WO2012008204A1 - 導電膜パターンの形成方法 - Google Patents

導電膜パターンの形成方法 Download PDF

Info

Publication number
WO2012008204A1
WO2012008204A1 PCT/JP2011/060267 JP2011060267W WO2012008204A1 WO 2012008204 A1 WO2012008204 A1 WO 2012008204A1 JP 2011060267 W JP2011060267 W JP 2011060267W WO 2012008204 A1 WO2012008204 A1 WO 2012008204A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
electrode material
electrode
forming
conductive film
Prior art date
Application number
PCT/JP2011/060267
Other languages
English (en)
French (fr)
Inventor
杉野谷 充
寛昌 小林
昇 石曽根
Original Assignee
セイコーインスツル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツル株式会社 filed Critical セイコーインスツル株式会社
Publication of WO2012008204A1 publication Critical patent/WO2012008204A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/06Silver salts

Definitions

  • the present invention relates to a method for forming a conductive film pattern.
  • photolithography is widely applied when fine electrode patterning is performed.
  • photolithography requires a process of forming a photoresist pattern once by laminating a photoresist film on a film formed of the target material, and the process is complicated. The problem that utilization efficiency, such as these, is low and cost becomes expensive accompanies.
  • ITO Indium Tin Oxide
  • the devices that can be used in the ITO used for the wiring electrodes used in the organic EL and touch panels differ depending on the substrate size, there is a cost due to the change or modification of the device due to the recent increase in the substrate size.
  • Patent Document 1 a method for producing an organic EL element by ink jet printing has been studied from the advantages of maskless, material use efficiency, and large area. Also, as disclosed in Patent Document 2, an ink jet method has been proposed as a method of filling a conductive polymer in a concave portion of a TFT in order to improve the quality of an organic EL. In Patent Document 3, a method of forming a wiring on a substrate by an ink jet method is proposed. Has been proposed.
  • the fineness is remarkably deteriorated due to the wettability between the photosensitive coating electrode material (hereinafter referred to as electrode material) and the target substrate, the discharge amount, and the discharge environment, and a desired pattern contour cannot be obtained. There is. Further, it is known that the conductive ink ejected from the head portion is displaced until it adheres to the substrate, and there is a case where an accurate pattern cannot be formed at a desired position.
  • the present invention proposes a method for overcoming the above-described problems and forming electrodes and wiring patterns with high resolution and high accuracy by a simple method. According to the present invention, the process can be simplified much more than the conventional method of forming a metal film or the like, applying a resist, exposing and developing, and etching to form a pattern.
  • the present invention provides a method for forming a conductive film pattern in which an electronic circuit is formed on a substrate using an electrode material made of a photosensitive organic material, a step of applying an electrode material on the substrate and pre-baking and drying,
  • a method for forming a conductive film pattern comprising: a step of immersing an electrode material in a developer to remove unnecessary portions; and an exposure step of curing the electrode material with light.
  • electrodes and wiring are patterned on a glass substrate using screen printing and a spin coater, and the electrode material used is an electrode material in which PDOTPSS, polyaniline, or silver particles are mixed.
  • an electrode is made of these materials, it is often applied to a pattern with low definition or the entire substrate. For these reasons, in the case of a pattern with high definition, the electrode part is disconnected at the time of development, or the electrode material remains between the electrodes and the like, resulting in a desired pattern not being obtained.
  • parallel light vertical light that enters perpendicularly to the substrate surface
  • a light source for exposure a light source for exposure.
  • the reason for this is that when mask exposure is performed, light that enters in a random direction with respect to the substrate surface (hereinafter referred to as diffused light) exposes unnecessary electrode portions, and a desired pattern is obtained. It is caused by not.
  • the parallel light is usually expensive in terms of equipment, and the parallelism between the substrate and the light source greatly affects the patterning accuracy, it is necessary to fix the substrate position each time exposure is performed. As described above, parallel light has problems in both cost and productivity.
  • an electrode producing method is provided that achieves both cost and productivity and has improved patterning accuracy as compared with a normal ink jet method. Further, the present invention uses the first diffused light for the purpose of patterning and the second diffused light having a larger dose than the first exposure for the purpose of developing conductivity.
  • the problem can be solved in the simplification of the process, the material use efficiency, the cost, and the various substrate sizes which are problems in the conventional method.
  • electrode patterning including simple, low-cost, and high-precision wiring.
  • the method of applying the electrode material was exemplified by the screen printing and the spin coater, but the application method is not limited to this, and a roll coater, a bar coater, or the like is appropriately selected. it can.
  • substrate used for this invention is shown typically.
  • 1 schematically shows a state of a substrate subjected to etching used in the present invention.
  • the cross-sectional structure of the electrode material used for this invention is shown typically.
  • the cross-sectional structure of the electrode material after pre-baking used for this invention is shown typically.
  • the cross-sectional structure of the electrode material reaction state after performing the first UV exposure used in the present invention is schematically shown.
  • the cross-sectional structure of the electrode material reaction state after performing the 2nd UV exposure used for this invention is shown typically.
  • the cross-sectional structure of the electrode material reaction state after performing the post-baking used for this invention is shown typically.
  • coated the electrode material on the glass used by this invention is shown as sectional drawing.
  • 1 schematically shows a cross-sectional configuration of the electrode material used in the present invention when UV irradiation is performed through a mask.
  • 1 schematically shows a cross-sectional state of a substrate after the development process used in the present invention.
  • the cross section which gave the wiring containing Pad by the printing of the silver nanopaste beforehand to the transparent film for PET resin etc. which were used by this invention is shown typically.
  • membrane used by this invention is shown typically.
  • the mounting part used by this invention is mounted, and the cross section at the time of irradiating UV from the film back surface is shown typically.
  • the photosensitive conductive material used by this invention typically shows the cross section when it has electroconductivity.
  • FIGS. 1 to 7 conceptually showing an electrode preparation method by double exposure using the electrode material according to the present invention.
  • FIG. 1 schematically shows outline printing by screen printing
  • FIG. 2 schematically shows an etched state in FIG.
  • the electrode material 2 is partially coated on the glass substrate 1 by screen printing, or is entirely coated by a spin coater.
  • the usage amount of the material 2 can be reduced by printing the outline of the pattern in advance by screen printing as compared with the spin coater. Further, in the etching process described later, since the material 1 to be eluted is reduced, it is possible to increase the number of continuous use of the etching solution.
  • FIG. 3 schematically shows a cross-sectional configuration of the electrode material used in the present invention.
  • pre-baking heat is applied from the back surface of the substrate 1 using a hot plate to vaporize the solvent 3 in the coating electrode material 2 on the substrate 1 (hereinafter referred to as pre-baking).
  • pre-baking heat is applied from the surface of the substrate 1
  • the electrode material 2 is dried from the surface, so that the volume shrinkage rate between the inside and the surface is different, and the inside of the material cannot follow the volume change of the surface, so that the electrode may crack. is there. Therefore, it is desirable to apply heat from the back surface so that the internal solvent can be vaporized without delay.
  • the solvent 3 is vaporized.
  • silver particles or silver nanoparticles (hereinafter referred to as metal particles) are dispersed in a photosensitive polymer dissolved in the solvent 3. The distance between them becomes close, and the second heating step (hereinafter referred to as post-bake) described later facilitates the bonding between the metal particles 4, and as a result, the electric resistance can be lowered.
  • concentration of the photosensitive polymer becomes high, it can react with UV efficiently and can be sensitized with a low exposure amount.
  • FIG. 4 shows a cross-sectional view of a substrate cross-sectional state after pre-baking (photosensitive polymer 5 after pre-baking), and FIG. 5 shows an electrode material reaction state after the first UV exposure (an organic active species is expressed).
  • the obtained photosensitive polymer 7) is shown as a cross-sectional view.
  • exposure with UV light 6 is performed.
  • As an exposure method there is generally exposure through a mask (hereinafter referred to as mask exposure).
  • a light-shielding portion to be a pattern is formed in advance on the glass substrate 1, and a coating type photosensitive material is applied thereon, and then the back surface.
  • back exposure an exposure method for obtaining a desired pattern by exposure from above
  • the back exposure is desirable because the channel width is very narrow.
  • a UV irradiation amount of about 1% to 10% with respect to the reaction exposure amount of the electrode material 2 is exposed as diffused light (hereinafter referred to as a first UV exposure).
  • a first UV exposure a UV irradiation amount of about 1% to 10% with respect to the reaction exposure amount of the electrode material 2
  • the UV light and the photosensitive polymer in the electrode material 2 react to generate reactive species.
  • reaction active species generated in this way, reaction as an organic reaction active species and reaction as a metal complex.
  • the former has a role as a resist material that does not elute into the developer in the etching process, and the latter It exists between the metal particles 4 and has the role of expressing the conductivity of the electrode.
  • the UV light also travels to the electrode material 2 immediately below the light shielding portion.
  • the UV light to be exposed is smaller than the reaction exposure amount of the electrode material 2, and the light amount of the UV light in the mask opening portion.
  • the exposure amount of the UV light that wraps directly under the mask light-shielding part is even smaller, does not react with the electrode material, and does not generate reactive species.
  • FIG. 6 schematically shows a reaction state of the electrode material subjected to the second UV exposure (photosensitive polymer 8 in which a reaction as a metal complex is expressed).
  • FIG. 7 schematically shows the reaction state of the electrode material after post-baking (photosensitive polymer 8 after post-baking).
  • the photosensitive polymer after the second exposure also exhibits a function as a metal complex, but it alone has a high electric resistance.
  • post-baking here, the metal particles 4 are sintered, the particles are bonded to each other, and the metal complex is present so as to fill the gaps between the metal particles 4, so that the electric resistance is low, which is sufficient as an electrode. Function can be obtained.
  • the patterning method in this embodiment will be described with reference to FIGS. In this embodiment, it is used when creating a high-definition electrode pattern having a space between electrodes of about 10 ⁇ m to 100 ⁇ m, such as a wiring electrode of a touch panel.
  • FIG. 8 shows a state where the electrode material 21 is applied on the glass substrate 20 as a cross-sectional view.
  • Electrode material 21 (Toray: Raybrid) is printed by screen printing.
  • the film thickness to be applied is about 4 ⁇ m to 10 ⁇ m, and it is easy to obtain a desired pattern while keeping the electric resistance low.
  • the coated glass substrate 20 is heated from the back surface.
  • the heating conditions are preferably about 80 to 100 ° C. and 60 to 120 sec. When these heating temperatures are low or the heating time is short, the solvent in the electrode material 21 does not volatilize, and the surface may become sticky. Further, the reaction due to UV exposure is less likely to occur thereafter.
  • the heating temperature is high or the heating time is long, the electrode material 21 reacts excessively with heat, and organic reactive species are expressed in the entire coated area. This pattern is difficult to obtain.
  • FIG. 9 is a cross-sectional view in which the structure of FIG. 8 is irradiated with UV exposure through a mask.
  • Exposure amount at this time is preferably 10 mJ / cm 2 from 3 mJ / cm 2.
  • the exposure amount beyond this is affected by the scattered light up to the electrode material 21 layer located immediately below the light-shielding portion of the mask 10 in FIG. 9, and a reaction occurs, so that a desired pattern cannot be obtained.
  • FIG. 10 shows a cross-sectional view of the substrate after the development process.
  • the electrode material 21 applied just under the light shielding part of the mask 10 is less affected by UV exposure, the organic reaction active species does not appear and the resist material does not function as a resist, so that it is etched. Further, since the electrode material 21 other than the portion directly under the light shielding portion of the mask 10 is exposed with UV, an organic reactive active species is expressed, and since it has a function as a resist, it is not etched and the electrode material 21 remains. Therefore, a desired pattern can be obtained in this state.
  • An aqueous sodium carbonate solution is used as the developer in this step, and the weight concentration is preferably 2% to 5%.
  • the developing method the vibration developing method is used.
  • the developing solution temperature is kept at room temperature (20 ° C.), and development is performed at a frequency of about 10 Hz to 50 Hz for about 3 to 10 minutes.
  • second exposure having a larger exposure amount than the first exposure is performed by back exposure.
  • the exposure dose at this time was sufficiently larger than the reaction exposure dose of the electrode material 21 (preferably 500 mJ / cm 2 to 1000 mJ / cm 2 ).
  • exposure was performed at 500 mJ / cm 2 .
  • a post-bake process is performed. At this time, baking is performed under conditions of a temperature of about 180 ° C. to 200 ° C. and about 1 hour.
  • a new component mounting method on a flexible substrate (hereinafter referred to as FPC) will be described with reference to FIGS.
  • FPC flexible substrate
  • Pad and wiring 11 are silver nano paste printed by an ink jet method. (Mitsubishi Paper).
  • the mounted parts are made of a photosensitive electrode material (Toray: Raybrid) as a conductive adhesive.
  • the application conditions, pre-bake conditions, and post-bake conditions for the photosensitive electrode material 14 in this example are the same as those in Example 1.
  • the exposure is performed only once, and the conditions are the same as the second exposure conditions in the first embodiment. Next, a creation method will be described.
  • FIG. 11 shows a transparent film 12 made of PET resin or the like, in which a wiring 11 containing a pad is provided in advance by printing silver nanopaste.
  • FIG. 12 is a cross-sectional view in which a photosensitive electrode material 14 is applied on a wired film 12 by screen printing using a screen printing plate 13.
  • FIG. FIG. 12 By applying the photosensitive electrode material 14 onto the pad, it is possible to adhere to a portion (hereinafter referred to as a land) corresponding to the pad of the mounted component due to its adhesiveness.
  • FIG. 14 is a cross-sectional view when the photosensitive conductive material 17 is cured and has conductivity.
  • the photosensitive electrode material 14 used as an adhesive can be made conductive by irradiating UV from the back side and then post-baking.
  • a wiring electrode such as a tag (hereinafter referred to as RFID) that exchanges information in a non-contact manner through a touch panel or infrared rays
  • simplification of processes, material use efficiency, cost, and various types that are problems in the conventional method In response to various substrate sizes, the problem is solved, and electrode patterning including wiring with high accuracy, low cost and high accuracy is provided.
  • the present invention can be used as an adhesive for mounting parts, and the present invention can provide an FPC that is inexpensive and easy to create.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

従来の電極作成方法であるフォトリソグラフィ、マスクスパッタリングは、工程の簡略化、材料使用効率、コスト、多様な基板サイズに対応において解決するには困難な課題があり、インクジェット方式では高精細度なパターンが得られないという課題がある。 感光性塗布型電極材料を用いて、所望の電極パターンニングを行う。本発明による電極作成工程において、コストメリットがある拡散光を光源とするランプを用いて第1の露光と第1の露光よりも大きい露光量をもった第2の露光を施すことで、所望の電極パターンを得ることができる。拡散光を用いた2回露光プロセスによって、例えばタッチパネルの配線電極作成において従来の方法では解決できない材料使用効率、コスト、多様な基板サイズに対応という課題かつ、インクジェット方式では解決できない高精細電極パターニングを解決するものである。

Description

導電膜パターンの形成方法
 本発明は、導電膜パターンの形成方法に関する。
 現在、有機EL素子、タッチパネルなどの分野において、様々な形状、用途の電極及び配線のパターンがされている。
 通常、有機ELやタッチパネルに使用される電極部を作成する方法としてフォトリソグラフィ、マスクスパッタリング、インクジェット印刷などが用いられている。
 これらのうち、微細な電極パターニングを行う場合、フォトリソグラフィが広く適用されている。しかしフォトリソグラフィは目的材料で形成した膜上に、一旦フォトレジスト膜を積層し、これを露光、現像しフォトレジストパターンを作製する工程を数回必要とするため、工程が複雑で、エネルギー、材料等の利用効率が低く、コストが高価となるという課題が付随する。
 また透明配線電極で使用されるITO(Indium Tin Oxide:以下、ITO)などをパターニングする際にマスクスパッタリングで作成されることが一般的である。しかしマスクスパッタリングはマスク開発費用と併せて材料使用効率が悪いため、コストが高価になるという課題と基板とマスクの位置合わせを厳密に設定しなければ、所望のITOパターンが得られないという技術的な課題がある。
 更に以上の有機ELやタッチパネルに用いられる配線電極に使用されるITOにおいて基板サイズにより対応できる装置が異なるため、近年の基板サイズの大型化に伴う装置の変更、改造によるコストが発生する。
 そこで、例えば特許文献1ではマスクレス、材料使用効率、大面積対応可という利点からインクジェット印刷による有機EL素子作成方法が検討されている。また特許文献2のように有機ELの品質向上のためTFTの凹部に導電性高分子を埋める方法としてインクジェット方式が提案されており、特許文献3では基板上の配線をインクジェット方式で成膜する方法が提案されている。
 これらのように近年では工程の簡略化、材料使用効率、コスト、多様な基板サイズに対応できる方法としてインクジェットによる素子作成方法及び電極作成方法が検討されている。
特開2009-231264号公報 特開2009-211859号公報 特開2009-38185号公報
 従来の電極作成方法であるフォトリソグラフィ、マスクスパッタリングは上述したように、工程の簡略化、材料使用効率、コスト、多様な基板サイズに対応において解決するには困難な課題がある。そこでこれらの課題を持たないインクジェット方式による素子作成方法及び電極作成方法が検討されている。
 しかし、インクジェット方式では感光性塗布型電極材料(以下、電極材料)と対象となる基板との濡れ性、吐出量、吐出環境によって精細度が著しく悪くなり、所望のパターン輪郭が得られないという課題がある。また、ヘッド部から噴出された導電性インクが基板に付着するまでに位置ずれを起こすことが知られており、所望の位置に正確なパターンが施せない場合もある。
 特に高解像度の表示装置の場合、このように電極及び配線のパターニング精度が悪いものだと、画素間でショートまたは断線が生じ、正常な表示機能を果たさない場合がある。
 本発明では上記のような課題を克服し、簡便な方法で高解像度且つ高精度の電極及び配線パターンを形成する方法を提案するものである。本発明によれば、従来の金属等を成膜し、レジストを塗布し露光現像後、エッチングしてパターン形成する方法よりもはるかに工程が簡略化できるものである。
 上記課題を解決するために本発明は、基板上に感光性有機物からなる電極材料によって電子回路を形成する導電膜パターンの形成方法において、基板上に電極材料を塗布しプリベーク乾燥させる工程と、前記電極材料を現像液に浸漬し不要な部分を除去する工程と、前記電極材料を光により硬化させる露光工程と、備えることを特徴とする導電膜パターンの形成方法である。
 本発明ではガラス基板上にスクリーン印刷及びスピンコータを用いて電極および配線をパターンニングするものであり、使用する電極材料はPDOTPSSやポリアニリン系、銀粒子が混入されている電極材料である。
 通常これらの材料で電極を作成する場合は精細度の低いパターン、若しくは基板全体に塗布する場合が多い。これらの理由として精細度の高いパターンの場合、現像の際に電極部分が断線、または電極間などに電極材料が残り、短絡を起こす現象など、所望のパターンが得られないことを起因とする。
 また露光の光源として基板表面に対して垂直に進入するような垂直な光(以下、平行光)を用いる場合が多い。この理由もマスク露光を行う際に基板表面に対してランダムな方向で進入するような光(以下、拡散光)だと不必要な電極部分まで露光されることになり、所望のパターンが得られないことを起因とする。しかし、通常平行光は設備上コストが高く、また基板と光源の平行度がパターンニング精度に大きく影響を与えるため、露光の際はその都度、基板位置を固定する必要がある。以上のように平行光はコストと生産性の両面で課題を抱えている。
 本発明では印刷と拡散光を用いることで、コストと生産性を両立させ、さらに通常のインクジェット方法よりもパターンニング精度が向上した電極作成方法を提供するものである。また本発明はパターンニングを目的とする第1の拡散光と導電性を発現させることを目的とする第1の露光よりも大きい照射量を持った第2の拡散光を用いるものである。
 本発明の電極材料を用いた2回露光による電極作成方法によると、従来の方法で課題となった工程の簡略化、材料使用効率、コスト、多様な基板サイズに対応において、その課題を解決するものとなり、簡便、低コストかつ高精度な配線などを含む電極パターニングを提供するものとなる。
 なお、課題を解決するための手段において電極材料の塗布法として、スクリーン印刷とスピンコーターによる方法を挙げたが、塗布法はそれに限定されるものではなく、ロールコーターやバーコーター等、適宜に選択できる。
本発明に用いた基板にスクリーン印刷による外形印刷を施した基板状態を模式的に示すものである。 本発明に用いたエッチングを施した基板状態を模式的に示すものである。 本発明に用いた電極材料の断面構成を模式的に示すものである。 本発明に用いたプリベーク後の電極材料の断面構成を模式的に示すものである。 本発明に用いた第1のUV露光を施した後の電極材料反応状態の断面構成を模式的に示すものである。 本発明に用いた第2のUV露光を施した後の電極材料反応状態の断面構成を模式的に示すものである。 本発明に用いたポストベークを施した後の電極材料反応状態の断面構成を模式的に示すものである。 本発明で用いたガラス上に電極材料を塗布した状態を断面図として示す 本発明で用いた電極材料にマスクを介してUV照射を施した状態の断面構成を模式的に示すものである 本発明で用いた現像工程を施した後の基板断面状態を模式的に示したものである 本発明で用いたPET樹脂などを透明フィルムに予め、銀ナノペーストの印刷によってPadを含む配線を施した断面を模式的に示したものである。 本発明で用いた配線されたフィルム上にスクリーン印刷によって感光性電極材料を塗布した断面を模式的に示したものである。 本発明で用いた実装部品を載せ、フィルム背面よりUVを照射した際の断面を模式的に示したものである。 本発明で用いた感光性導電材料が導電性をもった際の断面を模式的に示したものである。
 以下、本発明に係る電極材料を用いた2回露光による電極作成方法を概念的に示す図1から図7を参照しながら、本発明を具体的に説明する。
 図1にスクリーン印刷による外形印刷を模式的に示し、図2においては図1にエッチングを施した状態を模式的に表したものを示す。
 本発明では電極材料2をガラス基板1上にスクリーン印刷で部分塗布、若しくはスピンコータで全面塗布を施す。所望のパターンが部分的に高精細である際、スクリーン印刷で予めパターンの外形を印刷することで、スピンコータと比較し材料2の使用量を減らすことができる。また後に述べるエッチング工程において、溶出させる材料1が少なくなるためエッチング溶液の連続使用回数を多くすることが可能である。
 図3に本発明で使用する電極材料の断面構成を模式的に示す。
 上記塗布工程を経た後、第1の加熱工程として、基板1上の塗布電極材料2内の溶媒3を気化させるため、ホットプレートを用いて基板1裏面から熱を加える(以下、プリベーク)。ここで基板1表面から熱を加えた場合、電極材料2表面から乾燥するため、内部と表面の体積収縮率が異なり、表面の体積変化に材料内部が追従できないため、電極に亀裂が生じることがある。従って、滞りなく内部の溶媒が気化するよう、裏面から熱を掛けることが望ましい。
 また、溶媒3を気化させる理由としては2点挙げられる。本発明で使用される電極材料2は溶媒3に溶けている感光性のポリマーに銀粒子若しくは銀ナノ粒子(以下、金属粒子)を分散させているため、溶媒3を気化させることで金属粒子4間の距離が近くなり、後に述べる第2の加熱工程(以下、ポストベーク)によって、金属粒子4間が接合し易くなり、結果、電気抵抗を低くすることが出来る。また、感光性のポリマーの濃度が高くなるのでUVに効率良く反応することができ、低露光量で感光することが出来る。
 図4にプリベーク後の基板断面状態(プリベークを施した後の感光性ポリマー5)を断面図として示し、図5に第1のUV露光を施した後の電極材料反応状態(有機活性種が発現した感光性ポリマー7)を断面図として示す。上記、プリベークを経た後、UV光6による露光を施す。露光方法としては一般的にマスクを介する露光(以下、マスク露光)があるが、予めガラス基板1上にパターンとなる遮光部分を成膜し、その上から塗布型感光性材料を塗布し、裏面から露光することで所望のパターンを得る露光方法(以下、背面露光)も適用することが出来るが、TFTにおいてソース電極とドレイン電極を作成する場合、チャネル幅が非常に狭いので背面露光が望ましい。
 以上のような露光方法を用いる場合、電極材料2の反応露光量に対して1%から10%程度のUV照射量を拡散光として露光する(以下、第1のUV露光)。この場合、マスク開口部における電極膜表面近傍では、UV光と電極材料2内の感光ポリマーが反応して反応活性種が発生する。このように発生した反応活性種は有機反応活性種としての反応と金属錯体としての反応の2種類があり、前者はエッチング工程において、現像液に溶出しないというレジスト材としての役割を持ち、後者は金属粒子4同士の間に存在することで電極の伝導性を発現させる役割を持つ。
 マスク遮光部においては、遮光部分の直下の電極材料2にもUV光が回り込むが、元来、露光するUV光は電極材料2の反応露光量よりも小さい上、マスク開口部のUV光の光量と比較してマスク遮光部直下に回りこむUV光の露光量は更に小さいものとなり、電極材料に反応を及ぼすことはなく、反応活性種が発生することは無い。
 以上のように、第1のUV露光を施した後、現像液を用いたエッチングにより、反応活性種が存在する部分は電極材料が溶出することなく、反応活性種が無い部分のみ溶出することで所望な高精細の電極パターンを得ることが出来る(以下、現像工程)。但し第1の露光量では表面近傍の有機反応活性種としての機能が発現するが、金属錯体としての伝導性機能を発現させるに至らない。
 図6に第2のUV露光を施した電極材料反応状態(金属錯体としての反応が発現した感光性ポリマー8)を模式的に表す。図5で説明した電極材料2の反応露光量よりも十分に大きい露光量であるUV光を照射することで、有機反応活性種は勿論、金属錯体としての機能を発現させることができる。
 図7にポストベークを施した後の電極材料反応状態(ポストベークを施した後の感光性ポリマー8)を模式的に表す。図6で説明したように第2の露光後の感光ポリマーは金属錯体としての機能も発現するが、それだけでは電気抵抗が高いものとなる。ここでポストベークを施すことで、金属粒子4が焼結し、粒子同士が結合し、金属錯体が金属粒子4の隙間を埋めるように存在することによって電気抵抗が低い状態となり、電極として十分な機能を得ることが出来る。
 以下、図面を参照して、本発明の実施例について説明する。
 本実施例におけるパターニング方法を図8から図10を用いて説明する。本実施例ではタッチパネルの配線電極などのように電極間スペースが10μmから100μm程度の高精細の電極パターンを作成する場合に用いる。
 図8はガラス基板20上に電極材料21を塗布した状態を断面図として示す。電極材料21(東レ:Raybrid)をスクリーン印刷により印刷する。塗布する膜厚は4μmから10μm程度が電気抵抗を低く抑えつつ、所望のパターンを得られやすい。
 次にプリベーク工程を施す。ここでは塗布されたガラス基板20を裏面より加熱する。本実施例で使用する電極材料21の溶媒は高沸点のため、80℃から100℃程度、60secから120secの間が加熱条件として好ましい。これらの加熱温度が低く若しくは加熱時間が短いと電極材料21中の溶媒が揮発せず、表面が粘着性を帯びることがある。またその後UV露光による反応も起き難い。対して、加熱温度が高い、若しくは加熱時間が長い場合、電極材料21が熱によって過剰に反応し、塗布されている全領域において有機反応活性種が発現し、UV露光後の現像工程において、所望のパターンが得られ難い。
 図9は図8の構成にマスクを介してUV露光を照射している断面図である。
 電極材料21が条件に従って加熱された後、第1の露光としてマスク10を介して膜面上に露光を施す。このときの露光量は3mJ/cmから10mJ/cmが望ましい。これ以上の露光量は図9におけるマスク10の遮光部直下に位置する電極材料21層まで散乱光で影響を及ぼし、反応が起こるため、所望のパターンを得ることは出来ない。
 図10に現像工程を施した後の基板状態を断面的に示す。
 マスク10遮光部直下に塗布された電極材料21はUV露光による影響が小さいため、有機反応活性種が発現せず、レジストとしての機能が無いため、エッチングされる。またマスク10遮光部直下以外の電極材料21はUVで露光されるため、有機反応活性種が発現し、レジストとしての機能を有するためエッチングされず、電極材料21は残ったままとなる。従ってこの状態で所望のパターンが得られる。この工程における現像液として炭酸Na水溶液を用いており、その重量濃度は2%から5%が好ましい。現像方法は振動現像方法を用いたが、他に浸漬する方法(ディップ現像)、現像液を基板上に滴下し現像する方法(ステップパドル現像)などを用いることも可能である。いずれの現像方法も温度制御された現像液と現像時間を電極の膜厚に合わせ調節する必要がある。本実施例で用いた振動現像方法では現像液温度を室温(20℃)に保ち、10Hzから50Hz程度の振動数で3分から10分程度現像している。
 次に第1の露光よりも露光量が大きい第2の露光を背面露光で施す。このときの露光量は電極材料21の反応露光量よりも十分に大きく(500mJ/cmから1000mJ/cmが好ましい)、本実施例では500mJ/cmを露光した。これにより、金属錯体としての反応が電極材料21内で進み、伝導性機能を発現させることが出来る。
 次にポストベーク工程を施す。このとき温度180℃から200℃程度、かつ1時間程度の条件で焼成を行う。
 本実施例はフレキシブル基板(以下、FPC)における新しい部品実装方法を図11から図14を用いて説明する。構成としては基板から順に透明樹脂フィルム12、実装部分を乗せる部分(以下Pad)、配線11、導電性接着材料、実装部品か成る。本実施例で要求される精細度は電極間スペースが100μm以上であるので、実施例1で用いた第1の露光は必要ない。
 Pad、配線11はインクジェット方式による銀ナノペーストの印刷である。(三菱製紙製)。また実装部品を導電性の接着剤として感光性電極材料(東レ:Raybrid)を用いたものを使用する。
 本実施例における感光性電極材料14の塗布条件、プリベーク条件、ポストベーク条件は実施例1と同一である。露光は1回のみであり、条件は実施例1における第2の露光条件と同一である。次に作成方法について説明する。
 図11はPET樹脂などの透明フィルム12に予め、銀ナノペーストの印刷によってPadを含む配線11を施したものである。
 図12は配線されたフィルム12上にスクリーン印刷版13を用いたスクリーン印刷によって感光性電極材料14を塗布した断面図であり、図13は実装部品15を載せ、フィルム12背面よりUVを照射した際の断面図である。感光性電極材料14をPad上に塗布することによって、その粘着性により実装部品のPadにあたる部分(以下、ランド)と接着することができる。
 図14は感光性導電材料17が硬化して導電性をもった際の断面図である。
 実装部品15を接着した後、プリベークを施すことで、実装部品15との接着を確実にすることができる。またこの後、背面よりUVを照射し、続いてポストベークを施すことで接着剤として使用した感光性電極材料14に導電性を持たせることが出来る。
 以上により、通常より安価で、かつ作成条件が簡便なFPCが作成される。
 本発明によれば、タッチパネルや赤外線を通じて非接触で情報をやりとりするタグ(以下、RFID)などの配線電極作成において、従来の方法で課題となった工程の簡略化、材料使用効率、コスト、多種多様な基板サイズに対応において、その課題を解決するものとなり、簡便、低コストかつ高精度な配線などを含む電極パターニングを提供するものとなる。
 また、実装部品の接着剤としての利用することもでき、本発明によって安価で作成条件が簡便なFPCを提供することが可能である。
 1 ガラス基板
 2 電極材料
 3 感光性のポリマーを含む溶媒
 4 金属粒子
 5 プリベークを施した後の感光性ポリマー
 6 紫外線
 7 有機活性種が発現した感光性ポリマー
 8 金属錯体としての反応が発現した感光性ポリマー
 9 ポストベークを施した後の感光性ポリマー
 10 マスク
 11 配線電極
 12 透明フィルム
 13 スクリーン印刷版
 14 感光性電極材料
 15 実装部品
 16 ランド
 17 硬化後の感光性電極材料
 20 ガラス基板
 21 電極材料

Claims (6)

  1.  基板上に感光性有機物からなる電極材料によって電子回路を形成する導電膜パターンの形成方法において、
     基板上に電極材料を塗布しプリベーク乾燥させる工程と、
     前記電極材料を現像液に浸漬し不要な部分を除去する工程と、
     前記電極材料を光により硬化させる露光工程と、
    を備えることを特徴とする導電膜パターンの形成方法。
  2.  前記電極材料の不要な部分を除去する工程の前に、前記電極材料を所定のマスクを通して光を照射する予備露光工程を備えていることを特徴とする導電膜パターンの形成方法。
  3.  前記電極材料は流動性を有する塗布型材料であることを特徴とする請求項1または2に記載の導電膜パターンの形成方法。
  4.  前記プリベーク乾燥させる工程は、80℃から100℃の範囲内で、60秒から120秒の間で加熱することを特徴とする請求項1乃至3のいずれか1項に記載の導電膜パターンの形成方法。
  5.  前記予備露光工程は、3mJ/cmから10mJ/cmの範囲内で露光を行うことを特徴とする請求項2に記載の導電膜パターンの形成方法。
  6.  前記露光工程は、500mJ/cmから1000mJ/cmの範囲内で露光を行うことを特徴とする請求項1乃至5のいずれか1項に記載の導電膜パターンの形成方法。
PCT/JP2011/060267 2010-07-16 2011-04-27 導電膜パターンの形成方法 WO2012008204A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-161688 2010-07-16
JP2010161688A JP2012022243A (ja) 2010-07-16 2010-07-16 導電膜パターンの形成方法

Publications (1)

Publication Number Publication Date
WO2012008204A1 true WO2012008204A1 (ja) 2012-01-19

Family

ID=45469216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060267 WO2012008204A1 (ja) 2010-07-16 2011-04-27 導電膜パターンの形成方法

Country Status (3)

Country Link
JP (1) JP2012022243A (ja)
TW (1) TW201216335A (ja)
WO (1) WO2012008204A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10015887B2 (en) 2013-02-18 2018-07-03 Orbotech Ltd. Two-step, direct-write laser metallization
US10537027B2 (en) 2013-08-02 2020-01-14 Orbotech Ltd. Method producing a conductive path on a substrate
US10622244B2 (en) 2013-02-18 2020-04-14 Orbotech Ltd. Pulsed-mode direct-write laser metallization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126506A (ja) * 1985-11-27 1987-06-08 株式会社日立製作所 透明導電膜改質方法
JPH02109207A (ja) * 1988-10-18 1990-04-20 Matsushita Electric Ind Co Ltd 透明導電膜の形成方法
JPH0982137A (ja) * 1995-09-08 1997-03-28 Dainippon Printing Co Ltd 透明導電膜形成用組成物及び透明導電膜の形成方法
JPH09237518A (ja) * 1995-12-28 1997-09-09 Dainippon Printing Co Ltd 着色透明導電膜形成用組成物、着色透明導電膜の形成方法及び表示装置
JPH1083718A (ja) * 1996-09-10 1998-03-31 Dainippon Printing Co Ltd 透明導電膜の形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126506A (ja) * 1985-11-27 1987-06-08 株式会社日立製作所 透明導電膜改質方法
JPH02109207A (ja) * 1988-10-18 1990-04-20 Matsushita Electric Ind Co Ltd 透明導電膜の形成方法
JPH0982137A (ja) * 1995-09-08 1997-03-28 Dainippon Printing Co Ltd 透明導電膜形成用組成物及び透明導電膜の形成方法
JPH09237518A (ja) * 1995-12-28 1997-09-09 Dainippon Printing Co Ltd 着色透明導電膜形成用組成物、着色透明導電膜の形成方法及び表示装置
JPH1083718A (ja) * 1996-09-10 1998-03-31 Dainippon Printing Co Ltd 透明導電膜の形成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10015887B2 (en) 2013-02-18 2018-07-03 Orbotech Ltd. Two-step, direct-write laser metallization
US10622244B2 (en) 2013-02-18 2020-04-14 Orbotech Ltd. Pulsed-mode direct-write laser metallization
US10537027B2 (en) 2013-08-02 2020-01-14 Orbotech Ltd. Method producing a conductive path on a substrate

Also Published As

Publication number Publication date
TW201216335A (en) 2012-04-16
JP2012022243A (ja) 2012-02-02

Similar Documents

Publication Publication Date Title
US10303316B2 (en) Method for manufacturing touch sensor
JP5857051B2 (ja) 不透明導電性領域の自己整合被覆
TWI405033B (zh) 圖案之形成方法
JP6049111B2 (ja) 有機薄膜トランジスタアレイ基板及びその製造方法、並びに表示装置
JP2007515782A (ja) 少なくとも一つの電気的コンポーネントを有するフィルム及びその生産プロセス
US9606393B2 (en) Fabrication method of substrate
CN102096534A (zh) 一种电容触摸屏电极制作方法
TWI474377B (zh) A method of patterning a substrate and a method of manufacturing a capacitive touch panel
US20080134918A1 (en) Printing plate, manufacturing method for the same and liquid crystal display device made using the same
CN104345942A (zh) 触控面板、导电薄膜及其制作方法
JP6626238B2 (ja) 電極フィルムおよびその製造方法
CN104570486A (zh) 一种配向膜的制作方法
WO2012008204A1 (ja) 導電膜パターンの形成方法
WO2016052886A1 (ko) 광반사도가 감소된 투명 전극 및 인쇄 공정을 이용한 상기 투명 전극의 제조 방법
US8932041B2 (en) Mold structure, patterning method using the same, and method of fabricating liquid crystal display device
JP2008134513A (ja) 樹脂凸版及び有機elディスプレイ用素子パネルの製造方法
US7718346B2 (en) Method of forming wiring pattern and method of manufacturing TFT substrate using the same
JP2009128462A (ja) 表示パネル用基板の製造方法
KR101340727B1 (ko) 박막 패턴의 제조방법 및 이를 이용한 액정표시패널 및 그제조방법
KR20130015304A (ko) 터치 패널용 패드의 제조 방법
JP2013080829A (ja) トップゲート型アクティブマトリックス基板、およびその製造方法
WO2012008203A1 (ja) 感光性塗布型電極材料を用いたtftの製造方法
JP2006278428A (ja) 薄膜トランジスタの形成方法
JP2012227505A (ja) 透明導電回路基板及びその製造方法
JP6877345B2 (ja) 導体とその製造方法、及びそれを用いた積層回路及び積層配線部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806536

Country of ref document: EP

Kind code of ref document: A1