WO2012007499A1 - Abgasdiffusor für eine gasturbine und verfahren zum betreiben einer gasturbine mit einem solchen abgasdiffusor - Google Patents

Abgasdiffusor für eine gasturbine und verfahren zum betreiben einer gasturbine mit einem solchen abgasdiffusor Download PDF

Info

Publication number
WO2012007499A1
WO2012007499A1 PCT/EP2011/061944 EP2011061944W WO2012007499A1 WO 2012007499 A1 WO2012007499 A1 WO 2012007499A1 EP 2011061944 W EP2011061944 W EP 2011061944W WO 2012007499 A1 WO2012007499 A1 WO 2012007499A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuser
guide element
wall
exhaust gas
flow
Prior art date
Application number
PCT/EP2011/061944
Other languages
English (en)
French (fr)
Inventor
Marc Bröker
Tobias Buchal
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US13/810,310 priority Critical patent/US9297390B2/en
Priority to EP11735628.7A priority patent/EP2593643B1/de
Priority to RU2013106505/06A priority patent/RU2575212C2/ru
Priority to JP2013519086A priority patent/JP5551311B2/ja
Priority to CN201180034923.3A priority patent/CN103003528B/zh
Publication of WO2012007499A1 publication Critical patent/WO2012007499A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/32Arrangement of components according to their shape
    • F05D2250/324Arrangement of components according to their shape divergent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/711Shape curved convex

Definitions

  • Exhaust gas diffuser for a gas turbine and method for operating a gas turbine with such an exhaust gas diffuser
  • the invention relates to an exhaust gas diffuser for a gas turbine, having an annular outer wall for guiding the diffuser flow, in which an annular guide element arranged concentrically to the outer wall is provided for influencing the diffuser flow. Furthermore, the invention relates to a method for operating a gas turbine with an exhaust gas diffuser of the aforementioned type.
  • Gas turbines and the exhaust gas diffusers used for these are known from the prior art for the longest time.
  • Example ⁇ as is known from DE 198 05 115 AI, an exhaust gas diffuser with a comparatively large opening angle of 10 ° and more. This rather large opening angle is achieved by providing in the center of the diffuser channel an axially extending guide body for extending an otherwise short gas turbine hub.
  • the exhaust gas diffuser is designed as a ring diffuser. As a result, larger areas of sudströmungs- zones are avoided behind the gas turbine hub, which has an advantageous effect on the efficiency of the exhaust diffuser.
  • the guide body is comparatively long and therefore has to be supported by additional struts due to its length. Furthermore, the aerodynamic effects of the bearing struts are disregarded.
  • EP 1 970 539 A1 discloses an exhaust gas diffuser which has an annular guide element concentric with the outer wall in the interior.
  • the guide element is designed in such a way from ⁇ that a nozzle ⁇ channel is formed between the outer wall and guiding element by means of which the near-wall flow can be accelerated. This makes it possible, downstream of the guide element to avoid near wall flow separation.
  • influencing the flow in the center of the exhaust gas diffuser, where backflow can occur is not possible with the aid of the guide element.
  • US Pat. No. 5,209,634 A1 discloses a steam turbine dual-diagonal diffuser with an adjustable hub geometry for setting the diffuser cross-section through which it is possible to pass.
  • the invention has for its object to provide a space-saving exhaust diffuser for a gas turbine, which avoids Strö ⁇ mungsabitesen and/gremonyzonen for achieving any operating condition of the gas turbine and achieve safe operation of the gas turbine downstream boilers and afterburners for each operating state of Gas turbine guaranteed.
  • Another object of the invention is to provide a method for operating a gas turbine with an exhaust gas diffuser. The object directed to an exhaust gas diffuser is achieved with an exhaust gas diffuser according to the features of claim 1.
  • the exhaust diffuser according to the invention for a gas turbine includes an annular outer wall for guiding the diffuser flow on, in a concentrically arranged on the outer wall of annular guide element is provided for influencing the diffuser flow, wherein a radially inwardly directed FLAE ⁇ surface of the guide member, a circumferential, convex in longitudinal section contour for forming a displacement element and the guide element is axially displaceable between two positions, such that the guide element in a first position allows flow between the guide element and outer wall and in a second position prevents flow between the guide element and outer wall.
  • the inventive method for operating a gas turbine with an exhaust gas diffuser provides that at increase of the gas turbine flowing through the mass flow, the guide element towards the second position or into the second position and / or reduction of the mass flow the Leitele ⁇ ment in the direction of the first position or moved to the first position.
  • the invention is based on the finding that at low mass flows, as they occur on hot days and partial load operation in the gas turbine, the main portion of the mass flow in the exhaust gas diffuser of the gas turbine to the outside, ie towards the outer wall, relocated, so that it to a very pronounced and long backflow zone behind the hub comes.
  • For large mass flows, such as occur on cold days or at full load the majority of the mass flow shifts towards the inside, ie to the hub or to the center. This reduces the proportion of the flow, which is close to the outer wall, resulting in flow separation at the Outside wall can lead.
  • the invention combines two measures in an unforeseeable way.
  • the guide element is axially displaceable out ⁇ staltet, whereby the distance between guide element and outer wall ⁇ is adjustable. As the distance increases, a greater portion of the flow can be diverted toward the outer wall, reducing the likelihood of near-wall flow separation.
  • the guide element on its inwardly directed surface on a circumferential, convex contour in longitudinal section to form a displacement element. This gives the inner contour of the annular guide element in the form of a Laval nozzle.
  • the invention is thus based on the unexpected finding that, despite the use of an inwardly directed constriction, strengthening of the near-wall current is possible. Accordingly, with the solution according to the invention the efficiency of the exhaust gas diffuser can be improved independently of the size of the mass flow, since aerodynamic losses, which are due to relatively large backflow zones or based on near-wall flow separation, are largely avoided.
  • the Ver ⁇ drfitungselement arranged in that axial portion of the exhaust gas diffuser in which a sors arranged in the center of the hub body Abgasdiffu- ends axially. Due to the end of the hub body arranged in the center, return flow zones, which can be shortened by means of the constriction arranged on the guide element, are created in its flow shadows.
  • the constriction is located axially immediately downstream of the end of the hub body. Too much axial distance between the end of the hub body and the axial position of the constriction must be avoided in order for the constriction to have the aerodynamically desired effects of displacing a flow rate to the center, i. towards the center of the exhaust diffuser - also achieved.
  • a radially outwardly directed surface of the guide element at a portion of the outer wall surface anleg ⁇ bar Due to the surface contact of the guide element on the outer wall ⁇ a minimal near-wall flow gap is effectively ver ⁇ avoided because the guiding element in particular close to the outer wall is applied. In size too small, and thus ineffective wall currents are thus effectively avoided.
  • the guide element is supported by distributed along the circumference of the outer wall ribs.
  • This arrangement allows a simple construction for supporting the guide element.
  • the ribs are rigidly secured to the outer wall, wherein at the inner end of each rib a drive for axial displacement of the guide element is ⁇ seen before.
  • double-sided beauf ⁇ beatable hydraulic piston are provided, by means of which the guide element relative to the ribs and thus also with respect to the outer wall can be moved axially.
  • This first variant has the advantage that both ribs and guide element can be designed to be rigid in their dimensions. Ie neither the diameter of the guide member nor the length of the ribs must be variable to the displaceability of the guide element to ge ⁇ schrrucn.
  • the ribs are each articulated on the outer wall and on the guide element, wherein the axis of rotation of the joints extend in the tangential direction of the exhaust gas diffuser.
  • This embodiment has the advantage that the drive for axial displacement of the guide element is displaced from the flow channel of the exhaust gas diffuser in a slightly colder Be ⁇ rich the gas turbine, which reduces the requirements for the drive in terms of temperature resistance.
  • the ribs since the use of a diameter-constant guide element is preferred, in this case, the ribs must be variable in their radial extent. Conveniently, the ribs are then telescopically movable to adjust their length during the displacement of the guide.
  • Preferred dimensions of a stationary gas turbine is equipped with a gas diffuser aforementioned embodiments.
  • the invention is based on an embodiment in the
  • FIG. 3 shows the exhaust gas diffuser according to FIG. 2, with a guide element spaced apart from the outer wall
  • FIG. 1 shows a gas turbine 1 in a longitudinal partial section. It has inside a rotatably mounted about a machine axis 2 rotor 3, which is also referred to as a turbine runner. Along the rotor 3 follow each other a suction housing 4, a compressor 5, a toroidal annular combustion chamber 6 with a plurality of rotationally symmetrical mutually arranged burners 7, a turbine unit 8 and an exhaust housing 9.
  • the ring ⁇ combustion chamber 6 surrounds a combustion chamber 17, which is provided with an annular hot gas duct 16th connected is.
  • There, four blade stages 10 connected in series form the turbine unit 8. Each blade stage 10 is formed from two blade rings .
  • the hot gas 11, in the hot gas channel 16 follows each ⁇ wells a row of guide vanes 13 a row formed from rotor blades 15 14.
  • the vanes 12 are mounted on the stator, whereas the rotor blades 15 of a row 14 in each case by means of a disc 19 are attached to the rotor 3.
  • On the rotor 3 is a generator or a working machine
  • the exhaust gas housing 9 is the inlet-side part of an exhaust gas diffuser 20 of the gas turbine 1.
  • the hot gas channel 16 merges into the flow channel 22 of the exhaust gas diffuser 20.
  • the arranged in the exhaust housing 9 ribs 24 support the turbine-side end of the rotor 3, which is encapsulated by a hub body 26.
  • the hub body 26 ends axially in the flow channel 22 and is arranged in the center of the exhaust gas diffuser 20.
  • the outer boundary of the exhaust diffuser 20 is formed by an outer wall 28, which is circular and is located centrally ⁇ concentric to the machine axis 2.
  • the outer wall 28 extends divergently in the flow direction of the diffuser flow 30, which is referred to as hot gas 11 before expansion in the turbine unit 8.
  • FIG. 2 shows a longitudinal section through the inflow-side section of the exhaust gas diffuser 20.
  • an axially displaceable guide element 32 is arranged in the axial section, in which the hub body 26 ends axially.
  • the outwardly directed ge ⁇ face of the guide 32 in this case has the same conicity as the outer wall 28 so that the guide element 32 rests flat on the outer wall 28th
  • the inwardly facing surface 34 of the guide element 32 has a circumferential, concave in longitudinal section contour to form a displacement element.
  • the contour is designed such that the flow cross-section encompassed by the annular guide element 32 is designed in the manner of a Laval nozzle.
  • a einström spiriter flow cross-section of the guide element 32 is greater than a minimum flow cross-section of the guide element 32, wherein the exit-side Strö ⁇ flow cross-section is larger than the inflow-side flow area.
  • the minimum flow cross section is located axially between the inflow-side flow cross-section and the outflow-side cross section.
  • the respective Strö ⁇ flow cross-section is always perpendicular to the machine axis. 2
  • FIG. 3 the identical section of the exhaust gas diffuser 20 is shown in FIG. 2, only the guide element 32 is displaced in the axial direction relative to the position shown in FIG.
  • the guide element 32 is shown in FIG 3 now downstream of the position shown in FIG.
  • the position of the guide element 32 shown in FIG. 3 is referred to as the first position of the guide element 32 and the position of the guide element 32 shown in FIG. 2 as the second position.
  • annular flow passage 36 through which a part of the diffuser flow 30 can flow, arises between the inner surface of the outer wall 28 and the outwardly facing surface of the guide element 32.
  • the equipped with an exhaust diffuser 20 of the type shown gas turbine 1 the following states occurring defects ⁇ th can: operation at varying ambient conditions, and at partial load, the gas turbine 1 of rather smaller Massenströ ⁇ men of hot gas 11 and the exhaust gas 30 flows through. Due to the smaller mass flow, a major portion of the Ab ⁇ gas flow displaced to the outside, so far it came to a very pronounced and long backflow zone behind the hub body 26. According to the invention it is now provided that the guide element 32 is moved to the second position. As a result, the constriction is comparatively close to the hub body 26.
  • FIG 4 shows a detail of the drive of the axially displaceable guide element 32.
  • the guide element 32 is connected via a plurality of circumferentially of the exhaust diffuser 20 distributed ribs 40 supported ⁇ ten.
  • Each of the ribs 40 is rigidly Untitled befes- on the outer wall 28, but in FIG 4 is not shown.
  • the ribs 40 protrude radially into the flow channel 22.
  • hydraulic cylinders 45 are provided at an inner end 42 of the ribs 40, the pistons 46 of which are displaceable in the axial direction being fastened to the guide element 32.
  • the piston 46 can be moved in the axial direction, which leads to the displacement of the guide element 32 in the same direction. If necessary, due to the comparatively high Exhaust gas temperatures to be expedient cooling of the adjusting device and the supply lines for hydraulic oil.
  • an exhaust diffuser 20 is provided for a gas turbine 1 which has an annular outer wall 28 authorized to bring ⁇ tion of the diffuser flow 30 in which a concentrically arranged to the outer wall 28 of annular guide element 32 is provided for influencing the diffuser flow 30th
  • the guide element 32 has a radially inwardly directed surface 34, which has a circumferential, convex contour in longitudinal section to form a displacement element and that the guide element 32 is axially displaceable between two positions, such that the guide element 32 in a first position, a flow between the guide element 32 and outer wall 28 made ⁇ light and in a second position, a flow between the guide element 32 and outer wall 28 largely prevented.
  • a method of operating a gas turbine 1 is indicated, and to reduce the aerodynamic losses and increase of the pressure recovery at magnification of the Mas ⁇ senstroms the guide element 32 in the direction of the second position or into the second position and / or reduction of the mass flow the Guide element 32 is moved in the direction of the first position or to the first position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Supercharger (AREA)

Abstract

Die Erfindung betrifft einen Abgasdiffusor (20) für eine Gasturbine (1), die eine ringförmige Außenwand (28) zur Führung der Diffusorströmung (30) aufweist, in der ein zur Außenwand (28) konzentrisch angeordnetes ringförmiges Leitelement (32) zur Beeinflussung der Diffusorströmung (30) vorgesehen ist. Um die aerodynamische Wirkung des Abgasdiffusors (20) zu verbessern und diesen gleichzeitig für mehrere Betriebszustände der Gasturbine optimal einzustellen, wird vorgeschlagen, dass das Leitelement (32) eine radial nach innen gerichtete Fläche (34) aufweist, die eine umlaufende, im Längsschnitt konvexe Kontur zur Bildung eines Verdrängungselements aufweist und dass das Leitelement (32) axial zwischen zwei Positionen verschiebbar ist, derart, dass das Leitelement (32) in einer ersten Position eine Strömung zwischen Leitelement (32) und Außenwand (28) ermöglicht und in einer zweiten Position eine Strömung zwischen Leitelement (32) und Außenwand (28) weitgehend verhindert. Weiter wird ein Verfahren zum Betreiben einer Gasturbine (1) angegeben, bei dem zur Verringerung der aerodynamischen Verluste und Erhöhung des Druckrückgewinns bei Vergrößerung des Massenstroms das Leitelement (32) in Richtung der zweiten Position oder bis in die zweite Position und/oder bei Verkleinerung des Massenstroms das Leitelement (32) in Richtung der ersten Position oder bis in die erste Position verschoben wird.

Description

Beschreibung
Abgasdiffusor für eine Gasturbine und Verfahren zum Betreiben einer Gasturbine mit einem solchen Abgasdiffusor
Die Erfindung betrifft einen Abgasdiffusor für eine Gasturbine, mit einer ringförmigen Außenwand zur Führung der Diffu- sorströmung, in der ein zur Außenwand konzentrisch angeordne- tes ringförmiges Leitelement zur Beeinflussung der Diffusor- strömung vorgesehen ist. Ferner betrifft die Erfindung ein Verfahren zum Betreiben einer Gasturbine mit einem Abgasdif- fusor der vorgenannten Art. Gasturbinen und die für diese verwendeten Abgasdiffusoren sind aus dem Stand der Technik längstens bekannt. Beispiels¬ weise ist aus der DE 198 05 115 AI ein Abgasdiffusor mit einem vergleichsweise großen Öffnungswinkel von 10° und mehr bekannt. Dieser eher große Öffnungswinkel wird erreicht, in- dem im Zentrum des Diffusorkanais ein sich in Axialrichtung erstreckender Leitkörper zur Verlängerung einer ansonsten kurzen Gasturbinennabe vorgesehen ist. Durch die Verwendung des Leitkörpers wird der Abgasdiffusor als Ringdiffusor ausgebildet. Dadurch werden größere Gebiete von Rückströmungs- zonen hinter der Gasturbinennabe vermieden, was sich vorteilhaft auf den Wirkungsgrad des Abgasdiffusors auswirkt.
Nachteilig ist jedoch, dass der Leitkörper vergleichsweise lang ist und aufgrund seiner Länge deswegen durch zusätzliche Streben abgestützt werden muss. Weiter sind die aerodynami- sehen Einflüsse der Lagerstreben unberücksichtigt.
Die bekannten kurzen Gasturbinennaben enden zumeist unmittelbar hinter dem turbinenseitigen Lager des Gasturbinenrotors. Sie weisen jedoch besonders große Rückströmzonen auf. Aller- dings sind die kurzen Gasturbinennaben auch besonders preiswert . Ferner ist aus der EP 1 970 539 AI ein Abgasdiffusor bekannt, der im Inneren ein zur Außenwand konzentrisches ringförmiges Leitelement aufweist. Das Leitelement ist dabei derartig aus¬ gestaltet, dass zwischen Außenwand und Leitelement ein Düsen¬ kanal ausgebildet ist, mit Hilfe dessen die wandnahe Strömung beschleunigt werden kann. Dadurch ist es möglich, stromab des Leitelements wandnahe Strömungsablösungen zu vermeiden. Eine Beeinflussung der Strömung im Zentrum des Abgasdiffusors, wo Rückströmungen auftreten können, ist mit Hilfe des Leitelements jedoch nicht möglich.
Darüber hinaus offenbart die US 5,209,634 AI einen Dampftur- binendiagonaldiffusor mit einer verstellbaren Nabengeometrie zur Einstellung des durchströmbaren Diffusorquerschnitts .
Weiter besteht das Bestreben, die hinter der Gasturbinennabe angeordnete Rückströmzone nach Möglichkeit zu vermeiden bzw. deren Größe zu minimieren, damit selbst im Teillastbetrieb der Gasturbine eine große Effizienz des Abgasdiffusors er¬ reicht und eine große Betriebssicherheit gewährleistet werden kann. Bei zu weit stromab reichenden Rückströmzonen besteht die Gefahr, dass diese einen dem Abgasdiffusor nachgeordneten Kessel erreichen können, was dessen Arbeitsweise signifikant verschlechtert. Auch im Falle von dort installierten Nachbrennern würde dies zu einem Flammenrückschlag führen, wo¬ durch der kombinierte Betrieb von Gasturbinen und Nachbrennern stark eingeschränkt ist.
Der Erfindung liegt die Aufgabe zugrunde, einen raumsparenden Abgasdiffusor für eine Gasturbine anzugeben, der unter Erzielung eines möglichst hohen Wirkungsgrads der Gasturbine Strö¬ mungsablösungen und Rückströmzonen für jeden Betriebszustand der Gasturbine vermeidet und einen sicheren Betrieb von der Gasturbine nachgeordneten Kesseln und Nachbrennern für jeden Betriebszustand der Gasturbine gewährleistet. Weitere Aufgabe der Erfindung ist es, dazu ein Verfahren zum Betrieb einer Gasturbine mit einem Abgasdiffusor anzugeben. Die auf einen Abgasdiffusor gerichtete Aufgabe wird mit einem Abgasdiffusor gemäß den Merkmalen des Anspruchs 1 gelöst.
Die auf das Verfahren gerichtete Aufgabe wird mit einem Ver¬ fahren gemäß den Merkmalen des Anspruchs 8 gelöst.
Der erfindungsgemäße Abgasdiffusor für eine Gasturbine weist eine ringförmige Außenwand zur Führung der Diffusorströmung auf, in der ein zur Außenwand konzentrisch angeordnetes ringförmiges Leitelement zur Beeinflussung der Diffusorströmung vorgesehen ist, wobei eine radial nach innen gerichtete Flä¬ che des Leitelements eine umlaufende, im Längsschnitt konvexe Kontur zur Bildung eines Verdrängungselements aufweist und das Leitelement axial zwischen zwei Positionen verschiebbar ist, derart, dass das Leitelement in einer ersten Position eine Strömung zwischen Leitelement und Außenwand ermöglicht und in einer zweiten Position eine Strömung zwischen Leitelement und Außenwand verhindert.
Das erfindungsgemäße Verfahren zum Betreiben einer Gasturbine mit einem Abgasdiffusor sieht vor, dass bei Vergrößerung des die Gasturbine durchströmenden Massenstroms das Leitelement in Richtung der zweiten Position oder bis in die zweite Position und/oder bei Verkleinerung des Massenstroms das Leitele¬ ment in Richtung der ersten Position oder bis in die erste Position verschoben wird.
Der Erfindung liegt die Erkenntnis zugrunde, dass bei kleinen Massenströmen, wie sie an heißen Tagen und bei Teillastbetrieb in der Gasturbine vorkommen, sich der Hauptanteil des Massenstroms im Abgasdiffusor der Gasturbine nach außen hin, also zur Außenwand hin, verlagert, so dass es zu einer sehr ausgeprägten und langen Rückstromzone hinter der Nabe kommt. Bei großen Massenströmen, wie sie z.B. an kalten Tagen oder bei Volllastbetrieb vorkommen, verlagert sich der Hauptanteil des Massenstroms eher nach innen, also zur Nabe bzw. zum Zentrum hin. Dadurch reduziert sich der Anteil der Strömung, welcher außenwandnah ist, was zur Strömungsablösung an der Außenwand führen kann. Somit ist es insgesamt wünschenswert, die Massenstromverteilung innerhalb des Abgasdiffusors zu vergleichmäßigen .
Zur Vergleichmäßigung muss jedoch je nach Betriebszustand der Gasturbine entweder der Massenstrom mehr zur Außenwand hin verlagert werden oder zum Zentrum des Abgasdiffusors . Um dies zu erreichen, kombiniert die Erfindung zwei Maßnahmen in nicht voraussehbarer Weise. Zur Verschiebung des Massenstroms nach außen wird das Leitelement axial verschieblich ausge¬ staltet, wodurch der Abstand zwischen Leitelement und Außen¬ wand einstellbar wird. Mit zunehmendem Abstand kann ein größerer Anteil der Strömung zur Außenwand hin umgelenkt werden, was die Wahrscheinlichkeit einer wandnahen Strömungsablösung verringert. Zudem weist das Leitelement an seiner nach innen gerichteten Fläche eine umlaufende, im Längsschnitt konvexe Kontur zur Bildung eines Verdrängungselements auf. Dadurch erhält die innere Kontur des ringförmigen Leitelements die Form einer Laval-Düse. Dies führt dazu, dass die vom Leitele¬ ment eingefangene Diffusorströmung mehr zur Nabe bzw. zum Diffusorzentrum hin umgelenkt wird. Dies gilt umso mehr, je größer der relative Flächenanteil der Kreisöffnung des Leit¬ elements ist in Bezug auf die positionsabhängige durchström¬ bare Querschnittsfläche des Abgasdiffusors an sich. Bei dem in der zweiten Position angeordneten Leitelement - das Leitelement liegt an der Außenwand an - entspricht die Quer¬ schnittsfläche des Abgasdiffusors der Querschnittsfläche des Leitelements. Das Verhältnis ist somit gleich 1. Durch axia¬ les Verschieben des Leitelements in stromabwärtiger Richtung der Abgasströmung nimmt der durchströmbare Querschnitt des Abgasdiffusors - an derjenigen axialen Position, an der auch die Einström-Querschnittsfläche des Leitelements angesiedelt ist - zu, wohingegen die Einström-Querschnittsfläche des Leitelements gleich bleibt. Dadurch verkleinert sich der relative Anteil der Querschnittsfläche - das Verhältnis sinkt unter 1 -, so dass die Wirkung der Einschnürung mit zunehmendem Abstand zwischen Leitelement und Außenwand abnimmt, was auch gewünscht ist, da in diesem Fall der Anteil der Strömung eher zur Außenwand hin verlagert werden soll, als zum Zentrum des Abgasdiffusors .
Der Erfindung liegt somit die unerwartete Erkenntnis zugrunde, dass trotz der Verwendung einer nach innen gerichteten Einschnürung eine Stärkung der wandnahen Strömung möglich ist. Demnach kann mit der erfindungsgemäßen Lösung der Wirkungsgrad des Abgasdiffusors unabhängig von der Größe des Massenstroms verbessert werden, da aerodynamische Verluste, die auf relativ großen Rückstromzonen zurückzuführen sind oder auf wandnahen Strömungsablösungen basieren, weitgehend vermieden werden.
Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben .
Gemäß einer ersten vorteilhaften Ausgestaltung ist, wenn das Leitelement in der zweiten Position angeordnet ist, das Ver¬ drängungselement in demjenigen axialen Abschnitt des Abgas- diffusors angeordnet, in dem ein im Zentrum des Abgasdiffu- sors angeordneter Nabenkörper axial endet. Aufgrund des Endes des im Zentrum angeordneten Nabenkörpers entstehen in dessen Strömungsschatten Rückstromzonen, die mit Hilfe der am Leitelement angeordneten Einschnürung verkürzt werden können.
Dazu ist es jedoch erforderlich, dass die Einschnürung axial unmittelbar stromab des Endes des Nabenkörpers angesiedelt ist. Ein zu großer axialer Abstand zwischen Ende des Nabenkörpers und der axialen Position der Einschnürung muss vermieden werden, damit die Einschnürung die aerodynamisch gewünschten Effekte - nämlich die Verdrängung eines Strömungsanteils zum Zentrum, d.h. zur Strömungsmitte des Abgasdiffu- sors hin - auch erzielt.
Bevorzugt ist eine radial nach außen gerichtete Fläche des Leitelements an einem Abschnitt der Außenwand flächig anleg¬ bar. Durch die flächige Anlage des Leitelements an der Außen¬ wand wird wirksam eine minimale wandnahe Spaltströmung ver¬ mieden, da das Leitelement besonders dicht an der Außenwand anliegt. In ihrer Größe zu kleine, und damit wirkungslose Wandströmungen werden somit wirksam vermieden.
Nach einer weiteren vorteilhaften Ausgestaltung ist das Leitelement über von entlang des Umfangs der Außenwand verteilten Rippen getragen. Diese Anordnung ermöglicht eine einfache Konstruktion zum Tragen des Leitelements. Gemäß einer ersten Variante der vorgenannten Ausgestaltung sind die Rippen starr an der Außenwand befestigt, wobei an dem inneren Ende jeder Rippe ein Antrieb zur Axialverschiebung des Leitelements vor¬ gesehen ist. Zweckmäßigerweise sind dazu doppelseitig beauf¬ schlagbare hydraulische Kolben vorgesehen, mittels denen das Leitelement gegenüber den Rippen und somit auch gegenüber der Außenwand axial verschoben werden kann. Diese erste Variante hat den Vorteil, dass sowohl Rippen als auch Leitelement in ihren Abmaßen starr ausgebildet sein können. D.h. weder der Durchmesser des Leitelements noch die Länge der Rippen müssen variabel sein, um die Verschiebbarkeit des Leitelements ge¬ währleisten zu können.
Gemäß einer zweiten Variante sind die Rippen jeweils an der Außenwand und am Leitelement angelenkt, wobei die Drehachse der Gelenke sich in Tangentialrichtung des Abgasdiffusors erstrecken. Diese Ausgestaltung bietet den Vorteil, dass der Antrieb zum axialen Verschieben des Leitelements aus dem Strömungskanal des Abgasdiffusors in einen etwas kälteren Be¬ reich der Gasturbine verlagert wird, was die Anforderungen an den Antrieb hinsichtlich der Temperaturbeständigkeit senkt. Da jedoch die Verwendung eines im Durchmesser konstanten Leitelements bevorzugt ist, müssen für diesen Fall die Rippen in ihrer radialen Erstreckung veränderbar sein. Zweckmäßigerweise sind die Rippen dann teleskopisch verfahrbar, um deren Länge während der Verschiebung des Leitelements anzupassen.
Bevorzugtermaßen ist eine stationäre Gasturbine mit einem gasdiffusor vorgenannter Ausgestaltungen ausgestattet. Die Erfindung wird anhand eines Ausführungsbeispiels im
Detail näher erläutert.
Es zeigen schematisch:
FIG 1 eine stationäre Gasturbine in einem Längs-/Teil- schnitt ,
FIG 2 den Abgasdiffusor einer stationären Gasturbine im
Längsschnitt mit einem an der Außenwand des Abgas- diffusors anliegenden Leitelement,
FIG 3 den Abgasdiffusor nach FIG 2, mit einem zur Außenwand beabstandeten Leitelement und
FIG 4 das Leitelement mit einem Antrieb zur Axialver¬ schiebung des Leitelements.
FIG 1 zeigt eine Gasturbine 1 in einem Längsteilschnitt. Sie weist im Inneren einen um eine Maschinenachse 2 drehgelagerten Rotor 3 auf, der auch als Turbinenläufer bezeichnet wird. Entlang des Rotors 3 folgen aufeinander ein Ansauggehäuse 4, ein Verdichter 5, eine torusartige Ringbrennkammer 6 mit mehreren rotationssymmetrisch zueinander angeordneten Brennern 7, eine Turbineneinheit 8 und ein Abgasgehäuse 9. Die Ring¬ brennkammer 6 umgibt einen Verbrennungsraum 17, der mit einem ringförmigen Heißgaskanal 16 verbunden ist. Dort bilden vier hintereinander geschaltete Schaufelstufen 10 die Turbineneinheit 8. Jede Schaufelstufe 10 ist aus zwei Schaufelringen ge¬ bildet. In Strömungsrichtung eines in der Ringbrennkammer 6 erzeugten Heißgases 11 gesehen, folgt im Heißgaskanal 16 je¬ weils einer Leitschaufelreihe 13 eine aus Laufschaufeln 15 gebildete Reihe 14. Die Leitschaufeln 12 sind am Stator befestigt, wohingegen die Laufschaufeln 15 einer Reihe 14 jeweils mittels einer Scheibe 19 am Rotor 3 angebracht sind. An dem Rotor 3 ist ein Generator oder eine Arbeitsmaschine
(nicht dargestellt) angekoppelt. Stromab der Turbineneinheit 8 schließt sich an den Heißgas¬ kanal 16 das Abgasgehäuse 9 an. Das Abgasgehäuse 9 ist der einlaufseitige Teil eines Abgasdiffusors 20 der Gasturbine 1. Damit geht der Heißgaskanal 16 in den Strömungskanal 22 des Abgasdiffusors 20 über. Die im Abgasgehäuse 9 angeordneten Rippen 24 stützen das turbinenseitige Ende des Rotors 3 ab, wobei dieses von einem Nabenkörper 26 gekapselt ist. Der Nabenkörper 26 endet axial im Strömungskanal 22 und ist im Zentrum des Abgasdiffusors 20 angeordnet.
Die äußere Begrenzung des Abgasdiffusors 20 wird von einer Außenwand 28 gebildet, die kreisförmig ausgebildet und kon¬ zentrisch zur Maschinenachse 2 angesiedelt ist. Die Außenwand 28 erstreckt sich divergierend in Strömungsrichtung der Dif- fusorströmung 30, welches vor der Expansion in der Turbineneinheit 8 als Heißgas 11 bezeichnet ist.
Die FIG 2 zeigt einen Längsschnitt durch den einströmseitigen Abschnitt des Abgasdiffusors 20. Im axialen Abschnitt, in dem der Nabenkörper 26 axial endet, ist ein in Axialrichtung verschiebliches Leitelement 32 angeordnet. Die nach außen ge¬ richtete Fläche des Leitelements 32 weist dabei die gleiche Konizität auf, wie die Außenwand 28, so dass das Leitelement 32 flächig an der Außenwand 28 anliegt. Die nach innen gewandte Fläche 34 des Leitelements 32 weist eine umlaufende, im Längsschnitt konkave Kontur zur Bildung eines Verdrängungselements auf. Die Kontur ist dabei so ausgebildet, dass der vom ringförmigen Leitelement 32 umgriffene Strömungsquer- schnitt nach Art einer Laval-Düse ausgebildet ist. Mit ande¬ ren Worten: ein einströmseitiger Strömungsquerschnitt des Leitelements 32 ist größer als ein minimaler Strömungsquerschnitt des Leitelements 32, wobei der austrittsseitige Strö¬ mungsquerschnitt größer ist als der einströmseitige Strö- mungsquerschnitt . Der minimale Strömungsquerschnitt ist axial zwischen dem einströmseitigen Strömungsquerschnitt und dem ausströmseitigen Querschnitt angesiedelt. Der jeweilige Strö¬ mungsquerschnitt liegt stets senkrecht zur Maschinenachse 2. In FIG 3 ist der identische Abschnitt des Abgasdiffusors 20 wie in FIG 2 dargestellt, lediglich das Leitelement 32 ist gegenüber der in FIG 2 dargestellten Position in Axialrich- tung verschoben. Das Leitelement 32 befindet sich gemäß FIG 3 nun stromab von der in FIG 2 gezeigten Position. Die in FIG 3 gezeigte Position des Leitelements 32 wird als erste Position des Leitelements 32 und die in FIG 2 gezeigte Position des Leitelements 32 als zweite Position bezeichnet.
Durch die Verschiebung des Leitelements 32 in stromabwärtiger Richtung entsteht zwischen der inneren Fläche der Außenwand 28 und der nach außen gewandten Fläche des Leitelements 32 eine ringförmige Strömungspassage 36, durch die ein Teil der Diffusorströmung 30 strömen kann.
Im Betrieb der mit einem Abgasdiffusor 20 der gezeigten Art ausgestatteten Gasturbine 1 können folgende Zustände auftre¬ ten: Bei variierenden Umgebungsbedingungen und bei Teillast- betrieb wird die Gasturbine 1 von eher kleineren Massenströ¬ men an Heißgas 11 bzw. Abgas 30 durchströmt. Aufgrund des kleineren Massenstroms verlagert sich ein Hauptanteil der Ab¬ gasströmung nach außen, so dass es bisher zu einer sehr ausgeprägten und langen Rückstromzone hinter dem Nabenkörper 26 kam. Erfindungsgemäß ist nun vorgesehen, dass das Leitelement 32 in die zweite Position verfahren wird. Dadurch befindet sich die Einschnürung vergleichsweise nahe am Nabenkörper 26. Dies bewirkt, dass das Abgas 30 in Richtung der Mittelachse 2 verstärkt abgelenkt wird (30'), was das Rückstromgebiet im axialen Abschnitt hinter dem Nabenkörper 26 signifikant verkleinert. Dies reduziert aerodynamisch Verluste, erhöht den Druckrückgewinn und vergleichmäßigt das Geschwindigkeits- und Strömungsprofil im Abgasdiffusor 20. Während eines anderen, zweiten Zustands, der beispielsweise an kalten Tagen und bei Volllast vorkommt, wird die Gastur¬ bine von einem vergleichsweise großen Massenstrom durchströmt. In diesem Fall wird das Leitelement 32 in Axialrich- tung in eine erste Position verschoben. Durch die Verschiebung nimmt die relative Versperrung des Strömungsquerschnitts des Abgasdiffusors 20 aufgrund des Leitelements 32 ab. Des Weiteren entsteht auf diese Weise die ringförmige Strömungs- passage 36 zwischen der Außenwand 28 und der Außenfläche des Leitelements 32. Die Strömung durch diese Passage 36 führt stromab des Leitelements 32 zu einem Wandstrahl, der das für diesen Betriebszustand erhöhte Risiko der Strömungsablösung an der Außenwand 28 reduziert.
Auch dies verhindert aerodynamische Verluste im Abgasdiffusor 20, was zu einem erhöhten Druckrückgewinn führt. Folglich ist vorgesehen, dass bei Vergrößerung des Massenstroms das Leit¬ element 32 in Richtung der zweiten Position oder bis in die zweite Position (bis zum Anliegen an die Außenwand 28) und/oder bei Verkleinerung des Massenstroms das Leitelement 32 in Richtung der ersten Position oder bis in die erste Position (Leitelement 32 zur Außenwand 28 beabstandet) ver¬ schoben wird. Die Verschiebung des Leitelements 32 erfolgt stets parallel zur Maschinenachse 2.
Aufgrund der Tatsache, dass das Leitelement 32 lediglich in Axialrichtung verschoben wird, ist es möglich, dieses als Ring mit konstantem Durchmesser auszugestalten.
FIG 4 zeigt ein Detail zum Antrieb des axial verschieblichen Leitelements 32. Das Leitelement 32 ist über mehrere entlang des Umfangs des Abgasdiffusors 20 verteilte Rippen 40 gehal¬ ten. Jede der Rippen 40 ist starr an der Außenwand 28 befes- tigt, was aber in FIG 4 nicht dargestellt ist. Die Rippen 40 ragen strahlenförmig in den Strömungskanal 22 hinein. Als VerStelleinrichtung sind an einem inneren Ende 42 der Rippen 40 jeweils Hydraulikzylinder 45 vorgesehen, deren in Axialrichtung verschiebbare Kolben 46 mit dem Leitelement 32 be- festigt sind. Durch die Beaufschlagung mit Hydrauliköl kann der Kolben 46 in Axialrichtung bewegt werden, was zur Verschiebung des Leitelements 32 in gleicher Richtung führt. Sofern erforderlich, kann aufgrund der vergleichsweise hohen Abgastemperaturen eine Kühlung der Versteileinrichtung und der Zuführungsleitungen für Hydrauliköl zweckmäßig sein.
Mit der Erfindung wird ein Abgasdiffusor 20 für eine Gasturbine 1 angegeben, die eine ringförmige Außenwand 28 zur Füh¬ rung der Diffusorströmung 30 aufweist, in der ein zur Außenwand 28 konzentrisch angeordnetes ringförmiges Leitelement 32 zur Beeinflussung der Diffusorströmung 30 vorgesehen ist. Um die aerodynamische Wirkung des Abgasdiffusors 20 zu verbes¬ sern und diesen gleichzeitig für mehrere Betriebszustände der Gasturbine optimal einzustellen, wird vorgeschlagen, dass das Leitelement 32 eine radial nach innen gerichtete Fläche 34 aufweist, die eine umlaufende, im Längsschnitt konvexe Kontur zur Bildung eines Verdrängungselements aufweist und dass das Leitelement 32 axial zwischen zwei Positionen verschiebbar ist, derart, dass das Leitelement 32 in einer ersten Position eine Strömung zwischen Leitelement 32 und Außenwand 28 ermög¬ licht und in einer zweiten Position eine Strömung zwischen Leitelement 32 und Außenwand 28 weitgehend verhindert. Weiter wird ein Verfahren zum Betreiben einer Gasturbine 1 angegeben, bei dem zur Verringerung der aerodynamischen Verluste und Erhöhung des Druckrückgewinns bei Vergrößerung des Mas¬ senstroms das Leitelement 32 in Richtung der zweiten Position oder bis in die zweite Position und/oder bei Verkleinerung des Massenstroms das Leitelement 32 in Richtung der ersten Position oder bis in die erste Position verschoben wird.

Claims

Patentansprüche
1. Abgasdiffusor (20) für eine Gasturbine (1),
mit einer ringförmigen Außenwand (28) zur Führung der Dif- fusorströmung (30), in der ein zur Außenwand (28) konzentrisch angeordnetes ringförmiges Leitelement (32) zur Be¬ einflussung der Diffusorströmung (30) vorgesehen ist, wobei das Leitelement (32) axial zwischen zwei Positionen verschiebbar ist, dadurch gekennzeichnet, dass
eine radial nach innen gerichtete Fläche (34) des Leitele¬ ments (32) eine umlaufende, im Längsschnitt konvexe Kontur zur Bildung eines Verdrängungselements aufweist und
dass das Leitelement (32) in einer ersten Position eine Strömung zwischen Leitelement (32) und Außenwand (28) ermöglicht und in einer zweiten Position eine Strömung zwischen Leitelement (32) und Außenwand (28) verhindert.
2. Abgasdiffusor (20) nach Anspruch 1,
bei dem, wenn das Leitelement (32) in der zweiten Position angeordnet ist, das Verdrängungselement in demjenigen axia¬ len Abschnitt des Abgasdiffusors (20) angeordnet ist, in dem ein im Zentrum des Abgasdiffusors (20) angeordneter Nabenkörper (26) axial endet.
3. Abgasdiffusor (20) nach Anspruch 2,
bei dem eine radial nach außen gerichtete Fläche des Leit¬ elements (32) an einen Abschnitt der Außenwand (28) flächig anlegbar ist.
4. Abgasdiffusor (20) nach einem der vorangehenden
Ansprüche,
bei dem das Leitelement (32) über eine Anzahl von entlang des Umfangs der Außenwand (28) verteilten Rippen (40) ge- tragen ist.
5. Abgasdiffusor (20) nach Anspruch 4,
bei dem die Rippen (40) starr an der Außenwand (28) befes¬ tigt sind und an einem inneren Ende (42) zumindest einer der Rippen (40) ein Antrieb zur Axialverschiebung des Leit- elements (32) vorgesehen ist.
6. Abgasdiffusor (20) nach Anspruch 4,
bei dem die Rippen an der Außenwand (28) und am Leitelement (32) jeweils angelenkt sind, wobei die Drehachse der Ge- lenke sich in Tangentialrichtung des Abgasdiffusors (20) erstrecken .
7. Gasturbine (1) mit einem Abgasdiffusor (20) nach einem der vorangehenden Ansprüche.
8. Verfahren zum Betreiben einer Gasturbine (1),
mit einer Gasturbine (1) nach Anspruch 7,
die von einem Massenstrom variabler Größe durchströmt wird, dadurch gekennzeichnet, dass
bei Vergrößerung des Massenstroms das Leitelement (32) in
Richtung der zweiten Position oder bis in die zweite Position und/oder
bei Verkleinerung des Massenstroms das Leitelement (32) in Richtung der ersten Position oder bis in die erste Position verschoben wird.
PCT/EP2011/061944 2010-07-15 2011-07-13 Abgasdiffusor für eine gasturbine und verfahren zum betreiben einer gasturbine mit einem solchen abgasdiffusor WO2012007499A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/810,310 US9297390B2 (en) 2010-07-15 2011-07-13 Exhaust gas diffuser for a gas turbine and a method for operating a gas turbine that comprises such an exhaust gas diffuser
EP11735628.7A EP2593643B1 (de) 2010-07-15 2011-07-13 Abgasdiffusor für eine gasturbine und verfahren zum betreiben einer gasturbine mit einem solchen abgasdiffusor
RU2013106505/06A RU2575212C2 (ru) 2010-07-15 2011-07-13 Диффузор отходящего газа для газовой турбины, газовая турбина с таким диффузором и способ работы такой газовой турбины
JP2013519086A JP5551311B2 (ja) 2010-07-15 2011-07-13 ガスタービンのための排出ガスディフューザ、及び当該排出ガスディフューザを具備するガスタービンの運転方法
CN201180034923.3A CN103003528B (zh) 2010-07-15 2011-07-13 用于燃气轮机的排气扩散器和用于运行具有这种排气扩散器的燃气轮机的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10007333.7 2010-07-15
EP10007333A EP2407638A1 (de) 2010-07-15 2010-07-15 Abgasdiffusor für eine Gasturbine und Verfahren zum Betreiben einer Gasturbine mit einem solchen Abgasdiffusor

Publications (1)

Publication Number Publication Date
WO2012007499A1 true WO2012007499A1 (de) 2012-01-19

Family

ID=43240602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/061944 WO2012007499A1 (de) 2010-07-15 2011-07-13 Abgasdiffusor für eine gasturbine und verfahren zum betreiben einer gasturbine mit einem solchen abgasdiffusor

Country Status (5)

Country Link
US (1) US9297390B2 (de)
EP (2) EP2407638A1 (de)
JP (1) JP5551311B2 (de)
CN (1) CN103003528B (de)
WO (1) WO2012007499A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9617386B2 (en) 2013-05-17 2017-04-11 Fujifilm Electronic Materials U.S.A., Inc. Process for the production of polyimide and polyamic ester polymers

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011118735A1 (de) * 2011-11-17 2013-05-23 Alstom Technology Ltd. Diffusor, insbesondere für eine axiale strömungsmaschine
EP3023695A1 (de) * 2014-11-20 2016-05-25 Siemens Aktiengesellschaft Thermische Energiemaschine
US10329945B2 (en) * 2015-04-21 2019-06-25 Siemens Energy, Inc. High performance robust gas turbine exhaust with variable (adaptive) exhaust diffuser geometry
CN105336516B (zh) * 2015-12-10 2018-02-02 二一三电器(上海)有限公司 转换开关装置
JP6776154B2 (ja) * 2017-02-27 2020-10-28 三菱重工マリンマシナリ株式会社 ラジアルタービン、ラジアルタービンの排気部材
CN107470833B (zh) * 2017-09-26 2023-05-02 宜昌船舶柴油机有限公司 一种燃气轮机排气扩散器焊接工装

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2703959A (en) * 1951-07-19 1955-03-15 United Aircraft Corp Variable flow nozzle
FR1576003A (de) * 1967-07-14 1969-07-25
WO1980000989A1 (en) * 1978-11-10 1980-05-15 Kh Politekn I Exhaust pipe of turbine
US5209634A (en) 1991-02-20 1993-05-11 Owczarek Jerzy A Adjustable guide vane assembly for the exhaust flow passage of a steam turbine
DE19805115A1 (de) 1998-02-09 1999-08-19 Siemens Ag Abgasdiffusor
JP2006322462A (ja) * 2006-08-03 2006-11-30 Mitsubishi Heavy Ind Ltd ガスタービン
EP1970539A1 (de) 2007-03-13 2008-09-17 Siemens Aktiengesellschaft Diffusoranordnung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678690A (en) * 1970-07-10 1972-07-25 United Aircraft Corp Convertible composite engine
SU857516A1 (ru) 1978-11-27 1981-08-23 Харьковский Ордена Ленина Политехнический Институт Им. В.И.Ленина Выхлопной патрубок осевой турбины
JPS63100640A (ja) 1986-10-17 1988-05-02 Hitachi Ltd 光磁気再生装置
JPS63100640U (de) * 1986-12-19 1988-06-30
JP2009103099A (ja) 2007-10-25 2009-05-14 Toshiba Corp 蒸気タービン

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2703959A (en) * 1951-07-19 1955-03-15 United Aircraft Corp Variable flow nozzle
FR1576003A (de) * 1967-07-14 1969-07-25
WO1980000989A1 (en) * 1978-11-10 1980-05-15 Kh Politekn I Exhaust pipe of turbine
US5209634A (en) 1991-02-20 1993-05-11 Owczarek Jerzy A Adjustable guide vane assembly for the exhaust flow passage of a steam turbine
DE19805115A1 (de) 1998-02-09 1999-08-19 Siemens Ag Abgasdiffusor
JP2006322462A (ja) * 2006-08-03 2006-11-30 Mitsubishi Heavy Ind Ltd ガスタービン
EP1970539A1 (de) 2007-03-13 2008-09-17 Siemens Aktiengesellschaft Diffusoranordnung

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9617386B2 (en) 2013-05-17 2017-04-11 Fujifilm Electronic Materials U.S.A., Inc. Process for the production of polyimide and polyamic ester polymers
US9695284B2 (en) 2013-05-17 2017-07-04 Fujifilm Electronic Materials U.S.A., Inc. Polymer and thermosetting composition containing same
US9777117B2 (en) 2013-05-17 2017-10-03 Fujifilm Electronic Materials U.S.A., Inc. Process for the production of polyimide and polyamic ester polymers
US10604628B2 (en) 2013-05-17 2020-03-31 Fujifilm Electronic Materials U.S.A., Inc. Polymer and thermosetting composition containing same

Also Published As

Publication number Publication date
JP5551311B2 (ja) 2014-07-16
EP2593643B1 (de) 2014-10-01
EP2593643A1 (de) 2013-05-22
RU2013106505A (ru) 2014-08-20
CN103003528A (zh) 2013-03-27
JP2013531174A (ja) 2013-08-01
US20130115044A1 (en) 2013-05-09
US9297390B2 (en) 2016-03-29
EP2407638A1 (de) 2012-01-18
CN103003528B (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
EP2593643B1 (de) Abgasdiffusor für eine gasturbine und verfahren zum betreiben einer gasturbine mit einem solchen abgasdiffusor
EP1947299B1 (de) Abgasturbolader für eine Brennkraftmaschine
EP2024606B1 (de) Ringförmiger strömungskanal für eine in axialrichtung von einem hauptstrom durchströmbare strömungsmaschine
EP2167793B1 (de) Abgasturbolader für eine brennkraftmaschine
EP3093447B1 (de) Rotor einer turbine einer gasturbine mit verbesserter kühlluftführung
EP2179143B1 (de) Spaltkühlung zwischen brennkammerwand und turbinenwand einer gasturbinenanlage
EP2356320B1 (de) Ringdiffusor für eine axialturbomaschine
WO2005071229A1 (de) Strömungsmaschine mit einem axial verschiebbaren rotor
EP3000984A1 (de) Leitschaufelverstellvorrichtung einer gasturbine
EP3009683B1 (de) Anordnung und verfahren zum abblasen von verdichterluft in einem triebwerk
EP3064706A1 (de) Leitschaufelreihe für eine axial durchströmte Strömungsmaschine
WO2011131651A1 (de) Abgasdiffusor einer gasturbine
EP1860284A1 (de) Gehäuseverbindung
CH705822B1 (de) Axialverdichter für eine Strömungsmaschine, insbesondere eine Gasturbine.
DE102013018368B4 (de) Verstellbare Drallerzeugungseinrichtung für Verdichter
EP3164578A1 (de) Abströmbereich einer turbine eines abgasturboladers
EP3017147B1 (de) Rotor für eine turbine
EP2225467B1 (de) Drallerzeugungsapparat und turbolader mit einem solchen drallerzeugungsapparat
DE102013217504A1 (de) Strömungsmaschine
EP2699769B1 (de) Hydrauliklager für eine stationäre gasturbine
WO2013156048A1 (de) Turbine mit variabler turbinengeometrie für einen abgasturbolader
EP3483503B1 (de) Brennerdichtung einer gasturbine und verfahren zu deren herstellung
WO2008025583A1 (de) Verfahren zum kühlen von turbinenschaufeln eines schaufelkranzes sowie turbinenschaufelsegment für einen turbinenschaufelkranz mit mindestens zwei aerodynamisch profilierten schaufelblättern
EP2410139A1 (de) Abgasdiffusor für eine Gasturbine
WO2009074355A1 (de) Axialturbomaschine mit reduzierten spaltverlusten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11735628

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011735628

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4004/KOLNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2013519086

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13810310

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013106505

Country of ref document: RU

Kind code of ref document: A