WO2012006938A1 - 一种靶向释放微量元素的药物组合物及制备方法和应用 - Google Patents

一种靶向释放微量元素的药物组合物及制备方法和应用 Download PDF

Info

Publication number
WO2012006938A1
WO2012006938A1 PCT/CN2011/077016 CN2011077016W WO2012006938A1 WO 2012006938 A1 WO2012006938 A1 WO 2012006938A1 CN 2011077016 W CN2011077016 W CN 2011077016W WO 2012006938 A1 WO2012006938 A1 WO 2012006938A1
Authority
WO
WIPO (PCT)
Prior art keywords
trace element
pharmaceutical composition
albumin
hollow microspheres
copper
Prior art date
Application number
PCT/CN2011/077016
Other languages
English (en)
French (fr)
Inventor
周翔
解慧琪
康裕建
Original Assignee
四川大学华西医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学华西医院 filed Critical 四川大学华西医院
Publication of WO2012006938A1 publication Critical patent/WO2012006938A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0028Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1275Lipoproteins; Chylomicrons; Artificial HDL, LDL, VLDL, protein-free species thereof; Precursors thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1658Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5052Proteins, e.g. albumin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Definitions

  • composition for targeted release of trace elements preparation method and application thereof
  • the invention discloses a pharmaceutical composition for orienting controlled release of trace elements, in particular, a pharmaceutical composition capable of being controlled by ultrasonic direction, which can induce tissue regeneration and antitumor.
  • Trace elements play a fundamental role in maintaining human health.
  • the main physiological functions are to catalyze various enzyme systems, and to act as essential components or cofactors of hormones or vitamins to form metal proteins with special functions.
  • the physiological role of trace elements can be compared with vitamins, but the body can synthesize some vitamins and cannot synthesize any elements. From this point of view, essential trace elements are more important to the human body than vitamins.
  • the basic definition of essential trace elements refers to those elements that have obvious nutritional and physiological functions and are essential for maintaining growth, life, and reproduction.
  • the so-called "required" gp 1 The body must take this element from the outside diet. When this element is removed from the diet, the body will be in a state of physiological deficiencies.
  • essential trace elements essential for maintaining normal life activities of the body.
  • human beings are increasingly aware of the fundamental role of essential trace elements in maintaining health. Some elements are not only resistant to infection, but are also associated with many chronic, epidemic, endemic, and even malignant lesions.
  • a large number of epidemiological surveys indicate that the lack of essential trace elements in the body may increase the sensitivity of the population to disease, leading to the occurrence and development of sub-health status or disease.
  • trace elements are not abundant in the human body, they are closely related to human survival and health. Over the years, the importance of trace elements in the human body has received increasing attention. Trace elements such as selenium, zinc, iron, and copper have been shown to have a variety of beneficial biological effects. According to scientific research, so far, 18 kinds of essential trace elements have been identified related to human health and life, namely iron, copper, zinc, cobalt, manganese, chromium, selenium, iodine, nickel, fluorine, molybdenum, vanadium. , tin, silicon, germanium, boron, germanium, arsenic, etc. Each of these trace elements has its own special physiological functions.
  • iron which is one of the main components of hemoglobin. Iron can cause iron deficiency anemia. It has been reported in foreign countries that the total amount of iron, copper and zinc in the body is reduced, which can weaken the body's disease resistance, promote bacterial infection, and have a high mortality rate after infection. Excessive, insufficient or insufficiency of their intake can cause abnormalities or diseases of the human body to varying degrees.
  • liver disease In the pathological state such as hepatitis or liver fiber, patients with liver disease generally lack selenium and zinc, and the more severe the condition, the lower the level of selenium and zinc in the blood. In this state of liver disease, it is difficult for the liver to make full use of selenium and zinc in food, resulting in inefficient dietary supplementation: even with normal doses of dietary supplements, it is difficult to achieve effective requirements for targeted organs, such as increasing dose and prone to metal toxicity. . In such cases, the predicament is prevalent in the body: the more trace elements the damaged tissue needs, the more difficult it is to achieve targeted, efficient acquisition under pathological conditions.
  • the intake of trace elements must be supplied directly or indirectly from the soil, that is, by oral administration of various foods or a combination of oral health care drugs such as good quality.
  • different methods have been created to improve the dietary supplementation of trace elements, such as the use of nanoscale trace elements.
  • bio-enrichment method using food materials with high bioconcentration of seaweed, enriching more trace elements to improve the oral intake efficiency of trace elements.
  • such methods are still subject to the functional status of specific organs. For example, the function of related organs has been impaired, and trace elements are still difficult to achieve therapeutic concentrations and biophysiological effects even if they are supplemented by a large amount of dietary supplements.
  • the present invention provides a pharmaceutical composition having an action of ultrasonically targeting and releasing trace elements, comprising hollow microspheres having a concentration greater than 1 ⁇ 10 6 /ml and having a particle diameter smaller than ⁇ ⁇ ⁇ , and At least one trace element less than or equal to ten times the physiological dose of the human body, and a pharmaceutically acceptable carrier or adjuvant; wherein the trace element and the hollow microsphere are present in a combined or free form, the hollow microsphere being pharmaceutically acceptable
  • the film-forming material is prepared.
  • the hollow microspheres have a particle diameter of 1 to 5 m ; the gas contained in the hollow microspheres is air, nitrogen, sulfur fluoride gas, fluorinated hydrocarbon gas or other non-toxic gas or one or more of the above or A mixed gas of any combination of more than one gas component.
  • the trace elements are iron, copper, zinc, cobalt, manganese, chromium, selenium, iodine, nickel, fluorine, molybdenum, vanadium, Any combination of one or more of tin, silicon, germanium, boron, antimony or arsenic ions is preferably one or a combination of one or more of copper, zinc, selenium and iron.
  • the combined form of the trace elements and the hollow microspheres are combined by chemical or physical interaction.
  • the combined form of the trace elements and the hollow microspheres are prepared by the following method:
  • the trace element ions and the film-forming material are dissolved in water or an organic solvent, so that the trace element ions are combined with the film through physical or chemical action to form a trace element composite film.
  • the composite membrane obtained in the step 1) is prepared into hollow microspheres having a particle diameter of less than 10 ⁇ m by a conventional method.
  • the trace form of the free form refers to a compound which is not combined with the hollow microcapsule and which forms a complex with a trace element ion and a protein, a polypeptide, an amino acid, a glucose or other compound capable of binding a trace element, and is present in the carrier or the auxiliary material.
  • the molar concentration ratio of the trace element to a protein, a polypeptide, an amino acid, glucose, and other compounds capable of binding a trace element is: 1:0.05 to 1:500.
  • the film forming material of the present invention is a solution of human hemoglobin, phospholipid or other polymer polymerization, or a solution containing deionized water or physiological saline or glucose solution or a solution containing a trace element ion complex
  • Trace element ion complexes are complexes of trace element ions with proteins, peptides, amino acids, glucose or other compounds that bind to trace elements.
  • the pharmaceutical composition of the present invention is preferably an injection preparation, more preferably a powder injection.
  • the present invention also provides the use of the pharmaceutical composition of the present invention for the preparation of an ultrasonic targeted release drug for promoting blood vessel or tissue regeneration and antitumor
  • the pharmaceutical composition is intravenously injected into a human body, and the treatment site is irradiated by ultrasonic waves, and the interaction of the gas-containing hollow microspheres with the ultrasonic waves is used to achieve the local release of trace element ions.
  • the ultrasonic targeted release refers to an ultrasonic wave of a certain energy causing a cavitation effect such as rupture or oscillation of the microbubble to promote and strengthen the local release of the relevant metal ion in the ultrasonic irradiation and/or promote the corresponding metal ion in the suspension.
  • the components enter the irradiated tissue for clinical purposes that promote vascular, tissue regeneration, and/or anti-tumor.
  • micro-elements targeted by ultrasound can induce the physiological effects corresponding to the trace element ions carried by the ultrasonic irradiation site.
  • the invention also provides a method for preparing the pharmaceutical composition of the invention: firstly, hollow microspheres combined with trace element ions are prepared, and the preparation method comprises:
  • the trace element ions and the film-forming material are dissolved in water or an organic solvent to form a trace amount by one or more trace element ions through physical or chemical interaction.
  • Step 2) can be prepared by any of the following methods for preparing micropharmaceutical microspheres: ultrasonic sonication, freeze drying, spray drying, active/controlled radical polymerization, precipitation polymerization, suspension polymerization, emulsion polymerization, seed polymerization , heterogeneous polymerization system such as dispersion polymerization and precipitation polymerization, ion crosslinking method, emulsion ion gel method, ion precipitation-chemical crosslinking method, emulsification-chemical crosslinking method, double emulsion crosslinking method, thermal crosslinking method, condensation method , emulsification-solvent evaporation method.
  • ultrasonic sonication freeze drying, spray drying, active/controlled radical polymerization, precipitation polymerization, suspension polymerization, emulsion polymerization, seed polymerization , heterogeneous polymerization system such as dispersion polymerization and precipitation polymerization, ion crosslinking method, emulsion i
  • the pharmaceutical composition of the present invention can also be prepared by the following method, first preparing hollow microspheres which do not bind microelement ions, and the preparation method comprises:
  • step 2) mixing the hollow microspheres obtained in step 1) with a complex solution of a protein or polypeptide or amino acid or a compound capable of binding a trace element combined with one or more trace element ions to form a suspension drug combination.
  • the trace element ion salt in a water-soluble state may cause a severe irritating reaction even if it is applied locally. Therefore, if the direct intravenous injection of the metal ion salt solution is carried out, not only the purpose of targeted release and local concentration of the targeted organ can be achieved, but also a serious toxic side effect is caused.
  • the salt ion state of such trace element ions often does not have biological activity, and needs to be combined and transmitted in a biocompatible manner to exert physiological effects, such as binding to polypeptides, proteins, glucose, and the like.
  • the first step must be considered to produce a trace element combination or complex or association of an effective protein or polypeptide.
  • the second step considers the method and efficiency of targeted release.
  • albumin as the preferred protein, because albumin is the most important metal ion-binding protein in human peripheral blood, which can effectively bind to almost all metal ions. And non-specific delivery to any organ.
  • Albumin is composed of 585 amino acids.
  • the amino acids are connected by peptide chains and twisted into a scorpion or honeycomb. They have numerous mesh-like voids, which create favorable space conditions for inlaid drugs.
  • the second step we consider is how to achieve targeted release or targeted organ release.
  • Targeted drug delivery systems are one of the focuses of modern drug research.
  • the drug is coupled to a specific carrier to selectively direct the drug to the lesion to increase drug concentration, improve pharmacokinetic parameters, and reduce toxicity.
  • the purpose of side effects To date, all such albumin microsphere products or experiments have been limited to targeted release of anti-tumor chemotherapeutic drugs or controlled release of antibiotics. In recent years, the application research on albumin microspheres and albumin nanoparticles has gradually increased.
  • the microspheres bind and effectively kill the cell line in a dose-dependent manner, while the control nanospheres fail to bind and significantly kill the cell line or form cell-specific receptor-bound albumin microspheres.
  • Cheng Yao et al [6] prepared drug-loaded albumin microspheres by specifically recognizing and ingesting non-reducing galactose or IV-acetylgalactose with the asialoglycoprotein receptor on the membrane of liver parenchyma. Then, a galactosylated chitosan derivative is coated on the surface to finally obtain a 5-fluorouracil albumin microsphere coated with a galactosylated chitosan derivative, so as to specifically bind to the cell surface.
  • the second is called passive targeting. That is, the physical action is used to locally release the albumin microspheres.
  • magnetic albumin microspheres enclose a drug and a magnetic substance in albumin to form magnetic albumin microspheres. After the magnetic drug particles are injected into the body through the blood vessel, the magnetic field is used to guide the drug particles to stay in a certain tissue or lesion, and the drug release time is prolonged, so as to improve the curative effect and reduce the side effects, and provide a new way for drug targeting. . Chatterjee et al.
  • albumin magnetic microspheres [4] compared the polystyrene magnetic microspheres with albumin magnetic microspheres and found that albumin magnetic microspheres have a higher ability to couple proteins, protein (bioagglutinin) modified albumin magnetic microspheres and The ability of red blood cells to bind far exceeds that of polystyrene magnetic microspheres.
  • the idea of the present invention is that in order to achieve the second step of targeting the fixed-point release of trace elements to form the concentration of trace elements in local tissues and organs, the optimal state should be: 1. Minimize the modification of protein or polypeptide drug molecules or modified.
  • Protein drugs are biological macromolecules composed of amino acids with a certain spatial conformation. The molecular weight is often from several thousand to several hundred thousand. Their activity depends on their correct structure, including primary structure and spatial structure, and their structure is affected by various Factors such as various proteases, heavy metals, organic solvents, temperature, pH, inhibitors, mechanical forces, etc. Therefore, it is easily inactivated by external conditions during the preparation, storage and release of its preparation, so the stability of the protein is maintained. Qualitative is very important.
  • albumin alone combined with trace elements may be the form that maximizes the biological activity of metal-bound albumin;
  • Active targeting proteins similar to antigen-antibody modifications and albumin encapsulated by magnetic materials Because of the addition of ancillary antigens or antibody proteins or macromolecules and other magnetic metal elements, its potential immunogenicity and pathogenicity are difficult to predict, and are not conducive to the clinical application approval and promotion of the product; 3. by 1, 2
  • the present invention recognizes that passive targeting is a preferred route for the targeted release of trace elements in combination with albumin or other biofilms.
  • the present invention contemplates a biofilm-microelement hollow microcapsule-ultrasonic delivery system.
  • the biofilm material of the present invention is preferably albumin, and an albumin-microelement hollow microcapsule is prepared. Its essence is to use two characteristics of albumin: 1. The high efficiency of the combination of trace elements; 2. The action of albumin itself.
  • the innovation of this case lies in the fact that albumin itself is a carrier for trace elements and a carrier for the release of trace elements.
  • the albumin microcapsules of the present invention are actually microballoons containing gas components formed by the characteristics of albumin surfactants.
  • albumin microsphere preparations that coat the liquid core of the drug-containing component, as well as the white protein microbubbles that are used solely for ultrasound contrast imaging. Because its purpose is not in conventional albumin microcapsule preparations - the use of albumin to deliver coated drug molecules, nor in ultrasound contrast imaging. Its main purpose is to use the ultrasonic to destroy the microbubbles to release the trace element-albumin film in a local rupture, forming a fixed-point release and concentration of trace elements in the ultrasonic irradiation site, thereby achieving therapeutic and desired physiological effects.
  • ultrasound has a typical cavitation effect, that is, a higher-energy ultrasonic sound field can locally generate instantaneous high-pressure and low-pressure alternating, forming a localized cavity, which is accompanied by an instantaneous high temperature and high pressure.
  • this cavitation is strengthened, which will cause more intense instantaneous cavitation, ie high temperature and high pressure, in the local tissue or blood.
  • the microbubbles rupture, such effects reach a peak, and the local instantaneous energy generated can even enlarge the local microvascular endothelium.
  • the system of the present invention is substantially characterized by typical passive targeted administration.
  • albumin which is a combination of trace elements, is a physiologically bound form, theoretically maintaining the physiological properties of trace elements to the utmost extent, and passive ultrasound irradiation targeted release not only combines ultrasound
  • the directivity of the sound beam combined with the cavitation effect of the ultrasonic sound field + microbubbles makes the local release and dispersion of trace elements more rapid and direct.
  • the present invention also includes the following secondary dosage form scheme: using a trace element polypeptide complex as a main ingredient of the preparation, with a membrane
  • the microcapsules are encapsulated as an adjuvant to form a trace element-polypeptide complex + microbubble suspension, which is injected into the body and broken by ultrasonic irradiation into a targeted point release tool.
  • a similar point of spot release of trace elements can be achieved.
  • the membrane-encapsulated microcapsules referred to in the second-choice scheme may be phospholipid-encapsulated microbubbles or albumin-encapsulated microbubbles or microbubbles caused by polymers.
  • An important innovation of the present invention is therefore the invention and application of a pharmaceutical composition for targeted delivery of trace elements in vivo.
  • the trace elements required by the human body are a special preparation that is indispensable to the human body.
  • the physiological dose that humans can tolerate is small, and the excessive amount of free trace element ions is usually toxic in the body. It is not like the treatment of common diseases, and it is necessary to remove the lesions.
  • the purpose of the invention is how to directly administer in the form of injection to overcome the defects of oral supplementation of trace elements, thereby achieving good therapeutic and physiological effects, which is completely unpredictable, and there is no related report of the prior art, and the inventors have created a specific The combination of the trace elements in the form of in vivo ultrasound-directed release, to achieve satisfactory treatment and physiological effects.
  • trace element salts are generally ineffective or highly toxic in vivo.
  • Trace element ions such as copper, zinc, selenium, etc.
  • This method mainly involves the combination of trace elements and corresponding polypeptides or proteins to form a polypeptide or albumin complex, so as to effectively exert physiological and biochemical effects on cells and tissues.
  • the proteins and polypeptides referred to herein may refer to albumin or other metal complex proteins or polypeptides.
  • the trace element polypeptide complex referred to in this patent means the following polypeptide complex (Table 1 is the English abbreviation and abbreviation correspondence table of each amino acid).
  • Valine trace element polypeptides can refer to the following complexes (M refers to trace elements):
  • GHKM glycyl-L-histidyl-L- lysine
  • AHK-M L-valyl-L-histidyl-L-lysine:M
  • VHK-M L-valyl-L-histidyl-L-lysine
  • L-leucyl-L-histidyl-L-lysine:M (“LH -M”)
  • L-isoleucyl- L-histidyl-L-lysine:M (“IHK-M”)
  • L-pheny lalanyl-L-histidyl -L-lysine:M (“FHK-M”)
  • L-prolyl-L-histidyl-L-lysine M("PHK-M"), L-seryl-Lhistidyl- L-lysine:M (“SHK-M”), or L-threonyl-Lhistidyl- L-lysine :M (“THK-M").
  • a polypeptide trace element complex generally refers to a type of coordination compound comprising a polypeptide molecule and a trace element non-covalently complexed to the aforementioned polypeptide.
  • a polypeptide group refers to a covalent association of two or more amino acid sequences or amino acid derivative sequences.
  • the amino acids mentioned in this patent contain an amino group, a carboxyl group, a hydrogen atom and an amino acid side chain binding group.
  • the polypeptide amino acids referred to in this patent mainly refer to alpha, beta or gamma amino acids, for example:
  • x represents an amino acid side chain binding site.
  • the amino acid complex referred to in this patent may be either L-form or D-form or a mixture of the two.
  • the amino acid derivatives mentioned in this patent include the structures shown in the following chart.
  • R1-R2-R3 M, where M, at least one amino acid or amino acid derivative as defined above is linked to 1 via a peptide bond.
  • R is a single amino acid or an amino acid derivative, and such a polypeptide trace element complex is generally classified as a tripeptide.
  • the general description of another polypeptide trace element complex referred to in this patent may also be [R, -R, -R,]:M.
  • M is a chemical group attached to R via an amide bond.
  • the chemical group herein refers to an amino group and can form an amide bond with any carboxyl group-containing terminal R (such as the carboxy terminus of histidine, the carboxy terminus of arginine or a related derivative).
  • R is an -NH fluorenyl group having 1 to 20 carbon atoms which is bonded to R via an amide bond or an arylamino group having 6 to 20 carbon atoms.
  • the thiol group referred to herein does not exclude the inclusion of an amino group, an octylamine, or a propylamine.
  • an arylamino group is not excluded to include benzylamine or benzyl.
  • polyamines such as spermine and spermidine may be included.
  • the present invention relates to the combination and targeted delivery of a plurality of trace elements.
  • the following examples of the embodiments are based on copper to achieve the objective of verifying the targeted delivery of trace elements encompassed by the present patent.
  • Physiological doses of copper ions have many biological effects, such as stimulating collagen and elastin accumulation in wounds or damaged tissues (Reference, Maquart et al, J. Clin. Invest. 92: 2368-2376 (1993); Maquart et al, FEBS Lett. 238(2): 343-346 (1988) and Wegrowski et al., Life Sci.
  • the water-soluble copper salt ions are not physiologically active or even relatively toxic and irritating, and are prohibited from acting directly on the wound or scar area. Copper ions must be delivered in a biocompatible manner. Therefore, the trace element ions of the present invention can also be transported by a complex of glucose and trace elements, and the structural formula is as follows (X represents trace elements):
  • the present invention discloses a membrane modified or bonded by a corresponding metal ion for the purpose of directional release of trace element ions with ultrasound to promote localized promotion of scar activation, blood vessel, tissue regeneration, and anti-tumor.
  • a pharmaceutical composition comprising a gas-containing microcapsule and a combination of a trace element ion thereof with a membrane solution or polypeptide incorporating a trace element ion.
  • This also includes a membrane-encapsulated microcapsule with a corresponding trace element ion solution or a membrane suspension suspension containing the corresponding trace element ions.
  • the composite liquid can introduce trace element ions into the body under the action of ultrasonic irradiation.
  • tissue angiogenesis, tissue regeneration or anti-tumor biological effects of the site irradiated by the ultrasound can be effectively performed.
  • Its broad clinical prospects include: angiogenesis in infarcted myocardium, angiogenesis after coronary stenosis, angiogenesis in various organ stenosis or infarcted lesions (such as limb arterial stenosis or post-infarction pro-angiogenesis).
  • the potential applications are mainly the physiological and biological effects that have been demonstrated by the corresponding trace element ions, including, for example, vascular regeneration in scars after internal organs, such as scars after various parenchymal organs or promotion of tissue regeneration, for example: Liver surgery , gastrointestinal surgery, esophageal surgery, uterine surgery, etc., the treatment of liver fibrosis, including such as tumor growth inhibition.
  • the regeneration mentioned in the present invention includes various meanings: 1. vascularization and elastic recovery of scar tissue; 2. parenchymal cell regeneration at the site of scar; 3. vascular and parenchymal cell regeneration at the necrotic site; 4. stenotic ischemia Revascularization of the site; 5. Reversal of tissue fibrosis.
  • the ultrasonic targeted release microelement pharmaceutical composition preparation of the invention has excellent clinical application prospect, and provides a safe and effective new treatment route for blood vessel, tissue and anti-tumor treatment of various diseased tissues.
  • Figure 5 The left picture shows the sham operation group, the middle picture is the control group (no calcium alginate + CuS0 4 film), the right picture group, that is, the blood vessel regeneration in the infarct area after filming.
  • FIG. 6 Comparison of the results of pathological sections of myocardial infarction.
  • the upper set is HE stained and the lower set is Masson trichrome.
  • FIG. 21 Schematic diagram of continuous destruction of albumin microspheres in high-energy color Doppler mode
  • Fig. 22 A is a general pathological picture of a rabbit in a control group, which was not injected with a chelating albumin microbubble, after 4 weeks.
  • B is the experimental group, and the general pathological picture of the rabbit with a myocardial infarction model of chelated albumin microbubbles after 4 weeks.
  • Figure 23 A, B is the control group, and no targeted irradiation of chelated copper ions by ultrasonic irradiation.
  • C, D for the experimental group, targeted irradiation of chelated copper ions by ultrasonic irradiation produced significant collagen and angiogenesis.
  • Figure 25 Echocardiographic test results, the left image shows the preoperative, the right image shows the postoperative echocardiogram test results, the left image shows the surgery, the middle image shows the surgery, right Figure shows repair treatment after 3 weeks
  • FIG. 27 Neovascularization of infarcted myocardium.
  • A-D is HE stained (200 X)
  • E-H is Masson stained (200 X)
  • Figure 28 Infarcted myocardium neovascular density in each group before and after treatment
  • Figure 32 Histopathological analysis results, Mason staining of specimen paraffin sections, A for the control group, B, C for the treatment group, A, B X 100 , C X 400
  • FIG 33 CD31 immunohistochemical staining vascular marker map, A is the control group, B is the treatment group Figure 34 Blood group counting results after immunohistochemical labeling
  • FIG. 37 Comparison of microvessel density in the myocardial infarction area of the phospholipid microspheres and chelated copper albumin in the myocardial infarction area and the myocardial infarction area of the control group only injected with phospholipid microspheres
  • Figure 38 Significant small blood vessel regeneration in the myocardial infarction area of the phospholipid microspheres and chelated copper glucose in the myocardial infarction area
  • HUVECs were cultured and passaged in vitro. HUVEC was inoculated into 96-well plates at a density of 5 ⁇ 10 3 /well. Cells were randomly divided into 3 groups according to the concentration of solution added to the well plates. Group A 5 mol/L CuS0 4 , Group B 25 ⁇ /L CuS0 4 , group C is a blank control, each group has 4 duplicate wells, and the basal medium is MCDB131, cell proliferation was measured by MTT assay and growth curve was drawn.
  • Group A 5 mol/L CuS0 4 Group B 25 ⁇ /L CuS0 4
  • group C is a blank control
  • each group has 4 duplicate wells
  • the basal medium is MCDB131
  • HUVEC was inoculated into 6-well plates at 2x10 5 / well density, and the same as before, the quantitative analysis of endogenous nitric oxide synthase (eNOS) gene and Tie-1 in three groups of HUVEC were detected by fluorescence quantitative RT-PCR. gene expression.
  • eNOS endogenous nitric oxide synthase
  • Figure 3 shows the A-series quantitative RT-PCR products detected by agarose gel electrophoresis. It can be seen from Table 1 that the expression of eNOS gene in group A, B and C is 7.294 ⁇ 1.488, 0.149 after 48 hours of fluorescence quantitative RT-PCR. The expression of Tie-1 gene was 1.481 ⁇ 0.137, 1.131 ⁇ 0.191 and 1.000 ⁇ 0.177, respectively, with 0.044 and 1.000 ⁇ 0.23.
  • Example 2 The physiological effect of copper ion on the controlled release copper ion in the body was confirmed.
  • a copper ion gel was applied to the local myocardial infarction model to verify the physiological role of the local sustained release copper ion.
  • the control group (without adding calcium alginate + CuS0 4 film) showed a large amount of adipose tissue and fibrotic tissue accumulation in the infarct (arrow:), and the angiogenesis in the infarct area after the film showed that the infarcted tissue appeared obvious.
  • the myocardial regeneration and recovery of the heart structure, its morphology is closer to the sham-operated heart, and visible microvascular network formation is evident.
  • histology observed that the Cu-film-treated myocardium showed more neovascularization, and there were a large number of monocytes and recovery of myocardial fibrosis.
  • the CuS0 4 film caused significant small blood vessels and gliosis in the necrotic tissue of the local myocardial infarction.
  • Proteins can fluoresce because of the presence of three aromatic amino acid residues in the protein: Trp, Tyr, and Phe residues. Due to the different structures of these amino acid residues, the fluorescence intensity ratio of the three is usually 100:9:0.5. According to whether the protein contains tryptophan, it can be divided into two categories: Class A protein, which means that the Trp residue contains only Tyr and Phe residues; Class B protein: refers to both Trp residues and Tyr and Phe Residue protein. Serum albumin belongs to class B protein and has strong fluorescence.
  • the three chromophore groups have their own characteristic fluorescent peaks (the fluorescent peaks of Trp, Tyr, and Phe are located at 348, 303, and 282 nm, respectively), energy transfer from Phe to Tyr or Trp occurs within the protein macromolecule. Very efficient, so the absorption and emission of the entire molecule is not a simple addition or subtraction of the optical properties of these monomer components, and the fluorescence of the Trp residue is often dominant. When the protein is excited at 270-290 nm, the contribution of the Tyr residue cannot be ignored. When the excitation wavelength is greater than 290 nm, the fluorescence is considered to be derived from the Trp residue. HSA contains only one Trp residue of position 214, The light emission peak is around 350 nm.
  • the fluorescence is mainly emitted from the 212 Trp residue at around 342 nm.
  • the maximum excitation peak of both is about 280 nm.
  • the Trp residue can be used as a probe for local conformational changes or microenvironmental changes of aromatic amino acid residues.
  • a substance such as a metal ion is added, the binding of the endogenous fluorescence of serum albumin can be used to qualitatively and quantitatively study the binding.
  • the experimental examples show that as copper ions are added, more copper ions are chelated with human serum albumin, which quenches the fluorescence of albumin.
  • Table 2 shows that the average particle diameter of the microbubbles was 2.15 ⁇ , and the average concentration was 3.7 ⁇ 10 8 /ml.
  • Example 5 Preparation of copper ion-bound albumin microbubbles (Preparation of copper-loaded albumin microbubbles) Copper ions were combined with albumin to prepare an albumin copper microbubble by ultrasonic dispersion, including fluorescence analysis results and microbubble measurement results. Copper ion-bound albumin microbubbles are copper-loaded albumin microbubbles.
  • albumin solution h lmol for loading.
  • the corresponding proportions of this example are as follows: lmg HSA is added to 4.35x lO_ 6 molCu 2+ .
  • the upper end of the vial was completely replaced with C 3 F 8 , and the vial was tightly sealed with a rubber stopper and allowed to stand at room temperature for 24 hours. After shaking, the microspheres were analyzed for particle size, and the particle size distribution is shown in Fig. 19. The average particle size of the microbubbles after chelation of copper ions is 2 ⁇ , and the concentration is 3.1 X 10 8 /ml.
  • Stability test The aforementioned micro-bubble combined with copper ions was poured into a 20 ml glass bottle, sealed, and stored in a refrigerator at 5 degrees. After 2 months, resampling measurements showed no significant change in microbubble concentration and particle size distribution with the newly prepared microbubbles.
  • a myocardial infarction model was prepared in accordance with Example 2.
  • A is a control group, and a gross pathological picture of a rabbit with a myocardial infarction model of chelating albumin microbubbles was not injected 4 weeks later. A large amount of fat accumulation can be seen on the anterior surface of the left heart, which is typical of steatosis and fat accumulation in the myocardial infarction area (arrow).
  • B is the experimental group, 4 weeks after the injection of chelating albumin microbubbles, the myocardial infarction scar area is obviously activated, and a large number of new capillary formation (arrow) is seen on the surface.
  • a and B are the control group, and no ultrasound is performed.
  • C and D were experimental groups, and targeted irradiation of chelated copper ions by ultrasonic irradiation produced significant collagen and angiogenesis.
  • a myocardial infarction model was prepared in accordance with Example 2.
  • the ear vein vein was continuously injected with a chelated copper ion albumin microbubble at a rate of 1 ml/min, and the left anterior region was continuously irradiated by ultrasound, and the heart bottom was continuously circulated to the apex.
  • the injection and irradiation were repeated twice every 1 week, and each dose was the same for a total of 3 weeks. Make the following test:
  • Detection time 2 weeks after myocardial infarction modeling, 2 weeks and 4 weeks after repair.
  • Method The Siemens ACUSONANTARES color Doppler ultrasound system was used with a probe frequency of 14 MHz.
  • the rabbits in each group were routinely anesthetized, fixed in the supine position, and the skin was prepared in the chest.
  • the left axon and the left ventricular papillary muscle were taken from the left sternum. Two-dimensional images of three cardiac cycles are continuously recorded and stored for offline image analysis.
  • LVDd left ventricular anterior wall end-diastolic thickness
  • EDV left ventricular end-diastolic volume
  • ESV end-systolic volume
  • FS shortening rate
  • All HE and Masson sections of the rabbit heart were read comprehensively, and the areas with myocardial infarction in each group were selected.
  • the blood vessels in five venous dense areas were randomly selected from each area to count the blood vessels, and finally averaged.
  • Detection time When the repair treatment is terminated.
  • Methods Cardiac harvesting, gross specimen photography, weighing; cardiac specimen fixation, trimming, dehydration, transparency, waxing, embedding, sectioning, HE staining, Masson staining; infarct size measurement: (outer infarct ratio + endometrial infarction) Ratio) /2X100% (outer infarct ratio: the sum of the length of the intimal area corresponding to the length of the intimal area of all sections / the length of the outer membrane of all sections, intimal infarct ratio: the sum of the intimal lengths of all infarct areas / all intima The sum of the lengths; immunohistochemistry (CD31, Ki67, PH3, etc.).
  • Figure 27 and Figure 28 show the angiogenesis of infarcted myocardium in each group.
  • the results showed that there were few new blood vessels in the Sham group, but there was a large amount of fibrous tissue formation and a small amount of neovascularization in the infarcted myocardium of the control group.
  • There was a large amount of neovascularization in the myocardial region and there was a significant difference compared with the control group and the ultrasound microbubble group (0.01).
  • FIG 29 and Figure 30 show the infarcted myocardium area of each group. The results showed that there was no myocardial infarction in the Sham group. There were significant myocardial infarction in the control group, the ultrasound microbubble group and the copper-loaded ultrasound microbubble group. There was no significant difference in myocardial infarction area between the control group and the ultrasound microbubble group (A0.05). The area of myocardial infarction in the copper-loaded ultrasound microbubble group was significantly smaller than that in the control group and the ultrasound microbubble group (0.01).
  • Example 8 Model test of myocardial infarction of rhesus monkeys with copper albumin microbubbles + ultrasound irradiation
  • Ultrasound microbubble treatment The rhesus monkey animal models were randomly grouped and treated with copper-loaded ultrasound microbubbles and ultrasound microbubbles. Intramuscular injection of 5 mg/kg ketamine and 0.2 mg/kg midazolam induced anesthesia, indwelling intravenous channels, microinjection pump microbubbles, and high-frequency probe for ultrasound irradiation at the myocardial infarction, two per week Times, continuous treatment for four weeks.
  • CD31 immunohistochemical staining of vascular markers showed an increase in vascular density in the peri-infarct region of monkey hearts (B) treated with copper-loaded microvesicles compared to the control group of monkeys with myocardial infarction (A) (X 200) ).
  • Ultrasound-loaded microbubble treatment can promote microvascular regeneration around the myocardial infarction area, improve local blood supply, and thus promote myocardial regeneration and cardiac function recovery.
  • albumin 1 : 1 molar ratio.
  • albumin 1 : 1 molar ratio.
  • the molar ratio 15 ml of 5% chelated zinc human albumin was prepared.
  • Stability test Inject the aforementioned zinc ion-incorporated microbubbles into a 20ml glass bottle, seal, 4
  • Stability test Inject the above-mentioned micro-bubble combined with selenium into a 20ml glass bottle and seal it.
  • Example 12 Animal experiment and results of albumin-binding copper + phospholipid microbubble myocardial infarction animal model 1.
  • a rabbit myocardial infarction model was prepared as in Example 2.
  • the phospholipid microspheres prepared in Example 11 and the chelated copper albumin polypeptide were continuously injected through the ear vein at a rate of 1 ml/min.
  • the infusion was simultaneously irradiated with ultrasound to continuously irradiate the left anterior region.
  • the heart is turned back and forth to the apex, and the ultrasonic output energy is adjusted to the maximum and the color Doppler mode is enabled.
  • the myocardial infarction area of the ultrasonically irradiated phospholipid microspheres and chelated copper albumin in the myocardial infarction area is compared with the microvessel density in the myocardial infarction area of the control group of only the phospholipid microspheres, and the chelated copper albumin is contained.
  • the microvessel density of the myocardial infarction area of the experimental group was significantly higher than that of the control group.
  • a glucose chelate copper solution 10 ml was placed at a molar ratio of glucose:copper sulfate of 1:1.
  • An additional 5 ml of SONOVUE phospholipid microsphere solution was added to prepare a 15 ml glucose-bound copper + phospholipid microsphere suspension.
  • a rabbit myocardial infarction model was prepared as in Example 2.
  • the glucose-binding copper + phospholipid microsphere suspension prepared in Example 13 was continuously injected through the ear vein at a rate of 1 ml/min.
  • the infusion was simultaneously irradiated with ultrasound to continuously irradiate the left anterior region, from the bottom of the heart to the apex of the heart. Continuous fan-scanning back and forth, ultrasonic output energy is maximized and color Doppler mode is enabled. Injections and irradiation were repeated every 2 weeks with the same dose each time. After 4 weeks, the rabbits were sacrificed, and the gross heart shape and pathological sections of the rabbits were observed. The blood vessel regeneration and activation in the myocardial infarction tissues of the control group were compared and analyzed.
  • the myocardial infarction area of the irradiated phospholipid microspheres and the chelated copper glucose in the myocardial infarction area was compared with the microvessel density in the myocardial infarction area of the phospholipid microsphere-only control group, and the experiment containing the chelated copper glucose solution was shown.
  • the microvessel density of the myocardial infarction group was significantly higher than that of the control group.
  • the pharmaceutical composition prepared by the invention has the function of ultrasonic targeted release of trace elements and can target the release of trace element preparation under ultrasonic action, thereby achieving the effect of releasing trace elements in local tissue and producing biological effects related to the trace elements.
  • tissue angiogenesis, tissue regeneration or anti-tumor, its curative effect, stability and safety is a new pharmaceutical preparation with excellent clinical application and industrialization prospects.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种具有超声靶向释放微量元素作用的药物组合物,其包含浓度大于1X106个/ml,粒径小于10μm的空心微球,和至少一种小于或等于人体十倍生理剂量的微量元素,以及药学上可接受的载体或辅料,其中微量元素与空心微球以结合的形式存在,所述空心微球由药学上可接受的成膜材料制备而成。

Description

一种靶向释放微量元素的药物组合物及制备方法和应用 技术领域
本发明公开了一种定向控释微量元素的药物组合物,特别是能被超声定 向控释, 可诱导组织再生、 抗肿瘤的药物组合物。
技术背景
微量元素在维持人类健康中起基础性的作用, 主要生理功能是在各种酶 系统中起催化作用, 以激素或维生素的必需成分或辅助因子而发挥作用, 形 成具有特殊功能的金属蛋白等。 微量元素生理作用的意义可以和维生素相 比, 但机体可以自行合成一些维生素而无法合成任何元素, 从这点看, 必需 微量元素对人体较维生素更为重要。必需微量元素的基本定义是指那些具有 明显营养作用及生理功能, 对维持机体生长发育、 生命活动及繁衍等必不可 少的元素。 所谓"必需 "gp : ① 机体必须从外界饮食中摄取这种元素, 当从 饮食中去除这一元素后, 机体就会出现这种元素的生理性缺乏状态。 ② 补 充这一特定元素后, 机体的这种缺乏状态将得到缓解。③这种特殊的元素对 机体总具有某种特异的生化功能, 这种作用不能被其他任何元素完全代替。 当这种元素摄入不足会引起机体生物学功能障碍,而恢复这种元素的生理水 平后又能缓解或预防这种功能障碍。 机体一旦离开这种元素, 既不能生长, 又不能完成其应具有的生命周期。另外,必需微量元素还有以下特点:① 这 种元素以相似的浓度存在于不同动物的组织中。②不论动物的种类如何, 去 除这种元素后会出现相似的生理、 生化异常。③有这种元素存在时能减轻或 预防上述异常。 ④ 这种异常改变在缺乏得到控制时也能被治愈。
目前, 微量元素中的碘、 硒、 锌、 铁、 铜、 锰、 铬等已被国际上确认为 "维持机体正常生命活动不可缺少的必需微量元素"。 随着科学的发展, 人类 越来越认识到必需微量元素在维持健康中的基础性作用。有些元素不仅仅可 以抗感染, 而且与许多慢性、 流行性、 地方性、 甚至恶性病变有关联。 大量 流行病学调查指出, 机体若缺乏必需微量元素, 可能会使人群对疾病的敏感 度增高, 导致亚健康状态或疾病的发生和发展。
微量元素虽然在人体内的含量不多, 但与人的生存和健康息息相关。 多 年来, 微量元素在人体中的重要性越来越得到重视。 硒、 锌、 铁、 铜等微量 元素已被证明具有多种有益的的生物学效应。 根据科学研究, 到目前为止, 已被确认与人体健康和生命有关的必需微量元素有 18种, 即有铁、 铜、 锌、 钴、 锰、 铬、 硒、 碘、 镍、 氟、 钼、 钒、 锡、 硅、 锶、 硼、 铷、 砷等。 这每 种微量元素都有其特殊的生理功能。 尽管它们在人体内含量极小, 但它们对 维持人体中的一些决定性的新陈代谢却是十分必要的。一旦缺少了这些必需 的微量元素, 人体就会出现疾病, 甚至危及生命。 如缺锌可引起口、 眼、 肛 门或外阴部发红、 丘疹、 温疹。 又如铁是构成血红蛋白的主要成分之一, 缺 铁可引起缺铁性贫血。 国外曾有报道: 机体内含铁、 铜、 锌总量减少, 均可 减弱机体抗病能力, 助长细菌感染, 而且感染后的死亡率亦较高。 它们的摄 入过量、 不足或缺乏都会不同程度地引起人体生理的异常或发生疾病。
虽然微量元素的重要性已获得公认,但是微量元素的摄入和作用效应目 前被广泛认可的主要局限于膳食添加和保健应用。这主要受制于微量元素的 生物学效应具有两种矛盾性: 1.效能和剂量的矛盾。 任何一种微量元素, 对 于机体而言, 都必须服从于 "微量 "的要求, 虽然这类金属元素对机体而言是 至关重要, 但机体含量和摄取量都要求极低, 这就往往导致机体对此类元素 的摄取和利用缺乏效率, 并易发生微量金属元素中毒。 2.常规摄取和体内分 布的非特异性和疾患部位的特异性浓聚需求的矛盾。特别是当机体处于疾患 状态时, 对微量元素的利用就更为困难。 如心梗患者的心肌组织对铜离子的 摄取大量降低, 引起缺血修饰蛋白反应, 造成铜离子从心脏中丢失。 早期动 物实验发现如将大鼠心脏分离出来并在体外灌注, 当灌注停止 45分钟后再 重新灌注, 心肌细胞严重损伤, 心脏中铜离子大量的释放。 从心肌缺血的病 人的尸检结果也发现在心肌缺血及周围的部位, 铜离子的浓度明显下降。 又 如在肝炎或肝纤维等病理状态, 肝病患者体内普遍缺硒、 锌, 并且病情越严 重, 血液中的硒、 锌水平越低。 在这种肝病状态, 肝脏难以充分利用食物的 硒、 锌, 从而造成膳食补充的效率低下: 即使正常剂量的膳食补充, 也难以 达到靶向器官的有效需求, 如加大剂量又易产生金属毒性。 诸如此类情况, 机体普遍存在这种困境: 即受损伤组织越需要的微量元素在病理状态下越难 以靶向的、 高效的获取。
目前情况下, 微量元素的摄取必须直接或间接由土壤供给, 即通过口服 相关含量的各种食物或类似善纯之类的复合性的口服保健药物摄取。虽然已 创造出不同方法提高对微量元素膳食补充效率, 比如采用纳米级别的微量元 素。 或者采用生物富集的方法: 即利用海藻类具有优良生物富集作用的食品 原料, 富集更多量的微量元素, 以提高微量元素的口服摄取效率。 但这类方 法仍然受制于特定器官的功能状态, 如相关器官功能已经受损, 微量元素即 使通过膳食大量补充仍然难以达到其治疗浓度和生物生理效果。
发明内容
为了克服现有技术的缺陷,本发明提供一种具有超声靶向释放微量元素 作用的药物组合物, 其包含浓度大于 1 X 106个 /ml, 粒径小于 ΙΟ μ ηι的空心 微球, 和至少一种小于或等于人体十倍生理剂量的微量元素, 以及药学上可 接受的载体或辅料; 其中微量元素与空心微球以结合或游离的形式存在, 所 述空心微球由药学上可接受的成膜材料制备而成。
进一步的, 所述空心微球粒径为 l〜5 m; 所述空心微球内含气体是空 气、 氮气、 氟化硫气、 氟代垸烃类气体或其他无毒性气体或上述一种或一种 以上气体成分的任意组合的混合气体。
所述微量元素为铁、 铜、 锌、 钴、 锰、 铬、 硒、 碘、 镍、 氟、 钼、 钒、 锡、 硅、 锶、 硼、 铷或砷离子中的一种或一种以上的任意组合, 优选为铜、 锌、 硒、 铁中一种或一种以上的任意组合。
一方面,所述结合形式的微量元素与空心微球通过化学作用或物理作用 相互结合, 优选的, 结合形式的微量元素与空心微球是由以下方法制备的:
1 )按照摩尔浓度比为: 1 :0.05到 1 :500将微量元素离子与成膜材料溶于水或 有机溶剂中,使微量元素离子通过物理或化学作用与膜材结合形成微量元素 复合膜材; 2 ) 用常规方法将步骤 1)得到的复合膜材, 制备成粒径小于 10 μ m的空心微球。
另一方面, 所述游离形式的微量元素是指没有与空心微囊结合的、 以微 量元素离子与蛋白、 多肽、 氨基酸、 葡萄糖或其他可结合微量元素的化合物 形成复合物存在于载体或辅料中, 优选的, 所述微量元素与蛋白、 多肽、 氨 基酸、 葡萄糖、 其他可结合微量元素的化合物的摩尔浓度比为: 1 :0.05 到 1 :500。
进一步的, 本发明所述成膜材料为人血白蛋白、 磷脂或其他高分子聚合 所述的载体或辅料为去离子水或生理盐水或葡萄糖溶液或含微量元素 离子复合物的溶液, 所述的微量元素离子复合物为微量元素离子与蛋白、 多 肽、 氨基酸、 葡萄糖或其他可结合微量元素的化合物形成的复合物。
本发明所述的药物组合物, 优选为注射制剂, 更加优选为粉针剂。 本发明还提供本发明所述的药物组合物在制备促进血管或组织再生以 及抗肿瘤的超声靶向释放药物中的用途
所述的药物组合物经静脉注射入人体内,利用超声波对治疗部位进行辐 照,利用含气空心微球与超声波的相互作用达到局部释放微量元素离子的目 的。
本发明所述的超声靶向释放是指一定能量的超声波使微泡破裂或振荡 等空化效应而促使及强化相关金属离子在超声辐照局部释放和 /或促进混悬 液中的相应金属离子组分进入辐照组织,达到促进血管、组织再生和 /或抗肿 瘤的临床目的。
超声靶向释放的微量元素可诱导超声波辐照部位产生携带的微量元素 离子相对应的生理功效。
本发明还提供制备本发明所述的药物组合物的方法:首先制备结合微量 元素离子的空心微球, 制备方法包括:
1 ) 按照摩尔浓度比为: 1 :0.05到 1 :500将微量元素离子与成膜材料溶于 水或有机溶剂中,形成由一种或一种以上微量元素离子通过物理或化 学作用结合形成微量元素复合膜材;
2 ) 将步骤 1)得到的复合膜材, 制备成粒径小于 10 μ ηι的空心微球;
3 ) 将制备完成的结合微量元素离子的空心微球与权利要求 1、 7、 10所 述的载体或辅料及复合物相混合形成混悬药物组合物; 4) 直接冷藏保存作为混悬药物注射剂或冷冻干燥制备粉针剂。
步骤 2) 可利用以下任一一种药学常用微球制备方法制备: 超声波声振 法、 冷冻干燥法、 喷雾干燥、 活性 /可控自由基聚合、 沉淀聚合法、 悬浮聚 合, 乳液聚合, 种子聚合, 分散聚合以及沉淀聚合等异相聚合体系、 离子交 联法、 乳化离子凝胶法、 离子沉淀-化学交联法、 乳化-化学交联法、 复乳交 联法、 热交联法、 凝聚法、 乳化-溶剂蒸发法。
或者, 本发明药物组合物还可以由以下方法制备, 首先制备未结合微 量元素离子的空心微球, 制备方法包括:
1 )按前一方法的步骤 2)所述的任一一种药学常用微球制备方法, 制备 成粒径小于 10 μ m的空心微球;
2)将步骤 1 )得到的空心微球与结合了一种或一种以上微量元素离子的 蛋白或多肽或者氨基酸或葡萄糖或其他可结合微量元素的化合物形成的复 合物溶液混合形成混悬药物组合物;
3 ) 直接冷藏保存作为组合药物注射剂或经冷冻干燥制备粉针剂。 由于机体具有微量元素的非靶向性微量摄取和药用生物学效应器官的 靶向性高浓度需求之间的矛盾性,我们认为微量元素的局部定向或靶向释放 具有重大的临床意义。但目前尚无法达到通过口服促成微量元素的定向释放 的目的, 因为, 目前尚未见能有效实施靶向微量元素释放的口服药物面世。 口服的微量元素多来源于食物或以无机、 有机物的状态通过肠壁吸收, 经肝 脏处理后是以全身性非特异性分布为特点。 因此, 如需达到靶向释放微量元 素的目的, 从临床角度考虑, 以经静脉注射为可取途径。
然而水溶状态的微量元素离子盐, 即使是局部涂抹亦有可能产生严重的 刺激反应。 因此如进行金属离子盐溶液的直接静脉注射, 不但无法达到靶向 器官的定向释放和局部浓聚的目的,反而有产生严重毒副作用的隐患。此外, 这类微量元素离子的盐离子状态往往不具备生物学活性,都需要以生物兼容 方式结合和传输才能发挥生理作用, 比如和多肽、 蛋白、 葡萄糖等的结合。 因此, 要达到定向或靶向器官的微量元素释放的目的, 本发明的思路是: 第 一步必须考虑的是生成有效的蛋白或多肽的微量元素结合体或络合体或缔 合物。 第二步考虑靶向释放的方法和效率。 鉴于此, 我们首先考虑的是利用 人体最为普遍的金属离子携带蛋白:白蛋白作为优选蛋白,因为白蛋白是人体 外周血中最主要的金属离子结合蛋白, 它几乎能和所有金属离子有效结合, 并且非特异性输送至任何器官。
白蛋白由 585个氨基酸组成, 氨基酸之间都以肽链相连, 并且扭曲成蚯 蚓状或蜂窝状,具有无数的网状空隙,为镶嵌携带药物创造了有利空间条件。 第二步我们考虑的是如何做到靶向释放或定向组织器官释放的方法选择。靶 向给药系统是现代药物研究的重点之一。将药物与特异的载体偶联, 把药物 选择性导向病变部位, 以达到增加药物浓度、 改善药代动力学参数、 减少毒 副作用的目的。 迄今, 所有这类白蛋白微球产品或实验, 均局限于抗肿瘤化 疗药物的靶向释放或抗生素的控释。近年来有关白蛋白微球和白蛋白纳米粒 的应用研究逐渐增多, 多是利用微球和纳米粒的表面改性来获得更好治疗效 果, 如甘草酸表面修饰白蛋白纳米粒, 叶酸偶联米托蒽醌白蛋白纳米粒、 磁 性阿霉素白蛋白纳米粒等, 但尚无上市产品, 仅有紫杉醇白蛋白纳米粒进入 临床阶段 (美国), 因为它们在体内受到多种因素的影响 [1-14]。
理论上, 存在有两种靶向思路, 第一: 主动靶向。 这类靶向的形成, 必 须首先合成针对某一靶向器官或组织细胞的白蛋白。 例如抗体 -抗原介导的 白蛋白微球。在微球表面结合特定的抗体或多肽, 这可以使微球对某种细胞 具有特异的结合能力, 从而将药物导向该细胞, 实现特异性杀伤。 李元春等 [5]将人肝癌特异性单克隆抗体 HAbl8 的 F(ab':>2 片段偶联到多柔比星白蛋 白毫微球上, 制成免疫毫微球。 结果表明, 免疫毫微球能结合并有效地杀伤 该细胞株, 其效应呈剂量依赖性, 而对照的毫微球则不能结合和明显地杀伤 该细胞株。或形成细胞特异性受体结合的白蛋白微球, 如程耀等 [6]用肝实质 细胞膜上的去唾液酸糖蛋白受体对非还原性半乳糖或 IV-乙酰基半乳糖的特 异性识别和摄取, 制备了载药的白蛋白微球, 再在其表面包裹一层半乳糖酰 化壳聚糖衍生物,最终得到半乳糖酰化壳聚糖衍生物包覆的 5-氟尿嘧啶白蛋 白微球, 以期能特异性结合到细胞表面。
第二种是所谓被动靶向。 即利用物理作用, 使白蛋白微球局部释放。 例 如,磁性白蛋白微球将药物和磁性物质共同包裹于白蛋白中形成磁性白蛋白 微球。磁性药物微粒经血管注入体内后, 利用体外磁场引导药物微粒滞留于 某一组织或病灶部位, 延长药物释放时间, 以达到提高疗效和降低毒副作用 的目的, 为药物靶向提供了一个新的途径。 Chatterjee 等 [4]通过聚苯乙烯磁 性微球与白蛋白磁性微球的比较,发现白蛋白磁性微球具有更高的耦合蛋白 质的能力, 蛋白质(生物凝集素)修饰的白蛋白磁性微球与红细胞结合的能 力远远超过聚苯乙烯磁性微球。
所有上述白蛋白微球产品主要重点在于化疗或抗炎治疗, 但至今, 尚未 见其对微量元素的定点靶向的释放的上的应用和开发。一则上述靶向修饰的 产品或实验的作用目的与本专利迥异,均未对微量元素的局部浓聚释放产生 发明思路。 其二结合了微量元素后的白蛋白如再次进行靶向修饰, 其生物活 性、 稳定性以及机能难以预期和把握。
因此本发明的思路是,欲达成第二步靶向定点释放微量元素形成局部组 织器官的微量元素浓聚的效果,最理想的状态应是: 1. 尽量减少对蛋白质或 多肽药物分子的修饰或改性。蛋白质类药物是由氨基酸组成的具有一定空间 构象的生物大分子,分子量常为数千至几十万,其活性有赖于其正确的结构, 包括一级结构和空间结构,而其结构受各种因素的影响,比如说各种蛋白酶、 重金属、 有机溶剂、 温度、 pH值、 抑制剂、 机械力等。 因此, 在其制剂制 备、 贮存和释放过程中很容易受外界条件影响而失活, 所以维持蛋白质的稳 定性十分重要。 因此无其他药物的修饰, 单纯结合微量元素的白蛋白, 可能 是最大程度维持金属结合白蛋白生物活性的形式; 2.类似抗原抗体修饰的主 动靶向蛋白以及磁性材料修饰的白蛋白包囊, 因为添加了附属的抗原或抗体 蛋白或大分子物质及其他磁性金属元素,其潜在的免疫原性和致病性是难以 预测, 而且不利于产品的临床应用批准和推广; 3.由 1, 2, 本发明认为被动 靶向是微量元素结合白蛋白或其他生物膜材是定向释放的优选途径。
依据前述思路, 本发明设计了一套生物膜-微量元素空心微囊-超声给药 系统。 本发明所涉及到生物膜材优选为白蛋白, 制备白蛋白-微量元素空心 微囊。 其实质是利用白蛋白两种特性: 1.高效率的微量元素的结合率; 2.白 蛋白自身的表面活性剂作用。本案的创新在于白蛋白自身即作为微量元素的 携带载体, 又是微量元素的释放载体。 本发明的白蛋白微囊实际是利用白蛋 白表面活性剂特点形成的内含气体成分的微气囊。它既不同于包被含药成分 的液相核心的常用白蛋白微球制剂, 也不同于单纯用于超声造影成像的白蛋 白微泡。 因为其目的既不在于常规的白蛋白微囊制剂--利用白蛋白包囊输送 包被在内的药物分子, 也不在于超声的造影对比成像。 其主要目的在于利用 超声对微气泡的破坏作用使微量元素-白蛋白膜在局部破裂释放, 形成超声 辐照部位的微量元素的定点释放和浓聚, 从而达到治疗和期望的生理作用。 大量物理研究显示, 超声具有典型的空化作用, 即较高能量的超声声场局部 可以产生瞬间的高压和低压交替, 形成传播局部的空腔化, 伴随这个过程, 会产生瞬间的高温高压。 当超声声场中存在微气泡时候, 这种空化作用更为 强化, 会使局部的组织或血液产生更为强烈的瞬间空化即高温高压。 当微气 泡破裂时候, 此类作用达到峰值, 产生的局部瞬间能量, 甚至可以使局部的 微血管内皮间隙扩大。这种物理效应将使微泡和超声作用局部形成有效的血 液紊流和血管间隙扩大, 有助于微量元素在局部的快速弥散和进入组织间 隙。 因此实质上本发明的这套系统具备典型的被动靶向给药的特点。 我们的 实验实施方案证实: 即单纯结合了微量元素的白蛋白是其生理结合形式, 理 论上最大限度的保持了微量元素的本身的生理特性,而且被动的超声辐照靶 向释放不但结合了超声声束的指向性而且结合了超声声场 +微气泡的空化效 应, 使微量元素在局部的释放和弥散更为快速而直接。
由于本发明以微囊气泡对超声声场的空化作用的强化作为靶向释放的 主要投送手段, 因此本发明还包括如下次选剂型方案: 以微量元素多肽复合 物作为制剂主剂, 以膜包裹微囊气泡作为辅剂, 形成微量元素 -多肽复合物 + 微气泡混悬液, 注射入体内, 以超声辐照击破为定点靶向释放工具。 同样可 达成类似的微量元素定点释放的目的。次选方案所指膜包裹微囊气泡可是磷 脂包裹微气泡也可是白蛋白包裹微气泡或聚合物所致微气泡。
目前,已有载药超声微泡进行靶向释放大分子药物用于溶栓、癌症治疗、 基因靶向输送等的报道。 然而, 这类药物制剂局限于大分子合成药物释放的 研究和实验中, 并且停留在理论探讨或实验研究中。 这与本发明所涉及到的 基础微量元素离子的应用截然不同。 这是因为金属离子是基础离子, 其毒性 和药用性剂量很难准确把握, 另一方面除本发明外, 未见超声微泡的靶向制 备思路和制备方法应用于金属离子释放的药物制剂出现。
因此本发明的重要创新在于对微量元素体内的靶向输送的药物组合物 的发明和思路应用。 人体所需微量元素是一类人体必不可少的特殊的制剂, 人可耐受的生理剂量小, 过量游离的微量元素离子在体内通常有毒, 其并非 如普通疾病治疗药物一样, 需要达到去除病灶的目的, 如何以注射形式直接 给药从而克服口服补充微量元素的缺陷,进而达到良好的治疗和生理效果完 全无法预料, 也无现有技术的相关报道, 本发明人正是创造了一种特定的组 合方式, 使微量元素以体内超声定向释放的方式, 达到了满意的治疗和调节 生理作用的效果。
如前述,水溶性的微量元素盐一般在体内或无法起作用或具有高度的毒 性。 微量元素离子 (比如铜、 锌、 硒等) 必须以生物兼容的方式投送。 这种 方式主要是微量元素和相应多肽或蛋白复合形成多肽或白蛋白复合物,才能 有效对细胞和组织产生生理生化作用。这里所指蛋白及多肽即可指白蛋白也 可指其他金属复合蛋白或多肽。
特别的是, 多肽微量元素复合物对局部组织涂抹或喷涂产生的治疗作用 已得到广泛认可和接受, 并有相关药剂生产制备。例如铜多肽复合物对于皮 肤及脏器浅表伤口的治疗和作用已为美国专利 U.S. Pat. Nos.4,760,051; 4,665,054; ,877,770; 5,135,913 and 5,348,943.等确认和公布。 铜多肽复合物对 胃溃疡的防治和治疗作用亦被美国专利 U.S. Pat. Nos. 5,145,838; 4,767,753 and 5,023,237所授权及确认。但所有这些专利均只涉及到微量元素的体表或 空腔脏器表面的涂抹或贴膜治疗作用。均未形成对体内实质性脏器的微量元 素的局部浓聚而致的治疗作用。但这些均给予了本发明一个重要的逻辑性的 推理,局部的微量元素的释放无论是对浅表组织还是对体内的实质性脏器组 织的受损组织, 只要能在局部形成浓聚和定点控释, 就能产生有效的积极的 疗效。
如前述,本专利所涉微量元素多肽复合物,意指以下多肽复合物 (表 1 是 各个氨基酸的英语简称和缩写对应表)。
表 1 : 氨基酸的英语简称及缩写对应表
Figure imgf000009_0001
Valine 微量元素多肽可以是指以下复合物 (M指微量元素):
glycyl-L-histidyl-L- lysine :M ("GHKM"),L-alanyl-L-histidyl-L-lysine:M
("AHK-M"), L-valyl-L-histidyl-L-lysine:M ("VHK-M"),
L-leucyl-L-histidyl-L-lysine:M ("LH -M"), L-isoleucyl- L-histidyl-L-lysine:M ("IHK-M"), L-pheny lalanyl-L-histidyl-L-lysine:M ("FHK-M"),
L-prolyl-L-histidyl-L-lysine:M("PHK-M"), L-seryl-Lhistidyl- L-lysine:M ("SHK-M"), or L-threonyl-Lhistidyl- L-lysine:M ("THK-M")。
在此, 多肽微量元素复合物总体上是指一类配位化合物, 其包括一多肽 分子和微量元素非共价复合于前述多肽上。多肽基团是指两个或多个氨基酸 序列或氨基酸衍生物序列共价结合。总体而言, 本专利所提氨基酸包含一个 氨基, 一个羧基, 一个氢原子以及一个氨基酸侧链结合基团。 本专利所涉及 的多肽氨基酸主要是指 alpha, beta或 gamma氨基酸, 例如:
XH2 NH2
H ""- ' C00H H— C― H2 ~~ C00H
X X
alpha-amino acid beta— amino aci d
H2
H― c— CH2-CH2— C00H
X
gamma--amino add
上面分子式中 x代表氨基酸侧链结合部位。 本专利所提及氨基酸复合 物可以是 L型或 D型或两者混合。 本专利所提及的氨基酸衍生物包括以下 图表所示的结构。
8
替换页 (细则第 26条)
Figure imgf000010_0001
本发明所包含的组氨酸衍生物的结构如下: 此结构中 n=l-20 (排除 n=3 的情况)。
Figure imgf000011_0001
本发明所提及的多肽微量元素复合物可依据以下通式描述:
[R1-R2-R3]:M, 此处 M, 至少是上述定义的一个氨基酸或氨基酸衍生物通过 肽键连于1。此处的 R单个氨基酸或氨基酸衍生物, 这样的多肽微量元素复 合物一般归类于三肽。本专利涉及的另一多肽微量元素复合物的通式描述亦 可为 [R,-R,-R,]:M。 但在此类中 M是化学基团通过酰胺键连于 R。 此处的化 学基团指的是包含氨基并能与任何含羧基末端的 R形成酰胺键连接(比如组 氨酸的羧基末端, 精氨酸的羧基末端或相关衍生物)。 更进一步阐述: R 是 拥有 1-20个碳原子的 -NH垸基, 它与 R通过酰胺键相连, 或是拥有 6-20个 碳原子的芳氨基。 此处所提及的垸基不排除包含氨基, 辛胺, 或丙胺。 类似 的, 芳氨基不排除包括苄胺或苯甲基。对于具有能与 R的羧基末端产生酰胺 键连接的氨基, 可包括多胺比如精胺及亚精胺。
本发明涉及多种微量元素的结合和靶向输送, 以下实施实施例以铜为主 要实施目标以验证本专利所涵盖的微量元素的定点输送成效。生理剂量的铜 离子具备很多生物学功效,例如刺激伤口或损伤组织中的胶原及弹性蛋白堆 积 (参考, Maquart et al, J. Clin. Invest. 92:2368-2376 (1993); Maquart et al, FEBS Lett. 238(2):343-346 (1988) 及 Wegrowski et al., Life Sci.
51(13): 1049-1056 (1992 调节金属蛋白酶基质的活性(参考, Simeon et al., J. Invest. Dermatol. 112(6):957-964 (1999))。提高血管生成活性(参考, Ahmed et al, Biomaterials 20:201-209 (1999); Hu, G. F" J. Cell. Biochem. 69:326- 35 (1998); Lane et al" J. Cell. Biol. 125(4):929-943 (1994); and Raju et al" J CI 69(5): 1183-1188 (1982 提高创伤修复的速度和程度 (参考, Counts et al,
(1992); Downey et al, Surgical Forum 36:573-575(1985)^ Fish et al, Wounds 3: 171-177 (1991); Mulder et al, Wound Repair and Regeneration 139 (1993); Swaim et al.,Am. J. VetRes. 57:394-399 (1996); and Swaim et al" J. Am. Anim. Hosp. Assoc. 29:519-525 (1993))。
然而如前述,水溶性的铜盐离子是没有生理活性甚至有相当的毒性和刺 激性, 被禁止直接作用于伤口或疤痕区域。铜离子必须以生物兼容方式被投 递。 因而,本发明微量元素离子也可以用葡萄糖与微量元素的复合物方式输 送, 其结构通式如下 (X代表微量元素):
Figure imgf000012_0001
α-D-葡萄糖 β-D-葡萄糖
Figure imgf000012_0002
α-L-葡萄糖 β-L葡萄糖
因此,本发明公开了一种能用于与超声相互作用定向释放微量元素离子 进而促进超声辐照局部的促进疤痕活化、 血管、 组织再生、 抗肿瘤的目的的 被相应金属离子修饰或结合的膜包裹含气微囊及其与结合了微量元素离子 的膜材溶液或多肽结合微量元素离子的药物组合物。这也包括了单纯膜包裹 微囊与相应微量元素离子溶液或结合了相应微量元素离子的膜材混悬药液。
这种复合药液能在超声的辐照作用下, 定向导入微量元素离子进入体 内。 从而能有效使超声辐照到的部位的组织血管再生、 组织再生或抗肿瘤的 生物学效应。 其广泛的临床前景包括: 梗死心肌的血管再生、 冠脉狭窄后的 血管再生、 各种脏器血管狭窄性或梗死性病变的促血管生成(诸如肢体动脉 狭窄或梗死后的促血管生成)。 潜在的应用主要是相应微量元素离子已证明 的生理生物学效应, 例如包括体内脏器术后的疤痕内的血管再生, 如各种实 质脏器后的疤痕或促进组织再生, 例如: 肝脏术后、 胃肠术后、 食道术后、 子宫术后等, 肝纤维化的治疗, 也包括诸如对肿瘤的生长抑制等。
本发明所提及的再生包括多方面的含义: 1、 疤痕组织的血管化和弹性 恢复; 2、 疤痕所在部位的实质细胞再生; 3、 坏死部位的血管及实质细胞再 生; 4、 狭窄缺血部位的血管再生; 5、 组织纤维化逆转等。
本发明的超声靶向释放微量元素的药物组合物制剂具有极好的临床应 用前景, 为各种病变组织的血管、 组织及抗肿瘤治疗等提供了一种安全有效 的治疗新途径。 图图图图图图图图图图图图
附图说明
图 1 不同浓度 Cu2+对人脐静脉血管内皮细胞生长的促进作用
图 2 不同浓度 Cu2+对人脐静脉血管内皮细胞生长的促进作用对比 图 3 琼脂糖凝胶电泳检测 A组荧光定量 RT-PCR产物
图 4 三组细胞 eNOS和 Tie-1表达差异
图 5 左图为假手术组, 中间图为对照组 (未加入海藻酸钙 +CuS04贴 膜), 右图实验组, 即贴膜后梗塞区域的血管再生显示。
图 6 心梗病理切片结果的对比。 上面一组为 HE染色, 下面一组为 Masson三色法。
7 人血白蛋白与铜离子结合的荧光淬灭
8 未螯合 Cu2+人血白蛋白微球的荧光峰
9 加入 50 μ 1 CuS04后螯合 Cu2+微球的荧光吸收峰图
10 加入 100 μ 1 CuS04螯合 Cu2+微球的荧光吸收峰
11 加入 200 μ 1 CuS04螯合 Cu2+微球的荧光吸收峰
12 加入 300 μ 1 CuS04螯合 Cu2+微球的荧光吸收峰
13 加入 400 μ 1 CuS04螯合 Cu2+微球荧光吸收峰
14 加入 500 l CuSO4螯合 Cu2+微球荧光吸收峰
15 加入 600 μ 1 CuS04螯合 Cu2+微球的荧光吸收峰
16 加入 700 l CuSO4螯合 Cu2+微球荧光吸收峰
17 加入 1000 μ 1 CuS04螯合 Cu2+微球荧光吸收峰
18 单纯白蛋白微泡随加入的铜离子的量的增多,其荧光淬灭逐渐增 图 19 螯合铜离子白蛋白膜包裹微球粒径分布
图 20 流式细胞仪检测显示微泡结合铜的粒径分布
图 21 高能量彩色多普勒模式连续击破白蛋白微球示意图
图 22 A为对照组, 未注射螯合白蛋白微泡的心梗模型兔 4周后的大 体病理图片。 B为实验组, 射螯合白蛋白微泡的心梗模型兔 4周后的大体病 理图片。
图 23 A, B 为对照组, 未进行超声辐照靶向输送螯合铜离子。 C, D 为实验组, 行超声辐照靶向输送螯合铜离子产生明显胶原和血管再生。
图 24 实施例 7的试验设计流程图
图 25 超声心动图检测结果, 左图表示手术前, 右图表示手术后 图 26 超声心动图检测结果, 左图表示手术前, 中间图表示手术后, 右 图表示修复治疗 3周后
图 27 梗死心肌新生血管生成情况。 A-D为 HE染色 (200 X ), E-H为 Masson染色 (200 X )
图 28 治疗前后各组梗死心肌新生血管密度
图 29 Masson染色显示的各组心梗面积
图 30 各组的心梗面积统计结果
图 31 超声心功能评价结果
图 32 组织病理学分析结果,对标本石蜡切片进行 Mason染色, A为对 照组, B, C为治疗组, A, B X 100 , C X 400
图 33 CD31免疫组化染色血管标记图, A为对照组, B为治疗组 图 34 免疫组化标记后进行血管计数结果
图 35 静置 2月后,流式细胞仪器显示结合锌离子后微泡粒径分布和浓 度变化
图 36 静置 2月后, 流式细胞仪器显示结合硒离子后微泡粒径分布和浓 度变化
图 37 心梗区域内经超声辐照磷脂微球及螯合铜白蛋白的心梗区域与 仅仅注射磷脂微球对照组心梗区域内的微血管密度对比显示
图 38 心梗区域内经超声辐照磷脂微球及螯合铜葡萄糖的心梗区域内 见明显的小血管再生图
图 39 心梗区域内经超声辐照磷脂微球及螯合铜葡萄糖的心梗区域与 仅仅注射磷脂微球对照组心梗区域内的微血管密度对比显示
具体实施方式
以下通过具体实施方式对本发明做进一步的说明,但是并非对本发明的 限制。 以下各个实施例中, 我们在微量元素中优选了铜离子进行离体细胞生 理效应的确定、 动物在体实验局部贴膜控释确认离体细胞的生理效应的发 生、螯合铜微泡在体控释微量元素对心肌产生离体细胞和在体贴膜实验相类 似的生理效应等实验, 以证明微泡联合超声局部控释微量元素产生局部治疗 和相对应生理效应的科学性和可行性。
主要实验材料: CuS04、 氯化锌、 硒醚、 白蛋白、 SONOVUE磷脂 SF6微 泡
实施例 1 确认铜离子体外的刺激细胞再生的生理学效果
体外细胞实验证实微量元素 -铜离子对人脐静脉血管内皮细胞 (human umbilical vein endothelial cell, HUVEC ) 能有效增强增殖与分化。 体外培养 并传代 HUVEC。 将 HUVEC 以 5χ 103个 /孔密度接种于 96 孔板, 根据向孔 板中加入溶液浓度的不同将细胞随机分成 3 组, A组 5 mol/L CuS04,B 组 25 μηιοΙ/L CuS04 , C 组为空白对照, 每组 4 个复孔, 基础培养基为 MCDB131 , 采用 MTT 法检测细胞增殖并绘制生长曲线。 另取 HUVEC 以 2xl05个 / 孔密度接种于 6 孔板, 分组同前, 荧光定量 RT-PCR检测 3 组 HUVEC 的内皮型一氧化氮合酶 (endothelial nitric oxide synthase, eNOS ) 基因和 Tie-1 基因表达。
结果: 由图 1和图 2可知, 生长曲线示前 3 d为指数增长期, 第 4 天开 始进入平台期。 A组细胞增殖能力从第 3 天开始明显高于8、 C 组, B 组 在 2 d 内高于 C 组, 但从第 4 天开始显著低于 C 组, 比较差异均有统计学 意义 (P < 0.05 ), 说明铜离子对内皮细胞的增殖促进作用明显强于对照组, 但铜离子浓度过高反而会抑制内皮细胞的增殖。
图 3为琼脂糖凝胶电泳检测 A组荧光定量 RT-PCR产物, 由表 1可知荧 光定量 RT-PCR检测示作用 48 h后, A、B、C组 eNOS基因表达分别为 7.294 士 1.488、 0.149 士 0.044 和 1.000 士 0.253, Tie-1 基因的表达分别为 1.481 士 0.137、 1.131 ± 0.191 和 1.000 ± 0.177。
表 1 三组细胞 eNOS和 Tie-1的表达情况 (;士 S)
Figure imgf000015_0001
*A组与 C组比较?<0.05; # B组与 C组比较?<0.05
由图 4可知, A组与 B、C 组比较,2 个基因的表达均有上调(P < 0.05 ); B组与 C 组比较, eNOS 基因表达下调 (P < 0.05 ), Tie-1 基因表达差异无 统计学意义 (P > 0.05 )。
结论: 5 μηιοΙ/L Cu2+能有效促进 HUVEC 的增殖与分化。
实施例 2 确认铜离子在体局部贴膜控释铜离子的生理学效果。
为确定铜离子在损伤疤痕的活化和刺激疤痕内血管再生的局部效果,对 局部心梗动物模型进行贴铜离子凝胶, 以验证局部缓释铜离子的生理学作 用。
1、制备海藻酸钙 +CuS04贴膜: 以 2%质量分数的海藻酸钠溶液 10毫升与 含 10mg CuS04溶液充分混合, 滴加 5ml CaCl2溶液后成膜。
2、 制备心梗模型: 麻醉状态下, 开胸游离并结扎兔心左前降支冠脉, 制 备兔左心心梗模型。 新西兰大白兔经腹腔注入 5%水合氯醛 (3ml/kg)镇静麻 醉, 不用气管插管和呼吸机, 保持兔自然呼吸状态, 仰卧位固定于手术台, 碘伏消毒。 为避免气胸的发生, 沿胸骨正中从剑突处开始剪开胸骨至胸骨中 段, 暴露纵隔及心脏, 保持两侧胸膜完整。 纵行剪开心包, 用棉签轻轻上抬 心脏显露支配左心室和心尖血供的左冠状动脉主支及室间沟。左冠状动脉结 扎参考文献报道, 二分支型结扎后侧分支的 50%, 三分支型结扎侧支的 75% 处。 术中行心电监测, 心电图 ST段持续性弓背样向上抬高, 心尖颜色苍白 且搏动减弱, 标志建立急性心肌梗死模型成功。 观察 10 min, 无致死性心律 失常发生时逐层关胸。 肌注 40万单位青霉素预防感染。 假手术组左室支下 心肌缝线, 但不结扎, 其余同冠状动脉结扎组。
3、 给药: 开胸状态下, 将前步所成膜贴附于左心前表面。 关胸。 稳定 4 周后, 再次开胸观察大体标本及病理切片差异。
由图 5可知, 对照组 (未加入海藻酸钙 + CuS04贴膜) 梗塞局部可见大 量的脂肪组织和纤维化组织堆积 (箭头示:),贴膜后梗塞区域的血管再生显示, 梗死组织出现了明显的心肌再生和心脏结构的恢复,其形态更接近假手术的 心脏, 可见明显的微血管网形成。
由图 6可知, 组织学(HE染色、 Masson三色法)观察 Cu贴膜处理的心肌 出现较多的新生血管,并有大量的单核细胞以及心肌纤维化的恢复。 CuS04贴 膜使局部心梗坏死组织内见显著的小血管及胶质增生。
结果显示,局部缓释的铜离子形成显著的促进血管再生和疤痕活化的生 理效果。 在兔的心肌缺血模型上, 我们用前步所成膜贴附于心肌缺血手术 4 周后的梗死心肌组织, 治疗 2周后, 每周动态心脏彩超及心肌灌注造影, 证 实铜离子局部补充后可有效改善心肌缺血及心功能,病理检查发现梗死心肌 组织内出现大量新生血管。
实施例 3 铜离子和白蛋白结合实验
实验中所用溶液用去离子水配制, 使用 0. ImoH 1的 NaCl保持离子强 度, 用 Tris- HCl作为缓冲液, pH值为 7. 4, 配制 HSA及硫酸铜溶液, 浓度 依次为 8. 76xl(T6 mo L - 1 和 6.48xl(T 4mo 1 - 1。 使用 1 cm 比色皿, 测 定了 1) 固定激发波长为 280 nm, 硫酸铜对 HSA进行滴定, 观察 HSA 的荧 光发射峰的变化。 由图 7可看出, Cu2+的加入并未明显改变激发峰、 最大荧 光峰的位置, 但荧光强度却随硫酸铜的量的增加而不同程度的减弱。 由于 HSA溶液的体积远远大于所滴加的金属离子溶液的体积, 因此可忽略稀释效 应。
蛋白质能够发出荧光, 是因为蛋白质中存在三种芳香族氨基酸残基: Trp、 Tyr和 Phe残基, 由于这些氨基酸残基不同的结构, 通常三者的荧光强 度比为 100: 9: 0.5。 根据蛋白质是否含有色氨酸可将其分为两类: A类蛋 白, 指不含 Trp残基只含 Tyr和 Phe残基的蛋白质; B类蛋白: 指既含 Trp 残基又含 Tyr和 Phe残基的蛋白质。血清白蛋白属于 B类蛋白, 有较强的荧 光。 虽然三种生色基团都有自己的特征荧光峰(Trp、 Tyr和 Phe的荧光峰位 分别位于 348、 303和 282nm), 但由于在蛋白质大分子内, 由 Phe到 Tyr 或 Trp的能量转移非常有效的, 因此整个分子的吸收和发射也不是这些单体 组分光学性质的简单加和减, 往往 Trp 残基的荧光占优势地位。 当在 270~290nm激发蛋白质时,不能忽略 Tyr残基的贡献,当激发波长大于 290nm 时, 可认为荧光都来自 Trp残基。 HSA中只含有一个 214位的 Trp残基, 荧 光发射峰在 350nm附近。 一般认为, 荧光主要是从 212位 Trp残基发出的, 在 342nm左右。 二者的最大激发峰都约为 280nm。 Trp残基可以用作局部构 象变化或芳香族氨基酸残基微环境变化的探针, 当加入金属离子等物质后, 利用血清白蛋白内源荧光的变化, 可以对结合进行定性和定量研究。
本实验实施例显示, 随着铜离子的加入, 更多的铜离子与人血白蛋白螯 合, 使白蛋白的荧光发生淬灭。
实施例 4 铜离子与白蛋白微泡的结合实验, 包括荧光分析结果 (铜离 子螯合白蛋白微泡的制备)
1.白蛋白微泡的制备:移取 20ml 5 %人血白蛋白溶液至连接三通的 20ml 一次性注射器内, 将超声仪探头插入液面下 2cm处, 以一定超声强度, 声振 20ml 1%人血白蛋白溶液,预声振 10s,再在声振的同时于 5秒内通入一定量 的 C3F8, 继续声振, 到终点温度后停止声振, 得 C3F8白蛋白微球混悬液, 混 悬液立即转移至 50ml药瓶内, 药瓶上端空气用 C3F8充分置换, 药瓶用胶塞 严封, 于室温下静置 24h。 摇匀后对微球进行粒径分析如下表 2, 微球平均 直径 2.15μηι。
表 2 : 白蛋白微球的粒径分布
Figure imgf000017_0001
表 2显示微泡平均粒径为 2.15μηι, 平均浓度为 3.7 Χ 108个 /ml。
2. 微泡膜与铜离子的结合实验:
精密吸取 5%HSA微泡溶液 1ml稀释到 250ml的容量瓶中, 移液管各取 10ml至 9个玻璃试管中, 依次分别滴加 Cu2+ ( 1/50稀释的饱和铜溶液) 溶液 待测。 以下表 3为各个不同浓度铜离子与 HSA微泡的结合的量:
表 3 : 加入的不同浓度硫酸铜 对应图编号 空白 PP PP-Cul PP-Cu2 PP-Cu3 PP-Cu4 PP-Cu5 PP-Cu6 PP-Cu7 PP-Cu8 PP-Cu9 滴加硫酸铜
Ομΐ 50μ1 Ιθθμΐ 200μ1 300μ1 400μ1 500μ1 600μ1 700μ1 ΙΟΟΟμΙ 体积
结果见图 8-18, 为白蛋白微泡加入不同浓度的硫酸铜后, 铜离子与白蛋 白微泡膜螯合后发生的荧光淬灭反应。 图 8-17均可见两个吸收峰, 前者为 加铜后的特征峰 (激发波长为 332nm左右); 后一个峰是未螯合铜离子的空 白白蛋白微球本身的吸收峰 (发射波长为 408nm); 数据读取方法: 每个峰 有两个表示值,从下到上读取,两个数据用.隔开,后者为荧光光谱吸收强度。
该实验证明铜离子与白蛋白微泡膜结合, 导致白蛋白的荧光强度渐小。 实施例 5 铜离子结合白蛋白微泡的制备 (载铜白蛋白微泡的制备) 铜离子与白蛋白结合后超声波分散制备白蛋白铜微泡实验,包括荧光分 析结果及微泡计量结果。 铜离子结合白蛋白微泡即是载铜白蛋白微泡。
一 1.首先制备结合铜离子的白蛋白溶液: 按硫酸铜: 白蛋白溶液 =h lmol 进行加样。 此实施例对应比例如下: lmg HSA加入 4.35x lO_6 molCu2+
2.移取 20ml 5 %螯合铜-人血白蛋白溶液至连接三通的 20ml—次性注射 器内, 将超声仪探头插入液面下 2cm处, 以一定超声强度, 声振 20ml 5%人 血白蛋白溶液, 预声振 10s, 再在声振的同时于 5秒内通入一定量的 C3F8, 继续声振, 到终点温度后停止声振, 得 C3F8白蛋白微球混悬液, 混悬液立即 转移至 50ml药瓶内, 药瓶上端空气用 C3F8充分置换, 药瓶用胶塞严封, 于 室温下静置 24h。 摇匀后对微球进行粒径分析, 粒径分布如图 19。 显示螯 合铜离子后微泡的平均粒径为 2μηι, 浓度是 3.1 X 108个 /ml
3.稳定性实验: 将前述结合铜离子的微泡注入 20ml玻璃瓶内, 密封, 5 度冰箱内保存。 至 2月后, 重新取样测量, 微泡浓度与粒径分布与刚制备出 的微泡没有明显改变。
流式细胞仪对微泡进行的粒径分析
Region EV Mean EV HPCV EV CV Count Pet Total
(区域) (电子体积均值) (半峰变异系数) (变异系数) (计数) (目标总数)
EV: 0-2 m 100.41 42.79% 43.26% 36,266 72.53%
1 -3:2-3 m 441 .94 5.38% 38.80% 8,871 17.74%
9:>3 m 993.08 0.00% 4.20% 5,135 10.27%
由图 20和表 3可知, 静置 2个月后, 粒径分布稳定在 1.5 μ ηι的正态峰值, 平均粒径: 1.95 μ ηι; 粒径 0-3 μ ηι的微泡占所有微泡范围的 90%, 微泡浓度 3 X 108个 /ml,与 2月前制备初期相比没有明显变化,说明螯合铜微泡稳定可靠。
实施例 6 白蛋白铜离子微泡超声辐照心肌梗塞动物模型实验
1、 以实施例 5方法制备 15ml白蛋白 C3F8, 其中共螯合 10mg铜离子。
2、 依照实施例 2制备心梗模型。
3、 给药: 行耳缘静脉连续以 lml/min的速度推注螯合铜离子白蛋白微 泡, 以超声波连续辐照左心前区, 由心底向心尖做来回连续扇形扫查, 超声 波输出能量调至最大并启用彩色多普勒模式, 图 21 为采用高能量彩色多普 勒模式连续击破白蛋白微球, 形成对心梗局部的铜离子被动靶向释放。 每 2 周重复一次注射和辐照, 每次剂量相同。 至 4周后, 处死实验兔, 观察实验 兔大体心脏形态和心梗病理切片,对比分析对照组的心梗疤痕组织内血管再 生和活化情况。
4、 结果
由图 22可知, A为对照组, 未注射螯合白蛋白微泡的心梗模型兔 4周 后的大体病理图片。左心前表面可见大量的脂肪堆积, 呈典型的心梗疤痕区 域脂肪变性、 脂肪堆积的表现 (箭头)。 B 为实验组, 注射螯合白蛋白微泡 后 4周, 心梗疤痕区明显活化, 表面见大量新生的毛细血管生成 (箭头); 由图 23可知, A, B 为对照组, 未进行超声辐照靶向输送螯合铜离子。 A: x400 Masson染色: 梗死区大量脂肪变性及脂肪空泡形成, 无血管增生。 B: xlOO Masson染色: 心肌梗死与正常交界区域仍见大量脂肪变性和脂肪空 泡形成, 无明显血管增生。 C, D为实验组, 行超声辐照靶向输送螯合铜离 子产生明显胶原和血管再生。 C: x400 Masson染色: 梗死区可见明显的胶原 纤维增生伴小血管增生。 D: 梗死与正常交界区域 xlOO Masson染色: 见明显 的胶原纤维增生伴小血管增生。
结果显示, 注射螯合铜离子白蛋白微球在超声的辐照下, 使心梗局部组 织内产生大量而明显的血管再生以及活化。
实施例 7 载铜白蛋白微泡 +超声辐照心肌梗塞动物模型实验
1、 以实施例 5方法制备 15ml白蛋白 C3F8, 其中共螯合 10mg铜离子, 即 为载铜超声微泡。
2、 依照实施例 2制备心梗模型。
3、给药: 如图 24所示,行耳缘静脉连续以 lml/min的速度推注螯合铜离 子白蛋白微泡, 以超声波连续辐照左心前区, 由心底向心尖做来回连续扇形 扫查,超声波输出能量调至最大并启用彩色多普勒模式,形成对心梗局部的铜 离子被动靶向释放。 每 1周重复两次注射和辐照, 每次剂量相同, 一共处理 3周。 作如下检测:
( 1 ) 超声心动图对兔心脏的结构及心功能检测
检测时点: 心肌梗死建模术后 2周、 修复术后 2周、 4周。 方法: 采用西 门子 ACUSONANTARES彩色多普勒超声诊断仪, 探头频率 14MHz。 各组 兔常规麻醉, 仰卧位固定, 胸前备皮, 于左胸骨旁取左心长轴观和左室乳头 肌短轴观。 连续记录 3个心动周期的二维图像并贮存, 供脱机后图像分析。 于左室乳头肌短轴观测量左室收缩末期内径 (LVDs:)、 左室舒张末期内径
(LVDd)和左室前壁舒张末期厚度 (LVAWd); 于左心长轴观通过单平面面积- 长度法测量左室舒张末期容积 (EDV:)、收缩末期容积 (ESV),计算左室射血分 数 (LVEF)和缩短率 (FS:)。 每一指标测量 3个心动周期, 取平均值。
(2) 兔心肌梗死修复后新生血管的检测
全面阅读兔心脏的所有 HE和 Masson切片,选出各组有心肌梗死的区域, 在每个区域随机选五个中倍视野的血管密集区计数血管, 最后取平均值。
(3) 兔心肌梗死面积的组织学检测
检测时点: 修复治疗终止时。 方法: 心脏取材、 大体标本照相、 称重; 心脏标本固定、 修块、 脱水、 透明、 浸蜡、 包埋、 切片、 HE染色、 Masson 染色; 梗死面积测量: (外膜梗死比 +内膜梗死比) /2X100% (外膜梗死比: 所有切片梗死区对应外膜长度之和 /所有切片外膜长度之和, 内膜梗死比:所 有切片梗死区对应内膜长度之和 /所有切片内膜长度之和);免疫组化(CD31、 Ki67、 PH3等)。
4. 实验结果
(1) 超声心动图检测结果
如图 25所示, 假手术组, 对照组, 超声微泡治疗组和载铜超声微泡治 疗组的术前心功能无显著差异 (AO.05), 心肌梗死模型建立后, 除假手术 组外, 其余各组心功能显著降低, 且与假手术组有显著差异 ( 0.05), 超 声心动图检查显示左室扩大,后、 侧壁收缩运动减弱至消失, 表明左室心肌 梗死模型制备成功。
如图 26所示, 各组在治疗 3周后接受的超声心动图检测显示, 载铜超 声微泡组的 LVEF较对照组和微泡治疗组显著增加( 0.05)。 而对照组和微 泡治疗组较治疗前无显著变化 ( ^0.05)。
(2) 兔梗死心肌的新生血管检测结果
图 27和图 28显示了各组的梗死心肌新生血管生成情况。 结果显示 Sham 组的新生血管极少,而对照组梗死心肌区域有大量纤维组织形成及少量新生 血管生成, 超声微泡组与对照组无显著差异 ( ^0.05), 载铜超声微泡组的 梗死心肌区域有大量的新生血管生成,且与对照组和超声微泡组相比有显著 差异 ( 0.01)。
(3) 兔梗死心肌面积的组织学检测结果
图 29和图 30显示了各组的梗死心肌面积情况。结果显示 Sham组无心肌 梗死发生, 对照组、 超声微泡组和载铜超声微泡组均有明显的心肌梗死, 对 照组和超声微泡组的心梗面积无显著差异 (A0.05), 而载铜超声微泡组的 心梗面积显著小于对照组和超声微泡组 ( 0.01)。
实验证明: 载铜超声微泡靶向治疗可显著促进兔梗死心肌区域的新生血管 生成; 载铜超声微泡靶向治疗可减少心梗面积, 显著改善心功能。 实施例 8 载铜白蛋白微泡 +超声辐照恒河猴心肌梗死模型试验
1、 以实施例 5方法制备 15ml白蛋白 C3F8, 其中共螯合 10mg铜离子, 即为载铜超声微泡。
2、 制备恒河猴心梗模型:
2. 1 材料: 雄性恒河猴 20只, 年龄 2至 3岁, 体重大约为 4. 5至 5. 5公斤。 单笼饲养, 自由饮水。 恒河猴由成都平安饲养繁殖基地提供,该基地是由国 家授权的非人灵长类动物饲养繁殖中心。
2. 2 方法:
2. 2. 1 模型的制作: 术前肌注 5 mg/kg 氯胺酮和 0. 2 mg/kg 咪达唑仑 诱导麻醉, 留置静脉通道, 建立持续的血压、 血氧、 心电监测, 然后气管插 管辅助呼吸, 术中静脉微量注射泵泵入芬太尼(10 g/kg) , 咪达唑仑 (0. 2 mg/kg)、 异丙酚(1 mg/kg)和维库溴铵 (0. 1 mg/kg)维持麻醉。 麻醉满意后 于左侧第四肋间开胸, 打开心包, 暴露心脏, 结扎左冠状动脉前降支, 结扎 部位位于第一对角支和第二对角支之间。 结扎前先进行预缺血处理, 待生命 体征稳定后缝合心包, 关闭胸腔。
2. 2. 2 术后心梗模型评价: 分别在术后第 1-3天、 第 2周、 第 4周和第 6周 对动物模型进行十二导连的心电检测(MAC8000, GE, USA. )。并在术后第 2周、 第 4周采用超声(Siemens ACUSON Antares System, German)对心脏进行功能 测定. 测量左心室 (LV)的舒张末期容积 (EDV)、 收缩末期容积 (ESV)、 每搏 输出量 (SV) , 射血分数(EF) = (EDV-ESV) /EDV X 100%。
3、 超声微泡治疗: 将恒河猴动物模型随机分组, 采用载铜超声微泡、 超声微泡治疗。 治疗前肌注 5 mg/kg 氯胺酮和 0. 2 mg/kg 咪达唑仑诱导麻 醉, 留置静脉通道, 微量注射泵注射微泡, 同时采用高频探头在心梗部位进 行超声辐射, 每周两次, 连续治疗四周。
3. 1 超声心功能评价:治疗后采用超声(Siemens ACUSON Antares System, German)对心脏进行功能测定. 测量左心室 (LV)的舒张末期容积 (EDV)、 收 缩末期容积 (ESV)、 每搏输出量 (SV) , 射血分数 (EF) =
(EDV-ESV) /EDV X 100% o
3. 2 组织病理分析: 治疗结束后模型取材, 进行组织病理学分析, 对标 本石蜡切片进行 HE、 Mason染色, 免疫组化标记后进行血管计数。
统计学分析: 所有数据均采用平均值士标准差表示。采用完全随机设计 的多样本均数比较的方差分析, P<0. 05 代表显著性差异。 Spss 12 统计软 件进行统计学处理。
4. 结果 4. 1 超声心功能评价结果
如图 31所示, 载铜微泡治疗组治疗前后的心功能改善的趋势(P=0. 06 ) ; 载铜微泡治疗组与对照组相比也有改善的趋势 (P< 0. 1 ), 而微泡组治疗后 并没有改善。
4. 2 病理结果
如图 32所示, Mason染色显示对照组 (A )梗死区胶原致密, 微血管密度 较低, 未见心肌细胞; 载铜超声微泡治疗组 (B ) 梗死区胶原稀疏, 微血管 密度较高, 血管周围有心肌细胞 (C)。
如图 33所示, CD31免疫组化染色血管标记显示, 与对照组的猴子心肌梗 死 (A)相比, 经载铜微泡治疗的猴子心脏 (B)的梗死周围区域血管密度增加 ( X 200)。
如图 34所示, 对每个样本的心肌梗死周围区域随机选取 5个高倍视野 ( 200倍) 进行血管计数, 经铜微泡治疗的猴子心脏的梗死周围区域血管密 度较假手术组和未干预的心肌梗死组明显增加, 差异有统计学意义(卡方检 验), *P<0. 05 。
结论: 载铜超声微泡治疗治疗可以促进心肌梗死区周围的微血管再生, 改善局部的血液供应, 从而达到促进心肌再生和心功能恢复的目的。
实施例 9 白蛋白与锌离子的结合实验及螯合锌白蛋白微球的制备 (确 认锌离子螯合白蛋白微泡的实验)
1.按氯化锌: 白蛋白 =1 : 1摩尔比进行。精密吸取 5%HSA微泡溶液 15ml, 滴加等摩尔浓度的氯化锌溶液。 荧光分析显示, 白蛋白溶液加入氯化锌后, 锌离子与白蛋白同样发生的荧光淬灭反应, 证实锌离子与白蛋白发生螯合。 根据摩尔比, 共配制 15ml 5%螯合锌人血白蛋白。
2.移取步骤 1制取的螯合锌-人血白蛋白溶液至连接三通的 20ml—次性 注射器内, 将超声仪探头插入液面下 2cm处, 以一定超声强度, 声振人血白 蛋白溶液, 预声振 10秒, 再在声振的同时于 5秒内通入一定量的 C3F8, 继续 声振, 到终点温度后停止声振, 得 C3F8白蛋白微球混悬液, 混悬液立即转移 至 30ml药瓶内, 药瓶上端空气用 C3F8充分置换, 药瓶用胶 塞严封, 于室温 下静置 24h。 摇匀后对微球进行粒径分析, 粒径分布与实施例 5相同, 微球平 均直径 2.5-3.0μηι。
3.稳定性实验: 将前述结合锌离子的微泡注入 20ml玻璃瓶内, 密封, 4
°C冰箱内保存。 至 2月后, 重新取样测量, 微泡浓度与粒径分布与刚制备出 的微泡没有明显改变。
流式细胞仪对微泡进行的粒径分析
Region EV Mean EV H PCV EV CV Count Pet Total
(区域) (电子体积均值) (半峰变异系数) (变异系数) (计数) (目标总数)
EV: 0-2 m 100.33 45.72% 43.35% 36,333 72.67% 1 -3:2-3 m 443.59 3.64% 38.44% 8,977 17.95%
9:>3 m 993.20 0.00% 4.24% 4,887 9.77%
由图 35和表 4可知, 静置 2月后, 流式细胞仪器显示结合锌离子后微泡粒 径分布和浓度变化与初制备时没有明显差异, 粒径分布正态分布峰值在 1.5 ηι, 粒径 0-3 μ ηι的微泡占所有微泡范围的 90.5%, 平均粒径 2.5 μ m。 微泡 浓度 3.4 X 108个 /ml。 结合锌的微泡具备稳定可靠性。
实施例 10 白蛋白与硒醚的结合实验(确认硒离子螯合白蛋白微泡的实 验)
1. 制备 20ml结合硒的 HSA:三硫化硒青霉胺 (4mM) 与 HSA(40mg/mL) 在 0.01M的磷酸盐缓冲液 (pH7.4)中混合, 混合液孵育 10分钟。 未反应的 PenSePen通过透析移除。 得到结合硒的 HSA。
2. 硒-人血白蛋白溶液至连接三通的 20ml—次性注射器内, 将超声仪探 头插入液面下 2cm处, 以一定超声强度, 声振人血白蛋白溶液, 预声振 10s, 再在声振的同时于 5秒内通入一定量的 C3F8, 继续声振, 到终点温度后停止 声振, 得 C3F8白蛋白微球混悬液, 混悬液立即转移至 30ml 药瓶内, 药瓶上 端空气用 C3F8充分置换, 药瓶用胶塞严封, 于室温下静置 24h。 摇匀后对微 球进行粒径分析, 粒径分布与实施例 5相同, 微球平均直径 2.5-3.0μηι。
3. 稳定性实验: 将前述结合硒离子的微泡注入 20ml玻璃瓶内, 密封,
5度冰箱内保存。 至 2月后, 重新取样测量, 微泡浓度与粒径分布与刚制备 出的微泡没有明显改变。
流式细胞仪对微泡进行的粒径分析
Region EV Mean EV HPCV EV CV Count Pet Total
(区域) (电子体积均值) (半峰变异系数) (变异系数) (计数) (目标总数)
EV: 0-2 m 107.63 39.45% 42.10% 35,877 71 .75%
1 -3:2-3 m 432.14 6.74% 39.81 % 9,698 19.40%
9:>3 m 994.14 0.00% 4.11 % 4,942 9.88%
由图 36和表 5可知, 静置 2月后, 显示微泡结合硒后, 粒径分布稳定在 1.5 μ ηι的正态峰值, 平均粒径 2.1 m, 粒径 0-3 μ m的微泡占所有微泡范围的 91%, 微泡浓度 3 X 108个 /ml。 与两月前微泡粒径分布和浓度相比没有明显变 化。 结合硒的微泡具备稳定可靠的特性。
实施例 11 白蛋白结合铜 +磷脂微泡混合实验
1. 按实施例 3配制螯合铜的白蛋白: 0.1M的 NaCl保持离子强度, 用 Tris-HCl作为缓冲液, pH值为 7.4, 配制 HSA及硫酸铜溶液, 浓度依次为 8·76χ 10-6Μ和 6·48χ 10- 4Μ。
2. 注入 9.6ml SONOVUE磷脂 SF6微泡。
3. 将 1和 2的溶液混合, 形成白蛋白多肽螯合铜与磷脂微泡的混悬液。 实施例 12 白蛋白结合铜 +磷脂微泡心梗动物模型的动物实验及结果 1. 按实施例 2制备兔心梗模型。 2. 将实施例 11所制磷脂微球与螯合铜的白蛋白多肽混悬液经耳缘静脉 连续以 lml/min的速度推注, 输注同时以超声波连续辐照左心前区, 由心底 向心尖做来回连续扇形扫查,超声波输出能量调至最大并启用彩色多普勒模 式。 每 2周重复一次注射和辐照, 每次剂量相同。 至 4周后, 处死实验兔, 观察实验兔大体心脏形态和心梗病理切片,对比分析对照组的心梗疤痕组织 内血管再生和活化情况。 结果显示, 注射脂微球与螯合铜的白蛋白多肽混悬 液, 在超声的辐照下, 使心梗局部组织内产生明显的血管再生以及活化。 通 过微血管密度计数的方法, 对心梗疤痕组织进行病理取片。取每切片随机抽 样 5个区域, 10x40倍镜下计数。 所取血管直径均在 20μηι以内, 统计上述 视野内的微血管数量。
如图 37显示: 心梗区域内经超声辐照磷脂微球及螯合铜白蛋白的心梗 区域与仅仅注射磷脂微球对照组心梗区域内的微血管密度对比显示,含螯合 铜白蛋白的实验组的心梗区域的微血管密度显著高于对照组。
实施例 13 葡萄糖结合铜 +磷脂微球混悬液的制备
以葡萄糖: 硫酸铜的 1 : 1摩尔浓度比, 配置葡萄糖螯合铜溶液 10毫升。 再加入 5mlSONOVUE磷脂微球溶液, 配置成 15毫升葡萄糖结合铜 +磷脂微 球混悬液。
实施例 14 葡萄糖结合铜 +磷脂微球心梗动物模型的动物实验及结果
1.按实施例 2制备兔心梗模型。
2. 将实施例 13制备的葡萄糖结合铜 +磷脂微球混悬液经耳缘静脉连续 以 lml/min的速度推注, 输注同时以超声波连续辐照左心前区, 由心底向心 尖做来回连续扇形扫查, 超声波输出能量调至最大并启用彩色多普勒模式。 每 2周重复一次注射和辐照, 每次剂量相同。 至 4周后, 处死实验兔, 观察 实验兔大体心脏形态和心梗病理切片,对比分析对照组的心梗疤痕组织内血 管再生和活化情况。 结果显示, 注射脂微球与螯合铜的葡萄糖混悬液, 在超 声的辐照下, 使心梗局部组织内产生明显的血管再生以及活化。通过微血管 密度计数的方法, 对心梗疤痕组织进行病理取片。 取每切片随机抽样 5个区 域, 10x40倍镜下计数。 所取血管直径均在 20μηι以内, 统计上述视野内的 微血管数量。
如图 38显示: 心梗区域内经超声辐照磷脂微球及螯合铜葡萄糖的心梗 区域内见明显的小血管再生。
如图 39显示: 心梗区域内经超声辐照磷脂微球及螯合铜葡萄糖的心梗 区域与仅仅注射磷脂微球对照组心梗区域内的微血管密度对比显示,含螯合 铜葡萄糖溶液的实验组的心梗区域的微血管密度显著高于对照组。
以上实验证明, 本发明制备得到的在超声作用下可以靶向释放微量元 素, 达到了在局部组织释放微量元素的目的, 并产生了与此微量元素相关的 生物学效应。
工业应用性 本发明制备的具有超声靶向释放微量元素作用的药物组合物在超声作 用下可以靶向释放微量元素制剂,达到在局部组织定向释放微量元素的效果 并产生与此微量元素相关的生物学效应, 如, 组织血管再生、 组织再生或抗 肿瘤等生物学效应, 其疗效确切, 稳定性好, 安全, 是一种新的药物制剂, 具有极好的临床应用和工业化前景。 以上对本发明的详细描述并不限制本发明,本领域技术人员可以根据本 发明作出各种改变或变形, 只要不脱离本发明的精神, 均属于本发明所附权 利要求所定义的范围。
参考文献
[IjCoombes A G, Breeze V, Lin W, et al. Lactic acid-stabilised albumin for microsphere formulation and biomedical coatings [J]. Biomaterials, 2001, 22(1): 1-8.
[2] Almond B A, Hadba A R, Freeman S T, et al. Efficacy of mitoxantrone-loaded albumin microspheres for intratumoral chemotherapy of breast cancer [J]. J Control led Release, 2003, 91(1-2): 147-155.
[3]Sahin S, Selek H, Ponchel G, et al. Preparation, characterization and in vivo distribution of terbutaline sulfate loaded albumin microspheres [J]. J Control led Release, 2002, 82: 345-358.
[4]Chatterjee J, Haik Y, Chen C J. Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres[J]. Magnetism Magnetic Materials, 2001, 225(1): 21-29.
[5]李元春, 蔡美英, 王仲琼, 等. 单抗 F ib') 2 段导向抗肝癌阿霉素免疫毫 微球的制备及其体外杀伤癌细胞作用 [J]. 华西医科大学学报, 2002, 33(1):8-11.
[6]程耀, 张灿, 平其能, 等. 半乳糖酰化壳聚糖衍生物包复的 5-氟尿嘧啶白 蛋白微球的制备 [J].中国药科大学学报, 2004, 35(6):517-520.
[7]Amedo A, Espuelas S, Irache J M. Albumin nanoparticles as carriers for a phosphodiester oligonucleotide [J] . Int J Pharm, 2002, 244(1-2): 59-67.
[8]Arnedo A, Irache J M, Merodio M, et al. Albumin nanoparticles improved the stability, nuclear accumulation and anticytomegaloviral activity of aphosphodiester oligonucleotide [ J] . J Control led Release, 2004, 94(1): 217-227.
[9]Lin W, Garnett M C, Schacht E, et al. Preparation and in vitro characterization of HAS-mPEG nanoparticles[J]. Int J Pharm, 1999, 189(2): 161-170.
[10] 龚连生, 张阳德, 刘 恕. 磁性阿霉素白蛋白纳米粒在移植性肝癌模型 中的磁靶向性 [J]. 中华肝胆外科杂志, 2003, 9(9):543-546.
[11] 刘晓波, 蔡美英. 抗人肝癌免疫毫微粒的制备及体外免疫学性质的鉴定
[J].中国免疫学杂志, 2000, 16:262-265.
[12] 张良珂, 侯世祥, 毛声俊, 等. 受体介导米托葸醌白蛋白纳米粒肿瘤细 胞靶向性研究 [J]. 四川大学学报 (医学版:), 2006, 37(1):77-79.
[13] 张阳德, 黄林, 张蕾, 等. 半乳糖化磁性阿霉素白蛋白纳米粒对大鼠移 植性肝癌模型 bcl-2/bax蛋白表达的研究 [J]. 中华实验外科杂志, 2004,
21(11): 1298-1299.
[14] 杨莉, 侯连兵, 王新亚, 等. 新型超声造影剂全氟丙垸白蛋白微囊的制 备 [J]. 中国药学杂志, 2005, 49(21): 1637-1640.

Claims

权 利 要 求 书
1、 一种具有超声靶向释放微量元素作用的药物组合物, 其特征在于: 包含浓度大于 1 X 106个 /ml, 粒径小于 ΙΟ μ ιη的空心微球, 和至少一种小于 或等于人体十倍生理剂量的微量元素, 以及药学上可接受的载体或辅料; 其中微量元素与空心微球以结合或游离的形式存在,所述空心微球由药 学上可接受的成膜材料制备而成。
2、 根据权利要求 1所述的药物组合物, 其特征在于: 所述空心微球粒 径为 1〜5 μ ιη; 所述空心微球内含气体是空气、 氮气、 氟化硫气、 氟代垸烃 类气体或其他无毒性气体或上述一种或一种以上气体成分的任意组合的混 合气体。
3、 根据权利要求 1所述药物组合物, 其特征在于: 所述微量元素为铁、 铜、 锌、 钴、 锰、 铬、 硒、 碘、 镍、 氟、 钼、 钒、 锡、 硅、 锶、 硼、 铷或砷 离子中的一种或一种以上的任意组合。
4、 根据权利要求 3所述的药物组合物, 其特征在于: 所述微量元素为 铜、 锌、 硒、 铁中一种或一种以上的任意组合。
5、 根据权利要求 1所述的药物组合物, 其特征在于: 所述结合形式的 微量元素与空心微球通过化学作用或物理作用相互结合。
6、 根据权利要求 5所述的药物组合物, 其特征在于: 结合形式的微量 元素与空心微球是由以下方法制备的: 1 )按照摩尔浓度比为:1:0.05到 1:500 将成膜材料与微量元素离子溶于水或有机溶剂中,使微量元素离子通过物理 或化学作用与膜材结合形成微量元素复合膜材; 2 ) 用常规方法将步骤 1)得 到的复合膜材, 制备成粒径小于 10 μ m的空心微球。
7、 根据权利要求 1所述的药物组合物, 其特征在于: 所述游离形式的 微量元素是指没有与空心微囊结合的、 以微量元素离子与蛋白、 多肽、 氨基 酸、 葡萄糖或其他可结合微量元素的化合物形成复合物存在于载体或辅料 中。
8、 根据权利要求 7所述的药物组合物, 其特征在于: 所述微量元素与 蛋白、 多肽、 氨基酸、 葡萄糖、 其他可结合微量元素的化合物的摩尔浓度比 为: 1 :0.05到 1 :500。
9、 根据权利要求 1所述的药物组合物, 其特征在于: 所述成膜材料为 人血白蛋白、 磷脂或其他高分子聚合物。
10、 根据权利要求 1或 7所述的药物组合物, 其特征在于: 所述的载体 或辅料为去离子水或生理盐水或葡萄糖溶液或含微量元素离子复合物的溶 液, 所述的微量元素离子复合物为微量元素离子与蛋白、 多肽、 氨基酸、 葡 萄糖或其他可结合微量元素的化合物形成的复合物。
11、 根据权利要求 1~10任一一项所述的药物组合物, 其特征在于: 其为 注射制剂, 优选为针剂或粉针剂。
12、 权利要求 1〜11任意一项所述的药物组合物在制备促进血管或组织 再生以及抗肿瘤的超声靶向释放药物中的用途。
13、 根据权利要求 12所述的用途, 其特征在于: 所述药物组合物经静脉 注射入人体内, 利用超声波对治疗部位进行辐照, 利用含气空心微球与超声 波的相互作用达到局部释放微量元素离子的目的。
14、 根据权利要求 12所述的用途, 其特征在于: 所述超声靶向释放是指 一定能量的超声波使微泡破裂或振荡等空化效应而促使及强化相关金属离子 在超声辐照局部释放和 /或促进混悬液中的相应微量元素离子组分进入辐照 组织, 达到促进血管、 组织再生和 /或抗肿瘤的临床目的。
15、 根据权利要求 14所述的用途, 其特征在于: 所述超声靶向释放药物 诱导超声波辐照部位产生携带的微量元素离子相对应的生理功效。
16、 制备权利要求 1所述的药物组合物的方法, 其特征在于:
首先制备结合微量元素离子的空心微球, 制备方法包括:
1 ) 按照摩尔浓度比为: 1 :0.05到 1:500将成膜材料与微量元素离子溶于 水或有机溶剂中,形成由一种或一种以上微量元素离子通过物理或化 学作用结合形成微量元素复合膜材;
2 ) 将步骤 1)得到的复合膜材, 制备成粒径小于 10 μ m的空心微球;
3 ) 将制备完成的结合微量元素离子的空心微球与权利要求 1、 7、 10所 述的载体或辅料及复合物相混合形成混悬药物组合物;
4) 直接冷藏保存作为混悬药物注射剂或冷冻干燥制备粉针剂。
17、 根据权利要求 16所述制备方法, 其特征在于: 步骤 2) 中空心微球 可利用以下任一一种药学常用微球制备方法制备: 超声波声振法、 冷冻干燥 法、 喷雾干燥、 活性 /可控自由基聚合、 沉淀聚合法、 悬浮聚合, 乳液聚合, 种子聚合, 分散聚合以及沉淀聚合等异相聚合体系、 离子交联法、 乳化离子 凝胶法、 离子沉淀-化学交联法、 乳化-化学交联法、 复乳交联法、 热交联法、 凝聚法、 乳化-溶剂蒸发法。
18、 制备权利要求 1所述的药物组合物的方法, 其特征在于:
首先制备未结合微量元素离子的空心微球, 制备方法包括:
1 ) 按权利要求 17所述任一方法, 制备成粒径小于 10 μ ιη的空心微球
2) 将步骤 1 ) 得到的空心微球与结合了一种或一种以上微量元素离子 的蛋白或多肽或者氨基酸或葡萄糖或其他可结合微量元素的化合物形成的复 合物溶液混合形成混悬药物组合物;
3 ) 直接冷藏保存作为组合药物注射剂或经冷冻干燥制备粉针剂。
PCT/CN2011/077016 2010-07-12 2011-07-09 一种靶向释放微量元素的药物组合物及制备方法和应用 WO2012006938A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010223282.3 2010-07-12
CN2010102232823A CN101926821B (zh) 2010-07-12 2010-07-12 一种靶向释放微量元素的药物组合物及制备方法和应用

Publications (1)

Publication Number Publication Date
WO2012006938A1 true WO2012006938A1 (zh) 2012-01-19

Family

ID=43366425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077016 WO2012006938A1 (zh) 2010-07-12 2011-07-09 一种靶向释放微量元素的药物组合物及制备方法和应用

Country Status (2)

Country Link
CN (1) CN101926821B (zh)
WO (1) WO2012006938A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11077138B2 (en) 2015-04-22 2021-08-03 Innolife Co., Ltd. Methods of tissue repair and regeneration

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101926821B (zh) * 2010-07-12 2012-01-25 四川大学华西医院 一种靶向释放微量元素的药物组合物及制备方法和应用
CN102526804B (zh) * 2012-03-06 2014-03-12 四川大学华西医院 一种缺损修复材料
US20150238534A1 (en) * 2014-02-27 2015-08-27 Gwo Xi Stem Cell Applied Technology Co., Ltd. Novel hollow particles
CN110120249B (zh) * 2019-05-23 2023-01-06 复旦大学 通过靶向调控动力学路径构造靶向构造目标结构的方法
CN111297895A (zh) * 2020-02-20 2020-06-19 成都因诺生物医药科技有限公司 用于治疗动脉粥样硬化的组合物的制药用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1129910A (zh) * 1993-07-02 1996-08-28 分子生物系统研究所 蛋白质包囊不溶性气体的微球及其制备并用作超声显影剂
CN101829326A (zh) * 2009-12-19 2010-09-15 刘政 微泡在制备用于联合超声产生高强度空化作为抗肿瘤新生血管药物的用途
CN101926821A (zh) * 2010-07-12 2010-12-29 四川大学华西医院 一种靶向释放微量元素的药物组合物及制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1129910A (zh) * 1993-07-02 1996-08-28 分子生物系统研究所 蛋白质包囊不溶性气体的微球及其制备并用作超声显影剂
CN101829326A (zh) * 2009-12-19 2010-09-15 刘政 微泡在制备用于联合超声产生高强度空化作为抗肿瘤新生血管药物的用途
CN101926821A (zh) * 2010-07-12 2010-12-29 四川大学华西医院 一种靶向释放微量元素的药物组合物及制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, L. ET AL.: "Preparation of a Novel Ultrasound Contrast Agent: Perfluoropropane-Containing Albumin Microcapsules", CHINESE PHARMACEUTICAL ABSTRACTS, vol. 49, no. 21, 2005, pages 1636 - 1640 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11077138B2 (en) 2015-04-22 2021-08-03 Innolife Co., Ltd. Methods of tissue repair and regeneration

Also Published As

Publication number Publication date
CN101926821A (zh) 2010-12-29
CN101926821B (zh) 2012-01-25

Similar Documents

Publication Publication Date Title
Zhang et al. One-pot synthesis of hollow PDA@ DOX nanoparticles for ultrasound imaging and chemo-thermal therapy in breast cancer
WO2019141271A1 (zh) 用于靶向活化cd44分子的脂质体纳米载体递送系统、其制备方法和用途
TWI480069B (zh) 用以改善心肌梗塞之醫藥組成物
KR20100029207A (ko) 혈액 혈소판을 사용한 마이크로입자 및 나노입자의 전달
WO2012006938A1 (zh) 一种靶向释放微量元素的药物组合物及制备方法和应用
CN108653754B (zh) 一种透明质酸靶向聚多巴胺包覆相变型液态氟碳纳米超声造影剂
Burke et al. Covalently Linking Poly (lactic‐co‐glycolic acid) Nanoparticles to Microbubbles Before Intravenous Injection Improves their Ultrasound‐Targeted Delivery to Skeletal Muscle
CN108066317B (zh) 纳米药物控释体系的制备方法及其产品与应用
EA016541B1 (ru) Композиции магнитных наночастиц и их применения
Sun et al. Ultrasound microbubbles mediated sonosensitizer and antibody co-delivery for highly efficient synergistic therapy on HER2-positive gastric cancer
CN111135296B (zh) 一种白蛋白结合型吲哚菁绿抗肿瘤光热制剂及其制备方法
Qi et al. Nanomedicines for the efficient treatment of intracellular bacteria: the “ART” principle
JP2021514941A (ja) ビリルビン誘導体基盤の診断および治療用超音波造影剤
Wang et al. Genetically engineered bacteria-mediated multi-functional nanoparticles for synergistic tumor-targeting therapy
CN109513000A (zh) 一种运载蜂毒肽的光敏性纳米载体制备方法及应用
Xu et al. MnO2 coated multi-layer nanoplatform for enhanced sonodynamic therapy and MR imaging of breast cancer
Li et al. Multiple delivery strategies of nanocarriers for myocardial ischemia-reperfusion injury: Current strategies and future prospective
WO2021114605A1 (zh) 一种基于糖基金属框架材料的肝靶向治疗药物及制备方法
CN111450252B (zh) 一种用于靶向堵塞肿瘤血管的药物及其制备方法与应用
CN110302395B (zh) 一种可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子及其制备方法与应用
Geng et al. Reshaping the tumor microenvironment for increasing the distribution of glucose oxidase in tumor and inhibiting metastasis
WO2023246336A1 (zh) 一种仿生可注射多肽水凝胶的制备及应用
CN109589402B (zh) 一种具有靶向光热治疗和可控释药的多重作用纳米材料的制备方法及应用
CN108938596B (zh) 一种CPPs/NGR修饰载药纳米金棒及其制备方法与应用
Fang et al. Magnet-guided bionic system with LIFU responsiveness and natural thrombus tropism for enhanced thrombus-targeting ability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806280

Country of ref document: EP

Kind code of ref document: A1