WO2012005007A1 - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
WO2012005007A1
WO2012005007A1 PCT/JP2011/003913 JP2011003913W WO2012005007A1 WO 2012005007 A1 WO2012005007 A1 WO 2012005007A1 JP 2011003913 W JP2011003913 W JP 2011003913W WO 2012005007 A1 WO2012005007 A1 WO 2012005007A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
scroll
compression chamber
scroll compressor
hole
Prior art date
Application number
PCT/JP2011/003913
Other languages
English (en)
French (fr)
Inventor
啓晶 中井
裕文 吉田
健 苅野
竜一 大野
信吾 大八木
飯田 登
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180033901.5A priority Critical patent/CN102985697B/zh
Priority to US13/808,193 priority patent/US8985978B2/en
Priority to JP2012523773A priority patent/JPWO2012005007A1/ja
Priority to EP11803344.8A priority patent/EP2592274B1/en
Publication of WO2012005007A1 publication Critical patent/WO2012005007A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • F04C18/0261Details of the ports, e.g. location, number, geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/263HFO1234YF
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves

Definitions

  • the present invention relates to a room air conditioner, a car air conditioner, a refrigerator, and other air conditioners that use a refrigerant mainly composed of carbon containing no chlorine atom and a low global warming potential and a hydrofluoroolefin having a double bond between carbons as a working refrigerant.
  • the present invention relates to a scroll compressor that can be incorporated into a refrigeration cycle of an apparatus or the like.
  • the compressor takes the role of sucking the gas refrigerant evaporated in the evaporator and compressing it to a predetermined pressure, and the state change of the working refrigerant from the low pressure to the high pressure and from the low temperature to the high temperature is the most severe. In order to ensure the stability and reliability of the refrigerant, sufficient measures are required in the compressor.
  • the conventional scroll compressor uses the fact that the compression chamber 103 formed between the fixed scroll 101 and the orbiting scroll 102 moves while reducing the volume, and draws in the sucked working refrigerant.
  • the working refrigerant that has been compressed and reaches a predetermined pressure is discharged into a discharge chamber from a discharge hole 104 provided at the center position of the end plate of the fixed scroll 101.
  • the pressure in the compression chamber 103 always follows a constant pressure history based on the suction pressure and the volume change of the compression chamber 103 regardless of the discharge pressure. For this reason, an excessive pressure rise occurs due to the timing at which the discharge hole 104 and the compression chamber 103 communicate with each other, and the orbiting scroll 102 is detached from the fixed scroll 101 or, on the contrary, an abnormal pressing force acts on the orbiting scroll. Causes stable behavior.
  • the present invention solves the above-described problems, and uses a refrigerant having a low global warming potential as a working refrigerant, suppresses an increase in discharge refrigerant temperature due to overcompression, and is highly efficient and excellent in reliability and durability.
  • An object is to provide a scroll compressor.
  • the scroll compressor of the present invention is mainly composed of a hydrofluoroolefin that does not contain chlorine atoms and has a low global warming potential and a double bond between carbons as a working refrigerant.
  • a bypass hole that connects the compression chamber and the discharge chamber is provided in the end plate of the fixed scroll before the compression chamber communicates with the discharge hole while using the refrigerant, and a check that allows the bypass hole to flow from the compression chamber side to the discharge chamber side.
  • the valve is provided.
  • the scroll compressor of the present invention while using a refrigerant with a small ozone layer depletion coefficient and a global warming coefficient, it is reliable and durable while considering the global environment by suppressing the rise in refrigerant temperature leading to the promotion of refrigerant decomposition.
  • a highly efficient scroll compressor excellent in performance can be provided.
  • FIG. 1 Sectional drawing of the scroll compressor in Embodiment 1 of this invention
  • FIG. 1 The principal part expanded sectional view of the compression mechanism part of the scroll compressor of Embodiment 1.
  • FIG. Plan view of orbiting scroll in the scroll compressor of the first embodiment
  • Comparison graph of compression chamber pressure in Embodiment 1 and Comparative Example of the present invention The top view of the turning scroll in the scroll compressor in Embodiment 2 of this invention
  • 1st invention uses the single refrigerant
  • a compression chamber formed in both directions by meshing the fixed scroll and the orbiting scroll is provided, and a discharge hole that opens to the discharge chamber is provided at the center position of the end plate of the fixed scroll, and before the compression chamber communicates with the discharge hole, the compression chamber
  • the scroll compressor is provided with a bypass hole in the end plate of the fixed scroll and a check valve that allows the bypass hole to flow from the compression chamber side to the discharge chamber side.
  • the bypass hole can be used for the problem of being easily decomposed at a high temperature while suppressing the influence on the global environment.
  • a section where the bypass hole and the compression chamber communicate with each other has a wider range, and the flow path of the bypass hole that is effective at the same time.
  • Each channel resistance can be reduced by the total area, and an effect of reliably suppressing a temperature rise due to overcompression can be obtained.
  • At least one of the bypass holes is a circular communication hole, thereby minimizing the flow resistance with respect to the area of the bypass hole, The effect of further reducing the temperature rise due to overcompression can be obtained.
  • At least one of the bypass holes is a first compression chamber formed on the wrap outer wall side of the orbiting scroll or the orbiting scroll.
  • At least one of the bypass holes includes a first compression chamber formed on the wrap outer wall side of the orbiting scroll, and the orbiting scroll.
  • the bypass hole is provided at a position that opens to both of the second compression chambers formed on the inner wall side of the wrap, and the bypass hole has a shape and a size that do not open simultaneously to the first and second compression chambers.
  • the check valve is constituted by a reed valve provided on the end plate surface of the fixed scroll, so that a spring or the like is provided inside the bypass hole.
  • the seventh aspect of the invention is a working refrigerant, in particular, a refrigerant mixed with a hydrofluoroolefin having a double bond between carbon and carbon of the first to sixth aspects of the invention and a hydrofluorocarbon having no double bond.
  • the eighth invention is characterized in that, in particular, the hydrofluoroolefin of the first to sixth inventions is tetrafluoropropene or trifluoropropene and the hydrofluorocarbon is difluoromethane, and the mixed refrigerant is a working refrigerant.
  • the circulating amount of the working refrigerant in the refrigeration cycle can be reduced, over-compression due to pressure loss can be suppressed, and a highly reliable and highly efficient scroll compressor can be provided effectively.
  • the hydrofluoroolefin is tetrafluoropropene or trifluoropropene
  • the hydrofluorocarbon is pentafluoroethane
  • the mixed refrigerant is the working refrigerant.
  • At least one of the bypass holes has a diameter D of the bypass hole and a length L in the end plate thickness direction.
  • / L is in the range of 2.4 to 7.2, so that the pressure loss of the working refrigerant passing through the bypass hole and the ratio of the loss due to re-expansion of the working fluid in the bypass hole are optimized. Therefore, it is possible to provide a compressor that is highly efficient and suppresses a temperature rise in the compression chamber.
  • a single refrigerant composed of a refrigerant composed of carbon and a hydrofluoroolefin having a double bond between carbons as a base component or a mixed refrigerant containing the refrigerant is used as a working refrigerant.
  • FIG. 1 is a longitudinal sectional view of a scroll compressor according to a first embodiment of the present invention
  • FIG. 2 is an enlarged sectional view of a main part of the compression mechanism section of FIG. 1
  • FIG. 3 is a plan view of the compression mechanism section.
  • the scroll compressor according to the first embodiment of the present invention is configured to include a hermetic container 1, a compression mechanism 2, a motor unit 3, and an oil storage unit 20 therein.
  • the details of the compression mechanism will be described with reference to FIG. 2.
  • a fixed scroll 12 that is bolted onto the bearing member 11 and a turning scroll 13 that engages with the fixed scroll 12 are sandwiched between the main bearing member 11 and the fixed scroll 12.
  • a rotation restraining mechanism 14 such as an Oldham ring that guides the orbiting scroll 13 so as to prevent the rotation of the orbiting scroll so as to move in a circular orbit.
  • the orbiting scroll 13 is moved in a circular orbit by driving the orbiting scroll 13 eccentrically at the part 4a.
  • Each of the fixed scroll 12 and the orbiting scroll 13 has a structure in which a spiral wrap rises (projects) from the end plate.
  • the working refrigerant is sucked through the pipe 16 and the suction port 17 on the outer peripheral portion of the fixed scroll 12, and after being closed in the compression chamber 15, compression is performed.
  • the working refrigerant that has reached a predetermined pressure is formed at a position different from the discharge hole 18 in the end plate of the fixed scroll 12 and the discharge hole 18 that is a through hole formed in the center portion (end plate center position) of the fixed scroll 12.
  • the reed valve 19 (check valve) is pushed open from the circular bypass hole 68 which is a through-hole, and discharged into the sealed container 1.
  • a valve stop 69 for regulating the lift amount is provided.
  • the reed valve 19 is provided, for example, on the end plate surface at the position where the bypass hole 68 of the end plate of the fixed scroll 12 is formed.
  • a pump 25 is provided at the other end of the shaft 4 and is arranged so that a suction port of the pump 25 exists in the oil storage section 20. Since the pump 25 is driven simultaneously with the scroll compressor, the pump 25 can reliably suck up the oil 6 in the oil storage unit 20 provided at the bottom of the hermetic container 1 regardless of the pressure condition and the operation speed. The worry of running out of oil is also eliminated.
  • the oil 6 sucked up by the pump 25 is supplied to the compression mechanism 2 through an oil supply hole 26 penetrating the shaft 4. If foreign matter is removed with an oil filter or the like before or after being sucked up by the pump 25, the oil 6 can be prevented from being mixed into the compression mechanism 2 and further improved in reliability.
  • the oil 6 guided to the compression mechanism 2 is almost the same as the discharge pressure of the scroll compressor and also serves as a back pressure source for the orbiting scroll 13.
  • the orbiting scroll 13 does not move away from the fixed scroll 12 and does not come into contact with each other, and the predetermined compression function is stably exhibited.
  • a part of the oil 6 enters the bearing portion 66 between the shaft 4 and the main bearing member 11, the fitting portion between the eccentric shaft portion 4 a and the orbiting scroll 13 so as to obtain a clearance by the supply pressure and the own weight. Then, the respective parts are lubricated and then dropped and returned to the oil storage unit 20.
  • the seal member 78 is partitioned into the high pressure region 30 and the outside of the seal member 78 is divided into the back pressure chamber 29. Since the pressure in the back pressure chamber 29 can be completely separated, the pressure load from the back surface 13e of the orbiting scroll 13 can be stably controlled.
  • a compression chamber 15 formed by the fixed scroll 12 and the orbiting scroll 13 includes first compression chambers 15a-1 and 15a-2 formed on the outer wall side of the orbiting scroll 13 and a first chamber formed on the inner wall side of the wrap. There are two compression chambers 15b-1 and 15b-2.
  • Each of the compression chambers 15 moves to the center while reducing the volume in accordance with the orbiting motion of the orbiting scroll 13, the compression chamber reaches the discharge pressure, and the discharge holes 18 or the bypass holes 68a-1, 68a- When communicating with 2, 68b-1, 68b-2, the working refrigerant in the compression chamber 15 pushes the refrigerant reed valve 19 open and is discharged to the discharge chamber 31.
  • the bypass holes 68a-1, 68a-2, 68b-1, and 68b-2 are provided (the first embodiment) and not provided (comparative example)
  • a comparison of the respective compression chamber pressures is shown in FIG.
  • the bypass holes 68a-1, 68a-2, 68b-1, and 68b-2 are provided at positions that communicate with the compression chamber 15 earlier than the discharge holes 18 (at an earlier timing).
  • the compression chamber pressure reaches the discharge pressure
  • the discharge into the discharge chamber 31 is started through the bypass holes 68a-1, 68a-2, 68b-1, and 68b-2, and the increase in the discharge temperature due to excessive pressure increase is suppressed. It is configured as possible.
  • bypass holes 68a-1, 68a-2, 68b-1, 68b-2 circular communication holes, the flow with respect to the area of the bypass holes 68a-1, 68a-2, 68b-1, 68b-2 is reduced.
  • the road resistance is minimized as compared with other shapes.
  • the first compression chambers 15a-1 and 15a-2 and the second compression chambers 15b-1 and 15b-2 have different crank rotation angles that reach the discharge pressure.
  • the bypass holes 68a-1 and 68a-2 communicate with only the first compression chambers 15a-1 and 15a-2, and the bypass holes 68b-1 and 68b-2 are connected to the second compression chambers 15b-1 and 15b.
  • -2 is provided at an appropriate position that communicates only with -2, thereby realizing a configuration that suppresses an increase in the discharge temperature of the working refrigerant used in the present invention, which is easily decomposed due to a temperature rise.
  • FIG. 5 is a plan view of a compression mechanism portion of the scroll compressor according to Embodiment 2 of the present invention. Since the configuration other than the bypass hole 68ab is the same as in the first embodiment, the same reference numerals are used for the same components in FIG. 5 as in FIG.
  • the bypass hole 68ab is provided at a position communicating with both the first compression chamber 15a and the second compression chamber 15b by the orbiting motion of the orbiting scroll 13.
  • the diameter of the bypass hole 68ab is smaller than the thickness of the orbiting scroll wrap 13c so as not to open to the first compression chamber 15a and the second compression chamber 15b.
  • the bypass hole 68ab does not communicate with either the first compression chamber 15a-1 or the second compression chamber 15b-1.
  • a single refrigerant composed of a refrigerant containing a hydrofluoroolefin having a double bond between carbons as a base component or a mixed refrigerant containing the refrigerant is used as a working refrigerant.
  • a refrigerant mixed with hydrofluoroolefin having a double bond between carbon and carbon as a base component and mixed with hydrofluorocarbon having no double bond may be used as a working refrigerant.
  • a mixed refrigerant in which the hydrofluoroolefin is tetrafluoropropene (HFO1234yf or HFO1234ze) or trifluoropropene (HFO1243zf) and the hydrofluorocarbon is difluoromethane (HFC32) may be used as the working refrigerant.
  • a mixed refrigerant in which the hydrofluoroolefin is tetrafluoropropene (HFO1234yf or HFO1234ze) or trifluoropropene (HFO1243zf) and the hydrofluorocarbon is pentafluoroethane (HFC125) may be used as a working refrigerant.
  • a three-component mixed refrigerant in which the hydrofluoroolefin is tetrafluoropropene (HFO1234yf or HFO1234ze) or trifluoropropene (HFO1243zf) and the hydrofluorocarbon is pentafluoroethane (HFC125) and difluoromethane (HFC32) is the working refrigerant. It is good.
  • a mixture of two or three components is preferably used so that the global warming potential is 5 or more and 750 or less, preferably 350 or less.
  • the refrigerating machine oil used for the working refrigerant includes polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene glycols or their monoether and polyvinyl ether copolymers, polyol esters, and oxygen-containing compounds of polycarbonates. Or a synthetic oil mainly composed of alkylbenzenes or ⁇ -olefins.
  • the pressure loss of the working fluid that passes through the bypass hole 68 becomes large.
  • the ratio D between the diameter D and the length L A certain size or more is required for / L.
  • the volume V of the bypass hole 68 is proportional to the length L, and is proportional to the square of the diameter D if it is assumed to be circular, but the working fluid in the bypass hole 68 is regenerated as the volume V increases.
  • the re-expansion loss due to expansion increases. Therefore, it is desirable that the product of the square of the diameter D and the length L is as small as possible. Therefore, the optimum range is determined from the relationship between these pressure loss and re-expansion loss.
  • the length L of the bypass hole 68 is related to the thickness of the end plate of the fixed scroll 12.
  • the thickness of the end plate is required to maintain a rigidity capable of suppressing the deformation of the fixed scroll 12 within an allowable range with respect to the pressure difference of the working fluid to be compressed.
  • the amount of deformation due to the pressure difference is proportional to the pressure difference and inversely proportional to the cube of the end plate thickness.
  • the pressure of the refrigerant of the present application is approximately 0.4 times lower. Therefore, the thickness of the end plate is approximately 0.75 compared to the conventional compressor designed for the R410A refrigerant. It becomes possible to make it as thin as twice. That is, as a result, the length L of the bypass hole 68 can be shortened by about 0.75 times.
  • the density of the refrigerant of the present application is approximately 0.4 times lower with the same capacity. That is, when the suction volume of the compressor is set so as to exhibit the same ability, the volume V of the bypass hole 68 can be set large so that the influence of the re-expansion loss of the volume V of the bypass hole 68 becomes the same. it can. As a result, in the case of the refrigerant of the present application, even if the volume V is 2.5 times, the re-expansion loss with the same capacity can be made the same.
  • the re-expansion loss can be made the same even if the diameter D of the bypass hole is 1.8 times.
  • FIG. 6 shows a graph of the loss breakdown of the bypass hole 68 in the first and second embodiments of the present invention.
  • the horizontal axis represents D / L
  • the vertical axis represents the loss ratio with respect to the theoretical power loss.
  • the solid line is the total loss related to the bypass hole 68
  • the alternate long and short dash line is the re-expansion loss
  • the dotted line is the pressure loss
  • the thin line is the R410A refrigerant
  • the thick line is the refrigerant used in the scroll compressor of the present invention (hereinafter referred to as "the refrigerant of the present invention").
  • the aspect ratio D / L of the bypass hole 68 of the conventional compressor designed for the R410A refrigerant is approximately 1 to 3, and both the efficiency and the reliability of the compressor can be satisfied within this range. It is illustrated.
  • the length L of the bypass hole 68 In consideration of the fact that the re-expansion loss can be made the same even if the diameter D of the bypass hole 68 is 1.8 times, the loss ratio of the pressure loss indicated by the dotted line to the theoretical power is lowered. Can do.
  • the density of the refrigerant of the present application is approximately 0.4 times, so the volume flow rate obtained by dividing the mass flow rate by the density is 2 .5 times increase.
  • the cross-sectional area of the bypass hole 68 can be 1.8 times the diameter D, the cross-sectional area is approximately 3.3 times, and the flow velocity passing through the bypass hole 68 divided by the cross-sectional area is reduced. Thus, the pressure loss can be reduced.
  • the aspect ratio D / L of the bypass hole 68 of the conventional compressor designed for the R410A refrigerant is approximately 1 to 3 in view of reliability when the load increases.
  • the pressure loss and recompression loss of the bypass hole 68 are minimized by setting the aspect ratio D / L of the bypass hole 68 to 2.4 to 7.2, which is approximately 2.4 times. Therefore, it is possible to secure the thickness that can maintain the rigidity that can suppress the deformation of the fixed scroll 12 within the allowable range, and it is possible to achieve both the efficiency and the reliability of the compressor.
  • the scroll compressor of the present invention uses, as a working refrigerant, a single refrigerant composed of a refrigerant based on carbon or a hydrofluoroolefin having a double bond between carbons or a mixed refrigerant containing the refrigerant. Even in this case, high efficiency and high reliability can be achieved. Thereby, it is applicable also to the use of scroll compressors, such as an air conditioner, a heat pump type water heater, a refrigerator-freezer, and a dehumidifier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 オゾン層破壊係数ならびに地球温暖化係数が小さい炭素と炭素間に2重結合を有するハイドロフルオロオレフィンを主体とした冷媒を用い、固定スクロール12の鏡板中心位置に吐出室へ開口する吐出孔18を設けるとともに、圧縮室15が吐出孔18と連通する以前に圧縮室と吐出室を連通するバイパス孔68を固定スクロールの鏡板に設け、バイパス孔68に圧縮室側から吐出室側への流通を許す逆止弁19を設けることにより、地球環境への影響を抑制しつつ、過圧縮に伴う温度上昇を抑え、長期間の使用においても冷媒の分解を抑制することができる。

Description

スクロール圧縮機
 本発明は、塩素原子を含まず地球温暖化係数の低い炭素と炭素間に2重結合を有するハイドロフルオロオレフィンを主体とした冷媒を作動冷媒としたルームエアコン、カーエアコン、冷蔵庫、その他の空気調和装置等の冷凍サイクルに組み込まれることが可能なスクロール圧縮機に関するものである。
 従来、冷凍装置では作動冷媒としてオゾン層破壊係数ゼロのHFC(ハイドロフルオロカーボン)系に移行してきている。しかしながらこのHFC系冷媒は一方では地球温暖化係数が非常に高いため、近年問題になってきている。そこで、オゾン層破壊係数ならびに地球温暖化係数が共に低い冷媒を用いる圧縮機の開発が行われている。ところが、地球温暖化係数が低い冷媒は一般には安定性に乏しく、長期使用が前提であるルームエアコン、カーエアコン、冷蔵庫、その他の空気調和装置等の冷凍サイクルで用いるには冷媒安定性と信頼性の確保が課題となっている。
 一方、冷凍サイクルにおいて圧縮機は、蒸発器で蒸発したガス冷媒を吸入し、所定の圧力まで圧縮する役割を担っており、低圧から高圧、低温から高温へと作動冷媒の状態変化が最も激しいため、冷媒安定性と信頼性確保のためには、圧縮機において十分な対策が必要とされる。
 従来のスクロール圧縮機は、図7に示すように固定スクロール101と旋回スクロール102との間に形成している圧縮室103が、容積を縮めながら移動することを利用して、吸入した作動冷媒を圧縮し、所定の圧力に到達した作動冷媒は固定スクロール101の鏡板中心位置に設けた吐出孔104から吐出室に排出される。
 このような構成のスクロール圧縮機では、圧縮室103の圧力は吐出圧力に関わらず、常に吸入圧力と圧縮室103の容積変化に基づいた一定の圧力履歴をたどることとなる。そのため、吐出孔104と圧縮室103が連通するタイミングにより過剰な圧力上昇が生じ、旋回スクロール102が固定スクロール101から離脱したり、逆に異常な押付け力が旋回スクロールに作用したりする、といった不安定的な挙動の原因となる。
 このような問題に対し、対称的な圧縮室を形成するスクロール圧縮機においては、圧縮途中の圧縮室から固定スクロールの背面側ならびに旋回スクロール背面側それぞれへの連絡孔を設け、背面側への連絡孔を吐出側への連絡孔よりも中心側に設けることで、常に適度な押付け力を旋回スクロールに加える技術が開示されている(例えば、特許文献1参照)。
特公平5-49830号公報
 しかしながら、上述の従来の冷凍装置に、その作動冷媒として塩素原子を含まず地球温暖化係数の低い炭素と炭素間に2重結合を有するハイドロフルオロオレフィンを主体とした冷媒を用いると、次のような課題が生じる。すなわち、塩素原子を含まず地球温暖化係数の低い炭素と炭素間に2重結合を有するハイドロフルオロオレフィンを主体とした冷媒は、高温で分解しやすい特性を有するため、過圧縮や再膨張による吐出温度の上昇により分解して安定性が低下してしまう。特に、長期間使用されるルームエアコン、カーエアコン、冷蔵庫、その他の空気調和装置等では、温度上昇による分解が長期に亘り、蓄積されるため、温度上昇に対する対策は特に重要となる。
 本発明は、上述の課題を解決するもので、地球温暖化係数の低い冷媒を作動冷媒に用いると共に、過圧縮による吐出冷媒温度の上昇を抑制し、高効率で信頼性、耐久性に優れた、スクロール圧縮機を提供することを目的とする。
 上述の従来の課題を解決するために、本発明のスクロール圧縮機は、作動冷媒として塩素原子を含まず地球温暖化係数の低い炭素と炭素間に2重結合を有するハイドロフルオロオレフィンを主体とした冷媒を用いつつ、圧縮室が吐出孔と連通する以前に圧縮室と吐出室を連通するバイパス孔を固定スクロールの鏡板に設け、バイパス孔に圧縮室側から吐出室側への流通を許す逆止弁を設けた構成としたものである。
 これによって、吐出孔から噴出する直前の冷媒の過圧縮による温度上昇を抑制することができ、冷媒の分解を抑制することができる。
 本発明のスクロール圧縮機では、オゾン層破壊係数ならびに地球温暖化係数が小さい冷媒を用いつつ、冷媒分解の促進に繋がる冷媒温度上昇を抑制することで、地球環境に配慮しつつ、信頼性、耐久性に優れた高効率なスクロール圧縮機を提供することができる。
 本発明のこれらの態様と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。
本発明の実施の形態1におけるスクロール圧縮機の断面図 実施の形態1のスクロール圧縮機の圧縮機構部の要部拡大断面図 実施の形態1の同スクロール圧縮機における旋回スクロールの平面図 本発明の実施の形態1および比較例における圧縮室圧力の比較グラフ 本発明の実施の形態2におけるスクロール圧縮機における旋回スクロールの平面図 本発明の実施の形態1および実施の形態2におけるバイパス孔損失内訳のグラフ 従来のスクロール圧縮機の断面図
 第1の発明は、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とした冷媒からなる単一冷媒またはこれを含む混合冷媒を作動冷媒として用い、鏡板から渦巻き状のラップが立ち上がる固定スクロール及び旋回スクロールを噛み合わせて双方向に形成される圧縮室を備え、固定スクロールの鏡板中心位置に吐出室へ開口する吐出孔を設けるとともに、圧縮室が吐出孔と連通する以前に圧縮室と吐出室を連通するバイパス孔を固定スクロールの鏡板に設け、バイパス孔に圧縮室側から吐出室側への流通を許す逆止弁を設けたスクロール圧縮機である。このような構成によれば、作動冷媒にオゾン層破壊係数ならびに地球温暖化係数が小さい冷媒を用いることで、地球環境への影響を抑制しつつ、高温時に分解し易い課題に対して、バイパス孔を設けることで過圧縮に伴う温度上昇を抑え、長期間の使用においても冷媒の分解を最小限に抑制することができる。
 第2の発明は、特に第1の発明のスクロール圧縮機において、バイパス孔を複数設けることにより、バイパス孔と圧縮室が連通する区間がより広範囲となるとともに、同時に有効となるバイパス孔の流路面積合計の分だけ、個々の流路抵抗を小さくすることが可能となり、過圧縮による温度上昇を確実に抑制する効果が得られる。
 第3の発明は、特に第1から第2の発明のスクロール圧縮機において、バイパス孔の内、少なくとも一つは円形の連通孔とすることにより、バイパス孔の面積に対する流路抵抗を最小とし、過圧縮による温度上昇をより低減する効果が得られる。
 第4の発明は、特に第1から第3の発明のスクロール圧縮機において、バイパス孔の内、少なくとも一つは、旋回スクロールのラップ外壁側に形成される第1の圧縮室、もしくは旋回スクロールのラップ内壁側に形成される第2の圧縮室のいずれかにのみ開口する位置に設けることにより、それぞれの圧縮室が吐出圧力に到達してバイパス孔の逆止弁を開く最適な位置にバイパス孔を設けることができ、過圧縮による温度上昇を最小限に抑制する効果が得られる。
 第5の発明は、特に第1から第4の発明のスクロール圧縮機において、バイパス孔の内、少なくとも一つは、旋回スクロールのラップ外壁側に形成される第1の圧縮室、および旋回スクロールのラップ内壁側に形成される第2の圧縮室の双方に開口する位置に設けるとともに、バイパス孔は第1および第2の圧縮室に同時には開口しない形状および大きさとすることにより、バイパス孔を介して、第1の圧縮室と第2の圧縮室が連通し、その圧力差から作動冷媒が再膨張して圧縮室内の温度上昇を引き起こすことを防止することができる。
 第6の発明は、特に第1から第5の発明のスクロール圧縮機において、逆止弁を固定スクロールの鏡板面に設けられたリード弁で構成することにより、バイパス孔の内部にスプリング等を設けた場合のような逆止弁と比較し、流路抵抗を抑制し、過圧縮による温度上昇を低減する効果が得られる。
 第7の発明は、特に、第1から第6の発明の炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とし、2重結合を有しないハイドロフルオロカーボンと混合した冷媒を作動冷媒としたことを特徴とすることにより、効果的に高信頼性で高効率なスクロール圧縮機を提供することができる。
 第8の発明は、特に、第1から第6の発明のハイドロフルオロオレフィンをテトラフルオロプロペンまたはトリフルオロプロペンとし、ハイドロフルオロカーボンをジフルオロメタンとした、混合冷媒を作動冷媒としたことを特徴とすることにより、冷凍サイクル中の作動冷媒循環量を小さくすることができ、圧力損失による過圧縮を抑制でき、効果的に高信頼性で高効率なスクロール圧縮機を提供することができる。
 第9の発明は、特に、第1から第6の発明のスクロール圧縮機において、ハイドロフルオロオレフィンをテトラフルオロプロペンまたはトリフルオロプロペンとし、ハイドロフルオロカーボンをペンタフルオロエタンとした、混合冷媒を作動冷媒としたことを特徴とすることにより、冷凍サイクル中での圧縮機吐出温度を低く設定することができ、効果的に高信頼性で高効率なスクロール圧縮機を提供することができる。
 第10の発明は、特に第1から第9の発明のスクロール圧縮機において、バイパス孔の内、少なくとも一つは、前記バイパス孔の直径をD、鏡板厚み方向の長さをLとすると、D/Lは2.4から7.2の範囲であることを特徴とすることにより、バイパス孔を通過する作動冷媒の圧力損失とバイパス孔内の作動流体が再膨張することによる損失の割合を最適化し、高効率かつ圧縮室内の温度上昇を抑制した圧縮機を提供することができる。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
本発明では、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とした冷媒からなる単一冷媒または前記冷媒を含む混合冷媒を作動冷媒として使用している。
 図1は、本発明の第1の実施の形態に係るスクロール圧縮機の縦断面図、図2は図1の圧縮機構部の要部拡大断面図、図3は圧縮機構部の平面図である。以下、スクロール圧縮機について、その動作、作用を説明する。
 図1に示すように本発明の実施の形態1のスクロール圧縮機は、密閉容器1と、その内部に圧縮機構2、モータ部3、貯油部20を備えて構成されている。図2を用いて圧縮機構部の詳細を説明すると、密閉容器1内に溶接や焼き嵌めなどして固定した主軸受部材11と、この主軸受部材11に軸支させたシャフト4と、この主軸受部材11上にボルト止めした固定スクロール12と、この主軸受部材11と固定スクロール12との間に、固定スクロール12と噛み合う旋回スクロール13を挟み込んで構成してある。旋回スクロール13と主軸受部材11との間には、旋回スクロール13の自転を防止して円軌道運動するように案内するオルダムリングなどによる自転拘束機構14を設け、シャフト4の上端にある偏心軸部4aにて旋回スクロール13を偏心駆動させることにより、旋回スクロール13を円軌道運動させる。また、固定スクロール12および旋回スクロール13は、それぞれ鏡板から渦巻き状のラップが立ち上がった(突出した)構造を有している。
 これにより固定スクロール12と旋回スクロール13との間に形成している圧縮室15が、外周側から中央部に向かって容積を縮めながら移動することを利用して、密閉容器1外に通じた吸入パイプ16及び固定スクロール12の外周部の吸入口17を介して作動冷媒を吸入し、圧縮室15に閉じ込んだ後、圧縮を行う。所定の圧力に到達した作動冷媒は、固定スクロール12の中央部(鏡板中心位置)に形成された貫通孔である吐出孔18と、固定スクロール12の鏡板において吐出孔18とは異なる位置に形成された貫通孔である円形のバイパス孔68とからリード弁19(逆止弁)を押し開いて、密閉容器1内に吐出される。なお、リード弁19の過剰な変形による損傷を避けるため、リフト量を規制するバルブストップ69を設けている。なお、リード弁19は、例えば、固定スクロール12の鏡板のバイパス孔68の形成位置における鏡板面に設けられている。
 また、シャフト4の他端にはポンプ25が設けられ、ポンプ25の吸い込み口が貯油部20内に存在するように配置する。ポンプ25はスクロール圧縮機と同時に駆動されるため、ポンプ25は密閉容器1の底部に設けられた貯油部20にあるオイル6を、圧力条件や運転速度に関係なく、確実に吸い上げることができ、オイル切れの心配も解消される。このポンプ25で吸い上げたオイル6は、シャフト4内を貫通しているオイル供給穴26を通じて圧縮機構2に供給される。なお、このオイル6はポンプ25で吸い上げる前もしくは吸い上げた後にオイルフィルタ等で異物を除去すると、圧縮機構2への異物混入が防止でき、更なる信頼性向上を図ることができる。
 圧縮機構2に導かれたオイル6は、スクロール圧縮機の吐出圧力とほぼ同等であり、旋回スクロール13に対する背圧源ともなる。これにより、旋回スクロール13は固定スクロール12から離れたり片当たりしたりするようなことはなく、所定の圧縮機能を安定して発揮する。さらにオイル6の一部は、供給圧や自重によって、逃げ場を求めるようにして偏心軸部4aと旋回スクロール13との嵌合部、シャフト4と主軸受部材11との間の軸受部66に進入してそれぞれの部分を潤滑した後落下し、貯油部20へ戻る。
 また、旋回スクロール13の鏡板の背面13eにシール部材78を配置することで、シール部材78の内側を高圧領域30、シール部材78の外側を背圧室29に区画しており、高圧領域30と背圧室29の圧力を完全に分離できるため、旋回スクロール13の背面13eからの圧力負荷を安定的に制御することが可能となる。
 次に、図3を用いて固定スクロール12と旋回スクロール13により形成される圧縮室15の圧力上昇について説明する。固定スクロール12と旋回スクロール13により形成される圧縮室15には、旋回スクロール13のラップ外壁側に形成される第1の圧縮室15a-1、15a-2と、ラップ内壁側に形成される第2の圧縮室15b-1、15b-2がある。それぞれの圧縮室15は旋回スクロール13の旋回運動に伴い、容積を縮小しながら中心へと移動していき、圧縮室が吐出圧力に到達し、且つ吐出孔18またはバイパス孔68a-1、68a-2、68b-1、68b-2と連通した時、圧縮室15の作動冷媒は冷媒リード弁19を押し開いて吐出室31へと排出される。この時、バイパス孔68a-1、68a-2、68b-1、68b-2を設けた場合(本実施の形態1)と設けない場合(比較例)、それぞれの圧縮室圧力の比較を図4に示す。バイパス孔68a-1、68a-2、68b-1、68b-2を設けない場合、圧縮室15の圧力は圧縮室15が吐出孔18と連通するまで昇圧し続けるため、吐出室31の吐出圧力よりも過剰に昇圧し、吐出温度を必要以上に上昇させてしまう可能性がある。
 そこで、本実施の形態1では、バイパス孔68a-1、68a-2、68b-1、68b-2が吐出孔18よりも早期に(早いタイミングにて)圧縮室15と連通する位置に設けたことにより、圧縮室圧力が吐出圧力に達すると同時にバイパス孔68a-1、68a-2、68b-1、68b-2を通じて吐出室31への吐出を開始し、過剰な昇圧による吐出温度上昇を抑制できる構成としている。また、バイパス孔68a-1、68a-2、68b-1、68b-2を円形の連通孔とすることにより、バイパス孔68a-1、68a-2、68b-1、68b-2の面積に対する流路抵抗を他の形状とした場合に比較し最小となるようにしている。さらに、図4に示すように、第1の圧縮室15a-1、15a-2と第2の圧縮室15b-1、15b-2それぞれが吐出圧力に到達するクランク回転角は異なることから、本発明では、バイパス孔68a-1、68a-2は第1の圧縮室15a-1、15a-2とのみ連通し、バイパス孔68b-1、68b-2は第2の圧縮室15b-1、15b-2とのみ連通する適切な位置に設けてあり、これにより温度上昇により分解しやすい本発明で使用する作動冷媒の吐出温度の上昇を抑制する構成を実現している。
 (実施の形態2)
 図5は、本発明の実施の形態2に係るスクロール圧縮機の圧縮機構部の平面図である。バイパス孔68ab以外の構成については上記実施の形態1と同様のため、図5において、図3と同じ構成要素については同じ符号を用い、バイパス孔68abに関する説明のみを行い、他は省略する。
 図5に示すように、本実施の形態2のスクロール圧縮機では、バイパス孔68abが旋回スクロール13の旋回運動により、第1の圧縮室15aと第2の圧縮室15b双方と連通する位置に設けつつ、同時には第1の圧縮室15aおよび第2の圧縮室15bに開口しないように、バイパス孔68abの径を旋回スクロールラップ13cの厚さよりも小さく構成している。これにより、図中のクランク回転角においては、68ab-1は第2の圧縮室15b-1と、68ab-3は第1の圧縮室15a-1と連通して過圧縮を防止する役目を果たしていると共に、バイパス孔68ab-2のように旋回スクロールラップ13cが跨ぐ際には、バイパス孔68abは第1の圧縮室15a-1および第2の圧縮室15b-1いずれとも連通しない。これにより圧縮室間の作動冷媒漏れを引き起こさず、温度上昇で分解しやすい本発明で使用する作動冷媒の吐出温度の上昇を抑制する構成を実現している。
 なお、実施の形態1および実施の形態2では、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とした冷媒からなる単一冷媒または前記冷媒を含む混合冷媒を作動冷媒として使用しているが、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とし、2重結合を有しないハイドロフルオロカーボンと混合した冷媒を作動冷媒として使用してもよい。
 また、ハイドロフルオロオレフィンをテトラフルオロプロペン(HFO1234yfまたはHFO1234ze)またはトリフルオロプロペン(HFO1243zf)とし、ハイドロフルオロカーボンをジフルオロメタン(HFC32)とした、混合冷媒を作動冷媒としてもよい。
 また、ハイドロフルオロオレフィンをテトラフルオロプロペン(HFO1234yfまたはHFO1234ze)またはトリフルオロプロペン(HFO1243zf)とし、ハイドロフルオロカーボンをペンタフルオロエタン(HFC125)とした、混合冷媒を作動冷媒としてもよい。
 また、ハイドロフルオロオレフィンをテトラフルオロプロペン(HFO1234yfまたはHFO1234ze)またはトリフルオロプロペン(HFO1243zf)とし、ハイドロフルオロカーボンをペンタフルオロエタン(HFC125)、ジフルオロメタン(HFC32)とした、3成分からなる混合冷媒を作動冷媒としてもよい。
 そして、上記いずれの場合も地球温暖化係数が5以上、750以下となるように、望ましくは350以下となるようにそれぞれ2成分混合もしくは3成分混合したものが好ましい。
 また、上記作動冷媒に用いる冷凍機油としては、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコールまたはそのモノエーテルとポリビニルエーテルの共重合体、ポリオールエステル類およびポリカーボネート類の含酸素化合物を主成分とする合成油か、アルキルベンゼン類やαオレフィン類を主成分とする合成油が好ましい。
 バイパス孔68の直径Dが小さい、または長さLが長すぎた場合、バイパス孔68を通過する作動流体の圧力損失が大きくなるため、圧力損失の観点からは直径Dと長さLの比D/Lにある程度以上の大きさが要求される。しかし一方で、バイパス孔68の体積Vは、長さLに比例し、円形と仮定した場合は直径Dの2乗に比例するが、この体積Vが大きくなるほどバイパス孔68内の作動流体が再膨張することによる再膨張損失が大きくなる。そのため、直径Dの2乗と長さLの積はできるだけ小さいことが望ましい。よって、これら圧力損失と再膨張損失の関係から最適範囲が決定される。
 一方、バイパス孔68の長さLは、固定スクロール12の鏡板厚さに関係する。この鏡板厚さは、圧縮する作動流体の高低圧力差に対して固定スクロール12の変形を許容範囲内に抑制可能な剛性を維持できる厚さが必要とされる。圧力差による変形量は圧力差に比例するとともに、鏡板厚みの3乗に反比例する。R410A冷媒と本願の冷媒とを比較すると、本願の冷媒は圧力が概ね0.4倍に低下することから、R410A冷媒用に設計された従来の圧縮機に対して鏡板の厚みは概ね0.75倍まで薄くすることが可能となる。つまり、バイパス孔68の長さLについても結果的に0.75倍程度短くすることが可能となる。
 また、R410A冷媒と本願の冷媒とを比較すると、本願の冷媒は同一能力では密度が概ね0.4倍に低下する。つまり、同一の能力を発揮するように圧縮機の吸入容積を設定した場合、バイパス孔68の体積Vの再膨張損失による影響を同じになるようにバイパス孔68の体積Vを大きく設定することができる。結果、本願の冷媒の場合体積Vを2.5倍にしても同一能力での再膨張損失を同じにできる。
 よって、バイパス孔68の長さLを0.75倍、バイパス孔の体積Vを2.5倍にしたとき、バイパス孔の直径Dは1.8倍にしても再膨張損失を同じにできる。
 図6に、本発明の実施の形態1および実施の形態2におけるバイパス孔68損失内訳のグラフを示す。横軸をD/L、縦軸を理論動力損失に対する損失割合を示す。実線はバイパス孔68に関する総損失、一点鎖線は再膨張損失、点線は圧力損失、細線はR410A冷媒、太線は本発明のスクロール圧縮機にて用いられる冷媒(以降、「本発明の冷媒」とする。)である。図6に示すように、R410A冷媒用に設計された従来の圧縮機のバイパス孔68の縦横比D/Lは概ね1~3であり、この範囲内で圧縮機の効率と信頼性の両立が図られている。
 一方、本発明の冷媒については、バイパス孔68の体積Vを2.5倍にして再膨張損失の理論動力に対する損失割合をR410A冷媒と同じ大きさにした場合、バイパス孔68の長さLについては、0.75倍程度短くできること、バイパス孔68の直径Dは1.8倍にしても再膨張損失を同じにできることを考慮すると、点線で示される圧力損失の理論動力に対する損失割合を下げることができる。具体的には、バイパス孔68を通過する質量流量がR410A冷媒と本願の冷媒と同じ場合、本願の冷媒は密度が概ね0.4倍であるため、質量流量を密度で除した体積流量は2.5倍に増加する。一方、バイパス孔68の断面積は直径Dを1.8倍にすることができるので、断面積は約3.3倍となり、体積流量を断面積で除したバイパス孔68を通過する流速を低下させて、圧力損失を低くすることができる。
 図6に示すように、R410A冷媒用に設計された従来の圧縮機のバイパス孔68の縦横比D/Lは負荷が増大した場合の信頼性も鑑みて、概ね1~3であるので、本発明の冷媒を用いた場合、バイパス孔68の縦横比D/Lを約2.4倍の2.4~7.2に設定することで、バイパス孔68の圧力損失と再圧縮損失の最小化による効率向上と、固定スクロール12の変形を許容範囲内に抑制可能な剛性を維持できる厚さを確保することができるため、圧縮機の効率と信頼性の両立を図ることが可能である。
 なお、上記様々な実施の形態のうちの任意の実施の形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 2010年7月8日に出願された日本国特許出願No.2010-155638号の明細書、図面、及び特許請求の範囲の開示内容は、全体として参照されて本明細書の中に取り入れられるものである。
 以上のように、本発明のスクロール圧縮機は、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とした冷媒からなる単一冷媒または前記冷媒を含む混合冷媒を作動冷媒として使用した場合でも、高効率化で高信頼性を図ることが可能となる。これにより、エアーコンディショナーやヒートポンプ式給湯機、冷凍冷蔵庫、除湿機などスクロール圧縮機の用途にも適用できる。

Claims (10)

  1.  炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とした冷媒からなる単一冷媒または前記冷媒を含む混合冷媒を作動冷媒として用い、鏡板から渦巻き状のラップが立ち上がる固定スクロール及び旋回スクロールを噛み合わせて双方向に形成される圧縮室を備え、前記固定スクロールの鏡板中心位置に吐出室へ開口する吐出孔を設けるとともに、前記圧縮室が前記吐出孔と連通する以前に前記圧縮室と前記吐出室を連通するバイパス孔を前記固定スクロールの鏡板に設け、前記バイパス孔に前記圧縮室側から前記吐出室側への流通を許す逆止弁を設けたことを特徴とするスクロール圧縮機。
  2.  前記バイパス孔を複数設けた請求項1に記載のスクロール圧縮機。
  3.  前記バイパス孔の内、少なくとも一つは円形の連通孔である請求項1又は2に記載のスクロール圧縮機。
  4.  前記バイパス孔の内、少なくとも一つは、前記旋回スクロールのラップ外壁側に形成される第1の圧縮室、もしくは前記旋回スクロールのラップ内壁側に形成される第2の圧縮室のいずれかにのみ開口する位置に設けた請求項1~3のいずれか1項に記載のスクロール圧縮機。
  5.  前記バイパス孔の内、少なくとも一つは、前記旋回スクロールのラップ外壁側に形成される第1の圧縮室、および前記旋回スクロールのラップ内壁側に形成される第2の圧縮室の双方に開口する位置に設け、前記バイパス孔は前記第1の圧縮室および前記第2の圧縮室に同時には開口しない形状および大きさとした請求項1~4のいずれか1項に記載のスクロール圧縮機。
  6.  前記逆止弁は、前記固定スクロールの鏡板面に設けられたリード弁である請求項1~5のいずれか1項に記載のスクロール圧縮機。
  7.  炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とした単一冷媒、またはそれらを主成分とし、2重結合を有しないハイドロフルオロカーボンと混合した冷媒を作動冷媒とした請求項1~6のいずれか1項に記載のスクロール圧縮機。
  8.  ハイドロフルオロオレフィンをテトラフルオロプロペンまたはトリフルオロプロペンとし、ハイドロフルオロカーボンをジフルオロメタンとした、混合冷媒を作動冷媒とした請求項1~6のいずれか1項に記載のスクロール圧縮機。
  9.  ハイドロフルオロオレフィンをテトラフルオロプロペンまたはトリフルオロプロペンとし、ハイドロフルオロカーボンをペンタフルオロエタンとした、混合冷媒を作動冷媒とした請求項1~6のいずれか1項に記載のスクロール圧縮機。
  10.  前記バイパス孔の内、少なくとも一つは、前記バイパス孔の直径をD、鏡板厚み方向の長さをLとすると、D/Lは2.4から7.2の範囲である請求項1~9のいずれか1項に記載のスクロール圧縮機。
PCT/JP2011/003913 2010-07-08 2011-07-07 スクロール圧縮機 WO2012005007A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180033901.5A CN102985697B (zh) 2010-07-08 2011-07-07 涡旋式压缩机
US13/808,193 US8985978B2 (en) 2010-07-08 2011-07-07 Scroll compressor with bypass holes
JP2012523773A JPWO2012005007A1 (ja) 2010-07-08 2011-07-07 スクロール圧縮機
EP11803344.8A EP2592274B1 (en) 2010-07-08 2011-07-07 Scroll compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010155638 2010-07-08
JP2010-155638 2010-07-08

Publications (1)

Publication Number Publication Date
WO2012005007A1 true WO2012005007A1 (ja) 2012-01-12

Family

ID=45440996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003913 WO2012005007A1 (ja) 2010-07-08 2011-07-07 スクロール圧縮機

Country Status (5)

Country Link
US (1) US8985978B2 (ja)
EP (1) EP2592274B1 (ja)
JP (1) JPWO2012005007A1 (ja)
CN (1) CN102985697B (ja)
WO (1) WO2012005007A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200007548A (ko) * 2018-07-13 2020-01-22 엘지전자 주식회사 압축기
US11703052B2 (en) * 2018-12-06 2023-07-18 Samsung Electronics Co., Ltd. High pressure scroll compressor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8814537B2 (en) 2011-09-30 2014-08-26 Emerson Climate Technologies, Inc. Direct-suction compressor
EP2909480B1 (en) 2012-09-13 2020-06-24 Emerson Climate Technologies, Inc. Compressor assembly with directed suction
CN106460840B (zh) * 2014-05-12 2019-11-05 松下知识产权经营株式会社 压缩机和使用其的制冷循环装置
EP3144534B1 (en) * 2014-05-12 2018-09-12 Panasonic Intellectual Property Management Co., Ltd. Compressor and refrigeration cycle device using the same
JP6395846B2 (ja) * 2014-09-19 2018-09-26 三菱電機株式会社 スクロール圧縮機
FR3032493B1 (fr) * 2015-02-09 2019-04-26 Danfoss Commercial Compressors Compresseur a spirales ayant un agencement de demarrage progressif
CN109496253B (zh) * 2016-07-29 2021-01-15 松下知识产权经营株式会社 涡旋式压缩机
US11236748B2 (en) 2019-03-29 2022-02-01 Emerson Climate Technologies, Inc. Compressor having directed suction
US11767838B2 (en) 2019-06-14 2023-09-26 Copeland Lp Compressor having suction fitting
US11248605B1 (en) 2020-07-28 2022-02-15 Emerson Climate Technologies, Inc. Compressor having shell fitting
US11619228B2 (en) 2021-01-27 2023-04-04 Emerson Climate Technologies, Inc. Compressor having directed suction
WO2023152287A1 (en) * 2022-02-11 2023-08-17 Bitzer Kühlmaschinenbau Gmbh Scroll compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549830B2 (ja) 1982-01-27 1993-07-27 Hitachi Ltd
JPH07253254A (ja) * 1994-03-15 1995-10-03 Toshiba Corp 熱搬送装置
JPH11316067A (ja) * 1997-12-16 1999-11-16 Matsushita Electric Ind Co Ltd 可燃性冷媒を用いた空気調和装置
JP2008286095A (ja) * 2007-05-17 2008-11-27 Daikin Ind Ltd スクロール圧縮機
JP2009228471A (ja) * 2008-03-19 2009-10-08 Daikin Ind Ltd スクロール圧縮機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197684A (ja) * 1986-02-26 1987-09-01 Hitachi Ltd スクロ−ル圧縮機
JPH0549830A (ja) 1991-08-21 1993-03-02 Daikin Ind Ltd オゾン脱臭装置
JP3376729B2 (ja) * 1994-06-08 2003-02-10 株式会社日本自動車部品総合研究所 スクロール型圧縮機
MY119499A (en) * 1995-12-05 2005-06-30 Matsushita Electric Ind Co Ltd Scroll compressor having bypass valves
JP3874469B2 (ja) * 1996-10-04 2007-01-31 株式会社日立製作所 スクロール圧縮機
EP0962725B1 (en) 1997-12-16 2017-11-08 Panasonic Corporation Airconditioner using inflammable refrigerant
KR100664058B1 (ko) * 2004-11-04 2007-01-03 엘지전자 주식회사 스크롤 압축기의 용량 가변장치
JP5407157B2 (ja) * 2008-03-18 2014-02-05 ダイキン工業株式会社 冷凍装置
JP2009228476A (ja) * 2008-03-19 2009-10-08 Daikin Ind Ltd スクロール圧縮機
JP2009228478A (ja) * 2008-03-19 2009-10-08 Daikin Ind Ltd スクロール圧縮機
US8568118B2 (en) * 2009-05-29 2013-10-29 Emerson Climate Technologies, Inc. Compressor having piston assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549830B2 (ja) 1982-01-27 1993-07-27 Hitachi Ltd
JPH07253254A (ja) * 1994-03-15 1995-10-03 Toshiba Corp 熱搬送装置
JPH11316067A (ja) * 1997-12-16 1999-11-16 Matsushita Electric Ind Co Ltd 可燃性冷媒を用いた空気調和装置
JP2008286095A (ja) * 2007-05-17 2008-11-27 Daikin Ind Ltd スクロール圧縮機
JP2009228471A (ja) * 2008-03-19 2009-10-08 Daikin Ind Ltd スクロール圧縮機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200007548A (ko) * 2018-07-13 2020-01-22 엘지전자 주식회사 압축기
KR102070784B1 (ko) * 2018-07-13 2020-01-29 엘지전자 주식회사 압축기
US11209003B2 (en) 2018-07-13 2021-12-28 Lg Electronics Inc. Compressor with a muffler
US11703052B2 (en) * 2018-12-06 2023-07-18 Samsung Electronics Co., Ltd. High pressure scroll compressor

Also Published As

Publication number Publication date
US8985978B2 (en) 2015-03-24
EP2592274B1 (en) 2018-10-03
EP2592274A4 (en) 2015-12-16
US20130108496A1 (en) 2013-05-02
JPWO2012005007A1 (ja) 2013-09-02
CN102985697A (zh) 2013-03-20
CN102985697B (zh) 2015-12-02
EP2592274A1 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
WO2012005007A1 (ja) スクロール圧縮機
JP5849233B2 (ja) 回転式圧縮機
JP2012057503A (ja) 回転式圧縮機
JP5304285B2 (ja) スクロール圧縮機
JP2010265756A (ja) スクロール圧縮機
WO2012042825A1 (ja) 回転式圧縮機
JPWO2011155176A1 (ja) 圧縮機
JP2008309078A (ja) スクロール圧縮機
CN109072923B (zh) 压缩机及制冷循环装置
JP2011252475A (ja) 回転式圧縮機
JP5786130B2 (ja) スクロール圧縮機
JP2009052464A (ja) スクロール圧縮機
JP5828075B2 (ja) 回転式圧縮機
JP2010261353A (ja) スクロール圧縮機
JP2012017690A (ja) 回転式圧縮機
KR100750303B1 (ko) 스크롤 압축기
JP2006037896A (ja) スクロール圧縮機
JP2010084954A (ja) 冷凍サイクル装置
JP2009052463A (ja) スクロール圧縮機
KR101563726B1 (ko) 개방형 압축기
JP2006214335A (ja) スクロール圧縮機
JP2006070807A (ja) スクロール圧縮機
JP2006291763A (ja) スクロール圧縮機
JP2011085040A (ja) スクロール圧縮機
JP2009002221A (ja) スクロール膨張機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180033901.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803344

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012523773

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13808193

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011803344

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE