WO2012008785A2 - 라말린의 합성방법 - Google Patents

라말린의 합성방법 Download PDF

Info

Publication number
WO2012008785A2
WO2012008785A2 PCT/KR2011/005206 KR2011005206W WO2012008785A2 WO 2012008785 A2 WO2012008785 A2 WO 2012008785A2 KR 2011005206 W KR2011005206 W KR 2011005206W WO 2012008785 A2 WO2012008785 A2 WO 2012008785A2
Authority
WO
WIPO (PCT)
Prior art keywords
ramalin
glutamic acid
carbon
solvates
hydrazinylphenol
Prior art date
Application number
PCT/KR2011/005206
Other languages
English (en)
French (fr)
Other versions
WO2012008785A3 (ko
Inventor
임정한
김일찬
이성구
김덕규
한세종
이형석
김성진
김태경
강필성
박희용
박하주
고혜연
박미라
박유경
Original Assignee
한국해양연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양연구원 filed Critical 한국해양연구원
Priority to JP2013519604A priority Critical patent/JP5684383B2/ja
Priority to CN201180039072.1A priority patent/CN103068794B/zh
Priority to US13/810,145 priority patent/US8865934B2/en
Priority to EP11807070.5A priority patent/EP2594552B1/en
Publication of WO2012008785A2 publication Critical patent/WO2012008785A2/ko
Publication of WO2012008785A3 publication Critical patent/WO2012008785A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C241/00Preparation of compounds containing chains of nitrogen atoms singly-bound to each other, e.g. hydrazines, triazanes
    • C07C241/04Preparation of hydrazides

Definitions

  • the present invention relates to a method for synthesizing ramaline, and more particularly, 2-hydrazinylphenol (2-Hydrazinylphenol), L-glutamic acid in which the carboxyl group of carbon 1 and the amino group of carbon 2 are protected. It relates to a method for synthesizing ramalin, and a method for preventing the decomposition of the ramin.
  • Lichens are similar to non-flowering plants and are a symbiotic association of mycobiant and alga (photobiant) and / or cyanobacteria.
  • fungi form mossized substrates containing fronds or typical secondary metabolites (Ahmadjin V., The lichen symbiosis, Wiley, New York, pp. 1-6 , 1993).
  • Lichens are less well studied than higher plants because it is difficult to collect a sufficient amount of natural samples, and mass cultivation techniques are not known.
  • Ramalina terebrata is a native lichen that colonizes King George Island in Antarctica and can be easily collected from various parts of King George Island.
  • the present inventors have isolated a novel compound called Ramalin (Ramalin) having excellent antioxidant activity while studying the Antarctic lichen Ramalina terebrata (Korean Patent Publication No. 10-2010-0052130).
  • Ramalin has been reported to have excellent anti-inflammatory activity (Korean Patent Application No. 10-2010-0052551).
  • L-Glutamic acid is a type of amino acid that has been used as an amino acid-based seasoning of a conventional seasoning, and is used as a substitute for salt, a dietary supplement, a nutrition enhancer, a flavor enhancer, and the like. Therefore, it is inexpensive and can be secured in large quantities, and has an optically active site such as RAMALIN.
  • An object of the present invention is to provide a method for synthesizing ramalin, salts thereof, solvates thereof, or solvates thereof having excellent antioxidant and anti-inflammatory activity.
  • the present invention reacts 2-hydrazinylphenol (2-Hydrazinylphenol) with L-glutamic acid protected with a carboxyl group of carbon 1 and an amino group of carbon 2, and then the protection is removed.
  • the present invention also provides a method for preventing degradation of ramalin, wherein the ramalin is dissolved and maintained in a solvent containing vitamin C (L-Ascorbic acid).
  • Figure 1 is a simplified diagram showing the synthesis site of the starting material L- glutamic acid and 2-hydrazinylphenol.
  • Figure 2 is a schematic diagram showing an embodiment of the reaction including a method for synthesizing ramalin in L- glutamic acid according to the present invention.
  • Figure 3 is a schematic diagram showing one embodiment of a reaction involving a method for synthesizing 2-hydrazinylphenol from the 2-aminophenol of the present invention.
  • Figure 4 is a photograph of the 1 H NMR results of the synthetic ramalin.
  • 5 is a graph confirming the storage amount according to the maintenance period of the synthetic ramine at 25 °C, 38 °C experiment.
  • 6 is a graph comparing the antioxidant activity of synthetic ramalin and natural product-derived ramalin.
  • the present invention is characterized by reacting 2-hydrazinylphenol (2-Hydrazinylphenol) with L-glutamic acid protected with a carboxyl group of carbon 1 and an amino group of carbon 2, and then removing the protection. It relates to a method for synthesizing ramalin, salts thereof, solvates thereof, or solvates thereof represented by the following formula (1).
  • Ramalin of the present invention is a compound having an antioxidant activity isolated from the Antarctic lichen, Ramalina terebrata, The ramalin is confirmed by using a high resolution ES-MS, the molecular weight is 254.1141, the molecular formula C 11 H 16 N 3 O It was confirmed that the compound of Formula 4 has the structure of Formula 1, it was named as ramalline because it is a compound separated from ramalina terebrata.
  • the salt of ramalin is not particularly limited as long as it is a pharmacologically acceptable salt, and the pharmacologically acceptable salt may be prepared by a conventional method in the art.
  • salts or formic acids with inorganic acids such as hydrochloric acid, hydrogen bromide, sulfuric acid, sodium hydrogen sulfate, phosphoric acid, carbonic acid, acetic acid, oxalic acid, benzoic acid, citric acid, tartaric acid, gluconic acid, gesty acid, fumaric acid, lactobionic acid,
  • Form salts of pharmacologically acceptable acids together with organic acids such as salicylic acid or acetylsalicylic acid (aspirin), or react with alkali metal ions such as sodium, potassium to form their metal salts, or ammonium It can react with the ions to form another form of pharmacologically acceptable salt.
  • the 'solvate' refers to the form of the RAMALIN or a salt thereof according to the present invention in a solid or liquid state coordinating with solvent molecules to form a complex.
  • Hydrates are a specific form of solvates coordinating with water, and preferred solvates in the context of the present invention are hydrates.
  • the 2-hydrazinylphenol may be characterized in that the tosyl (Tosyl) salt form.
  • the tosyl salt form of 2-hydrazinylphenol can be prepared by the following steps: (a) dissolving 2-aminophenol in methanol and flowing hydrogen chloride gas to obtain 2-aminophenol hydrochloric acid (HCl) salt.
  • the pH can be maintained at 2 to 5 while flowing the hydrogen chloride gas in step (a), and as a result, 2-aminophenol hydrochloride can be obtained in solid form.
  • 2-aminophenol hydrochloride dissolved in ethanol may be made of nitramide-type intermediate using isopentyl nitrite at low temperature and about minus 5 ° C.
  • step (c) the intermediate ethanol solution was added to an ethanol solution mixed with p -toluenesulfonic acid (PTSA or TsOH) and tin chloride (SnCl 2 ) at a low temperature (minus 5 ° C.). It can be added slowly while maintaining to obtain the tosyl salt of 2-hydrazinylphenol.
  • PTSA or TsOH p -toluenesulfonic acid
  • SnCl 2 tin chloride
  • Each compound is represented by the following formula: 2-aminophenol (Formula 2), 2-aminophenol hydrochloride (Formula 3), 2-aminophenol nitramide intermediate (Formula 4), 2-hydra Genylphenol tosyl salt (Formula 5).
  • the L-glutamic acid in which the carboxyl group of the first carbon and the amino group of the second carbon is protected can be protected using a method of protecting generally known carboxyl groups and amino groups.
  • benzyl groups may be introduced to protect the carboxyl and amino groups.
  • benzyl groups may be introduced not only to carbon 1 and carbon 2 but also to the carboxyl group of carbon 5, and thus additionally removing the benzyl group of the carboxyl group of carbon 5 is necessary.
  • the protective benzyl group of the carboxyl group of carbon 1 may be removed, resulting in a loss of yield. It may also be slow to remove protection after reaction with 2-hydrazinylphenol.
  • the L-glutamic acid in which the carboxyl group of the first carbon and the amino group of the second carbon is protected may be L-glutamic acid lactone in which the carboxyl group and the amino group are cyclized.
  • the L-glutamic acid lactone may be characterized in that the L-glutamic acid in the form of a secondary amine, and then cyclized.
  • the L-glutamic acid in the form of a secondary amine, and then cyclized.
  • the octagonal ring is made together with not only the first carbon but also the fifth carbon, it may be difficult to proceed with the desired reaction.
  • reaction to form a secondary amine form using Troc for 24 hours using sodium hydrogen carbonate (NaHCO 3 ) it can be obtained without a separate purification process in about 85% yield It was confirmed.
  • L-glutamic acid made in the form of primary acid using Troc is added to paraformaldehyde (paraformaldehyde) and reflux in toluene using para-toluenesulfonic acid (PTSA) as an acid catalyst. Remove the water produced during the reaction and if no more water is produced, remove the catalyst using potassium carbonate (K 2 CO 3 ) and diethyl ether and petroleum ether. It was confirmed that recrystallization gave a pure white solid primary acid.
  • the primary acid is L-glutamic acid lactone, it may be represented by the structure shown in the following formula (6).
  • the secondary amine form is added to L-glutamic acid with 2,2,2-trichloro-ethyl-chloroformate (2,2,2-Trichloro-ethyl-chloroformate; Troc) It may be characterized in that it is prepared by reacting.
  • 2-hydrazinyl is activated by carboxyl group of carbon number 1 of L-glutamic acid (primary acid) protected with a carboxyl group of carbon number 1 and an amino group of carbon number 2 represented by Formula 6
  • carboxyl group of carbon number 1 of L-glutamic acid primary acid
  • an amino group of carbon number 2 represented by Formula 6 When combined with phenol, it was confirmed that the reaction occurred in a yield of 50%.
  • L-glutamic acid in which the carboxyl group of carbon 1 and the amino group of carbon 2 is protected may be characterized in that the carboxyl group of carbon 5 is further activated.
  • Activation of the carboxyl group is, for example, dicyclohexylcarbodiimide (DCC), 1-hydroxy-benzotriazole (HOBt), thionyl chloride or ethylchloroformic acid (Ethylcholoroformate).
  • DCC dicyclohexylcarbodiimide
  • HOBt 1-hydroxy-benzotriazole
  • thionyl chloride or ethylchloroformic acid (Ethylcholoroformate).
  • Ethylcholoroformate ethylcholoroformate
  • L-glutamic acid protected by the carboxyl group of carbon 1 and the amino group of carbon 2 is dicyclohexylcarbodiimide (DCC) and to activate the carboxyl group of carbon 5 and 1-hydroxy-benzotriazole (1-Hydroxybenxotriazole; HOBt), and triethyl amine (Triethyl amine; it may be characterized in that it is carried out by reacting by further treatment with (TEA).
  • DCC dicyclohexylcarbodiimide
  • HOBt 1-hydroxy-benzotriazole
  • Triethyl amine triethyl amine; it may be characterized in that it is carried out by reacting by further treatment with (TEA).
  • zinc and acetic acid were simultaneously used to obtain ramalin to remove protection from the bound material.
  • zinc and acetic acid can be used simultaneously to remove the protection.
  • the protection may be removed by a method already known in the art.
  • the present invention relates to a method for preventing the decomposition of ramalin, characterized in that the ramalin is dissolved and maintained in a solvent containing vitamin C (L-Ascorbic acid).
  • the concentration to dissolve the RAMALIN may be characterized in that the same as the concentration of vitamin C.
  • the solvent for dissolving ramalin can be used as water. More preferably, it may be characterized by maintaining the dissolved vitamin C and ramalin at a concentration of 1000 ppm in water.
  • Example 1 Preparation of glutamic acid protected with carboxyl group of carbon 1 and carbonyl group of carbon 2 and preparation of 2-hydrazinylphenol
  • EA Ethylacetate
  • the yield of N-Troc-protected Troc-L-glutamic acid was about 85%, as in the compound shown after the first reaction of FIG. 2, and was obtained without high purification.
  • NMR spectra (1D and 2D) were added to D 2 O, using acetone- d 6 , a JEOL JNM ECP-400 spectrometer (500 MHz for 13 C 1 H and 500 MHz ) Is recorded.
  • NMR spectra (1D and 2D) were added to D 2 O, using acetone- d 6 , a JEOL JNM ECP-400 spectrometer (500 MHz for 13 C 1 H and 500 MHz ) Is recorded.
  • NMR spectra (1D and 2D) were added to D 2 O, using acetone- d 6 , a JEOL JNM ECP-400 spectrometer (500 MHz for 13 C 1 H and 500 MHz ) Is recorded.
  • activated L-glutamic acid lactone (about 0.01 mol) was added to a completely dried 100 ml round flask and dissolved in 50 ml CH 2 Cl 2 .
  • 2-Hydrazinylphenol tosyl salt (0.0095mol) and Triethylamine (0.0095mol) were added to MC and completely dissolved.
  • the prepared Hydrazine solution was slowly added to the starting solution and pyridine (0.8 mL) was added.
  • the reaction was heated to 40 ° C. for about 3 hours and the temperature was lowered to room temperature, followed by stirring for about 15 hours. After washing with 15ml of distilled water and 15ml of saturated NaHCO 3 solution and again washed twice with 15ml of distilled water.
  • the organic layer was treated with MgSO 4 to remove water, filtered and concentrated to yield a crude product.
  • Ramalin is easily decomposed due to its high antioxidant power, and is unstable enough to disappear more than half within 4 days at room temperature, so in this embodiment, in order to obtain a method for maintaining ramalin for a long time, vitamin C (L-Ascobic acid) was added 1: 1 (1000 ppm each) and stored in water at 25 °C, 38 °C each to confirm the stability.
  • vitamin C L-Ascobic acid
  • S is the value measured at absorbance 517 nm after reacting DPPH and the sample
  • B is the value measured at absorbance 517 nm after reacting DPPH and methanol.
  • the IC 50 value of the natural product-derived ramalin was 1.22 ⁇ g / ml, and in the case of the synthesized ramine, 0.96 ⁇ g / ml, the amount of ramalized from the natural product and the synthesized ramine were almost Equivalent excellent antioxidant power was confirmed.
  • ramalline having excellent antioxidant and anti-inflammatory effects can be synthesized in a stable yield, thereby enabling mass production of ramalin.

Abstract

본 발명은 라말린의 합성방법에 관한 것으로, 더욱 상세하게는, 2-하이드라지닐-페놀(2-Hydrazinylphenol)과, 1번탄소의 카복실기 및 2번탄소의 아미노기가 보호된 L-글루탐산을 반응시키는 것을 특징으로 하는, 라말린의 합성방법 및 상기 라말린의 분해 방지방법에 관한 것이다. 본 발명에 따르면, 항산화 및 항염증 효과가 뛰어난 라말린을 안정적인 수율로 합성할 수 있어, 라말린의 대량생산이 가능하다. 또한, 라말린을 장기간 안정적으로 유지할 수 있어 라말린을 산업상 이용하기 용이하다.

Description

라말린의 합성방법
본 발명은 라말린의 합성방법에 관한 것으로, 더욱 상세하게는, 2-하이드라지닐페놀(2-Hydrazinylphenol)과, 1번탄소의 카복실기 및 2번탄소의 아미노기가 보호된 L-글루탐산을 반응시키는 것을 특징으로 하는, 라말린의 합성방법 및 상기 라말린의 분해 방지방법에 관한 것이다.
지의류는 비개화식물과 비슷하며, 곰팡이(mycobiant) 및 조류(alga, photobiant) 및/또는 시아노박테리아의 공생연합이다. 지의류에서, 곰팡이는 엽상체 또는 전형적인 이차대사산물을 함유하고 있는 이끼화된 기질을 형성한다(Ahmadjin V., The lichen symbiosis, Wiley, New York, pp.1-6, 1993). 지의류는 충분한 양의 천연샘플을 수집하기가 어렵고, 대량재배 기술이 알려져 있지 않기 때문에, 고등식물보다는 연구가 미진하였다.
지의류의 조직배양법, 대량생산 방법 및 생화학적 분석 방법 등이 개선됨에 따라, 이에 대한 연구가 활발히 진행되고 있다(Behera, B.C. et al., Lebensm. Wiss. Technol., 39:805, 2006). 세포독성, 살곰팡이, 항미생물, 항산화 등의 여러 생물학적 활성을 가지는 지방산, depside 및 depsidones, 디벤조푸란(debenzofurans), diterpenes, 안트라퀴논(anthraquinones), 나프토퀴논(naphtoquinones), 우스닉산(usninic acid), 풀비닉 산(pμlvinic acids), 잔톤(xanthones) 및 에피디티오피퍼라진이온(epidithiopiperazinediones)을 포함하는 화합물들이 지의류로부터 분리된 바 있다(Muller, K., Appl. Microbiol. Biotechnol., 56:9-16, 2001).
라말리나 테레브라타(Ramalina terebrata)는 남극대륙 킹조지섬에 군락을 이루어 자생하는 지의류로서, 킹조지섬의 곳곳에서 용이하게 채취할 수 있다. 본 발명자들은 상기 남극 지의류 Ramalina terebrata를 연구하던 중에 우수한 항산화 활성을 가진 라말린(Ramalin)이라는 신규 화합물을 분리한 바 있다(대한민국 공개특허공보 제10-2010-0052130호). 또한, 라말린은 우수한 항염증 활성을 가진 것이 보고된 바 있다(대한민국 특허출원번호 제10-2010-0052551호).
그러나 라말린은 우수한 항산화 활성 및 항염증 활성이 확인되어 대량 생산의 필요성이 있으나, 종래 라말리나 테레브라타에서 메탄올을 이용한 분리방법(대한민국 공개특허공보 제10-2010-0052130호)에 의할 경우, 극지 지의류 특유의 느린 성장속도, 자연에서 대량채취가 어려운 점 및 라말리나 테레브라타에서 추출되는 양이 매우 소량인 점 때문에, 그 생산에 비용과 시간이 많이 드는 문제가 있어왔다. 또한, 라말린은 자체의 높은 항산화력으로 인하여 쉽게 분해된다. 상온에서 4일 이내에 절반 이상 사라질 정도로 불안정하여 그 유지가 힘든 문제가 있어왔다.
L-글루탐산(L-Glutamic acid)은 종래 지미료의 일종의 아미노산계 조미료로 사용되어온 아미노산의 일종으로, 시중에서 소금의 대체용, 식이보충제, 영양강화제, 향미증진제 등으로 사용되고 있다. 따라서 가격도 저렴하며 대량 확보도 가능하면서, 라말린과 같은 광학 활성자리를 가지고 있다.
이에 본 발명자들은 라말린의 화학적 합성방법을 개발하기 위하여 예의 노력한 결과, 라말린과 같은 광학 활성자리를 가지고 있는 L-글루탐산(L-Glutamic acid)을 이용하여, 2-하이드라지닐페놀(2-hydrazinylphenol)과의 합성을 계획하여 수행한 결과, 천연물 유래의 라말린과 같은 효능을 나타내는 라말린이 합성됨을 확인함과 아울러, 이를 비타민 C와 함께 보관할 경우, 라말린의 분해를 방지하여 장기간 유지가 가능함을 확인하고 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 목적은 우수한 항산화 및 항염증 활성을 갖는 라말린, 그의 염, 그의 용매화물, 또는 그의 염의 용매화물의 합성방법을 제공하는데 있다.
본 발명의 다른 목적은 합성된 라말린의 분해를 방지하는 방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 2-하이드라지닐페놀(2-Hydrazinylphenol)과, 1번탄소의 카복실기 및 2번탄소의 아미노기가 보호된 L-글루탐산을 반응시킨 다음, 상기 보호를 제거하는 것을 특징으로 하는, 하기 화학식 1로 표시되는 라말린, 그의 염, 그의 용매화물, 또는 그의 염의 용매화물의 합성방법을 제공한다:
화학식 1
Figure PCTKR2011005206-appb-C000001
본 발명은 또한, 라말린을 비타민 C(L-Ascorbic acid)를 함유하는 용매에 용해시켜 유지하는 것을 특징으로 하는 라말린의 분해 방지방법을 제공한다.
본 발명의 다른 특징 및 구현예는 다음의 상세한 설명 및 첨부된 특허청구범위로부터 더욱 명백해 질 것이다.
도 1은 출발물질 L-글루탐산과 2-하이드라지닐페놀의 합성 자리를 나타낸 간략도이다.
도 2는 본 발명에 따른 L-글루탐산에서 라말린을 합성하는 방법을 포함하는 반응의 일실시예를 나타내는 개략도이다.
도 3은 본 발명의 2-아미노페놀에서 2-하이드라지닐페놀을 합성하는 방법을 포함하는 반응의 일실시예를 나타내는 개략도이다.
도 4는 합성 라말린의 1H NMR 결과를 찍은 사진이다.
도 5는 합성 라말린의 유지기간에 따른 보존량을 각 25℃, 38℃에서 실험하여 확인한 그래프이다.
도 6은 합성 라말린과 천연물 유래 라말린의 항산화활성을 비교한 그래프이다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명은 일 관점에서, 2-하이드라지닐페놀(2-Hydrazinylphenol)과, 1번탄소의 카복실기 및 2번탄소의 아미노기가 보호된 L-글루탐산을 반응시킨 다음, 상기 보호를 제거하는 것을 특징으로 하는, 하기 화학식 1로 표시되는 라말린, 그의 염, 그의 용매화물, 또는 그의 염의 용매화물의 합성방법에 관한 것이다.
화학식 1
Figure PCTKR2011005206-appb-I000001
본 발명의 라말린은 남극 지의류인 라말리나 테레브라타로부터 분리한 항산화 활성을 갖는 화합물로, 상기 라말린은 고분해능 ES-MS를 이용해 확인한 결과, 분자량이 254.1141이고, 분자식 C11H16N3O4의 화합물로 화학식 1의 구조를 가지는 것으로 확인하였으며, 라말리나 테레브라타로부터 분리된 화합물이므로 라말린으로 명명되었다.
본 발명에서는 라말린을 라말리나 테레브라타에서 분리추출하는 대신 화학적으로 합성하는 방법을 개발하기 위해 2-하이드라지닐페놀(2-Hydrazinylphenol)과, 1번탄소의 카복실기 및 2번탄소의 아미노기가 보호된 L-글루탐산을 반응시킨 후 상기 보호를 제거함으로서 라말린이 합성되는 것을 확인하였다.
본 발명에서 상기 라말린의 염(salt)으로는 약리학적으로 허용되는 염이라면 특별히 제한되지는 않으며, 상기 약리학적으로 허용되는 염은 당해 기술분야에서 통상적인 방법에 의해 제조될 수 있다. 예를 들면, 염산, 브롬화수소, 황산, 황산수소나트륨, 인산, 탄산 등의 무기산과의 염 또는 개미산, 초산, 옥살산, 벤조산, 시트르산, 타르타르산, 글루콘산, 게스티스산, 푸마르산, 락토비온산, 살리실릭산, 또는 아세틸살리실릭산 (아스피린)과 같은 유기산과 함께 약리학적으로 허용 가능한 산의 염을 형성하거나, 또는 소듐, 포타슘 등의 알칼리 금속이온과 반응하여 이들의 금속염을 형성하거나, 또는 암모늄 이온과 반응하여 또 다른 형태의 약리학적으로 허용 가능한 염을 형성할 수 있다.
본 발명에서 ‘용매화물’은 용매 분자와 배위 결합하여 착물을 형성하는 고체 또는 액체 상태의 본 발명에 따른 라말린 또는 그의 염의 형태를 지칭한다. 수화물은 물과 배위 결합한 용매화물의 특정 형태로서, 본 발명과 관련하여 바람직한 용매화물은 수화물이다.
본 발명에 있어서, 상기 2-하이드라지닐페놀은 토실(Tosyl)염 형태인 것을 특징으로 할 수 있다. 상기 2-하이드라지닐페놀의 토실염 형태는 다음과 같은 단계로 제조할 수 있다: (a) 2-아미노페놀을 메탄올에 녹이고 염화수소 가스를 흘려주어 2-아미노페놀 염산(HCl)염을 얻는 단계; (b) 상기 2-아미노페놀 염산염을 에탄올에 녹이고, 이소펜틸 니트라이트(Isopentyl nitrite)를 사용하여 니트라미드(Nitramide) 형태의 중간체를 만드는 단계; 및 (c) 상기 중간체 에탄올 용액을, p-톨루엔설폰산(para-toluenesulfonic acid;PTSA or TsOH) 및 염화주석(SnCl2)이 섞인 에탄올 용액에 첨가하여 2-하이드라지닐페놀의 토실염을 얻는 단계.
본 발명의 바람직한 일례로, 상기 (a) 단계에서 염화수소 가스를 흘려주면서 pH를 2 내지 5로 유지시킬 수 있으며, 그 결과, 2-아미노페놀 염산염을 고체형태로 얻을 수 있다. 또한, 상기 (b)단계에서, 에탄올에 녹인 2-아미노페놀 염산염을 낮은 온도, 약 영하 5℃에서 이소펜틸 니트라이트를 사용하여 니트라미드 형태의 중간체를 만들 수 있다. 그 후, 상기 (c)단계에서, 중간체 에탄올 용액을, p-톨루엔설폰산(para-toluenesulfonic acid;PTSA or TsOH) 및 염화주석(SnCl2)이 섞인 에탄올 용액에 낮은 온도 (영하 5℃)를 유지하면서 천천히 첨가하여 2-하이드라지닐페놀의 토실염을 얻을 수 있다.
각 화합물은 아래와 같은 화학식으로 나타내어진다: 2-아미노페놀(2-aminophenol)(화학식 2), 2-아미노페놀 염산염(화학식 3), 2-아미노페놀 니트라미드 중간체(화학식 4), 2-하이드라지닐페놀 토실염(화학식 5).
화학식 2
Figure PCTKR2011005206-appb-C000002
화학식 3
Figure PCTKR2011005206-appb-C000003
화학식 4
Figure PCTKR2011005206-appb-C000004
화학식 5
Figure PCTKR2011005206-appb-C000005
본 발명에 있어서, 상기 1번탄소의 카복실기 및 2번탄소의 아미노기가 보호된 L-글루탐산은 일반적으로 알려진 카복실기 및 아미노기를 보호하는 방법을 이용하여 보호할 수 있다. 예를 들어, 벤질(Benzyl)기를 도입하여 카복실기 및 아미노기를 보호할 수 있다. 단, 벤질기를 사용하여 보호할 경우, 1번탄소와 2번탄소뿐만 아니라, 5번탄소의 카복실기까지 벤질기가 도입될 수 있으므로, 5번탄소의 카복실기의 벤질기를 제거하는 단계가 추가로 필요하며, 그 경우, 1번탄소의 카복실기의 보호 벤질기도 제거되는 경우가 생겨 수율 손실이 일어날 수 있다. 또한 2-하이드라지닐페놀과 반응 후에 보호를 제거하는 단계에서도 속도가 느릴 수 있다.
따라서 본 발명의 바람직한 일 양태로, 상기 1번탄소의 카복실기 및 2번탄소의 아미노기가 보호된 L-글루탐산은, 상기 카복실기와 상기 아미노기가 고리화 되어 있는 L-글루탐산 락톤인 것을 특징으로 할 수 있다.
본 발명의 더욱 바람직한 양태로는, 상기 L-글루탐산 락톤은 L-글루탐산을 2차 아민형태로 만든 다음, 고리화 시키는 것을 특징으로 할 수 있다. 1차 아민형태에서 고리화 시키는 경우, 1번탄소뿐만 아니라 5번탄소까지 함께 7각 링이 만들어지게 되는 경우가 생기므로, 원하는 반응을 진행시키기 어려울 수 있다.
본 발명의 일 실시예에 따르면, Troc을 이용하여 2차 아민형태로 만드는 반응을 탄산수소나트륨(NaHCO3)을 사용하여 24시간동안 진행시킬 경우, 약 85% 수율로 별도 정제과정 없이 얻을 수 있는 것을 확인하였다.
본 발명의 일 실시예에 따르면, Troc을 이용하여 일차 산 형태로 만든 L-글루탐산은 파라포름알데히드(paraformaldehyde)를 첨가하고 산촉매로 PTSA(para-toluenesulfonic acid)를 사용하여 톨루엔에서 리플럭스(reflux)시키며, 반응 도중 생성되는 물을 제거하고 물이 더 이상 생성되지 않으면 탄산칼륨(K2CO3)을 사용하여 촉매를 제거하고 다이에틸에터(Diethyl ether)와 페트롤리움에터(petroleum ether)로 재결정하면 순수한 하얀색 고체 1차산을 얻을 수 있음을 확인하였다. 상기 1차산은 L-글루탐산 락톤이며, 하기 화학식 6과 같은 구조로 표시할 수 있다.
화학식 6
Figure PCTKR2011005206-appb-C000006
따라서 본 발명의 가장 바람직한 양태는, 상기 2차 아민형태는 L-글루탐산에 2,2,2-트라이클로로-에틸-클로로포름산(2,2,2-Trichloro-ethyl-chloroformate;Troc)을 첨가·반응시켜 제조한 것임을 특징으로 할 수 있다.
본 발명의 일실시예에 따르면, 상기 화학식 6으로 나타나는 1번탄소의 카복실기 및 2번탄소의 아미노기가 보호된 L-글루탐산(1차산)의 5번탄소의 카복실기를 활성화시켜서 2-하이드라지닐페놀과 결합반응시킬 경우, 수율 50%로 반응이 일어나는 것을 확인하였다.
따라서 본 발명에 있어서, 바람직하게는 1번탄소의 카복실기 및 2번탄소의 아미노기가 보호된 L-글루탐산은 5번탄소의 카복실기가 추가로 활성화되어 있는 것을 특징으로 할 수 있다. 카복실기의 활성화는 예를 들어, 디사이클로헥실카보다이이미드(Dicyclohexylcarbodiimide;DCC), 1-하이드록시-벤조트라이아졸(1-Hydroxybenxotriazole;HOBt), 싸이오닐 클로라이드(Thionyl chloride) 또는 에틸클로로포름산(Ethylcholoroformate)을 첨가하여 유도할 수 있다.
본 발명 일실시예에서, 상기 활성화 물질로 디사이클로헥실카보다이이미드(Dicyclohexylcarbodiimide;DCC) 및 1-하이드록시-벤조트라이아졸(1-Hydroxybenxotriazole;HOBt)을 사용하는 경우, 활성화와 동시에 결합반응이 일어나나, 반응시간이 20시간 이상이라 불안정 상태인 하이드라지닐페놀이 분해되는 문제점이 있음을 발견하였으나, 싸이오닐 클로라이드 또는 에틸클로로포름산 등을 사용할 경우 수율이 30%로 나타나므로, DCC와 HOBt(수율 50%)를 사용하여 활성화시키는 것이 보다 우수함을 확인하였다.
따라서, 본 발명의 가장 바람직한 양태는, 1번탄소의 카복실기 및 2번탄소의 아미노기가 보호된 L-글루탐산은 5번탄소의 카복실기를 활성화 시키기 위하여 디사이클로헥실카보다이이미드(Dicyclohexylcarbodiimide;DCC) 및 1-하이드록시-벤조트라이아졸(1-Hydroxybenxotriazole;HOBt)을 사용하고, 트라이에틸-아민(Triethyl amine;TEA)을 추가로 처리하여 반응시켜 수행되는 것을 특징으로 할 수 있다.
본 발명은 일실시예에서, 결합된 물질에서 보호를 제거하기 위하여 동시에 아연(Zinc)과 아세트산(Acetic acid)을 사용하여 라말린을 수득하였다.
따라서, 본 발명에 있어서, 바람직하게는 보호를 제거하기 위하여 아연과 아세트산을 동시에 사용할 수 있다. 그 외 당해 업계에서 이미 공지된 방법으로 보호를 제거하여도 무방하다.
본 발명은 일실시예에서, 높은 항산화 활성으로 인하여, 상온에서 유지기간이 길지 않은 라말린을 비타민 C가 함유된 용매에 용해시켜 유지시킬 경우, 확연히 오래 유지되는 것을 확인하였다.
따라서 본 발명은 다른 관점에서, 라말린을 비타민 C(L-Ascorbic acid)를 함유하는 용매에 용해시켜 유지하는 것을 특징으로 하는 라말린의 분해 방지방법에 관한 것이다.
본 발명에 있어서, 상기 라말린을 용해시키는 농도는 비타민 C의 농도와 같은 것을 특징으로 할 수 있다. 바람직하게는 라말린을 용해시키는 용매를 물로 할 수 있다. 더욱 바람직하게는 물에 비타민 C와 라말린을 1000ppm 농도로 용해시켜 유지하는 것을 특징으로 할 수 있다.
실시예
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: 1번탄소의 카복실기와 2번탄소의 카보닐기가 보호된 글루탐산의 제조 및 2-하이드라지닐페놀의 준비
1-1: Troc-L-글루탐산의 제조
도 1에 나타난 개략도에서 확인할 수 있는 바와 같이, 라말린의 합성에 필요한 Troc-L-글루탐산을 제조하기 위하여, 아래와 같은 방법으로 실험을 수행하였다. 500ml two neck round flask에 31.5g (0.375mol)의 NaHCO3를 물 125ml에 녹여 수용액(solution)을 만들었다. Reflux condenser와 dropping funnel을 설치하고 14.7g (0.1mol)의 L-글루탐산(L-Glutamic acid)을 상온에서 magnetic bar를 이용하여 교반하면서 천천히 첨가하였다. 반응물의 온도를 35℃로 올리고 2,2,2-Trichloroethylchloroflomate를 천천히 dropping 시켜주었다. 반응 mixture를 40~45℃의 온도로 가열하고 6시간 교반하였다.
이후 온도를 다시 상온으로 낮춰준 후 약 15시간 정도 계속 교반하였다. 반응이 완료되면 Diethylether(30ml)를 첨가하여 물층을 씻어주고 유기층을 제거하였다. 물층에 5M HCl을 서서히 첨가하여 pH를 2 이하로 낮춰준 후 Ethylacetate(이하, EA)를 3회(50ml x 3)에 걸쳐 extraction하면서 물층에 남아있는 product를 녹여내었다. EA 추출물을 MgSO4로 물을 제거하고 rotary evaporator로 건조시켰다. EA가 모두 제거되고 난 후, 옅은 노란색 액체의 product를 얻어내었다.
그 결과, 도 2의 첫번째 반응 후 나타낸 화합물과 같이, N-Troc 으로 보호된 Troc-L-글루탐산의 수율은 약 85%정도 이었으며 별도의 정제 과정 없이 높은 순도로 얻을 수 있었다.
또한, 생성물의 구조를 확인하기 위하여, NMR 스펙트럼 (1D 및 2D)은 D2O 에 더하여, 아세톤-d 6 를 사용하여, JEOL JNM ECP-400 spectrometer (13C 1H 및 500 MHz에 대한 500 MHz)를 이용하여 기록하였다. 이 때, 케미컬 쉬프트는 잔여 아세톤-d 6 (dH/dC = 2.22/21.0)을 참조하였다. HMQC 및 HMBC 실험은 1JCH = 140 Hz, nJCH = 8 Hz 조건에서 최적화 되었다.
그 결과, 1H NMR (δppm, acetone d6) : 1.55-2.75 (m, 4H, CH2CH2); 4.15-4.55 (m, 1H, CH); 4.70 (s, 2H, CH2CCl3); 6.65 (d, J 8Hz, 1H, NH); 10.6 (s, 2H, OH)와 같은 결과를 나타냄을 확인하였다.
1-2: 고리화 반응
실시예 1-1에 의해 얻어진 Troc-L-글루탐산의 보호된 카복실기와 아미노기를 서로 고리형태로 엮어 보호하기 위해 아래와 같은 방법으로 고리화 반응을 시켰다. 이를 위하여, 500ml round flask에 N-Troc glutamic acid (0.04mol)를 넣고 toluene 200ml를 첨가하여 녹였다. Flask에 Deak-stark 장치를 연결하고 위에 reflux condenser를 설치한 후, 위 flask에 0.08mol의 paraformaldehyde (2.4g), 0.0024mol의 PTSA (0.46g)를 첨가하였다. 반응온도를 120℃로 높이고 교반하면서 reflux시키고, Dean-stark에 더 이상 물이 생기지 않을 때까지 (약 3시간) 가열하였다.
반응이 완결된 후, 상온으로 식히고 EA 50ml를 첨가하였다. 그 후, 유기층을 층분리하고 0.3M K2CO3 4ml를 첨가하여 층분리 시켰다. 물을 3회에 걸쳐 5ml씩 첨가하여 씻어내었다. 유기층을 MgSO4로 수분을 제거하고 solvent를 evaporation으로 제거하였다. 건조 후 생긴 하얀색 고체를 Ether 5ml, petroleum ether 5ml 첨가하여 씻어주었다.
그 결과, 도 2의 두번째 반응 후 나타낸 화합물과 같이, Filter후 건조하여 순수한 흰색 고체를 수율 85%로 얻어내었다. 이 흰색고체는 N-트라이클로로에틸옥시카보닐-L-글루탐산 락톤(N-Trichloroethyloxy carbonyl-L-glutamic acid lactone)으로, 고리화 반응이 일어나 1번탄소의 카보닐기와 2번탄소의 아미노기가 고리화 되어 보호된 화합물로 확인하였다.
또한, 생성물의 구조를 확인하기 위하여, NMR 스펙트럼 (1D 및 2D)은 D2O 에 더하여, 아세톤-d 6 를 사용하여, JEOL JNM ECP-400 spectrometer (13C 1H 및 500 MHz에 대한 500 MHz)를 이용하여 기록하였다. 이 때, 케미컬 쉬프트는 잔여 아세톤-d 6 (dH/dC = 2.22/21.0)을 참조하였다. HMQC 및 HMBC 실험은 1JCH = 140 Hz, nJCH = 8 Hz 조건에서 최적화 되었다.
그 결과, 1H NMR (δppm, acetone d6) : 2.15-2.65 (m, 4H, CH2CH2) ; 4.51 (m, 1H, CH) ; 4.82-5.00 (m, 2H, CH2CCl3) ; 5.37-5.59 (m, 2H, NCH2O) ; 10.32 (s, 1H, OH)와 같은 결과를 나타냄을 확인하였다.
1-3: 2-하이드라지닐페놀의 준비
2-하이드라지닐 페놀을 만들기 위하여, 2-아미노페놀을 준비하여, Round flask에 2-Aminophenol 50g (0.46mol)을 넣고 상온에서 메탄올에 완전히 녹였다. 별도의 HCl gas 투입관을 통하여 bubbling시키면서 pH를 2~5정도로 유지시키며 15시간 이상 교반을 진행하였다. (pH는 2~5 계속 유지) 질소가스로 약 30분간 purge한 후 Rotary evaporator로 농축하였더니 갈색 고체가 생성되었다. 이 고체를 EA:Hexane = 3:7 용액으로 씻어준 후 filter 하여 완전 건조시켰다. 생성된 고체(2-아미노페놀 하이드로젠 클로라이드)를 수득하였다.
그 후 상기 수득된 고체 60g (0.41mol)을 에탄올 300ml에 완전 녹인 후 온도를 -5℃로 낮추었다. Isopentyl nitrite 55.3g (0.41mol)을 에탄올에 희석하여 starting solution에 천천히 dropping 시켜준 후 30분간 교반하였다(온도는 -5℃ 계속 유지). 다른 round flask에 Tin chloride 156.3g (0.82mol)과 PTSA 78.4g (0.41mol)을 EtOH에 녹인 후 온도를 -5℃로 낮춰놓고 반응중이던 Aminophenol mixture를 서서히 첨가하면서 교반을 1시간 이상 진행하였다. 반응이 완결되면 diethylether 500ml를 투입하여 10분간 교반 진행한 후 석출된 고체를 filter하였다. Filter된 고체를 EA 200ml, Hexane 400ml로 세척한 후 건조하여 2-Hydroxy phenyl hydrazine toluene sulfonic aicd salt를 얻었다. 본 반응의 개략도를 도 3에 나타내었다.
그 결과, 도 3의 개략도 끝에 나타낸 화합물과 같이, 2-하이드라지닐 페놀을 제조하였으며, 위 반응의 수율은 약 80% 수율임을 확인하였다.
또한, 생성물의 구조를 확인하기 위하여, NMR 스펙트럼 (1D 및 2D)은 D2O 에 더하여, 아세톤-d 6 를 사용하여, JEOL JNM ECP-400 spectrometer (13C 1H 및 500 MHz에 대한 500 MHz)를 이용하여 기록하였다. 이 때, 케미컬 쉬프트는 잔여 아세톤-d 6 (dH/dC = 2.22/21.0)을 참조하였다. HMQC 및 HMBC 실험은 1JCH = 140 Hz, nJCH = 8 Hz 조건에서 최적화 되었다.
그 결과, 1H NMR (δppm, CD3OD) : 2.37 (s, 3H); 6.85 (m, 2H); 7.00 (m, 2H); 7.24 (d, J=10, 2H); 7.71 (d, J=10, 2H)와 같은 결과를 나타냄을 확인하였다.
실시예 2: 라말린의 합성
2-1: 2-하이드라지닐 페놀과 L-글루탐산 락톤의 결합반응
2-1-1: DCC 및 HOBt로 활성화된 L-글루탐산 락톤과의 결합반응
실시예 1-2의 결과물인 N-트라이클로로에틸옥시카보닐-L-글루탐산 락톤 5g (14.9mmol)을 80ml의 MC(methylene chloride)에 녹인 후 (5ml/mmol) 1.35eq DCC 4.16g, 1.5eq HOBt 3.03g을 첨가하고 magnetic bar를 이용하여 교반하였다. 다른 flask에 1.2eq의 2-Hydrazinylphenol tosyl salt(2-Hydroxyl phenyl hydrazine tosyl salt) 4.9g과 TEA 2.5ml를 MC에 넣어주고 온도를 0℃로 낮추었다. 만들어진 Hydrazine solution을 위의 Starting solution에 0℃에서 천천히 dropping 시켰다. 0℃에서 1시간 반응 후 상온으로 온도를 올려 12시간 이상 반응시켰다. TLC 를 통해 반응 완결여부를 확인하고 반응이 완결되면 반응물을 1N HCl, saturated NaHCO3, brine으로 각각 3회씩 씻어내 주었다. 유기층을 분리하고 MgSO4로 물을 제거하였다.
그 결과, Solvent가 제거된 crude product를 얻었다. 이는 정제과정 없이 다음 반응에 사용될 수 있다. 정제결과, 반응 수율은 약 50%정도로 확인되었다.
2-1-2: 싸이오닐 클로라이드로 활성화된 L-글루탐산 락톤과의 결합반응
50ml 플라스크에 실시예 1-2의 결과물인 N-트라이클로로에틸옥시카보닐-L-글루탐산 락톤 0.01mol을 순수한 CCl4 2ml에 녹인 후 교반하면서 0.05mol의 thionyl chloride (3.7ml)를 첨가하였다. Reflux condenser 를 설치하고 수조를 이용하여 온도를 70℃로 가열하였다. 가열이 진행되면 가스가 발생하는데 gas meter기 또는 풍선을 이용하여 가스 발생여부를 확인하였다. 더 이상 gas가 발생하지 않았을 때, 온도를 상온으로 낮추고 용매를 모두 제거하였다. 순수한 무수상태의 CH2Cl2를 첨가하여 다시 evaporation 시켜 잔존물인 HCl이나 sulfur dioxide를 제거하였다.
그 다음, 완전 건조된 100ml round flask에 활성화된 L-글루탐산 락톤(약 0.01mol)을 첨가하고 50ml CH2Cl2로 녹였다. 다른 flask에 2-Hydrazinylphenol tosyl salt (0.0095mol)과 Triethylamine (0.0095mol)을 MC에 넣어주어 완전히 녹였다. 만들어진 Hydrazine solution을 위의 starting solution에 천천히 넣어주고 pyridine (0.8mL)을 첨가하였다. 반응물을 40℃로 약 3시간 가열하고 온도를 상온으로 낮춰 약 15시간 교반을 진행하였다. 이후 증류수 15ml와 NaHCO3 포화용액 15ml로 씻어주고 다시 증류수 15ml로 2회 씻어내었다. 유기층을 MgSO4로 처리하여 물을 제거하고 여과한 후 농축하여 crude product를 얻어내었다.
그 결과, crude product의 수율은 약 30%정도로 확인되었다.
2-2: 보호를 제거하여 라말린을 수득하는 반응
실시예 2-1의 생산물, 즉 Coupling 되어진 N-Benzyloxycarbonyl-L-glutamic acid lactone phenyl hydrazine 에서 보호기를 제거하여 순수한 라말린을 얻기 위하여, 790mg의(0.0018) 생산물을 100ml round flaks에 넣고 acetic acid 6ml에 녹였다. Magnetic bar로 교반하면서 물 7ml를 서서히 첨가하고 Zinc powder 1g을 첨가하였다. Zinc powder를 첨가한 시점부터 약 2분정도 반응물의 색이 투명해짐을 관측하였다. 이때 물 5ml를 천천히 첨가한 후 5분간 더 교반하였다. 5분 후 filter하여 zinc를 제거하고 MC 10ml로 2회 씻어주었다. 물층을 농축하고 reverse phase column chromatography로 정제하여 라말린(Ramalin)을 얻는다. 이상 1-1 내지 2-2에 대한 반응 방법의 개략도를 도 1 내지 도 3에 나타내었다.
이 반응에 의하여 라말린을 얻을 수 있었으며, 정제 후 수율 약 40%임을 확인하였으며, 순도는 99%정도로 확인되었다. 합성한 라말린은 고체상태에서 저온 (-24℃) 보관하였다.
생성물의 구조를 확인하기 위하여, NMR 스펙트럼 (1D 및 2D)은 D2O 에 더하여, 아세톤-d 6 를 사용하여, JEOL JNM ECP-400 spectrometer (13C 1H 및 500 MHz에 대한 500 MHz)를 이용하여 기록하였다. 이 때, 케미컬 쉬프트는 잔여 아세톤-d 6 (dH/dC = 2.22/21.0)을 참조하였다. HMQC 및 HMBC 실험은 1JCH = 140 Hz, nJCH = 8 Hz 조건에서 최적화 되었다.
그 결과, 도 4에 나타난 바와 같이, 상기 합성된 라말린의 NMR 결과를 1H NMR (δppm, CD3OD d6) : 2.18 (m, 2H); 2.50 (m, 2H); 3.77 (t, J=6, 1H); 6.85 (m, 4H) 와 같이 얻었으며, 그 구조가 천연물에서 분리된 라말린과 같음을 확인하였다.
실시예 3: HPLC를 통한 라말린 안정성 증진 확인
라말린은 자체의 높은 항산화력으로 인하여 쉽게 분해되며, 상온에서 4일이내에 절반이상 사라질 정도로 불안정하므로, 본 실시예에서는 라말린을 오래 유지하기 위한 방법을 얻기 위하여, 비타민 C(L-Ascobic acid)를 1:1 (각 1000 ppm) 첨가하여 각 25℃, 38℃의 물에서 보관하여 안정성을 확인하였다.
시간 별로 10㎕ sample을 Agilent Eclipse XDB-C18 칼럼(4.6 x 150mm)을 사용하여 준 분취 역상 HPLC(semi-preparative reverse phase HPLC)로 분석하였다. 사용한 용매 시스템은 0.1% 포름산이 섞인 물(A Line)과 0.1% 포름산이 섞인 메탄올(B line)을 사용하였다. 시작은 메탄올 0%에서 5%까지 15분, 5% 에서 90% 까지 5분, 90%에서 다시 0%까지 5분, 마지막 0%에서 5분 유지하여 총 30분 분석을 진행한다. 유속은 0.7ml/분으로 하였다. 그 후, HPLC의 area값(mAU x S)으로 라말린의 양의 변화를 확인하였다.
그 결과, 도 5에 나타난 바와 같이, 아무것도 첨가하지 않은 경우, 시간에 따라 라말린이 빠른 속도로 분해됨을 확인할 수 있었다. 반면 라말린과 비타민 C(L-Ascobic acid)를 1:1 (각 1000 ppm) 첨가하여 물에서 보관한 경우, 라말린의 안정성이 유지됨을 확인할 수 있었다. 한편, 4일 이전에 모든 라말린이 사라지는, 가혹조건인 38℃에서도 어느 정도의 안정성을 확인할 수 있었다. 38℃ 조건의 경우, 비타민 C가 먼저 깨져 나가고 이후 라말린이 사라지기 시작하는데, 약 200시간 이후, 즉 비타민 C가 거의 사라진 후에도 어느 정도 안정성을 유지시켜주는 효과를 보임을 확인하였다.
실시예 4: 천연물 유래 라말린과 합성 라말린의 항산화 활성 비교
천연물에서 추출한 천연물 유래 라말린과, 합성 라말린의 항산화 활성을 비교하기 위하여, 2,2-Di(4-tert-octylphenyl)-1-picrylhydrazyl(DPPH) 자유 라디컬에 대한 활성을 측정하였다. Butylated hydroxyl anisole(BHA)을 대조군으로 사용하였다. 또한 실험에 사용한 화합물의 순도는 모두 98% 이상의 상태에서 측정하였다.
구체적으로, 1.5ml 여러 농도 (0.1~ 3.0ug/ml)의 메탄올에 녹인 천연물 유래 라말린, 합성 라말린과 대조군인 BHA를 동일 용매에 녹인 0.1mM DPPH 0.5ml를 혼합하였다. 빛을 차단 시킨 상온에서 30분 동안 반응시킨 후, 흡광도 측정은 UV-visible spectrophotometer(SCINCO, 대한민국)를 이용하여 517nm에서 측정하였다. Blank는 1.5ml 메탄올에 0.1mM DPPH 0.5ml와 반응 시킨 것이다. 전자공여능력은 다음 식으로 계산하였다.
electron donating abilities(DEA) % = {1-(S/B)} × 100
S는 DPPH와 시료를 반응 시킨 후 흡광도 517nm에서 측정한 값, B는 DPPH와 메탄올을 반응 시킨 후 흡광도 517nm에서 측정한 값이다.
그 결과, 도 6 및 표 1에 나타난 바와 같이, 천연물 유래 라말린의 IC50 값이 1.22 μg/ml였고 합성한 라말린의 경우 0.96 μg/ml로 천연물에서 추출한 라말린과 합성한 라말린이 거의 동등한 뛰어난 항산화력을 보임을 확인하였다.
표 1
Figure PCTKR2011005206-appb-T000001
이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
이상 설명한 바와 같이, 본 발명에 따르면, 항산화 및 항염증 효과가 뛰어난 라말린을 안정적인 수율로 합성할 수 있어, 라말린의 대량생산이 가능하다. 또한, 라말린을 장기간 안정적으로 유지할 수 있어 라말린을 산업상 이용하기 용이하다.

Claims (10)

  1. 2-하이드라지닐페놀(2-Hydrazinylphenol)과, 1번탄소의 카복실기 및 2번탄소의 아미노기가 보호된 L-글루탐산을 반응시킨 다음, 상기 보호를 제거하는 것을 특징으로 하는, 하기 화학식 1로 표시되는 라말린, 그의 염, 그의 용매화물, 또는 그의 염의 용매화물의 합성방법:
    화학식 1
    Figure PCTKR2011005206-appb-I000002
  2. 제1항에 있어서, 상기 2-하이드라지닐페놀은 토실(Tosyl)염 형태인 것을 특징으로 하는 라말린, 그의 염, 그의 용매화물, 또는 그의 염의 용매화물의 합성방법.
  3. 제2항에 있어서, 상기 2-하이드라지닐페놀의 토실염은 다음과 같은 단계로 제조된 것임을 특징으로 하는 라말린, 그의 염, 그의 용매화물, 또는 그의 염의 용매화물의 합성방법:
    (a) 2-아미노페놀을 메탄올에 녹이고 염화수소 가스를 흘려주어 2-아미노페놀 염산(HCl)염을 얻는 단계;
    (b) 상기 2-아미노페놀 염산염을 에탄올에 녹이고, 이소펜틸 니트라이트(Isopentyl nitrite)를 사용하여 니트라미드(Nitramide) 형태의 중간체를 만드는 단계; 및
    (c) 상기 중간체 에탄올 용액을, p-톨루엔설폰산(para-toluenesulfonic acid;PTSA or TsOH) 및 염화주석(SnCl2)이 섞인 에탄올 용액에 첨가하여 2-하이드라지닐페놀의 토실염을 얻는 단계.
  4. 제1항에 있어서, 상기 1번탄소의 카복실기 및 2번탄소의 아미노기가 보호된 L-글루탐산은, 상기 카복실기와 상기 아미노기가 고리화 되어 있는 L-글루탐산 락톤인 것을 특징으로 하는, 라말린, 그의 염, 그의 용매화물, 또는 그의 염의 용매화물의 합성방법.
  5. 제4항에 있어서, 상기 L-글루탐산 락톤은 L-글루탐산을 2차 아민형태로 만든 다음, 고리화 시키는 것을 특징으로 하는, 라말린, 그의 염, 그의 용매화물, 또는 그의 염의 용매화물의 합성방법.
  6. 제5항에 있어서, 상기 2차 아민형태는 L-글루탐산에 2,2,2-트·라이클로로-에틸-클로로포름산(2,2,2-Trichloro-ethyl-chloroformate;Troc)을 첨가·반응시켜 제조한 것임을 특징으로 하는, 라말린, 그의 염, 그의 용매화물, 또는 그의 염의 용매화물의 합성방법.
  7. 제1항 또는 제4항에 있어서, 상기 1번탄소의 카복실기 및 2번탄소의 아미노기가 보호된 L-글루탐산은 5번탄소의 카복실기가 추가로 활성화되어 있는 것임을 특징으로 하는, 라말린, 그의 염, 그의 용매화물, 또는 그의 염의 용매화물의 합성방법.
  8. 제7항에 있어서, 상기 5번탄소의 카복실기 활성화는 L-글루탐산에 디사이클로헥실카보다이이미드(Dicyclohexylcarbodiimide;DCC) 또는 1-하이드록시-벤조트라이아졸(1-Hydroxybenxotriazole;HOBt)을 반응시켜 수행되는 것을 특징으로 하는, 라말린, 그의 염, 그의 용매화물, 또는 그의 염의 용매화물의 합성방법.
  9. 제8항에 있어서, 트라이에틸-아민(Triethyl amine;TEA)을 추가로 처리하고 반응시켜 수행되는 것을 특징으로 하는, 라말린, 그의 염, 그의 용매화물, 또는 그의 염의 용매화물의 합성방법.
  10. 라말린을 비타민 C(L-Ascorbic acid)를 함유하는 용매에 용해시켜 유지하는 것을 특징으로 하는 라말린의 분해 방지방법.
PCT/KR2011/005206 2010-07-14 2011-07-14 라말린의 합성방법 WO2012008785A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013519604A JP5684383B2 (ja) 2010-07-14 2011-07-14 ラマリンの合成方法
CN201180039072.1A CN103068794B (zh) 2010-07-14 2011-07-14 制备树花素的方法
US13/810,145 US8865934B2 (en) 2010-07-14 2011-07-14 Method for preparing ramalin
EP11807070.5A EP2594552B1 (en) 2010-07-14 2011-07-14 Method for preparing ramalin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0067710 2010-07-14
KR20100067710A KR101182334B1 (ko) 2010-07-14 2010-07-14 라말린의 합성방법

Publications (2)

Publication Number Publication Date
WO2012008785A2 true WO2012008785A2 (ko) 2012-01-19
WO2012008785A3 WO2012008785A3 (ko) 2012-05-03

Family

ID=45469947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005206 WO2012008785A2 (ko) 2010-07-14 2011-07-14 라말린의 합성방법

Country Status (6)

Country Link
US (1) US8865934B2 (ko)
EP (1) EP2594552B1 (ko)
JP (1) JP5684383B2 (ko)
KR (1) KR101182334B1 (ko)
CN (1) CN103068794B (ko)
WO (1) WO2012008785A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141576A1 (ko) * 2012-03-19 2013-09-26 한국해양연구원 다공성 매트릭스를 이용한 라말린의 안정화 방법 및 안정화된 라말린 용액

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101290745B1 (ko) 2010-06-03 2013-07-29 한국해양과학기술원 라말린을 함유하는 염증질환 또는 면역질환의 예방 또는 치료용 약학 조성물
KR101371045B1 (ko) * 2012-01-19 2014-03-14 한국해양과학기술원 글루탐산 유도체와 하이드록시 아닐린 또는 하이드록시기가 보호된 하이드록시 아닐린을 이용한 라말린 및 라말린 전구체의 합성방법
KR101326256B1 (ko) 2012-02-28 2013-11-11 한국해양과학기술원 라말린을 함유하는 간섬유화 및 간경화의 예방 또는 치료용 약학 조성물
CN107205973A (zh) 2014-10-24 2017-09-26 韩国海洋研究院 用于预防或治疗神经变性疾病的含有Ramalin的组合物
KR102048869B1 (ko) * 2017-10-31 2019-11-27 케이에스랩(주) 중금속 주석을 사용하지 않는 라말린의 합성방법
EP3998325A4 (en) * 2019-07-12 2023-08-23 Resvo Inc. AGENT TO PREVENT THE DEGRADATION OF BIOPYRRIN
KR20230070702A (ko) * 2021-11-15 2023-05-23 한국해양과학기술원 신규한 라말린 유도체 및 이의 퇴행성 뇌질환의 예방 또는 치료 용도

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100052130A (ko) 2008-11-10 2010-05-19 한국해양연구원 신규 화합물인 Ramalin 및 그 용도
KR20100052551A (ko) 2007-08-30 2010-05-19 바스카 미낙쉬 후두 마스크

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA920121A (en) * 1969-03-06 1973-01-30 Otsuka Hideo Corticotropically highly active octadecapeptides intermediates therefor and production of the same
US3726881A (en) * 1970-12-28 1973-04-10 Richter Gedeon Vegyeszet N-aminoxy-acetyl-n'-isonicotinoyl-hydrazine and the pharmaceutically acceptable salts thereof
JPS6210052A (ja) * 1985-07-05 1987-01-19 Kohjin Co Ltd N−置換グルタミン酸5−フエニルヒドラジド類の製造方法
JPH0827132A (ja) * 1994-07-11 1996-01-30 Shiratori Seiyaku Kk 5−オキサゾロン類の製造法
JP2005336103A (ja) * 2004-05-27 2005-12-08 Fuji Photo Film Co Ltd フェニルヒドラジン類の製造方法
WO2006041119A1 (ja) * 2004-10-13 2006-04-20 Eisai R & D Management Co., Ltd. ヒドラジド誘導体
CN101274958A (zh) * 2008-05-17 2008-10-01 中国海洋大学 一种生物活性肽及其制备方法和应用
KR101290745B1 (ko) 2010-06-03 2013-07-29 한국해양과학기술원 라말린을 함유하는 염증질환 또는 면역질환의 예방 또는 치료용 약학 조성물

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100052551A (ko) 2007-08-30 2010-05-19 바스카 미낙쉬 후두 마스크
KR20100052130A (ko) 2008-11-10 2010-05-19 한국해양연구원 신규 화합물인 Ramalin 및 그 용도

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AHMADJIN V.: "The lichen symbiosis", 1993, WILEY, pages: 1 - 6
BEHERA, B.C. ET AL., LEBENSM. WISS. TECHNOL., vol. 39, 2006, pages 805
MULLER, K., APPL. MICROBIOL. BIOTECHNOL., vol. 56, 2001, pages 9 - 16
See also references of EP2594552A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141576A1 (ko) * 2012-03-19 2013-09-26 한국해양연구원 다공성 매트릭스를 이용한 라말린의 안정화 방법 및 안정화된 라말린 용액

Also Published As

Publication number Publication date
CN103068794B (zh) 2015-07-22
EP2594552A4 (en) 2014-02-19
KR20120007130A (ko) 2012-01-20
US8865934B2 (en) 2014-10-21
JP2013531035A (ja) 2013-08-01
EP2594552A2 (en) 2013-05-22
JP5684383B2 (ja) 2015-03-11
US20130211133A1 (en) 2013-08-15
EP2594552B1 (en) 2017-01-11
WO2012008785A3 (ko) 2012-05-03
KR101182334B1 (ko) 2012-09-20
CN103068794A (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
WO2012008785A2 (ko) 라말린의 합성방법
CA2868144C (en) Lysin-glutamic acid dipeptide derivatives
CH651561A5 (fr) Derives des nor-tropane et granatane et leur procede de preparation.
EP1613592A2 (en) Hydroxamic acid compounds and methods of use thereof
EP0633254A1 (en) Novel isoxazole derivative and salt thereof
EP3162810B1 (en) Method for producing synthetic pentapeptide
OA12804A (fr) Procédés depréparation de combrestastatines.
Imramovský et al. Salicylanilide esterification: unexpected formation of novel seven-membered rings
CN111072660B (zh) 一种瑞来巴坦的简便制备方法
RU2512591C2 (ru) Способ получения плевромутилинов
EP2922834B1 (en) 1-(dimethylamino)ethyl-substituted 6h-benzo[c]chromen-6-ones against senile dementia
ES2312800T3 (es) Conversion de moleculas de taxano.
Zlatoidsky et al. Synthesis and structure-activity relationship study of the new set of trypsin-like proteinase inhibitors
JP2018090551A (ja) L−カルノシン誘導体またはその塩、及びl−カルノシンまたはその塩の製造方法
CN111302966A (zh) 一种米拉贝隆中间体的制备方法
CN101492415A (zh) 吡啶-2-磺酰精氨酸衍生物及其制备方法
ITMI981478A1 (it) Procedimento per la preparazione di (s)-n-terbutil-1,2,3,4- tetraidroisochinolin-3-carbossiammide
EP3722285B1 (en) Process for preparing mirabegron enacarbil
WO2013098826A1 (en) "a process for the preparation of n-[2-[(acetylthio) methyl]-1-oxo-3-phenylpropyl] glycine phenyl methyl ester and intermediates thereof"
EP1623975A1 (en) Process for producing pyrrolidine derivative
Lal et al. In search of novel water soluble forskolin analogues for positive inotropic activity
KR101691353B1 (ko) 보르테조밉의 제조방법 및 그의 신규 중간체
KR100474228B1 (ko) 파크리탁셀의분리방법
CN116217478A (zh) 一种6-氨基-3-二氟甲基喹啉的合成方法
Aranda et al. Synthesis of Methomyl Derivatives as New Photosensitive Molecular Probes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039072.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11807070

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011807070

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011807070

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013519604

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13810145

Country of ref document: US