先制备含Ag的硅气凝胶,再与其他组分混合并煅烧,即可获得发光材料,从而使得制备工艺简单、成本低,具有广阔的生产应用前景。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例4制备的硅酸盐发光材料在加速电压为5KV下的阴极射线激发下的阴极射线发光光谱与Y1.89SiO5:Ce0.01 ,Tb0.1荧光粉发光光谱对比图,其中,曲线10是本发明实施例4制备的Y1.89SiO5:Ce0.01,Tb0.1,Ag0.0007发光材料的发光光谱图;曲线11是Y1.89SiO5:Ce0.01,Tb0.1荧光粉发光光谱图。
图2是本发明实施例7制备的硅酸盐发光材料在5kv加速电压激发下的阴极射线发光光谱;
图3为本发明硅酸盐发光材料制备工艺流程图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例硅酸盐发光材料,其分子通式为:Ln2-x-ySiO5:Cex,Tby,Agz,其中,Ln为Y、Gd、La、Lu中的一种,x的取值范围为0<x≤0.05,y的取值范围为0.01≤y≤0.25,z的取值范围为0<z≤0.005。
上述x的取值范围优选为0.001≤x≤0.04,y的取值范围优选为0.03≤y≤0.2,z的取值范围优选为0.00003≤z≤0.003。
在上述硅酸盐发光材料中掺杂了Ce3+和Tb3+,在电子束激发下能发射暖白光,另外,该硅酸盐发光材料中的Ag单质有效提高了该硅酸盐发光材料的稳定性和发光效率。适当调整该硅酸盐发光材料中各元素的比例,如该硅酸盐发光材料分子通式Ln2-x-ySiO5:Cex,Tby,Agz中x的取值范围优选为0.001≤x≤0.04,y的取值范围优选为0.03≤y≤0.2,z的取值范围优选为0.00003≤z≤0.003,能进一步提高该硅酸盐发光材料的稳定性和发光效率。Ln是该硅酸盐发光材料的重要组成元素,它起到组成发光材料分子结构的作用,由于Y、Gd、La、Lu的性质相近,所以可以相互间取代,而不改变发光材料分子结构。
以及,本发明硅酸盐发光材料制备方法,如图3所示,其制备工艺流程包括如下步骤:
S1. 按照通式Ln2-x-ySiO5:Cex,Tby,Agz中相应元素的化学计量比,称取Ln的源化合物、Ce 的源化合物、Tb的源化合物、Ag的源化合物和硅气凝胶;其中,Ln为Y、Gd、La、Lu中的一种;x的取值范围为0<x≤0.05,y的取值范围为0.01≤y≤0.25,z的取值范围为0<z≤0.005;
S2. 将硅气凝胶溶解在Ag的源化合物的醇溶液中,然后依次搅拌、干燥、煅烧,得到含Ag的硅气凝胶;
S3. 将称取的所述Ln的源化合物、Ce 的源化合物、Tb的源化合物与含有Ag的硅气凝胶混合后,在还原气氛下煅烧,得到通式为Ln2-x-ySiO5:Cex,Tby,Agz的所述硅酸盐发光材料。
上述硅酸盐发光材料制备方法的S1步骤中,所述的Ln的源化合物优选为Ln的氧化物、硝酸盐、碳酸盐、草酸盐中的至少一种;Ce 的源化合物优选为Ce的氧化物、硝酸盐、碳酸盐、草酸盐中的至少一种;Tb的源化合物优选为Tb的氧化物、硝酸盐、碳酸盐、草酸盐中的至少一种;所述Ag的源化合物优选为Ag的硝酸盐或/和纳米Ag胶粒;硅气凝胶使用的气凝胶是直接市购的,如来自纳诺高科股份有限公司生产。
上述硅酸盐发光材料制备方法的S2步骤中,所述搅拌过程是在50~75℃、超声条件下进行,且搅拌时间为0.5~3h,超声是为了使硅气凝胶与Ag的源化合物在醇溶液中充分混合,超声处理的时间优选但不仅仅限于10min;所述干燥过程是在60~150℃下进行;所述煅烧过程是在600~1000℃下进行。
上述S2步骤中,选取的硅气凝胶的孔径优选为20~100nm,气孔率优选为92~98%;所述煅烧优选在600~1300℃下热处理0.5~3h;所述醇溶液优选但不仅仅限于乙醇溶液,Ag的源化合物在醇溶液中的浓度优选为1.5×10-5 ~1.25×10-3mol/L。
上述硅酸盐发光材料制备方法的S3步骤中,所述在还原气氛下煅烧的煅烧温度优选为1300~1600℃,时间优选为1~8h;所述还原气氛优选为N2与H2还原气氛、CO的还原气氛、H2的还原气氛中的一种,其中,N2与H2还原气氛中的N2与H2的体积比优选但不仅仅限于为95:5,在该还原气氛中煅烧是为了将在燃烧过程中生成的+4价Ce、Tb离子和Ag离子还原成+3价Ce、Tb离子和Ag单质,从而生成Ln2-x-ySiO5:Cex,Tby,Agz化合物,有效保证Ln2-x-ySiO5:Cex,Tby,Agz的发光性能。其中,还原气氛是指还原性气体按体积比含量小于10%的混合气体。
在该硅酸盐发光材料制备方法中,采用高温固相法先通过制备含Ag的硅气凝胶,再与其他组分混合并煅烧,即可获得发光材料,从而使得制备工艺简单、成本低,具有广阔的生产应用前景。
以下通过多个实施例来举例说明硅酸盐发光材料的不同组成及其制备方法,以及其性能等方面。
实施例1
高温固相法制备Y1.989SiO5:Ce0.001,Tb0.01,Ag0.00003
首先称取硅气凝胶0.3g,溶解到10ml含有AgNO3 1.5×10-5mol/L的乙醇溶液中,在50℃下搅拌3h,然后超声处理10min,再在60℃干燥,将干燥后的样品研磨均匀,在600℃下预煅烧4h,制得含有Ag的硅气凝胶。称取Y2(CO3)3 1.4201g,Ce2(CO3)3 0.0009g,Tb2(CO3)3 0.0099g和含有Ag的硅气凝胶0.2404g混合均匀,再在95%N2+5%H2还原气氛下于1300℃保温烧结8 h,所得到产物冷却至室温,即得到Y1.989SiO5:Ce0.001,Tb0.01,Ag0.00003发光材料,在电子束激发下发射暖白光。
实施例2
高温固相法制备La1.962SiO5:Ce0.008,Tb0.03,Ag0.00007
首先称取硅气凝胶0.4g,溶解到20ml含有纳米Ag胶粒2.345×10-5mol/L的乙醇溶液中,在60℃下搅拌2h,然后超声10min,再在80℃干燥,将干燥后的样品研磨均匀,在800℃下预煅烧2h,制得含有Ag的硅气凝胶。称取La2O3 1.2784g,CeO2 0.0055g,Tb4O7 0.0224g和含有Ag的硅气凝胶0.2404 g混合均匀,再在95%N2+5%H2还原气氛下1450℃保温烧结4 h,所得到产物冷却至室温,即得到La1.962SiO5:Ce0.008,Tb0.03,Ag0.00007发光材料,在电子束激发下发射暖白光。
实施例3
高温固相法制备Gd1.76SiO5:Ce0.04,Tb0.2,Ag0.001
首先称取硅气凝胶1.0 g,溶解到30ml含有纳米Ag胶粒5.43×10-4mol/L的甲醇溶液中,在70℃下搅拌0.5h,然后超声10min,再在150℃干燥,将干燥后的样品研磨均匀,在1000℃下预煅烧0.5 h,制得含有Ag的硅气凝胶。称取Gd(NO3)3 2.4168g,Ce(NO3)3 0.0521g,Tb(NO3)3 0.2760g和含有Ag的硅气凝胶0.2404g混合均匀,再在CO的还原气氛下1600℃保温烧结1h,所得到产物冷却至室温,即得到Gd1.76SiO5:Ce0.04,Tb0.2,Ag0.001发光材料,在电子束激发下发射暖白光。
实施例4
高温固相法制备Y1.89SiO5:Ce0.01,Tb0.1,Ag0.0007
首先称取硅气凝胶0.4g,溶解到15ml含有纳米Ag胶粒3.1266×10-4mol/L的乙醇溶液中,在60℃下搅拌1.5h,然后超声10min,再在70℃干燥,将干燥后的样品研磨均匀,在800℃下预煅烧2h,制得含有Ag的硅气凝胶。称取Y2O3 0.8535g,CeO2 0.0055g,Tb4O7 0.0747g,和煅烧后的硅气凝胶0.2404g混合均匀,再在95%N2+5%H2还原气氛下1500℃保温烧结4h,所得到产物冷却至室温,即得到Y1.89SiO5:Ce0.01,Tb0.1,Ag0.0007发光材料,在电子束激发下发射暖白光。图1是Y1.89SiO5:Ce0.01,Tb0.1荧光粉与本实施例制备的硅酸盐发光材料的阴极射线发光光谱对比图,其中图中10是指本实施例制备的硅酸盐发光材料,11是指Y1.89SiO5:Ce0.01,Tb0.1荧光粉荧光粉。如图1所示,可以看出本实施例的发光材料在360~500nm内有较强的宽带发射谱,并且在544nm处有个窄带峰,544nm处的发光强度高于Y1.89SiO5:Ce0.01,Tb0.1的发光强度,本实施例制备得到的发光材料的发光强度超出未掺杂Ag的Y1.89SiO5:Ce0.01,Tb0.1荧光粉的38%,本实施例的发光材料具有稳定性好、发光效率较高的特点。
实施例5
高温固相法制备Lu1.73SiO5:Ce0.02,Tb0.25,Ag0.003
首先称取硅气凝胶 0.35g,溶解到25ml含有AgNO3 7.08×10-4mol/L的丙醇溶液中,在65℃下搅拌1.5h,然后超声10min,再在120℃干燥,将干燥后的样品研磨均匀,在1000℃下预煅烧2h,制得含有Ag的硅气凝胶。称取Lu2(C2O4)3 2.1244g,Ce2(CO3)3 0.0184g,Tb2(C2O4)3 0.2909g和煅烧后的硅气凝胶0.2404g混合均匀,再在H2还原气氛下1400℃保温烧结6h,所得到产物冷却至室温,即得到Lu1.73SiO5:Ce0.02,Tb0.25,Ag0.003发光材料,在电子束激发下发射暖白光。
实施例6
高温固相法制备Gd1.9SiO5:Ce0.05,Tb0.05,Ag0.005
首先称取硅气凝胶0.3 g,溶解到20ml含有AgNO3 1.25×10-3mol/L的乙醇溶液中,在60℃下搅拌2h,然后超声10min,再在100℃干燥,将干燥后的样品研磨均匀,在800℃下预煅烧2h,制得含有Ag的硅气凝胶。称取Gd2(C2O4)3 2.1983g,Ce2(C2O4)3 0.0540g,Tb2(C2O4)3 0.0582g,和煅烧后的硅气凝胶0.2404g混合均匀,再在95%N2+5%H2还原气氛下1450℃保温烧结4 h,所得到产物冷却至室温,即得到Gd1.9SiO5:Ce0.05,Tb0.05,Ag0.005发光材料,在电子束激发下发射暖白光。
实施例7
高温固相法制备Y1.89SiO5:Ce0.01,Tb0.1,Ag0.0004
首先称取硅气凝胶0.28 g,溶解到15ml含有纳米Ag胶粒1.2266×10-4mol/L的乙醇溶液中,在60℃下搅拌2h,然后超声10min,再在70℃干燥,将干燥后的样品研磨均匀,在900℃下预煅烧2h,制得含有Ag的硅气凝胶。称取Y2O3 0.8535g,CeO2 0.0055g,Tb4O7 0.0747g和含有Ag的硅气凝胶0.2404g混合均匀,再在95%N2+5%H2还原气氛下1450℃保温烧结4 h,所得到产物冷却至室温,即得到Y1.89SiO5:Ce0.01,Tb0.1,Ag0.0004发光材料,在电子束激发下发射暖白光。该Y1.89SiO5:Ce0.01,Tb0.1,Ag0.0004硅酸盐发光材料在5kv加速电压激发下的阴极射线发光光谱如图2所示,由图2可以看出本实施例的发光材料在360~500nm内有较强的宽带发射谱,并且在544nm处有个窄带峰,这与实施例4制备的硅酸盐发光材料性能极其相似,从而说明本发明实施例硅酸盐发光材料性能稳定。本实施例及实施例4中发光图谱均是在5KV加速电压的阴极射线激发下以岛津RF-5301PC光谱仪为检测器分析得出。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种硅酸盐发光材料,其分子通式为:Ln2-x-y SiO5:Cex,Tby,Agz,其中,Ln为Y、Gd、La、Lu中的一种,x的取值范围为0<x≤0.05,y的取值范围为0.01≤y≤0.25,z的取值范围为0<z≤0.005。
  2. 如权利要求1所述的硅酸盐发光材料,其特征在于:所述x的取值范围为0.001≤x≤0.04,y的取值范围为0.03≤y≤0.2,z的取值范围为0.00003≤z≤0.003。
  3. 一种硅酸盐发光材料制备方法,其包括如下步骤:
    按照通式Ln2-x-ySiO5:Cex,Tby,Agz中相应元素的化学计量比,称取Ln的源化合物、Ce 的源化合物、Tb的源化合物、Ag的源化合物和硅气凝胶;其中,Ln为Y、Gd、La、Lu中的一种;x的取值范围为0<x≤0.05,y的取值范围为0.01≤y≤0.25,z的取值范围为0<z≤0.005;
    将硅气凝胶溶解在Ag的源化合物的醇溶液中,然后依次搅拌、干燥、煅烧,得到含Ag的硅气凝胶;
    将称取的所述Ln的源化合物、Ce 的源化合物、Tb的源化合物与含有Ag的硅气凝胶混合后,在还原气氛下煅烧,得到通式为Ln2-x-ySiO5:Cex,Tby,Agz的所述硅酸盐发光材料。
  4. 如权利要求3所述的硅酸盐发光材料制备方法,其特征在于:
    所述Ln的源化合物为Ln的氧化物、硝酸盐、碳酸盐、草酸盐中的至少一种;
    所述Ce 的源化合物为Ce的氧化物、硝酸盐、碳酸盐、草酸盐中的至少一种;
    所述Tb的源化合物为Tb的氧化物、硝酸盐、碳酸盐、草酸盐中的至少一种;
    所述Ag的源化合物为Ag的硝酸盐或/和纳米Ag胶粒。
  5. 如权利要求3所述的硅酸盐发光材料制备方法,其特征在于:所述含Ag的硅气凝胶制备步骤中:所述搅拌过程是在50~75℃、超声条件下进行,且搅拌时间为0.5~3h;所述干燥过程是在60~150℃下进行;所述煅烧过程是在600~1000℃下进行。
  6. 如权利要求3或5所述的硅酸盐发光材料制备方法,其特征在于:所述Ag的醇溶液中,Ag离子的浓度为1.5×10-5~1.25×10-3mol/L,溶剂为乙醇。
  7. 如权利要求3或5所述的硅酸盐发光材料制备方法,其特征在于:所述选取的硅气凝胶的孔径为20~100nm,气孔率为92~98%。
  8. 如权利要求3或5所述的硅酸盐发光材料制备方法,其特征在于:所述含Ag的硅气凝胶制备步骤中的煅烧是在600~1300℃下热处理0.5~3h。
  9. 如权利要求3所述的硅酸盐发光材料制备方法,其特征在于:所述在还原气氛下煅烧的煅烧温度为1300~1600℃,时间为1~8h。
  10. 如权利要求3或9所述的硅酸盐发光材料制备方法,其特征在于:所述还原气氛为N2与H2混合还原气氛、CO还原气氛、H2还原气氛中的一种。
PCT/CN2010/075246 2010-07-19 2010-07-19 硅酸盐发光材料及其制备方法 WO2012009844A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/703,337 US20130075659A1 (en) 2010-07-19 2010-07-19 Luminescent material of silicate and preparing method thereof
EP10854874.4A EP2597133B1 (en) 2010-07-19 2010-07-19 Luminescent material of silicate and preparing method thereof
CN201080067223XA CN102933687A (zh) 2010-07-19 2010-07-19 硅酸盐发光材料及其制备方法
PCT/CN2010/075246 WO2012009844A1 (zh) 2010-07-19 2010-07-19 硅酸盐发光材料及其制备方法
JP2013516956A JP5655141B2 (ja) 2010-07-19 2010-07-19 珪酸塩発光材料及びその調製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/075246 WO2012009844A1 (zh) 2010-07-19 2010-07-19 硅酸盐发光材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2012009844A1 true WO2012009844A1 (zh) 2012-01-26

Family

ID=45496437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075246 WO2012009844A1 (zh) 2010-07-19 2010-07-19 硅酸盐发光材料及其制备方法

Country Status (5)

Country Link
US (1) US20130075659A1 (zh)
EP (1) EP2597133B1 (zh)
JP (1) JP5655141B2 (zh)
CN (1) CN102933687A (zh)
WO (1) WO2012009844A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514829A (ja) * 2012-03-29 2015-05-21 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド 金属ナノ粒子含有の珪酸塩発光材料及びその調製方法
JP2015532938A (ja) * 2012-10-31 2015-11-16 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド ケイ酸塩発光材料及びその製造方法
CN105112045A (zh) * 2015-08-20 2015-12-02 桂林市环境监测中心站 一种含介质层的包含金属纳米粒子的发光材料及制备方法
JP2015536363A (ja) * 2012-10-31 2015-12-21 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド ケイ酸塩発光材料及びその製造方法
EP2915866A4 (en) * 2012-10-31 2016-06-01 Ocean S King Lighting Science&Technology Co Ltd ALUMINATE-BASED LUMINESCENT MATERIAL AND PROCESS FOR PREPARING THE SAME

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1362465A (zh) * 2000-12-30 2002-08-07 大连路明发光科技股份有限公司 新型长余辉材料
WO2005042812A1 (en) * 2003-11-04 2005-05-12 Zagumennyi Alexander Iosifovic Scintillation substances (variants)
CN101760195A (zh) * 2010-01-22 2010-06-30 海洋王照明科技股份有限公司 硅酸盐蓝色发光材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927787B2 (ja) * 1977-04-13 1984-07-07 株式会社東芝 紫外線励起形螢光体
FR2634028B1 (fr) * 1988-07-06 1994-07-22 Commissariat Energie Atomique Monocristaux de silicates de lanthanides utilisables comme scintillateurs pour la detection des rayonnements x et gamma
US6278832B1 (en) * 1998-01-12 2001-08-21 Tasr Limited Scintillating substance and scintillating wave-guide element
DE10049803A1 (de) * 2000-10-09 2002-04-18 Bayer Ag Kompositpartikel
JP3906075B2 (ja) * 2001-06-07 2007-04-18 日亜化学工業株式会社 Fed用のモノクロ蛍光体
JP3872472B2 (ja) * 2003-11-12 2007-01-24 日亜化学工業株式会社 投写管用緑色発光イットリウムシリケート蛍光体及びそれを用いた投写管
US20050189518A1 (en) * 2004-02-27 2005-09-01 Fuji Photo Film Co., Ltd. Method of producing a fluorescent particle
JP2005320468A (ja) * 2004-05-11 2005-11-17 Fuji Photo Film Co Ltd ナノ粒子蛍光体及びその分散液

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1362465A (zh) * 2000-12-30 2002-08-07 大连路明发光科技股份有限公司 新型长余辉材料
WO2005042812A1 (en) * 2003-11-04 2005-05-12 Zagumennyi Alexander Iosifovic Scintillation substances (variants)
CN101760195A (zh) * 2010-01-22 2010-06-30 海洋王照明科技股份有限公司 硅酸盐蓝色发光材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2597133A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514829A (ja) * 2012-03-29 2015-05-21 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド 金属ナノ粒子含有の珪酸塩発光材料及びその調製方法
EP2832819A4 (en) * 2012-03-29 2015-12-23 Oceans King Lighting Science METAL NANOPARTICLES DOTED SILICATE LIGHT MATERIALS AND METHOD FOR THE PRODUCTION THEREOF
JP2015532938A (ja) * 2012-10-31 2015-11-16 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド ケイ酸塩発光材料及びその製造方法
JP2015536363A (ja) * 2012-10-31 2015-12-21 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド ケイ酸塩発光材料及びその製造方法
EP2915866A4 (en) * 2012-10-31 2016-06-01 Ocean S King Lighting Science&Technology Co Ltd ALUMINATE-BASED LUMINESCENT MATERIAL AND PROCESS FOR PREPARING THE SAME
CN105112045A (zh) * 2015-08-20 2015-12-02 桂林市环境监测中心站 一种含介质层的包含金属纳米粒子的发光材料及制备方法

Also Published As

Publication number Publication date
JP2013533910A (ja) 2013-08-29
EP2597133B1 (en) 2016-12-07
CN102933687A (zh) 2013-02-13
EP2597133A4 (en) 2013-11-27
JP5655141B2 (ja) 2015-01-14
US20130075659A1 (en) 2013-03-28
EP2597133A1 (en) 2013-05-29

Similar Documents

Publication Publication Date Title
CN101899308B (zh) 掺杂金属纳米粒子的稀土铝酸镧发光材料及其制备方法
CN102382646B (zh) 一种硅酸钇钠绿光发光材料及其制备方法
WO2012009844A1 (zh) 硅酸盐发光材料及其制备方法
JP2018513220A (ja) 酸窒化物蛍光粉及びその調製方法、酸窒化物発光体並びに発光デバイス
WO2012000179A1 (zh) 含有金属颗粒的硅酸锌锰发光材料及其制备方法
JP5965551B2 (ja) ケイ酸塩発光材料及びその製造方法
CN104073255A (zh) 一种硅酸锆盐蓝色荧光粉、制备方法及其应用
US9416308B2 (en) Core-shell structured silicate luminescent material and preparation method therefor
WO2011147083A1 (zh) 场发射用的荧光材料及其制备方法
US9193901B2 (en) Metal nanoparticle-coating silicate luminescent material and preparation method therefor
WO2012019359A1 (zh) 硅酸盐发光材料及其制备方法
US9045690B2 (en) Silicate luminescent material and production method thereof
WO2012009845A1 (zh) 一种发光材料及其制备方法
JP5913730B2 (ja) 金属ナノ粒子含有の珪酸塩発光材料及びその調製方法
CN109294583B (zh) 一种白光led用铈离子掺杂钛酸钆钡蓝光荧光粉及其制备方法
WO2012006771A1 (zh) 氧化物发光材料及其制备方法
US9447320B2 (en) Titanate luminescent material and preparation method therefor
US20150284630A1 (en) Aluminate luminescent material and preparation method therefor
WO2020015424A1 (zh) 氮化物荧光粉及其制备方法、含氮化物荧光粉的发光装置
CN103773370A (zh) 稀土-铝酸盐发光材料及其制备方法
CN103788950A (zh) 稀土铝酸镧发光材料及其制备方法
TWI261613B (en) Phosphor formulations for low voltage and manufacturing methods thereof
CN114316981A (zh) 一种led用荧光材料及其制备方法
CN103788949A (zh) 稀土铝酸镧发光材料及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067223.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854874

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13703337

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010854874

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010854874

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013516956

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE