WO2012002692A2 - 하폐수 처리 공정의 규칙기반 실시간 제어 방법 및 시스템 - Google Patents

하폐수 처리 공정의 규칙기반 실시간 제어 방법 및 시스템 Download PDF

Info

Publication number
WO2012002692A2
WO2012002692A2 PCT/KR2011/004686 KR2011004686W WO2012002692A2 WO 2012002692 A2 WO2012002692 A2 WO 2012002692A2 KR 2011004686 W KR2011004686 W KR 2011004686W WO 2012002692 A2 WO2012002692 A2 WO 2012002692A2
Authority
WO
WIPO (PCT)
Prior art keywords
amount
dissolved oxygen
rule
deriving
new
Prior art date
Application number
PCT/KR2011/004686
Other languages
English (en)
French (fr)
Other versions
WO2012002692A3 (ko
WO2012002692A9 (ko
Inventor
김창원
최명원
문태섭
김예진
김효수
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2012002692A2 publication Critical patent/WO2012002692A2/ko
Publication of WO2012002692A9 publication Critical patent/WO2012002692A9/ko
Publication of WO2012002692A3 publication Critical patent/WO2012002692A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/15N03-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a rule-based real-time control method and system of sewage water treatment process, which will be described in more detail, by providing a variable amount of oxygen in the aerobic tank based on the rule-based by detecting variable ammonia nitrogen, By detecting acidic nitrogen, we can provide the internal return flow rate from the aerobic tank to the anoxic tank based on the rule base and control the external carbon source flow rate according to this variable internal return flow rate so that it can control the wastewater treatment process efficiently and economically. It relates to a rule-based real-time control method and system.
  • Nitrogen (N 2 ) in the water quality category can be lowered in total by two different reactions in biological reactors including anaerobic, anaerobic and aerobic baths.
  • Ammonia nitrogen (NH 4 -N) is finally converted to nitrogen trioxide (NO 3 -N) via nitrogen nitrite (NO 2 -N) through nitrification under aerobic conditions (commonly known as aerobic tank).
  • Nitrogen trioxide (NO 3 -N) passes through nitrogen nitrite (NO 2 -N) and finally becomes nitrogen (N 2 ) gas through denitrification by a commonly known heterotrophic bacterium under anoxic conditions (anoxic tank).
  • the denitrification reaction requires an organic carbon source. In general, if the C / N ratio of the influent water is low, an external carbon source should be injected into the anoxic tank to induce complete denitrification.
  • Patent Registration No. 0428952 "Automated nitrification and denitrification control system using ammonia nitrogen and nitrate nitrogen analyzer," Patent Registration No. 0632796, Organic matter and wastewater in wastewater. And automatic control system of simultaneous phosphorus treatment process, and Patent Registration No. 0614098, "Sludge Reduction and Phosphorus and Nitrogen Removal Method in Advanced Wastewater Treatment Process".
  • the present invention is to provide a control method and system capable of efficient and economical wastewater treatment process by controlling the amount of aeration in the aerobic tank and the amount of external carbon in the anoxic tank by presenting a set value such as a variable dissolved oxygen (DO) amount. .
  • DO variable dissolved oxygen
  • Measuring the amount of ammonia nitrogen (NH4-N) in the effluent in the reactor Deriving a difference value between the amount of ammonia nitrogen (NH4-N) and the set amount of ammonia nitrogen (NH4-N) measured in the step; Deriving a new dissolved oxygen (DO) amount setting value from a current dissolved oxygen (DO) amount setting value based on the difference value; Adjusting the dissolved oxygen (DO) amount of the aerobic tank according to the new dissolved oxygen (DO) amount setting value,
  • the step of measuring the amount of nitrate nitrogen (NOx-N) in the effluent of the reaction tank Deriving a difference value between the measured amount of nitrate nitrogen (NOx-N) and the set amount of nitrate nitrogen (NOx-N); Deriving a new internal return flow rate from the inflow flow rate based on the difference value;
  • the amount of ammonia nitrogen (NH4-N), the amount of dissolved oxygen (DO), and the amount of nitrate nitrogen (NOx-N) are the concentrations of ammonia nitrogen (NH4-N) and the concentration of dissolved oxygen (DO), respectively. Refers to the concentration of nitrate nitrogen (NOx-N).
  • the rule-based real-time control system of the wastewater treatment process is characterized in that each step mentioned above is performed in the wastewater control system using a reaction tank including an anaerobic tank and an aerobic tank.
  • the rule-based real-time control method and system of the sewage treatment process of the present invention is effective by controlling the amount of aeration and the amount of external carbon introduced by measuring the amount of dissolved oxygen by measuring ammonia nitrogen and nitrate nitrogen in real time. And economical control is possible.
  • rule-based real-time control method and system of the sewage treatment process of the present invention has the advantage that it is possible to automatically control the amount of dissolved oxygen and incoming external carbon.
  • FIG. 1 is a schematic diagram showing a basic example of a system to which the present invention is applied.
  • FIG. 2 is a diagram showing a flowchart for deriving a set value of the dissolved oxygen amount.
  • 3 is a flow chart for deriving an internal conveyance flow rate and an external carbon source flow rate.
  • a step of deriving a difference value D1 between the amount of ammonia nitrogen (NH4-N) and the set amount of ammonia nitrogen (NH4-N) measured in the above step is obtained. That is, the difference value D1 is obtained by subtracting the set amount of ammonia nitrogen (NH4-N) from the measured amount of ammonia nitrogen (NH4-N).
  • the current dissolved oxygen (DO) amount setting value refers to the dissolved oxygen (DO) amount setting value set before going through the above-mentioned steps
  • the new dissolved oxygen (DO) amount setting value refers to the time of passing through the steps. It refers to the amount of dissolved oxygen (DO) newly required based on the difference in the amount of ammonia nitrogen (NH) -N) according to the flow.
  • a reference value is set based on a rule-based.
  • the new dissolved oxygen (DO) amount setting value is derived based on the comparison between the difference value (D1) and the reference value.
  • dissolved oxygen (DO) As the amount of dissolved oxygen (DO) is derived according to the amount of ammonia nitrogen (NH4-N) that changes with time based on rule-based, efficient dissolved oxygen (DO) amount can be controlled. As aeration is caused by the changing amount of dissolved oxygen (DO), efficient and economical control becomes possible.
  • NH4-N ammonia nitrogen
  • Rule-based real-time control method of the wastewater treatment process of the present invention relates to a control method (system) of the wastewater treatment process using a reaction tank including an anoxic tank and an aerobic tank as shown in the advanced wastewater treatment system (system) shown in FIG.
  • the flow rate, ammonia nitrogen, nitrate nitrogen, and dissolved oxygen are measured through an automatic analyzer that can analyze the inflow and outflow water. To adjust the amount of aeration to approximate the value,
  • the amount of nitrate nitrogen present in the anoxic tank is derived, and the amount of external carbon introduced from the outside is derived based on the amount of nitrate nitrogen thus obtained.
  • the rule-based real-time control method (system) of the sewage treatment process of the present invention includes 1) deriving the dissolved oxygen set value of the aerobic tank in real time, 2) controlling the dissolved oxygen amount to approach the dissolved oxygen set value, and 3) It includes controlling the amount of external carbon introduced from the outside by deriving the amount of nitrate nitrogen in the anaerobic tank.
  • a step of deriving a difference value D1 between the amount of ammonia nitrogen (NH4-N) and the set amount of ammonia nitrogen (NH4-N) measured in the above step is obtained. That is, the difference value D1 is obtained by subtracting the set amount of ammonia nitrogen (NH4-N) from the measured amount of ammonia nitrogen (NH4-N).
  • the current dissolved oxygen (DO) amount setting value refers to the dissolved oxygen (DO) amount setting value set before going through the above-mentioned steps
  • the new dissolved oxygen (DO) amount setting value refers to the time of passing through the steps. It refers to the amount of dissolved oxygen (DO) newly required based on the difference in the amount of ammonia nitrogen (NH) -N) according to the flow.
  • a reference value is set based on a rule-based.
  • the new dissolved oxygen (DO) amount setting value is derived based on the comparison between the difference value (D1) and the reference value.
  • Rule-based here is a way to provide facts or data for specific conditions based on objective knowledge.
  • the form of the rule is represented by the IF-THEN statement, and if the condition or phenomena indicated in the IF clause (condition, condition) are met, the THEN clause (operation, condition) provides information based on the condition.
  • Rule-based control makes it easy to obtain control set points by generating empirical or expert knowledge of sewage treatment process operators and applying them to the rules that generate actual data or current operating conditions. Technology.
  • the current dissolved oxygen (DO) amount set value is applied as it is. That is, the current dissolved oxygen (DO) amount setting value becomes a new dissolved oxygen (DO) amount setting value.
  • the new dissolved oxygen (DO) amount setting value does not exceed the maximum dissolved oxygen (DO) amount setting value.
  • the reference values are 2 and 4, and the concentrations of 1,2 ppm added based on these reference values are constants for which the applicant has obtained an optimal value for the A2 / O process (Anaerobic Anoxic Aerobic). Can be adjusted through driver empirical knowledge.
  • the amount of dissolved oxygen (DO) is derived according to the amount of ammonium nitrogen (NH4-N) that changes with time based on rule-based, and thus the effective amount of dissolved oxygen (DO) can be controlled. As the aeration is caused by the changing amount of dissolved oxygen (DO), efficient and economical control becomes possible.
  • the present invention controls the amount of dissolved oxygen (DO) by adjusting the amount of aeration in the actual aerobic tank to approach the new set amount of dissolved oxygen (DO) derived as described above.
  • the PI control is applied. It is introduced to minimize the error between the dissolved oxygen (DO) measured value in operating the new dissolved oxygen (DO) amount setting value and the actual aerobic tank. For example, in Figure 2 by setting the minimum iteration time to 10 minutes Present the applied flowchart.
  • the new dissolved oxygen (DO) setting value and the aeration volume of the aerobic tank are adjusted so that the aeration amount approaches the new dissolved oxygen (DO) amount setting value. It is.
  • PI control By applying PI control to adjust the amount of aeration, the aeration volume of the aerobic tank can be operated efficiently.
  • the amount of nitrate nitrogen in the anaerobic tank is controlled to control the amount of external carbon introduced from the outside.
  • FIG. 3 the amount and quality of the ammonia nitrogen (NH4-N) of the effluent through the automatic analyzer are shown.
  • the amount of acidic nitrogen (NOx-N) is measured.
  • the flow chart was configured in such a way that the amount of ammonia nitrogen (NH4-N) was called in the influent 30 minutes ago. Reflects an example of repetitive analysis of influent and effluent at minute intervals, which can be adjusted according to the characteristics of the automatic analyzer.
  • a step of deriving a difference value D2 between the amount of nitrate nitrogen (NOx-N) and the set amount of nitrate nitrogen (NOx-N) measured in the step is obtained. That is, the difference value D2 is obtained by subtracting the set amount of nitrate nitrogen (NOx-N) from the measured amount of nitrate nitrogen (NOx-N).
  • a new internal conveying flow rate Q INRAS is derived based on the inflow flow rate Q inf based on the difference value D2.
  • the current internal conveying flow rate refers to the internal conveying flow rate set before the above-mentioned steps
  • the new internal conveying flow rate (Q INRAS ) refers to the nitrate nitrogen ( NOx ⁇ ) over time. It refers to the newly required internal return flow rate (Q INRAS ) based on the difference in N) quantity.
  • the internal residual flow rate (Q INRAS ) refers to the flow rate returned from the aerobic tank to the anaerobic tank.
  • the reference value is set based on rule-based and the difference is determined. Based on the comparison between the value D2 and the reference value, a new internal return flow rate Q INRAS is derived.
  • Q INRAS new internal transport flow rate
  • the reference values are 2, 4, and 2.5, 3, and 4 times added based on these reference values are constants for which the Applicant has derived an optimal value suitable for A2 / O process (Anaerobic Anoxic Aerobic). This can be adjusted through driver empirical knowledge.
  • the internal return flow rate (Q INRAS ) flowing from the aerobic tank into the anoxic tank according to the amount of nitrate nitrogen (NOx-N) that changes over time based on the rule-based method is effective.
  • Q INRAS ) adjustment is possible.
  • the amount of nitrate nitrogen (NOx-N) present in the anoxic tank is first derived based on the new internal return flow rate (Q INRAS ).
  • Q INRAS new internal return flow rate
  • the amount of nitrate nitrogen (NOx-N) (NOx-N IN-ANOX) is derived. ) Is calculated by Equation 1 shown below.
  • Equation 1 is to derive the amount of nitrate nitrogen (NOx-N) present in the oxygen-free tank by the new internal transfer flow rate (Q INRAS ) derived above. That is one of the influent ammonium nitrogen (NH4-N) amount (NH 4INF) and effluent of the ammonium nitrogen (NH4-N) amount (NH 4EFF) multiplied by a coefficient ( ⁇ ) to the difference in the nitrate nitrogen aerobic tank them measured by the Assuming the NOx-N content, considering the reaction in the settling tank, multiplying the amount of nitrate nitrogen (NOx-N) (NOx EFF ) in the effluent by the coefficient ( ⁇ ) and adding these to the nitrate nitrogen present in the anoxic tank (NOx).
  • Q INRAS new internal transfer flow rate
  • Equation 2 the external carbon source flow rate Q EX based on the amount of nitrate nitrogen (NOx-N) (NOx-N IN-ANOX ) present in the anoxic tank derived based on Equation 1 as described above is given by Equation 2 below. Derived.
  • Equation 2 was derived based on the microbial stoichiometry of the denitrification when the external carbon source is applied to ethanol.
  • the external carbon source flow rate (Q EX ) is derived from the COD conversion concentration (C ETHANOL ) and load (L) of ethanol.
  • the load (L) is derived by multiplying a predetermined coefficient by the amount of nitrate nitrogen (NOx-N) (NOx-N IN-ANOX ) derived above is derived by the following equation (3).
  • the external carbon source flow rate (Q EX ) thus derived is the internal transfer flow rate (Q INRAS ) flowing over time, and thus the amount of NOx-N (NOx-N IN-ANOX ) of the anoxic tank.
  • Q INRAS internal transfer flow rate
  • the present invention is to measure the amount of dissolved oxygen by measuring ammonia nitrogen and nitrate nitrogen in real time to control the amount of aeration and to control the amount of external carbon introduced to the wastewater treatment process field of the wastewater treatment plant It can be applied to a wide range.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

본 발명은 하폐수 처리 공정의 규칙기반 실시간 제어 방법 및 시스템에 관한 것으로, 이를 더욱 상세히 설명하면 가변하는 암모니아성 질소를 감지함에 의해 규칙기반에 기초하여 호기조의 최적의 용존산소량을 제공하고, 가변하는 질산성 질소를 감지함에 의해 규칙기반에 기초하여 호기조에서 무산소조로 내부반송 유량을 제공하고, 이러한 가변하는 내부반송 유량에 따라 외부탄소원 유량을 제어할 수 있어 효율적이며 경제적으로 하폐수 처리 공정을 제어할 수 있도록 하는 규칙기반 실시간 제어 방법 및 시스템에 관한 것이다.

Description

하폐수 처리 공정의 규칙기반 실시간 제어 방법 및 시스템
본 발명은 하폐수 처리 공정의 규칙기반 실시간 제어 방법 및 시스템에 관한 것으로, 이를 더욱 상세히 설명하면 가변하는 암모니아성 질소를 감지함에 의해 규칙기반에 기초하여 호기조의 최적의 용존산소량을 제공하고, 가변하는 질산성 질소를 감지함에 의해 규칙기반에 기초하여 호기조에서 무산소조로 내부반송 유량을 제공하고, 이러한 가변하는 내부반송 유량에 따라 외부탄소원 유량을 제어할 수 있어 효율적이며 경제적으로 하폐수 처리 공정을 제어할 수 있도록 하는 규칙기반 실시간 제어 방법 및 시스템에 관한 것이다.
하폐수처리 공정은 유입수의 변동에도 상시 안정적인 유출수질을 유지해야 하며 이를 위해 지난 30여년간 꾸준히 질소 및 인 제거를 위한 최적의 제어 기술들이 소개되어 왔다.
수질 항목 중 질소(N2)는 혐기조, 무산소조 및 호기조를 포함하는 생물학적 반응조 내에서 두 가지 상이한 반응에 의해 그 총량이 낮아질 수 있다. 호기 조건(호기조)에서 통칭 독립영양균에 의해 수행되는 질산화 반응을 통하여 암모니아성 질소(NH4-N)가 아질산 질소(NO2-N)를 거쳐 최종적으로 삼산화 질소(NO3-N)로 전환되며, 무산소 조건(무산소조)에서 통칭 종속영양균에 의한 탈질 반응을 통하여 삼산화 질소(NO3-N)가 아질산 질소(NO2-N)를 거쳐 최종적으로 질소(N2) 가스가 된다. 이러한 탈질 반응에는 유기탄소원이 필요한데, 일반적으로 유입 원수의 C/N비가 낮다면 외부탄소원을 무산소조에 주입하여 완전 탈질을 유도하도록 하여야 한다.
따라서 하폐수 처리공정에 있어 방류수질에 부합하는 유출수 질소(N2) 농도를 유지하기 위해서는 상기에서 언급한 두 가지 반응을 고려하여 완전 질산화 및 탈질 반응을 유도할 수 있는 제어 기술이 적용되어야 한다.
종래에 이러한 제어 기술로서 다양한 기술이 제시되고 있는 바, 그 예로 특허등록 제0428952호 "암모니아성 질소 및 질산성 질소 분석기를 이용한 질산화 탈질 자동 제어시스템", 특허등록 제0632796호 "하폐수내 유기물, 질소 및 인 동시 처리공정의 자동제어 시스템", 특허등록 제0614098호 "하폐수 고도처리 공정에서의 슬러지 감량화 및 인과 질소의 제거방법" 등이 있다.
그러나, 상기 기술들은 고정된 설정값으로 용존산소(DO)량 등에 기초하여 암모니아성 질소를 제거하거나, 이러한 고정된 설정값에 기초하여 외부탄소원을 주입함으로서 탈질 반응을 유도하도록 함에 따라 예상하지 못한 부하 변동 등에 의해 안정적인 유출수질 유지가 용이하지 않으며, 일정한 용존산소(DO)량에 기초하여 폭기량을 일정하게 유지하거나 일정한 외부탄소원을 유입함에 의해 탈질을 유도함에 따라 비경제적인 공정이 수행되는 문제가 있다.
이에 본 발명은 변동하는 용존산소(DO)량 등의 설정값을 제시함으로서 호기조의 폭기량 및 무산소조의 외부탄소량을 제어하여 효율적이며 경제적인 하폐수 처리공정이 가능한 제어방법 및 시스템을 제공하고자 함이다.
상기 목적을 달성하기 위한 수단으로 본 발명은, 무산소조 및 호기조를 포함하는 반응조를 이용한 하폐수 처리공정의 제어방법에 있어서,
반응조에 있어서 유출수의 암모니아성 질소(NH₄-N)량을 측정하는 단계와; 상기 단계에서 측정된 암모니아성 질소(NH₄-N)량과 설정된 암모니아성 질소(NH₄-N)량의 차이값을 도출하는 단계와; 상기 차이값에 기해 현재의 용존산소(DO)량 설정값으로부터 새로운 용존산소(DO)량 설정값을 도출하는 단계와; 상기 새로운 용존산소(DO)량 설정값에 따라 상기 호기조의 용존산소(DO)량을 조절하는 단계를 포함하되,
이에 더하여 반응조의 유출수에 있어 질산성 질소(NOx-N)량을 측정하는 단계와; 측정된 질산성 질소(NOx-N)량과 설정된 질산성 질소(NOx-N)량의 차이값을 도출하는 단계와; 상기 차이값에 기해 유입유량으로부터 새로운 내부반송 유량을 도출하는 단계를 더 포함하며,
이렇게 도출된 새로운 내부반송 유량에 기해 무산소조에 존재하는 질산성 질소(NOx-N)량을 도출하는 단계와; 상기 단계에서 도출된 질산성 질소(NOx-N)량에 의해 무산소조로 투입될 외부탄소원 유량을 도출하는 단계를 포함하여 이루어짐을 특징으로 한다. 본 발명에 있어서 암모니아성 질소(NH₄-N)량, 용존산소(DO)량, 질산성 질소(NOx-N)량은 각각 암모니아성 질소(NH₄-N)의 농도, 용존산소(DO)의 농도, 질산성 질소(NOx-N)의 농도를 말하는 것이다.
한편 하폐수 처리 공정의 규칙기반 실시간 제어 시스템은 무산소조 및 호기조를 포함하는 반응조를 이용한 하폐수 제어 시스템에 있어서, 상기에서 언급한 각각의 단계를 수행하는 것을 특징으로 한다.
본 발명의 하폐수 처리 공정의 규칙기반 실시간 제어 방법 및 시스템은 실시 간으로 암모니아성 질소, 질산성 질소를 측정하여 유동적인 용존산소량을 산정함에 의해 폭기량의 조절 및 유입되는 외부탄소량을 조절함으로서 효율적이며 경제적인 제어가 가능한 장점이 있다.
또한, 본 발명의 하폐수 처리 공정의 규칙기반 실시간 제어 방법 및 시스템은 유동적인 용존산소량 및 유입되는 외부탄소량의 자동 제어가 가능한 장점이 있다.
도 1은 본 발명이 적용되는 시스템의 기본 예를 나타내는 개략도.
도 2는 용존산소량의 설정값을 도출하기 위한 순서도를 나타내는 도면.
도 3은 내부반송 유량 및 외부 탄소원 유량을 도출하기 위한 순서도를 나타내는 도면.
우선 실시간으로 호기조의 용존산소량 설정값을 도출하기 위해서,
도면에 도시된 바는 없으나 자동분석기를 통해 반응조에 있어서 유출수의 암모니아성 질소(NH₄-N)량을 측정하는 단계를 갖는다.
그 다음으로 상기 단계에서 측정된 암모니아성 질소(NH₄-N)량과 설정된 암모니아성 질소(NH₄-N)량의 차이값(D1)을 도출하는 단계를 갖는다. 즉 측정된 암모니아성 질소(NH₄-N)량에서 설정된 암모니아성 질소(NH₄-N)량을 뺀 값을 상기 차이값(D1)으로 한다.
그 다음으로 상기 차이값(D1)에 기해 현재의 용존산소(DO)량 설정값으로부터 새로운 용존산소(DO)량 설정값을 도출하는 단계를 갖는다. 여기서 현재의 용존산소(DO)량 설정값은 상기에서 언급한 단계들을 거치기 전에 설정된 용존산소(DO)량 설정값을 말하는 것이고, 새로운 용존산소(DO)량 설정값은 상기 단계들을 거치면서 시간의 흐름에 따른 암모니아성 질소(NH₄-N)량 등의 차이에 기해 새롭게 요구되는 용존산소(DO)량을 말한다.
또한, 본 단계인 상기 차이값(D1)에 기해 현재의 용존산소(DO)량 설정값으로부터 새로운 용존산소(DO)량 설정값을 도출하는 단계에는 규칙기반(Rule-based)에 기해 기준값을 설정하고 상기 차이값(D1)과 기준값의 비교에 기해 새로운 용존산소(DO)량 설정값을 도출하는 것이다.
규칙기반(Rule-based)에 기해 시간에 따라 변화하는 암모니아성 질소(NH₄-N)량에 따라 용존산소(DO)량을 도출함에 따라 효율적인 용존산소(DO)량 조절이 가능하게 되는 것이며, 이렇게 변화하는 용존산소(DO)량에 기해 폭기를 하게 됨에 따라 효율적이며 경제적인 제어가 가능하게 되는 것이다.
이하, 본 발명의 구성 및 작용을 첨부된 도면에 의거하여 좀 더 구체적으로 설명한다. 본 발명을 설명함에 있어서, 본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 하폐수 처리 공정의 규칙기반 실시간 제어 방법은 도 1에 도시된 하폐수 고도처리 공정(시스템)에서 보는 바와 같이 무산소조 및 호기조를 포함하는 반응조를 이용한 하폐수 처리 공정의 제어 방법(시스템)에 관한 것으로 유입수 및 유출수를 분석할 수 있는 자동분석기를 통해 유량, 암모니아성 질소량, 질산성 질소량, 용존산소량을 측정하여 호기조의 용존산소량 설정값을 도출하고 PI제어를 통해 호기조의 용존산소량이 도출된 용존산소량 설정값에 근사하도록 폭기량을 조절하는 것이며,
호기조로부터 무산소조로 내부반송량을 도출함에 따라 무산소조 내에 존재하는 질산성 질소량을 도출하고, 이렇게 도출된 질산성 질소량에 기해 외부에서 유입되는 외부탄소량을 도출하도록 하는 것이다.
즉 본 발명의 하폐수 처리 공정의 규칙기반 실시간 제어 방법(시스템)은 1) 실시간으로 호기조의 용존산소량 설정값을 도출하는 것과, 2) 용존산소량 설정값에 근접하도록 용존산소량을 제어하는 것과, 3) 무산소조의 질산성 질소량을 도출하여 외부에서 유입되는 외부탄소량을 제어하는 것을 포함하고 있는 것이다.
이하, 구체적인 실시 예를 설명한다.
우선 실시간으로 호기조의 용존산소량 설정값을 도출하기 위해서,
도면에 도시된 바는 없으나 자동분석기를 통해 반응조에 있어서 유출수의 암모니아성 질소(NH₄-N)량을 측정하는 단계를 갖는다.
그 다음으로 상기 단계에서 측정된 암모니아성 질소(NH₄-N)량과 설정된 암모니아성 질소(NH₄-N)량의 차이값(D1)을 도출하는 단계를 갖는다. 즉 측정된 암모니아성 질소(NH₄-N)량에서 설정된 암모니아성 질소(NH₄-N)량을 뺀 값을 상기 차이값(D1)으로 한다.
그 다음으로 상기 차이값(D1)에 기해 현재의 용존산소(DO)량 설정값으로부터 새로운 용존산소(DO)량 설정값을 도출하는 단계를 갖는다. 여기서 현재의 용존산소(DO)량 설정값은 상기에서 언급한 단계들을 거치기 전에 설정된 용존산소(DO)량 설정값을 말하는 것이고, 새로운 용존산소(DO)량 설정값은 상기 단계들을 거치면서 시간의 흐름에 따른 암모니아성 질소(NH₄-N)량 등의 차이에 기해 새롭게 요구되는 용존산소(DO)량을 말한다.
또한, 본 단계인 상기 차이값(D1)에 기해 현재의 용존산소(DO)량 설정값으로부터 새로운 용존산소(DO)량 설정값을 도출하는 단계에는 규칙기반(Rule-based)에 기해 기준값을 설정하고 상기 차이값(D1)과 기준값의 비교에 기해 새로운 용존산소(DO)량 설정값을 도출하는 것이다.
여기서 규칙기반(Rule-based)은 객관적인 지식에 기초하여 특정 조건에 대한 사실 또는 데이터를 제공할 수 있는 방법이다. 규칙의 형태는 IF-THEN 구문으로 나타나게 되며, IF절(조건, 전건부)에서 나타내는 특정한 조건 또는 현상에 부합되면 THEN절(동작, 후건부)에서 조건에 따른 정보를 제공한다. 규칙기반(Rule-based) 제어는 하폐수 처리공정 운전자의 경험적 지식 또는 전문가의 지식을 규칙으로 생성한 후 실측 데이터 또는 현재의 운전 조건을 생성한 규칙에 적용해봄으로써 제어 설정값을 용이하게 얻을 수 있는 기술이다.
이러한 규칙기반(Rule-based)에 기한 새로운 용존산소(DO)량 설정값을 도출함에 있어 본 발명에서는 그 일 실시 예가 제시되는 바, 각각의 예를 항을 나누어서 설명한다.
1) 차이값(D1) < 0이면(설정값보다 측정값이 낮다면), 현재의 용존산소(DO)량 설정값을 그대로 적용한다. 즉 현재의 용존산소(DO)량 설정값이 새로운 용존산소(DO)량 설정값이 되는 것이다.
2) 0 < 차이값(D1) ≤ 2이면, 새로운 용존산소(DO)량 설정값은 현재의 용존산소(DO)량 설정값에 1 ppm을 더한 량(농도)을 그 값으로 적용한다.
3) 2 < 차이값(D) ≤ 4이면, 새로운 용존산소(DO)량 설정값은 현재의 용존산소(DO)량 설정값에 2 ppm을 더한 량(농도)을 그 값으로 적용한다.
4) 4 < 차이값(D)이면, 새로운 용존산소(DO)량 설정값은 최대 용존산소(DO)량 설정값이 된다.
여기서 상기 2)번 및 3)번의 경우, 도출된 새로운 용존산소(DO) 량 설정값은 최대 용존산소(DO)량 설정값을 초과하지 않도록 한다.
상기 예에서 기준값은 2, 4이며 이러한 기준값에 기해 부가되는 농도인 1 ,2 ppm은 본 출원인이 A₂/O 공정(Anaerobic Anoxic Aerobic)에 적합한 최적값을 도출한 상수들이며, 이러한 상수들은 공정이 변경될 때 운전자 경험적 지식을 통해 조절이 가능하다.
상기와 같이 규칙기반(Rule-based)에 기해 시간에 따라 변화하는 암모니아성 질소(NH₄-N)량에 따라 용존산소(DO)량을 도출함에 따라 효율적인 용존산소(DO)량 조절이 가능하게 되는 것이며, 이렇게 변화하는 용존산소(DO)량에 기해 폭기를 하게 됨에 따라 효율적이며 경제적인 제어가 가능하게 되는 것이다.
한편 본 발명에서는 상기와 같이 도출되는 새로운 용존산소(DO)량 설정값에 근접하도록 실제 호기조에서 폭기량을 조절하여 용존산소(DO)량을 제어하는데 이때 PI 제어가 적용되는 바, PI 제어라함은 새로운 용존산소(DO)량 설정값과 실제 호기조를 운영함에 있어 용존산소(DO)량 측정값 사이의 오차를 최소한도로 하기 위해 도입되는 것으로 그 일 예로 도 2에서는 최소 반복 시간을 10분으로 설정하여 적용된 순서도를 제시한다. 즉 10분 간격으로 호기조의 실제 용존산소(DO)량을 측정하여 새로운 용존산소(DO)량 설정값과 대비 호기조의 폭기량을 조절함으로서 폭기량이 새로운 용존산소(DO)량 설정값에 근접하도록 하는 것이다. 이렇게 폭기량을 조절함에 PI 제어를 적용함에 따라 호기조의 폭기량을 효율적으로 운영할 수 있게 되는 것이다.
한편 본 발명에서는 무산소조의 질산성 질소량을 도출하여 외부에서 유입되는 외부탄소량을 제어하는 바, 이를 위해서 우선 도 3에서 보는 바와 같이 자동분석기를 통해 유출수의 암모니아성 질소(NH₄-N)량과 질산성 질소(NOx-N)량을 측정하는 단계를 갖는다. 또한, 유입수의 암모니아성 질소(NH₄-N)량을 측정하는데 도 3에서는 30분전의 유입수에 있어 암모니아성 질소(NH₄-N)량을 불러오는 형식으로 순서도를 구성하였는 바, 이는 적용한 자동분석기가 30분 간격으로 유입수 및 유출수를 반복적으로 분석하는 일 예를 반영한 것으로 이는 자동분석기의 특성에 따라 조절될 수 있다.
그 다음으로 상기 단계에서 측정된 질산성 질소(NOx-N)량과 설정된 질산성 질소(NOx-N)량의 차이값(D2)을 도출하는 단계를 갖는다. 즉 측정된 질산성 질소(NOx-N)량에서 설정된 질산성 질소(NOx-N)량을 뺀 값을 상기 차이값(D2)으로 한다.
그 다음으로 상기 차이값(D2)에 기해 유입유량(Qinf)을 기초로 새로운 내부반송 유량(QINRAS)을 도출하는 단계를 갖는다. 이하 용어 중 현재의 내부반송 유량은 상기에서 언급한 단계들을 거치기 전에 설정된 내부반송 유량을 말하는 것이고, 새로운 내부반송 유량(QINRAS)은 상기 단계들을 거치면서 시간의 흐름에 따른 질산성 질소(NOx-N)량 등의 차이에 기해 새롭게 요구되는 내부반송 유량(QINRAS)을 말한다. 또한 내부잔송 유량(QINRAS)이란 호기조에서 무산소조로 반송되는 유량을 말한다.
또한, 본 단계인 상기 차이값(D2)에 기해 유입유량(Qinf)을 기초로 새로운 내부반송 유량(QINRAS)을 도출하는 단계에는 규칙기반(Rule-based)에 기해 기준값을 설정하고 상기 차이값(D2)과 기준값의 비교에 기해 새로운 내부반송 유량(QINRAS)을 도출하는 것이다.
이러한 규칙기반(Rule-based)에 기한 새로운 내부반송 유량(QINRAS)을 도출함에 있어 본 발명에서는 그 일 실시 예가 제시되는 바, 각각의 예를 항을 나누어서 설명한다.
1) 차이값(D2) < 0이면(설정값보다 측정값이 낮다면), 새로운 내부반송 유량(QINRAS)은 현재의 내부반송 유량(QINRAS)이 되는 것이다.
2) 0 < 차이값(D2) ≤ 2이면, 새로운 내부반송 유량(QINRAS)은 유입유량(Qinf)의 2.5배가 적용된다.
3) 2 < 차이값(D2) ≤ 4이면, 새로운 내부반송 유량(QINRAS)은 유입유량(Qinf)의3배가 적용된다.
4) 4 < 차이값(D2)이면, 새로운 내부반송 유량(QINRAS)은 유입유량(Qinf)의 4배가 적용된다.
상기 예에 있어서도 그 기준값은 2, 4이며 이러한 기준값에 기해 부가되는 2.5, 3, 4배는 본 출원인이 A₂/O 공정(Anaerobic Anoxic Aerobic)에 적합한 최적값을 도출한 상수들이며, 이러한 상수들은 공정이 변경될 때 운전자 경험적 지식을 통해 조절이 가능하다.
이 경우도 규칙기반(Rule-based)에 기해 시간에 따라 변화하는 질산성 질소(NOx-N)량에 따라 호기조에서 무산소조로 유입되는 내부반송 유량(QINRAS)을 도출함에 따라 효율적인 내부반송 유량(QINRAS) 조절이 가능하게 되는 것이다.
그 다음으로 상기와 같이 도출되는 내부반송 유량(QINRAS)에 기해 무산소조의 질산성 질소(NOx-N)량을 도출하여 외부에서 유입되는 외부탄소원 유량을 제어하는 단계를 갖게 되는 바,
본 단계에서는 새로운 내부반송 유량(QINRAS)에 기해 무산소조에 존재하는 질산성 질소(NOx-N)량을 먼저 도출하게 되는 바, 이러한 질산성 질소(NOx-N)량(NOx-NIN-ANOX)은 이하에서 도시된 연산식 1에 의해 계산이 된다.
<연산식 1>
[규칙 제26조에 의한 보정 04.07.2011] 
Figure WO-DOC-CHEMICAL-58
상기 연산식 1은 상기에서 도출된 새로운 내부반송 유량(QINRAS)에 의해 무산소조에 존재하는 질산성 질소(NOx-N)량을 도출하는 것이다. 즉 상기에서 측정한 유입수의 암모니아성 질소(NH₄-N)량(NH4INF)과 유출수의 암모니아성 질소(NH₄-N)량(NH4EFF) 차이에 계수(α)를 곱하여 이를 호기조 내 질산성 질소(NOx-N)량으로 가정하고, 침전조 내의 반응을 고려하여 유출수의 질산성 질소(NOx-N)량(NOxEFF)에 계수(β)를 곱하여 이들을 합한 것을 무산소조에 존재하는 질산성 질소(NOx-N)량(NOx-NIN-ANOX)으로 가정하는 것이다. 여기서 유입수에 포함된 질산성 질소(NOx-N)량은 상대적으로 낮기 때문에 이를 0으로 고려하여 상기 연산식 1이 도출된 것이다. 상기 α, β 계수는 장기 운전 및 운전자의 경험적 지식을 기반으로 도출 가능한 것이다. 상기 식에서 QRAS는 유출유량을 말하는 것이다.
그 다음으로 상기와 같은 연산식 1에 기해 도출된 무산소조에 존재하는 질산성 질소(NOx-N)량(NOx-NIN-ANOX)에 기해 외부탄소원 유량(QEX)을 하기 연산식 2에 기해 도출된다.
<연산식 2>
[규칙 제26조에 의한 보정 04.07.2011] 
Figure WO-DOC-CHEMICAL-62
상기 연산식 2는 외부탄소원을 에탄올로 적용할 경우에 탈질 반응식을 미생물 화학양론에 근거하여 도출하였다. 최종적으로 외부탄소원 유량(QEX)은 에탄올의 COD 환산 농도(CETHANOL)와 부하(L)를 통해 도출되는 것이다.
한편 상기 부하(L)는 상기에서 도출된 질산성 질소(NOx-N)량(NOx-NIN-ANOX)에 일정 계수를 곱하여 도출되는 것으로 이하의 연산식 3에 의해 도출된다.
<연산식 3>
[규칙 제26조에 의한 보정 04.07.2011] 
Figure WO-DOC-CHEMICAL-66
즉 이렇게 도출되는 외부탄소원 유량(QEX)은 시간의 흐름에 따라 유동하는 내부반송 유량(QINRAS) 및 이에 따른 무산소조의 질산성 질소(NOx-N)량(NOx-NIN-ANOX)량을 고려하여 도출되는 것으로 무산소조에 존재하는 질산성 질소(NOx-N)량의 변동을 감지하여 이를 기초로 외부탄소원의 주입을 조절할 수 있게 되는 것에 의해 외부탄소원의 과소사용에 의한 탈질의 미비 및 외부탄소원의 과다사용에 의한 비경제적인 면을 해소할 수 있게 되는 것이다.
본 발명은 실시간으로 암모니아성 질소, 질산성 질소를 측정하여 유동적인 용존산소량을 산정함에 의해 폭기량의 조절 및 유입되는 외부탄소량을 조절함으로서 효율적이며 경제적인 제어가 가능한 하폐수처리장의 하폐수 처리 공정 분야에 광범위하게 적용될 수 있다.

Claims (13)

  1. 반응조에 있어서 유출수의 암모니아성 질소(NH₄-N)량을 측정하는 단계와;
    측정된 암모니아성 질소(NH₄-N)량과 설정된 암모니아성 질소(NH₄-N)량의 차이값을 도출하는 단계와;
    상기 차이값에 기해 현재의 용존산소(DO)량 설정값으로부터 새로운 용존산소(DO)량 설정값을 도출하는 단계와;
    상기 새로운 용존산소(DO)량 설정값에 따라 반응조에 있어 호기조의 용존산소(DO)량을 조절하는 단계를 포함하여 이루어짐을 특징으로 하는 하폐수 처리 공정의 규칙기반 실시간 제어방법.
  2. 제 1항에 있어서,
    상기 차이값에 기해 현재의 용존산소(DO)량 설정값으로부터 새로운 용존산소(DO)량 설정값을 도출하는 단계에는 상기 차이값이 0보다 작은 경우 새로운 용존산소(DO)량 설정값은 현재의 용존산소(DO)량 설정값인 것을 특징으로 하는 하폐수 처리 공정의 규칙기반 실시간 제어방법.
  3. 제 1항에 있어서,
    상기 차이값에 기해 현재의 용존산소(DO)량 설정값으로부터 새로운 용존산소(DO)량 설정값을 도출하는 단계에는 상기 차이값이 0보다 크거나 기준값보다 작은 경우 새로운 용존산소(DO)량 설정값은 현재의 용존산소(DO)량 설정값보다 크고 최대 용존산소(DO)량 설정값보다 작은 것을 특징으로 하는 하폐수 처리 공정의 규칙기반 실시간 제어방법.
  4. 제 1항에 있어서,
    상기 차이값에 기해 현재의 용존산소(DO)량 설정값으로부터 새로운 용존산소(DO)량 설정값을 도출하는 단계에는 상기 차이값이 기준값보다 큰 경우 새로운 용존산소(DO)량 설정값은 최대 용존산소(DO)량 설정값인 것을 특징으로 하는 하폐수 처리 공정의 규칙기반 실시간 제어방법.
  5. 제 1항에 있어서,
    상기 새로운 용존산소(DO)량 설정값에 따라 호기조의 용존산소(DO)량을 조절하는 단계에는 일정시간 간격으로 호기조의 용존산소(DO)량을 측정하여 상기 새로운 용존 산소(DO)량과 비교에 의해 폭기량을 조절하는 것을 특징으로 하는 하폐수 처리 공정의 규칙기반 실시간 제어방법.
  6. 제 1항에 있어서,
    반응조의 유출수에 있어 질산성 질소(NOx-N)량을 측정하는 단계와;
    측정된 질산성 질소(NOx-N)량과 설정된 질산성 질소(NOx-N)량의 차이값을 도출하는 단계와;
    상기 차이값에 기해 유입유량에 기해 새로운 내부반송 유량을 도출하는 단계를 더 포함하여 이루어짐을 특징으로 하는 하폐수 처리 공정의 규칙기반 실시간 제어방법.
  7. 제 6항에 있어서,
    상기 차이값에 기해 유입유량에 기해 새로운 내부반송 유량을 도출하는 단계에는 상기 차이값이 0보다 작은 경우 새로운 내부반송 유량은 현재의 내부반송 유량인 것을 특징으로 하는 하폐수 처리 공정의 규칙기반 실시간 제어방법.
  8. 제 6항에 있어서,
    상기 차이값에 기해 유입유량에 기해 새로운 내부반송 유량을 도출하는 단계에는 상기 차이값이 0보다 크고 기준값보다 작은 경우 새로운 내부반송 유량은 유입유량보다 큰 것을 특징으로 하는 하폐수 처리 공정의 규칙기반 실시간 제어방법.
  9. 제 6항에 있어서,
    새로운 내부반송 유량에 기해 무산소조에 존재하는 질산성 질소(NOx-N)량을 도출하는 단계와;
    상기 단계에서 도출된 무산소조에 존재하는 질산성 질소(NOx-N)량에 의해 무산소조로 투입될 외부 탄소원 유량을 도출하는 단계를 포함하여 이루어짐을 특징으로 하는 하폐수 처리 공정의 규칙기반 실시간 제어방법.
  10. [규칙 제26조에 의한 보정 04.07.2011]
    제 9항에 있어서,
    새로운 내부반송 유량에 기해 무산소조에 존재하는 질산성 질소(NOx-N)량을 도출하는 단계에는,
    Figure WO-DOC-MATHS-10
    에 기해 무산소조에 존재하는 무산소조에 존재하는 질산성 질소(NOx-N)량을 도출하는 것을 특징으로 하는 하폐수 처리 공정의 규칙기반 실시간 제어방법.
  11. [규칙 제26조에 의한 보정 04.07.2011]
    제 9항에 있어서,
    상기 단계에서 도출된 무산소조에 존재하는 질산성 질소(NOx-N)량에 의해 무산소조로 투입될 외부 탄소원 유량을 도출하는 단계에는,
    Figure WO-DOC-MATHS-11
    에 기해 무산소조로 투입될 외부 탄소원 유량을 도출하는 것을 특징으로 하는 하폐수 처리 공정의 규칙기반 실시간 제어방법.
  12. [규칙 제26조에 의한 보정 04.07.2011]
    제 11항에 있어서,
    상기 L은,
    Figure WO-DOC-MATHS-12
    에 기해 도출하는 것을 특징으로 하는 하폐수 처리 공정의 규칙기반 실시간 제어방법.
  13. 무산소조 및 호기조를 포함하는 반응조를 이용한 하폐수 제어 시스템에 있어서,
    상기 제 1항 내지 제 12항 중 어느 한 항에 따른 제어방법을 수행하는 것을 특징으로 하는 하폐수 처리 공정의 규칙기반 실시간 제어 시스템.
PCT/KR2011/004686 2010-06-28 2011-06-27 하폐수 처리 공정의 규칙기반 실시간 제어 방법 및 시스템 WO2012002692A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0061343 2010-06-28
KR20100061343A KR101237447B1 (ko) 2010-06-28 2010-06-28 하폐수 처리 공정의 규칙기반 실시간 제어 방법 및 시스템

Publications (3)

Publication Number Publication Date
WO2012002692A2 true WO2012002692A2 (ko) 2012-01-05
WO2012002692A9 WO2012002692A9 (ko) 2012-05-03
WO2012002692A3 WO2012002692A3 (ko) 2012-06-28

Family

ID=45402537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004686 WO2012002692A2 (ko) 2010-06-28 2011-06-27 하폐수 처리 공정의 규칙기반 실시간 제어 방법 및 시스템

Country Status (2)

Country Link
KR (1) KR101237447B1 (ko)
WO (1) WO2012002692A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149218A (zh) * 2021-05-17 2021-07-23 浙江大学 强化市政污水sbr反应器的剩余污泥厌氧发酵液投加方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101293581B1 (ko) 2013-05-28 2013-08-13 (주)티에스케이워터 미생물의 호흡률 분석을 통한 하수처리공정의 송풍량 및 에너지 절감을 위한 제어방법
KR102052163B1 (ko) * 2017-02-13 2020-01-09 바이오메카 주식회사 하폐수 처리 장치 및 방법
KR101871931B1 (ko) * 2017-04-26 2018-08-02 현대엔지니어링 주식회사 하폐수처리 설비의 통합 질소제어 시스템의 운전방법
KR102200986B1 (ko) * 2018-04-30 2021-01-11 서울특별시 하수 처리 장치
KR101997846B1 (ko) 2018-10-08 2019-07-08 웅진코웨이엔텍 주식회사 멤브레인 컨텍터를 이용한 암모니아 제거 시스템 및 제어 방법
KR102029976B1 (ko) * 2019-03-15 2019-11-26 (주)서인지엔티 절전 및 피크감축 수요반응 대응형 자동운전시스템을 이용하는 하폐수 처리시설의 절전 및 피크감축 수요반응 대응형 자동운전제어방법
KR102226795B1 (ko) * 2019-08-19 2021-03-12 주식회사 에스비이앤이 폐수 처리시스템 및 그 제어방법
KR102618913B1 (ko) * 2022-12-22 2024-01-02 주식회사 프로솔 인공습지를 이용한 오폐수처리시스템 및 이를 이용한 오폐수처리방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030041585A (ko) * 2001-11-20 2003-05-27 에드널리지 코리아 주식회사 하폐수의 질소산화물의 제거방법 및 장치
KR20030048638A (ko) * 2001-12-12 2003-06-25 주식회사 에코아이티이십일 암모니아성 질소 및 질산성 질소 분석기를 이용한 질산화탈질 자동제어 시스템
KR100627874B1 (ko) * 2005-06-21 2006-09-25 (주)상원이티씨 하수 고도처리 제어 시스템 및 그 처리방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242198A (ja) * 1988-03-25 1989-09-27 Toshiba Corp ステップ硝化脱窒プロセス制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030041585A (ko) * 2001-11-20 2003-05-27 에드널리지 코리아 주식회사 하폐수의 질소산화물의 제거방법 및 장치
KR20030048638A (ko) * 2001-12-12 2003-06-25 주식회사 에코아이티이십일 암모니아성 질소 및 질산성 질소 분석기를 이용한 질산화탈질 자동제어 시스템
KR100627874B1 (ko) * 2005-06-21 2006-09-25 (주)상원이티씨 하수 고도처리 제어 시스템 및 그 처리방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BROUER, H. ET AL. WAT. RES. vol. 32, no. 4, 31 December 1998, *
KIM, H. S. ET AL. JOURNAL OF KOREAN SOCIETY OF ENV. ENG. vol. 30, no. 2, 29 February 2008, *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149218A (zh) * 2021-05-17 2021-07-23 浙江大学 强化市政污水sbr反应器的剩余污泥厌氧发酵液投加方法
CN113149218B (zh) * 2021-05-17 2022-06-10 浙江大学 强化市政污水sbr处理效果的剩余污泥厌氧发酵液投加方法

Also Published As

Publication number Publication date
WO2012002692A3 (ko) 2012-06-28
WO2012002692A9 (ko) 2012-05-03
KR101237447B1 (ko) 2013-02-26
KR20120000858A (ko) 2012-01-04

Similar Documents

Publication Publication Date Title
WO2012002692A2 (ko) 하폐수 처리 공정의 규칙기반 실시간 제어 방법 및 시스템
Makinia et al. Mathematical modelling and computer simulation of activated sludge systems
Vanrolleghem et al. A comprehensive model calibration procedure for activated sludge models
WO2018221924A1 (ko) 하수처리장 수처리공정에서 혐기성 암모늄 산화 공법 기반의 하수처리 시스템
Meijer et al. Metabolic modelling of full-scale biological nitrogen and phosphorus removing WWTP's
Seco et al. Biological nutrient removal model No. 1 (BNRM1)
Plaza et al. Impact of seeding with nitrifying bacteria on nitrification process efficiency
Santín et al. New approach for regulation of the internal recirculation flow rate by fuzzy logic in biological wastewater treatments
Baeza et al. In-line fast OUR (oxygen uptake rate) measurements for monitoring and control of WWTP
KR20180104413A (ko) 하모니서치 알고리즘을 이용한 활성슬러지 공정의 산소공급량 제어 시스템
Mehrani et al. Performance evaluation and model-based optimization of the mainstream deammonification in an integrated fixed-film activated sludge reactor
Simon-Várhelyi et al. Dairy wastewater processing and automatic control for waste recovery at the municipal wastewater treatment plant based on modelling investigations
Wichern et al. Modelling of full-scale wastewater treatment plants with different treatment processes using the Activated Sludge Model no. 3
CN116177717A (zh) 一种精细化脱氮控制系统与处理流程
Kristensen et al. Batch test procedures as tools for calibration of the activated sludge model-A pilot scale demonstration
Bury et al. Dynamic simulation of chemical industry wastewater treatment plants
CN212425586U (zh) 一种基于同步硝化反硝化机制的生化需氧控制系统
Mantziaras et al. Effect of operational cycle time length on nitrogen removal in an alternating oxidation ditch system
WO2015147565A1 (ko) 질소제거와 전기전도도를 이용한 인 제거 자동제어 m2le 고도처리시스템 및 그 시스템의 작동방법
CN107720975A (zh) 一种乙醇类物质作为外加碳源的污水处理优化模拟方法
Gokcay et al. Modeling of a large-scale wastewater treatment plant for efficient operation
Fiter et al. Enhancing biological nitrogen removal in a small wastewater treatment plant by regulating the air supply
WO2013002435A1 (ko) 사전 예측 제어 기반 하·폐수 처리 시스템 및 하·폐수 처리 방법
CN117819702B (zh) 一种污水处理过程中模块组合式营养物补给控制方法
JP4453287B2 (ja) 下水処理方法および下水処理制御システムと、下水処理場の改造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11801098

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11801098

Country of ref document: EP

Kind code of ref document: A2