WO2012008574A1 - 攪拌装置付き連続鋳造用鋳型装置 - Google Patents

攪拌装置付き連続鋳造用鋳型装置 Download PDF

Info

Publication number
WO2012008574A1
WO2012008574A1 PCT/JP2011/066223 JP2011066223W WO2012008574A1 WO 2012008574 A1 WO2012008574 A1 WO 2012008574A1 JP 2011066223 W JP2011066223 W JP 2011066223W WO 2012008574 A1 WO2012008574 A1 WO 2012008574A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
electrode
molten metal
continuous casting
casting
Prior art date
Application number
PCT/JP2011/066223
Other languages
English (en)
French (fr)
Inventor
謙三 高橋
Original Assignee
Takahashi Kenzo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takahashi Kenzo filed Critical Takahashi Kenzo
Priority to EP11806904.6A priority Critical patent/EP2594351B1/en
Priority to CA2804644A priority patent/CA2804644C/en
Priority to AU2011277379A priority patent/AU2011277379B2/en
Priority to US13/810,016 priority patent/US20130192791A1/en
Publication of WO2012008574A1 publication Critical patent/WO2012008574A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting

Definitions

  • the present invention is a continuous caster with a stirrer in a continuous casting facility for producing non-ferrous metal billets or slabs of conductors (conductors) such as Al, Cu, Zn or at least two alloys thereof, or Mg alloys.
  • the present invention relates to a casting mold apparatus.
  • a molten metal stirring method as described below has been adopted. That is, in order to improve the quality of slabs or billets, that is, when the melt passes through the mold, a moving magnetic field is applied to the melt inside the mold by an electromagnetic coil from the outside of the mold. In addition, the molten metal immediately before solidification is agitated. The main purpose of this stirring is to degas and homogenize the structure.
  • the electromagnetic coil is disposed close to the high-temperature molten metal, not only the cooling of the electromagnetic coil and complicated maintenance are necessary, but of course, large power consumption is required. It is inevitable that the coils themselves generate heat, and these heats must also be cooled, resulting in various problems such that the device itself must be expensive.
  • the present invention has been made to solve the above-described problems, and its object is to provide a continuous casting mold apparatus with a stirrer that suppresses the amount of heat generation, is easy to maintain, is inexpensive and practically usable. There is.
  • a casting apparatus for continuous casting with a stirrer that receives a supply of a molten metal in a liquid phase state of a conductive material and is capable of taking out a cast product in a solid phase by cooling the molten metal, A mold that receives the supply of the molten metal in the liquid phase state from the inlet side, and discharges the cast product in the solid phase state from the outlet side by cooling, A stirring device provided outside the mold, wherein a magnetic field is applied to the electrode portion having a first electrode located above and a second electrode located below the first electrode, and the molten metal in a liquid phase state.
  • a magnetic field generator having a permanent magnet for the first electrode is provided so as to be electrically conductive with the molten metal in a liquid phase state, and the second electrode is in a solid phase state with the cast product.
  • the first electrode and the second electrode are configured to be electrically conductive between the first electrode and the second electrode via the molten metal and the casting, and the magnetic field generator is arranged outside the mold. Configured to generate magnetic lines of force in the horizontal direction, and pass the magnetic lines through the mold to reach the inside of the molten metal to give the horizontal lines of magnetic force intersecting the current, Configured as a thing.
  • FIG. 1 is an overall configuration diagram of an embodiment of the present invention.
  • Plane explanatory drawing seen along the II-II line of FIG. A) Plane explanatory drawing of the magnetic field generator 31 in the stirring apparatus 3, (b) Plane explanatory drawing of the modification.
  • planar explanatory drawing of the further different modification of the magnetic field generator 31 in the stirring apparatus 3 A) Plane
  • a non-ferrous metal melt M is poured out from a molten metal receiving box called a tundish into a lower mold after a fixed amount of hot water. Cooling water for cooling the mold is circulated in the mold. Thereby, the hot molten metal starts to solidify from the outer peripheral side (mold side) from the moment of contact with the mold.
  • the present invention intends to provide a casting apparatus for continuous casting with a stirrer that does not use the electromagnetic stirrer.
  • the embodiment of the present invention is as follows.
  • FIG. 1 shows an overall configuration diagram of an embodiment of the present invention.
  • FIG. 2 is an explanatory plan view taken along line II-II in FIG. 1, mainly showing a part of the mold 2 and the stirring device 3, and
  • FIG. 3 (a) is a diagram of the magnetic field generator 31 in the stirring device 3. An explanatory plan view is shown.
  • the apparatus according to the embodiment of the present invention is roughly divided into Al, Cu, Zn, at least two alloys thereof, or a molten metal supply M for supplying a nonferrous metal melt M of a conductor (conductor) such as an Mg alloy. It has the apparatus 1, the casting_mold
  • a conductor conductor
  • the molten metal supply device 1 includes a tundish (a molten metal receiving box) 1A that receives the molten metal M from a ladle (not shown) or the like.
  • the molten metal M is stored in the tundish (molten receiving box) 1A, inclusions are removed, and the molten metal M is supplied from below to the mold 2 at a constant supply speed.
  • FIG. 1 only the tundish (melt receiving box) 1A is shown.
  • the mold 2 is configured to take out a cylindrical product.
  • template 2 is comprised roughly as a cylindrical structure of a double structure. That is, an internal mold 21 made of an inner non-conductive material (non-conductive refractory material) and an outer mold 22 made of an outer conductive material (conductive refractory material) are provided.
  • the internal mold may be an internal mold 21A made of a conductive material such as graphite.
  • graphite when graphite is used, the surface of the resulting product can be made smoother because graphite is soft in material.
  • FIG. 8 shows an embodiment in which an internal graphite mold 21A is used. As can be seen from FIG. 8, in the case of this embodiment, as compared with the embodiment of FIG.
  • the mold 2 is provided with a water jacket 23 outside the external mold 22.
  • the water jacket 23 is for cooling the molten metal M flowing into the internal mold 21. That is, the cooling water is circulated in the water jacket 23 and the outside of the external mold 22 is cooled by this cooling water. Due to the water jacket 23, the molten metal M is rapidly cooled. As the water jacket 23, those having various known structures can be adopted, and therefore detailed description thereof is omitted here.
  • the mold 2 configured in this manner is provided with a plurality of electrode insertion holes 2a, 2a,... Through which electrodes 32A described later are inserted and removed at predetermined intervals on the circumference.
  • the electrode insertion hole 2 a is configured to have a downward slope toward the center side of the mold 2. For this reason, even if the molten metal M is contained in the mold 2, there is no possibility that the molten metal M leaks to the outside if the surface of the molten metal M is lower than the upper end opening of the electrode insertion hole 2a.
  • the stirring device 3 is provided for the mold 2.
  • the stirring device 3 includes a permanent magnet type magnetic field generator 31 and a pair of upper electrodes (positive electrodes) 32A and lower electrodes (negative electrodes) 32B.
  • the magnetic field generator 31 is configured in a ring shape and is installed in a state of being directly or indirectly fitted to the outer periphery of the water jacket 23.
  • the ring-shaped magnetic field generator 31 is configured to be vertically adjustable with respect to the water jacket 23 (mold 2). As a result, the position where the stirring efficiency is the highest with respect to the mold 2 can be selected by adjusting the vertical position of the magnetic field generator 31.
  • Four portions of the magnetic field generator 31 are magnetized to form magnetic pole pairs 31a, 31a,. That is, for each of the magnetic pole pairs 31a, the inner magnetic pole of the ring is magnetized to the N pole and the outer magnetic pole is magnetized to the S pole, and the magnetic lines ML emitted from the N pole pass through the molten metal M inside the mold 2 horizontally. And enter the S pole.
  • the number of electrodes 32A may be one, but may be plural, and in this embodiment, two.
  • the electrode 32A has a probe shape. Each electrode 32A is inserted into the probe insertion hole 2a described above. That is, the electrode 32A penetrates the mold 2 (inner mold 21 and outer mold 22) from the water jacket 23, and the inner end is exposed in the inner mold 21 so as to be in contact with the molten metal M inside. The outer end is exposed to the outside of the water jacket 23. The outer end is connected to a power supply device 34 that can flow a variable DC current.
  • the electrode 32A supports the inner end of the electrode 32A inserted into the molten metal M from the surface of the molten metal M flowing into the mold 2 above the upper opening of the mold 2 without penetrating the side wall of the mold 2. You can also.
  • the electrode 32A may be used in any number, and an arbitrary number of electrodes 32A may be inserted into any of the electrode insertion holes 2a, 2a,.
  • the lower electrode 32B is provided in a fixed position.
  • the electrode 32B is configured as a roller type. That is, a rotatable roller 32Ba is provided at the tip.
  • the roller 32Ba is in pressure contact with the outer surface of a cylindrical product P as a cast product (billet or slab) extruded in a solid phase, and is rotated as the product P extends downward. That is, when the product P is pushed away, the product P extends downward in FIG. 1 while rotating the roller 32Ba while keeping the contact with the roller 32Ba.
  • the power supply device 34 is configured to be able to control the amount of current flowing between the pair of electrodes 32A and 32B. Thereby, the electric current which can stir the liquid phase state molten metal M most efficiently by the relationship with the said magnetic force line ML can be selected.
  • the mold 2 is cooled by the circulation of water in the water jacket 23, and the molten metal M in the mold 2 is rapidly cooled and solidified.
  • the molten metal M in the mold 2 has a two-phase structure in which the upper part is a liquid (liquid phase) and the lower part is a solid (solid phase).
  • the molten metal M is molded into a shape (cylindrical in this embodiment) that matches the shape of the mold simultaneously with the passage of the mold 2, and is continuously made into a product P as a slab or billet.
  • a permanent magnet type magnetic field generator 31 is arranged outside the mold 2, and the magnetic field (lines of magnetic force ML) reaches the molten metal M in the mold 2 sideways.
  • the current flows from the molten metal (liquid phase) M such as aluminum to the product (solid phase) from the upper electrode 32A to the lower electrode 32B. It flows through P.
  • the current crosses the magnetic field line ML from the permanent magnet type magnetic field generator 31 at a substantially right angle, and the molten metal M in the liquid phase is rotated according to Fleming's left-hand rule. In this way, the molten metal M is agitated, impurities, gases, etc. contained in the molten metal M rise, so-called degassing is actively performed, and the quality of the product (slab, billet) P can be improved.
  • the double structure of the mold 2 may be made of a conductive material on the inside and a non-conductive material on the outside.
  • at least the electrode 32A may be in electrical contact with the inner conductive material.
  • the template 2 can be a single structure without a double structure.
  • the mold 2 may be manufactured using only a conductive material, and the electrode 32A may be electrically connected to the mold 2.
  • the structure of the other electrode 32B may be the same as described above.
  • the mold 2 can be made of only a non-conductive material. In this case, as shown in FIG. 1, it is necessary to electrically connect the electrode 32 ⁇ / b> A to the molten metal M in the mold 2 by passing the electrode 32 ⁇ / b> A through the mold 2.
  • the magnetic field generator 31A of FIG. 3B instead of the magnetic field generator 31 of FIG. 3A, the magnetic field generator 31A of FIG.
  • the magnetic field generator 31A shown in FIG. 3B has a magnetization direction opposite to that of the magnetic field generator 31 shown in FIG. Both are functionally equivalent.
  • the magnetic field generators 31-2 and 31A-2 shown in FIGS. 4 (a) and 4 (b) may be used in place of the magnetic field generators 31 and 31A shown in FIGS. 3 (a) and 3 (b). it can.
  • the magnetic field generators 31-2 and 31A-2 shown in FIGS. 4 (a) and 4 (b) are configured by fixing a plurality of rod-shaped permanent magnets PM inside a ring-shaped support body (yoke) SP. Is done. These are functionally equivalent.
  • the lower electrode 32B has the roller 32Ba at the tip, but the roller 32Ba is not necessarily provided. Even if the product P is continuously extruded, it is sufficient that the product P and the electrode 32B are kept in an electrically conductive state, and various structures can be employed. For example, an elastic material having a predetermined length is used as the electrode 32B. In FIG. 1, for example, the electrode 32B is bent so as to be convex upward or convex downward, and the tip is made to the casting P by a restoring force. The casting P may be allowed to extend downward in this state.
  • the molten metal M immediately before solidification is agitated, and the molten metal M is moved to give vibrations and the like to achieve a degassing effect and a uniform and fine structure.
  • a permanent magnet is used as the magnetic field generator. For this reason, it can be made extremely compact as compared with the electromagnetic stirring device. This makes it possible to realize a mold apparatus for mass production equipment.
  • a device that does not generate heat and has effects such as power saving, energy saving, and low maintenance can be obtained as a magnetic field generator.
  • FIG. 5 shows a further different embodiment.
  • FIG. 1 is different from the embodiment of FIG. 1 in the structure of the mold 2A.
  • Other configurations are substantially the same as those in FIG. Therefore, detailed description is not given here.
  • the mold 2A of this embodiment has a substantially cylindrical mold body 2A1.
  • the mold body 2A1 is formed as having a circumferential groove on its inner peripheral surface.
  • An insulating film 2A2 is formed on the inner surface (peripheral side surface and bottom surface) of the groove, and an embedded layer 2A3 is configured by embedding a conductive material equivalent to the mold body 2A1 on the insulating film 2A2.
  • the insulating film 2A2 and the buried layer 2A3 constitute an insulating layer portion.
  • the insulating layer portion is formed on a part of the inner surface of the mold, and functions as a portion that does not allow the current flow from the mold.
  • This insulating layer portion is provided at a slightly lower portion of the inner surface of the mold body 2A1. Thereby, the current from the insulating layer portion in the mold body 2A1, that is, the portion in contact with the cast product P, to the cast product P is not allowed as much as possible.
  • a terminal 2A4 is provided on the outer peripheral side of the mold body 2A1. Power can be supplied from the power supply 34 to the mold 2A via the terminal 2A4. In FIG. 5, the water jacket is not shown.
  • FIG. 6 shows still another embodiment.
  • This embodiment is a modification of the embodiment of FIG.
  • each electrode 32A0 is inserted into the molten metal M.
  • the amount of insertion of the lower end portion of the electrode 32A0 into the molten metal M can be adjusted with a high degree of freedom regardless of the mold 2A and the like.
  • FIG. 7 shows still another embodiment.
  • This embodiment can be regarded as a modification of the embodiment of FIG.
  • FIG. 7 assumes an apparatus that can operate when the molten metal M is poured from the upper tundish (molten receiving box) 1A into the lower mold 2 as a continuous molten metal without being interrupted. . That is, it is assumed that the molten metal M in the tundish (molten receiving box) 1A and the molten metal M in the mold 2 are integrally connected.
  • the electrode 32A0 is inserted into the molten metal M in the mold 2.
  • the electrode 32A1 is arbitrarily inserted into the molten metal M in the tundish (molten receiving box) 1A on the assumption of the above case. It is supported by the means. By doing so, the same advantages as in the above-described embodiment of FIG. 7 can be obtained.
  • the distance between the tundish (molten receiving box) 1A and the mold 2A can be set and adjusted regardless of the electrode 32A1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

入口側から導電性材料の液相状態にある溶湯の供給を受け、前記溶湯を冷却することにより固相状態の鋳造品を出口側から排出する鋳型と、前記鋳型の外部に設けられた攪拌装置であって、上方に位置する第1電極とそれよりも下方に位置する第2電極とを有する電極部と、液相状態にある前記溶湯に磁場をかけるための永久磁石を有する磁場発生装置と、を備え、前記第1電極は液相状態にある前記溶湯と電気的に導通可能に設けられ、前記第2電極は固相状態にある前記鋳造品と電気的に導通可能に設けられ、前記第1電極及び前記第2電極はこれらの間に前記溶湯及び前記鋳造品を介して上下方向に通電可能に構成され、前記磁場発生装置は前記鋳型の外部に設けられて横向きに磁力線を発生させ、前記磁力線が前記鋳型を貫通してその内部に達して前記溶湯に前記電流と交差する横向きの磁力線を与え得るものとして構成した、攪拌装置付き連続鋳造用鋳型装置を提供する。

Description

攪拌装置付き連続鋳造用鋳型装置
 本発明は、Al,Cu,Zn又はこれらのうちの少なくとも2つの合金、あるいはMg合金等の伝導体(導電体)の非鉄金属のビレットあるいはスラブ等を生産する連続鋳造設備における、攪拌装置付き連続鋳造用鋳型装置に関する。
 従来、連続鋳造用の鋳型においては、以下に説明するような溶湯攪拌方式が採用されている。即ち、スラブあるいはビレット等の品質を向上させるために、これらの溶湯が固化する工程において、つまり溶湯が鋳型内を通過する時に、鋳型の外部より電磁コイルにより移動磁界を鋳型の内部の溶湯に与え、固化直前の溶湯に攪拌を生じさせている。この攪拌は、脱ガスと組織の均一化が主目的である。しかしながら、高温の溶湯に近接した位置に電磁コイルを配置させることから、電磁コイルの冷却と煩雑なメンテナンスが必要なだけでなく、当然大きな消費電力を必要とし、さらにはその消費電力に伴って電磁コイル自体が発熱するのも避けられず、これらの熱も冷却しなければならず、これらに起因して装置自体が高価とならざるを得ない等の種々の問題点があった。
特開平9-99344号公報
 本発明は、上述の問題点を解消するためになされたもので、その目的は、発熱量を抑え、メンテナンスも容易で、安価で実際上使いやすい、攪拌装置付き連続鋳造用鋳型装置を提供することにある。
 本発明の実施形態の攪拌装置付連続鋳造用金型装置は、 
 導電性材料の液相状態にある溶湯の供給を受け、前記溶湯を冷却することにより固相状態の鋳造品を取り出し得るようにした攪拌装置付連続鋳造用鋳型装置であって、
 入口側から液相状態の前記溶湯の供給を受け、冷却により固相状態の前記鋳造品を出口側から排出する鋳型と、
 前記鋳型の外部に設けられた攪拌装置であって、上方に位置する第1電極とそれよりも下方に位置する第2電極とを有する電極部と、液相状態にある前記溶湯に磁場をかけるための永久磁石を有する磁場発生装置と、を備え、前記第1電極は液相状態にある前記溶湯と電気的に導通可能に設けられ、前記第2電極は固相状態にある前記鋳造品と電気的に導通可能に設けられ、前記第1電極及び前記第2電極はこれらの間に前記溶湯及び前記鋳造品を介して上下方向に通電可能に構成され、前記磁場発生装置は前記鋳型の外部に設けられ、横向きに磁力線を発生させ、前記磁力線を前記鋳型を貫通してその内部に達して前記溶湯に前記電流と交差する横向きの磁力線を与え得るものとして構成した、
 ものとして構成される。
本発明の実施形態の全体構成図。 図1のII-II線に沿って見た平面説明図。 (a)攪拌装置3における磁場発生装置31の平面説明図、(b)その変形例の平面説明図。 (a)攪拌装置3における磁場発生装置31のさらに異なる変形例の平面説明図、(b)その変形例の平面説明図。 本発明の異なる実施形態の全体構成図。 本発明のさらに別の実施形態の全体構成図。 本発明のさらに異なる実施形態の全体構成図。 本発明のさらに別の実施形態の全体構成図。
 本発明の実施形態の理解を深めるために、従来の連続鋳造設備における電磁攪拌装置を簡単に説明する。
 従来は、非鉄金属の溶湯Mを、タンディッシュと呼ばれる溶湯受け箱から、定量出湯させて下方の鋳型に注湯している。鋳型内には鋳型冷却用の冷却水を循環させている。これにより、高温の溶湯は、鋳型に接触した瞬間から、外周側(鋳型側)から凝固を始める。
 鋳型中央部に位置する溶湯は、冷却中の鋳型壁から離れているため、凝固は外周部の溶湯よりも当然遅れる。そのため鋳型内では溶湯は、液体(液相)状態の溶湯と固体(固相)状態の鋳造物の2つが同時に存在することになる。而して、一般に溶湯をあまり急速に凝固させると、固体に変わった鋳造物(製品)内にガスが残り、製品の品質を低下させてしまう。このため、凝固前の溶湯を攪拌して、脱ガスを促進させている。この攪拌のために従来は電磁攪拌装置が使われてきたのである。
 しかしながら、電磁攪拌装置を用いると種々の難点があるのは先に述べた通りである。
 そこで、本発明では、前記電磁攪拌装置を用いることのない攪拌装置付き連続鋳造用鋳型装置を提供しようとするものである。
 本発明の実施形態はより詳しくは以下の通りである。
 本発明の実施形態の全体構成図を図1に示す。図2は図1のII-II線に沿って見た平面説明図であり、主に鋳型2と攪拌装置3の一部を示し、図3(a)は攪拌装置3における磁場発生装置31の平面説明図を示す。
 本発明の実施形態の装置は、大きく分けて、Al,Cu,Zn又はこれらのうちの少なくとも2つの合金、あるいはMg合金等の伝導体(導電体)の非鉄金属の溶湯Mを供給する溶湯供給装置1と、溶湯供給装置1から溶湯を受ける鋳型2と、鋳型2内の溶湯Mを攪拌する攪拌装置3とを有する。
 前記溶湯供給装置1は、取鍋(図示せず)等からの溶湯Mを受けるタンディッシュ(溶湯受箱)1Aを備える。タンディッシュ(溶湯受箱)1Aに溶湯Mを溜めておき、介在物を除去して、下方から一定の供給速度で鋳型2に供給する。図1では、タンディッシュ(溶湯受箱)1Aのみを示している。
 前記鋳型2は、本実施形態では、円柱状の製品を取り出すものとして構成されている。
 このため、この鋳型2は、概略的には、2重構造の円筒状として構成されている。つまり、内側の非導電性材料(非導電性耐火材)で構成された内部鋳型21と、外側の導電性材料(導電性耐火材)で構成された外部鋳型22と、を備えている。
 また、前記内部鋳型を、グラファイト等の導電性材料による内部鋳型21Aとすることもできる。例えば、グラファイトを用いた場合には、グラファイトは材質的に柔らかいため、得られる製品の表面をよりなめらかなものとして得ることができる。
 図8には、グラファイトの内部鋳型21Aを用いた場合の実施形態例を示す。図8からわかるように、この実施形態の場合は、図1の実施形態との比較で、内部鋳型21Aは直接的に電源装置34に接続され、上部電極32Aは設ける必要がなくなる。
 さらに、前記鋳型2は、外部鋳型22の外側にウォータジャケット23を備えている。
 このウォータジャケット23は、内部鋳型21内に流れ込む溶湯Mを冷却するためのものである。つまり、ウォータジャケット23内で冷却水を循環させ、この冷却水によって外部鋳型22の外側を冷却している。このウォータジャケット23により、溶湯Mは急激に冷却されることになる。ウォータジャケット23としては公知の各種の構造のものを採用することができ、よってここでは詳しい説明は省略する。
 さらに、このように構成された鋳型2には、後述する電極32Aが抜き差しされる複数の電極差込孔2a、2a、・・・が円周上に所定間隔で設けられている。この電極差込孔2aは鋳型2の中心側に向かって下り勾配のものとして構成されている。このため、たとえ鋳型2の内部に溶湯Mが入っていても、溶湯Mの表面が電極差込孔2aの上端開口よりも低ければ、溶湯Mが外部に漏れる虞はない。 
 前記鋳型2に対して前記攪拌装置3が設けられる。この攪拌装置3は、永久磁石式の磁場発生装置31と、一対の上部の電極(正極)32A及び下部の電極(負極)32Bとを備える。
 前記磁場発生装置31は、特に図3(a)から分かるように、リング状に構成されて、前記ウォータジャケット23の外周に直接又は間接的にはめ込まれた状態に設置される。
 このリング状の磁場発生装置31はウォータジャケット23(鋳型2)に対して上下方向に位置調節可能に構成されている。これにより磁場発生装置31の上下の位置を調節して鋳型2に対して最も攪拌の効率の良い位置を選ぶことができる。この磁場発生装置31の4個所が磁化されて磁極対31a、31a、・・・となっている。つまり、各磁極対31aについてみると、リングの内側磁極がN極に、外側磁極がS極に、それぞれ磁化されており、N極から出た磁力線MLは鋳型2内部の溶湯Mを水平に通ってS極に入る。
 前記一対の電極32A、32B間には、溶湯M及び鋳造品(製品)Pを介して、電流が流される。電極32Aは、1つでも良いが、複数とすることもでき、本実施形態では、2つとしている。前記電極32Aは、プローブ状に構成されている。各電極32Aは先に述べたプローブ差込孔2aに差し込まれる。つまり、前記電極32Aは、前記ウォータジャケット23から前記鋳型2(内部鋳型21、外部鋳型22)を貫通して、内端が前記内部鋳型21内に露呈して、内部の溶湯Mに接触導通し、外端がウォータジャケット23の外部に露呈する。前記外端は可変直流電流を流し得る電源装置34に繋がれている。前記電極32Aは、鋳型2の側壁を貫通させることなく、鋳型2の上部開口の上方に、その内端が、鋳型2に流れ込む溶湯Mの表面から溶湯M中に差し込まれた状態に、支持することもできる。
 前記電極32Aとしては用いる数を任意なものとし、任意数の電極32Aを前記電極差込孔2a、2a・・・の任意なものに差し込むようにすることもできる。
 前記下部の電極32Bは、位置が固定された状態に設けられている。この電極32Bはローラ式のものとして構成されている。つまり、先端に回転可能なローラ32Baを備える。このローラ32Baは、固相状態で押し出される鋳造品(ビレットあるいはスラブ)としての円柱状の製品Pの外表面に圧接した状態にあり、製品Pが下方へ伸びるのに伴って回転させられる。つまり、製品Pがか方へ押し出されると、製品Pはローラ32Baとの接触を保ったまま、ローラ32Baを回転させながら図1の下方へ伸びていくことになる。
 よって、電源装置34から前記一対の電極32A、32B間に電圧を掛ければ、電流は、溶湯M及び製品Pを介して、一対の電極32A、32B間に流れることになる。上述のように電源装置34は一対の電極32A、32B間に流れる電流量を制御可能に構成されている。これにより、液相状態の溶湯Mを、前記磁力線MLとの関係で、最も効率よく攪拌可能な電流を選択可能である。
 次に、上記構成の装置の動作について説明する。
 タンディッシュ(溶湯受箱)1Aから定量出湯された溶湯Mは鋳型2の上部に入る。鋳型2はウォータジャケット23内の水の循環により冷却されており、鋳型2内の溶湯Mは急激に冷却凝固する。しかし鋳型2内の溶湯Mは、上部が液体(液相)、下部が固体(固相)の2相構造となっている。溶湯Mは鋳型2の通過と同時に鋳型形状に合った形(本実施形態では円柱状)に成型され、連続的にスラブまたはビレットとしての製品Pとされる。
 而して、鋳型2の外部には、永久磁石式の磁場発生装置31が配置されており、その磁場(磁力線ML)は横向きに鋳型2内の溶湯Mに達している。この状態で上部の電極32Aから下部の32Bに電源装置34によって直流電流を流すと、電流は上部の電極32Aから下部の電極32Bに、アルミニウム等の溶湯(液相)Mから製品(固相)Pを通り流れる。このとき永久磁石式の磁場発生装置31から出る磁力線MLを、電流がほぼ直角に横切ることになり、液相状態にある溶湯Mにはフレミングの左手の法則に従い回転運動が生じる。こうして溶湯Mの攪拌が行われ、溶湯M中に含まれる不純物、ガス等が浮上し、いわゆる脱ガスが活発に行われ、製品(スラブ、ビレット)Pの品質向上が図れる。
 前記鋳型2の2重構造を、上記とは逆に、内側を導電性材料とし、外側を非導電性材料とすることもできる。この場合には、すくなくとも前記電極32Aを内側の導電性材料に電気的に接触させればよい。
 また、鋳型2を、2重構造とすることなく、1重構造とすることもできる。この場合には、鋳型2を導電性材料のみで製作し、前記電極32Aを鋳型2に電気的に導通させればよい。他方の電極32Bの構造は前記と同様でよい。
 また逆に、鋳型2を非導電性材料のみで作製することもできる。この場合には、図1に示すように、電極32Aを鋳型2に貫通させる等して、電極32Aを鋳型2内の溶湯Mと電気的に導通させる必要がある。
 図3(a)の磁場発生装置31に代えて、図3(b)の磁場発生装置31Aを用いることもできる。図3(b)の磁場発生装置31Aは、図3(b)の磁場発生装置31と、磁化の方向を逆向きとしたものである。両者は機能的には同等である。
 また、図3(a)、図3(b)の磁場発生装置31、31Aに代えて、図4(a)、図4(b)の磁場発生装置31-2、31A-2を用いることもできる。図4(a)、図4(b)の磁場発生装置31-2、31A-2は、リング状の支持体(継鉄)SPの内側に棒状の複数の永久磁石PMを固定したものとして構成される。これらは機能的には同等である。
 さらに、上記した実施形態では、下部の電極32Bとして、先端にローラ32Baを有するものを示したが、必ずしもローラ32Baを備える必要はない。製品Pが連続的に押し出されても製品Pと電極32Bが電気的な導通状態を保たれればよく、各種の構造を採用することができる。例えば、電極32Bとして所定の長さの弾性材を用い、図1において、例えば、上に凸となるように、又は下に凸となるように屈曲させ、復元力によって先端を前記鋳造品Pに圧接させ、この状態で鋳造品Pが下方へ伸張するのを許容するようにすればよい。
 上記に説明した本発明の実施形態によれば、以下のような効果が得られる。
 本発明では、凝固する直前の溶湯Mを攪拌して、溶湯Mに動き、振動等を与えて脱ガス効果や組織の均一化、微細化を図っている。
 而して、現在は、産業界において量産設備の実現が要求されている。量産を考慮した場合には出来るだけ小型の鋳型を実現することが不可欠である。
 ここで、従来の電磁式攪拌においては、一度に生産するスラブあるいはビレットの数が、数本の場合には対応可能である。しかしながら現在は、100本を超すビレットを同時生産する要請が出てきている。この要請には従来の電磁攪拌装置では応じることができない。
 しかしながら、本発明の装置では、磁場発生装置として永久磁石を用いた。このため、電磁攪拌装置に比べて極めてコンパクト化が可能である。このことから、量産設備用の鋳型装置の実現が十分可能である。また永久磁石式であるため、磁場発生装置として、発熱がない、省電力、省エネルギー、ローメンテナンス等の効果を有する装置を得ることができる。
 図5はさらに異なる実施形態を示す。
 この液相状態にある溶湯Mにより多くの電流を流して、より大きな電磁力を発生させて溶湯Mを回転駆動しようとしたものである。
 図1の実施形態と異なる点は、鋳型2Aの構造にある。その他の構成は図1と実質的に同一である。よって、ここでは詳しい説明は行わない。
 即ち、この実施形態の鋳型2Aは、ほぼ円筒状の鋳型本体2A1を有する。この鋳型本体2A1をその内周面に周状の溝を有するものとして形成する。この溝の内面(周側面及び底面)に絶縁膜2A2を形成し、この絶縁膜2A2上に前記鋳型本体2A1と同等の導電性材料を埋め込んで埋込層2A3を構成している。前記絶縁膜2A2と前記埋込層2A3とにより絶縁層部分が構成されることになる。この絶縁層部分は、前記鋳型の内側表面の一部に形成されて、前記鋳型からの前記電流の流れは許容しない部分として機能する。
 この絶縁層部分は、鋳型本体2A1の内表面のやや下方部分に設けられることになる。
これにより、鋳型本体2A1における絶縁層部分、つまり、鋳造品Pと接する部分から鋳造品Pへの電流は可及的に許容されないことになる。
 さらに、鋳型本体2A1の外周側に端子2A4を設けている。この端子2A4を介して鋳型2Aに前記電源装置34から給電可能としている。図5ではウォータジャケットは図示を省略している。
 このように構成された装置において、電源装置34で端子2A4と電極32Bの間に電圧をかければ、電流が、鋳型本体2A1、溶湯M、鋳造品Pに流れる。このとき、絶縁膜2A2と埋込層2A3には電流はながれないので、溶湯Mにはより大きな電流が流れ、溶湯Mを攪拌しようとする前記電磁力はより大きなものとして得られる。
 図6はさらに別の実施形態を示す。
 この実施形態は図1の実施形態の変形である。
 本実施形態が図1の実施形態と異なるところは、図1の上部の電極32Aの配置の仕方にある。つまり、本実施形態においては、1または複数の電極32A0、32A0、・・・を、複数の場合は環状の配置とし、これらの電極32A0を鋳型2A等(鋳型2A及びウォータジャケット23)以外の任意の手段で支持し、各電極32A0の下端部分が溶湯M中に差し込まれた状態としている。これにより、電極32A0の下端部分の前記溶湯M中への差込量の調節を鋳型2A等と無関係に自由度大きく行うことができる。さらに、当然、鋳型2A等として通常のものを用いればよく、鋳型2A等に電極32A1に電極差込孔2aを設ける必要もなく、これらの製造コストの増加を防ぐこともできる。
 その他の構成は図1の実施形態と同様である。
 図7はさらに別の実施形態を示す。
 この実施形態は図6の実施形態の変形例とみることもできる。
 図7の実施形態は、上方のタンディッシュ(溶湯受箱)1Aから下方の鋳型2へ、溶湯Mがとぎれることなく連続した溶湯として注ぎこまれている場合において稼働可能な装置を想定している。つまり、タンディッシュ(溶湯受箱)1A内の溶湯Mと鋳型2内の溶湯Mとが一体に繋がっている場合を想定している。
 図6では電極32A0を鋳型2中の溶湯Mに差し込んでいるが、図7では、上記の場合を前提として、電極32A1をタンディッシュ(溶湯受箱)1A中の溶湯Mに差し込んだ状態に任意の手段で支持している。このようにすることにより、前述の図7の実施形態におけると同様の利点を得ることができる。加えて、タンディッシュ(溶湯受箱)1Aと鋳型2A等との間の距離を、電極32A1にかかわりなく設定、調節することができる。
 その他の構成は図6と同様である。
M  溶湯
P  製品(鋳造品)
1  溶湯供給装置
2  鋳型
21 内部鋳型
22 外部鋳型
23 ウォータジャケット
2a 電極差込孔
3  攪拌装置
31 磁場発生装置
32A、32A0、32A1 上部の電極
32B 下部の電極
32Ba ローラ
34 電源装置

Claims (20)

  1.  導電性材料の液相状態にある溶湯の供給を受け、前記溶湯を冷却することにより固相状態の鋳造品を取り出し得るようにした攪拌装置付連続鋳造用鋳型装置であって、
     入口側から液相状態の前記溶湯の供給を受け、冷却により固相状態の前記鋳造品を出口側から排出する鋳型と、
     前記鋳型の外部に設けられた攪拌装置であって、上方に位置する第1電極とそれよりも下方に位置する第2電極とを有する電極部と、液相状態にある前記溶湯に磁場をかけるための永久磁石を有する磁場発生装置と、を備え、前記第1電極は液相状態にある前記溶湯と電気的に導通可能に設けられ、前記第2電極は固相状態にある前記鋳造品と電気的に導通可能に設けられ、前記第1電極及び前記第2電極はこれらの間に前記溶湯及び前記鋳造品を介して上下方向に通電可能に構成され、前記磁場発生装置は前記鋳型の外部に設けられ、横向きに磁力線を発生させ、前記磁力線を前記鋳型を貫通してその内部に達して前記溶湯に前記電流と交差する横向きの磁力線を与え得るものとして構成した、
     ことを特徴とする攪拌装置付連続鋳造用鋳型装置。
  2.  前記磁場発生装置はS極とN極からなる磁極組の少なくとも1つを有し、前記各磁極は前記鋳型に近い側と遠い側がそれぞれ内側磁極と外側磁極としてそれぞれ磁化とされていることを特徴とする請求項1に記載の攪拌装置付連続鋳造用鋳型装置。
  3.  前記複数の磁極組は、縦向きの軸の回りに且つ前記鋳型の外周に配列されていることを特徴とする請求項1に記載の攪拌装置付連続鋳造用鋳型装置。
  4.  複数の前記磁極組において、複数の前記内側磁極はS極又はN極であり、複数の前記外側磁極はN極又はS極である、ことを特徴とする請求項1に記載の攪拌装置付連続鋳造用鋳型装置。
  5.  前記磁場発生装置は前記鋳型に対し位置を上下方向に調節可能なものとして構成されていることを特徴とする請求項1に記載の攪拌装置付連続鋳造用鋳型装置。
  6.  前記第1電極を前記鋳型により又は前記鋳型以外の手段により支持したことを特徴とする請求項1に記載の攪拌装置付連続鋳造用鋳型装置。
  7.  前記第2電極は先端にローラを備え、前記ローラは取り出される前記鋳造品の外面との接触により回転可能なものとして構成されていることを特徴とする請求項1に記載の攪拌装置付連続鋳造用鋳型装置。
  8.  前記第1電極及び前記第2電極にはこれらの間に直流電流を流しうる電源装置が接続されていることを特徴とする請求項1に記載の攪拌装置付連続鋳造用鋳型装置。
  9.  前記鋳型は、非導電性材料による1重構造、導電性材料による1重構造、あるいは、非導電性材料と導電性材料による2重構造のものとして構成されていることを特徴とする請求項1に記載の攪拌装置付連続鋳造用鋳型装置。
  10.  前記鋳型は非導電性材料による1重構造のものとして構成され、前記第1電極は前記電極差込孔を通って前記鋳型の内部に露呈する状態に設けられたことを特徴とする請求項6に記載の攪拌装置付連続鋳造用鋳型装置。
  11.  前記鋳型は導電性材料による1重構造のものとして構成され、前記第1電極は少なくとも前記電極差込孔を介して前記鋳型と電気的に導通する状態に設けられたことを特徴とする請求項6に記載の攪拌装置付連続鋳造用鋳型装置。
  12.  前記鋳型は、内側の非導電性材料と外側の導電性材料の2重構造として構成され、前記第1電極は前記電極差込孔を介して前記鋳型の内部に露呈する状態に設けられたことを特徴とする請求項6に記載の攪拌装置付連続鋳造用鋳型装置。
  13.  前記鋳型は、内側の導電性材料と外側の非導電性材料の2重構造として構成され、前記第1電極は少なくとも前記電極差込孔を介して前記内側の導電性材料と電気的に導通する状態に設けられたことを特徴とする請求項6に記載の攪拌装置付連続鋳造用鋳型装置。
  14.  前記磁場発生装置は環状体として構成されていることを特徴とする請求項1に記載の攪拌装置付連続鋳造用鋳型装置。
  15.  前記磁場発生装置は前記環状体の1個所又は複数個所が前記磁極組とされていることを特徴とする請求項14に記載の攪拌装置付連続鋳造用鋳型装置。
  16.  前記磁場発生装置は、リング状の支持体と、前記支持体に固定された1又は複数の永久磁石体と、を有することを特徴とする請求項14に記載の攪拌装置付連続鋳造用鋳型装置。
  17.  導電性材料の液相状態にある溶湯の供給を受け、前記溶湯を冷却することにより固相状態の鋳造品を取り出し得るようにした攪拌装置付連続鋳造用鋳型装置であって、
     入口側から液相状態の前記溶湯の供給を受け、冷却により固相状態の前記鋳造品を出口側から排出する、導電性材料で構成された、鋳型と、
     前記鋳型の外部に設けられた攪拌装置であって、液相状態にある前記溶湯に磁場をかけるための永久磁石を有する磁場発生装置を備え、且つ、固相状態にある前記鋳造品と電気的に導通可能な下部電極を備え、前記下部電極は、上部電極としての前記鋳型からの電流を前記溶湯及び前記鋳造品を介して受けることができるものとして構成され、前記磁場発生装置は前記鋳型の外部に設けられ、横向きに磁力線を発生させ、前記磁力線を前記鋳型を貫通してその内部に達して前記溶湯に前記電流と交差する横向きの磁力線を与え得るものとして構成した、
     ことを特徴とする攪拌装置付連続鋳造用鋳型装置。
  18.  前記磁場発生装置はS極とN極からなる磁極組の少なくとも1つを有し、前記各磁極は前記鋳型に近い側と遠い側がそれぞれ内側磁極と外側磁極としてそれぞれ磁化とされていることを特徴とする請求項17に記載の攪拌装置付連続鋳造用鋳型装置。
  19.  前記鋳型は、内側表面の一部に、前記鋳型からの前記電流の流れは許容しない絶縁層部分を備えることを特徴とする請求項17に記載の攪拌装置付連続鋳造用金型装置。
  20.  前記絶縁層部分は、前記内表面の下部部分に形成されていることを特徴とする請求項19記載の攪拌装置付連続鋳造用金型装置。
PCT/JP2011/066223 2010-07-16 2011-07-15 攪拌装置付き連続鋳造用鋳型装置 WO2012008574A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11806904.6A EP2594351B1 (en) 2010-07-16 2011-07-15 Molding device for continuous casting equipped with stirring device
CA2804644A CA2804644C (en) 2010-07-16 2011-07-15 Molding device for continuous casting equipped with agitator
AU2011277379A AU2011277379B2 (en) 2010-07-16 2011-07-15 Molding device for continuous casting equipped with stirring device
US13/810,016 US20130192791A1 (en) 2010-07-16 2011-07-15 Molding device for continuous casting equipped with agitator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-162058 2010-07-16
JP2010162058 2010-07-16
JP2010-226818 2010-10-06
JP2010226818A JP5669509B2 (ja) 2010-07-16 2010-10-06 攪拌装置付き連続鋳造用鋳型装置

Publications (1)

Publication Number Publication Date
WO2012008574A1 true WO2012008574A1 (ja) 2012-01-19

Family

ID=45469568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066223 WO2012008574A1 (ja) 2010-07-16 2011-07-15 攪拌装置付き連続鋳造用鋳型装置

Country Status (6)

Country Link
US (1) US20130192791A1 (ja)
EP (1) EP2594351B1 (ja)
JP (1) JP5669509B2 (ja)
AU (1) AU2011277379B2 (ja)
CA (1) CA2804644C (ja)
WO (1) WO2012008574A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10118221B2 (en) 2014-05-21 2018-11-06 Novelis Inc. Mixing eductor nozzle and flow control device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5819270B2 (ja) 2012-08-08 2015-11-18 高橋 謙三 永久磁石式筒型溶湯攪拌装置及び永久磁石式汲み出しポンプ付溶解炉
JP5551297B1 (ja) * 2013-08-08 2014-07-16 高橋 謙三 攪拌装置付き連続鋳造用鋳型装置
CN103624230B (zh) * 2013-11-22 2015-10-28 江苏大学 一种组合外场下离心铸造高速钢轧辊的方法
KR102121979B1 (ko) 2018-10-24 2020-06-12 주식회사 퓨쳐캐스트 가동형 전자기제어 조직제어모듈을 구비하는 다이캐스팅 장치
WO2020085775A1 (ko) * 2018-10-24 2020-04-30 주식회사 퓨쳐캐스트 가동형 전자기제어 조직제어모듈을 구비하는 다이캐스팅 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154270A (en) * 1980-01-31 1981-11-28 Asea Ab Continuous casting device
JPS58100956A (ja) * 1981-12-11 1983-06-15 Sumitomo Metal Ind Ltd 電磁撹拌装置
JPH02501903A (ja) * 1987-01-23 1990-06-28 マンネスマン・アクチエンゲゼルシャフト 金属の連鋳材を磁気的に撹拌する方法と該方法を実施する装置
JPH0999344A (ja) 1995-10-05 1997-04-15 Furukawa Electric Co Ltd:The 非鉄金属スラブの縦型半連続鋳造用鋳型
WO2008010285A1 (fr) * 2006-07-20 2008-01-24 Kenzo Takahashi Four de fusion avec agitateur et agitateur pour four de fusion

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947533A (en) * 1974-06-14 1976-03-30 Biomagnetics, International Inc. Magnetic field expansion and compression method
US4158380A (en) * 1978-02-27 1979-06-19 Sumitomo Metal Industries Limited Continuously casting machine
US4846255A (en) * 1987-10-28 1989-07-11 The United States Of America As Represented By The United States Department Of Energy Electromagnetic augmentation for casting of thin metal sheets
LU88034A1 (fr) * 1991-11-13 1993-05-17 Centrem Sa Procédé de brassage électromagnétique en coulée continue
FR2805483B1 (fr) * 2000-02-29 2002-05-24 Rotelec Sa Equipement pour alimenter en metal en fusion une lingotiere de coulee continue, et son procede d'utilisation
FR2893868B1 (fr) * 2005-11-28 2008-01-04 Rotelec Sa Reglage du mode de brassage electromagnetique sur la hauteur d'une lingotiere de coulee continue
EP1925681B1 (de) * 2006-11-15 2011-04-27 Inteco special melting technologies GmbH Verfahren zum Elektroschlacke-Umschmelzen von Metallen sowie Kokille dafür

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154270A (en) * 1980-01-31 1981-11-28 Asea Ab Continuous casting device
JPS58100956A (ja) * 1981-12-11 1983-06-15 Sumitomo Metal Ind Ltd 電磁撹拌装置
JPH02501903A (ja) * 1987-01-23 1990-06-28 マンネスマン・アクチエンゲゼルシャフト 金属の連鋳材を磁気的に撹拌する方法と該方法を実施する装置
JPH0999344A (ja) 1995-10-05 1997-04-15 Furukawa Electric Co Ltd:The 非鉄金属スラブの縦型半連続鋳造用鋳型
WO2008010285A1 (fr) * 2006-07-20 2008-01-24 Kenzo Takahashi Four de fusion avec agitateur et agitateur pour four de fusion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10118221B2 (en) 2014-05-21 2018-11-06 Novelis Inc. Mixing eductor nozzle and flow control device
US10464127B2 (en) 2014-05-21 2019-11-05 Novelis Inc. Non-contacting molten metal flow control
US10835954B2 (en) 2014-05-21 2020-11-17 Novelis Inc. Mixing eductor nozzle and flow control device
US11383296B2 (en) 2014-05-21 2022-07-12 Novelis, Inc. Non-contacting molten metal flow control

Also Published As

Publication number Publication date
JP5669509B2 (ja) 2015-02-12
CA2804644A1 (en) 2012-01-19
AU2011277379A9 (en) 2013-07-11
CA2804644C (en) 2016-09-27
JP2012035322A (ja) 2012-02-23
EP2594351A4 (en) 2017-09-06
EP2594351A1 (en) 2013-05-22
EP2594351B1 (en) 2019-12-18
AU2011277379A1 (en) 2013-01-24
US20130192791A1 (en) 2013-08-01
AU2011277379B2 (en) 2014-03-27

Similar Documents

Publication Publication Date Title
JP5431438B2 (ja) 攪拌装置付き連続鋳造用鋳型装置
WO2012008574A1 (ja) 攪拌装置付き連続鋳造用鋳型装置
EP2857121B1 (en) Continuous casting molding device with stirring device
CN203639530U (zh) 利用稳恒磁场优化金属凝固组织的复合电渣熔铸装置
WO2016093328A1 (ja) 溶湯品質改善型低圧鋳造方法及び装置、並びに溶湯品質改善型スクイズ鋳造方法及び装置、並びに連続鋳造方法及び溶湯品質改善装置付連続鋳造装置、並びに鋳造方法及び鋳造装置
CN102107266B (zh) 驱动铸锭内尚未凝固的金属熔液流动的方法
CN112689543B (zh) 用于铸造铝或铝合金的铸模中的电磁搅拌装置、搅拌方法、铸模和铸造机
JP5973023B2 (ja) 溶湯品質改善型低圧鋳造方法及び装置、並びに溶湯品質改善型スクイズ鋳造方法及び装置、並びに連続鋳造方法及び溶湯品質改善装置付連続鋳造装置、並びに鋳造方法及び鋳造装置
KR100419757B1 (ko) 연속주조장치에 있어서의 전자기 교반장치
KR200253509Y1 (ko) 연속주조장치에 있어서의 전자기 교반장치
CN202015828U (zh) 驱动铸锭内尚未凝固的金属熔液流动的装置
NZ612696B2 (en) Molding device for continuous casting equipped with agitator
SU1168325A1 (ru) Установка непрерывного лить металлов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806904

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2804644

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011806904

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011277379

Country of ref document: AU

Date of ref document: 20110715

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13810016

Country of ref document: US