WO2012005265A1 - 車両の左右輪駆動力配分制御装置 - Google Patents

車両の左右輪駆動力配分制御装置 Download PDF

Info

Publication number
WO2012005265A1
WO2012005265A1 PCT/JP2011/065399 JP2011065399W WO2012005265A1 WO 2012005265 A1 WO2012005265 A1 WO 2012005265A1 JP 2011065399 W JP2011065399 W JP 2011065399W WO 2012005265 A1 WO2012005265 A1 WO 2012005265A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving force
rear wheel
vehicle
turning
difference
Prior art date
Application number
PCT/JP2011/065399
Other languages
English (en)
French (fr)
Inventor
洋平 対馬
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP20110803599 priority Critical patent/EP2591934B1/en
Priority to CN201180033601.7A priority patent/CN102971173B/zh
Priority to US13/700,359 priority patent/US8775045B2/en
Publication of WO2012005265A1 publication Critical patent/WO2012005265A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/119Conjoint control of vehicle sub-units of different type or different function including control of all-wheel-driveline means, e.g. transfer gears or clutches for dividing torque between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/344Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/04Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for differential gearing
    • B60K2023/043Control means for varying left-right torque distribution, e.g. torque vectoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/12Conjoint control of vehicle sub-units of different type or different function including control of differentials
    • B60W10/16Axle differentials, e.g. for dividing torque between left and right wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/403Torque distribution between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/406Torque distribution between left and right wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H2048/204Control of arrangements for suppressing differential actions
    • F16H2048/205Control of arrangements for suppressing differential actions using the steering as a control parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/12Differential gearings without gears having orbital motion
    • F16H48/19Differential gearings without gears having orbital motion consisting of two linked clutches

Definitions

  • the present invention relates to an improvement proposal of a left and right wheel driving force distribution control device useful for a vehicle, particularly a four wheel drive vehicle.
  • Patent Document 1 As a vehicle right / left wheel driving force distribution control device, a device as described in Patent Document 1, for example, has been proposed.
  • the larger the lateral acceleration in the small lateral acceleration region (the smaller the smaller), the larger the driving force difference between the left and right non-main driving wheels (smaller).
  • the larger the lateral acceleration (the smaller the smaller), the smaller the driving force that is applied to the left and right non-main drive wheels (the greater the difference in driving force). Is).
  • the braking / driving force of the turning inner wheel increases as the lateral acceleration increases, and the turning performance and high-speed stability can be improved.
  • the braking / driving force of the turning inner wheel is reduced as the lateral acceleration increases, and the cornering force can be secured as scheduled.
  • An object of the present invention is to propose a left and right wheel driving force distribution control device for a vehicle that can avoid the problem related to the deterioration of the initial response in the initial turning.
  • the present invention provides a vehicle left and right wheel driving force distribution control device that distributes and outputs wheel driving force to left and right driving wheels under control.
  • Left and right wheel driving force control means for controlling the driving force of the left and right driving wheels so as to realize a target value of a left and right driving force difference corresponding to a target turning behavior of the vehicle;
  • a turning initial detection means for detecting an initial of the turning behavior;
  • the turning initial right / left driving force difference increasing means for increasing the target value of the left / right driving force difference while the turning is detected by the means is provided.
  • the left and right wheel driving force distribution control device of the present invention when controlling the driving force of the left and right driving wheels so as to realize the target value of the left and right driving force difference corresponding to the target turning behavior, In order to increase the target value of the left and right driving force difference during the initial turning initial stage when the turning behavior starts, The rise of the turning behavior is not dulled, and the above problem that the initial turning response is poor can be solved.
  • FIG. 1 is a schematic plan view showing a wheel drive system of a four-wheel drive vehicle including a left and right wheel drive force distribution control device according to an embodiment of the present invention, together with the four-wheel drive control system, when viewed from above the vehicle.
  • FIG. 2 is a functional block diagram showing the four-wheel drive controller in FIG. 3 is a flowchart showing a calculation program for a left and right rear wheel driving force difference steady control executed by a steady control calculation unit of a left and right rear wheel driving force difference calculation unit in FIG.
  • FIG. 4 is a diagram showing a change characteristic of the left and right rear wheel driving force difference determining gain Gain used in the calculation program of FIG.
  • FIG. 3 is a flowchart showing a process when a left and right rear wheel target driving force calculation unit in FIG. 2 calculates a left and right rear wheel target driving force.
  • FIG. 1 is a schematic plan view showing a wheel drive system of a four-wheel drive vehicle provided with a left and right wheel drive force distribution control device according to an embodiment of the present invention, together with the four-wheel drive control system, as viewed from above the vehicle.
  • 1L and 1R respectively indicate left and right front wheels as main drive wheels
  • 2L and 2R respectively indicate left and right rear wheels as auxiliary drive wheels.
  • driving force means “torque value”, not power.
  • a transmission transaxle including a differential gear device 4a
  • the left and right front wheels 1L and 1R are used for driving.
  • a part of the driving force directed to the left and right front wheels 1L and 1R after being shifted by the transmission 4 is redirected by the transfer 6 and directed to the left and right rear wheels 2L and 2R.
  • the transmission system for this is configured as follows:
  • the transfer 6 includes a bevel gear set including an input side hypoid gear 6a and an output side hypoid gear 6b.
  • the input side hypoid gear 6a is coupled to the differential gear case 4a so as to rotate together with the differential gear case which is an input rotation member of the differential gear device 4a.
  • the front end of the propeller shaft 7 is coupled to the output side hypoid gear 6b, and the propeller shaft 7 extends rearward toward the left and right rear wheel driving force distribution unit 8.
  • the transfer 6 determines the gear ratio of the bevel gear set including the hypoid gear 6a and the output side hypoid gear 6b so that a part of the driving force directed to the left and right front wheels 1L and 1R is accelerated and output to the propeller shaft 7.
  • the left and right rear wheel driving force distribution unit 8 includes a center shaft 10 extending in the axial direction of the shafts 9L and 9R between the axle shafts 9L and 9R of the left and right rear wheels 2L and 2R.
  • the left and right rear wheel driving force distribution unit 8 is further disposed between the center shaft 10 and the left rear wheel axle shaft 9L, and the left rear wheel side clutch (the left auxiliary driving wheel side friction element) for controlling the coupling between the shafts 10 and 9L.
  • 11L Between the center shaft 10 and the right rear wheel axle shaft 9R, there is provided a right rear wheel side clutch (right auxiliary driving wheel side friction element) 11R for controlling coupling between the shafts 10 and 9R.
  • the rear end of the propeller shaft 7 extending from the transfer 6 to the rear of the vehicle and the center shaft 10 are drive-coupled via a bevel gear type final reduction gear 12 including an input side hypoid gear 12a and an output side hypoid gear 12b.
  • the speed reduction ratio of the final reduction gear 12 is related to the left and right front wheels 1L and 1R in relation to the speed increasing gear ratio of the transfer 6 (the speed increasing gear ratio of the bevel gear set including the hypoid gear 6a and the output side hypoid gear 6b).
  • the gear ratio is such that a part of the driving force toward the center shaft 10 is directed to increase the speed downward
  • the total gear ratio of the transfer 6 and the final reduction gear 12 is set so that the center shaft 10 rotates at an increased speed with respect to the left and right front wheels 1L and 1R.
  • the transfer speed is controlled so that the rotational speed of the center shaft 10 does not become lower than the rotational speed of the outer rear wheel 2L (or 2R) in the turning direction even during such turning, and the driving force distribution control is not disabled.
  • the total gear ratio of 6 and the final reduction gear 12 is determined as described above, and the center shaft 10 is rotated at a higher speed as described above. Due to the accelerated rotation of the center shaft 10, drive force distribution control described later can be performed as intended.
  • the rotational power from the engine 3 reaches the left and right front wheels 1L and 1R under the shift by the transmission (transaxle) 4, and drives these left and right front wheels 1L and 1R. .
  • the vehicle is capable of four-wheel drive traveling by driving the left and right front wheels 1L and 1R and driving the left and right rear wheels 2L and 2R.
  • the front and rear wheel drive force distribution control is performed via the total engagement force control of the left rear wheel side clutch 11L and the right rear wheel side clutch 11R.
  • the left rear wheel side clutch is used to improve the turning performance of the vehicle and to control the behavior of the vehicle so that the actual behavior of the vehicle (actual yaw rate, etc.) is as intended according to the driving state and driving conditions of the vehicle.
  • the left and right wheel driving force distribution control can be performed through the engagement force control of the 11L and right rear wheel side clutch 11R.
  • the fastening force control system for the left rear wheel side clutch 11L and the right rear wheel side clutch 11R is as follows.
  • Each of the left rear wheel side clutch 11L and the right rear wheel side clutch 11R is an electromagnetic type in which the fastening force is determined according to the supply current, and the fastening force of these clutches 11L and 11R is respectively a four wheel drive (4WD) controller 21.
  • the above-mentioned front and rear wheel driving force is controlled by electronically controlling the supply current to the clutches 11L and 11R so as to obtain the fastening force corresponding to the target driving force TcL and TcR of the left and right rear wheels 2L and 2R obtained as described later in It is assumed that distribution control and left and right wheel driving force distribution control are performed.
  • a signal from the lateral acceleration sensor 29 for detecting the lateral acceleration Gy of the vehicle is input.
  • the four-wheel drive controller 21 calculates the left rear wheel target drive force TcL and the right rear wheel target drive force TcR for front and rear wheel drive force distribution control and left and right wheel drive force distribution control, which will be described in detail later. Operate, Assume that the fastening force (current) of the left rear wheel side clutch 11L and the right rear wheel side clutch 11R is electronically controlled so that the driving forces of the left and right rear wheels 2L, 2R coincide with the target driving forces TcL, TcR.
  • ⁇ Driving force distribution control The procedure for determining the front and rear wheel driving force distribution control and the left and right wheel driving force distribution control executed by the four-wheel drive controller 21, that is, the left rear wheel target driving force TcL and the right rear wheel target driving force TcR will be described below.
  • the four-wheel drive controller 21 is as shown in FIG. 2 in a functional block diagram, and includes an input signal processing unit 31, a rear wheel total driving force calculating unit 32, a left and right rear wheel driving force difference calculating unit 33, The feedback control unit 34 and the left and right rear wheel target driving force calculation unit 35 are configured.
  • the input signal processing unit 31 includes a wheel speed sensor group 22, an accelerator opening sensor 23, a steering angle sensor 24, a transmission output rotation sensor 25, an engine rotation sensor 26, a yaw rate sensor 27, a longitudinal acceleration sensor 28, and a lateral acceleration sensor 29. Noise is removed from the detection signal, and preprocessing is performed so that it can be used for later-described computation.
  • the engine torque Te is estimated by the engine torque estimating unit 36 using the engine speed Ne and the accelerator opening APO.
  • the transmission gear ratio calculation unit 37 calculates the transmission gear ratio ⁇ using the engine speed Ne and the transmission output speed No.
  • the rear wheel total driving force calculation unit 32 obtains a total driving force target value rTcLR (hereinafter referred to as total driving force rTcLR) for the left and right rear wheels 2L and 2R as follows, for example.
  • rTcLR total driving force target value rTcLR
  • the input torque Ti to the differential gear device 4a is calculated from the engine torque Te and the transmission gear ratio ⁇ .
  • the left and right front wheel average speeds and the left and right rear wheel average speeds are obtained based on the signals from the wheel speed sensor group 22 (wheel speed Vw), and the left and right front wheels 1L, 1R estimated by the comparison between them, In accordance with the acceleration Gx and the accelerator opening APO, it is determined how much of the input torque Ti should be directed to the left and right rear wheels 2L, 2R, and the total driving force rTcLR for these rear wheels is determined.
  • the total driving force rTcLR to the rear wheels needs to be increased to suppress the driving slip as the degree of the front wheel slip increases, and the driver increases as the longitudinal acceleration Gx and the accelerator opening APO increase. Since driving force is required, the total driving force rTcLR for the rear wheels is increased to meet this demand.
  • the left and right rear wheel driving force difference calculating unit 33 includes a steady control calculating unit 33a and a transient control calculating unit 33b, and calculates a driving force difference target value r ⁇ TcLR between the left and right rear wheels 2L and 2R (hereinafter referred to as a driving force difference r ⁇ TcLR). For example, it is obtained as follows.
  • the steady control calculation unit 33a executes the control program shown in FIG. 3 based on the engine torque Te, the transmission gear ratio ⁇ , the steering angle ⁇ , and the wheel speed Vw (vehicle speed), and is constantly requested by the driver.
  • a basic left and right rear wheel driving force difference steady control calculation value ch ⁇ TcLR for vehicle turning behavior is obtained, and this is multiplied by a rear wheel driving force difference determination gain Gain illustrated by a solid line in FIG.
  • the right and left rear wheel driving force difference steady control c ⁇ TcLR is obtained.
  • a basic left and right rear wheel driving force difference steady control calculation value ch ⁇ TcLR for the vehicle turning behavior that the driver constantly requests is obtained as follows.
  • the longitudinal acceleration Gx generated in the vehicle is estimated from the engine torque Te and the transmission gear ratio ⁇
  • the lateral acceleration Gy generated in the vehicle is estimated from the steering angle ⁇ and the wheel speed Vw (vehicle speed).
  • Steady control of the difference between the left and right rear wheel driving forces required to eliminate the understeer tendency of the vehicle determined from the combination of the estimated longitudinal acceleration Gx and lateral acceleration Gy It is determined as a calculation value ch ⁇ TcLR.
  • step S11 corresponds to the left and right wheel driving force control means in the present invention.
  • the reason why the steady control calculation unit 33a uses the estimated value instead of the detected value of the longitudinal acceleration Gx and the estimated value instead of the detected value of the lateral acceleration Gy when obtaining the steady control calculated value ch ⁇ TcLR is This is because in the forward control system, the estimated value matches the actual state of control rather than the detected value that is the result value.
  • the rear wheel driving force difference steady control calculation value ch ⁇ TcLR becomes larger, Furthermore, since the understeer tendency of the vehicle becomes stronger as the longitudinal acceleration Gx becomes larger, the left and right rear wheel driving force difference steady control calculation value ch ⁇ TcLR becomes larger.
  • step S12 it is checked whether the vehicle is turning or not, depending on whether the lateral acceleration Gy is less than the turning initial determination value Gys. Therefore, step S12 corresponds to the turning initial detection means in the present invention.
  • step S13 corresponds to the turning initial left / right driving force difference increasing means in the present invention.
  • step S14 When it is determined in step S12 that the vehicle is turning (Gy ⁇ Gys)
  • the rear wheel driving force difference determination gain Gain is 1 or more at the initial turning (Gy ⁇ Gys), but is set to A that increases as the lateral acceleration Gy decreases. Further, as illustrated by a solid line in FIG. 4A, the rear wheel driving force difference determination gain Gain is less than 1 during turning (Gy ⁇ Gys), but is set to B that becomes smaller as the lateral acceleration Gy increases.
  • the transient control calculation unit 33b calculates the left and right rear wheel driving force difference transient control amount d ⁇ TcLR for the turning response that the driver transiently requests depending on the change speed of the steering angle ⁇ .
  • the target yaw rate t ⁇ desired by the driver is calculated from the steering angle ⁇ and the wheel speed Vw (vehicle speed), and the higher the change speed of the target yaw rate t ⁇ , the higher the desired turning response.
  • the left and right rear wheel drive force difference transient control amount d ⁇ TcLR is set large.
  • the left and right rear wheel driving force difference calculating unit 33 is the right and left rear wheel driving force difference steady control amount c ⁇ TcLR obtained as described above by the steady control calculating unit 33a and the right and left rear wheels obtained as described above by the transient control calculating unit 33b.
  • the sum of the driving force difference transient control amount d ⁇ TcLR is determined as the left and right rear wheel driving force difference r ⁇ TcLR that should be the target when the vehicle turns.
  • the feedback control unit 34 corrects the rear wheel total driving force rTcLR and the rear wheel driving force difference r ⁇ TcLR as described below to obtain the final rear wheel total driving force TcLR and the rear wheel driving. This is the force difference ⁇ TcLR.
  • the feedback control unit 34 includes a target yaw rate calculation unit 34a, a yaw rate deviation calculation unit 34b, and a feedback control coefficient calculation unit 34c.
  • the target yaw rate calculation unit 34a calculates a target yaw rate t ⁇ desired by the driver from the steering angle ⁇ , the lateral acceleration Gy, and the vehicle speed VSP obtained based on the wheel speed Vw.
  • the feedback control coefficient calculation unit 34c is in an excessive oversteer state where the actual yaw rate ⁇ exceeds the dead zone with respect to the target yaw rate t ⁇ , or the actual yaw rate ⁇ exceeds the dead zone with respect to the target yaw rate t ⁇ .
  • the feedback control coefficient K1 is used to calculate the final rear wheel total driving force TcLR after correction by multiplying the rear wheel total driving force rTcLR
  • the feedback control coefficient K2 is used to determine the final rear wheel driving force difference ⁇ TcLR after correction by multiplying the rear wheel driving force difference r ⁇ TcLR.
  • the feedback control coefficient calculation unit 34c determines that the oversteer state ( ⁇ > t ⁇ + dead zone) and the four-wheel drive driving itself that drives the rear wheels makes the behavior of the vehicle unstable. Therefore, in order to eliminate this behavioral instability, the feedback control coefficient K1 for the rear wheel total driving force rTcLR is set to 0, and the feedback control coefficient K2 for the rear wheel driving force difference r ⁇ TcLR is also set to 0.
  • the feedback control coefficient calculation unit 34c sets the feedback control coefficient K1 for the rear wheel total driving force rTcLR to 1 and the feedback control coefficient K2 for the rear wheel driving force difference r ⁇ TcLR. Is 0.
  • the above-mentioned requirement can be realized in the understeer state ( ⁇ ⁇ t ⁇ ), and the adverse effect of setting a driving force difference between the left and right rear wheels while enjoying excellent running performance by four-wheel drive running. Can be eliminated.
  • the feedback control coefficient calculation unit 34c sets a driving force difference between the left and right rear wheels when the neutral steer state (t ⁇ dead zone ⁇ ⁇ ⁇ t ⁇ + dead zone) is determined and no adverse effect is caused by four-wheel drive driving. Therefore, the feedback control coefficient K1 for the rear wheel total driving force rTcLR is set to 1, and the feedback control coefficient K2 for the rear wheel driving force difference r ⁇ TcLR is also set to 1.
  • the left and right rear wheel target driving force calculation unit 35 satisfies both the left and right rear wheel total driving force TcLR and the left and right rear wheel driving force difference ⁇ TcLR, which should be the final target after correction, by the process shown in FIG.
  • the left rear wheel target driving force TcL and the right rear wheel target driving force TcR are obtained.
  • step S11 the final rear wheel total driving force TcLR corrected by the feedback control is read
  • step S12 the final left and right rear wheel driving force difference ⁇ TcLR corrected by the feedback control is read.
  • step S13 the right and left equal distribution amount TcLR / 2 of the rear wheel total driving force TcLR read in step S11 is obtained.
  • step S14 the right and left equal distribution amount ⁇ TcLR / of the rear wheel driving force difference ⁇ TcLR read in step S12. Ask for 2.
  • the target driving force TcOUT for the rear wheel outside the turning direction and the target driving force TcIN for the rear wheel inside the turning direction are used to achieve both the rear wheel total driving force TcLR and the rear wheel driving force difference ⁇ TcLR. These are the driving force of the rear wheel outside the turning direction and the driving force of the rear wheel inside the turning direction.
  • step S21 based on the outer wheel side target driving force TcOUT of the turning direction outer rear wheel and the inner wheel side target driving force TcIN of the turning direction inner rear wheel obtained as described above, the left rear wheel target driving force TcL and the right
  • the rear wheel target driving force TcR is determined according to the following procedure. First, in step S21, it is determined whether the vehicle is turning left or right based on the steering angle ⁇ and the yaw rate ⁇ .
  • step S22 the target driving force TcIN of the left rear wheel that is the inner wheel in the turning direction is set to the target driving force TcIN of the inner wheel and the target drive of the right rear wheel that is the outer wheel in the turning direction.
  • the outer ring side target driving force TcOUT is set to the force TcR.
  • step S23 the outer wheel side target driving force TcOUT is set to the target driving force TcL of the left rear wheel that is the outer wheel in the turning direction, and the right rear wheel that is the inner wheel in the turning direction.
  • the target driving force TcIN on the inner ring side is set to the target driving force TcR.
  • the four-wheel drive controller 21 in FIG. 1 has the left rear wheel target drive force TcL and the right rear determined by the computing unit 35 in FIG.
  • the current supplied to the left rear wheel side clutch 11L and the right rear wheel side clutch 11R is controlled so as to correspond to the wheel target driving force TcR.
  • step S13 While it is determined in step S12 that the vehicle is initially turning (lateral acceleration Gy ⁇ Gys), in step S13, the left and right rear wheel drive force difference steady control calculation value ch ⁇ TcLR and the rear wheel drive illustrated by the solid line in FIG.
  • the left and right rear wheel driving force difference steady control component c ⁇ TcLR and the right and left rear wheel driving force difference transient control component d ⁇ TcLR calculated by the transient control calculation unit 33b are the sum of the left and right rear wheel driving force differences.
  • the final rear wheel drive force difference ⁇ TcLR obtained by multiplying r ⁇ TcLR by the feedback control coefficient K2 is shown as a broken line in the initial stage of turning (lateral acceleration Gy ⁇ Gys).
  • the driving force difference in the case of the conventional Gain 1 shown in FIG. Accordingly, the rising of the turning behavior (yaw rate ⁇ ) can be made quicker, and the initial turning response can be improved.
  • the rear wheel driving force difference determination gain Gain A ( ⁇ 1) at the initial turning (Gy ⁇ Gys) is increased as the lateral acceleration Gy is decreased as shown by the solid line in FIG. 4 (a).
  • the start of turning behavior or the start of steering operation is detected, and the turning behavior is less than the initial turning judgment value within a predetermined time from the detection. Needless to say, if it is determined that the time is the initial turning, the determination can be made more accurately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Retarders (AREA)

Abstract

 運転者が定常的に要求している車両旋回挙動のための基本的な左右後輪駆動力差定常制御演算値に乗ずる後輪駆動力差決定ゲインGain を、横加速度Gyが旋回初期判定値Gys未満の旋回初期においては、1よりも大きく、横加速度Gyの低下につれ大きくなるAに設定する。よって、基本的な左右後輪駆動力差定常制御演算値に後輪駆動力差決定ゲインGain=Aを乗じて得られる最終的な左右後輪駆動力差定常制御分と、左右後輪駆動力差過渡制御分との和値である左右後輪駆動力差にフィードバック制御係数を乗じて得られた最終的な後輪駆動力差ΔTcLRは、旋回初期(横加速度Gy<Gys)において増大されることとなり、初期旋回応答を向上させることができる。

Description

車両の左右輪駆動力配分制御装置
 本発明は、車両、特に四輪駆動車両に有用な、左右輪駆動力配分制御装置の改良提案に関するものである。
 車両の左右輪駆動力配分制御装置としては従来、例えば特許文献1に記載のようなものが提案されている。
 この提案技術は、左右非主駆動輪への駆動力配分制御に際し、小横加速度領域では横加速度が大きいほど(小さいほど)、左右非主駆動輪間に大きな駆動力差が付くようにし(小さな駆動力差しか付かないようにし)、大横加速度領域では横加速度が大きいほど(小さいほど)、左右非主駆動輪に小さな駆動力差しか付かないようにする(大きな駆動力差が付くようにする)というものである。
 かかる左右輪駆動力配分制御によれば、小横加速度領域では横加速度の増大につれ旋回内輪の制駆動力が増加されて、旋回性能および高速安定性を向上させることができ、
 大横加速度領域では横加速度の増大につれ旋回内輪の制駆動力が減少されて、コーナリングフォースを予定通りに確保することができる。
特開平08-121571号公報(図2)
 しかし上記した従来の左右輪駆動力配分制御の場合、小横加速度領域では横加速度が小さいほど左右非主駆動輪間に小さな駆動力差しか付かないため、
 小横加速度領域で横加速度が未だ小さな旋回初期においては、左右非主駆動輪の駆動力が僅かしか違わないこととなる。
 このため、旋回初期において横加速度など車両旋回挙動の立ち上がりが鈍くなり、初期旋回応答が悪いという問題を生ずる。
 本発明は、かかる旋回初期における初期応答の悪化に関した問題を回避し得る車両の左右輪駆動力配分制御装置を提案することを目的とする。
 この目的のため本発明は、車輪駆動力を左右駆動輪へ制御下に分配出力する車両の左右輪駆動力配分制御装置に対し、
 車両の目標とする旋回挙動に対応する左右駆動力差の目標値が実現されるよう上記左右駆動輪の駆動力を制御する左右輪駆動力制御手段と、
 上記旋回挙動の初期を検出する旋回初期検知手段と、
 該手段により旋回初期であることが検知される間、上記左右駆動力差の目標値を増大させる旋回初期左右駆動力差増大手段とを設けたことを特徴とするものである。
 かかる本発明の左右輪駆動力配分制御装置にあっては、目標旋回挙動に対応する左右駆動力差の目標値が実現されるよう左右駆動輪の駆動力を制御するに際し、
 上記旋回挙動が始まった当初の旋回初期である間、上記左右駆動力差の目標値を増大させるため、
 旋回挙動の立ち上がりが鈍くなることがなくなり、初期旋回応答が悪いという前記の問題を解消することができる。
本発明の一実施例になる左右輪駆動力配分制御装置を具えた四輪駆動車両の車輪駆動系を車両上方から見て、四輪駆動制御システムと共に示す概略平面図である。 図1における四輪駆動コントローラを示す機能別ブロック線図である。 図2における左右後輪駆動力差演算部の定常制御演算部が実行する左右後輪駆動力差定常制御分演算プログラムを示すフローチャートである。 図3の演算プログラムで用いる左右後輪駆動力差決定ゲインGainの変化特性と、これを用いて得られた左右後輪駆動力差ΔTcLRの変化特性とを示す線図で、 (a)は、左右後輪駆動力差決定ゲインGainの変化特性図、 (b)は、この左右後輪駆動力差決定ゲインGainを用いて得られた左右後輪駆動力差ΔTcLRの変化特性図である。 図2における左右後輪目標駆動力演算部が左右後輪目標駆動力を演算するときのプロセスを示すフローチャートである。
 1L,1R 左右前輪(左右主駆動輪)
 2L,2R 左右後輪(左右副駆動輪)
 3 エンジン
 4 変速機(トランスアクスル)
 5L,5R 左右前輪アクスルシャフト
 6 トランスファー
 7 プロペラシャフト
 8 左右後輪駆動力配分ユニット
 9L,9R 左右後輪アクスルシャフト
 10 センターシャフト
 11L 左後輪側クラッチ(左副駆動輪側クラッチ)
 11R 右後輪側クラッチ(右副駆動輪側クラッチ)
 12 終減速機
 21 四輪駆動コントローラ
 22 車輪速センサ
 23 アクセル開度センサ
 24 操舵角センサ
 25 変速機出力回転センサ
 26 エンジン回転センサ
 27 ヨーレートセンサ
 28 前後加速度センサ
 29 横加速度センサ
 31 入力信号処理部
 32 後輪合計駆動力演算部
 33 左右後輪駆動力差演算部
 34 フィードバック制御部
 35 左右後輪目標駆動力演算部
 以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
<実施例の構成>
 図1は、本発明の一実施例になる左右輪駆動力配分制御装置を具えた四輪駆動車両の車輪駆動系を車両上方から見て、四輪駆動制御システムと共に示す概略平面図である。
 図中、1L,1Rはそれぞれ、主駆動輪としての左右前輪を示し、2L,2Rはそれぞれ、副駆動輪としての左右後輪を示す。
 なお、本明細書中において「駆動力」と称するは、パワーに非ず、「トルク値」を意味するものとする。
 3は、原動機としてのエンジンで、エンジン3からの回転動力は変速機(ディファレンシャルギヤ装置4aを含むトランスアクスル)4により変速して、左右アクスルシャフト5L,5Rを介し左右前輪1L,1Rに向かわせ、これら左右前輪1L,1Rの駆動に供する。
 変速機4により変速された後に左右前輪1L,1Rへ向かう駆動力の一部を、トランスファー6により方向変換して左右後輪2L,2Rに向かわせるが、そのための伝動系を以下のような構成となす。
 トランスファー6は入力側ハイポイドギヤ6aおよび出力側ハイポイドギヤ6bより成る傘歯車組を具える。
 入力側ハイポイドギヤ6aは、ディファレンシャルギヤ装置4aの入力回転メンバであるディファレンシャルギヤケースと共に回転するようこれに結合する。
 出力側ハイポイドギヤ6bにはプロペラシャフト7の前端を結合し、このプロペラシャフト7を左右後輪駆動力配分ユニット8に向け後方へ延在させる。
 なおトランスファー6は、左右前輪1L,1Rに向かう駆動力の一部を増速してプロペラシャフト7へ出力するよう、ハイポイドギヤ6aおよび出力側ハイポイドギヤ6bより成る傘歯車組のギヤ比を決定する。
 プロペラシャフト7への増速回転動力は、左右後輪駆動力配分ユニット8による後述の制御下で左右後輪2L,2Rへ分配出力する。
 そのため左右後輪駆動力配分ユニット8は、左右後輪2L,2Rのアクスルシャフト9L,9R間において、これらシャフト9L,9Rの軸線方向に延在するセンターシャフト10を具える。
 左右後輪駆動力配分ユニット8は更に、センターシャフト10および左後輪アクスルシャフト9L間にあって、これらシャフト10,9L間を結合制御するための左後輪側クラッチ(左副駆動輪側摩擦要素)11Lと、
 センターシャフト10および右後輪アクスルシャフト9R間にあって、これらシャフト10,9R間を結合制御するための右後輪側クラッチ(右副駆動輪側摩擦要素)11Rとを具える。
 トランスファー6から車両後方へ延在するプロペラシャフト7の後端と、センターシャフト10との間は、入力側ハイポイドギヤ12aおよび出力側ハイポイドギヤ12bより成る傘歯車式終減速機12を介して駆動結合する。
 なお該終減速機12の減速比は、トランスファー6の前記した増速ギヤ比(ハイポイドギヤ6aおよび出力側ハイポイドギヤ6bより成る傘歯車組の増速ギヤ比)との関連において、左右前輪1L,1Rに向かう駆動力の一部をセンターシャフト10へ増速下に向かわせるようなギヤ比とし、
 本実施例においては、左右前輪1L,1Rに対してセンターシャフト10が増速回転されるように、トランスファー6および終減速機12のトータルギヤ比を設定する。
 かようにトランスファー6および終減速機12のトータルギヤ比を決定する理由を以下に説明する。
 上記センターシャフト10の増速回転を行わせない場合、左右後輪2L,2Rのうち、旋回走行中に外輪となる後輪2L(または2R)の回転速度がセンターシャフト10の回転速度よりも高速となる。
 この状態で旋回方向外輪となる後輪2L(または2R)側におけるクラッチ11L(または11R)を締結するとき、当該後輪の高い回転速度が、低速回転しているセンターシャフト10に引き摺られ、センターシャフト10の回転速度まで低下されることとなる。
 このことは、センターシャフト10から旋回方向外側の後輪2L(または2R)へ駆動力を伝達することができないことを意味し、結果として狙い通りの駆動力配分制御が不可能になり、四輪駆動制御にとって不都合を生ずる。
 そこで本実施例においては、かかる旋回走行中もセンターシャフト10の回転速度が旋回方向外側後輪2L(または2R)の回転速度未満になって駆動力配分制御が不能になることのないよう、トランスファー6および終減速機12のトータルギヤ比を上記のごとくに決定して、センターシャフト10を上記の通り増速回転させるようになす。
 かかるセンターシャフト10の増速回転により、後述する駆動力配分制御を狙い通りに遂行し得る。
 上記した四輪駆動車両の車輪駆動系にあっては、エンジン3からの回転動力が変速機(トランスアクスル)4による変速下で左右前輪1L,1Rに達し、これら左右前輪1L,1Rを駆動する。
 この間、左右前輪1L,1Rに向かう駆動力の一部がトランスファー6から順次、プロペラシャフト7、および終減速機12を経てセンターシャフト10へ増速下に達し、
 この増速分だけクラッチ11L,11Rがスリップするようこれらクラッチ11L,11Rを締結力制御しつつ、左右後輪2L,2Rを駆動する。
 かくて車両は、左右前輪1L,1Rの駆動、および、左右後輪2L,2Rの駆動により、四輪駆動走行が可能である。
 従って上記の四輪駆動車両においては、左後輪側クラッチ11Lおよび右後輪側クラッチ11Rの締結力制御が必要である。
 上記の四輪駆動車両においては更に、車両の発進性能や加速性能を向上させるために、左後輪側クラッチ11Lおよび右後輪側クラッチ11Rの合計締結力制御を介して前後輪駆動力配分制御を行い得るようになすほか、
 車両の旋回性能を向上させたり、車両の実挙動(実ヨーレートなど)が車両の運転状態や走行条件に応じた目標通りのものとなるようにする挙動制御を行うために、左後輪側クラッチ11Lおよび右後輪側クラッチ11Rの締結力制御を介して左右輪駆動力配分制御を行い得るようになす。
 そのため、左後輪側クラッチ11Lおよび右後輪側クラッチ11Rの締結力制御システムを以下のようなものとする。
 左後輪側クラッチ11Lおよび右後輪側クラッチ11Rはそれぞれ、供給電流に応じて締結力を決定される電磁式とし、これらクラッチ11L,11Rの締結力がそれぞれ、四輪駆動(4WD)コントローラ21で後述のごとくに求めた左右後輪2L,2Rの目標駆動力TcL,TcRに対応した締結力となるよう当該クラッチ11L,11Rへの供給電流を電子制御することで、上記の前後輪駆動力配分制御および左右輪駆動力配分制御を行うものとする。
 四輪駆動コントローラ21には、上記した左後輪2Lの目標駆動力TcLおよび右後輪2Rの目標駆動力TcRを演算するために、
 車輪1L,1R,2L,2Rの車輪速Vwを個々に検出する車輪速センサ群22からの信号と、
 アクセルペダル踏み込み量であるアクセル開度APOを検出するアクセル開度センサ23からの信号と、
 ステアリングホイール操舵角θを検出する操舵角センサ24からの信号と、
 変速機出力回転数Noを検出する変速機出力回転センサ25からの信号と、
 エンジン回転数Neを検出するエンジン回転センサ26からの信号と、
 車両の重心を通る鉛直軸線周りにおけるヨーレートφを検出するヨーレートセンサ27からの信号と、
 車両の前後加速度Gxを検出する前後加速度センサ28からの信号と、
 車両の横加速度Gyを検出する横加速度センサ29からの信号と、をそれぞれ入力する。
 四輪駆動コントローラ21は、これら入力情報を基に、後で詳述する前後輪駆動力配分制御および左右輪駆動力配分制御用の左後輪目標駆動力TcLおよび右後輪目標駆動力TcRを演算し、
 左右後輪2L,2Rの駆動力がこれら目標駆動力TcL,TcRに一致するよう、左後輪側クラッチ11Lおよび右後輪側クラッチ11Rの締結力(電流)を電子制御するものとする。
<駆動力配分制御>
 四輪駆動コントローラ21が実行する前後輪駆動力配分制御および左右輪駆動力配分制御、つまり左後輪目標駆動力TcLおよび右後輪目標駆動力TcRの決定要領を、以下に説明する。
 四輪駆動コントローラ21は、機能別ブロック線図で示すと図2に示すごときもので、入力信号処理部31と、後輪合計駆動力演算部32と、左右後輪駆動力差演算部33と、フィードバック制御部34と、左右後輪目標駆動力演算部35とで構成する。
 入力信号処理部31は、車輪速センサ群22、アクセル開度センサ23、操舵角センサ24、変速機出力回転センサ25、エンジン回転センサ26、ヨーレートセンサ27、前後加速度センサ28、 横加速度センサ29の検出信号からノイズを除去すると共に、後述の演算に用い得るよう前処理する。
 かように前処理した信号のうち、エンジン回転数Neおよびアクセル開度APOを用いて、エンジントルク推定部36でエンジントルクTeを推定し、
 またエンジン回転数Neおよび変速機出力回転数Noを用いて、変速機ギヤ比演算部37で変速機ギヤ比γを演算する。
 後輪合計駆動力演算部32は、左右後輪2L,2Rへの合計駆動力目標値rTcLR(以下、合計駆動力rTcLRと言う)を例えば以下のように求める。
 先ずエンジントルクTeおよび変速機ギヤ比γからディファレンシャルギヤ装置4aへの入力トルクTiを演算する。
 次いで、車輪速センサ群22からの信号(車輪速Vw)を基に左右前輪平均速および左右後輪平均速をそれぞれ求め、両者の比較により推定した左右前輪1L,1Rの駆動スリップ程度や、前後加速度Gxや、アクセル開度APOに応じ、上記入力トルクTiのうちのどの程度を左右後輪2L,2Rに向かわせるべきかを決定して、これら後輪への合計駆動力rTcLRとする。
 なお後輪への合計駆動力rTcLRは、上記前輪スリップの程度が高いほど、この駆動スリップ抑制のために大きくする必要があり、また前後加速度Gxおよびアクセル開度APOが大きいほど、運転者が大きな駆動力を要求していることから、これに応えるため後輪への合計駆動力rTcLRを大きくする。
 左右後輪駆動力差演算部33は、定常制御演算部33aおよび過渡制御演算部33bを具え、左右後輪2L,2R間の駆動力差目標値rΔTcLR(以下、駆動力差rΔTcLRと言う)を例えば以下のように求める。
 定常制御演算部33aは、エンジントルクTe、変速機ギヤ比γ、操舵角θ、車輪速Vw(車速)を基に図3の制御プログラムを実行して、運転者が定常的に要求している車両旋回挙動のための基本的な左右後輪駆動力差定常制御演算値chΔTcLRを求め、これと、図4(a)に実線で例示する後輪駆動力差決定ゲインGainとの乗算により、最終的な左右後輪駆動力差定常制御分cΔTcLRを求める。
 具体的には先ず図3のステップS11において、運転者が定常的に要求している車両旋回挙動のための基本的な左右後輪駆動力差定常制御演算値chΔTcLRを以下のようにして求める。
 エンジントルクTeと、変速機ギヤ比γとから、車両に発生している前後加速度Gxを推定し、操舵角θおよび車輪速Vw(車速)から車両に発生している横加速度Gyを推定し、これら推定した前後加速度Gxおよび横加速度Gyの組み合わせから判る車両のアンダーステア傾向(目標旋回挙動に対し実旋回挙動が不足する状態)を解消するのに必要な左右後輪駆動力差を、その定常制御演算値chΔTcLRとして定める。
 従ってステップS11は、本発明における左右輪駆動力制御手段に相当する。
 なお定常制御演算部33aで定常制御演算値chΔTcLRを求めるに際し、前後加速度Gxの検出値ではなく推定値、また横加速度Gyの検出値ではなく推定値を用いる理由は、定常制御演算部33aがフィードフォワード制御系であって、結果値である検出値よりも、推定値の方が制御の実態にマッチしているためである。
 かくして左右後輪駆動力差定常制御演算値chΔTcLRは、操舵角θが0近辺を示す(車輪非転舵状態である)間、横加速度Gy=0によりchΔTcLR=0に保たれ、
 操舵角θが0近辺でない(車輪転舵状態である)間は、操舵角θが大きいほど、また高車速であるほど、横加速度Gyが大きくなって車両のアンダーステア傾向が強くなることから、左右後輪駆動力差定常制御演算値chΔTcLRは大きくなり、
 更に前後加速度Gxが大きいほど、車両のアンダーステア傾向が強くなることから、左右後輪駆動力差定常制御演算値chΔTcLRは大きくなる。
 次のステップS12においては、横加速度Gyが旋回初期判定値Gys未満か否かにより、旋回初期か、旋回中かをチェックする。
 従ってステップS12は、本発明における旋回初期検知手段に相当する。
 ステップS12で旋回初期(Gy<Gys)と判定する場合ステップS13において、図4(a)に実線で示す当該小横加速度(Gy<Gys)における後輪駆動力差決定ゲインGain=A(≧1)と、ステップS11で求めた基本的な左右後輪駆動力差定常制御演算値chΔTcLRとの乗算により、左右後輪駆動力差定常制御分cΔTcLR(=chΔTcLR・A)を求める。
 従ってステップS13は、本発明における旋回初期左右駆動力差増大手段に相当する。
 ステップS12で旋回中(Gy≧Gys)と判定する場合ステップS14において、図4(a)に実線で示す当該大横加速度(Gy≧Gys)における後輪駆動力差決定ゲインGain=B(<1)と、ステップS11で求めた基本的な左右後輪駆動力差定常制御演算値chΔTcLRとの乗算により、左右後輪駆動力差定常制御分cΔTcLR(=chΔTcLR・B)を求める。
 後輪駆動力差決定ゲインGainは図4(a)に実線で例示するごとく、旋回初期(Gy<Gys)において1以上であるが、横加速度Gyが小さいほど大きくなるAとし、
 また後輪駆動力差決定ゲインGainは図4(a)に実線で例示するごとく、旋回中(Gy≧Gys)において1未満であるが、横加速度Gyが大きいほど小さくなるBとする。
 過渡制御演算部33bは、運転者が操舵角θの変化速度により過渡的に要求している旋回応答のための左右後輪駆動力差過渡制御分dΔTcLRを求めるもので、
 操舵角θおよび車輪速Vw(車速)から、運転者が希望している目標ヨーレートtφを演算し、該目標ヨーレートtφの変化速度が高いほど、高い旋回応答を希望していることから、これに対応して左右後輪駆動力差過渡制御分dΔTcLRを大きく設定する。
 左右後輪駆動力差演算部33は、定常制御演算部33aで上記のごとくに求めた左右後輪駆動力差定常制御分cΔTcLRと、過渡制御演算部33bで上記のごとくに求めた左右後輪駆動力差過渡制御分dΔTcLRとの和値を、車両旋回挙動時の目標とすべき左右後輪駆動力差rΔTcLRと定める。
 なお、アンダーステア傾向であるときは、後輪を駆動する四輪駆動走行による弊害を生ずることがなく、走破性のために後輪駆動を継続するのがよいものの、左右後輪間に駆動力差を設定する制御を行うと、この駆動力差制御が弊害になることから、この弊害を排除するためにの左右後輪間に駆動力差を設定しないのがよい。
 また、逆のオーバーステア傾向であるときは、後輪を駆動する四輪駆動走行そのものが車両の挙動を不安定にすることから、この挙動不安定を排除するために、後輪への駆動力配分を行わないようにするのがよい。
 フィードバック制御部34は、これらの要求を実現するため、上記の後輪合計駆動力rTcLRおよび後輪駆動力差rΔTcLRを以下のごとくに補正して最終的な後輪合計駆動力TcLRおよび後輪駆動力差ΔTcLRとなすものである。
 そのためフィードバック制御部34は、目標ヨーレート演算部34aと、ヨーレート偏差演算部34bと、フィードバック制御係数演算部34cとを具え、
 目標ヨーレート演算部34aは、操舵角θと、横加速度Gyと、車輪速Vwを基に求めた車速VSPとから、運転者が希望している目標ヨーレートtφを演算する。
 ヨーレート偏差演算部34bは、この目標ヨーレートtφと、検出した実ヨーレートφとの間におけるヨーレート偏差Δφ(=φ-tφ)を演算する。
 フィードバック制御係数演算部34cは、上記のヨーレート偏差Δφを基に、目標ヨーレートtφに対し実ヨーレートφが不感帯を超えて過剰なオーバーステア状態か、目標ヨーレートtφに対し実ヨーレートφが不感帯を超えて不足しているアンダーステア状態か、実ヨーレートφが目標ヨーレートtφに対し前後不感帯内にあるニュートラルステア状態かを判定し、
 この判定結果を基に後輪合計駆動力rTcLR用のフィードバック制御係数K1(0または1)、および後輪駆動力差rΔTcLR用のフィードバック制御係数K2(0または1)をそれぞれ決定する。
 フィードバック制御係数K1は、後輪合計駆動力rTcLRに乗じて補正後の最終的な後輪合計駆動力TcLRを求めるのに用い、
 フィードバック制御係数K2は、後輪駆動力差rΔTcLRに乗じて補正後の最終的な後輪駆動力差ΔTcLRを求めるのに用いる。
 これらフィードバック制御係数K1,K2の決定に際しフィードバック制御係数演算部34cは、オーバーステア状態(φ>tφ+不感帯)と判定するとき、後輪を駆動する四輪駆動走行そのものが車両の挙動を不安定にすることから、この挙動不安定を排除するために、後輪合計駆動力rTcLR用のフィードバック制御係数K1を0とし、後輪駆動力差rΔTcLR用のフィードバック制御係数K2も0とする。
 フィードバック制御係数K1=0は、補正後の最終的な後輪合計駆動力TcLRを0となし、フィードバック制御係数K2=0は、補正後の最終的な後輪駆動力差ΔTcLRも0となして、車両を二輪(前輪)駆動走行させることを意味し、これにより、当該オーバーステア状態で四輪駆動走行が継続されることによる挙動不安定の弊害を排除することができる。
 フィードバック制御係数演算部34cは、アンダーステア状態(φ<tφ-不感帯)と判定するとき、後輪合計駆動力rTcLR用のフィードバック制御係数K1を1とし、後輪駆動力差rΔTcLR用のフィードバック制御係数K2を0とする。
 フィードバック制御係数K1=1は、補正後の最終的な後輪合計駆動力TcLRをTcLR=rTcLRとなし、フィードバック制御係数K2=0は、補正後の最終的な後輪駆動力差ΔTcLRを0となして、車両を四輪駆動走行させるも左右後輪間に駆動力差を設定しないことを意味する。
 よって、当該アンダーステア状態(φ<tφ)で前記した要求を実現することができ、四輪駆動走行による優れた走破性を享受しつつ、左右後輪間に駆動力差が設定されることによる弊害を排除することができる。
 フィードバック制御係数演算部34cは、ニュートラルステア状態(tφ-不感帯≦φ≦tφ+不感帯)と判定するとき、四輪駆動走行によっても弊害を生ずることがないし、左右後輪間に駆動力差を設定することによる弊害もないため、後輪合計駆動力rTcLR用のフィードバック制御係数K1を1とし、後輪駆動力差rΔTcLR用のフィードバック制御係数K2も1とする。
 フィードバック制御係数K1=1は、補正後の最終的な後輪合計駆動力TcLRをTcLR=rTcLRとなし、フィードバック制御係数K2=1は、補正後の最終的な後輪駆動力差ΔTcLRをΔTcLR=rΔTcLRとなして、車両を四輪駆動走行させると共に、左右後輪間に駆動力差を設定することを意味する。
 左右後輪目標駆動力演算部35は、図5に示すプロセスにより、上記した補正後の最終的な目標とすべき左右後輪合計駆動力TcLRと左右後輪駆動力差ΔTcLRとの双方を満足する左後輪目標駆動力TcLおよび右後輪目標駆動力TcRを求める。
 ステップS11においては、前記のフィードバック制御により補正した最終的な後輪合計駆動力TcLRを読み込み、
 ステップS12においては、前記のフィードバック制御により補正した最終的な左右後輪駆動力差ΔTcLRを読み込む。
 ステップS13においては、ステップS11で読み込んだ後輪合計駆動力TcLRの左右均等配分量TcLR/2を求め、ステップS14においては、ステップS12で読み込んだ後輪駆動力差ΔTcLRの左右均等配分量ΔTcLR/2を求める。
 ステップS15においては、後輪合計駆動力左右均等配分量TcLR/2に後輪駆動力差左右均等配分量ΔTcLR/2を加算して、旋回方向外側後輪の目標駆動力TcOUT(=TcLR/2+ΔTcLR/2)を求める。
 ステップS16においては、後輪合計駆動力左右均等配分量TcLR/2から後輪駆動力差左右均等配分量ΔTcLR/2を減算して、旋回方向内側後輪の目標駆動力TcIN(=TcLR/2-ΔTcLR/2)を求める。
 かようにして求めた旋回方向外側後輪の目標駆動力TcOUTおよび旋回方向内側後輪の目標駆動力TcINは、後輪合計駆動力TcLRと後輪駆動力差ΔTcLRとの双方を達成するための旋回方向外側後輪の駆動力および旋回方向内側後輪の駆動力である。
 ステップS21以降においては、上記のごとくに求めた旋回方向外側後輪の外輪側目標駆動力TcOUTおよび旋回方向内側後輪の内輪側目標駆動力TcINを基に、左後輪目標駆動力TcLおよび右後輪目標駆動力TcRを以下の要領により決定する。
 先ずステップS21において、操舵角θやヨーレートφに基づき、車両の旋回走行が左旋回か、右旋回かを判定する。
 左旋回であれば、ステップS22において、旋回方向内側輪となる左後輪の目標駆動力TcLに上記の内輪側目標駆動力TcINをセットすると共に、旋回方向外側輪となる右後輪の目標駆動力TcRに上記の外輪側目標駆動力TcOUTをセットする。
 逆に右旋回であれば、ステップS23において、旋回方向外側輪となる左後輪の目標駆動力TcLに上記の外輪側目標駆動力TcOUTをセットすると共に、旋回方向内側輪となる右後輪の目標駆動力TcRに上記の内輪側目標駆動力TcINをセットする。
 図1の四輪駆動コントローラ21は左後輪側クラッチ11Lおよび右後輪側クラッチ11Rの締結力がそれぞれ、図2の演算部35で上記のごとく決定した左後輪目標駆動力TcLおよび右後輪目標駆動力TcRに対応したものとなるよう、左後輪側クラッチ11Lおよび右後輪側クラッチ11Rへの供給電流を制御する。
<実施例の効果>
 上述した本実施例になる四輪駆動車両の左右輪(左右後輪)駆動力配分制御によれば、以下のような効果が得られる。
 図2における定常制御演算部33aが図3の制御プログラムを実行して、運転者が定常的に要求する車両旋回挙動のための左右後輪駆動力差定常制御分cΔTcLRを求めるに際し、
 当該車両旋回挙動のための基本的な左右後輪駆動力差定常制御演算値chΔTcLR(ステップS11)をそのまま左右後輪駆動力差定常制御分cΔTcLRとせず、
 ステップS12で旋回初期(横加速度Gy<Gys)と判定する間は、ステップS13において基本的な左右後輪駆動力差定常制御演算値chΔTcLRと、図4(a)に実線で例示する後輪駆動力差決定ゲインGain=A(≧1)との乗算により、最終的な左右後輪駆動力差定常制御分cΔTcLRを求める。
 このため、図2におけるごとくこの左右後輪駆動力差定常制御分cΔTcLRと、過渡制御演算部33bで演算した左右後輪駆動力差過渡制御分dΔTcLRとの和値である左右後輪駆動力差rΔTcLRにフィードバック制御係数K2を乗じて得られた最終的な後輪駆動力差ΔTcLRが図4(b)に実線で示すように、旋回初期(横加速度Gy<Gys)において、同図に破線で示す従来のGain=1の場合の駆動力差よりも増大されることとなり、
 その分だけ旋回挙動(ヨーレートφ)の立ち上がりを速やかなものとなし得て、初期旋回応答を向上させることができる。
 しかも本実施例においては、旋回初期(Gy<Gys)での後輪駆動力差決定ゲインGain=A(≧1)を図4(a)に実線で示すごとく、横加速度Gyが小さいほど大きくしたため、
 同じ旋回初期(Gy<Gys)でも早いときほど、後輪駆動力差ΔTcLRの増大割合が大きくて、旋回挙動(ヨーレートφ)を早期に立ち上がらせることができることとなり、初期旋回応答の向上を更に確実なものにすることができる。
<その他の実施例>
 なお上記実施例では、旋回初期の判定に際し、横加速度Gyが旋回初期判定値Gys未満である間をもって旋回初期と判定することとしたが、横加速度Gyに限らず、他の旋回挙動が旋回初期判定値未満であるか否かにより旋回初期判定を行ってもよい。
 また、旋回挙動のみに基づき旋回初期を簡易的に判定する代わりに、旋回挙動の発生開始やステアリング操作の開始を検知し、その検知時から所定時間内であって旋回挙動が旋回初期判定値未満である時を旋回初期と判定すれば、当該判定を一層正確に行うことができるのは言うまでもない。

Claims (4)

  1.  車輪駆動力を左右駆動輪へ制御下に分配出力する車両の左右輪駆動力配分制御装置において、
     車両の目標とする旋回挙動に対応する左右駆動力差の目標値が実現されるよう前記左右駆動輪の駆動力を制御する左右輪駆動力制御手段と、
     前記旋回挙動の初期を検出する旋回初期検知手段と、
     該手段により旋回初期であることが検知される間、前記左右駆動力差の目標値を増大させる旋回初期左右駆動力差増大手段とを具備してなることを特徴とする車両の左右輪駆動力配分制御装置。
  2.  請求項1に記載された車両の左右輪駆動力配分制御装置において、
     前記旋回初期検知手段は、車両旋回挙動が設定値未満である間をもって旋回初期と判定するものであることを特徴とする車両の左右輪駆動力配分制御装置。
  3.  請求項1または2に記載された車両の左右輪駆動力配分制御装置において、
     前記旋回初期左右駆動力差増大手段は、前記左右駆動力差の目標値にゲインを乗じて左右駆動力差の目標値を増大させるものであることを特徴とする車両の左右輪駆動力配分制御装置。
  4.  請求項3に記載された車両の左右輪駆動力配分制御装置において、
     前記ゲインは、前記設定値未満の小さな車両旋回挙動域で車両旋回挙動が小さいほど大きくなるものであることを特徴とする車両の左右輪駆動力配分制御装置。
PCT/JP2011/065399 2010-07-09 2011-07-05 車両の左右輪駆動力配分制御装置 WO2012005265A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20110803599 EP2591934B1 (en) 2010-07-09 2011-07-05 Device for controlling torque distribution to left and right wheels on a vehicle
CN201180033601.7A CN102971173B (zh) 2010-07-09 2011-07-05 车辆的左右轮驱动分配控制装置
US13/700,359 US8775045B2 (en) 2010-07-09 2011-07-05 Left-right wheel drive force distribution control apparatus for a vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-156667 2010-07-09
JP2010156667A JP5299368B2 (ja) 2010-07-09 2010-07-09 車両の左右輪駆動力配分制御装置

Publications (1)

Publication Number Publication Date
WO2012005265A1 true WO2012005265A1 (ja) 2012-01-12

Family

ID=45441243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065399 WO2012005265A1 (ja) 2010-07-09 2011-07-05 車両の左右輪駆動力配分制御装置

Country Status (5)

Country Link
US (1) US8775045B2 (ja)
EP (1) EP2591934B1 (ja)
JP (1) JP5299368B2 (ja)
CN (1) CN102971173B (ja)
WO (1) WO2012005265A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102262132B1 (ko) * 2017-03-27 2021-06-10 현대자동차주식회사 차량용 조향 제어방법
KR102532338B1 (ko) 2018-06-21 2023-05-16 현대자동차주식회사 차량용 조향 제어방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181918A (ja) * 1986-02-05 1987-08-10 Fuji Heavy Ind Ltd 車両の後輪トルク配分制御装置
JPH03189241A (ja) * 1989-12-20 1991-08-19 Mazda Motor Corp 4輪駆動装置
JPH07101263A (ja) * 1993-10-08 1995-04-18 Toyota Motor Corp 車両の左右輪の差動制限制御装置
JPH1016599A (ja) * 1996-07-05 1998-01-20 Mitsubishi Motors Corp 車両用左右輪間動力伝達制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4991679A (en) * 1985-06-21 1991-02-12 Honda Giken Kogyo Kabushiki Kaisha Four wheel-drive anti-locking braking
US5119900A (en) * 1989-12-09 1992-06-09 Mazda Motor Corporation Four wheel drive system
US5301768A (en) * 1992-05-04 1994-04-12 Aisin Aw Co., Ltd. Four-wheel drive torque transfer mechanism
DE69304144T2 (de) * 1992-06-15 1997-01-09 Mitsubishi Motors Corp Vorrichtung und Verfahren zur Verteilung des Antriebsmomentes auf das rechte/linke Rad eines Kraftfahrzeuges
JP3409439B2 (ja) * 1994-06-17 2003-05-26 日産自動車株式会社 左右輪と前後輪の駆動力配分総合制御装置
JP3275564B2 (ja) * 1994-09-21 2002-04-15 日産自動車株式会社 車両のトランスファ装置
JP3427529B2 (ja) * 1994-12-26 2003-07-22 日産自動車株式会社 四輪駆動車の駆動力分配制御装置
JP3791625B2 (ja) * 1995-08-11 2006-06-28 日産自動車株式会社 車両の四輪駆動制御装置
JP4120335B2 (ja) * 2002-09-26 2008-07-16 日産自動車株式会社 4輪駆動車の駆動力配分制御装置
JP4386171B2 (ja) * 2003-12-04 2009-12-16 三菱自動車工業株式会社 4輪駆動車の動力伝達装置
JP4267495B2 (ja) * 2004-03-31 2009-05-27 本田技研工業株式会社 4輪駆動車両の駆動力制御方法
DE602005013139D1 (de) * 2004-03-31 2009-04-23 Honda Motor Co Ltd Steuerungsverfahren für vierradgetriebenes Fahrzeug
JP2009062030A (ja) * 2007-08-10 2009-03-26 Gkn ドライブライン トルクテクノロジー株式会社 車両用ヨー・レイト制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181918A (ja) * 1986-02-05 1987-08-10 Fuji Heavy Ind Ltd 車両の後輪トルク配分制御装置
JPH03189241A (ja) * 1989-12-20 1991-08-19 Mazda Motor Corp 4輪駆動装置
JPH07101263A (ja) * 1993-10-08 1995-04-18 Toyota Motor Corp 車両の左右輪の差動制限制御装置
JPH1016599A (ja) * 1996-07-05 1998-01-20 Mitsubishi Motors Corp 車両用左右輪間動力伝達制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2591934A4 *

Also Published As

Publication number Publication date
JP5299368B2 (ja) 2013-09-25
EP2591934A1 (en) 2013-05-15
EP2591934B1 (en) 2015-04-22
CN102971173B (zh) 2015-09-16
CN102971173A (zh) 2013-03-13
US8775045B2 (en) 2014-07-08
US20130073161A1 (en) 2013-03-21
JP2012017054A (ja) 2012-01-26
EP2591934A4 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5257414B2 (ja) 四輪駆動車両の駆動力配分制御装置
JP5246351B2 (ja) 四輪駆動車両の駆動力配分制御装置
WO2012005260A1 (ja) 車両の左右輪駆動力配分制御装置
JP5464273B2 (ja) 車両の左右輪駆動力配分制御装置
JP5447670B2 (ja) 車両の左右輪駆動力配分制御装置
JP5454688B2 (ja) 車両の左右輪駆動力配分制御装置
JP5429082B2 (ja) 車両の左右輪駆動力配分制御装置
JP5299368B2 (ja) 車両の左右輪駆動力配分制御装置
JP2005289162A (ja) 4輪駆動車両の駆動力制御方法
JP2005289162A5 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180033601.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803599

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13700359

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011803599

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE