WO2012008164A1 - ノイズ除去装置、ノイズ除去方法及びそのノイズ除去装置を用いた車載ディスプレイ装置 - Google Patents

ノイズ除去装置、ノイズ除去方法及びそのノイズ除去装置を用いた車載ディスプレイ装置 Download PDF

Info

Publication number
WO2012008164A1
WO2012008164A1 PCT/JP2011/004033 JP2011004033W WO2012008164A1 WO 2012008164 A1 WO2012008164 A1 WO 2012008164A1 JP 2011004033 W JP2011004033 W JP 2011004033W WO 2012008164 A1 WO2012008164 A1 WO 2012008164A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
provisional
section
pulse
value
Prior art date
Application number
PCT/JP2011/004033
Other languages
English (en)
French (fr)
Inventor
鋭 丹波
篤生 向永
洋介 坂本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012008164A1 publication Critical patent/WO2012008164A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00346Modifications for eliminating interference or parasitic voltages or currents

Definitions

  • the present invention relates to a noise removing device, a noise removing method, and an in-vehicle display device using the noise removing device. More specifically, the present invention relates to an apparatus and method for removing noise mixed in a pulse signal having a fixed period and amplitude, and an in-vehicle display apparatus using the noise removing apparatus.
  • a circuit that detects a pulse signal includes a noise removal circuit that removes other pulse noise except a pulse signal having a periodicity from the signal (see, for example, Patent Document 1).
  • the conventional noise removal circuit described above includes a periodicity detection circuit.
  • the periodicity detection circuit detects, stores and stores the frequency data, pulse length data, and pulse fall time of the pulse signal, and compares it with the newly detected pulse signal. Based on the comparison result, frequency data of the filter on-off signal and the periodic pulse signal are output. Then, by forming a bandpass filter centered on the frequency data only when the filter on-off signal is in the on state, other pulse noises except for the pulse signal with periodicity are removed.
  • the noise removal apparatus of the present invention includes an input signal detection unit, an input signal information creation unit, a provisional cycle determination unit, a cycle determination unit, a noise calculation unit, and a noise removal unit.
  • the input signal detection unit detects a pulse signal included in the input signal.
  • the input signal information creation unit records the length of the pulse section and the high level or low level polarity for each pulse in the pulse signal.
  • the provisional period determining unit calculates, as a provisional period, an added pulse section having an arbitrary section length composed of the same number of combinations of high level and low level in the pulse signal.
  • the period determining unit compares the provisional period with a predetermined period value that is a candidate value for the period length of the input signal, and determines the period determined value based on the comparison result.
  • the noise calculation unit calculates the number of noises included in the period fixed value.
  • the noise removal unit inverts the polarity of the pulse section included in the period fixed value in order from the section having the smallest pulse width to the polarity of the section corresponding to the number of noises, and converts the pulse signal included in the input signal to a pair of Correction to a pulse signal consisting of a combination of high and low levels.
  • the noise removing apparatus of the present invention is configured so that, even when noise having a predetermined pulse width is mixed in the input pulse signal, the noise pulse width is smaller than the input pulse signal. It can be determined as noise, and noise can be removed.
  • the input signal detection unit detects a pulse signal included in the input signal. Then, the input signal information creation unit records the length of the pulse section and the high level or low level polarity for each pulse in the pulse signal. Then, the provisional period determining unit calculates an added pulse section having an arbitrary section length composed of the same number of combinations of high level and low level in the pulse signal as the provisional period. Further, the period determining unit compares the provisional period with a predetermined period value that is a candidate value for the period of the input signal, and determines the period determined value based on the comparison result. Then, the noise calculation unit calculates the number of noises included in the period fixed value.
  • the noise removal unit the polarity of the pulse section included in the period fixed value is reversed in order from the section having the smallest pulse width, and the polarity of the section corresponding to the number of noises is inverted, and the pulse signal included in the input signal is converted. Correction is made to a pulse signal composed of a combination of a pair of high level and low level.
  • the on-vehicle display device using the noise removal device of the present invention includes an illumination detection unit, a noise removal device, a noise removal device, a duty determination unit, a video / image quality control unit, and a display device.
  • the illumination detection unit detects an illumination signal.
  • the noise removing device removes the mixed noise from the illumination control signal.
  • the duty determining unit detects the duty of the illumination control signal from which noise has been removed.
  • the video / image quality control unit receives the illumination signal status signal output from the illumination detection unit and the illumination control signal from the mixed noise output from the noise removal device.
  • the display device displays a video based on a signal output from the video / image quality control unit.
  • the noise removal device has an input signal detection unit, an input signal information creation unit, a provisional cycle determination unit, a cycle determination unit, a noise calculation unit, and a noise removal unit.
  • the input signal detection unit detects a pulse signal included in the input signal.
  • the input signal information creation unit records the length of the pulse section and the high-level or low-level polarity for each pulse section in the pulse signal.
  • the provisional period determining unit calculates, as a provisional period, an added pulse section having an arbitrary section length composed of the same number of combinations of high level and low level in the pulse signal.
  • the period determining unit compares the provisional period with a predetermined period value that is a candidate value for the period length of the input signal, and determines the period determined value based on the comparison result.
  • the noise calculation unit calculates the number of noises included in the period fixed value.
  • the noise removal unit inverts the polarity of the pulse section included in the period fixed value in order from the section having the smallest pulse width to the polarity of the section corresponding to the number of noises, and converts the pulse signal included in the input signal to a pair of Correction to a pulse signal consisting of a combination of high and low levels.
  • FIG. 1 is a block diagram showing a configuration of a noise removing apparatus according to Embodiment 1 of the present invention.
  • FIG. 2A is a diagram showing an input signal waveform before noise removal according to Embodiment 1 of the present invention.
  • FIG. 2B is a diagram showing input signal information according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart showing processing of the provisional period determining unit and the period determining unit according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram illustrating processing of the provisional period determining unit and the period determining unit according to Embodiment 1 of the present invention.
  • FIG. 5A is a diagram showing processing of the noise calculation unit and the noise removal unit according to Embodiment 1 of the present invention.
  • FIG. 5A is a diagram showing processing of the noise calculation unit and the noise removal unit according to Embodiment 1 of the present invention.
  • FIG. 5B is a diagram showing processing of the noise calculation unit and the noise removal unit according to Embodiment 1 of the present invention.
  • FIG. 6 is an input signal waveform diagram after noise removal in Embodiment 1 of the present invention.
  • FIG. 7 is a block diagram of an in-vehicle display device to which the noise removal device according to Embodiment 1 of the present invention is applied.
  • FIG. 8 is a diagram illustrating an example of an input signal waveform when erroneous detection of a cycle occurs.
  • FIG. 9 is a block diagram showing the configuration of the noise removing apparatus according to Embodiment 2 of the present invention.
  • FIG. 10A is a flowchart showing processing from the provisional period determination unit to the period update unit according to Embodiment 2 of the present invention.
  • FIG. 10A is a flowchart showing processing from the provisional period determination unit to the period update unit according to Embodiment 2 of the present invention.
  • FIG. 10B is a flowchart showing processing from the provisional cycle determination unit to the cycle update unit according to Embodiment 2 of the present invention.
  • FIG. 11 is a diagram showing how the input signal waveform after noise removal and the predetermined period value are updated according to the second embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a noise removal apparatus 100 according to Embodiment 1 of the present invention.
  • the noise removing apparatus 100 includes an input signal detecting unit 101, an input signal information creating unit 102, a provisional period determining unit 103a, a period determining unit 103, a noise calculating unit 104, and a noise removing unit 105.
  • the input signal detection unit 101 detects a pulse signal included in the input signal.
  • the input signal information creating unit 102 creates and records input signal information in which the length of the pulse section is associated with the high level or low level polarity for each pulse section of the detected pulse signal.
  • the provisional period determining unit 103a adds the pulse widths of the pulse signals adjacent to each other based on the input signal information created by the input signal information creating unit 102. At this time, an added pulse section having an arbitrary section length composed of the same number of combinations of high level and low level in the pulse signal is calculated as a provisional period.
  • the period determining unit 103 compares the provisional period and the predetermined period value, and determines the period determining value based on the comparison result.
  • the period predetermined value is a candidate value for the length of the period of the input signal.
  • the period fixed value represents a period of a pulse signal included in the input signal, and represents an actual period that is not affected by noise. A process for determining the period fixed value based on the comparison result between the provisional period and the predetermined period value will be described later.
  • the noise calculation unit 104 calculates the number of noises included in the cycle fixed value based on the total number of polarities of the pulse sections included in the cycle fixed value.
  • the noise removing unit 105 inverts the polarity of the section corresponding to the number of noises in order from the section with the smaller pulse width included in the period fixed value. Then, noise included in the period fixed value is removed, and the pulse signal included in the input signal is corrected to a pulse signal composed of a pair of high level and low level. Noise is removed from the corrected pulse signal, and the corrected pulse signal is output as a signal having an actual period.
  • an input signal detection unit 101 detects a pulse signal included in an input signal.
  • the input signal information creation unit 102 creates and stores the pulse width and polarity of the pulse signal as input signal information for each rising and falling edge (hereinafter also simply referred to as an edge) of the pulse signal.
  • FIG. 2A is a diagram showing an input signal waveform before noise removal according to Embodiment 1 of the present invention.
  • FIG. 2B is a diagram showing input signal information according to Embodiment 1 of the present invention.
  • the input signal information stored in the input signal information creation unit 102 is as shown in FIG. 2B. That is, the input signal information stores the length of the section and the polarity of whether the output level is high level or low level for each pulse section of the pulse signal (described as pulse width in FIG. 2).
  • “Hi” represents a high level
  • “Lo” represents a low level.
  • FIG. 3 is a flowchart showing processing of the provisional period determining unit 103a and the period determining unit 103 according to Embodiment 1 of the present invention.
  • the pulse width addition value is set to 0 at the start of processing (step S300).
  • the pulse width addition value is the sum of pulse widths within a certain measurement interval.
  • the provisional period determining unit 103a starts with a predetermined edge of the pulse signal and adds a value obtained by adding the pulse width of the combination of one high level section and one low level section to the pulse width addition value (step S301). ).
  • the pulse width addition value is compared with the period predetermined value (step S302).
  • the predetermined period value is a candidate value for a period given in advance, and is a value that is assumed to be input in a cycle such as this predetermined period value by design. If the pulse width addition value is smaller than the cycle predetermined value (“YES” in step S302), the pulse width addition value is stored as the cycle nearest value (step S303). Then, the starting point for adding the pulse width is changed to the next combination of the next high level section and low level section (step S304). In this way, the processing from step S301 to step S304 is repeated.
  • the nearest period value is set as the first provisional period
  • the pulse width addition value is set as the second value.
  • the provisional period is a provisional period having a length of a section smaller than the predetermined period value.
  • the second provisional period is a provisional period having a length of a section larger than a predetermined period value calculated by adding a length of a section composed of a pair of high level and low level following the first provisional period. .
  • the period determining unit 103 compares which of the pulse width addition value (second provisional period) and the period nearest value (first provisional period) is closer to the predetermined period value (step S305).
  • the pulse width addition value is determined as the cycle determination value of the input signal (step S306).
  • the cycle nearest value is closer to the cycle predetermined value than the pulse width nearest value (“NO” in step S305)
  • the cycle nearest value is confirmed as the cycle determined value of the input signal (step S307).
  • the period determining unit 103 compares the first provisional period and the second provisional period, and determines one of the first provisional period and the second provisional period closer to the period predetermined value as the period confirmation value.
  • step S305 when the difference between the pulse width addition value and the cycle predetermined value is equal to the difference between the cycle nearest value and the cycle predetermined value ("NO" in step S305), the cycle nearest value is determined as the cycle of the input signal. The value is determined (step S307).
  • the most probable cycle among the cycles that can be assumed from the input signal is obtained according to the magnitude of the deviation value from the cycle predetermined value.
  • the predetermined period value may be set to a value that is assumed to be input at a period such as the predetermined period value by design.
  • the predetermined period value may be a predetermined value such as a center value of the period, or a value obtained by correcting the predetermined value with an actual measurement value.
  • step S301 if the pulse width addition value is smaller than the minimum value, after step S301, step S302 and step S303 may be omitted and the process may proceed to step S304.
  • step S304 if the pulse width addition value is larger than the maximum value, the stored cycle nearest value may be determined as the cycle fixed value after step S301.
  • FIG. 4 is a diagram showing processing of the provisional period determining unit 103a and the period determining unit 103 according to Embodiment 1 of the present invention. According to the processing in the provisional period determining unit 103a and the period determining unit 103, for example, in the case of the input signal in FIG. 2A, as shown in FIG.
  • time A to time C (T1 + T2), time A to time E (T1 + T2 + T3 + T4), time In the period from A to time G (T1 + T2 + T3 + T4 + T5 + T6), the period from time A to time E is closest to the predetermined period value Ttyp, so the period from time A to time E (T1 + T2 + T3 + T4) becomes the period fixed value Tfix of the input signal. .
  • the noise calculating unit 104 uses the number of high-level sections included in the period fixed value Tfix obtained by the period determining unit 103 to pulse the period fixed value Tfix. The number of noises included in is calculated.
  • the number of high-level sections in the period fixed value Tfix is one. If the noise is increased by one, that is, if the signal in the high level section is erroneously set to a low level and immediately returns to the high level, or the signal in the low level section is erroneously set to a high level. When the level immediately returns to the low level, the number of high level sections is 2. Similarly, when there are two noises, the number of high level sections is three. In this way, it can be seen that the number of noises in the period fixed value Tfix can be obtained by subtracting 1 from the number of high-level sections in the period fixed value Tfix.
  • the noise calculation unit 104 calculates the number of noises included in the pulse of the period fixed value Tfix using the number of high-level sections.
  • the number of noises may be calculated in the same manner using the number of low level sections.
  • FIG. 5A is a diagram showing processing of the noise calculation unit 104 and the noise removal unit 105 according to Embodiment 1 of the present invention.
  • the number of noises is 1 because there are two high-level sections (T1 and T3) in the period fixed value Tfix.
  • the noise removal unit 105 inverts the polarity of the interval corresponding to the number of noises calculated by the noise calculation unit 104 from the pulse having the smaller pulse width among the pulses in the period fixed value Tfix.
  • the reason why the section having a small pulse width is inverted is that the assumption that the pulse width based on noise is very small is used.
  • the noise removal unit 105 inverts the pulse signal in the cycle determined value Tfix in ascending order of the pulse width until the pulse signal in the cycle fixed value Tfix becomes a signal composed of only a pair of high level and low level. .
  • FIG. 6 is an input signal waveform diagram after noise removal in Embodiment 1 of the present invention.
  • the waveform of the output pulse signal after noise removal is as shown in FIG. That is, as shown in FIG. 6, a pulse signal having an actual period T that is an actual period is obtained.
  • the polarity of the interval T6 from time F to time G is also reversed.
  • noise of a pulse signal can be removed without using a filter or complicated circuit by hardware and by simple circuit processing or simple calculation by software.
  • FIG. 7 is a block diagram of an in-vehicle display device 710 to which the noise removing device 701 according to Embodiment 1 of the present invention is applied.
  • the in-vehicle display device 710 includes an illumination detection unit 703, a noise removal device 701, a duty determination unit 704, a video / image quality control unit 705, and a display device 709.
  • an illumination signal indicating on / off of the light switch output from the vehicle 702 is detected. This is detected by the unit 703.
  • the illumination detection unit 703 notifies the video / image quality control unit 705 of the state of the illumination signal. In accordance with the notified state, the video / image quality control unit 705 increases the luminance according to the brightness of the surroundings during the daytime and controls the dimming to reduce the luminance so that the screen is not dazzled at night, Perform video control that changes the color of the map.
  • the vehicle 702 that determines the state from the duty and cycle of the illumination control signal indicating the state of brightness adjustment in the vehicle interior, and performs control to brighten the screen even at night when the vehicle interior is bright. is there.
  • the duty determination unit 704 can correctly determine the illumination control state, so that the video / image quality control unit 705 malfunctions. Can be prevented.
  • the video / image quality control unit 705 can correctly output the dimming value, the image quality setting value, and the display timing setting value.
  • the display device 709 displays normal video based on the brightness output, RGB output, and timing signal output signals output from the dimming control device 706, the video control device 707, and the display timing control device 708, respectively. can do.
  • the dimming control device 706, the video control device 707, and the display timing control device 708 may be included in the video / image quality control unit 705.
  • FIG. 8 is a diagram illustrating an example of an input signal waveform when erroneous detection of a cycle occurs.
  • FIG. 8 shows an example of the cycle predetermined value Ttyp and cycle fixed value Tfix of the pulse signal included in the input signal, and the pulse width and polarity of each pulse signal.
  • the provisional period determining unit 103a calculates an added pulse section, which is the length of an arbitrary section composed of the same number of combinations of high level and low level in the pulse signal, as the provisional period. Therefore, in the case shown in FIG. 8, for example, time A to time C (T1 + T2) and time A to time E (T1 + T2 + T3 + T4) are calculated as temporary periods. In this case, the period determining unit 103 should select time A to time E (T1 + T2 + T3 + T4), which are provisional periods, as the period determining value Tfix.
  • cycle determination section 103 erroneously determines time A to time C (T1 + T2) as cycle determination value Tfix.
  • FIG. 9 is a block diagram of noise removal apparatus 900 according to Embodiment 2 of the present invention.
  • the noise removal apparatus 900 includes an input signal detection unit 101, an input signal information creation unit 102, a provisional period determination unit 901, a period determination unit 902, a noise calculation unit 903, a noise removal unit 904, and a duty determination unit 905. And a periodicity detection unit 906 and a period update unit 907.
  • the input signal detection unit 101 and the input signal information creation unit 102 according to the second embodiment are the same as the input signal detection unit 101 and the input signal information creation unit 102 according to the first embodiment. As described above, the same parts may be denoted by the same reference numerals and description thereof may be omitted.
  • the provisional period determination unit 901 Based on the input signal information created by the input signal information creation unit 102, the provisional period determination unit 901 temporarily creates an added pulse section having an arbitrary section length composed of the same number of high level and low level combinations. Calculated as a period.
  • Period determination section 902 compares the calculated provisional period with a predetermined period value that is a candidate value for the period length of the input signal, and determines the period determination value based on the comparison result. At this time, in the second embodiment, it is assumed that the above-described predetermined period value is largely deviated from the actual period.
  • the period determining unit 902 adds the pulse widths of the high level section and the low level section starting from the next pulse in the provisional period addition range in the generated input signal information, and calculates the pulse width addition value.
  • the pulse width addition value is the length of a pair of high-level and low-level pulses following the provisional period. Further, starting from the next pulse, the pulse widths of the high level section and the low level section are added, and the pulse width addition value is calculated repeatedly.
  • the added pulse width added value is compared with the provisional period to obtain the pulse width addition value closest to the provisional period, and this is set as the period fixed value.
  • the noise calculation unit 903 calculates the number of noises for each pulse according to the total number of the predetermined polarities of the provisional period and the period fixed value by the same calculation method as the noise calculation unit 104 of the first embodiment.
  • the noise removal unit 904 also uses the same calculation method as that of the noise removal unit 105 of the first embodiment, with respect to the pulse width data included in the provisional period and the period fixed value, in order of the number of noises in order from the section having the smallest pulse width. Invert the polarity. Then, when the duty fixed unit 905 and the periodicity detecting unit 906, which will be described later, recognize that the cycle fixed value is correctly an actual cycle, the noise removing unit 904 removes noise and corrects the pulse signal. Is output as a signal having a period of.
  • the duty determination unit 905 calculates the duty for the pulse of the provisional cycle from which noise has been removed and the duty for the pulse of the cycle determination value from which noise has been removed.
  • the periodicity detection unit 906 compares the provisional period with the period fixed value, and determines whether the difference is within a predetermined error range. In addition, the periodicity detection unit 906 compares the duty with respect to the provisional period pulse and the duty with respect to the pulse with the period fixed value, and determines whether or not the difference is within a predetermined range.
  • the periodicity detection unit 906 counts a pulse counter with periodicity.
  • the pulse counter with periodicity is a counter for determining whether the provisional period has periodicity.
  • the period update unit 907 makes a determination based on a pulse counter with periodicity, and when it can be determined that the pulse signal has periodicity, the predetermined period value is updated with a provisional period.
  • the provisional period determination unit 901 adds the pulse widths of the high level section and the low level section starting from the next pulse in the provisional period addition range calculated first. And calculated as the next provisional period. Then, the above-described processing is repeated.
  • FIG. 10A and 10B are flowcharts showing processing from the provisional period determining unit 901 to the period updating unit 907 according to Embodiment 2 of the present invention.
  • FIG. 11 is a diagram illustrating an input signal waveform after noise removal and a state of periodic predetermined value update according to the second embodiment of the present invention.
  • an addition range n of the provisional period is set to “2” as an initial value at the start of processing, and a pulse counter OK_Count with periodicity is set to “0” as an initial value ( Step S00).
  • the provisional period determination unit 901 adds a pulse width of a combination of one high level section and one low level section to the end point n of the addition range, starting from a predetermined edge of the input pulse signal, as a third point.
  • a provisional period Ttmp is calculated (step S01).
  • the third provisional period Ttmp calculated in the above-described processing is a period fixed value of the input signal depends on whether or not there is a signal having a period similar to the third provisional period Ttmp in the subsequent input signal. to decide.
  • T1 + T2 becomes the third provisional period Ttmp. That is, the third provisional period Ttmp has an arbitrary section length calculated by adding the length of the section composed of a pair of high level and low level.
  • the period determining unit 902 sets “m + 1” (step S10), where the starting point m at which the pulse width is added starts from the next of the addition range of the provisional period determining unit 901. Then, the period determining unit 902 sets the end point k of the pulse width addition to “2 ⁇ n” (step S11).
  • step S12 if k is smaller than the total acquisition number PULSE_TOTAL of the input signal information (“Yes” in step S12), “next pulse width addition value Tnext” which is the fourth provisional period from the start point m to the end point k of the pulse addition. Is obtained (step S13).
  • the first period (the combination of the high level section and the low level section) following the third provisional period Ttmp is recognized as the fourth provisional period Tnext.
  • the value of the total acquisition number PULSE_TOTAL of the input signal information may be a predetermined number of pulses obtained by observing the input signal for a certain period of time. For example, it is assumed that about 100 pulses are observed and stored. That is, the total acquisition number PULSE_TOTAL of the input signal information is “100”, for example.
  • step S14 the magnitudes of the fourth provisional period Tnext and the third provisional period Ttmp are compared. If the fourth temporary cycle Tnext is smaller than the third temporary cycle Ttmp (“YES” in step S14), the fourth temporary cycle Tnext is stored as the cycle nearest value Tnear which is the fifth temporary cycle (step S15).
  • step S19 the end point k of the pulse width addition is changed to the next cycle (a combination of the high level section and the low level section) (step S19). That is, the end point k of the pulse width addition is updated to k + 2.
  • the fourth provisional period Tnext has a length of a section larger than the third provisional period Ttmp, which is calculated by adding a length of a section composed of a pair of high level and low level following the third provisional period Ttmp.
  • the fifth provisional period Tnear has a length of a section smaller than the third provisional period Ttmp, which is calculated by adding a length of a section composed of a pair of high level and low level following the third provisional period Ttmp. .
  • step S16 when the pulse width addition is repeated and the fourth provisional period Tnext becomes larger than the third provisional period Ttmp (“NO” in step S14), which of the fourth provisional period Tnext and the fifth provisional period Tnear is the third provisional period Tnext. It is compared whether it is close to the provisional period Tmp (step S16).
  • the processing here is a combination of cycles (arbitrary number of combinations of high level sections and low level sections) subsequent to the third provisional period Ttmp, which is smaller than the third provisional period Ttmp, as a fifth provisional period Tnear, A value larger than the third provisional period Ttmp is recognized as the fourth provisional period Tnext.
  • the closest combination to the third provisional period Ttmp is detected from the combinations of the periods subsequent to the third provisional period Ttmp.
  • the fourth provisional period Tnext is always set to the period fixed value Tfix when the first fourth provisional period Tnext is larger than the third provisional period Ttmp. Become.
  • the fourth provisional period Tnext is determined as the period determination value Tfix (step S17).
  • the fifth provisional period Tnear is determined as the period determination value Tfix (step S18). That is, the period determining unit 902 compares the fourth provisional period Tnext and the fifth provisional period Tnear and determines one of the fourth provisional period Tnext or the fifth provisional period provisional period Tnear that is close to the third provisional period Ttmp. The period is determined as a fixed value Tfix.
  • the noise calculation unit 903 calculates the number of each noise included in the third provisional period Ttmp and the period fixed value Tfix (step S20).
  • the calculation method of the number of noises is the same as that of the noise calculation unit 104 of the first embodiment, and thus the description thereof is omitted.
  • the noise removal unit 904 includes pulses corresponding to the number of noises from the smaller pulse width in the pulse width data included in the third provisional period Ttmp and the period fixed value Tfix. Is reversed (step S30).
  • the pulse width data of the high level section and the low level section after noise removal is obtained for the third provisional period Ttmp and the period determination value Tfix, and the third provisional period Ttmp and the period determination value are obtained by the duty determination unit 905.
  • the duty of the pulse signal with respect to Tfix can be calculated (step S40).
  • the periodicity detection unit 906 determines whether the difference between the length of the section of the period fixed value Tfix and the length of the section of the third provisional period Ttmp is within the error range, and the duty of the period fixed value Tfix and the third It is determined whether the difference from the duty of the provisional cycle Ttmp is within a predetermined range (step S50). Each of these differences is a predetermined value.
  • the difference between the cycle fixed value Tfix and the third temporary cycle Ttmp is within the error range and the difference between the duty of the cycle fixed value Tfix and the duty of the third temporary cycle Ttmp is within the predetermined range (“YES” in step S50)
  • Increases the pulse counter OK_Count with periodicity by “1” step S51.
  • the starting point m and end point k of the addition range are updated to the next pulse width (step S52, step S53), and the process of obtaining the period fixed value Tfix from the period determining unit 902 is performed again (step S12).
  • the period fixed value Tfix is newly set as the third provisional period Ttmp. Then, based on the third provisional period Ttmp, a new fourth provisional period Tnext and a fifth provisional period Tnear are set, and the third provisional period and Ttmp are sequentially compared.
  • step S50 it is determined that the third provisional period Ttmp has no periodicity. Then, the end point n of the addition range of the third provisional period Ttmp is expanded to the range of the next high level section and low level section (step S54), and the pulse count number OK_Count with periodicity and the values of the fifth provisional period Tnear are set. Initialization is performed (step S55).
  • the process for obtaining the third provisional period Ttmp is performed again (step S01). In this way, a series of processing is repeated.
  • the error range may be appropriately changed depending on the accuracy to be obtained.
  • the third provisional period Ttmp is immediately updated. The number of times that the value Tfix is allowed to be outside the error range may be set.
  • the cycle update unit 907 sets the cycle predetermined value Ttyp to the first value. It is determined whether or not the update can be performed with the three provisional cycles Ttmp (step S60). In order to determine whether the difference between the value of the third provisional period Ttmp and the value of the period fixed value Tfix is within the error range, the value of the pulse count number OK_Count having a periodicity is a value having a predetermined periodicity.
  • Step S60 When it is larger than the minimum value OK_COUNT_MIN of the pulse count number (“YES” in step S60), it is determined that the input signal is a pulse having a periodicity consisting of the third provisional period Ttmp, and the period predetermined value Ttyp is set to the third provisional period Ttmp. (Step S61).
  • the third provisional period Ttmp is determined as a pulse without periodicity.
  • the cycle predetermined value Ttyp is not updated.
  • FIG. 11 is a diagram showing how the input signal waveform after noise removal and the predetermined period value are updated according to the second embodiment of the present invention.
  • the first third provisional period Ttmp1 is T1 + T2.
  • the first fourth provisional period Tnext1 is T3 + T4.
  • the third provisional period Ttmp1 is smaller than the fourth provisional period Tnext1. Since the initial value 0 is set in the fifth provisional period Tnear in step S16, the first period determination value Tfix1 is T3 + T4. Neither the third provisional period Ttmp1 nor the period fixed value Tfix1 is inverted by noise removal in step S30.
  • the fourth provisional period Tnext1 (T3 + T4) is not within a predetermined error range from the third provisional period Ttmp1 (T1 + T2), it can be determined that the period fixed value Tfix1 is not the same period as the third provisional period Ttmp1. Therefore, the value of n is increased by 2 in step S54.
  • the second third provisional period Ttmp2 is T1 + T2 + T3 + T4.
  • the second fourth provisional period Tnext2 is T5 + T6.
  • Ttmp2 since the third provisional period Ttmp2 is larger than the fourth provisional period Tnext2, T5 + T6 is set in the fifth provisional period Tnear.
  • the fourth provisional period Tnext2 since the fourth provisional period Tnext2 includes up to two sections ahead, the fourth provisional period Tnext2 is updated to T5 + T6 + T7 + T8. Comparing the fourth provisional period Tnext2 and the fifth provisional period Tnear, the fourth provisional period Tnext2 has a size close to that of the third provisional period Ttmp2. Therefore, the second period fixed value Tfix is T5 + T6 + T7 + T8.
  • step S30 the polarity of T2 is inverted in the third provisional period Ttmp, and the polarity of T6 is inverted in the period fixed value Tfix.
  • step S50 it can be seen that the third provisional period Ttmp and the period fixed value Tfix are pulses having substantially the same period. Therefore, the pulse count number OK_Count with periodicity is increased by “1”, and the third provisional period Ttmp is compared with the next period fixed value Tfix as it is.
  • the third fourth provisional period Tnext is T9 + T10, and the fourth provisional period Tnext is smaller than the third provisional period Ttmp, so T9 + T10 is set in the fifth provisional period Tnear. Then, the fourth provisional period Tnext is updated to T9 + T10 + T11 + T12. Comparing the fourth provisional period Tnext and the fifth provisional period Tnear, the fourth provisional period Tnext has a size close to that of the third provisional period Ttmp. Therefore, the third period fixed value Tfix is T9 + T10 + T11 + T12.
  • step S30 the polarity of T2 is inverted in the third provisional period Ttmp, and the polarity of T10 is inverted in the period fixed value Tfix.
  • step S50 it can be seen that the third provisional period Ttmp and the period fixed value Tfix are pulses having substantially the same period. Therefore, the pulse count number OK_Count with periodicity is increased by “1”. In this way, processing is performed until k exceeds the acquisition total number PULSE_TOTAL of the input signal information, and the predetermined period value Ttyp1 is replaced with the third provisional period Ttmp in step S61 to become the predetermined period value Ttyp2. In this way, the actual period T is recognized as the period predetermined value Ttyp, and erroneous recognition of the period is prevented.
  • the actual period necessary for the noise removal operation can be more reliably determined in the second embodiment.
  • the cycle predetermined value can be updated to a reliable cycle calculated based on the actually measured value as shown in FIG. 11, the specification of the cycle predetermined value is unclear. Even if it deviates greatly from the specifications, noise can be removed with higher accuracy.
  • noise can be removed even when the noise has a frequency. Further, the noise of the pulse signal can be removed without using a filter or a complicated circuit by hardware and by simple circuit processing or simple calculation by software.
  • the duty determination unit 704 illustrated in FIG. 7 is not necessary. This is because the function of duty determining section 704 is included in noise removing apparatus 900 according to the present embodiment as shown in FIG.
  • a desired pulse signal from which the noise pulse has been removed can be obtained, so that erroneous detection can be prevented.
  • the pulse signal may be affected by noise or the like generated from the alternator of the vehicle, a desired pulse signal from which the noise pulse has been removed can be obtained, so that erroneous detection can be prevented.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Noise Elimination (AREA)

Abstract

 ノイズ除去装置は、入力信号に含まれるパルス信号を検出する入力信号検出部と、パルス信号におけるパルスごとにパルスの区間の長さとハイレベルまたはローレベルの極性とを記録する入力信号情報作成部と、パルス信号における同数のハイレベルとローレベルの組合せからなる任意の区間の長さを有する加算されたパルスの区間を仮周期として算出する仮周期確定部と、仮周期を入力信号の周期の長さの候補値である周期所定値と比較して、比較結果に基づいて周期確定値を確定する周期確定部と、周期確定値に含まれるノイズ数を算出するノイズ算出部と、周期確定値の中に含まれるパルスの区間の極性を、パルス幅の小さい区間から順に、ノイズ数に相当する区間の極性を反転させ、入力信号に含まれるパルス信号を一対のハイレベルとローレベルの組合せからなるパルス信号に補正するノイズ除去部と、を有する。

Description

ノイズ除去装置、ノイズ除去方法及びそのノイズ除去装置を用いた車載ディスプレイ装置
 本発明は、ノイズ除去装置、ノイズ除去方法及びそのノイズ除去装置を用いた車載ディスプレイ装置に関する。更に詳しくは、一定の周期と振幅を持ったパルス信号に混入した、ノイズを除去する装置、方法及びそのノイズ除去装置を用いた車載ディスプレイ装置に関する。
 従来、パルス性の信号を検出する回路において、信号中より周期性のあるパルス信号を除く他のパルス性雑音を除去する雑音除去回路を具備したものがある(例えば、特許文献1参照)。
 上記した従来の雑音除去回路は、周期性検出回路を備えている。周期性検出回路は、パルス性信号の周波数データ、パルス長データ、パルス立下り時間を検出して記憶・蓄積し、新たに検出されたパルス性信号との比較を行なう。この比較結果に基づいてフィルタオン‐オフ信号と周期パルス信号の周波数データを出力する。そして、フィルタオン‐オフ信号がオン状態のときのみ周波数データを中心とするバンドパスフィルタを形成することで、周期性のあるパルス信号を除く他のパルス性雑音を除去している。
 しかしながら、上記した従来の雑音除去回路では、所望のパルス信号に特定の周波数をもったノイズが混入した場合に、ノイズの周波数を中心としたバンドパスフィルタが形成されてしまうことがある。そして、ノイズがバンドパスフィルタを通過することにより、正しい周期でフィルタオン-オフ信号を出力できないという課題があった。
特開平2-109428号公報
 本発明のノイズ除去装置は、入力信号検出部と入力信号情報作成部と仮周期確定部と周期確定部とノイズ算出部とノイズ除去部とを有する。入力信号検出部は、入力信号に含まれるパルス信号を検出する。入力信号情報作成部は、パルス信号におけるパルスごとに、パルスの区間の長さとハイレベルまたはローレベルの極性とを記録する。仮周期確定部は、パルス信号における同数のハイレベルとローレベルの組合せからなる任意の区間の長さを有する加算されたパルスの区間を仮周期として算出する。周期確定部は、仮周期を入力信号の周期の長さの候補値である周期所定値と比較して、比較結果に基づいて周期確定値を確定する。ノイズ算出部は、周期確定値に含まれるノイズ数を算出する。ノイズ除去部は、周期確定値の中に含まれるパルスの区間の極性を、パルス幅の小さい区間から順に、ノイズ数に相当する区間の極性を反転させ、入力信号に含まれるパルス信号を一対のハイレベルとローレベルの組合せからなるパルス信号に補正する。
 このような構成により、本発明のノイズ除去装置は、入力されたパルス信号に、所定のパルス幅を有するノイズが混入した場合でも、ノイズのパルス幅が入力されたパルス信号よりも小さい場合は、ノイズと判定することができ、ノイズを除去することができる。
 また、本発明のノイズ除去方法は、入力信号検出部において、入力信号に含まれるパルス信号を検出する。そして、入力信号情報作成部において、パルス信号におけるパルスごとに、パルスの区間の長さとハイレベルまたはローレベルの極性とを記録する。そして、仮周期確定部において、パルス信号における同数のハイレベルとローレベルの組合せからなる任意の区間の長さを有する加算されたパルスの区間を仮周期として算出する。また、周期確定部において、仮周期を入力信号の周期の長さの候補値である周期所定値と比較して、比較結果に基づいて周期確定値を確定する。そして、ノイズ算出部において、周期確定値に含まれるノイズ数を算出する。そして、ノイズ除去部において、周期確定値の中に含まれるパルスの区間の極性を、パルス幅の小さい区間から順に、ノイズ数に相当する区間の極性を反転させ、入力信号に含まれるパルス信号を一対のハイレベルとローレベルの組合せからなるパルス信号に補正する。
 また、本発明のノイズ除去装置を用いた車載ディスプレイ装置は、イルミ検出部とノイズ除去装置とノイズ除去装置とデューティ確定部と映像・画質制御部と表示デバイスとを備えている。イルミ検出部は、イルミネーション信号を検出する。ノイズ除去装置は、イルミネーション制御信号に対して、混入したノイズを除去する。デューティ確定部は、ノイズの除去されたイルミネーション制御信号のデューティを検出する。映像・画質制御部は、イルミ検出部が出力するイルミネーション信号の状態信号とノイズ除去装置が出力する混入したノイズを除去したイルミネーション制御信号を入力する。表示デバイスは、映像・画質制御部が出力する信号に基づいて映像を表示する。
 また、ノイズ除去装置は、入力信号検出部と入力信号情報作成部と仮周期確定部と周期確定部とノイズ算出部とノイズ除去部とを有する。入力信号検出部は、入力信号に含まれるパルス信号を検出する。入力信号情報作成部は、パルス信号におけるパルスの区間ごとに、パルスの区間の長さとハイレベルまたはローレベルの極性とを記録する。仮周期確定部は、パルス信号における同数のハイレベルとローレベルの組合せからなる任意の区間の長さを有する加算されたパルスの区間を仮周期として算出する。周期確定部は、仮周期を入力信号の周期の長さの候補値である周期所定値と比較して、比較結果に基づいて周期確定値を確定する。ノイズ算出部は、周期確定値に含まれるノイズ数を算出する。ノイズ除去部は、周期確定値の中に含まれるパルスの区間の極性を、パルス幅の小さい区間から順に、ノイズ数に相当する区間の極性を反転させ、入力信号に含まれるパルス信号を一対のハイレベルとローレベルの組合せからなるパルス信号に補正する。
図1は、本発明の実施の形態1に係るノイズ除去装置の構成を示すブロック図である。 図2Aは、本発明の実施の形態1に係るノイズ除去前の入力信号波形を表す図である。 図2Bは、本発明の実施の形態1に係る入力信号情報を表す図である。 図3は、本発明の実施の形態1に係る仮周期確定部及び周期確定部の処理を示すフローチャートである。 図4は、本発明の実施の形態1に係る仮周期確定部及び周期確定部の処理を示す図である。 図5Aは、本発明の実施の形態1に係るノイズ算出部およびノイズ除去部の処理を示す図である。 図5Bは、本発明の実施の形態1に係るノイズ算出部およびノイズ除去部の処理を示す図である。 図6は、本発明の実施の形態1におけるノイズ除去後の入力信号波形図である。 図7は、本発明の実施の形態1に係るノイズ除去装置が適用される車載ディスプレイ装置のブロック図である。 図8は、周期の誤検出が発生する場合の入力信号波形例を示した図である。 図9は、本発明の実施の形態2に係るノイズ除去装置の構成を示すブロック図である。 図10Aは、本発明の実施の形態2に係る仮周期確定部から周期更新部に至るまでの処理を示すフローチャートである。 図10Bは、本発明の実施の形態2に係る仮周期確定部から周期更新部に至るまでの処理を示すフローチャートである。 図11は、本発明の実施の形態2に係るノイズ除去後の入力信号波形および周期所定値の更新の様子を表す図である。
 (実施の形態1)
 図1は、本発明の実施の形態1に係るノイズ除去装置100の構成を示すブロック図である。
 ノイズ除去装置100は、入力信号検出部101と、入力信号情報作成部102と、仮周期確定部103aと、周期確定部103と、ノイズ算出部104と、ノイズ除去部105から構成される。
 入力信号検出部101は、入力された入力信号に含まれるパルス信号を検出する。入力信号情報作成部102は、検出されたパルス信号のパルスの区間ごとに、パルスの区間の長さとハイレベルまたはローレベルの極性とを対応づけた入力信号情報を作成し、記録する。仮周期確定部103aは、入力信号情報作成部102にて作成された入力信号情報に基づいて、お互いに隣り合うパルス信号のパルス幅を加算する。その際、パルス信号における同数のハイレベルとローレベルの組合せからなる任意の区間の長さを有する加算されたパルスの区間を仮周期として算出する。
 周期確定部103は、仮周期と周期所定値を比較して、その比較結果に基づいて周期確定値を確定する。ここで、周期所定値とは、入力信号の周期の長さの候補値である。また、周期確定値とは、入力された入力信号に含まれるパルス信号が有する周期を表し、ノイズによって影響されない実際の周期を表す。なお、仮周期と周期所定値との比較結果に基づいて、周期確定値を確定する処理については後述する。
 ノイズ算出部104は、周期確定値の中に含まれるパルスの区間の極性の合計数に基づいて、周期確定値に含まれるノイズ数を算出する。ノイズ除去部105は、周期確定値に含まれるパルス幅の小さい区間から順に、ノイズ数に相当する区間の極性を反転させる。そして、周期確定値に含まれるノイズを除去して、入力信号に含まれるパルス信号を一対のハイレベルとローレベルの組合せからなるパルス信号に補正する。補正されたパルス信号は、ノイズが除去され、実際の周期を有する信号として出力される。
 次に、図1から図6を用いてノイズ除去装置100の処理を説明する。まず、図1において、入力信号検出部101は、入力信号に含まれるパルス信号を検出する。次に、入力信号情報作成部102は、パルス信号の立ち上がりおよび立ち下がりエッジ(以下単にエッジともいう)ごとに、パルス信号のパルス幅と極性とを入力信号情報として作成し、記憶する。
 図2Aは、本発明の実施の形態1に係るノイズ除去前の入力信号波形を表す図である。図2Bは、本発明の実施の形態1に係る入力信号情報を表す図である。例えば、パルス信号が図2Aに表した波形である場合、入力信号情報作成部102が記憶する入力信号情報は図2Bのようになる。すなわち、入力信号情報は、パルス信号のパルスの区間(図2では、パルス幅と記載)ごとに、区間の長さとその出力レベルがハイレベルかローレベルかの極性とを対応付けて記憶する。図2Bにおいて、「Hi」はハイレベルを、「Lo」はローレベルをそれぞれ表す。
 次に、仮周期確定部103a及び周期確定部103における処理の流れを、図3を用いて説明する。図3は、本発明の実施の形態1に係る仮周期確定部103a及び周期確定部103の処理を示すフローチャートである。
 まず、処理開始時にパルス幅加算値を0とする(ステップS300)。パルス幅加算値とは、ある測定区間内のパルス幅の総和である。仮周期確定部103aは、パルス信号の所定のエッジを起点として、引き続くハイレベル区間1個とローレベル区間1個の組み合わせのパルス幅を加えた値を、パルス幅加算値に加算する(ステップS301)。
 次に、パルス幅加算値と周期所定値の大小を比較する(ステップS302)。周期所定値は事前に与えられる周期の候補値であり、設計上およそこの周期所定値のような周期で入力信号が入ってくると想定される値である。ここで、パルス幅加算値が周期所定値より小さい場合(ステップS302で「YES」)、パルス幅加算値を周期最近値として保存する(ステップS303)。そして、パルス幅を加算する起点を、さらに引き続く次のハイレベル区間とローレベル区間の組み合わせに変更する(ステップS304)。このようにして、ステップS301からステップS304の処理を繰り返す。
 上記したようにしてパルス幅加算を繰り返し、パルス幅加算値が周期所定値以上になった場合(ステップS302で「NO」)、周期最近値を第一仮周期とし、パルス幅加算値を第二仮周期とする。ここで、第一仮周期は、周期所定値より小さい区間の長さを持つ仮周期である。また、第二仮周期は、第一仮周期にさらに引き続く一対のハイレベルとローレベルからなる区間の長さを加えて算出された、周期所定値より大きい区間の長さを持つ仮周期である。
 次に、周期確定部103は、パルス幅加算値(第二仮周期)と周期最近値(第一仮周期)のどちらが周期所定値に近いかを比較する(ステップS305)。ここで、パルス幅加算値の方が周期最近値より周期所定値に近い場合(ステップS305で「YES」)、パルス幅加算値を入力信号の周期確定値として確定する(ステップS306)。また、周期最近値の方がパルス幅最近値より周期所定値に近い場合(ステップS305で「NO」)、周期最近値を入力信号の周期確定値として確定する(ステップS307)。すなわち、周期確定部103は、第一仮周期と第二仮周期とを比較して周期所定値に近いほうの第一仮周期または第二仮周期のいずれか一方を周期確定値として確定する。なお、ステップS305に示すように、パルス幅加算値と周期所定値の差が周期最近値と周期所定値の差と等しい場合(ステップS305で「NO」)、周期最近値を入力信号の周期確定値として確定する(ステップS307)。
 以上の処理によって、入力信号から想定されうる周期のうちもっとも確からしい周期を、周期所定値との乖離値の大きさに応じて求めることを行う。
 なお、周期所定値は、設計上およそこの周期所定値のような周期で入力信号が入ってくると想定される値を設定すればよい。例えば、周期所定値は、周期のセンター値のような予め定められた規定値であっても、規定値に対して実測値で補正した値であってもよい。
 また、周期の最小値が既知であるとして、パルス幅加算値が最小値より小さければ、ステップS301の後、ステップS302およびステップS303を省略してS304に進むようにしてもよい。同様に、周期の最大値が既知であるとして、パルス幅加算値が最大値より大きければ、ステップS301の後、保存されている周期最近値を周期確定値として確定してもよい。
 図4は、本発明の実施の形態1に係る仮周期確定部103a及び周期確定部103の処理を示す図である。仮周期確定部103a及び周期確定部103における処理によると、例えば、図2Aの入力信号の場合、図4に示す通り、時間A~時間C(T1+T2)、時間A~時間E(T1+T2+T3+T4)、時間A~時間G(T1+T2+T3+T4+T5+T6)の区間のうち、時間A~時間Eの期間が周期所定値Ttypに最も近くなるので、時間A~時間Eの期間(T1+T2+T3+T4)が入力信号の周期確定値Tfixとなる。
 周期確定値Tfixが確定すれば、次に、ノイズ算出部104が、周期確定部103にて求めた周期確定値Tfixの中に含まれるハイレベル区間の数を用いて、周期確定値Tfixのパルスに含まれるノイズの個数を算出する。
 ノイズの個数の算出は以下のように行う。ノイズの個数が0、すなわちノイズの無い理想的な信号においては、周期確定値Tfixの中のハイレベル区間の数は1である。ここでノイズが1つ乗ると、つまり、ハイレベル区間の信号が誤って一部ローレベルになってすぐハイレベルに復帰した場合や、ローレベル区間の信号が誤って一部ハイレベルになってすぐにローレベルに復帰した場合には、ハイレベル区間の数は2となる。ノイズが2つ乗った場合は同様にハイレベル区間の数は3である。このようにすると、周期確定値Tfixの中のノイズ個数は周期確定値Tfixの中のハイレベル区間の数から1を引けば求められることがわかる。
 なお、上記した例では、ノイズ算出部104がハイレベル区間の数を用いて、周期確定値Tfixのパルスに含まれるノイズの個数を算出した。しかし、ローレベル区間の数を用いて、同様にしてノイズの個数を算出してもよい。
 図5Aは、本発明の実施の形態1に係るノイズ算出部104およびノイズ除去部105の処理を示す図である。図5Aに示す通り、図2Aにおいて説明した入力信号ならば、周期確定値Tfixの中にハイレベル区間が2個(T1とT3)あるので、ノイズ個数は1となる。
 次に、ノイズ除去部105は、周期確定値Tfixの中のパルスうちでパルス幅の小さい方からノイズ算出部104にて算出したノイズ個数分の区間の極性を反転させる。ここで、パルス幅の小さいものの区間を反転するのは、ノイズに基づくパルス幅は微小であるという前提を利用するからである。上述のノイズの除去は、ノイズ除去部105において、周期確定値Tfixの中のパルス信号が一対のハイレベルとローレベルの組合せのみからなる信号となるまで、パルス幅の小さい順に反転させるようにする。
 図2の入力信号の場合、ノイズ個数は1、パルス幅の最も小さい区間はT2となる。したがって、図5Bに示す通り、時間B~時間Cの区間T2の極性を反転することになる。図6は、本発明の実施の形態1におけるノイズ除去後の入力信号波形図である。出力されるノイズ除去後のパルス信号の波形は図6のようになる。すなわち、図6に示すように、実際の周期である実周期Tを有するパルス信号が得られている。なお、同様にして、時間F~時間Gの区間T6も極性を反転することになる。
 本発明により、ハードウェアによるフィルタや複雑な回路を使用せずに、かつ、簡単な回路処理またはソフトウェアによる簡単な演算により、パルス信号のノイズを除去することができる。
 本実施の形態ではノイズが1個の場合について説明したが、本発明により、有意な信号より小さいパルス幅の信号は全てノイズと判断することができるため、複数個のノイズを除去することも可能である。また、ハイレベルの区間にローレベルのノイズがある場合について説明したが、ローレベルの区間にハイレベルのノイズがある場合についても、本実施の形態と同様の処理を行うことによりノイズを除去することができる。
 図7は、本発明の実施の形態1に係るノイズ除去装置701が適用される車載ディスプレイ装置710のブロック図である。図7に示すように、車載ディスプレイ装置710は、イルミ検出部703とノイズ除去装置701とデューティ確定部704と映像・画質制御部705と表示デバイス709とを備えている。
 車外や車室内の明るさに応じて、画面の明るさや表示内容の色味などを変化させる車載ディスプレイ装置710においては、車両702から出力されるライトスイッチのオン-オフを示すイルミネーション信号をイルミ検出部703にて検出する。そして、イルミ検出部703は、映像・画質制御部705へ、イルミネーション信号の状態を通知する。映像・画質制御部705は、その通知された状態に応じて、昼間は周囲の明るさに合わせて輝度を上げ、夜間は画面が眩しくないように輝度を下げる調光制御や、表示したメニューや地図の色味を変更するような映像制御を行う。
 また上記した制御と並行して、車室内の明るさ調整の状態を示すイルミネーション制御信号のデューティと周期から状態を判断し、車室内が明るい場合は夜間でも画面を明るくする制御を行う車両702がある。車両702から入力されるイルミネーション制御信号に対して、ノイズ除去装置701にて混入したノイズを除去することにより、デューティ確定部704で正しくイルミネーション制御状態を確定できるため、映像・画質制御部705の誤動作を防ぐことができる。その結果、映像・画質制御部705は、調光値、画質設定値、表示タイミング設定値を正しく出力できる。そして、調光制御装置706、映像制御装置707、表示タイミング制御装置708からそれぞれ出力される明るさ出力、RGB出力、タイミング信号出力の各信号に基づいて、表示デバイス709は、正常な映像を表示することができる。
 なお、調光制御装置706、映像制御装置707、表示タイミング制御装置708は、映像・画質制御部705に含まれる構成としてもよい。
 (実施の形態2)
 実施の形態1では、入力信号入力信号に含まれるパルス信号の周期所定値Ttypが実周期Tと近い場合、周期確定部103は周期確定値Tfixを正確に検出することができた。そして、ノイズ算出部104は、ノイズを除去した所望のパルス信号を得ることができた。しかし、入力信号に含まれるパルス信号の周期所定値Ttypが実周期Tと大きくずれている場合、周期確定部103は周期確定値Tfixを誤検出する可能性がある。実施の形態2では、上記したように、入力信号の周期所定値Ttypが実周期Tと大きくずれている場合に対応するための構成と処理について説明する。
 ここで、まず、入力信号に含まれるパルス信号の周期所定値Ttypが実周期Tと大きくずれている場合、実施の形態1に係る周期確定部103が、周期確定値Tfixを誤検出が生じる例について、具体的に説明する。図8は、周期の誤検出が発生する場合の入力信号波形例を示した図である。図8は、入力信号に含まれるパルス信号の周期所定値Ttypと周期確定値Tfixと各パルス信号のパルス幅と極性の例を示している。
 実施の形態1に係る仮周期確定部103aは、パルス信号における同数のハイレベルとローレベルの組合せからなる任意の区間の長さである加算されたパルスの区間を仮周期として算出する。したがって、図8に示す場合、例えば、時間A~時間C(T1+T2)及び時間A~時間E(T1+T2+T3+T4)を仮周期として算出する。この場合、周期確定部103は、周期確定値Tfixとして、仮周期である時間A~時間E(T1+T2+T3+T4)を選定すべきである。
 しかしながら、この算出された仮周期である時間A~時間C(T1+T2)及び時間A~時間E(T1+T2+T3+T4)と、周期所定値Ttypとを比較すると、仮周期である時間A~時間C(T1+T2)の方が周期所定値Ttypに近い周期である。したがって、実施の形態1に係る周期確定部103は、時間A~時間C(T1+T2)を誤って、周期確定値Tfixとして確定してしまう。
 本実施の形態では、このように入力信号の周期所定値Ttypと実際の周期とが大きくずれている場合、さらに周期所定値Ttypを入力信号の実測値を基にした周期で更新する処理を追加することによって、誤検出を防止する。すなわち、発明者らは、本実施の形態では、周期確定部が、時間A~時間E(T1+T2+T3+T4)を周期確定値Tfixとして正しく確定することができるように検討を行った。
 図9は、本発明の実施の形態2に係るノイズ除去装置900のブロック図である。ノイズ除去装置900は、入力信号検出部101と、入力信号情報作成部102と、仮周期確定部901と、周期確定部902と、ノイズ算出部903と、ノイズ除去部904と、デューティ確定部905と、周期性検出部906と、周期更新部907から構成される。
 実施の形態2に係る入力信号検出部101、入力信号情報作成部102は、実施の形態1に係る入力信号検出部101、入力信号情報作成部102と同様のものである。このように、同一部位には同一符号を付して、説明を省略することがある。
 仮周期確定部901は、入力信号情報作成部102で作成された入力信号情報に基づいて、同数のハイレベルとローレベル組み合わせからなる任意の区間の長さを有する加算されたパルスの区間を仮周期として算出する。周期確定部902は、算出された仮周期を、入力信号の周期の長さの候補値である周期所定値と比較して、比較結果に基づいて周期確定値を確定する。この際に、実施の形態2では、上記した周期所定値は、実際の周期が大きくずれていると想定している。
 そのため、周期確定部902は、作成された入力信号情報において、仮周期の加算範囲の次のパルスを起点として、ハイレベル区間とローレベル区間のパルス幅を加算し、そのパルス幅加算値を算出する。すなわち、パルス幅加算値は、仮周期に引き続く1組のハイレベル区間とローレベル区間のパルスの区間の長さである。また、更に次のパルスを起点として、ハイレベル区間とローレベル区間のパルス幅を加算し、そのパルス幅加算値を算出することを繰り返す。
 そして、次に、加算されたパルス幅加算値と仮周期を比較して、仮周期に最も近いパルス幅加算値を求め、これを周期確定値とする。
 ノイズ算出部903は、実施の形態1のノイズ算出部104と同じ算出方法で、仮周期及び周期確定値の所定の極性の合計数に応じて各パルスに対するノイズ数を算出する。ノイズ除去部904も、実施の形態1のノイズ除去部105と同じ算出方法で、仮周期、周期確定値に含まれるパルス幅データに対して、パルス幅の小さい区間から順にノイズ数分の区間の極性を反転させる。そして、後述するデューティ確定部905、周期性検出部906により、周期確定値が正しく実周期であると認定されると、ノイズ除去部904において、ノイズを除去して補正されたパルス信号は、実際の周期を有する信号として出力される。
 デューティ確定部905は、ノイズ除去された仮周期のパルスに対するデューティと、ノイズ除去された周期確定値のパルスに対するデューティを算出する。
 周期性検出部906は、仮周期と周期確定値とを比較し、それらの差が、予め定めた誤差範囲内であるかを判断する。かつ、周期性検出部906は、仮周期のパルスに対するデューティと周期確定値のパルスに対するデューティとを比較し、それらの差が、所定範囲内であるかを判断する。
 その結果に基づいて、周期性検出部906は、周期性有りのパルスカウンタをカウントする。ここで、周期性有りのパルスカウンタは、仮周期が、周期性を有するかどうかを判断するためのカウンタである。最後に周期更新部907にて周期性有りのパルスカウンタに基づいて判断し、パルス信号に周期性が有ると判断できた場合、周期所定値を仮周期で更新する。
 一方、パルス信号に周期性が有ると判断できない場合、仮周期確定部901は、最初に算出した仮周期の加算範囲の次のパルスを起点として、ハイレベル区間とローレベル区間のパルス幅を加算し、次の仮周期として算出する。そして、上述した処理を繰り返す。
 次に、図9から図11を用いて実施の形態2のノイズ除去装置900の処理を説明する。まず、仮周期確定部901から周期更新部907までの処理の流れについて、図10A、10Bを用いて説明する。
 図10A、10Bは、本発明の実施の形態2に係る仮周期確定部901から周期更新部907に至るまでの処理を示すフローチャートである。図11は、本発明の実施の形態2に係るノイズ除去後の入力信号波形および周期所定値更新の様子を表す図である。
 まず、仮周期確定部901において仮周期を算出するために、処理開始時に仮周期の加算範囲nを初期値として「2」、周期性有りのパルスカウンタOK_Countを初期値として「0」とする(ステップS00)。仮周期確定部901は、入力されたパルス信号の所定のエッジを起点として、ハイレベル区間1個とローレベル区間1個の組み合わせのパルス幅を加算範囲の終点nまで加算することにより、第三仮周期Ttmpを算出する(ステップS01)。今後の処理において、上記した処理で算出された第三仮周期Ttmpが入力信号の周期確定値であるかを、引き続く入力信号に第三仮周期Ttmpと同様の周期をもつ信号があるかないかによって判断する。
 例えば、図8のような入力信号であればT1+T2が第三仮周期Ttmpとなる。すなわち、第三仮周期Ttmpは、一対のハイレベルとローレベルからなる区間の長さを加えて算出された任意の区間の長さを有する。
 続いて、周期確定部902は、パルス幅を加算する起点mを仮周期確定部901の加算範囲の次を起点とする「n+1」(ステップS10)とする。そして、周期確定部902は、パルス幅加算の終点kを「2×n」とする(ステップS11)。
 次に、kが入力信号情報の取得トータル数PULSE_TOTALより小さければ(ステップS12の「Yes」)、パルス加算の起点mから終点kまでの第四仮周期である「次のパルス幅加算値Tnext」を求める(ステップS13)。ここでの処理は、第三仮周期Ttmpの後に引き続く最初の周期(ハイレベル区間とローレベル区間の組合せ)を第四仮周期Tnextとして認定するものである。
 例えば、図8のような入力信号であればT3+T4が第四仮周期Tnextとなる。なお、ここで、入力信号情報の取得トータル数PULSE_TOTALの値は一定時間、入力信号を観測して得られた所定長のパルス数であればよい。例えば、100パルス程度を観測し、記憶することを想定している。すなわち、入力信号情報の取得トータル数PULSE_TOTALは、例えば、「100」である。
 続いて、第四仮周期Tnextと第三仮周期Ttmpの大小を比較する(ステップS14)。そして、第四仮周期Tnextが第三仮周期Ttmpより小さい場合(ステップS14で「YES」)、第四仮周期Tnextを第五仮周期である周期最近値Tnearとして保存する(ステップS15)。
 次に、パルス幅加算の終点kを次の周期(ハイレベル区間とローレベル区間の組み合わせ)に変更する(ステップS19)。すなわち、パルス幅加算の終点kをk+2と更新する。
 そして、ステップS12からステップS14までの処理を繰り返す。すなわち、第四仮周期Tnextは、第三仮周期Ttmpにさらに引き続く一対のハイレベルとローレベルからなる区間の長さを加えて算出された、第三仮周期Ttmpより大きい区間の長さを有する。また、第五仮周期Tnearは、第三仮周期Ttmpにさらに引き続く一対のハイレベルとローレベルからなる区間の長さを加えて算出された、第三仮周期Ttmpより小さい区間の長さを有する。
 このようにしてパルス幅加算を繰り返し、第四仮周期Tnextが第三仮周期Ttmpより大きくなった場合(ステップS14で「NO」)、第四仮周期Tnextと第五仮周期Tnearのどちらが第三仮周期Tmpに近いかを比較する(ステップS16)。ここでの処理は、第三仮周期Ttmpに引き続く、周期(任意の数のハイレベル区間とローレベル区間の組合せ)の組合せのうち、第三仮周期Ttmpより小さいものを第五仮周期Tnear、第三仮周期Ttmpより大きいものを第四の仮周期Tnextとして認定するものである。
 このようにして第三仮周期Ttmpに引き続く周期の組合せのうちでもっとも第三仮周期Ttmpに近いものを検出する。なお、初期値として第五仮周期Tnearに0をセットしておくことにより、最初の第四仮周期Tnextが第三仮周期Ttmpより大きい場合には必ず第四仮周期Tnextが周期確定値Tfixとなるようになる。
 この結果、第四仮周期Tnextの方が第五仮周期Tnearより第三仮周期Ttmpに近い場合(ステップS16で「YES」)、第四仮周期Tnextを周期確定値Tfixとして確定する(ステップS17)。また、第五仮周期TnearがTtmpに近い場合(ステップS16で「NO」)、第五仮周期Tnearを周期確定値Tfixとして確定する(ステップS18)。すなわち、周期確定部902は、第四仮周期Tnextと第五仮周期Tnearとを比較して、第三仮周期Ttmpに近いいずれか一方の第四仮周期Tnextまたは第五仮周期仮周期Tnearを周期確定値Tfixとして確定する。
 次に、ノイズ算出部903は、第三仮周期Ttmpと周期確定値Tfixに含まれる各々のノイズの個数を算出する(ステップS20)。ノイズ個数の算出方法は、実施の形態1のノイズ算出部104と同じ方法であるため説明は省略する。ノイズ除去部904は、実施の形態1のノイズ除去部105と同様に、第三仮周期Ttmpと周期確定値Tfixに含まれるパルス幅データの中で、パルス幅の小さい方からノイズ個数分のパルスの極性を反転する(ステップS30)。
 この結果、第三仮周期Ttmpと周期確定値Tfixについてノイズ除去された後のハイレベル区間、ローレベル区間のパルス幅データが得られ、デューティ確定部905にて第三仮周期Ttmp及び周期確定値Tfixに対するパルス信号のデューティを算出することができる(ステップS40)。
 次に、周期性検出部906にて、周期確定値Tfixの区間の長さと第三仮周期Ttmpの区間の長さとの差が誤差範囲内であるか、及び周期確定値Tfixのデューティと第三仮周期Ttmpのデューティとの差が所定範囲内であるかを判断する(ステップS50)。これらの差異は、各々予め定められた値とする。周期確定値Tfixと第三仮周期Ttmpとの差が誤差範囲内かつ周期確定値Tfixのデューティと第三仮周期Ttmpのデューティとの差が所定範囲内である場合(ステップS50で「YES」)は、周期性有りのパルスカウンタOK_Countを「1」だけ増加する(ステップS51)。そして、加算範囲の起点m、終点kを次のパルス幅へ更新して(ステップS52、ステップS53)、周期確定部902から再び周期確定値Tfixを求める処理(ステップS12)を行う。
 すなわち、比較結果が誤差範囲内で、かつ、所定範囲内であれば、周期確定値Tfixを新たに第三仮周期Ttmpとして設定する。そして、第三仮周期Ttmpに基づいて、新たな第四仮周期Tnextおよび第五仮周期Tnearを設定し、さらに、逐次第三仮周期とTtmp比較する。
 一方、周期確定値Tfixの区間の長さと第三仮周期Ttmpの区間の長さとの差が誤差範囲外、または周期確定値Tfixのデューティと第三仮周期Ttmpのデューティとの差が所定範囲外である場合(ステップS50で「NO」)は、第三仮周期Ttmpは周期性なしと判断する。そして、第三仮周期Ttmpの加算範囲の終点nを次のハイレベル区間及びローレベル区間の範囲へ拡大し(ステップS54)、周期性有りのパルスカウント数OK_Countおよび第五仮周期Tnearの値を初期化する(ステップS55)。そして、再び第三仮周期Ttmpを求める処理を行う(ステップS01)。このようにして、一連の処理を繰り返す。ここで、誤差範囲は求める精度によって適宜変更すればよい。本実施の形態ではステップS50において1回でも周期確定値Tfixと第三仮周期Ttmpが誤差範囲内にないと判断すれば、ただちに第三仮周期Ttmpを更新するようにしたが、適宜、周期確定値Tfixが誤差範囲外に存在することを許容する回数を設定してもよい。
 このようにして、第三仮周期Ttmpに類似する周期が周期確定値Tfixであるかどうかを判断し、第三仮周期Ttmpに類似する周期が存在しなければ、第三仮周期Ttmpの区間を拡張して、再度各周期確定値Tfixとの整合性を判断するようにして、もっとも周期に近いと思われる第三仮周期Ttmpを探していく。
 パルス幅の加算範囲kが入力信号情報作成部102における入力信号情報の取得トータル数PULSE_TOTAL以上になった時点で(ステップS12で「NO」)、周期更新部907にて、周期所定値Ttypを第三仮周期Ttmpで更新してよいかの判断を行う(ステップS60)。第三仮周期Ttmpの値と周期確定値Tfixの値との差が誤差範囲内であるかを判定するためにカウントする周期性有りのパルスカウント数OK_Countの値が、予め定めた周期性有りのパルスカウント数の最小値OK_COUNT_MINより大きい場合(ステップS60で「YES」)、入力信号は第三仮周期Ttmpからなる周期性が有るパルスであると判断して周期所定値Ttypを第三仮周期Ttmpで更新する(ステップS61)。
 一方、周期性有りのパルスカウント数OK_Countの値が周期性有りのパルスカウント数の最小値OK_COUNT_MINより小さい場合は(ステップS60で「NO」)、第三仮周期Ttmpは周期性が無いパルスと判断して周期所定値Ttypは更新しない。
 図8の入力信号を、本実施の形態のようにして、仮周期の補正をしつつ、ノイズを除去する処理について、図11を参照しつつ説明する。図11は、本発明の実施の形態2に係るノイズ除去後の入力信号波形および周期所定値の更新の様子を表す図である。
 最初の第三仮周期Ttmp1はT1+T2である。そして、最初の第四仮周期Tnext1はT3+T4である。ステップS14において第三仮周期Ttmp1は第四仮周期Tnext1より小さく、ステップS16において第五仮周期Tnearには初期値の0がセットされているので、最初の周期確定値Tfix1はT3+T4である。第三仮周期Ttmp1も周期確定値Tfix1も、ステップS30におけるノイズ除去によって反転される信号はない。
 そして、第四仮周期Tnext1(T3+T4)は第三仮周期Ttmp1(T1+T2)からの所定の誤差範囲内に無いので、周期確定値Tfix1は第三仮周期Ttmp1と同周期ではないと判断できる。よって、ステップS54においてnの値を2増やす。
 nの値が4になったので、2回目の第三仮周期Ttmp2はT1+T2+T3+T4である。そして2回目の第四仮周期Tnext2はT5+T6である。ステップS14において第三仮周期Ttmp2は第四仮周期Tnext2より大きいので、第五仮周期TnearにはT5+T6がセットされる。そして、ステップS19において、2区間先までを第四仮周期Tnext2に含むようになるので、第四仮周期Tnext2はT5+T6+T7+T8に更新される。第四仮周期Tnext2と第五仮周期Tnearとを比較すると、第三仮周期Ttmp2に大きさが近いのは第四仮周期Tnext2である。したがって、2回目の周期確定値TfixはT5+T6+T7+T8である。
 そして、ステップS30において、第三仮周期TtmpではT2の極性が反転し、周期確定値TfixではT6の極性が反転する。すると、ステップS50で第三仮周期Ttmpと周期確定値Tfixがほぼ同一の周期を持つパルスであることがわかる。したがって、周期性有りのパルスカウント数OK_Countを「1」だけ増加させ、第三仮周期Ttmpは現在のまま次の周期確定値Tfixとの比較を行う。
 3回目の第四仮周期TnextはT9+T10であり、第四仮周期Tnextは第三仮周期Ttmpより小さいので、第五仮周期TnearにT9+T10がセットされる。そして、第四仮周期Tnextは、T9+T10+T11+T12に更新される。第四仮周期Tnextと第五仮周期Tnearとを比較すると、第三仮周期Ttmpに大きさが近いのは第四仮周期Tnextである。したがって、3回目の周期確定値TfixはT9+T10+T11+T12である。
 そして、ステップS30において、第三仮周期TtmpではT2の極性が反転し、周期確定値TfixではT10の極性が反転する。すると、ステップS50で第三仮周期Ttmpと周期確定値Tfixがほぼ同一の周期を持つパルスであることがわかる。したがって、周期性有りのパルスカウント数OK_Countを「1」だけ増加させる。このようにすると、入力信号情報の取得トータル数PULSE_TOTALを、kが越えるまで処理が行われて、周期所定値Ttyp1がステップS61において、第三仮周期Ttmpに置き換えられ周期所定値Ttyp2となる。このようにして、実周期Tが周期所定値Ttypと認識され、周期の誤認出が防止される。
 このようにして、実施の形態1で述べたような、ノイズ除去操作を応用することにより、実施の形態2においては、ノイズ除去操作に必要な実際の周期の確定をより確実に行うことができる。
 上記のように実施の形態2においては、図11のように実測値を基に算出した信頼性のある周期へ周期所定値を更新することができるため、周期所定値のスペックが不明確な場合やスペックより大きくずれてしまっていた場合でも、より高い精度でノイズ除去を行うことができる。
 以上で説明したように、本発明のノイズ除去装置、ノイズ除去方法及びそのノイズ除去装置を用いた車載ディスプレイ装置によれば、ノイズが周波数をもっている場合でもノイズ除去が可能である。また、ハードウェアによるフィルタや複雑な回路を使用せずに、かつ、簡単な回路処理またはソフトウェアによる簡単な演算により、パルス信号のノイズを除去することができる。
 なお、本実施の形態に係るノイズ除去装置900を実施の形態1で説明した車載ディスプレイ装置710に適用する場合、図7に示したデューティ確定部704は、不要である。デューティ確定部704の機能は、図9に示すように本実施の形態に係るノイズ除去装置900に含まれているためである。
 本発明によれば、多数のノイズパルスや周波数を持ったノイズが所望のパルス信号に混入する可能性のある環境下において、例えば伝送ケーブルが束ねられているためにクロストークが発生してノイズがパルス信号に混入する可能性がある場合において、ノイズパルスを除去した所望のパルス信号を得ることができるため、誤検出を防ぐことができる。あるいは、車両のオルタネーターから発生するノイズなどの影響をパルス信号が受ける可能性のある場合においても、ノイズパルスを除去した所望のパルス信号を得ることができるため、誤検出を防ぐことができる。
 100,700  ノイズ除去装置
 101  入力信号検出部
 102  入力信号情報作成部
 103  周期確定部
 103a,901  仮周期確定部
 104  ノイズ算出部
 105  ノイズ除去部
 701  ノイズ除去装置
 702  車両
 703  イルミ検出部
 704  デューティ確定部
 705  映像・画質制御部
 706  調光制御装置
 707  映像制御装置
 708  表示タイミング制御装置
 709  表示デバイス
 710  車載ディスプレイ装置
 900  ノイズ除去装置
 902  周期確定部
 903  ノイズ算出部
 904  ノイズ除去部
 905  デューティ確定部
 906  周期性検出部

Claims (7)

  1. 入力信号に含まれるパルス信号を検出する入力信号検出部と、
    前記パルス信号におけるパルスごとに、前記パルスの区間の長さとハイレベルまたはローレベルの極性とを記録する入力信号情報作成部と、
    前記パルス信号における同数のハイレベルとローレベルの組合せからなる任意の区間の長さを有する加算されたパルスの区間を仮周期として算出する仮周期確定部と、
    前記仮周期を入力信号の周期の長さの候補値である周期所定値と比較して、比較結果に基づいて周期確定値を確定する周期確定部と、
    前記周期確定値に含まれるノイズ数を算出するノイズ算出部と、
    前記周期確定値の中に含まれるパルスの区間の極性を、パルス幅の小さい区間から順に、前記ノイズ数に相当する区間の極性を反転させ、前記入力信号に含まれる前記パルス信号を一対のハイレベルとローレベルの組合せからなるパルス信号に補正するノイズ除去部と、
    を有するノイズ除去装置。
  2. 前記仮周期は、
    前記周期所定値より小さい区間の長さを持つ第一仮周期と、
    前記第一仮周期にさらに引き続く一対のハイレベルとローレベルからなる区間の長さを加えて算出された、前記周期所定値より大きい区間の長さを持つ第二仮周期と、を有し、
    前記周期確定部は、前記第一仮周期と前記第二仮周期とを比較して前期周期所定値に近いいずれか一方の前記第一仮周期または前記第二仮周期を前記周期確定値として確定する、
    請求項1に記載のノイズ除去装置。
  3. デューティ確定部と、周期性検出部と、周期更新部とをさらに備え、
    前記仮周期は、一対のハイレベルとローレベルからなる区間の長さを加えて算出された任意の区間の長さを有する第三仮周期と、
    前記第三仮周期にさらに引き続く一対のハイレベルとローレベルからなる区間の長さを加えて算出された、前記第三仮周期より大きい区間の長さを有する第四仮周期と、
    前記第三仮周期にさらに引き続く一対のハイレベルとローレベルからなる区間の長さを加えて算出された前記第三仮周期より小さい区間の長さを有する第五仮周期と、を有し、
    前記周期確定部は、前記第四仮周期と前記第五仮周期とを比較して、前記第三仮周期に近いいずれか一方の前記第四仮周期または前記第五仮周期を前記周期確定値として確定し、
    前記ノイズ算出部は、さらに、前記第三仮周期に含まれるノイズ数を算出し、
    ノイズ除去部は、さらに、前記第三仮周期の中に含まれるパルスの区間の極性を、パルス幅の小さい区間から順に、ノイズ数に相当する区間の極性を反転させ、
    前記デューティ確定部は、前記ノイズ除去部により補正された前記周期確定値と前記ノイズ除去部により補正された前記第三仮周期とにおける前記パルス信号のデューティを算出し、
    前記周期性検出部は、前記ノイズ除去部により補正された前記周期確定値の区間の長さと前記ノイズ除去部により補正された前記第三仮周期の区間の長さとの差が誤差範囲であるか、及び前記ノイズ除去部により補正された前記周期確定値と前記ノイズ除去部により補正された前記第三仮周期とにおける前記パルス信号のデューティが所定範囲内にあるか否かを比較し、
      比較結果が前記誤差範囲内で、かつ、前記所定範囲内であれば、
        前記周期確定値を新たに第三仮周期として設定し、前記第三仮周期に基づいて、新たな第四仮周期および第五仮周期を設定し、
        さらに、逐次前記第三仮周期と前記第四仮周期および前記第五仮周期とを比較し、
      比較結果が前記誤差範囲外、または前記所定範囲外のいずれかであれば、
        前記第三仮周期に一対のハイレベルとローレベルからなる区間の長さを加えて新たな第三仮周期を設定し、
    前記周期更新部は、前記補正された前記周期確定値の中の信号と、前記補正された前記第三仮周期の中の信号とを比較し、比較の結果に基づいて前記周期所定値を前記第三仮周期で更新する、
    請求項1に記載のノイズ除去装置。
  4. 入力信号検出部において、入力信号に含まれるパルス信号を検出し、
    入力信号情報作成部において、前記パルス信号におけるパルスごとに、前記パルスの区間の長さとハイレベルまたはローレベルの極性とを記録し、
    仮周期確定部において、前記パルス信号における同数のハイレベルとローレベルの組合せからなる任意の区間の長さを有する加算されたパルスの区間を仮周期として算出し、
    周期確定部において、前記仮周期を入力信号の周期の長さの候補値である周期所定値と比較して、比較結果に基づいて周期確定値を確定し、
    ノイズ算出部において、前記周期確定値に含まれるノイズ数を算出し、
    ノイズ除去部において、前記周期確定値の中に含まれるパルスの区間の極性を、パルス幅の小さい区間から順に、前記ノイズ数に相当する区間の極性を反転させ、前記入力信号に含まれる前記パルス信号を一対のハイレベルとローレベルの組合せからなるパルス信号に補正する、
    ノイズ除去方法。
  5. 前記仮周期として、
    前記周期所定値より小さい区間の長さを持つ第一仮周期と、
    前記第一仮周期にさらに引き続く一対のハイレベルとローレベルからなる区間の長さを加えて算出された、前記周期所定値より大きい区間の長さを持つ第二仮周期とを求め、
    前記周期確定部において、前記第一仮周期と前記第二仮周期とを比較して、前期周期所定値に近いいずれか一方の前記第一仮周期または前記第二仮周期を、前記周期確定値として確定する、
    請求項4に記載のノイズ除去方法。
  6. 前記仮周期として、
    一対のハイレベルとローレベルからなる区間の長さを加えて算出された任意の区間の長さを有する第三仮周期と、
    前記第三仮周期にさらに引き続く一対のハイレベルとローレベルからなる区間の長さを加えて算出された、前記第三仮周期より大きい区間の長さを有する第四仮周期と、
    前記第三仮周期にさらに引き続く一対のハイレベルとローレベルからなる区間の長さを加えて算出された前記第三仮周期より小さい区間の長さを有する第五仮周期と、を求め、
    前記周期確定部において、前記第四仮周期と前記第五仮周期とを比較して、前記第三仮周期に近いいずれか一方の前記第四仮周期または前記第五仮周期仮周期を前記周期確定値として確定し、
    ノイズ算出部において、さらに、前記第三仮周期に含まれるノイズ数を算出し、
    前記ノイズ算出部において、さらに、前記第三仮周期に含まれるノイズ数を算出し、
    ノイズ除去部において、さらに、前記第三仮周期の中に含まれるパルスの区間の極性を、パルス幅の小さい区間から順に、ノイズ数に相当する区間の極性を反転させ、
    前記デューティ確定部において、前記ノイズ除去部により補正された前記周期確定値と前記ノイズ除去部により補正された前記第三仮周期とにおける前記パルス信号のデューティを算出し、
    前記周期性検出部において、前記ノイズ除去部により補正された前記周期確定値の区間の長さと前記ノイズ除去部により補正された前記第三仮周期の区間の長さとの差が誤差範囲であるか、及び前記ノイズ除去部により補正された前記周期確定値と前記ノイズ除去部により補正された前記第三仮周期とにおける前記パルス信号のデューティが所定範囲内にあるか否かを比較し、
      比較結果が前記誤差範囲内で、かつ、前記所定範囲内であれば、
        前記周期確定値を新たに第三仮周期として設定し、前記第三仮周期に基づいて、新たな第四仮周期および第五仮周期を設定し、
        さらに、逐次前記第三仮周期と前記第四仮周期および前記第五仮周期とを比較し、
      比較結果が前記誤差範囲外、または前記所定範囲外のいずれかであれば、
        前記第三仮周期に一対のハイレベルとローレベルからなる区間の長さを加えて新たな第三仮周期を設定し、
    前記周期更新部において、前記補正された前記周期確定値の中の信号と、前記補正された前記第三仮周期の中の信号とを比較し、比較の結果に基づいて前記周期所定値を前記第三仮周期で更新する、
    請求項4に記載のノイズ除去方法。
  7. イルミネーション信号を検出するイルミ検出部と、
    イルミネーション制御信号に対して、混入したノイズを除去するノイズ除去装置と、
    ノイズの除去された前記イルミネーション制御信号のデューティを検出するデューティ確定部と、
    前記イルミ検出部が出力する前記イルミネーション信号の状態信号と前記ノイズ除去装置が出力する混入した前記ノイズを除去した前記イルミネーション制御信号を入力する映像・画質制御部と、
    前記映像・画質制御部が出力する信号に基づいて映像を表示する表示デバイスと、を備え、
    前記ノイズ除去装置は、
    入力信号に含まれるパルス信号を検出する入力信号検出部と、
    前記パルス信号におけるパルスごとに、前記パルスの区間の長さとハイレベルまたはローレベルの極性とを記録する入力信号情報作成部と、
    前記パルス信号における同数のハイレベルとローレベルの組合せからなる任意の区間の長さを有する加算されたパルスの区間を仮周期として算出する仮周期確定部と、
    前記仮周期を入力信号の周期の長さの候補値である周期所定値と比較して、比較結果に基づいて周期確定値を確定する周期確定部と、
    前記周期確定値に含まれるノイズ数を算出するノイズ算出部と、
    前記周期確定値の中に含まれるパルスの区間の極性を、パルス幅の小さい区間から順に、前記ノイズ数に相当する区間の極性を反転させ、前記入力信号に含まれる前記パルス信号を一対のハイレベルとローレベルの組合せからなるパルス信号に補正するノイズ除去部と、
    を有する車載ディスプレイ装置。
PCT/JP2011/004033 2010-07-16 2011-07-14 ノイズ除去装置、ノイズ除去方法及びそのノイズ除去装置を用いた車載ディスプレイ装置 WO2012008164A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-161354 2010-07-16
JP2010161354 2010-07-16

Publications (1)

Publication Number Publication Date
WO2012008164A1 true WO2012008164A1 (ja) 2012-01-19

Family

ID=45469178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004033 WO2012008164A1 (ja) 2010-07-16 2011-07-14 ノイズ除去装置、ノイズ除去方法及びそのノイズ除去装置を用いた車載ディスプレイ装置

Country Status (1)

Country Link
WO (1) WO2012008164A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113270996A (zh) * 2021-04-07 2021-08-17 中国第一汽车股份有限公司 一种抑制窄脉冲的pwm调制方法
US20220121193A1 (en) * 2019-07-11 2022-04-21 Mitsubishi Electric Corporation Test pulse width calculation device, control device, test pulse width calculation method, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355628U (ja) * 1986-09-25 1988-04-14
JPH0437307A (ja) * 1990-06-01 1992-02-07 Matsushita Electric Ind Co Ltd ノイズ除去装置
JPH10294652A (ja) * 1997-04-18 1998-11-04 Matsushita Electric Ind Co Ltd 半導体集積回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355628U (ja) * 1986-09-25 1988-04-14
JPH0437307A (ja) * 1990-06-01 1992-02-07 Matsushita Electric Ind Co Ltd ノイズ除去装置
JPH10294652A (ja) * 1997-04-18 1998-11-04 Matsushita Electric Ind Co Ltd 半導体集積回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220121193A1 (en) * 2019-07-11 2022-04-21 Mitsubishi Electric Corporation Test pulse width calculation device, control device, test pulse width calculation method, and program
CN113270996A (zh) * 2021-04-07 2021-08-17 中国第一汽车股份有限公司 一种抑制窄脉冲的pwm调制方法

Similar Documents

Publication Publication Date Title
US20210383770A1 (en) Display driving device and anti-interference method thereof
US9197229B2 (en) Panel driving circuit and ring oscillator clock automatic synchronization method thereof
WO2012008164A1 (ja) ノイズ除去装置、ノイズ除去方法及びそのノイズ除去装置を用いた車載ディスプレイ装置
EP2040085B1 (en) Horizontal synchronization detection device
WO2003060623A2 (en) Fine tuning a sampling clock of analog signals having digital information for optimal digital display
US20100007795A1 (en) System and Method for Clock Offset Detection
JP2001119610A (ja) 輪郭検出回路及び画像表示装置
US8077808B2 (en) Radio wave receiver and wave clock
WO2018047322A1 (ja) 表示制御装置及び表示制御方法
US20070285155A1 (en) Discrimination Circuit, Gain Adjustment Circuit, Signal Processing Circuit, and Electric Device
JP3442322B2 (ja) ディスプレイ装置及びその駆動方法
JP2771059B2 (ja) 多機能遠隔制御送信器のパルス雑音検出及び訂正方法
JP2006234873A (ja) プロジェクタ及びその表示モード判別方法
US20070229486A1 (en) Apparatus and method for detecting sync signal
JP6610162B2 (ja) 状態判定装置及び状態判定方法
JP2002330354A (ja) 欠損画素検出補正装置、欠損画素検出補正方法、欠損画素検出補正プログラム、および、映像信号処理装置
JP4903074B2 (ja) 同期信号生成回路
JP6846160B2 (ja) 信号解析装置
US20020149813A1 (en) Line quality monitoring apparatus and method
KR100197591B1 (ko) 영상신호의 화면비 검출방법
JPH08331477A (ja) Edtv2識別制御信号検出回路
CN116907638A (zh) 可识别光闪烁频率并进行同步的光传感器
US8633840B2 (en) Sequence transition point determining method and apparatus thereof
JPH1091132A (ja) 画像表示装置
JPH06253325A (ja) 色信号輪郭補正装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP