WO2012005552A2 - 전기자동차 및 그 비상제어방법 - Google Patents

전기자동차 및 그 비상제어방법 Download PDF

Info

Publication number
WO2012005552A2
WO2012005552A2 PCT/KR2011/005036 KR2011005036W WO2012005552A2 WO 2012005552 A2 WO2012005552 A2 WO 2012005552A2 KR 2011005036 W KR2011005036 W KR 2011005036W WO 2012005552 A2 WO2012005552 A2 WO 2012005552A2
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
vehicle
sub
control
controller
Prior art date
Application number
PCT/KR2011/005036
Other languages
English (en)
French (fr)
Other versions
WO2012005552A3 (ko
Inventor
박성철
Original Assignee
(주)브이이엔에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100066337A external-priority patent/KR20120005724A/ko
Priority claimed from KR1020100074756A external-priority patent/KR20120012662A/ko
Priority claimed from KR1020100074742A external-priority patent/KR20120012650A/ko
Application filed by (주)브이이엔에스 filed Critical (주)브이이엔에스
Priority to CN201180043380.1A priority Critical patent/CN103108770B/zh
Priority to US13/809,145 priority patent/US8977416B2/en
Publication of WO2012005552A2 publication Critical patent/WO2012005552A2/ko
Publication of WO2012005552A3 publication Critical patent/WO2012005552A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/10Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for automatic control superimposed on human control to limit the acceleration of the vehicle, e.g. to prevent excessive motor current
    • B60L15/12Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for automatic control superimposed on human control to limit the acceleration of the vehicle, e.g. to prevent excessive motor current with circuits controlled by relays or contactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0007Measures or means for preventing or attenuating collisions
    • B60L3/0015Prevention of collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electric vehicle and an emergency control method thereof, and more particularly to an electric vehicle and an emergency control method for emergency driving or stopping a vehicle by detecting an abnormality of a controller for controlling the overall operation of the vehicle.
  • Electric vehicles are mainly powered by battery powered AC or DC motors, and are classified into battery-only electric vehicles and hybrid electric vehicles. Using a motor to drive and recharging when the power is exhausted, the hybrid electric vehicle can run the engine to generate electricity to charge the battery and drive the electric motor using this electricity to move the car.
  • hybrid electric vehicles can be classified into a series and a parallel method, in which the mechanical energy output from the engine is converted into electrical energy through a generator, and the electrical energy is supplied to a battery or a motor so that the vehicle is always driven by a motor. It is a concept that adds engine and generator to increase the mileage to the existing electric vehicle, and the parallel method can make the car move even by battery power, and two power sources that drive the vehicle only by the engine (gasoline or diesel) Depending on the driving conditions and the parallel method, the engine and the motor may drive the vehicle at the same time.
  • the motor / control technology has also been developed recently, a high power, small size and high efficiency system has been developed.
  • DC motor is converted into AC motor
  • the power and acceleration performance (acceleration performance, maximum speed) of the EV are greatly improved, reaching a level comparable to gasoline cars.
  • the motor rotates with high output, the motor becomes light and compact, and the payload and volume are greatly reduced.
  • Such an electric vehicle includes a central control unit for controlling its function, but when there is an error in the control unit itself or an error in communication with the control unit, the vehicle cannot operate normally due to an error in the control unit.
  • An object of the present invention is to provide a plurality of controllers for controlling the vehicle to determine whether an abnormality occurs through the mutual monitoring to ensure an emergency operation or to stop the vehicle to ensure stable operation, emergency operation through the sub-control unit in the case of the main controller abnormality To provide an electric vehicle and an emergency control method.
  • the same signal is input to each processor without generating a signal separately, and the electric signal for performing stable vehicle control by determining whether the input signal is normal or not.
  • An electric vehicle includes a sensor unit for measuring a state of a vehicle; An interface unit to input a setting for controlling the vehicle by a driver's operation; A main controller for operating and controlling the vehicle in response to data input from the sensor unit and the interface unit; And a sub controller configured to diagnose the main controller in response to the state information and the driving information input from the main controller, and to emergency control the vehicle in place of the main controller when the main controller is abnormal.
  • the electric vehicle includes a motor control unit for controlling the motor to drive the vehicle; And a power relay assembly (PRA) for supplying battery power to the motor controller, wherein the main controller and the sub controller are controlled from the battery to control the PRA when the motor controller is abnormally operated. It is characterized in that the emergency stop by cutting off the power.
  • PRA power relay assembly
  • the electric vehicle may further include a distortion compensator configured to compensate for distortion of a signal input from a plurality of sensors included in the sensor unit such that the same signal is input to the main controller and the sub controller.
  • a distortion compensator configured to compensate for distortion of a signal input from a plurality of sensors included in the sensor unit such that the same signal is input to the main controller and the sub controller.
  • Emergency control method for an electric vehicle comprises the steps of: receiving status information and driving information from the main control unit for controlling the vehicle to diagnose the state of the main control unit; Transmitting a monitoring result to the main control unit when the diagnosis result operates normally; And setting an emergency control and performing vehicle control on behalf of the main control unit when there is an error in the diagnosis result.
  • the emergency control method of the electric vehicle may further include generating control information for controlling the vehicle according to data input from at least one sensor, and applying the generated control information to the motor controller; Determining whether the motor controller is abnormal according to the response of the motor controller; And stopping the power supplied to the motor control unit through the PRA control when the motor control unit is abnormal.
  • the electric vehicle and its emergency control method according to the present invention are provided with a plurality of control units to monitor each other and compare the data generated even if all the control units are operating normally, so that the emergency operation or emergency stop of the vehicle By controlling or controlling the minimum operation, it is possible to guarantee stable driving and to prevent driver's accident in advance.
  • the present invention does not need to add and verify a plurality of signals in order to verify the state of one signal and a signal unit with respect to a plurality of control units, and a plurality of inputs of a single signal through internal settings of the control unit and a simple circuit design. It is possible to minimize the deviation of the signal, thereby improving the stability according to the vehicle control. In addition, since a plurality of signal units are not used for signal generation, there is no variation between each unit that may occur, thereby improving the accuracy of data, and reducing the layout and space of the circuit and reducing the cost.
  • FIG. 1 is a view schematically showing a control configuration of an electric vehicle according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a control flow according to vehicle control and emergency driving through mutual monitoring in an electric vehicle according to the present invention.
  • FIG. 3 is a flow chart referenced to explain the emergency control method for the motor controller error according to an embodiment of the present invention.
  • FIG. 4 is a flowchart referred to for explaining the emergency control method when an error occurs according to the present invention.
  • FIG. 5 is a view briefly illustrating the functions of the main control unit and the sub control unit according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating an emergency control operation method between a main controller and a sub controller of FIG. 5.
  • FIG. 7 is a flowchart illustrating a method for releasing emergency control according to the emergency control operation of FIG. 6.
  • FIG. 8 is a view schematically showing another example of a control configuration of an electric vehicle according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example of an input signal according to the AD check mode setting of the main controller and the sub controller of FIG. 8.
  • FIG. 10 is a diagram illustrating an example of a normal signal input through a distortion compensator of the control configuration of the electric vehicle of FIG. 8.
  • FIG. 1 is a view schematically showing the internal configuration of an electric vehicle according to an embodiment of the present invention.
  • the power supply unit 190 includes a main controller 110 that controls the first half of the vehicle driving and operation, and a sub controller 120 that assists the main controller 110.
  • the electric vehicle includes a battery 180 as described above, and operates using the power charged in the battery as an operating power source, and the battery 180 is provided with power from a predetermined charging station or vehicle charging facility or from outside at home. To charge.
  • the battery 180 is composed of a plurality of battery cells, and stores electrical energy of high voltage.
  • the electric vehicle controls the charging of the battery 180, determines the remaining capacity of the battery, the need for charging, and performs the management of supplying the charging current stored in the battery to each part of the electric vehicle (BMS (Battery management system) ( Not shown).
  • BMS Battery management system
  • the BMS maintains an even voltage difference between cells in the battery when charging and using the battery, thereby extending the life of the battery by controlling the battery from overcharging or overdischarging.
  • the power relay assembly (PRA) 160 includes a plurality of relays for switching a high voltage, a sensor, and a high voltage operating power applied from the battery 180 to the motor control unit (MCU) 150.
  • the PRA 160 may operate the relay according to the control command of the main controller 110, and in some cases, the relay may operate according to the control command of the sub-control unit 120.
  • the PRA 160 switches the plurality of relays provided in a predetermined order according to a control command of the main controller 110 or the sub-control unit 120 when the vehicle is started or when the vehicle is turned off.
  • the high voltage operating power stored in the battery 180 is applied.
  • the PRA 160 may cut off the battery power supply to the motor control unit (MCU). Since the power supplied to the motor is cut off, the vehicle also stops as the motor stops.
  • MCU motor control unit
  • the sensor unit 130 detects and inputs a signal generated during a vehicle driving or a predetermined operation, and inputs the signal to the main controller 110 and the sub controller 120.
  • the sensor unit 130 includes a plurality of sensors inside and outside the vehicle to input various sensing signals. At this time, the type of the sensor may also be different depending on the installed position. In particular, the sensor unit 130 applies a signal for an Excel or brake operation necessary for emergency control to the sub-control unit 120.
  • the interface unit 140 includes input means including a plurality of switches for inputting a predetermined signal by a driver's operation, and output means for outputting information during current state operation of the electric vehicle.
  • the output means includes a display unit for displaying information, a speaker for outputting music, sound effects and warning sounds, and various states.
  • the input means includes a plurality of switches, buttons, etc. for operating a direction indicator light, tail lamp, head lamp, brush, etc. according to the driving of the vehicle.
  • the interface unit 140 includes operation means for driving such as a steering wheel, an accelerator, a brake.
  • the output means outputs at least one of a warning sound, a warning light, and a warning message according to the main control unit 110 or the sub-control unit 120 or more so that the driver recognizes.
  • the motor controller 150 generates a control signal for driving at least one motor 170 connected thereto, and generates and applies a predetermined signal for motor control.
  • the motor controller 150 may control the driving of the motor 170 by controlling the inverter or the converter including an inverter (not shown) and a converter (not shown).
  • the motor controller 150 operates according to a control command applied from the main controller 110 or the sub controller 120 and controls the driving of the motor 170 using the power of the battery 180 supplied through the PRA 160. do.
  • the motor controller 150 operates by receiving torque information from both sides of the main controller 110 and the sub-control unit 120.
  • the motor controller 150 operates by using the torque information of the main controller 110 in the normal operation, and the main controller 110 or more. When generated, it operates by using the torque information of the sub-control unit 120.
  • the power supply unit 190 charges the battery using the power supplied from the outside and supplies the power of the battery as operating power to the entire vehicle including the motor 170.
  • the main controller 110 generates and applies a predetermined command to the motor controller 150 so as to perform a set operation corresponding to the input of the interface unit 140 and the sensor unit 130, and controls input / output of data.
  • the operation status is displayed.
  • the sub controller 120 is connected to the main controller 110 and receives the input / output signal of the main controller 110 to monitor the main controller 110. At this time, the sub controller 120 determines whether the main controller 110 operates normally in response to the value of the input / output signal, the type of the signal, the time at which the signal is input / output, or the like.
  • the sub controller 120 operates as a backup controller in place of the main controller 120 when an error occurs in the main controller 120. That is, the sub controller 120 controls the operation of the motor 170 and the electric vehicle using the input data.
  • the main controller 110 and the sub controller 120 calculate torque information to be applied to the motor controller 150 based on the signal input from the sensor unit 130, and transmit the mutually calculated data. Are respectively applied to the motor control unit 150.
  • the main controller 110 monitors each other by transmitting the result of the calculation based on the input data, and compares the received data with the self-calculated data to determine whether there is an abnormality.
  • the main controller 110 and the sub-controller 120 transmit data to each other at regular intervals. If the data is not received for a predetermined time or more, the main controller 110 and the sub-controller 120 may determine that there is an error. In addition, the main controller 110 and the sub controller 120 may determine that there is an error in the counter controller even when there is an error in the received data.
  • the main control unit 110 and the sub-control unit 120 determines whether or not the counterpart control unit has stopped operating or malfunctioning through mutual data exchange.
  • the main controller 110 determines that there is an error when the sub-control unit 120 does not operate, so that a warning about an abnormality of the sub-control unit 120 is output through the output means of the interface unit 140, and the vehicle is driven. Keep it.
  • the main controller 110 applies a signal to the motor controller 150 for the abnormality of the sub-control unit 120 so that the motor controller 150 ignores the signal of the sub-control unit 120 afterwards.
  • the sub-control unit 120 determines that there is an error when the main control unit 120 does not operate, and operates as a backup control unit instead of the main control unit 120. That is, the sub controller 120 controls the operation of the motor 170 and the electric vehicle using the input data.
  • the sub-control unit 120 performs emergency control immediately by using the pre-calculated torque information when the main controller 120 is abnormal. Accordingly, when an abnormality occurs in the main control unit 110 while driving, as the emergency control is performed in the sub-control unit 120, the vehicle can maintain the driving state without stopping.
  • the sub-control unit 120 may operate within the limit value range with a limitation on speed or torque in driving the motor 170.
  • the sub-control unit 120 limits the speed and controls the Excel or the brake in response to the state of the vehicle during emergency control and the value of the data input from the sensor unit 130. That is, the sub controller 120 processes the minimum operation such as driving of the vehicle.
  • the sub-control unit 120 is to back up the main control unit 110, and does not perform all operations of the main control unit 110, but emergency control so that the vehicle can emergency operation for some functions.
  • the sub controller 120 may be a lower performance one than the main controller 110 or a component having the same performance may be used.
  • the sub-control unit 120 When the emergency control is started, the sub-control unit 120 maintains the emergency operation of the vehicle through the emergency control until the start of the vehicle is turned off, and when starting after the off, the main controller 110 After determining whether it is normal, release or maintain emergency control.
  • the sub controller 120 outputs a warning about an abnormality of the main controller 120 through the output means of the interface unit 140 during the emergency control.
  • the sub controller 120 applies a signal to the motor controller 150 in response to the abnormality of the main controller 110 so that the motor controller 150 ignores the signal of the main controller 110 afterwards.
  • the main controller 110 and the sub-control unit 120 compares the torque information calculated with the data received from the counterpart control, respectively, if the difference between the calculated value is a predetermined value or more, the main controller 110 and the sub-control unit (120) Both sides determine that there is a problem with each other and applies the operation stop command to the motor control unit 150. At this time, the error within the predetermined range is determined to be normal.
  • the motor controller 150 receives torque information from both sides of the main controller 110 and the sub controller 120, and compares the received torque information to control the motor 170 based on the torque information of the main controller 110. do.
  • the motor controller 150 may control the motor when the torque information of the main controller 110 and the torque information of the sub controller 110 are different or when an operation stop command is applied from the main controller 110 or the sub controller 120. Stop and let the motor stop.
  • the motor controller 150 does not stop the motor immediately according to the operation stop command, but controls the motor so that the vehicle decelerates and stops gradually.
  • the main controller 110 and the sub controller 120 monitor the operation state of the motor controller 150 based on the data received from the motor controller 150 to determine whether there is an abnormality.
  • the motor controller 150 If it is determined that the main controller 110 or the sub controller 120 has an abnormality in the motor controller 150, for example, a predetermined command is applied to the motor controller 150, but a response thereto is not received or an authorized command is received. When a different operation is performed, it is determined that the motor controller 150 malfunctions, and the motor controller 150 is stopped.
  • the main controller 110 or the sub-control unit 120 applies a cut-off (CUT-OFF) command to the PRA 160 when the motor controller 150 or more, the motor controller 150 through the switching of the PRA (160).
  • the power of the battery 180 supplied to) is cut off.
  • the motor controller 150 is stopped by shutting off the supply power.
  • FIG. 2 is a diagram illustrating a control flow according to vehicle control and emergency driving through mutual monitoring in an electric vehicle according to the present invention.
  • the main control unit 110 and the sub-control unit 120 monitors the mutual operation state to determine whether the abnormality, the motor control unit 150 to determine the state, to maintain the operation or to stop the operation.
  • the main controller 110 performs functions for overall vehicle control, and the main controller 110 applies state information and driving information to the sub controller 120 (S210).
  • the sub controller 120 analyzes data applied from the main controller 110 to perform a diagnostic function on the main controller 110 and inputs the monitoring result to the main controller 110 (S220).
  • the sub-control unit 120 calculates torque information for controlling the motor according to the signal input from the sensor unit 130 and applies it to the main control unit 110.
  • the main control unit 110 and the sub-control unit 120 determine whether the state control unit is operating normally, the control unit operating when any one of the control unit does not operate, the motor control unit ( 150 to apply a signal thereto (S230, S250). In particular, when the main controller 110 does not operate, the sub controller 120 performs an emergency operation.
  • main controller 110 and the sub-control unit 120 compare the calculated torque information, respectively, and determine whether the mutual control unit malfunctions. If the torque information is different, the main control unit 110 and the sub-control unit 120 stop the operation to the motor control unit 150. The command is applied (S230, S250).
  • the motor controller 150 cannot determine whether the controller is in a normal state, so that the motor stops. To control.
  • the main control unit 110 and the sub-control unit 120 when the motor control unit 150 or more, and applies a cut-off control command to the PRA (160) (S240, S260), PRA (160) is the main control unit 110 or The power supplied to the motor controller 150 is cut off according to the control command of the sub controller 120 (S270).
  • the control unit that normally operates among the main control unit 110 and the sub-control unit 120 performs the vehicle control, the main control unit 110
  • the sub-control unit 120 emergencyly controls the vehicle, and when the sub-control unit 120 stops operation, the normal control of the main controller 110 is maintained.
  • the vehicle stops when the error is large in the operation value or when the motor controller has a problem.
  • FIG. 3 is a flow chart referenced to explain the emergency control method for the motor controller error according to an embodiment of the present invention.
  • the sensor unit 130 measures the state of the vehicle through a plurality of sensors provided therein and inputs the state to the main controller 110 and the sub-control unit 120 (S320). .
  • the main controller 110 displays the information on the input data through the output means of the interface unit 140 so that the driver can recognize the current driving state of the vehicle.
  • the main controller 110 and the sub controller 120 generate control information for controlling the vehicle based on the data input from the sensors (S330). For example, the main controller 110 and the sub controller 120 calculate torque information for controlling the motor.
  • the main controller 110 and the sub-controller 120 apply the generated control information to the motor controller 150, and also transmit to each other to perform mutual monitoring.
  • the abnormality determination through mutual monitoring of the main controller 110 and the sub controller 120 is as described with reference to FIG. 2.
  • the main controller 110 and the sub controller 120 apply an operation stop command to the motor controller 150 when the mutually transmitted control information does not match. At this time, the main controller 110 and the sub-control unit 120 determines whether the motor controller 150 is abnormal according to the signal input from the motor controller 150 (S350).
  • the main control unit 110 and the sub-control unit 120 recognizes that the abnormal state in the motor control unit 150 as an uncontrollable state (S360).
  • the main control unit 110 and the sub-control unit 120 transmits a cut-off signal to the PRA 160, and correspondingly, the PRA 160 turns off the relay (S380).
  • FIG. 4 is a flowchart referred to for explaining the emergency control method in the event of an error according to the present invention.
  • the sensor unit 130 measures the state of the vehicle through a plurality of sensors provided to the main controller 110 and the sub-control unit 120. It is input (S460).
  • the main controller 110 outputs the current driving state of the vehicle and controls the overall operation of the vehicle.
  • the main controller 110 and the sub-controller 120 generate control information for controlling the vehicle based on data input from the sensors, respectively, and apply the generated control information to the motor controller 150 so that the motor is controlled according to the control information. To be controlled.
  • main controller 110 and the sub-control unit 120 transmits to each other to monitor each other, and compares the generated control information, respectively, and compares the data to determine whether the abnormality with respect to the other control unit.
  • main controller 110 and the sub-control unit 120 apply the control information generated by the motor controller 150, respectively, and receives the control information from the main controller 110 and the sub-control unit 120, respectively.
  • the motor controller 150 determines that the control information is normally input from each of the main controller 110 and the sub controller 120 (S470), and when the control information is normally input, the main controller 110 and the sub controller ( 120 compares the control information input from.
  • the motor controller 150 determines that both the main controller 110 and the sub controller 120 operate normally when the control information input from the main controller 110 and the sub controller 120 coincide with each other. Normal driving (S490). In this case, when the comparison result of the control information error is within a predetermined value, it is determined to be identical.
  • the motor controller 150 determines that at least one of the main controller 110 and the sub controller 120 malfunctions. However, since it is impossible to determine whether any of the main controller 110 and the sub-control unit 120 has an error, the motor controller 150 recognizes that the control is in an uncontrollable state (S500).
  • the motor controller 150 causes the motor 170 that is being operated to stop according to the control information of the main controller 110 and the sub controller 120 (S510).
  • the motor controller 150 does not stop the motor immediately, but stops the motor after controlling the battery vehicle to slowly decelerate and stop.
  • the main controller 110 and the sub-control unit 120 compares the control information through mutual data transmission and reception before the vehicle stops by the motor controller 150, if the control information is inconsistent, the main controller 110 and At least one of the sub controllers 120 applies an operation stop command to the motor controller 150.
  • the motor controller 150 controls the motor as described above to allow the vehicle to stop gradually (S510 and S520).
  • control information applied from the main controller 110 and the sub controller 120 is not normally input to the motor controller 150, or when the main controller 110 and the sub controller 120 transmit and receive data to each other, When data is not transmitted from any one of the controllers, at least one of the main controller 110, the sub controller 120, and the motor controller 150 is determined to be abnormal.
  • the motor controller 150 causes the motor control to be immediately performed by using the torque information previously calculated by the sub-control unit 120 (S580).
  • the sub-control unit 120 does not operate because there is an error in the main controller 110 when the control information is not received from the main controller 110 or when a signal for the main controller error is input from the motor controller 150. I think that.
  • the sub-control unit 120 generates control information including torque information according to the input signal, and applies the generated data to the motor control unit 150 to allow the motor to operate so that the vehicle can be emergency operated by emergency control. S590).
  • the emergency operation by the sub-control unit 120 is for acceleration and deceleration during vehicle driving, and when emergency control is started, the emergency control state is maintained until the vehicle stops.
  • the motor controller 150 controls the motor based on the control information of the main controller 110.
  • the main controller 110 maintains the existing operation state (S550), and outputs a warning about an abnormal occurrence of the sub-control unit 120 (S560).
  • the main controller 110 maintains normal driving (S570).
  • control information is not normally input to the motor controller 150, when the main controller 110 and the sub-control unit 120 operates normally, as shown in FIG. It may be determined that there is a malfunction or an abnormality of the motor control unit.
  • the electric vehicle and the emergency control method according to the present invention periodically check the state of the plurality of control units, and the vehicle is emergency operated by the control unit that normally operates for any one abnormality.
  • the present invention can prepare for a safety accident by emergency operation or emergency stop according to the abnormal state.
  • FIG. 5 is a view briefly illustrating the functions of the main control unit and the sub control unit according to an embodiment of the present invention.
  • the main controller 110 and the sub controller 120 transmit and receive mutual data and monitor each other.
  • the sub controller 120 monitors the state of the main controller 110 to determine whether an abnormality occurs.
  • the main controller 110 performs a function according to vehicle control, and the main controller 110 applies status information and driving information to the sub controller 120.
  • the sub controller 120 analyzes data applied from the main controller 110 to perform a diagnostic function on the main controller 110 and inputs the monitoring result to the main controller 110. In addition, the sub-control unit 120 compares the torque information by calculating the torque information for the motor control based on the signal input from the sensor unit 130 and applying it to the main controller 110.
  • the sub controller 120 performs a vehicle control function on behalf of the main controller 110 according to the state information and the driving information. At this time, the sub-control unit 110 immediately performs emergency control by using the previously calculated torque information.
  • the sub-control unit 120 does not perform all the functions of the main control unit as described above, but performs necessary functions, for example, motor control acceleration control and deceleration control according to the operating state.
  • the sub-control unit 120 monitors the main control unit 110 to release the emergency control when the main control unit 110 is normally operated, and to allow the vehicle control to be performed by the main control unit 110, and then the main control unit again. It will perform the diagnostic function for. However, even if the main control unit 110 is in a normal state, the sub-control unit 120 maintains emergency control while driving, and when the vehicle stops or starts off, normal control by the main control unit 110 during the next operation. To be performed.
  • FIG. 6 is a flowchart illustrating another example of an emergency control operation method according to an embodiment of the present invention.
  • 7 is a flowchart illustrating a method for releasing emergency control according to the emergency control operation of FIG. 6.
  • the sub controller 120 transmits and receives data to and from the main controller 110 (S610).
  • the sub controller 120 determines whether data is input from the main controller 110, and monitors the state of the main controller 110 through analysis of the input data, and performs a diagnosis function for determining normal operation thereof. It performs (S620).
  • the sub-control unit 120 also checks the communication state between the main control unit 110, and calculates the torque information itself in response to the signal input from the sensor unit 130. In this case, the sub controller 120 and the main controller 110 calculate torque information and apply the torque information to the motor controller 150.
  • the sub controller 120 outputs a monitoring result when the main controller 110 is normal and monitors the main controller 110 by periodically checking data input from the main controller 110 as described above (S630).
  • the sub controller 120 When there is an error in the main controller 110, the sub controller 120 performs an emergency control of the vehicle because the main controller 110 may malfunction (S640). The sub controller 120 performs the vehicle control function performed in the main controller 110 in place of the main controller 110 during the emergency control. At this time, the sub-control unit 120 performs emergency control by using the previously calculated torque information.
  • the sub controller 120 applies the torque information to the motor controller 150 even when the main controller 110 operates normally, so that the motor controller 150 can immediately use the torque information of the sub controller 120 during emergency control. Make sure
  • the sub-control unit 120 checks the input and output data (S650), and controls the operation in a state in which a limit is set for the vehicle in response to the current vehicle state and driving information (S660).
  • the sub-control unit 120 controls the motor 170 to drive the vehicle, but limits the maximum speed that can be operated, so that the vehicle operates within the limit value range and does not exceed the limit value.
  • Torque controls their behavior in the same way, limiting their values.
  • the vehicle operates with limited performance under emergency control.
  • the sub-control unit 120 may display a guide or guide for emergency operation through the output means of the interface unit 140 that the vehicle is in emergency operation during the emergency operation as described above.
  • the sub-control unit 120 records data on the driving history, the set value during driving, etc. for the vehicle in the emergency control (S670).
  • the sub controller 120 When the sub controller 120 performs the emergency control due to the abnormality of the main controller 110, the sub controller 120 maintains the emergency control until the vehicle stops or is turned off.
  • the sub-control unit 120 determines whether the state of the main controller 110 is normal (S730).
  • the control unit which controls the vehicle last in the previous operation at the start of the vehicle is the main control unit
  • the above determination is made by the main control unit
  • the sub-control unit 120 the sub-control unit 120 It is preferable that the vehicle start processing and the above judgment be made by the above.
  • the vehicle normal control by the main control unit 110 is performed (S740).
  • the sub-control unit 120 releases the emergency control, so that the normal control by the main control unit 110 (S750).
  • the main controller 110 performs vehicle control
  • the sub controller 120 performs monitoring of the main controller 110.
  • the restrictions on the speed and torque of the vehicle set during the emergency control are also released.
  • the sub-control unit 120 maintains emergency control (S760). At this time, the sub-control unit 120 outputs the abnormal state of the main control unit 110 through the output means of the interface unit 140 to allow the driver to recognize the need for inspection and repair of the main control unit 110.
  • the electric vehicle and the emergency control method according to the present invention can immediately check the abnormal phenomenon of the main control unit through the sub-control unit even if an error occurs in the main control unit, the emergency operation is possible to drive the vehicle to the minimum by the backup of the sub-control unit. Do. As a result, the vehicle stops suddenly due to an abnormal main control unit and the stability is corrected by setting the limit value while enabling the minimum operation.
  • FIG. 8 is a view schematically showing another example of a control configuration of an electric vehicle according to an embodiment of the present invention.
  • the electric vehicle may be implemented in a form in which a plurality of controllers configured as shown in FIG. 1 are provided with a plurality of processors in one controller.
  • the distortion compensation unit described later may be applied to the configuration of the plurality of controllers of FIG. 1.
  • the same reference numerals are used for the same components as in FIG. 1, and a description thereof will be omitted below.
  • the control unit of the electric vehicle includes a plurality of processors to control the vehicle through mutual data exchange and monitoring.
  • the controller includes a main controller 111, a sub controller 112, and a distortion compensator 113.
  • the main controller 111 controls the overall main operations according to the vehicle control, and generates a predetermined command to the motor controller 150 to perform a set operation corresponding to the input of the interface unit 140 and the sensor unit 130. It is applied and controlled, and the operation state is displayed by controlling the input / output of data. In addition, the main controller 111 monitors the operating states of the sub controller 112 and the motor controller 150.
  • the sub controller 112 is connected to the main controller 111 and receives the input / output signal of the main controller 111 to monitor the main controller 111. At this time, the sub controller 112 determines whether the main controller 111 operates normally in response to the value of the input / output signal, the type of the signal, the time at which the signal is input / output, or the like.
  • the sub-control unit 112 calculates torque information to be applied to the motor control unit 150 based on the signal input from the sensor unit 130, and applies the main information to the main control unit 111 and the motor control unit 150. It compares with the value calculated by the control unit 110.
  • the sub controller 112 operates as a backup controller instead of the main controller 111 when an abnormality occurs in the main controller 111. That is, the sub controller 120 controls the operation of the motor and the electric vehicle by using the input data.
  • the main control unit 111 or the sub-control unit 112 monitors the mutual operation as described above, and determines whether or not an abnormality occurs, if any one of the abnormality occurs, the other control unit that normally operates to control the vehicle, the abnormality occurs The error for the output through the output means of the interface unit 140.
  • the main control unit 111 and the sub-control unit 112 receive the same signal and process them independently to generate data for controlling the vehicle.
  • the main control unit 111 and the sub-control unit 112 are respectively generated. By comparing the data, it is determined whether the main controller 111 and the sub controller 112 are abnormal with each other.
  • values input from the plurality of sensors 131 to 133 of the sensor unit 130 are input to the main controller 111 and the sub controller 112 so that the processing proceeds based on the same signal.
  • 111 and the signal input to the main controller 111 and the sub-control unit 112 may be different because distortion occurs in the signal during the input to the sub-control unit 112 or there is a problem in signal transmission.
  • the distortion compensator 113 compensates for the distortion of a signal input to the main controller 111 and the sub controller 112, that is, a signal input from a plurality of sensors 131 to 133 included in the sensor 130. The same signal is input to the main controller 111 and the sub controller 112.
  • the distortion compensator 113 includes at least one resistor.
  • the distortion compensator 113 and the main controller 111 or the sub controller 112 are connected through at least one resistor having a predetermined size.
  • the resistance included in the distortion compensator 113 may be preset in consideration of characteristics of the plurality of sensors.
  • the resistance of the distortion compensator 113 may be a variable resistor in which a value is changed according to an input signal, that is, data from which sensor, or a characteristic of a connected sensor.
  • the distortion compensator 113 may further include a resistance value setting unit for changing the value of the variable resistor so that the value of the variable resistor is changed according to a sensor for inputting a signal.
  • the main controller 111 and the sub-control unit 112 are set as follows so that the signal inputted to the main control unit 111 and the sub-control unit 112 by the distortion compensator 113 become the same signal.
  • the main controller 111 and the sub controller 112 have a floating check state in which the internal setting sets the AD check mode to be the same, and the AD check mode reads the value of the input signal as it is. Set it to
  • the AD check mode setting of the main control unit 111 is a pull-up check state for processing a signal based on a reference voltage
  • the sub-control unit when 112 is set to a pull down check state for processing a signal based on ground, since the main controller 111 and the sub controller 112 are connected through the distortion compensator 113 substantially, Since circuits are electrically connected from the main controller 111 to the sub controller 112, respectively, distortion may occur in the input signal.
  • the main controller 111 and the sub-control unit 112 are connected to each other in the control unit. They can affect each other at the moment, and the input signals can be distorted due to the pull up and pull down resistors.
  • the main control unit 111 and the sub control unit 112 are preferably set to the AD check mode and the floating state as described above.
  • the main controller 111 and the sub-control unit 112 is preferably used the same manufacturer or the same series of processors, it is preferable to use a processor of the specification that can set the AD check mode as described above.
  • the main control unit 111 and the sub-control unit 112 should have an input signal of 0V, but the main control unit 111 and When the AD check mode of the sub controller 112 is set to the floating check state, a value other than 0V may be input.
  • the distortion compensator 113 includes a resistor in a pull down manner.
  • the distortion compensator 113 prevents a voltage floating phenomenon generated when the sensor is opened as the internal resistance is connected as described above.
  • the resistance value is set to a value at which distortion does not occur in the input signal, which can be set through an experiment.
  • a signal is input to the main control unit 111 and the sub-control unit 112 through the distortion compensator 113, even when a unit connected to the outside of the control unit is in an open state, the main control unit 111 is controlled by the distortion compensator 113. And a signal input to the sub controller 112 maintains 0V.
  • the main controller 111 and the sub controller 112 may be set so that AD check timing does not overlap each other.
  • the main control unit 111 and the sub-control unit 112 each further include a filter, and when AD Check Timing overlaps, a signal change may occur instantaneously, so that filtering is performed in comparison to the instantaneous signal change.
  • FIG. 9 is a diagram illustrating an example of an input signal according to the AD check mode setting of the main controller and the sub controller of FIG. 8.
  • 9A illustrates an example of a distorted signal
  • FIG. 9B illustrates an example of a normal signal input to the main controller and the sub-control unit through signal distortion compensation.
  • distortion may occur in a signal input to the main controller 111 and the sub controller 112 according to the AD check mode setting of the main controller 111 and the sub controller 112.
  • the first signal 301 is a signal input to the main controller 111 and the second signal 302 is a signal input to the sub-control unit 112.
  • the third signal 311 input to the main controller 111 is input.
  • the fourth signal 312 input to the sub-control unit 112 coincide with each other.
  • the main control unit 111 and the sub-control unit 112 receives and processes the same signal, it is possible to stably control the vehicle by checking the mutual operation state, and determine whether any one abnormality occurs. .
  • FIG. 10 is a diagram illustrating an example of a normal signal input through a distortion compensator of the control configuration of the electric vehicle of FIG. 8.
  • the third signal 321 is a signal when the distortion compensation unit is not provided
  • the fourth signal 322 is a signal when the distortion compensation unit is provided.
  • the distortion compensator 113 When the distortion compensator 113 is not provided in the controller, when an external unit of the controller is opened or when signal input is interrupted or when the sensor is opened 323, a signal input to the main controller 111 and the sub controller 112 is provided. Should be 0V, but the voltage recognized inside the main control unit 111 and the sub-control unit 112, like the fifth signal 321, gradually increases instead of 0V.
  • the main controller 111 and the sub controller 112 may misjudge that a predetermined signal is input and control the vehicle accordingly, which may cause the vehicle to malfunction.
  • the main controller 111 and the sub-controller 112 are recognized inside the external unit or the sensor open 323, as in the sixth signal 322.
  • the voltage is kept at 0V.
  • the present invention sets the internal AD check mode setting of the main control unit and the sub control unit to the floating check state in the control unit of the plurality of processors, and includes a distortion compensation unit, thereby substantially matching the signals input to the plurality of processors, The signal can be compensated for normal recognition even when open.
  • the efficiency according to the vehicle control is improved, and the stability of vehicle tracking is ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Safety Devices In Control Systems (AREA)

Abstract

본 발명은 전기자동차 및 그 비상제어방법에 관한 것으로서, 복수의 제어부를 구비하여 복수의 제어부간에 상호 모니터링 하고, 이상 발생 시 정상 동작하는 제어부를 통해 비상제어하여 제한된 범위 내에서 차량이 동작하도록 하거나, 또는 발생되는 이상 현상에 따라 차량이 비상정지하도록 하여, 안정적인 차량의 주행을 보장하고 차량 이상으로 인해 발생할 수 있는 사고를 사전에 방지하여 운전자의 안전을 보장한다. 또한, 본 발명은 복수의 제어부가 모터 제어를 위한 신호를 독립적으로 생성하되, 복수의 제어부가 동일한 데이터를 바탕으로 프로세싱 할 수 있도록 입력되는 데이터의 왜곡을 최소화하여 실질적으로 일치시키고 이를 검증할 수 있어 보다 효과적이고 안정적인 차량제어가 가능하도록 한다.

Description

전기자동차 및 그 비상제어방법
본 발명은 전기자동차 및 그 비상제어방법에 관한 것으로, 차량의 동작 전반을 제어하는 제어부의 이상을 감지하여 비상 운전하거나 차량을 정차시키는 전기자동차 및 그 비상제어방법에 관한 것이다.
전기자동차는 장래의 자동차 공해 및 에너지 문제를 해결할 수 있는 가장 가능성 높은 대안이라는 점에서 연구가 활발하게 진행되고 있다.
전기자동차(Electric vehicle;EV)는 주로 배터리의 전원을 이용하여 AC 또는DC 모터를 구동하여 동력을 얻는 자동차로서, 크게 배터리전용 전기자동차와 하이브리드 전기자동차로 분류되며, 배터리전용 전기자동차는 배터리의 전원을 이용하여 모터를 구동하고 전원이 다 소모되면 재충전하고, 하이브리드 전기자동차는 엔진을 가동하여 전기발전을 하여 배터리에 충전을 하고 이 전기를 이용하여 전기모터를 구동하여 차를 움직이게 할 수 있다.
또한, 하이브리드 전기자동차는 직렬 방식과 병렬 방식으로 분류될 수 있으며, 직렬 방식은 엔진에서 출력되는 기계적 에너지는 발전기를 통하여 전기적 에너지로 바뀌고 이 전기적 에너지가 배터리나 모터로 공급되어 차량은 항상 모터로 구동되는 자동차로 기존의 전기자동차에 주행거리의 증대를 위하여 엔진과 발전기를추가시킨 개념이고, 병렬 방식은 배터리 전원으로도 차를 움직이게 할 수 있고 엔진(가솔린 또는 디젤)만으로도 차량을 구동시키는 두가지 동력원을 사용하고 주행조건에 따라 병렬 방식은 엔진과 모터가 동시에 차량을 구동할 수도 있다.
또한, 최근 모터/제어기술도 점점 발달하여 고출력, 소형이면서 효율이 높은시스템이 개발되고 있다. DC모터를 AC모터로 변환함에 따라 출력과 EV의 동력성능(가속성능,최고속도)이 크게 향상되어 가솔린차에 비하여 손색없는 수준에 도달하였다. 고출력화를 추진하면서 고회전화 함에 따라 모터가 경량소형화되어 탑재중량이나 용적도 크게 감소하였다.
이러한 전기자동차는 그 기능을 제어하는 중앙의 제어부를 포함하나, 제어부자체 이상 또는 제어부와의 통신에 이상이 있는 경우 제어부의 이상으로 차량이 정상 동작하지 못하게 된다.
그에 따라 주행 중에 이상이 발생하는 경우 입력되는 신호에 대한 처리가 불가능하고 그로 인해 차량의 주행이 어려워지므로 사고로 이어질 수 있는 우려가 있다.
본 발명의 목적은, 차량 제어를 위한 제어부를 복수로 구비하여 상호 모니터링을 통해 이상 발생 여부를 판단하여 비상 운전하거나 차량이 정차되도록 하여 안정적인 운전을 보장하고, 메인제어부 이상 시 서브제어부를 통해 비상 운전하는 전기자동차 및 비상제어방법의 제공에 있다.
또한, 본 발명은 차량 제어를 위한 복수의 프로세서가 구비되는 경우 별도로 신호를 발생시키지 않고도, 동일한 신호가 각 프로세서로 입력되도록 하고, 입력된 신호에 대한 정상 여부를 판단하여 안정적인 차량 제어를 수행하는 전기자동차 및 비상제어방법을 제공하는 데 있다.
본 발명에 따른 전기자동차는 차량의 상태를 측정하는 센서부; 운전자의 조작에 의해 차량 제어를 위한 설정이 입력되는 인터페이스부; 상기 센서부 및 상기 인터페이스부로부터 입력되는 데이터에 대응하여 차량을 동작시키고 제어하는 메인제어부; 및 상기 메인제어부로부터 입력되는 상태정보 및 운행정보에 대응하여 상기 메인제어부를 진단하고, 상기 메인제어부 이상 발생 시, 상기 메인제어부를 대신하여 차량을 비상제어 하는 서브제어부를 포함한다.
또한, 전기자동차는 모터를 제어하여 차량이 주행하도록 하는 모터제어부; 및 배터리 전원을 상기 모터제어부로 공급하는 PRA(Power Relay Assemply);를 더 포함하고, 상기 메인제어부 및 상기 서브제어부는 상기 모터제어부 이상 동작 시, 상기 PRA를 제어하여 상기 배터리로부터 상기 모터제어부 인가되는 전원이 차단함으로써 비상 정지하도록 하는 것을 특징으로 한다.
또한, 전기자동차는 상기 메인제어부 및 상기 서브제어부로 동일한 신호가 입력되도록, 상기 센서부에 포함된 복수의 센서로부터 입력되는 신호의 왜곡을 보상하는 왜곡보상부를 더 포함한다.
본 발명에 따른 전기자동차의 비상제어방법은 차량을 제어하는 메인제어부로부터 상태정보 및 운전정보를 수신하여 상기 메인제어부의 상태에 대해 진단하는 단계; 상기 진단결과, 상기 메인제어부가 정상 동작하는 경우 모니터링 결과를 상기 메인제어부로 전송하는 단계; 및 상기 진단결과, 상기 메인제어부에 이상이 있는 경우, 비상제어를 설정하고 상기 메인제어부를 대신하여 차량제어를 수행하는 단계;를 포함한다.
또한, 전기자동차의 비상제어방법은 메인제어부 및 서브제어부가 적어도 하나의 센서로부터 입력되는 데이터에 따라 차량 제어를 위한 제어정보를 각각 생성하여, 모터제어부로 인가하는 단계; 상기 모터제어부의 응답 여부에 따라 상기 모터제어부에 대한 이상 여부를 판단하는 단계; 및 상기 모터제어부 이상 시, PRA제어를 통해 상기 모터제어부로 공급되는 전원을 차단하여 차량이 비상 정지하는 단계를 포함한다.
본 발명에 따른 전기자동차 및 그 비상제어방법은 복수의 제어부를 구비하여 복수의 제어부 간에 상호 모니터링하고, 복수의 제어부가 모두 정상 동작 된다 하더라도 생성되는 데이터를 비교함으로써, 비상 운전하거나 차량이 비상 정지하도록 제어하고 또는 최소한의 동작에 대한 제어가 가능하도록 하여 안정적인 주행을 보장하고, 발생할 수 있는 사고를 미연에 방지하여 운전자의 안전을 보장하는 효과가 있다.
또한, 본 발명은 복수의 제어부에 대하여, 하나의 신호 및 신호유닛의 상태를 검증하기 위해 복수의 신호를 추가하여 검증할 필요가 없고 제어부의 내부적인 셋팅 및 간단한 회로 설계를 통해 단일 신호의 복수 입력이 가능하고 신호의 편차를 최소화할 수 있으며, 그로 인해 차량 제어에 따른 안정성이 향상되는 효과가 있다. 또한, 신호 생성을 위해 복수의 신호유닛을 사용하지 않으므로 그로 인하여 발생할 수 있는 각 유닛 간의 편차가 없어 데이터의 정확성이 향상되는 효과가 있고, 회로의 레이아웃 또는 공간의 이득 및 비용 절감의 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 전기자동차의 제어 구성을 개략적으로 나타낸 도면이다.
도 2 는 본 발명에 따른 전기자동차에서 상호 모니터링을 통한 차량 제어 및 비상운전에 따른 제어 흐름이 도시된 도이다.
도 3 은 본 발명의 일실시예에 따른 모터제어부 이상에 대한 비상제어방법을 설명하는데 참조되는 순서도이다.
도 4 는 본 발명에 따른 이상 발생시의 비상제어방법을 설명하는데 참조되는 순서도이다.
도 5 는 본 발명의 일 실시예에 따른 메인제어부와 서브제어부의 기능에 대하여 간략하게 도시한 도이다.
도 6 은 도 5의 메인제어부와 서브제어부간의 비상제어 운전방법이 도시된 순서도이다.
도 7 은 도 6의 비상제어 운전에 따른 비상제어 해제에 따른 방법이 도시된 순서도이다.
도 8 은 본 발명의 일 실시예에 따른 전기자동차의 제어 구성의 다른 예를 개략적으로 나타낸 도이다.
도 9 는 도 8의 메인제어부와 서브제어부의 AD 체크 모드 설정에 따른 입력 신호의 예가 도시된 도이다.
도 10 은 도 8의 전기자동차의 제어 구성 중 왜곡보상부를 통한 정상신호 입력의 예가 도시된 도이다.
이하, 본 발명의 바람직한 실시예에 대해 도면을 참조하여 설명한다.
도 1은 본 발명의 일 실시예에 따른 전기자동차의 내부 구성을 개략적으로 나타낸 도면이다.
도면을 참조하면, 본 발명의 일 실시예에 따른 전기자동차는 센서부(130), 인터페이스부(140), 모터제어부(MCU)(150), 모터(170), 배터리(180), PRA(160), 전원부(190)차량 주행 및 동작에 따른 전반을 제어하는 메인제어부(110) 그리고 메인제어부(110)를 보조하는 서브제어부(120)를 포함한다.
전기자동차는 상기와 같이 배터리(180)를 포함하여, 배터리에 충전된 전원을 동작전원으로 이용하여 동작하며, 소정의 충전소 또는 차량 충전설비 또는 가정에서 외부로부터 전원을 공급받아 구비되는 배터리(180)를 충전한다.
배터리(180)는 복수의 배터리셀로 구성되어, 고전압의 전기에너지를 저장한다.
이때, 전기자동차는 배터리(180)의 충전을 제어하고 배터리의 잔여용량, 충전 필요성을 판단하며, 배터리에 저장된 충전전류를 전기자동차의 각 부로 공급하는데 따른 관리를 수행하는 BMS(Battery management system)(미도시)를 더 포함한다.
BMS는 배터리를 충전하고 사용할 때, 배터리 내의 셀 간의 전압차를 고르게 유지하여, 배터리가 과충전되거나 과방전되지 않도록 제어함으로써 배터리의 수명을 연장한다.
PRA(Power relay assembly)(160)는 고전압을 스위칭하기 위한 복수의 릴레이와, 센서를 포함하여 배터리(180)으로부터 인가되는 고전압의 동작전원을 모터제어부(MCU)(150)로 인가하거나 차단한다. 이때 PRA(160)는 메인제어부(110)의 제어명령에 의해 릴레이가 동작하며, 경우에 따라 서브제어부(120)의 제어명령에 따라 릴레이가 동작할 수 있다.
PRA(160)는 차량 시동 시 또는 차량의 시동이 꺼지는 경우, 메인제어부(110) 또는 서브제어부(120)의 제어명령에 따라, 구비되는 복수의 릴레이를 소정 순서에 따라 스위칭 함으로써, 차량의 각 부로 배터리(180)에 저장된 고전압의 동작전원이 인가되도록 한다.
PRA(160)는 모터제어부(MCU)로의 배터리 전원 공급을 차단할 수 있으며, 모터로 공급되는 전원이 차단되므로 모터가 정치하게 됨에 따라 차량 또한 정차하게 된다.
센서부(130)는 차량 주행, 또는 소정 동작 중에 발생하는 신호를 감지하여 입력하고 이를 메인제어부(110) 및 서브제어부(120)로 입력한다.
센서부(130)는 차량 내부 및 외부에 복수의 센서를 포함하여 다양한 감지신호를 입력한다. 이때 설치되는 위치에 따라 센서의 종류 또한 상이할 수 있다. 특히 센서부(130)는 비상제어 시 필요한 엑셀 또는 브레이크 조작에 대한 신호를 서브제어부(120)로 인가한다.
인터페이스부(140)는 운전자의 조작에 의해 소정의 신호를 입력하는 복수의 스위치를 포함하는 입력수단과, 전기 자동차의 현 상태 동작중 정보를 출력하는 출력수단을 포함한다.
이때 출력수단은 정보를 표시하는 디스플레이부, 음악, 효과음 및 경고음을 출력하는 스피커 그리고 각종 상태 등을 포함한다. 입력수단은 차량 주행에 따름 방향지시등, 테일램프, 헤드램프, 브러시 등의 동작을 위한 복수의 스위치, 버튼 등을 포함한다.
또한, 인터페이스부(140)는 스티어링 휠, 액셀레이터, 브레이크와 같은 운전을 위한 조작수단을 포함한다. 특히 출력수단은 메인제어부(110) 또는 서브제어부(120) 이상 시, 그에 따른 경고음, 경고등, 경고메시지 중 적어도 하나를 출력하여 운전자가 인지하도록 한다.
모터제어부(150)는 연결된 적어도 하나의 모터(170)를 구동하기 위한 제어신호를 생성하는데 모터제어를 위한 소정의 신호를 생성하여 인가한다. 이때 모터제어부(150)는 인버터(미도시) 및 컨버터(미도시)를 포함하여 인버터 또는 컨버터를 제어함으로써 모터(170)의 구동을 제어할 수 있다.
모터제어부(150)는 메인제어부(110) 또는 서브제어부(120)로부터 인가되는 제어명령에 따라 동작하며 PRA(160)통해 공급되는 배터리(180)의 전원을 이용하여 모터(170)의 구동을 제어한다.
모터제어부(150)는 메인제어부(110)와 서브제어부(120) 양측으로부터 토크정보를 입력받아 동작하는데, 정상동작 시 메인제어부(110)의 토크정보를 이용하여 동작하고, 메인제어부(110) 이상 발생시 서브제어부(120)의 토크정보를 이용하여 동작한다.
전원부(190)는 외부로부터 공급되는 전원을 이용하여 배터리를 충전하고 배터리의 전원을 모터(170)를 포함하는 차량 전반에 동작전원으로써 공급한다.
메인제어부(110)는 인터페이스부(140) 및 센서부(130)의 입력에 대응하여 설정된 동작이 수행되도록 모터제어부(150)로 소정의 명령을 생성하여 인가하여 제어하고, 데이터의 입출력을 제어하여 동작상태가 표시되도록 한다.
서브 제어부(120)는 메인제어부(110)와 연결되어 메인제어부(110)의 입출력신호를 입력받아 메인제어부(110)를 모니터링 한다. 이때 서브 제어부(120)는 입출력되는 신호의 값, 신호의 형태, 신호가 입출력되는 시간 등에 대응하여 메인제어부(110)가 정상 동작하는지 여부를 판단한다.
서브제어부(120)는 메인제어부(120)에 이상이 발생된 경우 메인제어부(120)를 대신하여 백업제어부로써 동작한다. 즉 서브제어부(120)는 입력되는 데이터를 이용하여 모터(170) 및 전기자동차 동작을 제어한다.
메인제어부(110) 및 서브제어부(120)는 센서부(130)로부터 입력되는 신호를 바탕으로 모터제어부(150)로 인가할 토크 정보를 각각 연산하여, 상호 연산된 데이터를 전송하고, 연산된 데이터를 각각 모터제어부(150)로 인가한다.
메인제어부(110)는 서브제어부(120)는 입력되는 데이터를 바탕으로 연산한 결과를 전송함으로써, 상호 모니터링 하고, 수신된 데이터와 자체 연산한 데이터를 비교하여 이상 여부를 판단한다.
메인제어부(110)와 서브제어부(120)는 일정 주기로 데이터를 상호 전송하는데, 소정 시간 이상 데이터가 수신되지 않는 경우, 이상이 있는 것으로 판단할 수 있다. 또한 메인제어부(110)와 서브제어부(120)는 수신된 데이터에 이상이 있는 경우에도 상대 제어부에 이상이 있는 것으로 판단 할 수 있다.
이때, 메인제어부(110)와 서브제어부(120)는 상호 데이터 교환을 통해 상대 제어부가 동작 정지하였는지 또는 동작중이긴 하나 오동작하는지 여부를 판단한다.
메인제어부(110)는 서브제어부(120)가 동작하지 않는 경우 이상이 있다고 판단하여, 서브제어부(120)의 이상에 대한 경고가 인터페이스부(140)의 출력수단을 통해 출력되도록 하고, 차량 운전을 유지한다.
또한 메인제어부(110)는 서브제어부(120)의 이상에 대하여 모터제어부(150)로 신호를 인가함으로써 이후 모터제어부(150)에서 서브제어부(120)의 신호를 무시하도록 한다.
한편, 서브제어부(120)는 메인제어부(120)가 동작하지 않는 경우 이상이 있다고 판단하여, 메인제어부(120)를 대신하여 백업제어부로써 동작한다. 즉 서브제어부(120)는 입력되는 데이터를 이용하여 모터(170) 및 전기자동차 동작을 제어한다.
서브제어부(120)는 메인제어부(120) 이상 시, 미리 연산된 토크정보를 이용하여 즉시 비상제어를 수행한다. 그에 따라 주행 중 메인제어부(110)에 이상이 발생하는 경우 서브제어부(120)에 비상제어가 수행됨에 따라 차량이 정차하지 않고 주행상태를 유지할 수 있게 된다.
서브제어부(120)는 모터(170)의 구동에 있어서 속도 또는 토크에 대한 제한을 두고 제한값 범위 내에서만 동작되도록 할 수 있다. 서브제어부(120)는 비상제어 시의 차량의 상태, 센서부(130)로부터 입력되는 데이터의 값에 대응하여 속도를 제한하고 엑셀 또는 브레이크에 대한 제어를 수행한다. 즉 서브제어부(120)는 차량의 주행 등 최소한의 동작에 대해 처리한다.
여기서 서브제어부(120)는 메인제어부(110)를 백업하기 위한 것으로, 메인제어부(110)의 모든 동작을 수행하는 것은 아니고 일부 기능에 대해 차량이 비상운전 할 수 있도록 비상제어 한다. 서브 제어부(120)는 메인제어부(110)보다 낮은 성능의 것이 사용되거나 동일한 성능의 부품이 사용될 수 있다.
서브제어부(120)는 비상제어가 시작되면, 차량의 시동이 오프(OFF)될 때까지 비상제어를 통한 차량의 비상운전을 유지하고, 시동 오프(OFF) 후 시동 시, 메인제어부(110)가 정상인지 여부를 판단한 후 비상제어를 해제하거나 유지한다.
서브제어부(120)는 비상제어 시, 인터페이스부(140)의 출력수단을 통해 메인제어부(120)의 이상에 대한 경고가 출력되도록 한다.
또한 서브제어부(120)는 메인제어부(110)의 이상에 대하여 모터제어부(150)로 신호를 인가함으로써 이후 모터제어부(150)에서 메인제어부(110)의 신호를 무시하도록 한다.
또한, 메인제어부(110)와 서브제어부(120)는 상대 제어부로부터 수신되는 데이터와 각각 연산한 토크정보를 비교하는데, 비교 결과 산출된 값의 차이가 일정값 이상이면 메인제어부(110)와 서브제어부(120) 양측에서 상호 이상이 있다고 판단하여 모터제어부(150)로 동작 정지명령을 인가한다. 이때 소정범위 내의 오차는 정상으로 판단한다.
이때 모터제어부(150)는 메인제어부(110)와 서브제어부(120) 양측으로부터 토크정보를 수신하고, 수신된 토크정보를 비교하여 메인제어부(110)의 토크정보를 바탕으로 모터(170)를 제어한다.
모터제어부(150)는 메인제어부(110)의 토크정보와 서브제어부(110)의 토크정보가 상이한 경우, 또는 메인제어부(110) 또는 서브제어부(120)로부터 동작 정지명령이 인가되는 경우, 모터제어를 중지하고 모터가 정지하도록 한다.
이때, 모터제어부(150)는 동작 정지명령에 따라 즉시 모터를 정지시키는 것이 아니라, 차량이 감속하여 서서히 정차하도록 모터를 제어한 후 모터가 정지하도록 한다.
한편, 메인제어부(110)와 서브제어부(120)는 모터제어부(150)로부터 수신되는 데이터를 바탕으로 모터제어부(150)의 동작상태를 모니터링하여 이상 유무를 판단한다.
메인제어부(110) 또는 서브제어부(120)는 모터제어부(150)에 이상이 있다고 판단되는 경우, 예를 들어 모터제어부(150)로 소정 명령을 인가하였으나, 그에 대한 응답이 수신되지 않거나 인가된 명령과 다른 동작이 수행되는 경우 모터제어부(150)가 오동작하는 것으로 판단하여, 모터제어부(150)가 동작 정지되도록 한다.
이때, 메인제어부(110) 또는 서브제어부(120)는 모터제어부(150) 이상 시, PRA(160)로 컷오프(CUT-OFF) 명령을 인가하여, PRA(160)의 스위칭을 통해 모터제어부(150)로 공급되는 배터리(180)의 전원이 차단되도록 한다.
그에 따라 모터제어부(150)의 이상으로 모터제어부(150) 제어가 불가능한 경우 공급전원을 차단함으로써 모터제어부(150)가 동작 정지되도록 한다.
도 2 는 본 발명에 따른 전기자동차에서 상호 모니터링을 통한 차량 제어 및 비상운전에 따른 제어 흐름이 도시된 도이다.
전술한 바와 같이, 메인제어부(110)와 서브제어부(120)는 상호 동작상태를 모니터링하여 이상 여부를 판단하고, 모터제어부(150)를 상태를 판단하여, 운전을 유지하거나 운전 정지되도록 한다.
도 2에 도시된 바와 같이, 메인제어부(110)는 차량제어 전반에 대한 기능을 수행하고, 메인제어부(110)는 상태정보와 운행정보를 서브제어부(120)로 인가한다(S210).
서브제어부(120)는 메인제어부(110)로부터 인가되는 데이터를 분석하여 메인제어부(110)에 대한 진단기능을 수행하고 그에 대한 모니터링결과를 메인제어부(110)로 입력한다(S220).
또한 서브제어부(120)는 센서부(130)로부터 입력되는 신호에 따라 모터제어를 위한 토크정보를 연산하여 메인제어부(110)로 인가한다.
그에 따라 메인제어부(110)와 서브제어부(120)는 각각 상태 제어부가 정상 동작하는지 여부를 판단하여, 어느 하나의 제어부가 동작하지 않는 경우 동작하는 제어부가 차량의 운전제어를 수행하고, 모터제어부(150)로 그에 대한 신호를 인가한다(S230, S250). 특히 메인제어부(110)가 동작하지 않는 경우 서브제어부(120)는 비상운전을 수행한다.
또한, 메인제어부(110)와 서브제어부(120)는 각각 연산한 토크정보를 비교하여 상호 상대 제어부가 오동작하는지 여부를 판단하여 토크정보가 상이한 경우 오동작하는 것으로 판단하여 모터제어부(150)로 동작정지 명령을 인가한다(S230, S250).
모터제어부(150)는 동작정지 명령이 입력되거나, 메인제어부(110) 및 서브제어부(120)로부터 수신되는 토크정보가 상이한 경우, 어느 제어부가 정상 상태인지 여부를 판단 할 수 없으므로 차량이 정차하도록 모터를 제어한다.
한편, 메인제어부(110)와 서브제어부(120)는 모터제어부(150) 이상 시, PRA(160)로 컷오프 제어명령을 인가하고(S240, S260), PRA(160)는 메인제어부(110) 또는 서브제어부(120)의 제어명령에 따라 모터제어부(150)로 공급되는 전원을 차단한다(S270).
즉, 메인제어부(110)와 서브제어부(120) 중 어느 하나가 동작 정지한 경우, 메인제어부(110)와 서브제어부(120) 중 정상 동작하는 제어부가 차량 제어를 수행하되, 메인제어부(110)가 동작정지한 경우 서브제어부(120)는 차량을 비상제어하고, 서브제어부(120)가 동작정지한 경우에는 메인제어부(110)의 정상제어가 유지된다.
한편, 메인제어부(110)와 서브제어부(120) 모두 동작하기는 하나 그 연산값에 오차가 큰 경우, 또는 모터제어부가 차제 이상이 있는 경우에는 차량은 정차하게된다.
도 3 은 본 발명의 일실시예에 따른 모터제어부 이상에 대한 비상제어방법을 설명하는데 참조되는 순서도이다.
도 3을 참조하면, 전기자동차 주행 중(S310), 센서부(130)는 구비되는 복수의 센서를 통해 차량의 상태를 측정하여 메인제어부(110)와 서브제어부(120)로 입력한다(S320).
메인제어부(110)는 입력되는 데이터에 대한 정보를 인터페이스부(140)의 출력수단을 통해 표시함으로써 운전자가 차량의 현 운전상태를 인지 할 수 있도록 한다.
메인제어부(110)와 서브제어부(120)는 각각 센서로부터 입력되는 데이터를 바탕으로 차량 제어를 위한 제어정보를 생성한다(S330). 예를 들어 메인제어부(110)와 서브제어부(120)는 모터 제어를 위한 토크정보를 연산한다.
메인제어부(110)와 서브제어부(120)는 생성된 제어정보를 모터제어부(150)로 인가하고, 또한 상호 전송하여 상호 모니터링을 수행한다. 메인제어부(110)와 서브제어부(120)의 상호 모니터링을 통한 이상 판단은 도 2에서 설명한 바와 같다.
메인제어부(110)와 서브제어부(120)는 상호 전송한 제어정보가 불일치 하는 경우, 모터제어부(150)로 동작정지 명령을 인가한다. 이때 메인제어부(110)와 서브제어부(120)는 모터제어부(150)로부터 입력되는 신호에 따라 모터제어부(150)의 이상 여부를 판단한다(S350).
메인제어부(110)와 서브제어부(120)는 모터제어부(150)에 이상이 있는 경우 제어불능 상태로 인식한다(S360).
메인제어부(110)와 서브제어부(120)는 PRA(160)로 컷오프(CUT-OFF)신호를 전송하고, 그에 대응하여 PRA(160)를 릴레이를 오프(OFF) 한다(S380).
PRA(160)의 릴레이가 오프됨에 따라 모터제어부(150)로 공급되던 배터리(180)의 전원이 차단되고(S390), 모터제어부(150)가 정지함에 따라 차량이 정지한다(S410).
따라서 메인제어부(110)와 서브제어부(120)는 상기와 같이 모터제어부의 이상으로 인하여 제어가 불가능한 상태가 되면, 모터제어부로 공급되는 전원을 차단함으로써 차량을 비상 제어하여 안전하게 정차하도록 한다. 그에 따라 제어 불능상태에서 발생할 수 있는 사고를 방지한다.
도 4 는 본 발명에 따른, 이상 발생시의 비상제어방법을 설명하는데 참조되는 순서도이다.
도 4를 참조하면, 전기자동차 주행 중(S450), 전술한 바와 같이, 센서부(130)는 구비되는 복수의 센서를 통해 차량의 상태를 측정하여 메인제어부(110)와 서브제어부(120)로 입력한다(S460). 메인제어부(110)는 차량의 현 운전상태를 출력하고, 차량의 동작 전반을 제어한다.
메인제어부(110)와 서브제어부(120)는 각각 센서로부터 입력되는 데이터를 바탕으로 차량 제어를 위한 제어정보를 생성하고, 생성된 제어정보를 모터제어부(150)로 인가하여 제어정보에 따라 모터가 제어되도록 한다.
또한, 메인제어부(110)와 서브제어부(120)는 상호 전송하여 상호 모니터링을 수행하고, 각각 생성된 제어정보를 비교하여 데이터를 비교함으로써 상대 제어부에 대한 이상 여부를 판단한다.
또한, 메인제어부(110)와 서브제어부(120)는 모터제어부(150)로 생성된 제어정보를 각각 인가하고, 메인제어부(110)와 서브제어부(120)로부터 제어정보를 각각 수신한다.
이때, 모터제어부(150)는 제어정보가 각 메인제어부(110)와 서브제어부(120)로부터 정상적으로 입력되지 판단하고(S470), 제어정보가 정상적으로 입력되는 경우, 메인제어부(110)와 서브제어부(120)로부터 입력된 제어정보를 상호 비교한다.
모터제어부(150)는 메인제어부(110)와 서브제어부(120)로부터 입력된 제어정보가 상호 일치하는 경우, 메인제어부(110)와 서브제어부(120)가 모두 정상 동작하는 것으로 판단하며, 차량은 정상 주행된다(S490). 이때 제어정보의 비교결과 오차가 소정값 이내인 경우에는 일치하는 것으로 판단한다.
한편, 메인제어부(110)와 서브제어부(120)의 제어정보가 일치하지 않는 경우, 모터제어부(150)는 메인제어부(110)와 서브제어부(120) 중 적어도 하나가 오동작하는 것으로 판단한다. 단 메인제어부(110)와 서브제어부(120) 중 어느 제어부에 이상이 있는 판단할 수 없으므로 모터제어부(150)는 제어 불능상태로 인식한다(S500).
모터제어부(150)는 메인제어부(110)와 서브제어부(120)의 제어정보에 따라 동작중이던 모터(170)가 정지하도록 한다(S510).
그에 따라 차량은 정지한다(S520). 이때 모터제어부(150)는 모터를 즉시 정지 시키는 것이 아니라, 전지자동차가 서서히 감속하여 정차하도록 제어한 후 모터를 정지 시킨다.
이때, 모터제어부(150)에 의한 차량 정차 전, 메인제어부(110)와 서브제어부(120)가 상호 데이터 송수신을 통해 제어정보를 비교하는 경우에도, 제어정보가 불일치 하면, 메인제어부(110) 및 서브제어부(120)중 적어도 하나는 모터제어부(150)로 동작 정지명령을 인가한다.
모터제어부(150)는 메인제어부(110)와 서브제어부(120) 중 어느 하나로부터 동작 정지 명령이 입력되면, 상기와 같이 모터를 제어하여 차량이 서서히 정차 하도록 한다(S510, S520).
한편, 메인제어부(110)와 서브제어부(120)로부터 인가되는 제어정보가 모터제어부(150)로 정상적으로 입력되지 않은 경우, 또는 메인제어부(110)와 서브제어부(120)가 상호 데이터를 송수신 한 경과 어느 하나의 제어부에서 데이터가 전송되지 않은 경우, 메인제어부(110), 서브제어부(120) 및 모터제어부(150) 중 적어도 하나는 이상 발생으로 판단한다.
메인제어부(110)에 이상이 있는 경우(S530), 모터제어부(150)는 서브제어부(120)에 의해 기 연산된 토크정보를 이용하여 즉시 모터제어를 수행하도록 한다(S580).
이때, 서브제어부(120)는 메인제어부(110)로부터 제어정보가 수신되지 않는 경우 또는 모터제어부(150)로부터 메인제어부 이상에 대한 신호가 입력되는 경우 메인제어부(110)에 이상이 있어 동작하지 않는 것으로 판단한다.
서브제어부(120)는 입력되는 신호에 따라 토크정보를 포함하는 제어정보를 생성하고, 생성된 데이터를 모터제어부(150)로 인가하여, 모터가 동작되도록 하여 비상제어함으로써 차량이 비상운전되도록 한다(S590).
이때 서브제어부(120)에 의한 비상운전은 차량 주행시 가속 및 감속에 대한 것으로 비상제어가 시작되면, 차량이 정차 하기까지 비상제어 상태를 유지한다.
한편, 메인제어부(110)는 정상이나, 서브제어부(120)에 이상이 있는 경우, 모터제어부(150)는 메인제어부(110)의 제어정보에 근거하여 모터를 제어한다.
메인제어부(110)는 기존의 운전 상태를 유지하되(S550), 서브제어부(120)의 이상 발생에 대한 경고가 출력되도록 한다(S560).
메인제어부(110)는 정상 주행을 유지한다(S570).
한편, 제어정보가 정상 적으로 모터제어부(150)에 입력되지 않았으나, 메인제어부(110)와 서브제어부(120)가 정상동작하는 경우에는, 전술한 도 3과 같이 메인제어부 또는 서브제어부 양측이 모두 오동작하거나, 모터제어부의 이상인 것으로 판단할 수 있다.
따라서 본 발명에 따른 전기자동차 및 비상제어방법은 복수의 제어부에 대한 상태를 정기적으로 점검하고, 어느 하나의 이상에 대하여 정상 동작하는 제어부가 차량을 제어하여 차량이 비상운전된다. 또한, 본 발명은 이상 상태에 따라 비상운전 하거나, 비상 정지하도록 하여 안전사고에 대비할 수 있다.
도 5 는 본 발명의 일실시예에 따른 메인제어부와 서브제어부의 기능에 대하여 간략하게 도시한 도이다.
도 5에 도시된 바와 같이 메인제어부(110)와 서브제어부(120)는 상호 데이터를 송수신하며 상호 모니터링 한다. 특히 서브제어부(120)는 메인제어부(110)의 상태를 모니터링 하여 이상 발생 여부를 판단한다.
도5의 a와 같이 평상시에는, 메인제어부(110)가 차량제어에 따른 기능을 수행하고, 메인제어부(110)는 상태정보와 운행정보를 서브제어부(120)로 인가한다.
서브제어부(120)는 메인제어부(110)로부터 인가되는 데이터를 분석하여 메인제어부(110)에 대한 진단기능을 수행하고 그에 대한 모니터링 결과를 메인제어부(110)로 입력한다. 또한 서브제어부(120)는 센서부(130)로부터 입력되는 신호에 따라 모터제어를 위한 토크정보를 연산하여 메인제어부(110)로 인가함으로써 상호 토크정보를 비교한다.
한편 도 5의 b와 같이 메인제어부(110)에 이상이 발생하는 경우, 서브제어부(120)는 상태정보와 운전정보에 따라 메인제어부(110)를 대신하여 차량제어 기능을 수행한다. 이때 서브제어부(110)는 미리 연산된 토크정보를 이용하여 즉시 비상제어를 수행한다.
서브제어부(120)는 전술한 바와 같이 메인제어부의 모든 기능을 수행하는 것은 아니고 운전상태에 따라 필요한 기능 예를 들어 모터제어 가속제어, 감속제어를 수행한다.
이때 서브제어부(120)는 메인제어부(110)에 대한 모니터링을 수행하여 메인제어부(110)가 정상 동작되면 비상제어를 해제하고 메인제어부(110)에 의해 차량제어가 수행되도록 한 후, 다시 메인제어부에 대한 진단기능을 수행하게 된다. 단, 서브제어부(120)는 메인제어부(110)가 정상상태라 하더라도 주행중에는 비상제어를 유지하고, 차량 정차 또는 시동 오프(OFF) 되면, 그 후 다음 운전 시 메인제어부(110)에 의한 정상제어가 수행되도록 한다.
도 6 은 본 발명의 일실시예에 따른 비상제어 운전방법의 다른 예가 도시된 순서도이다. 도 7 은 도 6의 비상제어 운전에 따른 비상제어 해제에 따른 방법이 도시된 순서도이다.
도 6을 참조하면, 서브제어부(120)는 차량이 동작하면 메인제어부(110)와 데이터를 송수신한다(S610). 서브제어부(120)는 메인제어부(110)로부터 데이터가 입력되는지 여부를 판단하고, 입력된 데이터의 분석을 통해 메인제어부(110)의 상태에 대해 모니터링하고 그에 대한 정상동작여부를 판단하는 진단기능을 수행한다(S620).
또한 서브제어부(120)는 메인제어부(110) 간의 통신상태에 대해서도 점검하며,센서부(130)로부터 입력되는 신호에 대응하여 자체적으로 토크정보를 연산한다. 이때, 서브제어부(120)와 메인제어부(110)는 각각 토크정보를 연산하여 모터제어부(150)로 인가한다.
서브제어부(120)는 메인제어부(110)가 정상인 경우 모니터링 결과를 출력하고 상기와 같이 주기적으로 메인제어부(110)로부터 입력되는 데이터를 검사하여 메인제어부(110)를 모니터링 한다(S630).
서브제어부(120)는 메인제어부(110)에 이상이 있는 경우, 메인제어부(110)가 오동작할 수 있는 상황이므로 차량에 대한 비상제어를 수행한다(S640). 서브제어부(120)는 비상제어 시, 메인제어부(110)에서 수행되던 차량제어 기능을 메인제어부(110)를 대신하여 수행한다. 이때 서브제어부(120)는 미리 연산된 토크정보를 이용하여 비상제어를 수행한다.
서브제어부(120)는 메인제어부(110)가 정상동작하는 경우에도 토크정보를 모터제어부(150)로 인가하여, 비상 제어 시 모터제어부(150)가 서브제어부(120)의 토크정보를 즉시 이용할 수 있도록 한다.
서브제어부(120)는 입출력되는 데이터를 체크하고(S650), 현재 차량의 상태와 운행정보에 대응하여 차량에 대한 제한을 설정한 상태에서 해당 동작을 제어하다(S660).
예를 들어 서브제어부(120)는 모터(170)가 구동하여 차량이 주행 하도록 제어하되, 동작 가능한 최고 속도에 제한을 두어, 제한값 범위 내에서 차량이 동작하도록 하고 제한값을 넘지 않도록 한다. 속도뿐 아니라 토크도 동일한 방식으로 그 값에 제한을 두고 동작을 제어한다.
그에 따라 차량은 비상제어에 따른 제한된 성능으로 동작하게 된다.
이때 서브제어부(120)는 상기와 같은 비상 운전 시 차량이 비상운전되고 있음을 인터페이스부(140)의 출력수단을 통해 비상운전에 대한 안내나 안내등을 표시할 수 있다.
이때 서브제어부(120)는 비상제어 시의 차량에 대한 운전내역, 운전시의 설정값 등에 대한 데이터를 로그로 기록한다(S670).
메인제어부(110)의 이상으로 인하여 서브제어부(120)가 비상제어를 수행하는 경우, 서브제어부(120)는 차량이 정차하거나 시동 오프(OFF) 되기까지 비상제어를 유지한다.
도 7 을 참조하면, 차량 시동 시(S710), 비상제어가 설정되어 있는 경우(S720), 서브제어부(120)는 메인제어부(110)의 상태가 정상인지 여부를 판단한다(S730).
이때, 차량 시동 시 이전 운전에서 마지막으로 차량을 제어한 제어부가 메인제어부인 경우 메인제어부에 의해 상기와 같은 판단이 이루어지고, 서브제어부(120)에 의해 차량이 제어된 경우에는 서브제어부(120)에 의해 차량 시동 처리 및 상기와 같은 판단이 이루어지는 것이 바람직하다.
여기서, 차량 시동 시 비상제어가 설정되어 있지 않은 경우에는 메인제어부가 정상 상태이므로, 메인제어부(110)에 의한 차량 정상제어가 수행된다(S740).
한편, 서브제어부(120)는 비상제어가 설정된 상태에서 메인제어부가 정상인 것으로 판단되면 비상제어를 해제하여, 메인제어부(110)에 의해 정상제어되도록 한다(S750).
메인제어부(110)는 비상제어가 해제됨에 따라 차량 제어를 수행하고 서브제어부(120)는 메인제어부(110)에 대한 모니터링을 수행한다. 비상제어 해제 시, 비상제어 시 설정된 차량의 속도 및 토크에 대한 제한도 해제된다.
비상제어가 설정된 상태에서, 메인제어부에 이상이 있는 경우 즉 메인제어부의 이상이 해소되지 않은 경우, 서브제어부(120)는 비상제어를 유지한다(S760). 이때 서브제어부(120)는 메인제어부(110)의 이상을 인터페이스부(140)의 출력수단을 통해 이상상태임을 출력하여 메인제어부(110)에 대한 점검 및 수리의 필요성을 운전자가 인식하도록 한다.
따라서 본 발명에 따른 전기자동차 및 비상제어방법은 메인제어부에 이상이 발생하더라도 서브제어부를 통해 메인제어부의 이상현상을 즉각적으로 확인할 수 있고, 서브제어부의 백업으로 차량이 최소한으로 구동되도록 비상운전이 가능하다. 그에 따라 메인제어부 이상으로 인한 갑작스럽게 차량이 정차하는 현상을 방지하고 최소한의 동작 가동이 가능하도록 하면서 제한값을 설정하여 안정성을 보정한다.
도 8 은 본 발명의 일 실시예에 따른 전기자동차의 제어 구성의 다른 예를 개략적으로 나타낸 도이다.
전기자동차는 전술한 도 1과같이 구성되는 복수의 제어부가 도 8에 도시된 바와 같이, 하나의 제어부에 복수의 프로세서가 구비되는 형태로 구현될 수 있다. 또한, 후술하는 왜곡보상부는 도 1의 복수의 제어부 구성에도 적용 될 수 있다. 이하, 도 1과 동일 구성에 대하여 동일부호를 사용하고, 그에 대한 설명은 하기에서 생략하기로 한다.
전기자동차의 제어부는 복수의 프로세서를 포함하여 상호 데이터 교환 및 모니터링을 통해 차량을 제어한다.
제어부는 메인제어부(111)와, 서브제어부(112), 그리고 왜곡보상부(113)를 포함한다.
메인제어부(111)는 차량 제어에 따른 주요 동작 전반을 제어하고, 인터페이스부(140) 및 센서부(130)의 입력에 대응하여 설정된 동작이 수행되도록 모터제어부(150)로 소정의 명령을 생성하여 인가하여 제어하고, 데이터의 입출력을 제어하여 동작상태가 표시되도록 한다. 또한 메인제어부(111)는 서브제어부(112)와 모터제어부(150)의 동작상태를 모니터링한다.
서브 제어부(112)는 메인제어부(111)와 연결되어 메인제어부(111)의 입출력신호를 입력받아 메인제어부(111)를 모니터링 한다. 이때 서브 제어부(112)는 입출력되는 신호의 값, 신호의 형태, 신호가 입출력되는 시간 등에 대응하여 메인제어부(111)가 정상 동작하는지 여부를 판단한다.
또한, 서브제어부(112)는 센서부(130)로부터 입력되는 신호를 바탕으로 모터제어부(150)로 인가할 토크 정보를 연산하여, 메인제어부(111) 및 모터제어부(150)로 인가함으로써, 메인제어부(110)에서 연산되는 값과 비교한다. 서브제어부(112)는 메인제어부(111)에 이상이 발생된 경우 메인제어부(111)를 대신하여 백업제어부로써 동작한다. 즉 서브제어부(120)는 입력되는 데이터를 이용하여 모터 및 전기자동차 동작을 제어한다.
메인제어부(111) 또는 서브제어부(112)는 상기와 같이 상호 동작을 모니터링 하고 이상 여부를 판단하여 어느 하나에 이상이 발생하는 경우, 정상동작하는 다른 하나의 제어부가 차량을 제어하도록 하며, 이상 발생에 대한 에러가 인터페이스부(140)의 출력수단을 통해 출력되도록 한다.
메인제어부(111)와, 서브제어부(112)는 동일한 신호를 입력받아 각각 독립적으로 프로세싱하여 차량을 제어를 위한 데이터를 생성하는데, 메인제어부(111)와, 서브제어부(112) 각 각에서 생성된 데이터를 비교함으로써 메인제어부(111)와 서브제어부(112)에 대한 상호 이상 여부를 판단하게 된다.
이때, 동일한 신호를 바탕으로 프로세싱이 진행되도록 센서부(130)의 복수의 센서(131 내지 133)로부터 입력되는 값은 메인제어부(111)와, 서브제어부(112)로 각각 입력되는데, 메인제어부(111)와, 서브제어부(112)로 입력되는 과정에서 신호에 왜곡이 발생하거나 신호 전달에 문제가 있어 메인제어부(111)와, 서브제어부(112)로 입력되는 신호가 상이해 질 수 있다.
왜곡보상부(113)는 메인제어부(111)와 서브제어부(112)로 입력되는 신호, 즉 센서부(130)에 포함되는 복수의 센서(131 내지 133)으로부터 입력되는 신호에 대한 왜곡을 보상하여 메인제어부(111)와 서브제어부(112)로 동일한 신호가 입력되도록 한다.
왜곡보상부(113)는 적어도 하나의 저항을 포함한다. 또한, 왜곡보상부(113)와 메인제어부(111) 또는 서브제어부(112)는 소정 크기의 적어도 하나의 저항을 통해 연결된다.
왜곡보상부(113)에 포함되는 저항은 복수의 센서의 특성을 고려하여 미리 설정될 수 있다.
경우에 따라 왜곡보상부(113)의 저항은 입력되는 신호 즉 어느 센서로부터 데이터가 입력되는가, 또는 연결된 센서의 특성에 따라 그 값이 가변되는 가변저항이 사용될 수 있다.
이때, 왜곡보상부(113)는 신호를 입력하는 센서에 따라 가변저항의 그 값이 변경되도록 가변저항의 값을 변경하는 저항값설정부를 더 포함할 수 있다.
왜곡보상부(113)에 의해 메인제어부(111)와, 서브제어부(112)로 입력되는 신호가 동일신호가 되도록 처리되기 위해 메인제어부(111)와 서브제어부(112)는 다음과 같이 설정된다.
메인제어부(111)와 서브제어부(112)는 내부 설정이 AD체크모드(AD Check Mode) 를 동일하게 설정하고, AD 체크 모드가, 입력되는 신호의 값을 그대로 읽는 플로팅 체크 (Floating check) 상태가 되도록 설정한다.
여기서, 메인제어부(111)와 서브제어부(112)의 설정이 상이한 경우, 예를 들어 메인제어부(111)의 AD 체크모드 설정이 기준전압을 기준으로 신호를 처리하는 Pull up Check 상태이고, 서브제어부(112)는 그라운드를 기준으로 신호를 처리하는 Pull Down Check 상태로 설정되는 경우, 메인제어부(111)와 서브제어부(112)가 실질적으로는 왜곡보상부(113)을 통해 연결되므로, 제어부 내부에서 각각 메인제어부(111)로부터 서브제어부(112)로 전기적으로 연결되는 회로가 형성되므로, 입력되는 신호에 왜곡이 발생할 수 있다.
반대로 메인제어부(111)의 AD 체크모드 설정이 Pull Down Check상태이고, 서브제어부(112)의 설정이 Pull up Check 상태이면, 서브제어부(112)로부터 메인제어부(111)로 연결되는 회로가 형성되어 이 역시 신호 왜곡의 원인이 될 수 있다.
또한, 메인제어부(111)와 서브제어부(112)의 설정이 동일하게 Pull up 또는 Pull Down 으로 설정되더라도, 메인제어부(111)와 서브제어부(112)는 제어부 내에서 상호 연결되어 있으므로, AD Check하는 순간 서로 영향을 미칠 수 있으며, Pull up, Pull Down 저항으로 인하여 입력되는 신호가 왜곡될 수 있다.
따라서 신호 왜곡을 최소화하기 위해 상기와 같이 메인제어부(111)와 서브제어부(112)는 AD체크모드(AD Check Mode)로 설정되고 플로팅 상태로 설정되는 것이 바람직하다.
이때, 메인제어부(111)와 서브제어부(112)는 동일 제조사 또는 동일계열의 프로세서가 사용되는 것이 바람직하며, 상기와 같이 AD 체크 모드를 설정할 수 있는 사양의 프로세서가 사용되는 것이 바람직하다.
여기서, 제어부의 외부 신호 유닛이 오픈 되는 경우, 예를 들어 센서 오픈 시, 입력되는 신호가 없으므로 메인제어부(111) 및 서브제어부(112)는 입력되는 신호가 0V이어야 하나, 메인제어부(111) 및 서브제어부(112)의 AD 체크 모드가 플로팅 체크 상태로 설정되는 경우, 0V가 아닌값이 입력될 수 있다.
그에 따라 상기와 같이 메인제어부(111)와 서브제어부(112)의 AD 체크모드가 플로팅 체크 상태로 설정되면, 메인제어부(111) 및 서브제어부(112)와 센서부(130)의 사이에 연결되는 왜곡보상부(113)는 풀 다운(Pull down) 방식으로 저항이 구성된다.
왜곡보상부(113)는 상기와 같이 내부의 저항이 연결됨에 따라, 센서 오픈 시 발생되는 전압 플로팅(Voltage Floating) 현상을 방지한다. 이때 저항값은 입력되는 신호에 왜곡이 발생하지 않는 정도의 값으로 설정되며 이는 실험을 통해 설정될 수 있다.
왜곡보상부(113)를 통해 메인제어부(111) 및 서브제어부(112)로 신호가 입력되므로, 제어부 외부에 연결되는 유닛이 오픈 상태가 되더라도, 왜곡보상부(113)에 의해 메인제어부(111) 및 서브제어부(112)로 입력되는 신호는 0V를 유지한다.
이때, 메인제어부(111)와 서브제어부(112)는 AD 체크 타이밍(AD Check Timing)이 상호 겹치지 않도록 설정되는 것이 바람직하다.
메인제어부(111)와 서브제어부(112)는 각각 필터를 더 포함하여, AD Check Timing이 겹치는 경우 순간적으로 신호변경이 발생할 수 있으므로, 이러한 순간적인 신호 변경에 비대하여 필터링(Filtering)을 수행한다.
도 9 는 도 8의 메인제어부와 서브제어부의 AD 체크 모드 설정에 따른 입력 신호의 예가 도시된 도이다. 이때 도 9의 a는 왜곡된 신호의 예이고, 도 9의 b는 신호 왜곡 보상을 통해 메인제어부와 서브제어부로 입력되는 정상 신호의 예가 도시된 도이다.
전술한 바와 같이 메인제어부(111)와 서브제어부(112)의 AD 체크 모드 설정에 따라 메인제어부(111)와 서브제어부(112)로 입력되는 신호에 왜곡이 발생할 수 있다.
메인제어부(111)와 서브제어부(112)의 AD 체크 모드 설정이 상이한 경우 도 3의 a와 같이 신호에 편차가 발생할 수 있다. 제 1 신호(301)는 메인제어부(111)로 입력되는 신호이고, 제 2 신호(302)는 서브제어부(112)로 입력되는 신호이다.
메인제어부(111)와 서브제어부(112)의 AD 체크 모드가 상이한 경우 제 1 신호(301)와 제 2 신호(302)에 편차(305, 306, 307)가 발생하는데, 이때 편차가 일정한 경우에는 신호 보상을 통해 신호를 일치 시킬 수 있으나, 도시된 바와 같이 편차가 발생하는 구간이 일정하지 않고, 발생되는 편차의 크기 또한 상이하므로 동일한 신호로 처리하기 어려워 진다.
한편, 도 9의 b에 도시된 바와 같이 메인제어부(111)와 서브제어부(112)의 AD 체크 모드 설정이 플로팅 체크모드로 설정되는 경우, 메인제어부(111)로 입력되는 제 3 신호(311)와 서브제어부(112)로 입력되는 제 4 신호(312)가 일치하게 된다.
그에 따라 메인제어부(111)와 서브제어부(112)가 동일한 신호를 입력받아 프로세싱하므로, 상호 동작상태를 체크 하여 안정적으로 차량을 정상 제어할 수 있으며, 어느 하나의 이상 발생 여부를 판단할 수 있게 된다.
도 10 은 도 8의 전기자동차의 제어 구성 중 왜곡보상부를 통한 정상신호 입력의 예가 도시된 도이다. 이때, 제 3 신호(321)는 왜곡보상부가 구비되지 않는 경우의 신호이고, 제 4 신호(322)는 왜곡보상부가 구비되는 경우의 신호이다.
메인제어부(111)와 서브제어부(112)의 AD 체크모드가 플로팅 체크 상태로 설정된다 하더라도 왜곡보상부가 구비되지 않는 경우, 제 3 신호(321)와 같이 신호 왜곡이 발생한다.
왜곡보상부(113)가 제어부에 구비되지 않는 경우, 제어부의 외부 유닛의 오픈되거나 신호 입력이 중단되는 경우 또는 센서 오픈 시(323), 메인제어부(111)와 서브제어부(112)로 입력되는 신호가 0V가 되어야 하나 제 5 신호(321)와 같이 메인제어부(111)와 서브제어부(112)의 내부에서 인식되는 전압이 0V가 아니고 점차 상승하는 현상이 발생 된다.
이 경우 메인제어부(111)와 서브제어부(112)가 소정 신호가 입력되는 것으로 오판단하여 그에 따라 차량을 제어하게 되므로 차량이 오동작하는 원인이 될 수 있다.
한편, 왜곡보상부(113)가 구비되는 경우, 제 6 신호(322)와 같이, 외부 유닛의 오픈 또는 센서 오픈시(323)에도 메인제어부(111)와 서브제어부(112)의 내부에서 인식되는 전압이 0V로 유지된다.
따라서 본 발명은 복수의 프로세서가 구비하는 제어부에서 메인제어부와 서브제어부의 내부 AD 체크 모드 설정을 플로팅 체크상태로 설정하고, 왜곡보상부를 포함함으로써, 복수의 프로세서로 입력되는 신호를 실질적으로 일치시키면서 회로 오픈 시에도 정상적으로 이를 인식 할 수 있도록 신호를 보상할 수 있다.
그에 따라 본 발명은 동일한 신호를 바탕으로 복수의 프로세서가 프로세싱하여 차량을 제어함에 따라 보다 차량 제어에 따른 효율성이 향상되고, 차량 추행의 안정성을 보장한다.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (24)

  1. 차량의 상태를 측정하는 센서부;
    운전자의 조작에 의해 차량 제어를 위한 설정이 입력되는 인터페이스부;
    상기 센서부 및 상기 인터페이스부로부터 입력되는 데이터에 대응하여 차량을 동작시키고 제어하는 메인제어부; 및
    상기 메인제어부로부터 입력되는 상태정보 및 운행정보에 대응하여 상기 메인제어부를 진단하고, 상기 메인제어부 이상 발생 시, 상기 메인제어부를 대신하여 차량을 비상제어 하는 서브제어부를 포함하는 전기자동차.
  2. 제 1 항에 있어서,
    상기 서브제어부는 상기 센서부로부터 입력되는 신호에 대응하여 모터제어를 위한 토크정보를 연산하고, 상기 메인제어부 이상 발생 시, 상기 차량이 정차하지 않도록 상기 토크정보를 이용하여 즉시 비상제어 하는 것을 특징으로 하는 전기자동차.
  3. 제 1 항에 있어서,
    상기 서브제어부는, 비상제어 시, 차량의 가속 및 감소에 대해 제어하고, 차량의 속도 및 토크에 대한 제한값을 설정하여 상기 제한값 범위 내에서 차량이 운전되도록 제한하는 것을 특징으로 하는 전기자동차.
  4. 제 2 항에 있어서,
    상기 서브제어부는 비상제어 시, 차량이 정차하지 않고 지속적으로 운전되도록, 상기 메인제어부가 정상 동작하는 중에도 상기 토크정보를 연산하여 상기 모터제어부로 인가하는 것을 특징으로 하는 전기자동차.
  5. 제 1 항에 있어서,
    상기 서브제어부는 비상제어 시, 비상제어 중의 운전기록, 운전설정 및 차량상태에 대한 정보를 로그로 기록하는 것을 특징으로 하는 전기자동차.
  6. 제 1 항에 있어서,
    상기 서브제어부는, 비상제어가 설정된 상태에서 차량 시동 오프(OFF) 후 재 시동 시, 상기 메인제어부의 정상 여부를 판단하여 정상이면 비상제어를 해제하고 상기 메인제어부에 의해 차량제어가 수행되도록 하는 것을 특징으로 하는 전기자동차.
  7. 제 1 항에 있어서,
    모터를 제어하여 차량이 주행하도록 하는 모터제어부; 및
    배터리 전원을 상기 모터제어부로 공급하는 PRA(Power Relay Assemply);를 더 포함하고,
    상기 메인제어부 및 상기 서브제어부는 상기 모터제어부 이상 동작 시, 상기 PRA를 제어하여 상기 배터리로부터 상기 모터제어부 인가되는 전원이 차단함으로써 비상 정지하도록 하는 전기자동차.
  8. 제 7 항에 있어서,
    상기 PRA는 상기 메인제어부 또는 상기 서브제어부로부터 입력되는 컷오프(CUT-OFF)신호에 대응하여, 구비되는 릴레이를 스위칭하여 상기 모터제어부로 공급되는 전원을 차단하는 것을 특징으로 하는 전기자동차.
  9. 제 7 항에 있어서,
    상기 메인제어부 및 상기 서브제어부는 각 각 생성된 제어정보를 상호 전송하여 비교하고, 비교결과 제어정보가 상이한 경우 제어불능으로 판단하여 차량이 비상 정지하도록 상기 모터제어부로 동작정지명령을 인가하는 것을 특징으로 하는 전기자동차.
  10. 제 7 항에 있어서,
    상기 모터제어부는 상기 메인제어부 및 상기 서브제어부로부터 입력되는 제어정보가 상이한 경우 상기 메인제어부 및 상기 서브제어부 중 적어도 하나가 오동작하는 것으로 판단하여 상기 모터가 정지되도록 하고,
    상기 메인제어부 및 상기 서브제어부 중 어느 하나로부터 제어정보가 입력되지 않는 경우, 해당 제어부가 동작하지 않는 것으로 판단하여 정상 동작하는 제어부로 이상 동작에 대한 신호를 입력하는 것을 특징으로 하는 전기자동차.
  11. 제 1 항에 있어서,
    상기 메인제어부 및 상기 서브제어부로 동일한 신호가 입력되도록, 상기 센서부에 포함된 복수의 센서로부터 입력되는 신호의 왜곡을 보상하는 왜곡보상부를 더 포함하는 전기자동차.
  12. 제 11 항에 있어서,
    상기 왜곡보상부는 적어도 하나의 저항을 통해 상기 메인제어부 및 상기 서브제어부와 각각 연결되어, 상기 복수의 센서로부터 입력되는 신호를 상기 메인제어부와 상기 서브제어부로 인가하는 것을 특징으로 하는 전기자동차.
  13. 제 11 항에 있어서,
    상기 메인제어부 및 상기 서브제어부는, 입력되는 신호의 값을 그대로 읽는 플로팅 체크(Floating check) 상태로 AD 체크 모드가 설정되는 것을 특징으로 하는 전기자동차.
  14. 제 13 항에 있어서,
    상기 왜곡보상부는 상기 복수의 센서 또는 연결되는 외부 유닛이 오픈 상태가 되는 경우, 상기 메인제어부 및 상기 서브제어부의 내부에서 인식되는 전압이 0V가 되도록 신호를 보상하는 것을 특징으로 하는 전기자동차.
  15. 제 13 항에 있어서,
    상기 왜곡보상부는 풀 다운(Pull Down) 방식으로 구성되는 적어도 하나의 저항을 포함하는 전기자동차.
  16. 제 15 항에 있어서,
    상기 왜곡보상부는 연결되는 센서에 따라 그 저항값이 변경되는 가변저항을포함하는 전기자동차.
  17. 차량을 제어하는 메인제어부로부터 상태정보 및 운전정보를 수신하여 상기 메인제어부의 상태에 대해 진단하는 단계;
    상기 진단결과, 상기 메인제어부가 정상 동작하는 경우 모니터링 결과를 상기 메인제어부로 전송하는 단계; 및
    상기 진단결과, 상기 메인제어부에 이상이 있는 경우, 비상제어를 설정하고 상기 메인제어부를 대신하여 차량제어를 수행하는 단계;를 포함하는 전기자동차의 비상제어방법.
  18. 제 17 항에 있어서,
    상기 비상제어 설정 시, 상기 상태정보 및 운행정보에 대응하여 차량의 속도 및 토크에 대한 제한값을 설정하고, 차량의 가속 및 감속을 제한하여 비상운전하는 것을 특징으로 하는 전기자동차의 비상제어방법.
  19. 제 17 항에 있어서,
    상기 비상제어 설정 전, 입력되는 센서값을 바탕으로 모터제어를 위한 토크정보를 산출하는 단계를 더 포함하고,
    상기 비상제어 설정 시, 미리 연산된 상기 토크정보를 바탕으로 상기 차량제어를 수행하는 것을 특징으로 하는 전기자동차의 비상제어방법.
  20. 제 17 항에 있어서,
    상기 비상제어 중, 상기 메인제어부에 대한 모니터링을 지속적으로 수행하고, 상기 메인제어부가 정상 동작하면 차량이 정차하거나 시동 오프 되기까지 비상제어를 유지하고, 다음 운전 시 비상제어를 해제하여 상기 메인제어부에서 차량제어가 수행되도록 하는 전기자동차의 비상제어방법.
  21. 메인제어부 및 서브제어부가 적어도 하나의 센서로부터 입력되는 데이터에 따라 차량 제어를 위한 제어정보를 각각 생성하여, 모터제어부로 인가하는 단계;
    상기 모터제어부의 응답 여부에 따라 상기 모터제어부에 대한 이상 여부를 판단하는 단계; 및
    상기 모터제어부 이상 시, PRA제어를 통해 상기 모터제어부로 공급되는 전원을 차단하여 차량이 비상 정지하는 단계를 포함하는 전기자동차의 비상제어방법.
  22. 제 21 항에 있어서,
    상기 메인제어부 및 상기 서브제어부 중 적어도 하나로부터 상기 PRA로 입력되는 컷오프(CUT-OFF) 신호에 대응하여 상기 PRA에 포함되는 릴레이가 오프되고, 상기 배터리로부터 상기 모트제어부로 공급되는 전원이 차단되어 상기 차량이 비상 정지하는 것을 특징으로 하는 전기자동차의 비상제어방법.
  23. 제 21 항에 있어서,
    상기 모터제어부가 정상인 경우, 상기 메인제어부 및 상기 서브제어부가 상호 제어정보를 전송하여, 수신되는 제어정보와 생성된 제어정보를 비교하고, 비교결과 제어정보가 상이한 경우 상기 모터제어부로 동작정지명령을 인가하는 단계; 및
    상기 동작정지명령에 대응하여 상기 모터제어부가 상기 모터를 제어하여 상기 차량의 속도가 감소되도록 하고, 상기 모터의 동작을 정지시켜 상기 차량이 비상 정지하는 단계를 더 포함하는 전기자동차의 비상제어방법.
  24. 제 21 항에 있어서,
    상기 모터제어부가 정상인 경우, 상기 모터제어부가 상기 메인제어부의 제어정보와 상기 서브제어부의 제어정보를 비교하여 일치 여부를 판단하여, 제어정보가 상이한 경우 제어불능으로 판단하는 단계를 더 포함하는 전기자동차의 비상제어방법.
PCT/KR2011/005036 2010-07-09 2011-07-08 전기자동차 및 그 비상제어방법 WO2012005552A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180043380.1A CN103108770B (zh) 2010-07-09 2011-07-08 电动汽车及其应急控制方法
US13/809,145 US8977416B2 (en) 2010-07-09 2011-07-08 Electric vehicle and method for controlling emergency thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020100066337A KR20120005724A (ko) 2010-07-09 2010-07-09 전기자동차 및 비상제어방법
KR10-2010-0066337 2010-07-09
KR10-2010-0074756 2010-08-02
KR1020100074756A KR20120012662A (ko) 2010-08-02 2010-08-02 전기자동차 및 그 비상제어방법
KR1020100074742A KR20120012650A (ko) 2010-08-02 2010-08-02 전기자동차의 제어회로
KR10-2010-0074742 2010-08-02

Publications (2)

Publication Number Publication Date
WO2012005552A2 true WO2012005552A2 (ko) 2012-01-12
WO2012005552A3 WO2012005552A3 (ko) 2012-05-03

Family

ID=45441683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005036 WO2012005552A2 (ko) 2010-07-09 2011-07-08 전기자동차 및 그 비상제어방법

Country Status (3)

Country Link
US (1) US8977416B2 (ko)
CN (1) CN103108770B (ko)
WO (1) WO2012005552A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897165A (zh) * 2012-11-05 2013-01-30 北京经纬恒润科技有限公司 一种混合动力综合控制器
KR20160045262A (ko) * 2014-10-17 2016-04-27 현대모비스 주식회사 비상시동 제어 장치 및 방법
CN111319468A (zh) * 2018-12-14 2020-06-23 长城汽车股份有限公司 一种急停控制系统、车辆以及方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108770B (zh) * 2010-07-09 2015-08-12 Lg电子株式会社 电动汽车及其应急控制方法
DE102011088764A1 (de) * 2011-12-15 2013-06-20 Robert Bosch Gmbh Verfahren zum Betreiben eines Steuergeräts
JP5639611B2 (ja) * 2012-03-21 2014-12-10 富士重工業株式会社 車両の制御装置
DE112012006715T5 (de) * 2012-07-17 2015-04-16 Mitsubishi Electric Corporation Steuervorrichtung und Steuerverfahren
KR101534914B1 (ko) * 2013-06-18 2015-07-07 현대자동차주식회사 친환경 차량용 배터리 쿨링 제어 장치 및 방법
JP6236674B2 (ja) * 2014-02-21 2017-11-29 日立オートモティブシステムズ株式会社 電気自動車の制御システム
WO2015178516A1 (ko) * 2014-05-20 2015-11-26 볼보 컨스트럭션 이큅먼트 에이비 건설기계용 전원 제어장치
CN105523034B (zh) * 2014-09-29 2017-12-29 重庆长安汽车股份有限公司 一种纯电动汽车的跛行行驶控制方法及系统
JP6384416B2 (ja) * 2015-07-10 2018-09-05 トヨタ自動車株式会社 車両制御装置
CN105278371B (zh) * 2015-10-10 2018-04-13 华南理工大学 一种电动汽车集成式双控制模块控制系统及其控制方法
KR20170068826A (ko) 2015-12-10 2017-06-20 주식회사 엘지화학 배터리 접속 시스템 및 방법
GB2546789A (en) * 2016-01-29 2017-08-02 Bombardier Primove Gmbh Arrangement with battery system for providing electric energy to a vehicle
JP6558286B2 (ja) * 2016-03-22 2019-08-14 トヨタ自動車株式会社 車載電源装置
CN105857101A (zh) * 2016-03-31 2016-08-17 北京长城华冠汽车科技股份有限公司 一种电动汽车电池模组的裂解系统、方法和电动汽车
CN105882421B (zh) * 2016-04-20 2018-10-23 北京长城华冠汽车科技股份有限公司 一种电动汽车的跛行控制系统、方法和电动汽车
US10549760B2 (en) 2016-10-06 2020-02-04 Red Bend Ltd. Systems and methods for handling a vehicle ECU malfunction
TWI621552B (zh) * 2016-12-02 2018-04-21 姚立和 電動車緊急啓動裝置
US20180281597A1 (en) * 2017-03-28 2018-10-04 NextEv USA, Inc. Electric vehicle safety concept using distributed vehicle control units
CN108206570B (zh) * 2018-02-01 2024-02-27 中国第一汽车股份有限公司 电动汽车车辆间直流电力传输系统及控制方法
KR102617729B1 (ko) * 2018-09-17 2023-12-26 삼성에스디아이 주식회사 릴레이의 동작 상태를 유지시키는 장치 및 이를 포함하는 전자장치
CN109460313A (zh) * 2018-11-02 2019-03-12 安徽江淮汽车集团股份有限公司 自动驾驶安全控制方法
CN113412576B (zh) * 2018-11-21 2024-06-07 松下知识产权经营株式会社 马达控制系统、无人飞行器、移动运载工具和马达控制方法
CN112659892B (zh) * 2021-01-18 2022-11-15 湖南行必达网联科技有限公司 一种车辆异常断电熄火的应急控制方法、装置及车辆
JP7481292B2 (ja) * 2021-04-14 2024-05-10 トヨタ自動車株式会社 モータ制御装置
US20220379892A1 (en) * 2021-05-26 2022-12-01 Oshkosh Corporation Condition based vehicle performance management
CN113978253A (zh) * 2021-09-24 2022-01-28 合众新能源汽车有限公司 一种插混式混合动力车型急停装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08242505A (ja) * 1995-03-01 1996-09-17 Nissan Motor Co Ltd 電気自動車の予備制御装置
JPH1023601A (ja) * 1996-06-28 1998-01-23 Hitachi Ltd 電気自動車のモータ制御装置
JPH1077888A (ja) * 1996-08-30 1998-03-24 Aisin Aw Co Ltd 車両用駆動装置のアクセルフェールセーフ装置
JP2000287484A (ja) * 1999-03-29 2000-10-13 Nissan Motor Co Ltd モータ制御システム
KR20090100580A (ko) * 2008-03-20 2009-09-24 엘에스산전 주식회사 제어기의 이중화 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140202A (ja) * 1994-11-07 1996-05-31 Hitachi Ltd 電気車用保護装置及び保護方法
JP4162781B2 (ja) * 1998-11-19 2008-10-08 富士重工業株式会社 ハイブリッド車の制御装置
JP2000166016A (ja) * 1998-11-20 2000-06-16 Fuji Heavy Ind Ltd ハイブリッド車の制御装置
CN100470411C (zh) * 2005-08-25 2009-03-18 比亚迪股份有限公司 一种纯电动汽车四轮驱动控制系统
CN100491156C (zh) * 2006-11-15 2009-05-27 北京交通大学 一种矿井电力机车驱动控制系统
CN100591562C (zh) * 2007-12-29 2010-02-24 奇瑞汽车股份有限公司 一种混合动力汽车安全管理系统
US8340858B2 (en) * 2010-05-21 2012-12-25 GM Global Technology Operations LLC Method and system for motor torque control for vehicles when a current sensor is not operating properly
CN103108770B (zh) * 2010-07-09 2015-08-12 Lg电子株式会社 电动汽车及其应急控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08242505A (ja) * 1995-03-01 1996-09-17 Nissan Motor Co Ltd 電気自動車の予備制御装置
JPH1023601A (ja) * 1996-06-28 1998-01-23 Hitachi Ltd 電気自動車のモータ制御装置
JPH1077888A (ja) * 1996-08-30 1998-03-24 Aisin Aw Co Ltd 車両用駆動装置のアクセルフェールセーフ装置
JP2000287484A (ja) * 1999-03-29 2000-10-13 Nissan Motor Co Ltd モータ制御システム
KR20090100580A (ko) * 2008-03-20 2009-09-24 엘에스산전 주식회사 제어기의 이중화 장치

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897165A (zh) * 2012-11-05 2013-01-30 北京经纬恒润科技有限公司 一种混合动力综合控制器
CN102897165B (zh) * 2012-11-05 2015-07-15 北京经纬恒润科技有限公司 一种混合动力综合控制器
KR20160045262A (ko) * 2014-10-17 2016-04-27 현대모비스 주식회사 비상시동 제어 장치 및 방법
KR102354115B1 (ko) * 2014-10-17 2022-01-21 현대모비스 주식회사 비상시동 제어 장치 및 방법
CN111319468A (zh) * 2018-12-14 2020-06-23 长城汽车股份有限公司 一种急停控制系统、车辆以及方法

Also Published As

Publication number Publication date
US20130116876A1 (en) 2013-05-09
CN103108770B (zh) 2015-08-12
CN103108770A (zh) 2013-05-15
WO2012005552A3 (ko) 2012-05-03
US8977416B2 (en) 2015-03-10

Similar Documents

Publication Publication Date Title
WO2012005552A2 (ko) 전기자동차 및 그 비상제어방법
WO2012005554A2 (ko) 전기자동차 및 그 제어방법
WO2012005553A2 (ko) 전기자동차, 충전스탠드 및 그 충전방법
WO2012018203A2 (ko) 전기자동차 및 그 제어방법
WO2018235995A1 (ko) 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전과 최대방전을 수행하기 위한 방법 및 그 장치
JP3779617B2 (ja) 燃料電池の電気出力と絶縁電気回路網との切換え接続を制御するための方法および装置
WO2019059567A1 (ko) 배터리 관리 장치와 이를 포함하는 배터리 팩 및 자동차
WO2012018205A2 (ko) 전기자동차 및 그 보조배터리의 충전제어방법
WO2019151781A1 (ko) 릴레이 구동 회로 진단 장치
WO2015126036A1 (ko) 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
WO2017222186A1 (ko) 전기 자동차용 구동 회로 및 그 제어 방법
WO2021261716A1 (ko) 도킹 스테이션, 이동 로봇 및 도킹 스테이션과 이동 로봇을 제어하는 이동 로봇 관리 시스템
WO2021045539A1 (ko) 배터리 시스템 및 배터리 시스템의 제어방법
WO2013089517A1 (ko) 전기자동차 및 그 제어방법
US20150130274A1 (en) Isolation contactor state control system
WO2020111899A1 (ko) 스위치 제어 장치 및 방법
WO2023121168A1 (ko) 전기동력 건설기계
KR20120012662A (ko) 전기자동차 및 그 비상제어방법
KR20140065209A (ko) 전기자동차 및 그 제어방법
KR20140063170A (ko) 자동차 고전압 배터리의 전원단속장치 및 그 제어방법
WO2021182815A2 (ko) 전기 자동차 충전 컨트롤러 및 이를 포함하는 전기 자동차 충전 장치
KR20220077350A (ko) 전기 자동차의 고전압 릴레이 다중 제어 시스템이 적용된 전력분배장치
CN114633640B (zh) 轨道车辆的动力切换系统、方法及轨道车辆
WO2022146130A1 (ko) 전기 자동차 충전 컨트롤러
WO2023048388A1 (ko) 비상발전기능을 갖는 배터리 교체 스테이션

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180043380.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803838

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13809145

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803838

Country of ref document: EP

Kind code of ref document: A2