WO2012008383A1 - 磁気ポンプ - Google Patents

磁気ポンプ Download PDF

Info

Publication number
WO2012008383A1
WO2012008383A1 PCT/JP2011/065712 JP2011065712W WO2012008383A1 WO 2012008383 A1 WO2012008383 A1 WO 2012008383A1 JP 2011065712 W JP2011065712 W JP 2011065712W WO 2012008383 A1 WO2012008383 A1 WO 2012008383A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
magnetic
magnetic field
phase difference
rotating magnetic
Prior art date
Application number
PCT/JP2011/065712
Other languages
English (en)
French (fr)
Inventor
和志 石山
山家 智之
泰之 白石
英和 三浦
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2012524535A priority Critical patent/JP5817062B2/ja
Priority to US13/810,116 priority patent/US20130164160A1/en
Priority to EP11806713.1A priority patent/EP2594800A4/en
Publication of WO2012008383A1 publication Critical patent/WO2012008383A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0094Indicators of rotational movement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings

Definitions

  • the present invention relates to a magnetic pump.
  • Non-Patent Document 1 Magnetic pumps have attracted attention because they have an important role in drug delivery and uTAS. Medical pumps can be classified into three types according to their operating mechanisms: centrifugal pumps, axial flow pumps, and pulsation pumps. Furthermore, blood pumps can be classified into two types: pulsating flow pumps and continuous flow pumps (rotary).
  • the continuous flow pump (rotary type) has been recently developed for a blood pump (see Patent Document 1 and Non-Patent Documents 2 to 4). While pulsating flow pumps are valve-type, expensive, very heavy, low efficiency, complex control, high power consumption and low productivity, continuous flow pumps (rotary) have various advantages There is.
  • a continuous flow pump (rotary) has no valves, is inexpensive, small and lightweight, is easy to control, has low power consumption, and is highly productive.
  • the present invention solves the problems in the conventional continuous flow pump (rotary type), and provides a magnetic pump capable of monitoring and controlling the operation state of the pump body at a location remote from the pump body and wirelessly. This is the issue.
  • the present invention provides the following magnetic pump.
  • a pump body having a pump case having a suction port and a discharge port, an impeller rotatably accommodated in the pump case, and coupled to magnetic means; and spaced apart from the pump body;
  • a magnetic pump comprising: a rotating magnetic field generating means for applying a rotating magnetic field; and a means for detecting a phase difference between the magnetic field generated by the magnetic means and the rotating magnetic field.
  • the means for detecting the phase difference detects a phase difference between a voltage generated by the rotation of the magnetic means and a voltage generated by the rotating magnetic field, and monitors the output of the pump based on the phase difference.
  • the magnetic pump according to (1).
  • the means for detecting the phase difference includes a detection coil for detecting a voltage generated by the rotation of the rotating magnetic field and the magnetic means, and a voltage generated by the rotation of a known rotating magnetic field from the voltage detected by the detection coil.
  • the detection coil is provided at a position away from the pump body.
  • the magnetic pump which can monitor the operation condition of a pump main body wirelessly in the place away from the pump main body, and can control this is attained.
  • the magnetic pump according to the present invention greatly contributes to the practical use of an implantable blood pump that is required to be inexpensive, small and lightweight, easy to control, and low in power consumption.
  • FIG. 1 shows the principle of a rotating magnetic field and the principle of synchronization within the rotating magnetic field.
  • FIG. 1A in order to generate a homogeneous rotating magnetic field, the angle of the intersection of the coil 1 and the coil 2 is 90 °.
  • the phase difference of the input current signal is 90 ° as can be seen from FIG. In this state, the rotating magnetic field is generated as the sum of the vectors shown in FIGS.
  • Centrifugal pumps are based on angular momentum theory and the momentum momentum principle. That is, the centrifugal pump converts energy from kinetic energy to pressure energy. The amount of energy imparted to the liquid is proportional to the velocity at the edge or blade tip on the impeller.
  • FIG. 2 shows the velocity at the edge or blade on a single impeller.
  • w is the relative velocity of the liquid particles
  • v is the absolute velocity of the liquid particles
  • u is the peripheral velocity
  • r is the radius
  • is the angle between u and v
  • is the angle of the blade.
  • Impeller and pump characteristics vary depending on the blade shape determined by the blade angle ⁇ 2 .
  • T torque ⁇ Q (r 2 v 2 cos ⁇ 2 ⁇ r 1 v 1 cos ⁇ 1 ) (2)
  • the liquid density
  • Q the amount of flowing liquid
  • H p the pump head
  • g gravity
  • the angular velocity
  • ⁇ 2 is converted by v 2u as shown in FIG.
  • the pump head varies according to an angle ( ⁇ 2 ) according to the following three conditions under a constant rotational speed.
  • ⁇ 2 ⁇ 90 ° cot ⁇ 2 > when 0 and v n2 cot ⁇ 2> 0, head, decreases as flow rate increases.
  • the pump body of the magnetic pump according to the present invention includes a multistage impeller and an NdFeB permanent magnet (diameter: 18.8 mm, thickness: 4 mm).
  • the pump case does not require a rotating shaft and a bearing because its impeller is floating. This eliminates common mechanical problems.
  • Magnetic pumps have various advantages in medical applications. It is wireless, has a simple structure that does not require a battery, has no mechanical problems, and does not generate any heat.
  • the basic characteristics of a magnetic pump vary depending on the magnetic field and operating frequency.
  • the intersection of the two coils and the magnetic field density determine the distance between the pump body and the drive coil.
  • the discharge pressure can be adjusted by the frequency. In the case of an oscillating flow pump, this varies depending on the resonance frequency. However, centrifugal pumps are proportional to the operating frequency up to the saturation point.
  • the pump body of the present invention can rotate in two directions according to the direction of rotation of the rotating magnetic field (counterclockwise or clockwise). In this case, the flow rate and pressure are determined by equation (5).
  • the blade angle ( ⁇ 2 ) formed on the impeller is smaller than 90 ° when the rotation direction is counterclockwise. However, when the direction of rotation is clockwise, the blade angle ( ⁇ 2 ) is greater than 90 °.
  • FIG. 3 shows the assembled impeller and pump body.
  • 3A shows a 3D impeller
  • FIG. 3B shows a multistage impeller including a disk-type NdFeB permanent magnet constituting a rotor
  • FIG. 3C shows a fully mounted pump body.
  • Each measured value of the single impeller is 1 mm, and the clearance between the rotor and the inner wall of the pump case is 0.2 mm. This size is important for determining the starting torque because the rotor is floating.
  • the flow rate and dynamic pressure are determined by the diameter of the discharge portion. For example, if the diameter is small, the dynamic pressure can increase, but the flow rate decreases at a constant rpm.
  • FIG. 4 is a drawing showing a flow simulation at the discharge part on the pump case. 4, (a) shows the pressure distribution of the diameter (6 mm and 3 mm) of the discharge part, and (b) shows the measurement results of the pressure (dynamic pressure, static pressure, and total pressure: discharge part 6 mm).
  • the optimal discharge size can be designed by flow simulation.
  • the inventors produced a magnetic pump.
  • the configuration includes a pump body, a drive coil pair, and a power source.
  • the distance between the pump body and the drive coil is determined by the angle of the intersection between the drive coils.
  • the angle of the intersection between the drive coils was 90 °.
  • the phase difference between the current signals of the two drive coils was also fixed at 90 °.
  • the operating frequency is 10 Hz to 100 Hz (rpm: 6,000 rpm or less).
  • two types of pump cases (outflow diameters of 3 mm and 6 mm) and tubes of 6 mm, 8 mm and 10 mm, respectively, were used.
  • the magnet properties (size, magnetic moment) on the rotor are important factors in the rotating magnetic field because they generate torque.
  • FIG. 5 show various characteristics of the magnetic pump. 5
  • (a) is a test bed for circulation
  • (b) is a comparison of discharge parts (diameter 6 mm and 3 mm)
  • (c) is a relationship between flow rate and pressure (discharge part 6 mm and outflow pipe 10 mm).
  • (d) show changes in flow rate at increasing frequencies, respectively.
  • First the relationship between flow rate and pressure is inversely related.
  • the flow rate and pressure are proportional to the operating frequency (rpm). However, the impedance on the coil varies with frequency. Eventually, when the operating frequency increases, the drive current decreases. Finally, the flow rate and pressure are determined along with the operating frequency depending on the size of the discharge portion.
  • the discharge parts (3 mm and 6 mm) were compared for flow rate and pressure.
  • the pressure difference is 400 Pa
  • the flow rate is 500 ml / min at 70 Hz when the diameter of the outflow pipe is 6 mm, as shown in FIG.
  • the discharge portion 6 mm and the outlet pipe 10 mm provide a high flow rate (3,200 ml / min at 70 Hz and 4,800 ml / min at 100 Hz), but the pressure is 200 Pa maximum. It dropped to.
  • the detection coil is placed at a position where the magnetic field generated by the built-in magnet is efficiently detected. At the same time, the detection coil also detects a rotating magnetic field applied from the outside. However, these two magnetic fields have a phase difference, and measuring the phase difference is important information for knowing how the built-in magnet rotates.
  • the pump operates as a pump by applying force to the surrounding fluid. This corresponds to the load on the motor. From the principle of magnetic torque, since the torque is proportional to the angle difference between the magnetic field applied from the outside and the magnetization direction of the magnet, in this pump, the magnet always has a certain phase lag with respect to the rotating magnetic field, Moreover, it rotates at the same rotation speed. The amount of the phase delay is proportional to the magnitude of torque acting between the rotating magnetic field and the magnet, that is, proportional to the output torque of the pump.
  • the phase difference between the magnetic field generated by the internal magnet and the rotating magnetic field may be detected.
  • the phase of the external rotating magnetic field is known, so that the phase difference between the rotating magnetic field and the built-in magnet can be known.
  • the torque can be calculated based on this phase difference, and the pump output can be monitored. That is, the phase difference increases when the pump output is large, and the phase difference decreases when the output is small.
  • ⁇ in the above equation (1) becomes zero and the torque becomes zero, which corresponds to the case where the motor rotates with no load (zero output).
  • the phase changes.
  • the phase is 90 degrees
  • the torque becomes maximum and the output here becomes the maximum output of the pump. Therefore, the instantaneous output ratio with respect to the maximum output of the pump can be monitored in real time by phase measurement.
  • the detection coil is installed at a position away from the pump body.
  • this pump is applied to an artificial heart, the detection coil is installed outside the body, and the operation of the pump body inside the body can be monitored.
  • this principle for example, when the load suddenly increases, it is possible to construct a so-called feedback system that immediately responds by increasing the strength of the external rotating magnetic field.
  • FIG. 6 shows a photograph of the experimental scenery.
  • FIG. 7 is an exploded perspective view of the pump body.
  • a detection coil is disposed on the surface of the pump case.
  • FIG. 8 shows a voltage waveform detected by the detection coil by a solid line. In the detection coil, since two magnetic fields are simultaneously measured, a waveform indicated by a solid line in FIG. 8 is observed. On the other hand, since the external rotating magnetic field is known, the broken line waveform in FIG. 8 can be prepared in advance.
  • the voltage waveform generated by the rotation of the built-in magnet indicated by the alternate long and short dash line can be calculated. Thereafter, if the phase difference between the two waveforms of the broken line and the alternate long and short dash line is measured, it becomes the pump output.
  • the broken line takes the maximum value at 90 degrees, but the alternate long and short dash line takes the maximum value at 60 degrees, and there is a phase difference of 30 degrees. If the load changes, the alternate long and short dash line translates left and right in the figure, and the phase difference changes.
  • FIG. 9 is a photograph of a right heart assist device that is driven from outside the body when necessary during animal experiments.
  • a bypass circuit fed from the right ventricle to the pulmonary artery is implanted, and a permanent magnet joined to the impeller generates a driving force.
  • An impeller that is implanted subcutaneously is incorporated from the right ventricle into the bypass circuit of the pulmonary artery.
  • the bypass circuit is then implanted subcutaneously, thus realizing a fully implanted aseptic implantation.
  • FIG. 10 is a time-series curve of a right heart assist effect in an animal experiment of an auxiliary circulation device that can be driven from outside the body.
  • the pump outflow side pressure, inflow side pressure, and pump flow rate From the top, the pump outflow side pressure, inflow side pressure, and pump flow rate. It can be seen that when the drive is started, the pump flow rate increases and the right heart assist effect appears. In the animal experiment, it was implemented as a right heart assist, but it can also be applied to a left heart assist.
  • the present invention has been described by exemplifying a blood pump.
  • the present invention is not limited to the blood pump described in the embodiments, and can be applied to any magnetic pump.
  • the present invention is applicable, for example, to a case where a pump body placed on the other side of a wall is driven from the front of the wall. That is, it is particularly effective when the other side of the wall is, for example, in a high temperature, low temperature, vacuum, high radiation state, or sterile room, and it is not preferable to place a drive source on the other side of the wall.
  • the present invention is also effective when a pump body installed in a narrow place such as a tube or piping is driven from the outside.

Abstract

 本発明は、ポンプから離れた場所で、かつワイヤレスにポンプの動作状況をモニターできこれを制御できる磁気ポンプを提供することを課題とする。 吸入口と吐出口とを有するポンプケースと、該ポンプケース内に回転可能に収容され、磁気手段と結合したインペラーとを備えたポンプ本体と、該ポンプ本体と離隔し該磁気手段に回転磁界を与えるための回転磁界発生手段と、上記磁気手段が外部に作り出している磁界と上記回転磁界との位相差を検出する手段とを備えた磁気ポンプである。

Description

磁気ポンプ
 本発明は、磁気ポンプに関するものである。
 様々な用途を目的とするポンプについて、多くの研究が実施されてきた。
 また、材料の開発及びマイクロあるいはナノ構造作製技術の発達により、様々なタイプの小型ポンプの開発がなされてきた。しかし、ほとんどの小型ポンプは、電線又はバッテリーにより制御されている。
 近年、こうした課題を解決するために、外部磁界制御を備えた磁気ポンプが導入されている(非特許文献1参照)。磁気ポンプは、薬物送達及びuTASにおいて重要な役割を有しているため、注目を集めてきた。
 医療用途のポンプは、その動作機構に従って、遠心ポンプ、軸流ポンプ、及び拍動ポンプの3つのタイプに分類できる。さらに、血液ポンプは、脈動流ポンプ及び連続流ポンプ(回転式)の2つのタイプに分類できる。
 連続流ポンプ(回転式)は、近年、血液ポンプのために開発されたものである(特許文献1、非特許文献2~4参照)。脈動流ポンプが、バルブ式で、高価であり、非常に重く、低効率、制御が複雑で、電力消費が高く、生産性が低いのに対し、連続流ポンプ(回転式)には様々な利点がある。連続流ポンプ(回転式)は、バルブがなく、安価、小型かつ軽量、さらに制御が簡単で、電力消費が低く、生産性も高い。
 従来の連続流ポンプ(回転式)では、ポンプの動作状況をモニターする場合、流路に圧力計あるいは流量計を設ける必要がある。このためポンプの周辺に余分の装置を必要とし、またこのための余分の配線が必要となる。これは特に体内埋込型血液ポンプの場合には、実用化にとって大きな障害となる。
特開平7-75667号公報
A. Yamazaki, M. Sendoh, K. Ishiyama, K.I Arai, and T. Hayase (2003), IEEE trans on magnetics 39 5 T. Yamane (2002) J Artif Organs 5 149-155 Jarvik RK (1995) Artif Organs 19 565-570 Masuzawa T, Kita T, Okada Y (2001), Artif Organs 25 395-399
 本発明は、従来の連続流ポンプ(回転式)における問題点を解決し、ポンプ本体から離れた場所で、かつワイヤレスにポンプ本体の動作状況をモニターでき、かつこれを制御できる磁気ポンプを提供することを課題とする。
 上記課題を解決するために本発明は、次のような磁気ポンプを提供する。
(1)吸入口と吐出口とを有するポンプケースと、該ポンプケース内に回転可能に収容され、磁気手段と結合したインペラーとを備えたポンプ本体と、該ポンプ本体と離隔し該磁気手段に回転磁界を与えるための回転磁界発生手段と、上記磁気手段が外部に作り出している磁界と上記回転磁界との位相差を検出する手段とを備えた磁気ポンプ。
(2)上記位相差を検出する手段は、上記磁気手段の回転により生じる電圧と上記回転磁界により生じる電圧との位相差を検出し、該位相差に基づいてポンプの出力をモニターすることを特徴とする(1)に記載の磁気ポンプ。
(3)上記位相差を検出する手段は、上記回転磁界及び上記磁気手段の回転により生じる電圧を検出する検出コイルを含み、該検出コイルの検出する電圧から既知の回転磁界の回転により生じる電圧の差分により上記磁気手段の回転により生じる電圧を算出し、既知の回転磁界により生じる電圧との位相差を検出することを特徴とする(1)又は(2)に記載の磁気ポンプ。
(4)上記検出コイルは、ポンプ本体とは離れた位置に設けられていることを特徴とする(3)に記載の磁気ポンプ。
(5)上記回転磁界発生手段は、固定された複数のコイルであることを特徴とする(1)ないし(4)のいずれかに記載の磁気ポンプ。
(6)上記インペラーは、多段式インペラーであることを特徴とする(1)ないし(5)のいずれかに記載の磁気ポンプ。
(7)上記ポンプは、血液ポンプであることを特徴とする(1)ないし(6)のいずれかに記載の磁気ポンプ。
(8)上記磁気手段は、永久磁石であることを特徴とする(1)ないし(7)のいずれかに記載の磁気ポンプ。
 本発明によれば、ポンプをワイヤレスに駆動できるばかりでなく、ポンプ本体から離れた場所で、かつワイヤレスにポンプ本体の動作状況をモニターでき、かつこれを制御できる磁気ポンプが可能になる。
 特に本発明に係る磁気ポンプは、安価、小型かつ軽量、さらに制御が簡単で、電力消費が低いことが要求される体内埋込型の血液ポンプの実用化に大きな貢献をなすものである。
回転磁界の生成及び駆動方法を示す図 インペラーの流入及び流出間の速度図 ポンプ本体の設計及び製造を示す図 吐出し部分の流動力学シミュレーションを示す図 流量及び圧力の関係を示す図 実験風景写真 ポンプ本体の分解斜視図 検出コイルが検出する電圧波形 動物実験中の、必要時に体外から駆動する右心補助装置の写真 動物実験における右心補助効果の時系列曲線
(動作機構の原理)
 磁気ポンプは、回転磁界により駆動される。本来のエネルギー源は、磁気トルクである。ローター上のNdFeB永久磁石は、回転磁界と同期する。回転速度は、磁界の周波数に応じて変動する。
 図1は、回転磁界の原理及び回転磁界内の同期状態の原理を示す。図1(a)に示すように、均質な回転磁界を生成するために、コイル1及びコイル2の交点の角度は90°である。また入力電流信号の位相差は、図1(b)から分かるように90°である。
 この状態で、回転磁界は、図1(c)及び(d)に示すベクトルの和として生成される。また、回転磁界と、NdFeB永久磁石の磁気モーメントの間の磁気トルクは、以下のように表すことができる。
   T = mH sinθ [Nm]            (1)
(mは磁石の磁気モーメントであり、Hは回転磁界であり、θはmとHの間の角度である)。
(遠心ポンプ及びインペラーの基本理論)
 遠心ポンプは、角運動量理論及び運動量のモーメントの原理による。すなわち遠心ポンプは、運動エネルギーから圧力エネルギーへエネルギー変換するものである。液体に与えられるエネルギーの量は、インペラー上のエッジ又はブレード先端での速度に比例する。図2は、単一インペラー上のエッジ又はブレードでの速度を示す。図2において、wは液体粒子の相対速度、vは液体粒子の絶対速度、uは周速度、rは半径、αはuとvの間の角度、βはブレードの角度である。インペラー及びポンプの特性は、ブレード角βにより決定されるブレード形状に応じて変わる。
 角運動量理論に従い、トルクTtorque及びパワーPpowerは以下のように表すことができる。
   Ttorque=ρQ(r cosα-r cosα)  (2)
   Ppower=Ttorque×ω=ρgQH
      =ρQ(u cosα-u cosα)  (3)
 上記式中、ρは液体密度、Qは流動液体の量、Hはポンプヘッド、gは重力及びωは角運動速度である。
 実際のポンプヘッドを取得するために、角度(α=90°)を仮定する。この場合、ポンプヘッド(H)は以下のように表すことができる。
   H=1/g u cosα             (4)
 ブレード角度(β)の影響を分析するために、式(4)をβによって変換した後、図2に示すように、αをv2uにより変換する。ポンプヘッド(H)は以下のように書き直すことができる。
   H=1/g (u -un2 cotβ)       (5)
 ポンプヘッドは、一定の回転数の下で以下の3つの条件に従う角度(β)に応じて変動する。
 1.β>90°:cotβ<0及びvn2cotβ<0のとき、ヘッドは、流量が減少するに従い増加する。
 2.β=90°:cotβ=0及びvn2cotβ=0のとき、ヘッドは、流量とは関係なく、一定値である。
 3.β<90°:cotβ>0及びvn2cotβ>0のとき、ヘッドは、流量が増加するに従い減少する。
(ポンプ本体の設計及び基本的特性)
 本発明に係る磁気ポンプのポンプ本体は、多段式インペラー及びNdFeB永久磁石(直径:18.8mm、厚さ:4mm)を含む。ポンプケースは、そのインペラーが浮動式であるため、回転軸及び軸受を必要としない。これにより、一般的な機械的問題が解消される。磁気ポンプは、医療用途において様々な利点を有する。これは、ワイヤレスで、バッテリー不要という単純な構造で機械的問題がなく、さらに熱を一切発生しない。磁気ポンプの基本的特性は、磁界及び動作周波数に応じて変わる。
 2つのコイルの交点及び磁界密度が、ポンプ本体と駆動コイルの間の距離を決定する。このとき、周波数により吐出圧を調節することができる。振動流ポンプの場合、これは共鳴振動数に応じて変動する。しかし、遠心ポンプは、飽和点までの動作周波数に比例する。本発明のポンプ本体は、回転磁界の回転方向(逆時計回り又は時計回り)に従い、二方向に回転できる。この場合、流量及び圧力は式(5)により決定される。インペラー上に形成されるブレード角(β)は、回転方向が逆時計回りのとき、90°より小さい。しかし、回転方向が時計回りのとき、ブレード角(β)は90°より大きい。
 図3は、組み立てられたインペラー及びポンプ本体を示す。図3において、(a)は3Dによるインペラー、(b)はローターを構成するディスク型NdFeB永久磁石を備える多段式インペラー及び(c)は完全に実装したポンプ本体をそれぞれ示す。
 単一インペラーの各測定値は1mmで、ローターとポンプケースの内壁との間の隙間は0.2mmである。このサイズは、上記ローターが浮動式であることから、出発トルクを決定するために重要である。吐出し部分の直径により、流量及び動圧が決定される。例えば、直径が小さければ、動圧は増大する可能性があるが、流量は定rpmで低下する。
 図4は、ポンプケース上の吐出し部分における流動シミュレーションを示す図面である。図4において、(a)は吐出し部分の直径(6mm及び3mm)の圧力分布、(b)は圧力の測定結果(動圧、静圧、及び全圧:吐出し部分6mm)をそれぞれ示す。流動シミュレーションにより、最適な吐出し部分のサイズを設計することができる。
(実験結果)
 本発明者らは、磁気ポンプを作製した。その構成は、ポンプ本体、駆動コイル対及び電源からなる。前述したように、ポンプ本体と駆動コイルとの距離は、駆動コイル間の交点の角度により決定される。
 本実験では、駆動コイル間の交点の角度を90°で実施した。また、2つの駆動コイルの電流信号の位相差も90°で固定した。磁気ローターを駆動するために、動作周波数は10Hz~100Hzとする(rpm:6,000rpm以下)。この実験では、2種類のポンプケース(流出直径3mm及び6mm)と、各々6mm、8mm、及び10mmのチューブを用いた。ローター上の磁石特性(サイズ、磁気モーメント)は、トルクを生成することから、回転磁界内では重要な因子である。
 図5の(b)~(d)は、磁気ポンプの諸特性を示す。図5において、(a)は循環のためのテストベッド、(b)は吐出し部分(直径6mm及び3mm)の比較、(c)は流量及び圧力の関係(吐出し部分6mm及び流出管10mm)、及び(d)は増加する周波数での流量の変化をそれぞれ示す。
 第1に、流量と圧力の関係は反比例の関係にある。
 第2に、流量及び圧力は、動作周波数(rpm)に比例する。
 しかし、コイル上のインピーダンスは周波数に応じて変動する。結局、動作周波数が増加すると、駆動電流の低下を引き起こす。最後に、吐出し部分のサイズにより、動作周波数と共に、流量及び圧力が決定される。流量及び圧力について吐出し部分(3mm及び6mm)を比較した。この場合、圧力差は400Paであり、流量は、図5(b)に示すように、流出管の直径が6mmのとき、70Hzで500ml/分である。しかし、吐出し部分6mm及び流出管10mmでは、図5(c)に示すように、高い流量(70Hzで3,200ml/分及び100Hzで4,800ml/分)をもたらすが、圧力は最大値200Paまで低下した。
(動作状態のモニター)
 本発明に係る磁気ポンプの動作状態をモニターする手法を説明する。
 磁気ポンプ動作時には、検出コイル周辺に2種類の磁界が存在する。すなわち、磁気手段である内蔵磁石を回転させるために外部から与える回転磁界と、内蔵磁石が発生する磁界である。
 その際、内蔵磁石の回転に伴って磁石が外部に作り出す磁界も回転するため、適切な位置に検出コイルを設置することによりコイルに誘導起電力が生じ、回転周波数と磁界強度に比例した交流電圧がコイル両端に発生する。そして、検出コイル両端の電圧波形から内蔵磁石の回転をモニターすることができる。
 検出コイルは内蔵磁石が発生する磁界を効率良く検出する位置に置かれるが、そこでは同時に外部から与えた回転磁界も検出する。しかしながら、この二つの磁界には位相差があり、その位相差を計測することこそが、内蔵磁石の回転の様子を知る重要な情報となる。
 ポンプは周辺流体に対して力を与えることによりポンプとして動作する。これはモーターにおける負荷に相当する。磁気トルクの原理から、外部から与えた磁界と磁石の磁化の向きの角度差とトルクが比例するため、このポンプの場合には、回転磁界に対して磁石は常にある程度の位相遅れを持って、しかも同じ回転数で、回転する。そしてその位相遅れの量は、回転磁界と磁石の間に働くトルクの大きさに比例し、これはすなわちポンプの出力トルクに比例することになる。
 内蔵磁石が回転磁界に対してどの程度の位相遅れで回転しているかは、内蔵磁石が外部に作り出している磁界と回転磁界との位相差を検出すればよい。これら二つの磁界を同時に一つの検出コイルで観測すれば、外部回転磁界の位相は既知であることから、回転磁界と内蔵磁石の位相差を知ることができる。
 そして、この位相差に基づいてトルクが算出でき、ポンプ出力をモニターできることになる。すなわち、ポンプ出力が大きい場合には位相差が大きくなり、出力が小さい場合には位相差が小さくなる。具体的には位相差がゼロのときには前述の式(1)のθがゼロとなってトルクがゼロとなり、これは無負荷(出力ゼロ)で回転している場合に相当する。負荷の増大(出力の増大)に伴って位相が変化し、位相が90度の場合にトルクが最大となりここでの出力がポンプの最大出力となる。よって、位相計測によりポンプの最大出力に対する瞬時の出力割合がリアルタイムにモニターできることになる。
 当然ながら、検出コイルはポンプ本体とは離れた位置に設置される。
 例えばこのポンプを人工心臓に適用するのであれば、検出コイルは体外に設置され、体内のポンプ本体の動作をモニターできる。この原理を用いることで、例えば急激に負荷が大きくなった際には、即座に外部回転磁界の強度を増加させて対応するなどのいわゆるフィードバックシステムが構築可能となる。
 (原理の実証)
 上記原理を実証するために検出コイルをポンプケースの周りに密着させ、ポンプに対して、交差した2個のコイルによる外部回転磁界を加え検出コイルの出力電圧を観測した。図6にその実験風景写真を示す。図7は、ポンプ本体の分解斜視図である。ポンプケースの表面に検出コイルが配置されている。
 図8に、検出コイルが検出する電圧波形を実線で示す。検出コイルでは、二つの磁界を同時に計測するため、図8における実線で示す波形が観測される。
 一方、外部回転磁界は既知であるため、図8中の破線の波形はあらかじめ用意できる。それら二つの波形の差分から、一点鎖線で示す内蔵磁石の回転により生じる電圧波形を算出できる。
 その後、破線と一点鎖線の二つの波形の位相差を計測すれば、それがポンプ出力となる。この図8では、破線は90度で最大値を取るが、一点鎖線は60度で最大値を取っており、位相差が30度存在する。負荷が変化すれば、一点鎖線が図中で左右に平行移動して位相差が変化することになる。
 (動物実験)
 本発明に係る磁気ポンプの効果を実証するために、動物実験を実施した。
 図9は動物実験中の、必要時に体外から駆動する右心補助装置の写真である。右心室から肺動脈へ送り込まれるバイパス回路が埋め込まれ、インペラーと接合した永久磁石が駆動力を発生させる。右心室から肺動脈のバイパス回路に、皮下に埋め込まれるインペラーが組み込まれている。このバイパス回路はこの後、皮下に埋め込まれるので、完全埋め込みの無菌的埋め込みが具現化する。
 図10は、体外から駆動することができる補助循環装置の、動物実験における右心補助効果の時系列曲線である。上段からポンプ流出側圧、流入側圧、ポンプ流量である。駆動を開始すると、ポンプ流量が増加し、右心補助効果が表れていることがわかる。
 なお、動物実験では右心補助として実施したが、左心補助に応用することもできる。
 本明細書では血液ポンプを例示して本発明を説明したが、本発明は実施例に挙げた血液ポンプに限定されず、あらゆる磁気ポンプに適用できる。
 本発明は例えば、壁の向こう側に置かれたポンプ本体を壁の手前から駆動するような場合に応用可能である。
 すなわち、壁の向こう側が例えば高温、低温、真空、高放射能状態、無菌室の状態にあり、壁の向こう側に駆動源を置くことが好ましくない場合に特に有効である。
 また、本発明は、チューブや配管のような狭い箇所に設置したポンプ本体を外部から駆動する場合にも有効である。

Claims (8)

  1.  吸入口と吐出口とを有するポンプケースと、該ポンプケース内に回転可能に収容され、磁気手段と結合したインペラーとを備えたポンプ本体と、該ポンプ本体と離隔し該磁気手段に回転磁界を与えるための回転磁界発生手段と、上記磁気手段が外部に作り出している磁界と上記回転磁界との位相差を検出する手段とを備えた磁気ポンプ。
  2.  上記位相差を検出する手段は、上記磁気手段の回転により生じる電圧と上記回転磁界により生じる電圧との位相差を検出し、該位相差に基づいてポンプの出力をモニターすることを特徴とする請求項1に記載の磁気ポンプ。
  3.  上記位相差を検出する手段は、上記回転磁界及び上記磁気手段の回転により生じる電圧を検出する検出コイルを含み、該検出コイルの検出する電圧から既知の回転磁界の回転により生じる電圧の差分により上記磁気手段の回転により生じる電圧を算出し、既知の回転磁界により生じる電圧との位相差を検出することを特徴とする請求項1又は2に記載の磁気ポンプ。
  4.  上記検出コイルは、ポンプ本体とは離れた位置に設けられていることを特徴とする請求項3に記載の磁気ポンプ。
  5.  上記回転磁界発生手段は、固定された複数のコイルであることを特徴とする請求項1ないし4のいずれか1項に記載の磁気ポンプ。
  6.  上記インペラーは、多段式インペラーであることを特徴とする請求項1ないし5のいずれか1項に記載の磁気ポンプ。
  7.  上記ポンプは、血液ポンプであることを特徴とする請求項1ないし6のいずれか1項に記載の磁気ポンプ。
  8.  上記磁気手段は、永久磁石であることを特徴とする請求項1ないし7のいずれか1項に記載の磁気ポンプ。
PCT/JP2011/065712 2010-07-12 2011-07-08 磁気ポンプ WO2012008383A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012524535A JP5817062B2 (ja) 2010-07-12 2011-07-08 磁気ポンプ
US13/810,116 US20130164160A1 (en) 2010-07-12 2011-07-08 Magnetic pump
EP11806713.1A EP2594800A4 (en) 2010-07-12 2011-07-08 Magnetic pump

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-157731 2010-07-12
JP2010157731 2010-07-12
JP2010238164 2010-10-25
JP2010-238164 2010-10-25

Publications (1)

Publication Number Publication Date
WO2012008383A1 true WO2012008383A1 (ja) 2012-01-19

Family

ID=45469384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065712 WO2012008383A1 (ja) 2010-07-12 2011-07-08 磁気ポンプ

Country Status (4)

Country Link
US (1) US20130164160A1 (ja)
EP (1) EP2594800A4 (ja)
JP (1) JP5817062B2 (ja)
WO (1) WO2012008383A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3411091B1 (en) * 2016-02-04 2020-12-30 Heartware, Inc. Pump capacity work index

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195573U (ja) * 1987-12-15 1989-06-23
JPH0568709A (ja) * 1991-09-13 1993-03-23 Terumo Corp 医療用送液装置
JPH0775667A (ja) 1993-04-28 1995-03-20 Kyocera Corp 血液ポンプ
JPH08186973A (ja) * 1994-12-28 1996-07-16 Nippon Seiki Co Ltd 電動回転装置
JP2000166294A (ja) * 1998-11-25 2000-06-16 Topre Corp 同期モータの群運転制御方法及びシステム
JP2001178816A (ja) * 1999-12-27 2001-07-03 Sofutoronikusu Kk 体内埋込型人工心臓
JP2007049862A (ja) * 2005-08-12 2007-02-22 Hitachi Ltd 磁極位置センサ内蔵電気機械及び電気機械装置並びに車載電機システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332374A (en) * 1992-12-30 1994-07-26 Ralph Kricker Axially coupled flat magnetic pump
JPH11332186A (ja) * 1998-05-12 1999-11-30 Namiki Precision Jewel Co Ltd 交流エネルギー変換機
DE19944863A1 (de) * 1999-09-18 2001-04-19 Forschungszentrum Juelich Gmbh Magnetlager
JP2003219610A (ja) * 2002-01-21 2003-07-31 Teikoku Electric Mfg Co Ltd モータ回転方向検知装置
DE60310929T2 (de) * 2003-09-04 2007-10-11 Askoll Holding S.R.L., Povolaro Di Dueville Verfahren und Vorrichtung zur Bestimmung des hydraulischen Durchflusses in einer Pumpe
DE102005049938B3 (de) * 2005-10-19 2007-03-01 Zeki Akbayir Rotor für eine Strömungsmaschine und eine Strömungsmaschine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195573U (ja) * 1987-12-15 1989-06-23
JPH0568709A (ja) * 1991-09-13 1993-03-23 Terumo Corp 医療用送液装置
JPH0775667A (ja) 1993-04-28 1995-03-20 Kyocera Corp 血液ポンプ
JPH08186973A (ja) * 1994-12-28 1996-07-16 Nippon Seiki Co Ltd 電動回転装置
JP2000166294A (ja) * 1998-11-25 2000-06-16 Topre Corp 同期モータの群運転制御方法及びシステム
JP2001178816A (ja) * 1999-12-27 2001-07-03 Sofutoronikusu Kk 体内埋込型人工心臓
JP2007049862A (ja) * 2005-08-12 2007-02-22 Hitachi Ltd 磁極位置センサ内蔵電気機械及び電気機械装置並びに車載電機システム

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. YAMAZAKI; M. SENDOH; K. ISHIYAMA; K. I ARAI; T. HAYASE, IEEE TRANS. ON MAGNETICS, vol. 39, 2003, pages 5
JARVIK, R. K., ARTIF. ORGANS, vol. 19, 1995, pages 565 - 570
MASUZAWA, T.; KITA, T.; OKADA, Y., ARTIF. ORGANS, vol. 25, 2001, pages 395 - 399
See also references of EP2594800A4
T. YAMANE, J. ARTIF. ORGANS, vol. 5, 2002, pages 149 - 155

Also Published As

Publication number Publication date
EP2594800A4 (en) 2018-03-28
EP2594800A1 (en) 2013-05-22
JP5817062B2 (ja) 2015-11-18
US20130164160A1 (en) 2013-06-27
JPWO2012008383A1 (ja) 2013-09-09

Similar Documents

Publication Publication Date Title
CN110709114B (zh) 心脏泵驱动器和轴承
EP3033120B1 (en) Impeller for axial flow pump
JP4041376B2 (ja) 血液ポンプ装置
CA2253435C (en) Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method
US9371826B2 (en) Impeller position compensation using field oriented control
EP2945661B1 (en) Backflow detection for centrifugal blood pump
CA2393772A1 (en) Electromagnetically suspended and rotated centrifugal pumping apparatus and method
CN107837430A (zh) 一种磁悬浮轴流式自发电人工心脏泵
JP2002512333A (ja) ハイブリッド磁性ベアリングを備える埋め込み可能な遠心型血液ポンプ
EP0897477A1 (en) Electromagnetically suspended and rotated centrifugal pumping apparatus and method
Zheng et al. Force and torque characteristics for magnetically driven blood pump
JP5817062B2 (ja) 磁気ポンプ
Wang et al. Design and analysis of a bearingless permanent-magnet motor for axial blood pump applications
WO2015039605A1 (zh) 植入式自悬浮轴流血泵
CN103893849B (zh) 一种大气隙磁力驱动的全植入式轴流式血泵及其控制方法
Kim et al. Centrifugal force based magnetic micro-pump driven by rotating magnetic fields
Kim et al. Actuation of novel blood pump by direct application of rotating magnetic field
CN208259961U (zh) 一种磁悬浮轴流式自发电人工心脏泵
Kim et al. A novel all-in-one magnetic pump and power harvester design for bio-medical applications
Kim et al. A method for acquiring the torque of a magnetic pump
WO2021120724A1 (zh) 一种体外循环血泵及方法
JP4612926B2 (ja) 磁気浮上型ポンプ
JP4340182B2 (ja) 血液ポンプ装置
Wei et al. Electromagnetic and hydrodynamic characteristics of the extracorporeal magnetic driving system for an axial flow blood pump
NISHIMURA et al. Total artificial heart with a single magnetically suspended motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806713

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012524535

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13810116

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011806713

Country of ref document: EP